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Abstract

Recursive linear structural equation models are widely used to postulate causal mechanisms
underlying observational data. In these models, each variable equals a linear combination
of a subset of the remaining variables plus an error term. When there is no unobserved
confounding or selection bias, the error terms are assumed to be independent. We consider
estimating a total causal effect in this setting. The causal structure is assumed to be known
only up to a maximally oriented partially directed acyclic graph (MPDAG), a general class
of graphs that can represent a Markov equivalence class of directed acyclic graphs (DAGs)
with added background knowledge. We propose a simple estimator based on recursive least
squares, which can consistently estimate any identified total causal effect, under point or
joint intervention. We show that this estimator is the most efficient among all regular
estimators that are based on the sample covariance, which includes covariate adjustment
and the estimators employed by the joint-IDA algorithm. Notably, our result holds without
assuming Gaussian errors.

Keywords: structural equation model, causal inference, semiparametric efficiency, par-
tially directed acyclic graph, observational study

1. Introduction

A linear structural equation model (SEM) specifies a causal mechanism underlying a set
of variables (Bollen, 1989). Each variable equals a linear combination of a subset of the
remaining variables plus an error term. A SEM is associated with a mixed graph, also
known as a path diagram (Wright, 1921, 1934), which consists of both directed edges and
bi-directed edges. A directed edge i → j represents that variable i appears as a covariate
in the structural equation defining variable j. The equation for variable j takes the form

Xj =
∑
i:i→j

γijXi + εj , (1)

where εj is an error term. Often, the errors are assumed to follow a multivariate normal
distribution, but it need not be the case. A bi-directed edge i ↔ j indicates that errors
εi and εj are dependent, which is assumed when there exists an unobserved (i.e., latent)
confounder between i and j. The mixed graph is usually assumed to be acyclic, i.e., the
graph does not contain cycles made of directed edges.
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We focus on the setting when there is no unobserved confounder or selection bias, a
condition also known as causal sufficiency ; see Spirtes et al. (2000, Chap. 3) and Pearl
(2009, Chap. 6). In this setting, all the error terms are assumed to be mutually independent
and the mixed graph associated with the linear SEM is a directed acyclic graph (DAG),
often called a causal DAG. Aside from being a statistical model for observational data, the
linear SEM is also a causal model in the sense that it specifies the behavior of the system
under interventions (see Section 3.2). Therefore, the total causal effect of one treatment
variable (point intervention) or several treatment variables (joint intervention) on some
outcome varibles can be defined.

The underlying causal DAG is usually unknown. In fact, linear SEMs associated with
different DAGs may define the same observed distribution (Drton et al., 2011). Without
further assumptions on the error distributions, the underlying DAG can only be learned from
observational data up to its Markov equivalence class, which can be uniquely represented
by a completed partially directed acyclic graph (CPDAG) (Meek, 1995; Andersson et al.,
1997). Additional background knowledge, such as knowledge of certain causal relationships
(Meek, 1995; Fang and He, 2020) or partial orderings (Scheines et al., 1998), restrictions
on the error distributions (Shimizu et al., 2006, 2011; Shimizu, 2014; Hoyer et al., 2008;
Peters and Bühlmann, 2014), and other assumptions (Hauser and Bühlmann, 2012; Wang
et al., 2017; Rothenhäusler et al., 2018; Eigenmann et al., 2017) can be used to further refine
the Markov equivalence class of DAGs, resulting in representing the causal structure as a
maximally oriented PDAG (MPDAG), which is a rather general class of graphs containing
directed and undirected edges that subsumes DAGs and CPDAGs (Meek, 1995). A given
total causal effect is identified given a graph, if it can be expressed as a functional of the
observed distribution, which is the same for every DAG in the equivalence class. Recently,
a necessary and sufficient graphical criterion for identification given an MPDAG has been
shown by Perković (2020). In general, there may be more than one identifying functional.

Naturally, the next step is to develop estimators for an identified total effect with desir-
able properties. When the effect is unidentified, the reader is referred to IDA-type (Maathuis
et al., 2009; Nandy et al., 2017) or enumerative (Guo and Perkovic, 2021) approaches, which
are beyond the scope of this paper. Among others, we consider the following desiderata.

Completeness. Can the estimator consistently estimate every identified effect, under ei-
ther point or joint interventions?

Efficiency. Does the estimator achieve the smallest asymptotic (co)-variance compared to
a reasonably large class of estimators?

To the best of our knowledge, no estimator proposed in the literature fulfills both desiderata.
Indeed, the commonly used covariate adjustment estimators (Pearl, 1993; Shpitser et al.,
2010; Maathuis and Colombo, 2015; Perković et al., 2015) do not exist for certain total
effects under joint interventions (Nandy et al., 2017; Perković et al., 2018; Perković, 2020).
Furthermore, when they exist, even with an optimal adjustment set chosen to maximize
efficiency (Henckel et al., 2022; Rotnitzky and Smucler, 2020; Witte et al., 2020), we will
show in Section 7 that covariate adjustment can compare less favorably against a larger
class of estimators.

We propose an estimator that is based on simple recursive least squares, that affirma-
tively fulfills both desiderata. In particular, our proposed estimator achieves the efficiency
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bound among all regular estimators that only depend on the sample covariance; see Section 6
for the precise definition of the class of estimators. Remarkably, our result holds regardless
of the type of error distribution in the underlying linear SEM. Our method is implemented
in the R (R Core Team, 2020) package eff2 (https://cran.r-project.org/package=eff2),
which stands for “efficient effect” (estimate).

Admittedly, our estimator can be less efficient when compared to an even larger class of
estimators, such as the class of all regular estimators considered in standard semiparametric
theory. A semiparametric efficient estimator, relative to all regular estimators, can in prin-
ciple be constructed by computing the efficient influence function and employing estimation
strategies such as one-step correction or targeted maximum likelihood estimation (van der
Laan and Rose, 2011). In fact, the semiparametric model we consider (see Eq. (21)) is a
generalized, multivariate location-shift regression model with additional conditional inde-
pendence constraints; see also Tsiatis (2006, §5.1) and Bickel et al. (1993, §4.3). While it is
theoretically possible to construct a semiparametric efficient estimator by firstly estimating
the error score and then solving the associated estimating equations (Bickel et al., 1993,
§7.8), the resulting estimator tends to be too complicated and unstable for practical pur-
poses unless the sample size is very large (Tsiatis, 2006, page 111). On the other hand,
despite the potential loss of efficiency, our least squares estimator is easily computed and
numerically stable. Hence, our proposal can be viewed as a deliberate trade-off between
optimality and practicality.

The paper is organized as follows. In Section 2, we review related work on efficient
estimation of total effects in over-identified settings. In Section 3, we introduce the prelim-
inaries on linear structural equation models, causal graphs and the identification of total
causal effects. The concept of bucket decomposition is introduced. In Section 4, we intro-
duce a block-recursive representation for the observational data and identify the total causal
effect under such a representation. We first derive the proposed least squares estimator by
finding the maximum likelihood estimator (MLE) under the assumption of Gaussian errors
in Section 5. We then prove the optimal efficiency of our proposed estimator under arbitrary
error distributions in Section 6. Additional preliminaries, proofs and numerical results can
be found in the Appendix.

2. Related work

The statistical performance of an estimator of a total causal effect, in over-identified set-
tings, has recently received more attention; see, e.g, Kuroki and Miyakawa (2003); Henckel
et al. (2022); Witte et al. (2020); Gupta et al. (2020); Rotnitzky and Smucler (2020); Smucler
et al. (2020); Kuroki and Nanmo (2020). Here, “over-identified” (Koopmans and Reiersøl,
1950) refers to the fact that the total causal effect can be expressed as more than one func-
tional of the (population) observed distribution, all of which coincide due to the additional
conditional independence constraints obeyed by the observed distribution. For example, in
the case where a total causal effect can be identified through covariate adjustment, usually
there exists more than one valid adjustment set (Henckel et al., 2022). This is in contrast
to the more traditional setting of causal inference, where the observed data distribution is
nonparametric and is not expected to satisfy extra conditional independences.
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Intuitively, the conditional independences in over-identified models can be exploited to
maximize asymptotic efficiency; see, e.g., Sargan (1958); Hansen (1982) for early works in
this direction. Under a linear SEM with independent errors, a total causal effect can be
estimated via covariate adjustment as the least squares coefficient from the regression of the
outcome on the treatment and adjustment variables. Henckel et al. (2022) recently showed
that, under a linear SEM with independent errors, a valid adjustment set that minimizes
asymptotic variance, also referred to as the optimal adjustment set, can be graphically char-
acterized; see also Witte et al. (2020) for further properties of such an optimal set. This
result was generalized by Rotnitzky and Smucler (2020) beyond linear SEMs: an optimal
adjustment set is shown to always exist for point interventions, and a semiparametric ef-
ficient estimator is developed for this case. Note that, while valid adjustment sets (called
“time-independent” adjustment sets by Rotnitzky and Smucler (2020)) exist for point in-
terventions (Perković, 2020, Proposition 4.2), they may not exist for joint interventions
(Nandy et al., 2017; Perković et al., 2018; Perković, 2020).

Less is known about how to efficiently estimate the total causal effect of a joint inter-
vention, at least in a generic fashion. For linear SEMs with independent errors, with the
knowledge of the parents of the treatment variables in the underlying causal DAG, Nandy
et al. (2017) considered two estimators for the joint-IDA algorithm, one based on recursive
least squares and one based on a modified Cholesky decomposition. However, the efficiency
properties of these estimators were not explored. In Section 7, numerical comparisons will
show that our proposed estimator significantly outperforms these estimators.

Other results on the linear SEM include explicit calculations and comparisons for typical
examples with either a particular structure or only a few variables; see, e.g., Kuroki and
Cai (2004); Gupta et al. (2020). Gaussian errors are also assumed in these calculations.

3. Linear SEMs, causal graphs and effect identification

3.1 Linear SEMs under causal sufficiency

A linear SEM postulates a causal mechanism that generates data. Let X denote a vector
of variables generated by a linear SEM, where X is indexed by V (X = XV ). Let D be the
associated DAG on vertices V . For this |V |-dimensional random vector X, the model in
Eq. (1) can be compactly rewritten as

X = Γ>X + ε, Γ = (γij), i→ j not in D ⇒ γij = 0. (2)

where Γ ∈ R|V |×|V | is a coefficient matrix, and ε = (εi) is a |V |-dimensional random vector.
DAG D is associated with the linear SEM in Eq. (1) in the sense that the non-zero entries
of Γ correspond to the edges in D.

Under causal sufficiency (no latent variables), we assume

{εi : i ∈ V } are independent, E ε = 0, E εε> � 0, (3)

where for a real symmetric matrix A, A � 0 means A is positive definite. The errors
{εi : i ∈ V } are not necessarily Gaussian, nor identically distributed.

The law P (X) is called the observed distribution. For a given D, we will use PD to denote
the set of possible laws of X, namely the collection of P (X) as Γ and the error distribution
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vary subject to Eqs. (2) and (3). The linear SEM poses certain restrictions on the set of
laws PD. Let Pa(i,D) denote the set of parents of vertex i, i.e., {j : j → i is in D}. For
any P ∈ PD, among other constraints, (i) P factorizes according to D, (ii) E[Xi | XPa(i,D)]
is linear in XPa(i,D) and (iii) var[Xi | XPa(i,D)] is constant in XPa(i,D).

We observe n iid samples generated by the model above, namely X(i) = (I − Γ)−>ε(i)

for i = 1, . . . , n. Note that (I − Γ) is invertible because Γ can be permuted into a lower-
triangular matrix by a topological ordering (i.e., causal ordering) of vertices in D.

3.2 Interventions and total causal effects

The assumed linear SEM also dictates the behavior of the system under interventions. Let
A ⊆ V be a set of vertices indexing treatment variables XA. We use do(XA = xA) to denote
intervening on variables XA and forcing them to take values xA (Pearl, 1995). We call this
a point intervention if A is a singleton, and a joint intervention if A consists of several
vertices, which correspond to the case of multiple treatments. While XA is fixed to xA,
the remaining variables are generated by their corresponding structural equations Eq. (1),
with each Xi for i ∈ A appearing in the equations replaced by the corresponding enforced
value xi (Strotz and Wold, 1960). This generating mechanism defines the interventional
distribution, denoted by P (X|do(XA = xA)), where the conditional probability notation is
only conventional. More formally, the interventional distribution is expressed as

P (X|do(XA = xA)) =
∏
j∈A

δxj (Xj)
∏
i/∈A

P
(
Xi|XPa(i,D)

)
, (4)

where δ denotes a Dirac measure. Factor P
(
Xi|XPa(i)

)
is defined by the structural equation

for Xi. Eq. (4) is known as the truncated factorization formula (Pearl, 2009), manipulated
density formula (Spirtes et al., 2000) or the g-formula (Robins, 1986).

Definition 1 (Total causal effect, Pearl, 2009; Nandy et al., 2017) Let XA be a vec-
tor of treatment variables and XY with Y ∈ V \A be an outcome variable. The total causal
effect of XA on XY is defined as the vector τAY ∈ R|A|, where

(τAY )i =
∂

∂xAi

E[XY | do(XA = xA)], i = 1, . . . , |A|.

That is, τAY is the gradient of the linear map xA 7→ E[XY |do(XA = xA)]. When
multiple outcomes Y = {Y1, . . . , Yk}, k > 1, are considered, the total causal effect of XA

on XY1 , . . . , XYk can be defined by concatenating τAY1 , . . . , τAYk . Therefore, throughout, we
assume the outcome variable is a singleton without loss of generality. Each coordinate of
the total causal effect τAY can be expressed as a sum-product of the underlying linear SEM
coefficients along certain causal paths from A to Y in D, that is, certain paths of the form
A1 → · · · → Yi for A1 ∈ A; see also Wright (1934); Sullivant et al. (2010).

3.3 Causal graphs

Two different linear SEMs on the same set of variables can define the same observed distri-
bution. For example, under Gaussian errors, linear SEMs associated with DAGs A→ Y and
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A← Y , define the same set of observed distributions, namely the set of centered bivariate
Gaussian distributions. Without making additional assumptions on the error distribution,
such as non-Gaussianity (Shimizu et al., 2006), partial non-Gaussianity (Hoyer et al., 2008),
or equal variance of errors (Peters and Bühlmann, 2014; Chen et al., 2019), the underlying
causal DAG can only be learned from the observed distribution up to its Markov equivalence
class (Pearl and Verma, 1995; Chickering, 2002).

CPDAGs Two DAGs on the same set of vertices are Markov equivalent if they encode
the same set of d-separation relations between the vertices. The d-separations between the
vertices, prescribe conditional independences between the corresponding variables (known
as the Markov condition (Lauritzen, 1996, §3.2.2)); see Appendix C for the definition of
d-separation and more background. This equivalence relation defines a Markov equivalence
class, which consists of DAGs as elements. A Markov equivalence class can be uniquely
represented by a completed partially directed acyclic graph (CPDAG), also known as an
essential graph (Meek, 1995; Andersson et al., 1997). A CPDAG C is a graph on the
same set of vertices, that can contain both directed and undirected edges. We use [C] to
denote the Markov equivalence class represented by CPDAG C. A directed edge i → j in
C implies i → j is in every D ∈ [C], whereas an undirected edge i − j in C implies there
exist D1,D2 ∈ [C] such that i → j in D1 but i ← j in D2. Given a DAG D, the CPDAG
C representing the Markov equivalence class of D can be drawn by keeping the skeleton of
D, adding all the unshielded colliders from D and completing the orientation rules R1–R3
of Meek (1995); see Fig. 6 in Appendix C. For example, DAGs A → Y and A ← Y are
represented by CPDAG A − Y . To slightly abuse the notation, for a distribution Q, we
write Q ∈ [C] if Q factorizes according to some DAG D ∈ [C]; see Lauritzen (1996, §3.2.2).

There are various structure learning algorithms that can be used to uncover CPDAG C
from observational data. Some well-known examples are the PC algorithm (Spirtes et al.,
2000) and the greedy equivalence search (Chickering, 2002). Choosing an appropriate algo-
rithm for the data set at hand is beyond the scope of this paper; the reader is referred to
Drton and Maathuis (2017, §4) for a recent overview.

MPDAGs Certain background knowledge, if present, can be used to further orient some
undirected edges in a CPDAG C. Typically, knowledge of temporal orderings can inform
the orientation of certain undirected edges; see Spirtes et al. (2000, §5.8.4) for an example.
Adding these background-knowledge orientations and the additionally implied orientations
based on the orientation rules of Meek (1995) to C results in a maximally oriented partially
directed graph (MPDAG) G. See Fig. 6 and Algorithm 1 in Appendix C. MPDAGs are
a rather general class of graphs that subsumes both DAGs and CPDAGs. An MPDAG
G represents a restricted Markov equivalence class of DAGs, which we also denote by [G].
Analogously to the case of a CPDAG, i → j in G implies i → j is in every D ∈ [G], and
i− j in G implies there exist D1,D2 ∈ [G] such that i→ j in D1 but i← j in D2.

For the rest of the paper, we will assume that we have access to an MPDAG G that
represents our structural knowledge about the underlying DAG D. That is,

causal DAG D ∈ [G], G is an MPDAG, (5)

where [G] represents a collection of DAGs that are Markov equivalent, but can be strictly
smaller than the corresponding Markov equivalence class due to background knowledge.
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3.4 Causal effect identification

Throughout the paper we will use the following notations. Given treatment variables XA

and an outcome variable XY such that Y /∈ A, we are interested in learning the total causal
effect τAY . We assume that we have access to an MPDAG G, and to observational data
that are generated as iid samples from a linear SEM defined by Eqs. (2) and (3), where the
causal DAG D is in [G]. Before estimation can be performed, we need to make sure that
τAY can be identified from observational data. That is, we need to ensure that τAY can be
expressed as a functional of the observed distribution that is the same for every DAG in
[G]. We have the following graphical criterion.

Theorem 2 (Perković, 2020) The total causal effect τAY of XA on XY is identified given
an MPDAG G if and only if there is no proper, possibly causal path from A to Y in G that
starts with an undirected edge.

Theorem 2 is Proposition 3.2 of Perković (2020), which holds for nonparametric causal
graphical models. It does not require that the data is generated by a linear SEM. However,
Perković (2020) proves that when the criterion fails, then two linear SEMs with Gaussian
errors can be constructed such that their observed distributions coincide but their τAY ’s
are different. Hence, even if we restrict ourselves to linear SEMs, Theorem 2 still holds.

A few terms need some explanation. A path from A to Y in G is a sequence of distinct
vertices 〈v1, . . . , vk〉 for k > 1 with v1 ∈ A and vk = Y , such that every pair of successive
vertices are adjacent in G. The path is proper when only its first vertex is in A. The path
is possibly causal if no edge vl ← vr is in G for 1 ≤ l < r ≤ k. The reader is referred
to Appendix C for more graphical preliminaries. When G satisfies Theorem 2 relative
to vertex sets A and Y , the interventional distribution P (XY |do(XA = xA)), and hence
the total effect, can be computed from the observed distribution P (X). To express the
identification formula, we require the following concepts.

3.4.1 Buckets and bucket decomposition

Let G = (V,E,U) be a partially directed graph, where V is the set of vertices, and E and
U are sets of directed and undirected edges respectively. Let B1, . . . , BK be the maximal
connected components of the undirected graph GU := (V, ∅, U). Then V = B1 ∪̇ . . . ∪̇BK ,
where symbol ∪̇ denotes disjoint union. Note that all the directed edges within each Bi are
due to background knowledge. If we ignore the distinction between directed and undirected
edges, then the subgraph induced by each Bi is chordal (Andersson et al., 1997, §4).

Suppose the connected components are ordered such that

i→ j ∈ E, i ∈ Bi, j ∈ Bj ⇒ i < j. (6)

One can show that such a partial causal ordering always exists, though it may not be
unique; see Algorithm 2 in Appendix C to obtain such an ordering. Our result does not
depend on the particular choice of partial causal ordering. We call B1, . . . , BK the bucket
decomposition of V and call each Bk for k = 1, . . . ,K a bucket ; see Fig. 1(a) for an example.
If it is clear which graph G is being referred to, we will shorten Pa(j,G) as Pa(j) to reduce
clutter. For a set of vertices C in G, we use Pa(C) := ∪i∈C Pa(i) \ C to denote the set of
their external parents. Clearly, Pa(Bk) ⊆ B[k−1], where B[k−1] := B1 ∪ · · · ∪Bk−1.
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Lemma 3 Let i and j be two distinct vertices in MPDAG G = (V,E,U) such that i→ j ∈
E. Suppose that there is no undirected path from i to j in G. If there is a vertex k, and an
undirected path j − · · · − k in G, then i→ k ∈ E.

By definition of the parent set above we have that Pa(Bk) = ∪i∈Bk
Pa(i) \ Bk, k =

1, . . . ,K. However, since a bucket Bk is a maximal subset of V that is connected by
undirected edges in G, Theorem 3 implies the following important property.

Corollary 4 (Restrictive property) Let B1, . . . , BK be the bucket decomposition of V
in MPDAG G = (V,E,U). Then, all vertices in the same bucket have the same set of
external parents, namely

Pa(Bk) = Pa(i) \Bk, for any i ∈ Bk, k = 1, . . . ,K.

The causal identification formula for P (XY |do(XA = xA)) of Perković (2020) relies on
a decomposition of certain ancestors of Y in MPDAG G according to the buckets. We call
vertex i an ancestor of vertex j in G if there exists a directed path i → · · · → j in G; we
use the convention that j is an ancestor of itself. We denote the set of ancestors of j in G
as An(j,G), or shortened as An(j).

Let GV \A = (V \ A,E′, U ′) denote the subgraph of G induced by the vertices V \ A,
where E′ includes those edges in E that are between vertices in V \A, and similarly for U ′.
Consider the set of ancestors of Y in GV \A, denoted as

D := An(Y,GV \A). (7)

The bucket decomposition D1, . . . , DK of D, induced by the bucket decomposition of V , is
simply

D =
⋃̇K

k=1
Dk, Dk = D ∩Bk, i = 1, . . . ,K. (8)

Lemma 5 When the criterion in Theorem 2 is satisfied, we have Pa(Dk,G) = Pa(Bk,G)
for every nonempty Dk.

Proofs of Theorems 3 and 5 are left to Appendix B.

Theorem 6 (Perković, 2020) Suppose the criterion in Theorem 2 is satisfied for A, Y
in MPDAG G = (V,E,U) such that Y /∈ A. Let P (X) be the observed distribution. Let
D = An(Y,GV \A) and D1, . . . DK be the bucket decomposition of D as in Eq. (8). Then the
interventional distribution P (XY |do(XA = xA)) can be identified as

P (XY |do(XA = xA)) =

∫ {
K∏
k=1

P
(
XDk
|XPa(Dk)

)}
dXD\Y (9)

for values XPa(Dk) in agreement with xA, where P
(
XDk
|XPa(Dk)

)
≡ 1 if Dk = ∅.

The expression in Eq. (9) above is a generalization of the truncated factorization Eq. (4)
from DAGs to MPDAGs. Theorem 6 holds generally even when an underlying linear SEM
is not assumed.
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4. Block-recursive representation

In this section, we express the observed distribution P (X) induced by a linear SEM com-
patible with MPDAG G = (V,E,U) in a block-recursive form. Each block corresponds to a
bucket in the bucket decomposition of V . Such a reparameterization is necessitated by the
fact that the causal ordering of D is unknown, whereas the buckets can be arranged into a
valid partial causal ordering as in Eq. (6). We will use this representation to compute an
estimator for the total causal effect.

Recall that PD denotes the family of laws of X arising from a linear SEM Eqs. (2)
and (3) compatible with DAG D. Let PG := ∪D∈[G]PD, which denotes the family of laws of
X arising from a linear SEM compatible with a DAG in [G].

Proposition 7 (Block-recursive form) Let D be the causal DAG associated with the
linear SEM and G an MPDAG such that D ∈ [G]. Further, let B1, . . . , BK be the bucket
decomposition of V in G. Then the linear SEM Eqs. (2) and (3) can be rewritten as

X = Λ>X + ε,

for some matrix of coefficients Λ = (λij) ∈ R|V |×|V | and random vector ε = (εi) ∈ R|V | such
that

j ∈ Bl, i /∈ Pa(Bl,G) ⇒ λij = 0, (10)

E ε = 0, E εBk
ε>Bk
� 0, (k = 1, . . . ,K), εB1 , . . . , εBK

are mutually independent, (11)

and
law of (εBk

) ∈ PGBk
, k = 1, . . . ,K, (12)

where GBk
is the subgraph of G induced by Bk.

Note that in contrast to symbol ε used in Eqs. (2) and (3), symbol ε is used here to denote
the errors in the block-recursive form. The coordinates within each εBk

may be dependent.
Proof For k = 2, . . . ,K, by Eq. (2) and the restrictive property (Theorem 4), we have

XBk
= Γ>Pa(Bk),Bk

XPa(Bk) + Γ>Bk
XBk

+ εBk
,

where Pa(Bk) = Pa(Bk,G). The expression can be rewritten as

XBk
= (I − ΓBk

)−> Γ>Pa(Bk),Bk
XPa(Bk) + (I − ΓBk

)−> εBk

= Λ>Pa(Bk),Bk
XPa(Bk) + εBk

,

where εBk
:= (I − ΓBk

)−> εBk
for k = 1, . . . ,K (note that XB1 = εB1). Additionally,

ΛPa(Bk),Bk
= ΓPa(Bk),Bk

(I − ΓBk
)−1 for k = 2, . . . ,K.

Matrix Λ ∈ R|V |×|V | in the statement of the proposition is defined by blocks ΛPa(Bk),Bk

for k = 2, . . . ,K and zero entries otherwise. Therefore, λij = 0 if j ∈ Bl and i /∈ Pa(Bl)
for some l = 1, . . .K. Hence, by putting the blocks together, the model can be written as
X = Λ>X + ε.

The “new” errors ε satisfy

εBk
= Γ>Bk

εBk
+ εBk

, k = 1, . . . ,K.
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It then follows from Eqs. (2) and (3) that for every k,

law of εBk
∈ PDBk

⊂ PGBk
,

since D ∈ [G]. Moreover, for every k,

E εBk
= 0, E εBk

ε>Bk
= (I − ΓBk

)−> E εBk
ε>Bk

(I − ΓBk
)−1 � 0,

where both (I − ΓBk
) and E εBk

ε>Bk
are full rank, because ΓBk

can be permuted into an

upper-triangular matrix and E εε> � 0 by Eq. (3).

Corollary 8 Under the same conditions as Theorem 7, it holds that

XB1 = εB1 ,

XBk
= Λ>Pa(Bk),Bk

XPa(Bk) + εBk
, εBk

⊥⊥ XPa(Bk), k = 2, . . . ,K,
(13)

where Pa(Bk) = Pa(Bk,G).

Next, we show that if the total causal effect τAY is identifiable from MPDAG G (Theorem
2), then it can be calculated from Λ in the block-recursive representation of Proposition 7.
Therefore, the distribution of ε is a nuisance relative to estimating τAY .

Proposition 9 Suppose the criterion in Theorem 2 is satisfied for A, Y in MPDAG G =
(V,E,U) such that Y /∈ A. Let Λ be the block-recursive coefficient matrix given by Theo-
rem 7. The total causal effect of XA on XY is identified as

τAY = ΛA,D
[
(I − ΛD,D)−1

]
D,Y

, (14)

where D = An(Y,GV \A) and the last subscript denotes the column corresponding to Y ∈ D.

Proof We derive this result using Theorem 6. Recall that D1, . . . , DK is a partition of
D induced by the bucket decomposition B1, . . . , BK of V in the sense that Dk = D ∩ Bk
for k = 1, . . . ,K. When Dk = ∅, we use the convention that P (XDk

|XPa(Dk)) ≡ 1. By
definition of D = An(Y,GV \A) and Eq. (6), observe that a vertex in Pa(Dk) = Pa(Dk,G) is
either in D1 ∪ · · · ∪Dk−1 or in A. Let Fk := A∩Pa(Dk). In Eq. (9), we note that the joint
interventional distribution of XD is given by

P (XD|do(XA = xA)) =
K∏
k=1

P (XDk
|XPa(Dk)) =

K∏
k=1

P (XDk
|XPa(Dk)\Fk

, XFk
= xFk

),

where xFk
is fixed by the do(XA = xA) operation. Further, fix a factor i ∈ {1, . . . ,K}. By

Theorem 5, Pa(Di) = Pa(Bi). By Eq. (13) and εDi ⊥⊥ XPa(Bi), we have

XDi |
{
XPa(Di)\Fi

, XFi = xFi

}
=d Λ>Pa(Di)\Fi,Di

XPa(Di)\Fi
+ ΛFi,DixFi + εDi

= Λ>Pa(Di)∩D,Di
XPa(Di)∩D + ΛPa(Di)∩A,Di

xPa(Di)∩A + εDi

10
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The fact that the display above holds for every i = 1, . . . ,K implies that the joint interven-
tional distribution P (XD|do(XA = xA)) satisfies

XD = ΛTD,DXD + Λ>A,DxA + εD.

It follows that XD = (I − ΛD,D)−>(Λ>A,DxA + εD) and hence

E[XD | do(XA = xA)] = (I − ΛD,D)−>Λ>A,DxA.

Since Y ∈ D, by Theorem 1 we have

τAY =
∂

∂xA
E[XY | do(XA = xA)] = ΛA,D

[
(I − ΛD,D)−1

]
D,Y

.

We say vertex j is a possible descendant of i, denoted as j ∈ PossDe(i), if there exists a
possibly causal path from i to j. For a set of vertices A, define PossDe(A) := ∪i∈A PossDe(i).
See Appendix C for more details.

Corollary 10 If Y /∈ PossDe(A), then τAY = 0.

Proof Since D = An(Y,GV \A) and Y /∈ PossDe(A), ΛA,D = 0.

5. Recursive least squares

Consider the special case when the errors in the linear SEM Eq. (1) are jointly Gaussian. In
this case, by the standard maximum likelihood theory, the Cramér–Rao bound is achieved by
the maximum likelihood estimator (MLE) of the total causal effect, which can be obtained
by plugging in the MLE for Λ in the block-recursive form (Theorem 7) into the formula
Eq. (14). We now compute the MLE for Λ given an MPDAG G.

When ε is multivariate Gaussian, the block-recursive form in Theorem 7 is a linear
Gaussian model parameterized by {(Λk)Kk=2, (Ωk)

K
k=1}, where Λk := ΛPa(Bk),Bk

and Ωk is
the covariance for εBk

. Because ε are independent between blocks (Proposition 7), the
likelihood factorizes as

L((Λk)k, (Ωk)k) =

K∏
k=1

N
(
XBk

− Λ>kXPa(Bk); 0,Ωk

)
. (15)

Denote the MLE of Λ by Λ̂G , which consists of blocks (Λ̂Gk )Kk=2 and zero values elsewhere,

and the MLE of Ω by Ω̂G = (Ω̂Gk )Kk=1. The superscripts highlight the dependence on MPDAG
G. The MLE maximizes L((Λk)k, (Ωk)k) subject to Eq. (12), namely

N (0,Ωk) ∈ PGBk
, k = 1, . . . ,K,

where GBk
is the subgraph of G induced by Bk. This further translates to a set of algebraic

constraints on (Ωk)
K
k=1, namely for k = 1, . . . ,K,

det
[
(Ωk){i}∪C,{j}∪C

]
= 0, if i and j are d-separated by C in GBk

; (16)

11
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see, e.g., Drton et al. (2008, §3.1). Although the constraints Eq. (16) may seem daunting,
we will show that they do not affect the MLE for Λ.

Let the sample covariance matrix be computed with respect to mean zero, i.e.,

Σ̂(n) :=
1

n

n∑
i=1

X(i)X(i)>, (17)

where n is the sample size, and the superscripts are reserved to index samples. To reduce
clutter, for a set of indices C, we often abbreviate ΣC,C as ΣC .

Lemma 11 Suppose X(i) : i = 1, . . . , n is generated iid from a linear SEM Eqs. (2) and (3)
associated with an unknown causal DAG D. Suppose the error ε is distributed as multivariate
Gaussian. Suppose D ∈ [G] for a known MPDAG G. Let Σ̂(n) be the sample covariance as
defined in Eq. (17). The MLE for Λk = ΛPa(Bk),Bk

in the block-recursive form is given by

Λ̂Gk =
(

Σ̂
(n)
Pa(Bk)

)−1
Σ̂

(n)
Pa(Bk),Bk

, k = 2, . . . ,K. (18)

Proof By factorization in Eq. (15), MLE (Λ̂Gk , Ω̂
G
k ) is the maximizer of log-likelihood

`n(Λk,Ωk)

= −1

2

n∑
i=1

(
X

(i)
Bk
− Λ>kX

(i)
Pa(Bk)

)>
Ω−1
k

(
X

(i)
Bk
− Λ>kX

(i)
Pa(Bk)

)
− n

2
log det(Ωk)

= −1

2
Tr

(
n∑
i=1

Ω−1
k (X

(i)
Bk
− Λ>kX

(i)
Pa(Bk))(X

(i)
Bk
− Λ>kX

(i)
Pa(Bk))

>

)
− n

2
log det(Ωk),

subject to Eq. (16). Taking a derivative with respect to Λk ∈ R|Pa(Bk)|×|Bk|, we have

∂`n(Λk,Ωk)

∂Λk
= −2

n∑
i=1

X
(i)
Pa(Bk)X

(i)>
Bk

Ω−1
k + 2

n∑
i=1

X
(i)
Pa(Bk)X

(i)>
Pa(Bk)ΛkΩ

−1
k .

For any positive definite Ωk satisfying Eq. (16), setting the derivative `n(Λk,Ωk)/∂Λk to
zero yields the estimate

Λ̂Gk =

(
1

n

n∑
i=1

X
(i)
Pa(Bk)X

(i)>
Pa(Bk)

)−1(
1

n

n∑
i=1

X
(i)
Pa(Bk)X

(i)>
Bk

)
=
(

Σ̂
(n)
Pa(Bk)

)−1
Σ̂

(n)
Pa(Bk),Bk

.

Remark 12 Because of the restrictive property (Theorem 4), each Λ̂Gk is computed by op-
timizing over the space of |Pa(Bk)| × |Bk| matrices and the resulting MLE takes the simple
form as above; see also Anderson and Olkin (1985, §5) and Amemiya (1985, §6.4) for
earlier discussions of this phenomenon.

However, such a simple form is unavailable in general, when the zero constraints on
Λ do not obey the restrictive property, even if we ignore the algebraic constraints Eq. (16)
on Ω. In fact, the likelihood function can be multimodal; see also Drton and Richardson
(2004); Drton (2006); Drton et al. (2009) on seemingly unrelated regressions.

12
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Since Λ̂G is obtained by simply regressing each Bi onto Pa(Bi,G) using ordinary least
squares, we call this specific recursive least squares G-regression. The resulting MLE for an
identified total causal effect is a plugin estimator using the formula in Theorem 9.

Definition 13 (G-regression estimator) Suppose X(i) : i = 1, . . . , n is generated iid
from a linear SEM Eqs. (2) and (3) associated with an unknown causal DAG D. Suppose
D ∈ [G] for a known MPDAG G. Further, suppose for A ⊂ V , Y ∈ V \A, τAY is identified
under the criterion of Theorem 2. The G-regression estimator for the total causal effect τAY
is defined as

τ̂GAY = Λ̂GA,D

[
(I − Λ̂GD,D)−1

]
D,Y

, (19)

where Λ̂G is given by Eq. (18).

6. Efficiency theory

In this section, we establish the asymptotic efficiency of our G-regression estimator, when
the errors in the generating linear SEM are not necessarily Gaussian, among a reasonably
large class of estimators—all regular estimators that only depend on the sample covariance.
This class of estimators, despite not covering all the estimators considered in the standard
semiparametric efficiency theory, includes many in the literature:

1. Optimal covariate adjustment (Henckel et al., 2022; Witte et al., 2020): τ̂
adj.O
AY is the

coefficient of A in the least squares regression of Y ∼ A+O, where O is the optimal
adjustment set, which minimizes asymptotic variance among all valid adjustment sets.

2. Recursive least squares (Nandy et al., 2017; Gupta et al., 2020): Under point inter-
vention (|A| = 1), total effect τ̂AY is taken as the coefficient of A in the least square
regression of Y ∼ A + Pa(A). Nandy et al. (2017, §3.1) consider a recursive relation
that expresses τ̂AY under joint intervention (|A| > 1) as a polynomial function of a
collection of (intermediate) point intervention total effects.

3. Modified Cholesky decomposition (Nandy et al., 2017): If the causal ordering is
known, then Γ can be recovered by regressing each variables on all the preceding vari-
ables, which is equivalent to Cholesky decomposition of the covariance Σ = LDL>.
In fact, L−1 is a lower-triangular matrix filled with negative values of these regression
coefficients and ones on the diagonal. Since the causal ordering is unknown, Nandy
et al. (2017, §3.2) consider an iterative procedure that alters between Cholesky de-
composition and its reverse.

Definition 14 Consider an estimator θ̂n of θ, θ ∈ Rk. We say that the asymptotic covari-
ance of θ̂n is S, and write acov θ̂n = S, if

√
n(θ̂n − θ) →d N (0, S). When k = 1, we write

avar θ̂n for asymptotic variance.

For real symmetric matrices A and B, we say A � B if A − B is positive semidefinite.
We now state our main result.

13
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Theorem 15 (Asymptotic efficiency of the G-regression estimator) Suppose data is
generated iid from a linear SEM Eqs. (2) and (3) associated with an unknown causal DAG
D. Suppose D ∈ [G] for a known MPDAG G. Further, suppose for A ⊂ V , Y ∈ V \A, τAY
is identified under the criterion of Theorem 2. Let τ̂GAY be the G-regression estimator of τAY
(Theorem 13). Consider any consistent estimator τ̂AY = τ̂AY (Σ̂(n)) that is a differentiable
function of the sample covariance. It holds that

acov (τ̂AY ) � acov
(
τ̂GAY

)
.

It is clear from definitions that both τ̂GAY and τ̂AY are asymptotically linear. Therefore,
their asymptotic covariances are well-defined. To prove Theorem 15, it suffices to show that
for every w ∈ R|A|

avar
(
w>τ̂AY

)
≥ avar

(
w>τ̂GAY

)
.

To this end, for any fixed w ∈ R|A| we define τw as

τw := w>τAY = τw(Λ), (20)

which is a smooth function of Λ. The corresponding G-regression estimator τ̂Gw := w>τ̂GAY =

τw(Λ̂G) is still a plugin estimator (now of τw). Additionally, for a consistent estimator τ̂AY of
τAY , the corresponding τ̂w := w>τ̂AY = τ̂w(Σ̂(n)) is a consistent estimator of τw, in the form
of a differentiable function of the sample covariance. It suffices to show avar τ̂w ≥ avar τ̂Gw
for every w ∈ R|A|.

The rest of this section is devoted to proving Theorem 15. First, we introduce graph
Ḡ as a saturated version of G (Theorem 16). In Section 6.1, we show that G-regression
with G replaced by Ḡ, aptly named Ḡ-regression, is a diffeomorphism between the space of
covariance matrices and the space of parameters. In Section 6.2, we characterize the class
of estimators relative to which G-regression is optimal. To prove Theorem 15, we establish
an efficiency bound for this class of estimators in Section 6.4 and verify that G-regression
achieves this bound in Section 6.5. Some of the proofs are left to Appendix A. See also
Fig. 5 in for an overview of the dependency structure of our results in this section.

6.1 Ḡ-regression as a diffeomorphism

Proposition 16 (Saturated MPDAG Ḡ) For MPDAG G = (V,E,U), an associated
saturated MPDAG is Ḡ = (V, Ē, U), such that Pa(Bk, Ḡ) = B[k−1] for k = 2, . . . ,K, where
(B1, . . . , BK) is a bucket decomposition of V in both G and Ḡ.

The proof can be found in Appendix B. In words, to create the saturated MPDAG Ḡ, we
add all the possible directed edges between buckets B1, . . . , BK subject to the ordering
B1, . . . , BK . By construction, Ḡ also satisfies the restrictive property in Theorem 4. See
Fig. 1 for an example.

In the following, we introduce Ḡ-regression as a technical tool for establishing a diffeo-
morphism between the space of sample covariance matrices and the space of parameters in
our semiparametric model. This link is the key to analyzing the efficiency of the estimators
under consideration.
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1 2 3

456

(a)

1 2 3

456

(b)

Figure 1: (a) MPDAG G = (V,E,U) with buckets B1 = {1}, B2 = {2, 3, 4} and B3 = {5, 6}
and (b) its associated saturated MPDAG Ḡ = (V, Ē, U). The new edges in Ē \E are drawn
as dashed. Both G and Ḡ satisfy the restrictive property in Corollary 4.

Recall that PG is the set of observed distributions generated by some linear SEM asso-
ciated with a causal DAG D ∈ [G], which is characterized by Theorem 7. More explicitly,
let Qk be the law of εBk

for k = 1, . . . ,K. The set of laws is explicitly prescribed as

PG =

{
Q1(XB1)

K∏
k=2

Qk

(
XBk

− Λ>B[k−1],Bk
XB[k−1]

)
: Qk ∈ PGBk

, i→ j not in G ⇒ λij = 0

}
(21)

where the law is indexed by Λ = (λij) and (Qk)
K
k=1. This is a semiparametric model and

(Qk)k is an infinite-dimensional nuisance (van der Vaart, 2000, Chap. 25).

Consider the set of laws PḠ associated with the saturated graph. Let Ωk := EQk
εε> be

the covariance of Qk for k = 1, . . . ,K. Let Rn×nPD denote the set of n×n symmetric, positive

definite matrices. By our assumption, Ωk ∈ R|Bk|×|Bk|
PD . Also, consider the coefficients

Λ = (λij) such that λij 6= 0 only if i→ j in Ḡ, or equivalently, i ∈ Bl and j ∈ Bm for l < m.
Then, the covariance of X, denoted as Σ, under any P ∈ PḠ is determined from (Ωk)k and
Λ. Let us write this covariance map as

Σ = φḠ
(
(Λk)

K
k=2, (Ωk)

K
k=1

)
,

where Λk = ΛB[k−1],Bk
is of dimension (|B1|+ · · ·+ |Bk−1|)×|Bk|. It follows from Theorem 8

that the covariance map φḠ is explicitly given by

ΣB1 = Ω1, ΣBk
= Λ>k ΣB[k−1]

Λk + Ωk, ΣB[k−1],Bk
= ΣB[k−1]

Λk, k = 2, . . . ,K. (22)

Further, the covariance map φḠ is a diffeomorphism between its domain and the set of
|V | × |V | positive definite matrices.

Lemma 17 Covariance map φḠ given by Eq. (22) is invertible. Further,
(
(Λk)

K
k=2, (Ωk)

K
k=1

)
↔

Σ given by φḠ and its inverse φ−1
Ḡ is a diffeomorphism between

(
ŚK

k=2 R(|B1|+···+|Bk−1|)×|Bk|
)
×(

ŚK
k=1 R

|Bk|×|Bk|
PD

)
and R|V |×|V |PD .
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Proof By definition, covariance map φḠ is differentiable. To show diffeomorphism, we

need to show that φ−1
Ḡ (Σ) exists for every Σ ∈ R|V |×|V |PD and that φ−1

Ḡ is differentiable. For

any positive definite Σ, the inverse covariance map φ−1
Ḡ (Σ) is explicitly given by

Λk =
(

ΣB[k−1]

)−1
ΣB[k−1],Bk

, k = 2, . . . ,K, (23)

and

Ωk = ΣBk·B[k−1]
= ΣBk

− Σ>B[k−1],Bk
Σ−1
B[k−1]

ΣB[k−1],Bk
, k = 1, . . . ,K, (24)

where ΣBk·B[k−1]
is the Schur complement of block Bk with respect to block B[k−1]. Because

Σ is positive definite, Schur complement Ωk is also positive definite (Horn and Johnson,
2012, page 495). Clearly, the map φ−1

Ḡ (·) is differentiable.

By Eqs. (23) and (24), Λk is the matrix of population least squares coefficients in a regres-
sion of XBk

onto XB1∪···∪Bk−1
according to Ḡ, and Ωk is the corresponding covariance of

regression residuals. Hence, φ−1
Ḡ (Σ) is called “Ḡ-regression”.

Remark 18 In the special case when G is a DAG such that every bucket Bi is a singleton,
Theorem 17 reduces to (Λ, ω)↔ Σ given by (φḠ , φ

−1
Ḡ ) being a diffeomorphism between

{
Λ ∈ R|V |×|V | : Λ is upper-triangular

}
×
{
ω ∈ R|V | : ωi > 0, i = 1, . . . , |V |

}
←→ R|V |×|V |PD .

The covariance map is Σ = φḠ(Λ, ω) = (I − Λ)−> diag(ω)(I − Λ)−1, and the inverse co-
variance map φ−1

Ḡ is given by the unique LDL decomposition of Σ−1. Theorem 17 is a
generalization of Drton (2018, Theorem 7.2).

6.2 Covariance-based, consistent estimators

We now characterize the class of estimators relative to which the optimality of our estimator
is established. Recall that under P ∈ PG , Σ̂ = Σ̂(n) is the sample covariance, Σ is the
population covariance and τw = w>τAY . We assume that n > maxk{|Bk| + |Pa(Bk,G)|}
such that Σ̂(n) is positive definite almost surely (Drton and Eichler, 2006, Sec. 3.1). For
simplicity, the superscript (n) is often omitted.

Definition 19 The class of estimators for τw under consideration is

Tw :=

{
τ̂w

(
Σ̂(n)

)
: R|V |×|V |PD → R :

τ̂w differentiable, τ̂w(Σ̂(n))→p τw(P ) as n→∞ under every P ∈ PG
}
. (25)

By definition, in particular, Tw includes all regular estimators computable with least squares
operations.
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6.2.1 Characterizing Tw
Let (Λ̂Ḡk )Kk=2, (Ω̂

Ḡ
k )Kk=1 be the image of Σ̂ under φ−1

Ḡ . Recall that (Λk)
K
k=2, (Ωk)

K
k=1 is the

image of Σ under φ−1
Ḡ . For a matrix C, let vecC denote vectorizing C by concatenating its

columns. Each vec Λ̂Ḡk can be split by coordinates into vectors

Λ̂Ḡk,G =
(
λ̂Ḡij : j ∈ Bk, i ∈ Pa(Bk,G)

)
, Λ̂Ḡk,Gc =

(
λ̂Ḡij : j ∈ Bk, i ∈ Pa(Bk, Ḡ) \ Pa(Bk,G)

)
,

(26)

where
(

Λ̂Ḡk,G

)
k

corresponds to between-bucket edges in G and
(

Λ̂Ḡk,Gc
)
k

corresponds to

between-bucket edges in Ḡ but not in G. In the example of Fig. 1, we have Λ̂Ḡ2,G =

(λ̂Ḡ12, λ̂
Ḡ
13, λ̂

Ḡ
14)>, Λ̂Ḡ3,G = (λ̂Ḡ45, λ̂

Ḡ
46)> and Λ̂Ḡ2,Gc = NULL, Λ̂Ḡ3,Gc = (λ̂Ḡ15, λ̂

Ḡ
16, λ̂

Ḡ
25, λ̂

Ḡ
26, λ̂

Ḡ
35, λ̂

Ḡ
36)>.

Similarly, vec Λk can be split into Λk,G and Λk,Gc for k = 2, . . . ,K.
The following lemma directly follows from Theorem 19 and Theorem 17.

Lemma 20 An estimator τ̂w ∈ Tw can be written as

τ̂w

(
Σ̂(n)

)
= τ̂w

(
(Λ̂Ḡk,G)Kk=2, (Λ̂Ḡk,Gc)

K
k=2, (Ω̂Ḡk )Kk=1

)
for function τ̂w

(
(Λ̂Ḡk,G)Kk=2, (Λ̂Ḡk,Gc)

K
k=2, (Ω̂Ḡk )Kk=1

)
that is differentiable in its arguments.

The consistency of τ̂w implies the following two results.

Lemma 21 For any τ̂w ∈ Tw, it holds that

τ̂w
(
(Λk,G)Kk=2, (0)Kk=2, (Ωk)

K
k=1

)
≡ τw

(
(Λk,G)Kk=2

)
(27)

for all (Λk,G)k and all positive definite (Ωk)k.

Proof Under any P ∈ PG , since Σ̂ →p Σ as n → ∞ by the law of large numbers, by
Theorem 17 and the continuous mapping theorem (van der Vaart, 2000, page 11), we have

Λ̂Ḡk,G →p Λk,G , Λ̂Ḡk,Gc →p 0 and Ω̂Ḡk →p Ωk for k = 2, . . . ,K. By Theorem 20 and continuous

mapping again, τ̂w →p τ̂w
(
(Λk,G)Kk=2, (0)Kk=2, (Ωk)

K
k=1

)
. The result then follows from the

consistency of τ̂w under every P ∈ PG .

Corollary 22 For τ̂w ∈ Tw, at any ((Λk,G)Kk=2, (0)Kk=2, (Ωk)
K
k=1), it holds that

∂τ̂w
∂Λk,G

=
∂τw
∂Λk,G

(k = 2, . . . ,K),
∂τ̂w
∂Ωk

= 0 (k = 1, . . . ,K). (28)

Proof Let symbol 〈·, ·〉 denote inner product. Since τ̂w is differentiable (Theorem 20), by
a Taylor expansion at ((Λk,G)Kk=2, (0)Kk=2, (Ωk)

K
k=1), we have

τ̂w
(
(Λk,G + ∆Λk,G)Kk=2, (0)Kk=2, (Ωk + ∆Ωk)

K
k=1

)
− τ̂w

(
(Λk,G)Kk=2, (0)Kk=2, (Ωk)

K
k=1

)
=

K∑
k=2

(〈
∂τ̂w
∂Λk,G

,∆Λk,G

〉
+ o(‖∆Λk,G‖)

)
+

K∑
k=1

(〈
∂τ̂w
∂Ωk

,∆Ωk

〉
+ o(‖∆Ωk‖)

)
,
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which by Theorem 21 must equal τw((Λk,G + ∆Λk,G)Kk=2)− τw((Λk,G)Kk=2). The result then
follows from the differentiability of τw(·) and the definition of derivatives.

Note that Theorem 22 is similar to the conditions imposed on influence functions in
standard semiparametric efficiency theory; see, e.g., Tsiatis (2006, Corollary 1, §3.1). How-

ever, the gradients ∂τ̂w/∂Λ̂Ḡk,Gc for k = 2, . . . ,K are free to vary because Λ̂Ḡk,Gc →p 0. That
is, an estimator τ̂w ∈ Tw can take arbitrary values as its second argument varies in the
vicinity of zero, as long as differentiability is maintained.

6.3 Asymptotic covariance of least squares coefficients

We use this section to derive some asymptotic results that will be used to prove Theorem 15.
Consider a vertex j ∈ Bk for k ∈ {2, . . . ,K} and a set of vertices C such that Pa(Bk,G) ⊆

C ⊆ Pa(Bk, Ḡ). Let λ̂
(n)
C,j ∈ R|C| be the least squares coefficients from regressing Xj onto

XC under sample size n. Let λC,j be the corresponding true edge coefficient vector from
Λ in Theorem 7. Then λC,j has non-zero coordinates only for those indices in Pa(Bk,G).

Because Xj = λ>C,jXC + εj with εj ⊥⊥ XC by Theorem 8, we have λ̂
(n)
C,j →p λC,j under every

P ∈ PG . Moreover, we have the following asymptotic linear expansion.

Lemma 23 Let j be a vertex in bucket Bk for k ∈ {2, . . . ,K}. Let C be a set of vertices
such that Pa(Bk,G) ⊆ C ⊆ Pa(Bk, Ḡ). Under any P ∈ PG, it holds that

λ̂
(n)
C,j − λC,j =

1

n

n∑
i=1

(ΣC)−1X
(i)
C ε

(i)
j +Op(n

−1),

where Σ = EP XX>, λ̂
(n)
C,j is the vector of least squares coefficients from regressing Xj onto

XC under sample size n, and λC,j is the vector of true coefficients in Theorem 7.

We now use Theorem 23 to obtain the covariance structure of Ḡ-regression coefficients
(Λ̂Ḡk )Kk=2. Recall that Λ̂Ḡk ∈ R|B[k−1]|×|Bk| with B[k−1] = B1 ∪ · · · ∪Bk−1 and(

(Λ̂Ḡk )Kk=2, (Ω̂
Ḡ
k )Kk=1

)
= φ−1

Ḡ

(
Σ̂(n)

)
,

as given by Eqs. (23) and (24). For matrices A ∈ Rm×n, B ∈ Rp×q, the Kronecker product
A⊗B is an mp× nq matrix given by

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

Lemma 24 Let (Λ̂Ḡk )Kk=2 be the Ḡ-regression coefficients under sample size n. Under any
P ∈ PG, it holds that

√
n

 vec(Λ̂Ḡ2 − Λ2)
...

vec(Λ̂ḠK − ΛK)

→d N
(

0, diag

{
Ω2 ⊗

(
ΣB[1]

)−1
, . . . ,ΩK ⊗

(
ΣB[K−1]

)−1
})

.
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Remark 25
√
n vec(Λ̂

(n)
k − Λk)→d N

(
0, Ωk ⊗

(
ΣB[k−1]

)−1
)

is equivalent to

√
n(Λ̂

(n)
k − Λk)→dMN

(
0,
(

ΣB[k−1]

)−1
,Ωk

)
,

where the RHS is a centered matrix normal distribution with row covariance (ΣB[k−1]
)−1

and column covariance Ωk; see Dawid (1981).

Similarly, we can compute the asymptotic covariance of the G-regression coefficients. To
obtain the result below, we rely on the restrictive property of G (Theorem 4).

Lemma 26 Let (Λ̂Gk )Kk=2 be the G-regression coefficients as defined in Theorem 11 under
sample size n. Under any P ∈ PG, it holds that

√
n

 vec(Λ̂G2 − Λ2)
...

vec(Λ̂GK − ΛK)

→d N
(
0, diag

{
Ω2 ⊗

(
ΣPa(B2,G)

)−1
, . . . ,ΩK ⊗

(
ΣPa(BK ,G)

)−1
})

.

6.4 Efficiency bound

We first notice a simple fact of the quadratic form and a property of the Kronecker product.

Lemma 27 Let S ∈ Rn×nPD , x ∈ Rn and suppose that (A,B) is a partition of the set
{1, . . . , n}. For any fixed xA, it holds that

x>Sx ≥ x>A(SA·B)xA,

where SA·B = SA,A−SA,BS−1
B,BSB,A. The equality holds if and only if xB = −S−1

B,BSB,AxA.

Lemma 28 (Liu (1999, Theorem 1)) Let A ∈ Rm×m and C ∈ Rn×n be non-singular.
Suppose α ⊂ [m], β ⊂ [n]. Let αc, βc denote their respective complements. Let γc =
{n(i− 1) + j : i ∈ αc, j ∈ βc} and γ = [mn] \ γc. We have

Aαc·α ⊗ Cβc·β = (A⊗ C)γc·γ .

Lemma 29 Suppose the assumptions of Theorem 15 hold. Fix w ∈ R|A| and let τw =
w>τAY = τw((Λk,G)Kk=2) as in Eq. (20). Consider any estimator τ̂w ∈ Tw given by Theo-
rem 19. Then under any P ∈ PG, it holds that

avar(τ̂w) ≥
K∑
k=2

h>k Ωk ⊗ (ΣPa(Bk,G))
−1hk, (29)

where (Ωk)
K
k=2 and Σ are determined by P , and the gradient vectors hk = ∂τw((Λk,G)k)/∂Λk,G

for k = 2, . . . ,K evaluated at (Λk,G)k are determined by τw(·) and P .
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Proof By Theorem 20, estimator τ̂w ∈ Tw can be written as

τ̂w = τ̂w

(
(Λ̂Ḡk,G)Kk=2, (Λ̂Ḡk,Gc)

K
k=2, (Ω̂Ḡk )Kk=1

)
,

where the arguments correspond to the image of Σ̂ under φ−1
Ḡ ; see Eq. (26). Estimator

τ̂w ∈ Tw is asymptotically normal. By the delta method (Shorack, 2000, Sec 11.2), we have

avar(τ̂w) =

 ∂τ̂w/∂(Λk,G)Kk=2

∂τ̂w/∂(Λk,Gc)
K
k=2

∂τ̂w/∂(Ωk)
K
k=1

> acov


vec (Λ̂Ḡk,G)Kk=2

vec (Λ̂Ḡk,Gc)
K
k=2

vec (Ω̂Ḡk )Kk=1


 ∂τ̂w/∂(Λk,G)Kk=2

∂τ̂w/∂(Λk,Gc)
K
k=2

∂τ̂w/∂(Ωk)
K
k=1

 ,

where the partial derivatives of τ̂w(·) are evaluated at
(
(Λk,G)Kk=2, (0)Kk=2, (Ωk)

K
k=1)

)
, the

image of Σ under φ−1
Ḡ .

Using ∂τ̂w/∂Ωk = 0 for k = 1, . . . ,K from Theorem 22, it follows that

avar(τ̂w) =

(
∂τ̂w/∂(Λk,G)Kk=2

∂τ̂w/∂(Λk,Gc)
K
k=2

)>
acov

{
vec (Λ̂Ḡk,G)Kk=2

vec (Λ̂Ḡk,Gc)
K
k=2

}(
∂τ̂w/∂(Λk,G)Kk=2

∂τ̂w/∂(Λk,Gc)
K
k=2

)

=
K∑
k=2

(
∂τ̂w/∂Λk,G
∂τ̂w/∂Λk,Gc

)>
acov

{
Λ̂Ḡk,G
Λ̂Ḡk,Gc

}(
∂τ̂w/∂Λk,G
∂τ̂w/∂Λk,Gc

)
,

where we have used the block-diagonal structure of the asymptotic covariance from Theo-
rem 24. Let

S(k) := acov

{
Λ̂Ḡk,G
Λ̂Ḡk,Gc

}
, k = 2, . . . ,K,

which equals

S(k) = Ωk ⊗
(

ΣB[k−1]

)−1
, k = 2, . . . ,K,

by Theorem 24. From Theorem 22, note that ∂τ̂w/∂(Λk,G)k ≡ hk is fixed for k = 2, . . . ,K.
Then, Theorem 27 yields the lower bound

avar(τ̂w) ≥
K∑
k=2

h>k S
(k)
G·Gchk,

where indices G and Gc correspond to the coordinates in Λ̂Ḡk,G and Λ̂Ḡk,Gc respectively. Indices

G correspond to {(i, j) : j ∈ Bk, i ∈ Pa(Bk,G)}; by construction of Ḡ, indices Gc correspond
to {(i, j) : j ∈ Bk, i ∈ Pa(Bk, Ḡ)\Pa(Bk,G)}. Now, to abuse the notation slightly, we apply
Theorem 28 with

A = Ωk, C = (ΣB[k−1]
)−1, α = ∅, β = Pa(Bk, Ḡ) \ Pa(Bk,G),

such that
αc = {1, . . . , |Bk|}, βc = Pa(Bk,G), γ = Gc, γc = G.

We obtain
S

(k)
G·Gc = Ωk ⊗

[
(ΣB[k−1]

)−1
]
βc·β

= Ωk ⊗
(
ΣPa(Bk,G)

)−1
,

where the last step follows from (H−1)βc·β = (Hβc,βc)−1 (Horn and Johnson, 2012, §0.8).
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6.5 Efficiency of G-regression estimator

In Section 5, we have seen that when the errors are Gaussian, the G-regression plugin is the
MLE and hence achieves the efficiency bound. Here, we show that this is still true relative
to the class of estimators we consider, even though the errors are not necessarily Gaussian.
We verify that τ̂Gw = w>τ̂GAY achieves the efficiency bound above.

Lemma 30 Let τ̂Gw := w>τ̂GAY , where τ̂GAY is the G-regression estimator (Theorem 13).
Under the same assumptions as Theorem 29, it holds that τ̂Gw ∈ Tw and τ̂Gw achieves the
efficiency bound in Eq. (29) under every P ∈ PG.

Proof By Theorem 13, τ̂Gw ∈ Tw. Further, note that

τ̂Gw = τw

(
(Λ̂Gk )Kk=2

)
,

where (Λ̂Gk )Kk=2 are the G-regression coefficients in Eq. (18). Under any P ∈ PG , we now
verify that avar τ̂G matches the RHS of Eq. (29). By the delta method (Shorack, 2000, Sec
11.2), we have

avar τ̂Gw =
(
∂τw/∂ vec (Λk)

K
k=2

)>
acov

{
vec (Λ̂Gk )Kk=2

}(
∂τw/∂ vec (Λk)

K
k=2

)
(i)
=

K∑
k=2

(∂τw/∂ vec Λk)
> acov

{
vec Λ̂Gk

}
(∂τw/∂ vec Λk)

(ii)
=

K∑
k=2

(∂τw/∂ vec Λk)
>Ωk ⊗

(
ΣPa(Bk,G)

)−1
(∂τw/∂ vec Λk) ,

which equals the RHS of Eq. (29). The partial derivatives of τw(·) are evaluated at (Λk)
K
k=2.

Step (i) follows from the block-diagonal structure of the asymptotic covariance of Λ̂G given
by Theorem 26, and (ii) follows from the same lemma.

Finally, we complete the proof of our main result.
Proof of Theorem 15. Fix any P ∈ PG . It suffices to show that for every w ∈ R|A|,

w> acov(τ̂AY )w ≥ w> acov(τ̂GAY )w,

or equivalently

avar
(
w>τ̂AY

)
≥ avar

(
w>τ̂GAY

)
.

This is true because for every τ̂AY in consideration, τ̂w := w>τ̂AY ∈ Tw and hence τ̂w is
subject to the lower bound in Theorem 29. Meanwhile, by Theorem 30, such a lower bound
is achieved by τ̂Gw = w>τ̂GAY . The proof is complete because the choice of w is arbitrary.

Remark 31 For Theorem 15 to hold, the independence error assumption Eq. (3) of the
underlying linear SEM cannot be relaxed to uncorrelated errors. This comes from inspecting
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the proof of Theorem 24 in Appendix A. To show that the Ḡ-regression coefficients are
asymptotically independent across buckets, the independence of errors is used to establish
that for 2 ≤ k < k′ ≤ K, j ∈ Bk, j′ ∈ Bk′, cov(εjXB[k−1]

, εj′XB[k′−1]
) = 0.

Suppose for now {εi : i ∈ V } are only uncorrelated and hence {εBk
: k = 1, . . . ,K}

are only uncorrelated across buckets. Further, suppose B1 = {1}, B2 = {2}, B3 = {3} with
j = k = 2 and j′ = k′ = 3. Then, we have

cov
(
εjXB[k−1]

, εj′XB[k′−1]

)
= cov

(
ε2ε1, ε3(ε1, γ12ε1 + ε2)>

)
= E[ε1ε2(ε1ε3, γ12ε1ε3 + ε2ε3)>],

which may be non-zero.

7. Numerical Results

In this section, the finite-sample performance of G-regression is evaluated against contending
estimators. We use simulations and an in silico data set for predicting expression levels in
gene knockout experiments. All the numerical experiments were conducted with R v3.6,
package pcalg v2.6 (Kalisch et al., 2012) and our package eff2 v0.1.

7.1 Simulations

We compare the performance of G-regression to several contending estimators under finite
samples. We roughly follow the simulation setup of Henckel et al. (2022); Witte et al. (2020).
First, we draw a random undirected graph from the Erdős-Rényi model with average degree
k, where k is drawn from {2, 3, 4, 5} uniformly at random. The graph is converted to a DAG
D with a random causal ordering and the corresponding CPDAG G is recorded. Then we
fix a linear SEM by drawing γij uniformly from [−2,−0.1] ∪ [0.1, 2] and choosing the error
distribution uniformly at random from the following:

1. εi ∼ N (0, vi) with vi ∼ unif(0.5, 6),

2. εi/
√
vi ∼ t5 with vi ∼ unif(0.5, 1.5),

3. εi ∼ logistic(0, si) with si ∼ unif(0.4, 0.7),

4. εi ∼ unif(−ai, ai) with ai ∼ unif(1.2, 2.1).

We generate n iid samples from the model. Treatments A of a fixed size are randomly
selected from the set of vertices with non-empty descendants, and Y is selected randomly
from their descendants; the drawing is repeated until τAY is identified from G according to
the criterion of Theorem 2. Finally, the data and graph G are provided to each estimator
of τAY .

We compare to the following three estimators:

• adj.O: optimal adjustment estimator (Henckel et al., 2022),

• IDA.M: joint-IDA estimator based on modifying Cholesky decompositions (Nandy
et al., 2017),

• IDA.R: joint-IDA estimator based on recursive regressions (Nandy et al., 2017).

They are implemented in R package pcalg. The two joint-IDA estimators use the parents
of treatment variables to estimate a causal effect. Both of them reduce to the IDA estimator
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of Maathuis et al. (2009) when |A| = 1. Admittedly, compared to G-regression and adj.O,
the joint-IDA estimators require less knowledge about the graph, namely only Pa(i) for
each i ∈ A.

For each estimator τ̂AY , we compute its squared error ‖τ̂AY − τAY ‖22. Dividing ‖τ̂AY −
τAY ‖22 by the squared error of G-regression, we obtain the relative squared error of each con-
tending estimator. We consider |A| ∈ {1, 2, 3, 4}, |V | ∈ {20, 50, 100} and n ∈ {100, 1000};
each configuration of (|A|, |V |, n) is replicated 1,000 times.

Fig. 2 shows the distributions of relative squared errors. In Table 1, we summarize
the relative errors with their geometric mean and median. Our estimator dominates all the
contending estimators in all cases, and the improvement gets larger as |A| gets bigger. Even
though adj.O achieves the minimal asymptotic variance among all adjustment estimators, it
can compare less favorably to our estimator by several folds. In general, the IDA estimators
have very poor performances. Moreover, the results in Table 1 are computed only from the
replications where a contending estimator exists. As mentioned in the Introduction, unlike
G-regression, none of the contending estimators is guaranteed to exist for every identified
effect under joint intervention (adj.O always exists for point interventions); see Table 2 for
the percentages of instances that are not estimable by contending estimators, even though
the effect is identified by Theorem 2 and hence estimable by G-regression.

Table 1: Geometric average (brackets: median) of relative squared errors compared to
G-regression

|V | = 20 |V | = 50 |V | = 100
|A| n = 100 n = 1000 n = 100 n = 1000 n = 100 n = 1000

adj.O

1 1.3 (1.0) 1.3 (1.0) 1.4 (1.0) 1.3 (1.0) 1.5 (1.0) 1.5 (1.0)
2 3.4 (1.7) 4.2 (2.0) 4.7 (2.6) 4.9 (2.6) 4.2 (2.6) 4.5 (2.7)
3 6.3 (3.8) 5.9 (3.4) 7.4 (4.9) 7.2 (4.4) 7.8 (5.7) 8.0 (5.2)
4 9.3 (5.0) 9.3 (5.8) 12 (8.0) 14 (8.7) 12 (8.6) 12 (8.9)
IDA.M

1 20 (17) 19 (16) 61 (57) 48 (45) 103 (78) 108 (90)
2 62 (48) 65 (51) 220 (153) 182 (120) 293 (205) 356 (272)
3 93 (72) 119 (108) 354 (249) 396 (205) 749 (547) 771 (604)
4 154 (111) 222 (147) 533 (448) 895 (440) 1188 (752) 1604 (1508)
IDA.R

1 20 (17) 19 (16) 61 (57) 48 (45) 103 (78) 108 (90)
2 33 (29) 38 (29) 121 (96) 113 (89) 176 (140) 199 (168)
3 30 (22) 39 (30) 171 (141) 135 (125) 342 (281) 312 (292)
4 48 (34) 50 (41) 187 (132) 214 (143) 405 (391) 432 (342)

In Appendix D, we report two sets of additional simulation results: (1) The CPDAG is
estimated with the greedy equivalence search algorithm (Chickering, 2002) and provided to
the estimators. The improvements are more modest but are still typically by several folds.
(2) The data generating mechanism in this section is modified by rescaling the coefficients
such that the variance of a vertex does not grow with the topological ordering.
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|V|: 20

n: 100

|V|: 20

n: 1000

|V|: 50

n: 100

|V|: 50

n: 1000

|V|: 100

n: 100

|V|: 100

n: 1000

|A|:1
|A|:2

|A|:3
|A|:4

adj.O IDA.M IDA.R adj.O IDA.M IDA.R adj.O IDA.M IDA.R adj.O IDA.M IDA.R adj.O IDA.M IDA.R adj.O IDA.M IDA.R

1e+00
1e+02
1e+04
1e+06

1e+00
1e+02
1e+04
1e+06

1e+00
1e+02
1e+04
1e+06

1e+00
1e+02
1e+04
1e+06

method

sq
ua

re
d

er
ro

rr
el

at
ive

to
G

−r
eg

re
ss

io
n

Figure 2: Violin plots for the relative squared errors of contending estimators (‘·’: geometric
mean, ‘+’: median).

Table 2: Percentage of identified instances not estimable using contending estimators
(all estimable with G-regression)

Estimator |A| |V | = 20 |V | = 50 |V | = 100

adj.O

1 0% 0% 0%
2 17% 10% 5%
3 30% 18% 15%
4 36% 29% 22%

IDA.M

1 29% 32% 32%
2 47% 51% 50%
3 61% 59% 63%
4 72% 69% 71%

IDA.R

1 29% 32% 32%
2 47% 51% 50%
3 61% 59% 63%
4 72% 69% 71%

7.2 Predicting double knockouts in DREAM4 data

The DREAM4 in silico network challenge data set (Marbach et al., 2009b) provides a
benchmark for evaluating the reverse engineering of gene regulation networks. Here we use
the 5th Size10 data set (Marbach et al., 2009a) as our example, which is a small network
of 10 genes. Fig. 3 shows the true gene regulation network, which is constructed based
on the networks of living organisms. A stochastic differential equation model was used
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to generate the data under wild type (steady state), perturbed steady state and knockout
interventions. A task in the challenge is to use data under wild type and perturbed steady
state (both are observational data) to predict the steady state expression levels under 5
different joint interventions, each of which knocks out a pair of genes. For our purpose, we
also use the true network as input. However, the true network contains one cycle (other
networks in DREAM4 contain more than one cycles). In the following, we remove one edge
in the cycle and provide the resulting DAG to the estimators. Necessarily, the causal DAG
is misspecified. Results are reported under 4 different edge removals.

1

2

3

4

5

6

7

8

9

10

Figure 3: Gene regulation network from DREAM4 data set, which contains a cycle (blue).

Unfortunately, the wild type data only consists of one sample. To estimate the obser-
vational covariance, we use the perturbed steady state data, which consists of 5 segments
of time series. A sample covariance is computed from each segment, and the final estimate
is taken as their average. For a double knockout of genes (i, j), we use G-regression to esti-
mate the joint-intervention effect of A = (i, j) on every other gene. The effect is identified

because the DAG is given. For gene k, let sk and s
(ij)
k respectively denote its expression

level under wild type and double knockout of genes (i, j). The expression level under double
knockout is predicted as

ŝ
(ij)
k =

{
sk − (si, sj)

>τ̂ij,k, k /∈ {i, j}
0, k ∈ {i, j}

.

The performance is evaluated with normalized squared error

E =

∑
(i,j)∈A

∑10
k=1(ŝ

(ij)
k − s(ij)

k )2∑
(i,j)∈A

∑10
k=1(s

(ij)
k )2

,

where A = {(6, 8), (7, 8), (8, 10), (8, 5), (8, 9)} consists of 5 double knockouts available in the
data set. For comparison, we also evaluate the performance of adj.O (optimal adjustment,
Henckel et al. (2022)) and IDA.R (joint-IDA based on recursive regressions, Nandy et al.
(2017)); IDA.R is chosen because it outperforms IDA.M according to Section 7.1. Unfor-
tunately, adj.O is not able to estimate the effect on every k and a modified metric E∗ is
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computed by only summing over those estimable k’s; the same metric E∗ of G-regression is
also computed for comparison. As a baseline, we also compute E from naively estimating

s
(ij)
k with just sk.

Table 3: Normalized squared errors of predicting gene double knockouts

edge removed E∗ E
from cycle @ adj.O adj.O G-reg IDA.R G-reg baseline

5→ 6 36% 43% 35% 46% 30% 81%
6→ 8 42% 29% 32% 33% 26% 81%
8→ 7 60% 39% 35% 45% 44% 81%
7→ 5 46% 40% 33% 45% 34% 81%

Table 3 reports the results, where the column ‘@ adj.O’ lists the percentage of effects
not estimable by the adjustment estimator. In almost all the cases, G-regression dominates
all the contending estimators. In this example, even though both the causal graph and the
linear SEM are misspecified, one can still witness some usefulness of our estimator.

8. Discussion

We have proposed G-regression based on recursive least squares to estimate a total causal
effect from observational data, under linearity and causal sufficiency assumuptions. G-
regression is applicable to estimating every identified total effect, under either point inter-
vention or joint intervention. Further, via a new semiparametric efficiency theory, we have
shown that the estimator achieves the efficiency bound within a restricted, yet reasonably
large, class of estimators, including covariate adjustment and other regular estimators based
on the sample covariance. Note that the restriction on the class of estimators is motivated
by computational simplicity and numerical stability as mentioned in the Introduction. To
construct confidence intervals and conduct hypothesis tests, bootstrap can be easily applied
to estimate the asymptotic covariance of our estimator. This is implemented in R package
eff2.

A

O1

O2

Y

(a)

A

O1

O2

Y

(b)

Figure 4: (a) and (b) lead to the same G-regression estimator of τAY . The independence
between O1 and O2 in (a) is dropped in (b).
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We conclude with a remark. We have seen that the conditional independence constraints
in Eq. (12) play no role for the restricted class of estimators considered — a feature that
holds under the restrictive property (Theorem 4). For example, the marginal independence
between O1 and O2 in Fig. 4(a) can be ignored without changing the G-regression estimator
of τAY . However, this is no longer true when linearity is dropped. In terms of nonparametric
causal graphical models, the asymptotic relative efficiency resulting from ignoring O1 ⊥⊥ O2

can be arbitrarily large; see Rotnitzky and Smucler (2020, Lemma 23).
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Appendix A. Proofs for asymptotic efficiency

Theorem 23 Theorem 26 Theorem 30

Theorem 24 Theorem 29 Theorem 15

Theorem 17 Theorem 20 Theorem 21 Theorem 22 Theorem 27

Figure 5: Dependency structure of proofs in Section 6 of main text.

A.1 Proof of Theorem 23

Proof For simplicity, we drop the superscripts in Σ̂(n) and λ̂(n). Since j ∈ Bk and
Pa(Bk,G) ⊆ C ⊆ Pa(Bk, Ḡ), we have

λ̂C,j − λC,j = (Σ̂C)−1Σ̂C,j − (ΣC)−1ΣC,j

=
(

ΣC + Σ̂C − ΣC

)−1 (
Σ̂C,j − ΣC,j

)
+
(

(Σ̂C)−1 − (ΣC)−1
)

ΣC,j .

We compute the two terms separately. The first term becomes(
ΣC + Σ̂C − ΣC

)−1 (
Σ̂C,j − ΣC,j

)
=
(

ΣC +Op(n
−1/2)

)−1 (
Σ̂C,j − ΣC,j

)
= (ΣC)−1

(
Σ̂C,j − ΣC,j

)
+Op(n

−1),

where we used the fact that ΣC is positive definite (Theorem 17) and ‖Σ̂C,j − ΣC,j‖ =

Op(n
−1/2), ‖Σ̂C − ΣC‖2 = Op(n

−1/2) by the central limit theorem.

In the second term,

(Σ̂C)−1 − (ΣC)−1 =
(

ΣC + Σ̂C − ΣC

)−1
− (ΣC)−1

=
[
I −

(
I − (ΣC)−1Σ̂C

)]−1
(ΣC)−1 − (ΣC)−1.

Since ‖I − (ΣC)−1Σ̂C‖2 = Op(n
−1/2), using Neumann series (I −H)−1 = I +H +H2 + . . .

for H = I − (ΣC)−1Σ̂C with ‖H‖2 →p 0 < 1, we have

(Σ̂C)−1 − (ΣC)−1 =
[
I +H +Op(n

−1)
]

(ΣC)−1 − (ΣC)−1

= H(ΣC)−1 +Op(n
−1)

=
[
I − (ΣC)−1Σ̂C

]
(ΣC)−1 +Op(n

−1).
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Combining the two terms, we obtain

λ̂C,j − λC,j = (ΣC)−1
(

Σ̂C,j − ΣC,j

)
+
[
I − (ΣC)−1Σ̂C

]
(ΣC)−1ΣC,j +Op(n

−1)

= (ΣC)−1Σ̂C,j − (ΣC)−1ΣC,j + (ΣC)−1ΣC,j − (ΣC)−1Σ̂C(ΣC)−1ΣC,j +Op(n
−1)

(i)
= (ΣC)−1

(
Σ̂C,j − Σ̂CλC,j

)
+Op(n

−1)

=
1

n

n∑
i=1

(ΣC)−1
[
X

(i)
j X

(i)
C −X

(i)
C X

(i)>
C λC,j

]
+Op(n

−1)

=
1

n

n∑
i=1

(ΣC)−1X
(i)
C

(
X

(i)
j − λ

>
C,jX

(i)
C

)
+Op(n

−1)

(ii)
=

1

n

n∑
i=1

(ΣC)−1X
(i)
C

(
X

(i)
j − λ

>
Pa(Bk,G),jX

(i)
Pa(Bk,G)

)
+Op(n

−1)

=
1

n

n∑
i=1

(ΣC)−1X
(i)
C ε

(i)
j +Op(n

−1),

where (i) uses λC,j = (ΣC)−1ΣC,j and (ii) follows from Theorem 7 and Pa(Bk,G) ⊆ C ⊆
Pa(Bk, Ḡ).

A.2 Proof of Theorem 24

Proof For each k = 2, . . . ,K, note that for C = Pa(Bk, Ḡ) = B[k−1], vec Λ̂Ḡk = (λ̂
(n)
C,j)j∈Bk

by concatenation. By Theorem 23, we have the following asymptotic linear expansion

λ̂
(n)
B[k−1],j

− λB[k−1],j =
1

n

n∑
i=1

(
ΣB[k−1]

)−1
X

(i)
B[k−1]

ε
(i)
j +Op(n

−1). (30)

By the central limit theorem,

√
n

 vec(Λ̂Ḡ2 − Λ2)
...

vec(Λ̂ḠK − ΛK)


converges to a centered multivariate normal distribution. Further, we claim that the asymp-
totic covariance must be block-diagonal according to k = 2, . . . ,K. To see this, take k < k′,
j ∈ Bk, j′ ∈ Bk′ and let C = B[k−1], C

′ = B[k′−1]. Using Eq. (30), we have

lim
n→∞

n−1 E
(
λ̂

(n)
C,j − λC,j

)(
λ̂

(n)
C′,j − λC′,j

)>
= (ΣC)−1 cov(εjXC , εj′XC′)(ΣC′)

−1

= (ΣC)−1
{
E
[
εjεj′XCX

>
C′

]
− E [εjXC ]E

[
εj′X

>
C′

]}
(ΣC′)

−1.

In the expression above, because εBk
⊥⊥ XB[k−1]

and εBk′ ⊥⊥ XB[k′−1]
by Theorem 8 and

j ∈ Bk, j′ ∈ Bk′ for k < k′, we have E
[
εjεj′XCX

>
C′
]

= E εj′ E
[
εjXCX

>
C′
]

= 0, E εjXC = 0
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and E εj′XC′ = 0. It follows that the display above evaluates to 0 and hence the asymptotic
covariance matrix is block-diagonal.

It remains to be shown that acov vec(Λ̂Ḡk −Λk) = Ωk⊗ (ΣB[k−1]
)−1 for k = 2, . . . ,K. Fix

k, take any two distinct j, j′ ∈ Bk and let C = B[k−1]. Again using Eq. (30), we have

acov

(
λ̂

(n)
C,j

λ̂
(n)
C,j′

)
=

(
H F
F> D

)
,

where

H = (ΣC)−1 cov(εjXC , εjXC)(ΣC)−1 = var(εj)(ΣB[k−1]
)−1,

F = (ΣC)−1 cov(εjXC , εj′XC)(ΣC)−1 = cov(εj , εj′)(ΣB[k−1]
)−1,

D = (ΣC)−1 cov(εj′XC , εj′XC)(ΣC)−1 = var(ε′j)(ΣB[k−1]
)−1.

Noting that Ωk = cov(εBk
) and vec Λ̂Ḡk = (λ̂

(n)
C,j)j∈Bk

, the result then follows from comparing
the expressions above to the definition of Kronecker product for every pair j, j′ ∈ Bk.

A.3 Proof of Theorem 26

Proof Note that by the restrictive property of G (Theorem 4), we have vec Λ̂Gk =
(
λ̂

(n)
Pa(Bk,G),j

)
j∈Bk

for k = 2, . . . ,K. Using Theorem 23 with C = Pa(Bk,G), we have the following asymptotic
linear expansion

λ̂
(n)
Pa(Bk,G),j − λPa(Bk,G),j =

1

n

n∑
i=1

(
ΣPa(Bk,G)

)−1
X

(i)
Pa(Bk,G)ε

(i)
j +Op(n

−1). (31)

The rest of computation follows similarly to the proof of Theorem 24.

A.4 Proof of Theorem 27

Proof Since S ∈ Rn×nPD , by completing the square, we have

x>Sx = x>ASA,AxA + x>BSB,AxA + x>ASA,BxB + x>BSB,BxB

− x>ASA,BS−1
B,BSB,AxA + x>ASA,BS

−1
B,BSB,AxA

= x>A(SA,A − SA,BS−1
B,BSB,A)xA + (xB + S−1

B,BSB,AxA)>SB,B(xB + S−1
B,BSB,AxA)

≥ x>A(SA,A − SA,BS−1
B,BSB,A)xA = x>ASA·BxA,

where the equality holds if and only if xB = −S−1
B,BSB,AxA.
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Appendix B. Proofs for graphical results

B.1 Proof of Theorem 3

Proof Let the undirected path between j and k be p = 〈j = V1, . . . , Vl = k〉 with l > 1.
First note that i is not on p because there is no undirected path between i and j in G.

Further, since i → j − V2 is in G, by Meek rules R1 and R2 (Fig. 6 in Appendix C),
i − V2 or i → V2 is in G. Since, by assumption, there is no undirected path from i to j in
G, i− V2 /∈ U . Hence, i→ V2 ∈ E and if l = 2, the statement of the lemma holds. If l > 2,
we can apply the above reasoning iteratively until we obtain i→ Vl ∈ E.

B.2 Proof of Theorem 5

Proof Let l ∈ Dk. Since Dk ⊆ Bk, l ∈ Bk. Then by Theorem 4, we have that Pa(Bk) =
Pa(l)\Bk. Therefore, Pa(Bk) ⊆ ∪j∈Dk

Pa(j)\Bk and furthermore, Pa(Bk) ⊆ ∪j∈Dk
Pa(j)\

Dk = Pa(Dk). Hence, it suffices to show Pa(Dk) ⊆ Pa(Bk).

We prove Pa(Dk) ⊆ Pa(Bk) by contradiction. Suppose there exists j ∈ Pa(Dk)\Pa(Bk).
We know that Pa(Dk) = ∪l∈Dk

Pa(l) \ Dk and since Dk ⊆ Bk, for any l ∈ Dk, l ∈ Bk.
Using Theorem 4, we also know that Pa(Bk) = Pa(l) \ Bk for every l ∈ Dk. Therefore, if
j ∈ Pa(Dk) \ Pa(Bk), it follows that j ∈ Bk.

Additionally, by definition D = An(Y,GV \A) and D = ∪Kr=1Dr. Therefore, if k = 1, then

j ∈ A; if k > 1, j must be contained in ∪k−1
r=1Dr or in A. If j ∈ A, then because condition

of Theorem 2 holds, j ∈ A ∩ Bk leads to a contradiction with Theorem 33 in Appendix C.
Suppose k > 1 and j ∈ ∪k−1

r=1Dr. Because ∪k−1
r=1Dr ⊆ ∪k−1

r=1Br and buckets {B1, . . . , BK} are
disjoint, we have (∪k−1

r=1Dr) ∩Bk = ∅. However, this contradicts that j ∈ Bk.

B.3 Proof of Theorem 16

Proof By construction, the undirected component of Ḡ remains the same as that of G.
Hence, Ḡ has the same bucket decomposition as G. We only need to show that Ḡ is an
MPDAG. It is enough to show that the edge orientations in Ḡ are closed under rules R1–R4
of Meek (1995) that are displayed in Fig. 6 of Appendix C. Note that since G is an MPDAG
it is closed under R1–R4. So if any of the left-hand-side graphs in Figure 6 are induced
subgraphs of Ḡ, then at least one of the directed edges in these induced subgraphs must
have been added in the construction of Ḡ.

Since the construction of Ḡ does not involve adding directed edges within a bucket, the
left-hand-side of rules R3 and R4 in Figure 6 cannot appear as induced subgraphs of Ḡ.
Hence, edge orientations in Ḡ are complete under rules R3 and R4.

Consider the left-hand-side of rule R1 in Figure 6, A → B − C, for some A,B,C ∈ V .
For A → B − C to be an induced subgraph of Ḡ, A → B must have been added in the
construction of Ḡ from G. Hence, A and B would need to be in different buckets in V in
G. Since B and C are in the same bucket because of edge B − C, A → C would also be
added to G in the construction of Ḡ. Hence, A→ B−C will also not appear as an induced
subgraph of Ḡ and edge orientations in Ḡ are also closed under R1.
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Consider the left-hand-side of R2 in Figure 6, and suppose for a contradiction that
A→ B → C and A− C is an induced subgraph of Ḡ for some A,B,C ∈ V . Then A→ B,
B → C, or both A → B and B → C, were added to G in the construction of Ḡ. Because
of A− C, suppose A and C are in the same bucket Bi for some i ∈ {1, . . . ,K} in G. Also,
suppose B ∈ Bj . Because only directed edges between buckets are added, i 6= j.

Now, A→ B and B → C cannot be both added to G to construct Ḡ, because that would
imply that i < j and j < i. By R1, B → C−A cannot be an induced subgraph of MPDAG
G, so A→ B alone also could not be added to G. Therefore, B → C alone was added to G.
But C − A → B is an induced subgraph of G, so i < j, which contradicts the direction of
B → C.

Appendix C. Graphical preliminaries

Graphs, vertices, edges A graph G = (V, F ) consists of a set of vertices (variables)
V and a set of edges F . The graphs we consider are allowed to contain directed (→) and
undirected (−) edges and at most one edge between any two vertices. We can thus partition
the set of edges F into a set of directed edges E and undirected edges U and denote graph
G = (V, F ) as G = (V,E,U). The corresponding undirected graph is simply GU = (V, ∅, U).

Subgraphs and skeleton An induced subgraph GV ′ = (V ′, F ′) of G = (V, F ) consists of
V ′ ⊆ V and F ′ ⊆ F where F ′ are all edges in F between vertices in V ′. A skeleton of a
graph G = (V, F ) is an undirected graph G = (V, F ′), such that F ′ are undirected versions
of all edges in F .

Paths. Directed, undirected, causal, non-causal, proper paths A path p from i
to j in G is a sequence of distinct vertices p = 〈i, . . . , j〉 in which every pair of successive
vertices are adjacent. A path consisting of undirected edges is an undirected path. A
directed path from i to j is a path from i to j in which all edges are directed towards j, that
is, i→ · · · → j. We will use causal path instead of directed path when talking about causal
graphs. Let p = 〈v1, . . . , vk〉, k > 1 be a path in G, p is a possibly directed path (possibly
causal path) if no edge vi ← vj , 1 ≤ i < j ≤ k is in G. Otherwise, p is a non-causal path
in G (see Definition 3.1 and Lemma 3.2 of Perković et al., 2017). A path from A to Y is
proper (w.r.t. A) if only its first vertex is in A.

Directed cycles A directed path from i to j and the edge j → i form a directed cycle.

Colliders, shields and definite status paths If a path p contains i → j ← k as a
subpath, then j is a collider on p. A path 〈i, j, k〉 is an (un)shielded triple if i and k are
(not) adjacent. A path is unshielded if all successive triples on the path are unshielded. A
node vj is a definite non-collider on a path p if there is at least one edge out of vj on p, or
if vj−1 − vj − vj+1 is a subpath of p and 〈vj−1, vj , vj+1〉 is an unshielded triple. A node is
of definite status on a path if it is a collider, a definite non-collider or an endpoint on the
path. A path p is of definite status if every node on p is of definite status.

Subsequences and subpaths A subsequence of a path p is obtained by deleting some
nodes from p without changing the order of the remaining nodes. A subsequence of a

32



Efficient Least Squares for Total Effects

path is not necessarily a path. For a path p = 〈v1, v2, . . . , vm〉, the subpath from vi to vk
(1 ≤ i ≤ k ≤ m) is the path p(vi, vk) = 〈vi, vi+1, . . . , ak〉.

Ancestral relations If i → j, then i is a parent of j, and j is a child of i. If there is
a causal path from k to l, then k is an ancestor of l, and l is a descendant of k. If there
is a possibly causal path from k to l, then k is a possible ancestor of l, and l is a possible
descendant of k. We use the convention that every vertex is a descendant, ancestor, possible
ancestor and possible descendant of itself. The sets of parents, ancestors, descendants and
possible descendants of i in G are denoted by Pa(i,G), An(i,G), De(i,G) and PossDe(i,G)
respectively. For a set of vertices A, we let Pa(A,G) = (∪i∈A Pa(i,G)) \ A, whereas,
An(A,G) = ∪i∈A An(i,G), De(A,G) = ∪i∈A De(i,G) and PossDe(A,G) = ∪i∈A PossDe(i,G)

DAGs, PDAGs A directed graph contains only directed edges. A partially directed graph
may contain both directed and undirected edges. A directed graph without directed cycles
is a directed acyclic graph (DAG). A partially directed acyclic graph (PDAG) is a partially
directed graph without directed cycles.

Blocking and d-separation (See Definition 1.2.3 of Pearl (2009) and Lemma C.1 of
Henckel et al. (2022)). Let Z be a set of vertices in an PDAG G = (V,E,U). A definite
status path p is blocked by Z if (i) p contains a non-collider that is in Z, or (ii) p contains a
collider C such that no descendant of C is in Z. A definite status path that is not blocked
by Z is open given Z. If A,B and Z are three pairwise disjoint sets of nodes in a PDAG
G = (V,E,U), then Z d-separates A from B in G if Z blocks every definite status path
between any node in A and any node in B in G.

CPDAGs, MPDAGs Several DAGs can encode the same d-separation relationships.
Such DAGs form a Markov equivalence class which is uniquely represented by a completed
partially directed acyclic graph (CPDAG) (Meek, 1995; Andersson et al., 1997). A PDAG
G = (V,E,U) is a maximally oriented PDAG (MPDAG) if it is closed under orientation
rules R1-R4 of (Meek, 1995), presented in Figure 6. The MPDAG can then be alternatively
defined as any PDAG that does not contain graphs on the left-hand side of each orientation
rule as induced subgraphs. Both DAGs and CPDAGs are types of MPDAGs (Meek, 1995).

Background knowledge and constructing MPDAGs A PDAG G′ is represented by
another PDAG G (equivalently G represents G′) if G′ and G have the same adjacencies and
unshielded colliders and every directed edge i → j in G is also in G′. Let R be a set of
directed edges representing background knowledge. Algorithm 1 of Meek (1995) describes
how to incorporate background knowledge R in an MPDAG G. If Algorithm 1 does not
return a FAIL, then it returns a new MPDAG G′ that is represented by G. Background
knowledge R is consistent with MPDAG G if and only if Algorithm 1 does not return a
FAIL (Meek, 1995).

Remark 32 The MPDAG output by ConstructMPDAG(G, R) is the same independent of the
ordering of edges in R. This stems from the fact that the orientation rules of Meek (1995)
are necessary and sufficient for the construction of an MPDAG given a set of adjacencies
and unshielded colliders.

G and [G] If G is a MPDAG, then [G] denotes every DAG represented by G.
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Figure 6: The orientation rules from Meek (1995). If the graph on the left-hand side of
a rule is an induced subgraph of a PDAG G, then orient the blue undirected edge (−) as
shown on the right-hand side of the rule. Hence, the graphs on the left-hand side of each
rule are not allowed to be induced subgraphs of an MPDAG.

Algorithm 1: ConstructMPDAG, (Meek, 1995; Perković et al., 2017)

Data: MPDAG G, background knowledge R
Result: MPDAG G′ or FAIL

1 Let G′ = G;
2 while R 6= ∅ do
3 Choose an edge {X → Y } in R ;
4 R = R \ {X → Y } ;
5 if {X − Y } or {X → Y } is in G′ then
6 Orient {X → Y } in G′;
7 Close the edge orientations under the rules in Figure 6 in G′;
8 else
9 FAIL;

10 end

11 end

Causal and partial causal ordering of vertices A total ordering, <, of vertices V ′ ⊆ V
is consistent with a DAG D = (V,E, ∅) and called a causal ordering of V ′ if for every
i, j ∈ V ′, such that i < j and such that i and j are adjacent in D, i → j is in D. There
can be more than one causal ordering of V ′ in a DAG D = (V,E, ∅). For example, in DAG
i← j → k both orderings j < i < k and j < k < i are consistent.

Since an MPDAG may contain undirected edges, there is generally no unique causal
ordering of vertices in an MPDAG. Instead, we define a partial causal ordering, <, of a
vertex set V ′, V ′ ⊂ V in an MPDAG G = (V,E,U) as a total ordering of pairwise disjoint
vertex sets A1, . . . , Ak, k ≥ 1, ∪ki=1Ai = V ′, that satisfy the following: if Ai < Aj and there
is an edge between i ∈ Ai and j ∈ Aj in G, then i→ j is in G.

Buckets and bucket decomposition Algorithm 2 describes how to obtain an ordered
bucket decomposition for a set of vertices V in an MPDAG G = (V,E,U). By Perković
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(2020, Lemma 1), the ordered list of buckets output by Algorithm 2 is a partial causal
ordering of V in G.

Algorithm 2: Partial causal ordering (Perković, 2020)

input : vertex set V in MPDAG G=(V,E,U) and MPDAG G.
output: An ordered list B=(B1, . . . , Bk), k ≥ 1, of the bucket decomposition of V

in G.
1 Let GU denote the undirected subgraph of G;
2 Let ConComp be the bucket decomposition (i.e., maximal connected components)

of V in GU ;
3 Let B be an empty list;
4 while ConComp 6= ∅ do
5 Let C be any element from ConComp;

6 Let C be the set of vertices in ConComp that are not in C;

7 if all edges between C and C are into C in G then
8 Remove C from ConComp;
9 Add C to the beginning of B;

10 end

11 end
12 return B;

Lemma 33 (see Lemma D.1 (i) of Perković, 2020) Let A and Y be disjoint node sets in
MPDAG G = (V,E,U). Suppose that there is no proper possibly causal path from A to Y
that starts with an undirected edge in G, that is, suppose that the criterion in Theorem 2 is

satisfied. Further, let D = An(Y,GV \A) and D =
⋃̇K

i=1Di for Di = D ∩ Bi, i = 1, . . . ,K,
where B1, . . . BK is the bucket decomposition of V . Then for all i ∈ {1, . . . ,K}, there is no
proper possibly causal path from A to Bi that starts with an undirected edge in G.

Appendix D. Additional simulation results

In this section, we report additional simulation results.

D.1 With estimated graphs

The setup is the same as Section 7.1 of main text, but we replace the true CPDAG with the
CPDAG estimated with the greedy equivalence search algorithm (Chickering, 2002) based
on the same sample. The relative squared errors of the contending estimators are shown
in Fig. 7 and are summarized in Table 4. Compared to the results with the true CPDAG,
the performance improvement of G-regression is more modest but still matters in practice.
The reduced improvement is due to the error in estimating the graph, which diminishes as
n increases.
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Table 4: Geometric average (brackets: median) of relative squared errors compared to
G-regression when CPDAGs are estimated

|V | = 20 |V | = 50 |V | = 100
|A| n = 100 n = 1000 n = 100 n = 1000 n = 100 n = 1000

adj.O

1 1.0 (1.0) 1.0 (1.0) 1.2 (1.0) 1.3 (1.0) 1.8 (1.1) 1.6 (1.0)
2 2.0 (1.1) 3.1 (1.2) 2.4 (1.3) 3.1 (1.4) 3.2 (1.9) 3.7 (2.0)
3 3.3 (1.7) 5.2 (2.7) 4.0 (2.4) 5.9 (2.8) 4.7 (2.5) 5.5 (2.8)
4 4.6 (2.2) 7.9 (4.2) 5.0 (2.1) 9.0 (5.7) 10 (5.9) 8.9 (5.6)
IDA.M

1 2.9 (1.4) 4.1 (1.4) 4.5 (2.7) 10 (5.7) 7.3 (4.5) 18 (11)
2 4.2 (2.0) 6.6 (2.1) 7.3 (4.8) 14 (7.2) 13 (7.9) 22 (14)
3 6.2 (3.1) 6.8 (2.5) 12 (7.1) 16 (8.3) 15 (10) 28 (18)
4 9.5 (5.6) 9.0 (3.1) 13 (10) 20 (12) 19 (14) 37 (26)
IDA.R

1 2.9 (1.4) 4.1 (1.4) 4.5 (2.7) 10 (5.7) 7.3 (4.5) 18 (11)
2 2.7 (1.3) 4.6 (1.2) 4.5 (2.3) 9.6 (4.0) 8.5 (5.9) 15 (9.5)
3 3.1 (1.5) 4.1 (1.2) 5.8 (3.0) 7.8 (2.5) 7.6 (5.2) 14 (8.9)
4 3.6 (1.6) 4.2 (1.3) 4.9 (2.8) 8.2 (3.6) 8.1 (5.4) 15 (10)

|V|: 20

n: 100
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Figure 7: Violin plots for the relative squared errors of contending estimators (‘·’: geometric
mean, ‘+’: median). The estimated CPDAGs are provided to the estimators.

D.2 With rescaled coefficients

It can be argued that the data generating mechanism described in Section 7.1 is less realistic
because the variance of a vertex grows with its topological ordering. To remedy this, we
rescale the coefficients {γij} properly such that the variances are roughly equalized along
the topological order. The results (based on true graphs) are reported in Table 5.
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Table 5: Geometric average (brackets: median) of relative squared errors compared to
G-regression (coefficients rescaled)

|V | = 20 |V | = 50 |V | = 100
|A| n = 100 n = 1000 n = 100 n = 1000 n = 100 n = 1000

adj.O

1 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
2 1.1 (1.0) 1.1 (1.0) 1.1 (1.0) 1.0 (1.0) 1.1 (1.0) 1.0 (1.0)
3 1.2 (1.0) 1.1 (1.0) 1.1 (1.0) 1.0 (1.0) 1.1 (1.0) 1.0 (1.0)
4 1.2 (1.0) 1.1 (1.0) 1.1 (1.0) 1.1 (1.0) 1.1 (1.0) 1.0 (1.0)
IDA.M

1 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
2 1.1 (1.0) 1.0 (1.0) 1.1 (1.0) 1.0 (1.0) 1.2 (1.0) 1.0 (1.0)
3 1.2 (1.0) 1.1 (1.0) 1.2 (1.0) 1.0 (1.0) 1.2 (1.0) 1.0 (1.0)
4 1.2 (1.0) 1.0 (1.0) 1.2 (1.0) 1.0 (1.0) 1.2 (1.0) 1.0 (1.0)
IDA.R

1 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
2 1.1 (1.0) 1.0 (1.0) 1.1 (1.0) 1.0 (1.0) 1.2 (1.0) 1.0 (1.0)
3 1.1 (1.0) 1.0 (1.0) 1.1 (1.0) 1.0 (1.0) 1.1 (1.0) 1.0 (1.0)
4 1.2 (1.0) 1.0 (1.0) 1.1 (1.0) 1.0 (1.0) 1.1 (1.0) 1.0 (1.0)

References

Takeshi Amemiya. Advanced Econometrics. Harvard University Press, 1985.

Theodore Wilbur Anderson and Ingram Olkin. Maximum-likelihood estimation of the pa-
rameters of a multivariate normal distribution. Linear algebra and its applications, 70:
147–171, 1985.

Steen A. Andersson, David Madigan, and Michael D. Perlman. A characterization of Markov
equivalence classes for acyclic digraphs. The Annals of Statistics, 25:505–541, 1997.

Peter J. Bickel, Chris A. J. Klaassen, Ya’acov Ritov, and Jon A. Wellner. Efficient and
Adaptive Estimation for Semiparametric Models, volume 4. Johns Hopkins University
Press, Baltimore, 1993.

Kenneth A. Bollen. Structural Equations with Latent Variables. Wiley, New York, 1989.

Wenyu Chen, Mathias Drton, and Y. Samuel Wang. On causal discovery with an equal-
variance assumption. Biometrika, 106(4):973–980, 2019.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of
Machine Learning Research, 3(Nov):507–554, 2002.

A. Philip Dawid. Some matrix-variate distribution theory: notational considerations and a
Bayesian application. Biometrika, 68(1):265–274, 1981.

Mathias Drton. Computing all roots of the likelihood equations of seemingly unrelated
regressions. Journal of Symbolic Computation, 41(2):245–254, 2006.

Mathias Drton. Algebraic problems in structural equation modeling. In The 50th Anniver-
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Alan Hauser and Peter Bühlmann. Characterization and greedy learning of interventional
Markov equivalence classes of directed acyclic graphs. Journal of Maching Learning
Research, 13:2409–2464, 2012.
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