
Journal of Machine Learning Research 23 (2022) 1-55 Submitted 3/21; Revised 9/21; Published 05/22

Globally Injective ReLU Networks

Michael Puthawala map19@rice.edu
Department of Computational and Applied Mathematics
Rice University, MS-134
6100 Main St.
Houston, TX, 77005, USA

Konik Kothari kkothar3@illinois.edu
Department of Computer Science
University of Illinois at Urbana-Champaign
Champaign, IL, 61820, USA

Matti Lassas matti.lassas@helsinki.fi
Department of Mathematics and Statistics
University of Helsinki
P.O. Box 68, FI-00014 University of Helsinki, Finland

Ivan Dokmanić ivan.dokmanic@unibas.ch
Department of Mathematics and Computer Science
University of Basel
4051 Basel, Switzerland

Maarten de Hoop mdehoop@rice.edu
Department of Computational and Applied Mathematics
Rice University, MS-134
6100 Main St.
Houston, TX, 77005, USA

Editor: Ruslan Salakhutdinov

Abstract

Injectivity plays an important role in generative models where it enables inference; in inverse
problems and compressed sensing with generative priors it is a precursor to well posedness.
We establish sharp characterizations of injectivity of fully-connected and convolutional
ReLU layers and networks. First, through a layerwise analysis, we show that an expansivity
factor of two is necessary and sufficient for injectivity by constructing appropriate weight
matrices. We show that global injectivity with iid Gaussian matrices, a commonly used
tractable model, requires larger expansivity between 3.4 and 10.5. We also characterize the
stability of inverting an injective network via worst-case Lipschitz constants of the inverse.
We then use arguments from differential topology to study injectivity of deep networks and
prove that any Lipschitz map can be approximated by an injective ReLU network. Finally,
using an argument based on random projections, we show that an end-to-end—rather
than layerwise—doubling of the dimension suffices for injectivity. Our results establish a
theoretical basis for the study of nonlinear inverse and inference problems using neural
networks.

Keywords: bilipschitz networks, injective generative models, random neural networks,
deep learning, universal approximation

©2022 Michael Puthawala, Konik Kothari, Matti Lassas, Ivan Dokmanić, Maarten de Hoop.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v23/21-0282.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0282.html

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

1. Introduction

Many applications of deep neural networks require inverting them on their range. Given
a neural network N : Z → X , where X is often the Euclidean space Rm and Z is a lower-
dimensional space, the map N−1 : N(Z) → Z is only well-defined when N is injective.
The issue of injectivity is particularly salient in two applications: generative models and
(nonlinear) inverse problems.

Generative networks model a complicated distribution pX over X as a pushforward
of a simple distribution pZ through N . Given an x in the range of N , inference requires
computing pZ(N−1(x)) which is well-posed only when N is injective. In the analysis of inverse
problems Arridge et al. (2019), uniqueness of a solution is a key concern; it is tantamount to
injectivity of the forward operator. Given a forward model that is known to yield uniqueness,
a natural question is whether we can design a neural network that approximates it arbitrarily
well while preserving uniqueness. Similarly, in compressed sensing with a generative prior N
and a possibly nonlinear forward operator A injective on the range of N , we seek a latent
code z such that A(N(z)) is close to some measured y = A(x). This is again only well-posed
when N can be inverted on its range (Balestriero et al., 2020). Beyond these motivations,
injectivity is a fundamental mathematical property with numerous implications. We mention
a notable example: certain injective generators can be trained with sample complexity that
is polynomial in the image dimension (Bai et al., 2018).

1.1 Our Results

In this paper we study injectivity of neural networks with ReLU activations. Our contributions
can be divided into layerwise results and multilayer results.

1.1.1 Layerwise Results

For a ReLU layer f : Rn → Rm we derive sufficient and necessary conditions for invertibility
on the range. For the first time, we construct deterministic injective ReLU layers with
minimal expansivity m = 2n. We then derive specialized results for convolutional layers
which are given in terms of filter kernels instead of weight matrices. We also prove upper and
lower bounds on minimal expansivity of globally injective layers with iid Gaussian weights.
This generalizes certain existing pointwise results (Theorem 7 and Appendix A.2). We finally
derive the worst-case inverse Lipschitz constant for an injective ReLU layer which yields
stability estimates in applications to inverse problems.

1.1.2 Multilayer Results

A natural question is whether injective models are sufficiently expressive. Using techniques
from differential topology we prove that injective networks are universal in the following sense:
if a neural network N1 : Z → R2n+1 models the data, Z ⊂ Rn, then we can approximate N1

by an injective neural network N2 : Z → R2n+1. As N2 is injective, the image set N2(Z) is a
Lipschitz manifold. We then use an argument based on random projections to show that
an end-to-end expansivity by a factor of ≈ 2 is enough for injectivity in ReLU networks, as
opposed to layerwise 2-expansivity implied by the layerwise analysis.

2

Globally Injective ReLU Networks

Figure 1: An illustration of a ReLU layer N : R2 → R3, x = N(z), that is not globally
injective. Differently colored regions in the z-space are mapped to regions of the same color
in the x-space. While N is locally injective in the pink, blue and green wedges in z-space,
the orange, brown, and violet wedges are mapped to coordinate axes. N is thus not injective
on these wedges. This prevents construction of an inverse in the range of N .

We conclude with preliminary numerical experiments to show that imposing injectivity
improves inference in GANs while preserving expressivity.

1.2 Why Global Injectivity?

The attribute “global” relates to global injectivity of the map N : Z → Rm on the low-
dimensional latent space Z, but it does not imply global invertibility over Rm, only on the
range N(Z) ⊂ Rm. If we train a GAN generator to map iid normal latent vectors to real
images from a given distribution, we expect that any sampled latent vector generates a
plausible image. We thus desire that any N(z) be produced by a unique latent code z ∈ Z.
This is equivalent to global injectivity, or invertibility on the range. Our results relate to the
growing literature on using neural generative models for compressed sensing (Bora et al.,
2017; Daskalakis et al., 2020). They parallel the related guarantees for sparse recovery where
the role of the low-dimensional latent space is played by the set of all k-sparse vectors. One
then looks for matrices which map all k-sparse vectors to distinct measurements (Foucart
and Rauhut, 2013). As an example, in the illustration in Figure 1 images coresponding to
latent codes in orange, brown, and violet wedges cannot be compressively sensed. Finally,
a neural network is often trained to directly reconstruct an image x from its (compressive)
low-dimensional measurements y = A(x) without introducing any generative models. In this
case, whenever A is Lipschitz, it is immediate that the learned inverse must be injective.

1.3 Related Work

Closest to our work are the papers of Bruna et al. (2013), Hand et al. (2018) and Lei et al.
(2019). Bruna et al. (2013) study injectivity of pooling motivated by the problem of signal
recovery from feature representations. They focus on `p pooling layers; their Proposition 2.2
gives a criterion similar to the DSS (Definition 1) and bi-Lipschitz bounds for a ReLU layer

3

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

(similar to our Theorem 8). Unlike Theorems 2 and 8, their criterion and Lipschitz bound
are in some cases not precisely aligned with injectivity; see Appendix E.1.

Compressed sensing with GAN priors requires inverting the generator on its range (Bora
et al., 2017; Shah and Hegde, 2018; Wu et al., 2019; Mardani et al., 2018; Hand et al., 2018;
Aberdam et al., 2020; Daskalakis et al., 2020). Lei et al. (2019); Daskalakis et al. (2020)
replace the end-to-end inversion by the faster and more accurate layerwise inversion when
each layer is injective. They show that with high probability a ReLU layer with an iid normal
weight matrix can be inverted about a fixed point if the layer expands at least by a factor
of 2.1, and that the inverse about a fixed point can be computed with the algorithm from
Bora et al. (2017). This result is related to our Theorem 7 which gives conditions for global
injectivity or layers with random matrices. Hand and Voroninski (2017) show that when the
weights of a ReLU network obey a certain weighted distribution condition, the loss function
for the inversion has a strict descent direction everywhere except in a small set. The condition
is in particular satisfied by random matrices with expansivity nj = Ω(nj−1 log nj−1), where
nj is the output dimension of layer j.

A continuous analogy of our convolutional construction (Definition 11) was considered
by Mallat et al. (2018). They show that ReLU acts as a phase filter and that the layer
is bi-Lipschitz and hence injective when the filters have a diverse phase and form a frame.
Discretizing their model gives a statement related to Corollary 6 and Theorem 13.

Injectivity is automatic in invertible neural networks such as normalizing flows (Grover
et al., 2018; Kingma and Dhariwal, 2018; Grathwohl et al., 2018). Specialized architectures
with simple Jacobians give easy access to the likelihood (Dinh et al., 2014, 2016; Gomez et al.,
2017), which facilitates application to inverse problems (Ardizzone et al., 2018). Inference
with GANs can be achieved by jointly training a generative network and its inverse (Donahue
et al., 2016; Dumoulin et al., 2016), which is well-defined when the generator is injective.
Relaxed injective probability flows resemble GAN generators but are trained via approximate
maximum likelihood (Kumar et al., 2020). Injectivity is promoted by keeping the smallest
singular value of the Jacobian away from zero at the training examples, a necessary but not
sufficient condition. In general, Jacobian conditioning improves GAN performance (Heusel
et al., 2017; Odena et al., 2018). Finally, lack of injectivity interferes with disentanglement
(Chen et al., 2016; Lin et al., 2019). In this context, injectivity seems to be a natural heuristic
to increase latent space capacity without increasing its dimension (Brock et al., 2016).

1.4 Notation

Given a matrix W ∈ Rm×n we define the notation w ∈ W to mean that w ∈ Rn is a row
vector of W . For a matrix W ∈ Rm×n with rows {wj}mj=1 and x ∈ Rn, we write

S(x,W) := {j ∈ [[m]] : 〈wj , x〉 ≥ 0}

and Sc(x,W) for its complement, with [[m]] = {1, . . . ,m}. Further, given a matrix W and
index set I we define the notation W

∣∣
I to be a matrix whose i’th row is the same as W

if i ∈ I, and a row of zeroes otherwise. We let NN (n,m,L,n) be the family of functions
Nθ : Rn → Rm of the form

N(z) = WL+1φL(WL · · ·φ2(W2φ1(W1z + b1) + b2) · · ·+ bL) (1)

4

Globally Injective ReLU Networks

Indices ` = 1, . . . , L index the network layers, b` ∈ Rn`+1 are the bias vectors, W` ∈
Rn`+1×n` are the weight matrices with n1 = n, nL = m, and φ` are the nonlinear activation
functions. We will denote ReLU(x) = max(x, 0). We write n = (n1, n2, . . . nL−1) and
θ = (W1, b1, . . . ,WL, bL) for the parameters that determine the function Nθ. We also write
NN (n,m,L) =

⋃
n∈ZL−1 NN (n,m,L,n) and NN (n,m) =

⋃
L∈ZNN (n,m,L).

In Section 2.4 we use multi-index notation. Multi-indices are p-tuples denoted by the
capitol letters, such as I, J,K,N and M . In the case that p = 1, the operations between
multi-indices is equivalent to the equivalent operations for scalars. If I is an p-dimensional
multi-index, then

I := (I1, . . . , Ip) ∈ Np

where Ip refers to the p’th index of I. We use the notation c ∈ RN to refer to c ∈
RN1 × · · · × RNp , and

∑N
I=1 cI =

∑N1
I1=1 · · ·

∑Np
Ip=1 cI1,...,Ip , for I = (I1, . . . , Ip). The symbol

1 can refer to number 1 or a p-tuple (1, . . . , 1), and is clear from context. We likewise use
the notation I ≤ J to mean that Ik ≤ Jk for all k = 1, . . . , p and likewise for ≥, < and >. If
I 6≤ J , then there is at least one k such that Ik > Jk.

We use the notation ‖·‖p,m and ‖·‖p,n to denote the standard lp norms for vectors in Rm
and Rn respectively.

2. Layerwise Injectivity of ReLU Networks

For a one-to-one activation function such as a leaky ReLU or a tanh, it is easy to see that
injectivity of x 7→Wix implies the injectivity of the layer. We therefore focus on non-injective
ReLU activations.

2.1 Directed Spanning Set

Unlike in the case of a one-to-one activation, when φ(x) = ReLU(x), x 7→ φ(Wx) cannot
be injective for all x ∈ Rn if W is a square matrix. Noninjectivity of ReLU(Wx) occurs in
some simple situations, for example if Wx is not full rank or if Wx ≤ 0 element-wise for a
nonzero x, but these two conditions on their own are not sufficient to characterize injectivity.
Figure 2 gives an example of a weight matrix that yields a noninjective layer that has these
two properties. In order to facilitate the full characterization of injectivity of ReLU layers,
we define a useful theoretical device:

Definition 1 (Directed Spanning Set) Let W ∈ Rn×m. We say that W has a directed
spanning set (DSS) of Ω ⊂ Rn with respect to a vector x ∈ Rn if there exists a Ŵx such that
each row vector of Ŵx is a row vector of W ,

〈x,wi〉 ≥ 0 for all wi ∈ Ŵx,

and Ω ⊂ span(Ŵx). When omitted, Ω is understood to be Rn.

For a particular x ∈ Rn, it is not hard to verify if a given W = {wi}i=1,...,m has a DSS of
Ω. One can simply let Ŵx = {wi ∈ Rn : 〈x,wi〉 ≥ 0}. Then, W has a DSS of Ω with respect
to x if and only if Ŵx spans Ω, which can be checked efficiently. Note that having full rank

5

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Figure 2: Illustration of the DSS definition. Left: A configuration of 4 vectors in R2 that do
not have a DSS w.r.t. all x ∈ R2. In this case, the vectors do not generate an injective layer.
The set of labels indicate which wj have positive inner product with vectors in the wedge;
there are two wedges with only one such {wj}; we have ReLU(Wx1) = ReLU(Wx2). Center:
A configuration where four vectors have a DSS for all x ∈ R2. These vectors correspond to a
minimally-expansive injective layer; see Corollary 6. Right: A plot of ‖ReLU(Wx)‖1 where
W is given as in the left figure. Note that x 7→ ReLU(Wx) is linear in every wedge.

is necessary for it to have a DSS of Rn w.r.t. any x ∈ Rn. It is however not sufficient. For
example, Idn ∈ Rn×n, the identity matrix in Rn, is clearly full rank, but it doesn’t have
a DSS of Rn w.r.t. x = (−1, 0, . . . , 0) ∈ Rn. We also note that in this paper we focus on
globally injective networks, and so Ω is always taken to be either Rn or Rp, where p < n.
Further, this latter case is only discussed to eventually produce a statement showing that a
matrix has a DSS on the full space Rn. This only comes up in the context of our discussion
on convolution layers in Section 2.4, specifically Theorem 13 and Lemma 14.

To check whether W has a DSS for all x ∈ Rn, note that W partitions Rn into open
wedges Sk, Rn =

⋃
k Sk, with constant sign patterns. That is, for x1, x2 ∈ Sk, sign(Wx1) =

sign(Wx2). (See also the proof of Theorem 7 in Appendix A.2.2.) Checking whether W has
a DSS for all x is equivalent to checking that for every wedge there are at least n vectors
Wk ⊂W with positive sign, 〈w, x〉 > 0 for x ∈ Sk, and that Wk spans Rn. Since the number
of wedges can be exponential in m and n (Winder, 1966) this suggests an exponential time
algorithm. We also note the connection between DSS and spark in compressed sensing
(Foucart and Rauhut, 2013), defined as the size of the smallest set of linearly dependent
vectors in W . If every wedge has n or more positive signs, then full spark n+ 1 is sufficient
for W to have a DSS w.r.t all x ∈ Rn. Computing spark is known to be NP-hard (Tillmann
and Pfetsch, 2013); whether one can do better for DSS remains an open question.

2.2 Fully Connected Layer

The notion of a DSS immediately leads to our main result for fully connected layers.

Theorem 2 (Conditions for Injectivity of ReLU(Wx)) Let W ∈ Rm×n where 1 < n ≤
m be a matrix with row vectors {wj}mj=1, and ReLU(y) = max(y, 0). The function
ReLU(W (·)) : Rn → Rm is injective if and only if W has a DSS w.r.t every x ∈ Rn.

6

Globally Injective ReLU Networks

The question of injectivity in the case when b = 0 and when b 6= 0 are very similar and,
as Lemma 3 shows, the latter question is equivalent to the former on a restricted weight
matrix.

Lemma 3 (Injectivity of ReLU(Wx+ b)) Let W ∈ Rm×n and b ∈ Rm. The function
ReLU(W (·) + b) : Rn → Rm is injective if and only if ReLU(W |b≥0·) is injective, where
W |b≥0 ∈ Rm×n is row-wise the same as W where bi ≥ 0, and is a row of zeroes when bi < 0.

Remark 4 (Injectivity of ReLU(Wx), Positive x) Without normalization strategies, in-
puts of all but the first layer are element-wise non-negative. One can ask whether ReLU(Wx)
is injective when x is restricted to be element-wise non-negative. Following the same argu-
ment as in Theorem 2, we find that W must have a DSS w.r.t. x ∈ Rn for every x that
is element-wise non-negative. With normalizations strategies however (for example batch
renormalization Ioffe, 2017) the full power of Theorem 2 and Lemma 3 may be necessary.
In Section 2.5 we show that common normalization strategies such as batch, layer, or group
normalization do not interfere with injectivity.

Remark 5 (Global vs Restricted Injectivity) Even when the conditions of Theorem 2
and Lemma 3 are not satisfied the network might be injective in some X ⊂ Rn. Indeed,
N(x) = ReLU(Idn·) is in general not injective, but it is injective in X = {x ∈ Rn : xi >
0 for i = 1, . . . , n}, a convex and open set. Theorem 2 and Lemma 3 are the precise criteria
for single-layer injectivity for all x ∈ Rn.

The above layerwise results imply a sufficient condition for injectivity of deep neural
networks. If Theorem 2 applies to each layer of a network then the entire network must be
injective end-to-end.

Note that layer-wise injectivity is sufficient but not necessary for injectivity of the entire
network. Consider for example an injective layer ReLU(W), and N(x) = ReLU(Idm ·
ReLU(W (x))), where I is the identity matrix. Clearly,

ReLU(Idm · ReLU(W (x))) = ReLU(ReLU(W (x))) = ReLU(W (x))

so N is injective, but it fails to be injective at the ReLU(I·) layer.
An important implication of Theorem 2 is the following result on minimal expansivity.

Corollary 6 (Minimal Expansivity) For any W ∈ Rm×n, ReLU(W ·) is non-injective if
m < 2 · n. If W ∈ R2n×n satisfies Theorem 2 and Lemma 3, then up to row rearrangement
W can be written as

W =

[
B
−DB

]
(2)

where B,D ∈ Rn×n and B is a basis and D a diagonal matrix with strictly positive diagonal
entries.

While m < 2n immediately precludes injectivity, Corollary 6 gives a simple recipe for
the construction of minimally-expansive injective layers with m = 2n. To the best of our

7

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Figure 3: A visualization of regions where asymptotics of I(m,n) in Theorem 7 are valid.

knowledge this is the first such result. Further, we can also use Corollary 6 to build weight
matrices for which m > 2n. For example, the matrix

W =

 B
−DB
M

 ,
where B ∈ Rn×n has full rank, D ∈ Rn×n is a positive diagonal matrix, and M ∈ R(m−2n)×n

is arbitrary, has a DSS w.r.t. every x ∈ Rn. This method can be used in practice to generate
injective layers by using standard spectral regularizers to ensure that B is a basis (Cisse
et al., 2017). In Section 3 we will show that, in fact, an end-to-end rather than layerwise
doubling of dimension is sufficient for injectivity.

Previous work that sought injectivity uses random-weight models. Lei et al. (2019) show
that a layer is invertible about a point in the range provided that m ≥ 2.1n and W is iid
Gaussian. In Appendix 4.1 we show that m = 2.1n is not enough to guarantee injectivity. In
fact, we show that with high probability an iid Gaussian weight matrix W yields a globally
invertible ReLU layer, when W is sufficiently expansive, and conversely does not satisfy
Theorem 2 if it is not expansive by at least a factor of 3.4:

Theorem 7 (Injectivity for Gaussian Weights) Let
I(m,n) = P{x 7→ ReLU(Wx) is injective} with the entries of W iid standard normal and
c = m/n fixed. Then as n→∞,

I(m,n)→ 1 if c ≥ 10.5 and I(m,n)→ 0 if c ≤ 3.3

The parameter regions defined in Theorem 7 are illustrated in Figure 3. We note that
the study of neural networks with random weights is an important recent research direction
(Pennington and Worah, 2017; Benigni and Péché, 2019). Pennington and Worah (2017)

8

Globally Injective ReLU Networks

articulate this clearly, arguing that large complex systems, of which deep networks are
certainly an example, can be profitably studied by approximating their constituent parts as
random variables.

2.3 Inverse Lipschitz Constant for Networks

Because ‖ReLU(Wx)− ReLU(Wy)‖ ≤ ‖W‖ ‖x− y‖, it is clear that ReLU(W ·) is Lipschitz
with constant ‖W‖; whether the inverse is Lipschitz, and if so, with what Lipschitz constant,
is less obvious. We can prove the following result (see Appendix C):

Theorem 8 (Global Inverse Lipschitz Constant) Let W ∈ Rm×n have a DSS w.r.t.
every x ∈ Rn. There exists a C(W) > 0 such that for any x0, x1 ∈ Rn,

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥ C(W) ‖x0 − x1‖2 (3)

where C(W) = 1√
2m

minx∈Rn σ(W |S(x,W)), and σ denotes the smallest singular value.

This result immediately yields stability estimates when solving inverse problems by
inverting (injective) generative networks. We note that the (2m)−1/2 factor is essential for
our estimate; the naive “smallest singular value” estimate is too optimistic.

Remark 9 We note here that that Theorem 8 gives a bound on the stability of leaky ReLU
layers. Layers of the form LReLUα(x) = ReLU(Wx)− αReLU(−Wx) are always injective,
provided that W is full rank, but may be unstable if α ≈ 0. To be explicit, the concept of a
DSS still applies to these activation functions, and if a leaky relu layer satisfies the criterion
of Theorem 2, then it automatically inherits the stability estimate of Theorem 8 which is
independent of α.

2.4 Convolutional Layer

Since convolution is a linear operator we could simply apply Theorem 2 and Lemma 3 to the
convolution matrix. It turns out, however, that there exists a result specialized to convolution
that is much simpler to verify. In this section we make heavy use of multi-index notation,
indicated by capital letters, see Section 1.4.

Definition 10 (Convolution Operator) Let c ∈ RO. We say that c is a convolution
kernel of width O. Given c and x ∈ RN , we define the convolution operator C ∈ RN×N with
stride 1 as,

(Cx)J =

O∑
I=1

cO−I+1xJ+I =

O+J∑
I′=1+J

cO+J−I′+1xI′ .

When 1 6≤ K or K 6≤ O we will set cK = 0. We do not specify the boundary condition on x
(zero-padded, periodic, or otherwise), as our results hold generally.

Definition 11 (Convolutional Layer) We say that a matrix W ∈ RM×N is a convolution
operator, with nc convolutions, provided thatW can be written (up to row rearrangement) in the
form W =

[
CT1 CT2 · · · CTnc

]T where each Ck is a convolution operator for k = 1, . . . , nc.
A neural network layer for which W is a convolution operator is called a convolution layer.

9

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

D1

O1 P1

N1
O2D2

P2

N2

Figure 4: A visualization of the indices in Definition 11 in two dimensions. The blue region
is a kernel c of width O, the pink region is the zero-padded box of width P , and D is the
offset of the kernel c in the pink box. The entire signal is the green box of width N .

Definitions 10 and 11 automatically model the standard multi-channel convolution used
in practice. For 2D images of size 512× 512, nc input channels, and 3× 3 convolutions, we
simply let x ∈ RN with N = (512, 512, nc) and c ∈ RO with O = (3, 3, nc).

To state our main result for convolutions we also need to define the set of zero-padded
kernels for c ∈ RO. To aid understanding we first give an example of a 2-dimensional

zero-padded kernel, as visualized by Figure 4. The task is to zero-pad a kernel c =

[
1 −1
−2 2

]
(the blue box) of dimensions O = (O1, O2) = (2, 2) so that it occupies the region (the blue
box) of size P = (P1, P2) = (3, 3). This can be done in four different ways, which we call
P(3,3)(c), given by

P(3,3)

([
1 −1
−2 2

])
=


 1 −1 0
−2 2 0
0 0 0

 ,
 0 0 0

1 −1 0
−2 2 0

 ,
0 1 −1

0 −2 2
0 0 0

 ,
0 0 0

0 1 −1
0 −2 2

 .

(4)

Further, there is a natural way to order the elements of PP (c) for any c and P . We can let
D = (D1, D2) denote the offset of c from the top-left corner. In this way, we denote the
(respective) matrices on the r.h.s. of Equation 4 by ĉ(0,0), ĉ(1,0), ĉ(0,1), ĉ(1,1). We use the hat
notation to remind ourselves that ĉD is defined on a different domain than c. This example
can be straight-forwardly extended to any dimension and kernels of any size as given below.

Definition 12 (Zero-Padded Kernel) Let c be a convolution kernel of width O, and let
P be another multi-index. Given O and P , let D(O,P) be the set of admissible offsets D
where D ∈ D(O,P) if 0 ≤ D ≤ P −O. Each different choice of D ∈ D(O,P) corresponds to

10

Globally Injective ReLU Networks

a different way to pad a kernel with zeros. Note that if O 6≤ P , then D(O,P) = ∅. Likewise,
let T (P) be the set of admissible indices T where T ∈ T (P) if 0 ≤ T ≤ P . We define the set
of zero-padded kernels1 of c as the set

PP (c) =

{
ĉD ∈ RP : for each T,

(
ĉD
)
T

=

{
cD−T+O+1 if 1 ≤ T −D ≤ O
0 otherwise

}
. (5)

where the D ∈ D(O,P) and T ∈ T (P) in the r.h.s. of Equation 5.

Theorem 13 (Sufficient Condition for Injectivity of Convolutional Layer) Suppose
that W ∈ RM×N is a convolution layer with convolutions {Ck}nck=1, and corresponding kernels
{ck}nck=1. If for any P ,

W |PP :=

nc⋃
k=1

PP (ck)

has a DSS for RP with respect to all x ∈ RP , then ReLU(W ·) satisfies Theorem 2.

We note that Theorem 13 applies if
⋃nc
k=1 PP (ck) is a DSS for RP for any P . The proof of the

theorem shows that if it holds for any P then the entire operator taken on the whole domain
must be injective. See Example 1 in Appendix A.4 for an example of applying Theorem 13
in one-dimension.

Theorem 13 applies to multi-channel convolution of width (O,nc) = (O1, . . . , Op, nc)
provided that we choose a (P, nc) such that O ≤ P . This theorem shows that if a convolution
operator W has a DSS of the pink region, w.r.t. vectors with support in the pink region in
Figure 4, then it has a DSS of the entire green region w.r.t. vectors supported on the green
region as well.

To apply Theorem 13 to a convolution layer with nc kernels of width O, we must choose P
so that W |PP has at least the minimal number 2

∏p
j=1 Pj of vectors to have a DSS of a vector

space of dimension |P | =
∏p
j=1 Pj . Some algebra gives that nc ≥ 2

∏p
j=1

1
1−Oj/Pj and Pj ≥

Oj
1−(2/nc)1/p , where the last inequality holds only when Pj

Oj
is independent of j.

In this section we also present a lemma which is key in the proof of Theorem 13. We
believe that this lemma in particular will be useful for future work, as it simplifies the process
of showing that a matrix is a DSS of a large domain, by showing it is DSS of smaller ones.

Lemma 14 (Domain Decomposition) Suppose that Rn = span{Ω1, . . . ,ΩK} where2 each
Ωk is a subspace and for each k = 1, . . . ,K we have a

Wk =
[
wTk,1, . . . , w

T
k,Nk

]T and W =
[
W T

1 , . . . ,W
T
K

]
such that wk,` ∈ Ωk and Wk has a DSS of Ωk w.r.t. every x ∈ Ωk. Then W has a DSS of
Rn w.r.t. every x ∈ Rn.
1. With many convolutional neural networks, padding refers to the act of padding the image (with for

example zeroes), but the convolutional kernels are not padded. For our results, the variable P refers to
the padding of the kernels, not the image.

2. This is a slight abuse of traditional spanning notation. Here we mean that there is a set of vectors of Ω1,
Ω2, . . . such that their union spans Rn.

11

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

2.5 Normalization During Runtime

Normalization strategies such as batch (Ioffe and Szegedy, 2015), layer (Ba et al., 2016),
instance (Ulyanov et al., 2016), group (Wu and He, 2018), weight (Salimans and Kingma,
2016) and spectral (Miyato et al., 2018) promote convergence during training and encourage
low generalization error. Normalization is a many-to-one operation. In this section we show
that batch, weight, and spectral normalization do not interfere with injectivity provided
that the network is injective without normalization. In the interest of making this work
self-contained, we will not concern ourselves here with the detailed questions of how a network
is trained, thus we are only concerned with compatibility between injectivity of a trained
network. The question of how a network might be trained in such a was as to be injective
after training is an important, but beyond the scope of this work.

Let {xi}i=1,...,m represent the inputs to a given layer over a mini-batch. The batch
normalization adds two learnable parameters (γ, β) and transforms xi to yi as

µB =
1

m

m∑
i=1

xi, σ2
B =

1

m

m∑
i=1

(xi − µB)2, x̂i =
xi − µB√
σ2
B + ε

, yi = γx̂i + β.

Although for a given γ, β the relationship between xi and yi is not injective , batch normal-
ization is usually present during training but not at test time. Provided that the learned
weights satisfy Theorem 2 and Lemma 3, batch normalization does not spoil injectivity.

In batch renormalization (Ioffe, 2017) it is still desirable to whiten the input into each
layer. During run time there may be no mini-batch, so running averages of the σi and µi
(denoted σ̂, µ̂) computed during training are used. Batch renormalization at test time is then
x̂ = x−µ̂√

σ̂2+ε
, y = γx̂ + β. Since, importantly, σ̂ and µ̂ are not functions of x, the mapping

between x and y is one-to-one (when γ 6= 0), thus such normalization in an injective network
does not spoil the injectivity.

In weight normalization (Salimans and Kingma, 2016) the coefficients of the weight
matrices are normalized to have a given magnitude. This normalization is not a function of
the input or output signals, but rather of the weight matrices themselves. This plays no role
in injectivity.

Layer, instance and group normalization all take place during both training and execution
and, unlike weight and spectral normalization, the normalization is done on the inputs/outputs
of layers instead of the weight matrix, thus injectivity is lost. In Appendix B, we present
a more general notion of injectivity (Scalar-Augmented Injective Normalization) in order
to preserve some of the properties of injectivity in networks that use these normalization
strategies.

3. Universality and Expansivity of Deep Injective Networks

We now consider general properties of deep injective networks. Note that a neural network
Nθ ∈ NN (n,m) is Lipschitz smooth: there is L0 > 0 such that |Nθ(x)−Nθ(y)| ≤ L0|x− y|
for all x, y ∈ Rn. If Nθ : Rn → Rm is also injective, results of basic topology imply that for
any bounded and closed set B ⊂ Rn the map Nθ : B → Nθ(B) has a continuous inverse
N−1
θ : Nθ(B) → B and the sets B and its image Nθ(B) are homeomorphic. Thus, for

example, if Z is a random variable supported on the cube [0, 1]n ⊂ Rn, the sphere Sn−1 ⊂ Rn,

12

Globally Injective ReLU Networks

or the torus Tn−1 ⊂ Rn, we see that Nθ(Z) is a random variable supported on a set in Rm
that is homeomorphic to an n-dimensional cube or an n− 1 dimensional sphere or a torus,
respectively. This means that injective neural networks can model random distributions
on surfaces with prescribed topology. Moreover, if Nθ : Rn → Rm is a decoder, all objects
x ∈ Nθ(Rn) correspond to the unique code z such that x = Nθ(z).

A fundamental property of neural networks is that they can uniformly approximate any
continuous function f : C → Rm defined in a bounded set C ⊂ Rn. For general dimensions
n and m, the injective neural networks do not have an analogous property. For instance,
if f : [−π, π] → R is the trigonometric function f(x) = sin(x), it is easy to see that there
is no injective neural network (or any other injective function) Nθ : [−π, π]→ R such that
|f(x)−Nθ(x)| < 1. Consider, however, the following trick: add two dimensions in the output
vector and consider the map F : [−π, π]→ R3 given by F (x) = (0, 0, sin(x)) ∈ R3. When f
is approximated by a one-dimensional, non-injective ReLU network fθ : [−π, π] → R and
α > 0 is small, then the neural network Nθ(x) = (αReLU (x) , αReLU (−x) , fθ(x)) is an
injective map that approximates F .

In general, as ReLU networks are piecewise affine maps, it follows in the case m = n that
if a ReLU network Nθ : Rn → Rn is injective, it has to be surjective (Thm. 2.1 Scholtes,
1996). This is a limitation of injective neural networks when m = n. Building on these ideas
we show that when the dimension of the range space is sufficiently large, m ≥ 2n+1, injective
neural networks become sufficiently expressive to universally model arbitrary continuous
maps. In other words, we show that any continuous map f : Rn → Rm, where the dimension
of the image space satisfies m ≥ 2n+ 1, can be approximated uniformly in compact sets by
injective neural networks. We emphasize that the map f does not need to be injective.

Theorem 15 (Universal Approximation with Injective Neural Networks) Let f :
Rn → Rm be a continuous function, where m ≥ 2n+ 1, and L ≥ 1. Then for any ε > 0 and
compact subset C ⊂ Rn there exists a neural network Nθ ∈ NN (n,m) of depth L such that
Nθ : Rn → Rm is injective and

‖f(x)−Nθ(x)‖2,m ≤ ε1, for all x ∈ C. (6)

Further we have the following. Let Nθ be such that there exists open and disjoint Ωj ⊂ Rn

for j = 1, . . . , J where Rn =
⋃J
j=1 Ωj and Nθ

∣∣
Ωj

is affine for each j. Then there exist
C1, C2, ε2(n,m) > 0, such that for any ε2 ∈ ε2(n,m) and R > 0 where B(R) ⊂ C there exists
a N ′θ′ ∈ NN (n,m) where∥∥f(x)−N ′θ′(x)

∥∥
2,m
≤ ε1 + ε2, for all x ∈ B(R)

and for any x, y ∈ B(R), ∥∥N ′θ′(x)−N ′θ′(y)
∥∥

2,m
≥ C ‖x− y‖2,n

where

C =
C

(n+m)n
1

(2n+
√
m+ n)n(‖Nθ‖C(B(R)) +R)n

εn2
J2 ln(1+n/(m−2n))+C2

.

13

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Before describing the proof, we note that this result also holds for leaky ReLU networks
with no modification. The key fact used in the proof is that the network is a piecewise affine
function.

To prove this result, we combine the approximation results for neural networks (for
example Pinkus’s density result for shallow networks (Theorem 3.1 Pinkus, 1999) or Yarotsky’s
result for deep neural networks Yarotsky, 2017), with the Lipschitz-smooth version of the
generic projector technique. This technique from differential topology is used for example to
prove the easy version of the Whitney’s embedding theorem (Chapter 2, Thm. 3.5 Hirsch,
2012) and Whitney’s injective immersion theorem (Thm. 2.4.3 Mukherjee, 2015). Related
random projection techniques have been used earlier in machine learning and compressed
sensing (Broomhead and Kirby, 2000, 2001; Baraniuk and Wakin, 2009; Hegde et al., 2008;
Iwen and Maggioni, 2013).

The proof of Theorem 15 is based on applying the above classical results to locally
approximate the function f : Rn → Rm by some (possibly non-injective) ReLU-based neural
network Fθ : Rn → Rm, and augment it by adding additional variables, so that Hθ(x) =
(x, Fθ(x)) is an injective map Hθ : Rn → Rn+m. The image of this map, M = Hθ(Rn),
is an n-dimensional, Lipschitz-smooth submanifold of Rn+m. The dimension of m + n is
larger than 2n+ 1, which implies that for a randomly chosen projector P1 that maps Rn+m

to a subspace of dimension m + n − 1, the restriction of P1 on the submanifold M , that
is, P1 : M → P1(M), is injective. By applying n random projectors, P1, . . . , Pn, we have
that Nθ = Pn ◦ Pn−1 ◦ · · · ◦ P1 ◦Hθ is an injective map whose image is in a m dimensional
linear space. These projectors can be multiplied together, but are generated sequentially. By
choosing the projectors Pj in a suitable way, the obtained neural network Nθ approximates
the map f .

We point out that in the proof of Theorem 15 it is crucial that we first approximate
function f by a neural network and then apply to it a generic projection to make the neural
network injective. Indeed, doing this in the opposite order may fail as an arbitrarily small
deformation (in C(Rn)) of an injective map may produce a map that is non-injective.

Note that J is estimated in theory of hyperplane arrangements (Section 3.11 Stanley,
2011). Indeed, when m hyperplanes A = {T1, . . . , Tm} divide Rn to disjoint regions, the
number of the regions J = r(A) is bounded by

J ≤ 1 +m+

(
m

2

)
+ · · ·+

(
m

n

)
.

The proof of Theorem 15 implies the following corollary on cascaded neural networks where
the dimensions of the hidden layers can both increase and decrease (see Figure 5):

Corollary 16 Let n,m, dj ∈ Z+, j = 0, 1, . . . , 2k be such that d0 = n, d2k = m ≥ 2n + 1
and dj ≥ 2n+ 1 for even indexes j ≥ 2. Let

Fk = Bk ◦ f
(k)
θ ◦Bk−1 ◦ f

(k−1)
θ ◦ · · · ◦B1 ◦ f (1)

θ

where f (j)
θ : Rd2j−2 → Rd2j−1 are injective neural networks and Bj ∈ Rd2j−1 → Rd2j are

random matrices whose joint distribution is absolutely continuous with respect to the Lebesgue
measure of

∏k
j=1(Rd2j×d2j−1). Then the neural network Fk : Rn → Rm is injective almost

surely.

14

Globally Injective ReLU Networks

Figure 5: An illustration of an injective deep neural network that avoids expansivity as
described by Corollary 16. White trapezoids are expansive weight matrices satisfying Theorem
2, and the blue trapezoids are random projectors that reduce dimension while preserving
injectivity.

Observe that in Corollary 16 the weight matrices Bj and Bj′ may not be independent.
Moreover, the distribution of the matrices Bj may be supported in an arbitrarily small set,
that is, a small random perturbation of the weight matrices make the function Fk injective.
Corollary 16 characterizes deep globally injective networks, while avoiding the exponential
growth in dimension as indicated by Corollary 6.

4. Numerical Experiments

In this section we present numerical results. First we numerically investigate the results of
Theorem 7, and then show that injective GANs improve inference.

4.1 Experiments Testing the Minimal Expansivity Threshold

Theorem 7 implies that an expansivity factor of 2.1 as suggested by Lei et al. (2019) is not
enough to ensure global injectivity with Gaussian weights. Insufficient expansivity leads to
failure cases in inverse problems, as we show in this section. We use a single ReLU layer,
f(x) = ReLU(Wx), and choose x to be an MNIST digit for ease of visualization of the
“latent” space. We choose W ∈ Rcn×n with iid Gaussian entries and set c = m/n = 2.1.
Given y = f(x), our goal is to reconstruct x using, for example, gradient descent. This
requires at least n of the cn entries of f(x) to be non-zero since x ∈ Rn. As shown in Figure
7, x0 = − 1

m

∑
j wj/ ‖wj‖ violates this condition with high probability when c = 2.1.

We choose 2 data samples, x1 and x2 to be 2 “latent” codes. Note that W has a DSS
with respect to x1. This ensures that given f(x1) one can reconstruct x1. Now, in order
to show that injectivity around a few points is insufficient for global injectivity, we linearly
interpolate between x0 and x1 and x0 and x2 in a 2D grid. We show the intermediate xs as
images in Figure 6. The xs shown in red cannot be uniquely recovered given f(x), that is,
there exist infinitely many samples close to the red samples that all map to the same output.

15

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Reconstructions with different

random initializations

Figure 6: The mapping φ(x) := ReLU(Wx), x ∈ Rn when W ∈ R2.1n×n as suggested in
Lei et al. (2019) is not injective as the samples shown in red do not have n positive inner
products with the rows of W . This implies that around the red samples φ cannot be inverted.
For the 3 samples delineated by white boxes on the left, we do a simple denoising test where
y = φ(x) + η and η corresponds to 10dB noise. Each reconstruction reported is best out of
10 trials based on MSE error.

To further illustrate this, we also run a simple experiment where we have y = f(x) + η,
with a 10dB signal-to-noise ratio. We invert f to estimate x for 3 different samples in
the domain of f . We can easily see that non-injective points of the domain give poorer
reconstructions due to the lower number of positive inner products with W . In order to
avoid problems of non-convexity in optimization we report the best reconstruction out of 10
in 4 different trials with different random seeds, similar to experiments of Bora et al. (2017).
While these results show reconstructions with single layer, the issues are only exacerbated
with multiple layers.

4.2 Injective GANs Improve Inference

We devise a simple experiment to demonstrate that 1) one can construct injective networks
using Corollary 6 that 2) perform as well as the corresponding non-injective networks, while
3) being better at inference problems. One way to do inference with GANs is to train a
so-called inference network Inet : X → Z jointly with the generator G : Z → X so that
I(G(z)) ≈ z (Donahue et al., 2016; Dumoulin et al., 2016); Inet is trained to invert G on its
range. This is used to evaluate the likelihood of an image x in the range of G as pZ(Inet(x)).
However, for pZ(Inet(G(z)) = pZ(z) to hold, G must be injective—otherwise the distribution
of Inet(G(z)) will be different from that of z. One would thus hope that the distribution
of Inet(G(z)) will be closer to that of z if we enforce injectivity. If that is the case and the
sample quality is comparable, then we have a practical tool to improve inference.

We use the DCGAN (Radford et al., 2015) architecture with the same hyperparameters,
layer sizes and normalization strategies for the regular GAN and the injective GAN; see
Appendix F. Note that the original DCGAN uses several ReLU conv layers with an expansivity
of 2 per layer. By Corollary 6 these layers are non-injective. Therefore, the filters of the
DCGAN are modified to be of the form [C;−s2C] in order to build an injective GAN. We

16

Globally Injective ReLU Networks

train the networks to generate 64× 64× 3 images and draw the latent code z ∈ R256 iid from
a standard normal distribution. We test on CelebA (Liu et al., 2015) and FFHQ (Karras
et al., 2019) data sets. To get a performance metric, we fit Gaussian distributions N (µ,Σ)
and N (µinj,Σinj) to G(z) and Ginj(z). We then compute the Wasserstein-2 distance W2

between the distribution of z ∼ N (0, I256) and the two fitted Gaussians using the closed-form
expression for W2 between Gaussians, W2

2 (N (µ1,Σ1),N (µ2,Σ2)) = ‖µ1 − µ2‖2 + Tr(Σ1 +
Σ2 − 2(Σ1Σ2)1/2). We summarize the results in Table 1. Despite the restrictions on the
weights of injective generators, their performance on popular GAN metrics—Fréchet inception
distance (FID) (Heusel et al., 2017) and inception score (IS) (Salimans et al., 2016)—is
comparable to the standard GAN while inference improves. That the generated samples are
indeed comparable to the standard GAN can be also gleaned from the from the figure in
Appendix F.

Table 1: Injectivity improves inference without sacrificing performance.

data set Type of G Inception Score↑ Fréchet Inception Distance↓ W2
2 (Pẑ,Pz) ↓

CelebA Injective 2.24± 0.09 39.33± 0.41 18.59
Regular 2.22± 0.16 50.56± 0.52 33.85

FFHQ Injective 2.56± 0.15 61.22± 0.51 9.87
Regular 2.57± 0.16 47.23± 0.90 19.63

5. Conclusion

We derived and explored conditions for injectivity of ReLU neural networks. In contrast to
prior work which looks at random weight matrices, our characterizations are deterministic and
derived from first principles. They are also sharp in that they give sufficient and necessary
conditions for layerwise injectivity. Our results apply to any network of the form (1)—they
only involve weight matrices but make no assumptions about the architecture. We included
explicit constructions for minimally expansive networks that are injective; interestingly, this
simple criterion already improves inference in our preliminary experiments. The results on
universality of injective neural networks further justify their use in applications; they also
implicitly justify the various Jacobian conditioning strategies when learning to generate
real-world data. Further, injective neural networks are topology-preserving homeomorphisms
which opens applications in computational topology and establishes connections to tools such
as self-organizing maps. Analysis of deep neural networks has an analogue in the analysis
of inverse problems where one studies uniqueness, stability and reconstruction. Uniqueness
coincides with injectivity, quantitative stability with the Lipschitz constant of the inverse,
and, following Lei et al. (2019), from a linear program we get a reconstruction in the range.

We also remark here that we believe that many of the theoretical results from this
paper can be applied to networks with other activation functions with minimal changes.
For example we believe that, Theorems 2, 8, 13 and 20 can be made to apply to arbitrary
activation functions that are injective on a half plane. We also believe that Theorem 15 can
be applied to any model of injective networks provided that the activation functions are
piece-wise affine.

17

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Acknowledgments

We are grateful to Daniel Paluka and Charles Clum for pointing out a problem with the
bound on the sum of binomial coefficients used to prove Theorem 7. We are also grateful to
Teemu Saksala for the many useful conversations had, especially in the early stages of this
project.

I.D. was supported by the European Research Council Starting Grant 852821—SWING.
M.L. was supported by Academy of Finland, grants 284715, 312110. M.V.dH. gratefully
acknowledges support from the Department of Energy under grant DE-SC0020345, the
Simons Foundation under the MATH + X program, and the corporate members of the
Geo-Mathematical Imaging Group at Rice University.

Appendix A. Proofs from Section 2

In this section we present all of the proof concerning layerwise injectivity.

A.1 Proofs from Subsection 2.2

Proof [Proof of Theorem 2] Suppose that W is such that the conditions of Theorem 2 hold,
and that ReLU(Wx1) = ReLU(Wx2) = y. If for j ∈ [[m]], y|j > 0 then both 〈wj , x1〉 > 0
and 〈wj , x2〉 > 0. Similarly, if y|j ≤ 0 then both 〈wj , x1〉 ≤ 0 and 〈wj , x2〉 ≤ 0. In particular,
this implies that

〈wj , x1〉 > 0 ⇐⇒ 〈wj , x2〉 > 0 and 〈wj , x1〉 ≤ 0 ⇐⇒ 〈wj , x2〉 ≤ 0. (7)

If we then consider xα := (1− α)x1 + αx2 where α ∈ (0, 1), then

ReLU(Wxα) = y = ReLU(Wx1) = ReLU(Wx2).

If 〈wj , xα〉 > 0 then at least one of 〈wj , x1〉 > 0 or 〈wj , x2〉 > 0. (7) implies that both
must hold, therefore 〈wj , x1〉 = 〈wj , x2〉 > 0. If 〈wj , xα〉 = 0 then 〈wj , x1〉 = 〈wj , x2〉 = 0
(otherwise (7) is violated), thus

ReLU(W |S(xα,W)x1) = ReLU(W |S(xα,W)x2) =⇒ W |S(xα,W)x1 = W |S(xα,W)x2

and so because W |S(xα,W) is full rank, this implies that x1 = x2. This proves one direction.
The other direction follows from the following. Suppose that there exists a x such that

W |S(x,W) don’t span Rn. If S(x,W) = ∅ non-injectivity trivially follows, so suppose w.l.o.g.
that S(x,W) 6= ∅. Let x⊥ ∈ ker(W |S(x,W)) and α ∈ R+ such that α < minj∈Sc(x,W)

−〈x,wj〉
|〈x⊥,wj〉|

3.

Then for j = 1, . . . ,m one of the following two hold

if j ∈ S(x,W) then
〈
wj , x+ αx⊥

〉
= 〈wj , x〉+ α

〈
wj , x

⊥
〉

= 〈wj , x〉

if j ∈ Sc(x,W) then
〈
wj , x+ αx⊥

〉
= 〈wj , x〉+ α

〈
wj , x

⊥
〉
< 0.

3. If
〈
x⊥, wj

〉
= 0 for all j ∈ Sc(x,W), then any α > 0 will do.

18

Globally Injective ReLU Networks

Thus, as ReLU acts pointwise (row-wise in W), we have that

ReLU(W (x+ αx⊥)) = ReLU(Wx) (8)

and, hence, ReLU(W ·) is not injective.

Proof [Proof of Lemma 3] First, we show that if ReLU(W |b≥0·) is injective, then so is
ReLU(W ·+b). Clearly if ReLU(Wx1 +b) = ReLU(Wx2 +b) then ReLU(W |b≥0x1 +b|b≥0) =
ReLU(W |b≥0x2 + b|b≥0) as well. If we apply Lemma 32 to each component of the above
equation, then we obtain that ReLU(W |b≥0x1) = ReLU(W |b≥0x2) which, given the injectivity
of ReLU(W |b≥0·), implies that x1 = x2.

Now suppose that ReLU(W |b≥0) is not injective. Let x ∈ Rn be such that W |b≥0 doesn’t
have a DSS of Rn w.r.t. x. Let β > 0 be small enough so that W |b<0(βx) + b|b<0 <
0 component-wise, and let x⊥ ∈ Rn such that (as in (8)) ReLU(W |b≥0(βx + x⊥)) =
ReLU(W |b≥0βx). Further let α < 1 be small enough such that W |b<0(βx+αx⊥) + b|b<0 < 0.
By a component-wise analysis, we have that

ReLU(W (βx+ αx⊥) + b) = ReLU(Wβx+ b)|b≥0 = ReLU(Wβx+ b);

thus, ReLU(W ·+b) is not injective.

Proof [Proof of Corollary 6] IfW ∈ Rm×n is injective then consider a plane p in Rn that none
of the rows of W lie in. Apply Theorem 2 to both normals of the plane. The corresponding
DSS’ for each normal are disjoint, thus there must be at least 2n ≥ m, so m < 2 · n implies
non-injectivity.

Now we show that if W satisfies Theorem 2, then W is of the form given by (2). Suppose
that there is a row vector wi such that there are no row vectors pointing in the −wi direction.
Let p be a plane through the origin such that wi ∈ p, but wi′ 6∈ p for i 6= i′. By Theorem 2,
there must be at least n columns that lie on each (closed) halfspace of p. Not counting wi,
one side must have n− 1 vectors, and the other n. Indeed one of the sides must have exactly
n vectors on it (including wi). Let θi be the principle angle between wi and p. If we rotate p
by an angle φ < mini 6=i′ θi then we can obtain a new plane pφ with wi on the side with n
vectors, so that the other side of pφ still only contains n− 1 vectors. Hence there is no DSS
for pφ plane’s normal on that side.

Thus for ReLUW to be injective, for every i ∈ [[2n]] there must be a different i′ ∈ [[2n]]
such that wi and wi′ are anti-parallel. This can only happen if for every w ∈W there is a
corresponding −dw ∈W , so W must have the form of (2).

A.2 Proof of Theorem 7

A.2.1 Upper Bound on Minimal Expansivity

Let (Ω,F ,P) be a probability space and let wi : Ω → Rn, 1 ≤ i ≤ m be m iid Gaussian
vectors on Ω stacked in a matrix W : Ω→ Rm×n.

We identify a sufficient condition onm,n for a ReLU layer x 7→ ReLU(Wx) to be injective.
Injectivity fails at p when the half-space {x : 〈x, p〉 ≥ 0} contains fewer than n vectors wi.

19

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Equivalently, injectivity fails if there is a half-space which contains more than m− n vectors
wi (which implies that its opposite half-space has fewer than n).

Let k = m− n+ 1 and denote by A ∈ Rk×n some k × n submatrix of W (for example,
the first k rows). Our strategy is to first bound the probability that for a fixed subset of k
rows of W , there exists an x having positive inner products will all k rows (which signals
non-injectivity per above discussion) and then use the union bound over the

(
m
k

)
subsets of

k rows to upper bound the probability of non-injectivity.
For the first part we follow the proof of Bürgisser and Cucker (2013, Theorem 13.6), parts

of which we reproduce for the reader’s convenience. For a sign pattern σ ∈ {−1, 0, 1}k, we
denote by RA(σ) the set of all x ∈ Rn which produce the sign pattern σ (they belong to the
σ-“wedge”, possibly empty),

RA(σ) = {x ∈ Rn : sign(〈x, ai〉) = σi, i ∈ {1, . . . , k}} .

For σ ∈ {−1,+1}k = Σ, we define the event Eσ as

Eσ =
{
ω : RA(ω)(σ) 6= ∅

}
.

We are interested in σ0 = (1, . . . , 1), meaning that all the inner products are positive. Note
that the probability of Eσ is the same for all σ due to the symmetry of the Gaussian measure.
Further, note that

∑
σ∈Σ 1Eσ(ω) = |

{
σ : RA(ω)(σ) 6= ∅

}
| is the number of wedges defined

by A. Then

P(Eσ0) =
1

2k

∑
σ∈Σ

P(Eσ) =
1

2k

∑
σ∈Σ

E(1Eσ) =
1

2k
E

(∑
σ∈Σ

1Eσ

)
=

1

2k−1

n−1∑
i=0

(
k − 1

i

)
,

by (Winder, 1966, Cor. 1). In Winder (1966) the corollary holds for the generic case but the
equality case is generic, and so holds with probability 1, thus we use equality here.

We now have the probability that for a subset of k vectors wi, there exists an x ∈ Rn
which has positive inner products with all k vectors. We are interested in the following event
which implies non-injectivity,

ENI =
{
ω : W (ω) has a subset of k rows B(ω) such that RB(ω)(σ0) 6= ∅

}
.

Conversely, ω ∈ EcNI implies almost sure injectivity.
Since there are

(
m
k

)
=
(

m
m−n+1

)
=
(
m
n−1

)
different subsets of k rows, we can bound the

probability of ENI as

P(ENI) ≤
(

m

n− 1

)
P(Eσ0) =

1

2k−1

(
m

n− 1

) n−1∑
i=0

(
k − 1

i

)

≤
(

me

n− 1

)k
21−k2H(n−1

k−1)(k−1)

≤
(

me

n− 1

)n
2−(m−n)2(m−n)H(n−1

m−n)

≤ 4(ce)n2n(c−1)[H((c−1)−1)−1]

= 4 · 2−n[− log2(ce)−(c−1)(H((c−1)−1)−1)], (9)

20

Globally Injective ReLU Networks

Figure 7: We empirically show that for random Gaussian matrices W ∈ Rm×nm = cn, a
critical oversampling factor of at least c > 3.5 is required for injectivity of ReLU. We choose
x = − 1

m

∑
j wj/ ‖wj‖. Left: a plot of the number of elements ofW that point in the direction

of x as a function of expansivity for several different choices of n. If this quantity is less than
n, then W cannot contain a DSS of Rn w.r.t. x. Right: a plot of the empirical probability
that a Gaussian matrix W contains a DSS of Rn w.r.t. x as a function of expansivity for
several different values of n.

where4 (n
k

)
≤
(
ne
k

)k, ∑k
i=1

(
n
i

)
≤ 2H(k/n)n, and H(ε) = −ε log2(ε) − (1 − ε) log2(1 − ε) is

the binary entropy function. The RHS in (9) converges to zero as n → ∞ precisely if[
− log2(ce)− (c− 1)(H((c− 1)−1)− 1)

]
is positive. Numerically we can see that the bound

is positive if c ≥ 10.5.

A.2.2 Lower Bound on Minimal Expansivity of Layers with Gaussian Weights

We prove that large random Gaussian weight matrices W ∈ Rm×n yield non-injective ReLU
layers with high probability if m < c∗n, where c∗ ≈ 3.4. Injectivity fails if there exists a half-
space in Rn which contains less than n rows of W . Equivalently, injectivity fails if there is a
half-space with more than m−n rows of W , since then the opposite halfspace has less than n.
The idea is to make an “educated guess” for a half-space with many vectors, and compute the
probability that it has more than m− n. As the guess, we take the halfspace defined by the
average row vector in W . Equivalently, we study the size of S(w,W) where w = 1

m

∑m
k=1wk

is the row average of a matrix W . If |S(w,W)| > m − n, then |S(−w,W)| < n, and W
cannot have a DSS w.r.t. −w. As the Figure 7 shows, when m < c∗n, W does not contain a
DSS w.r.t. −w with high probability.

Let W ∈ Rm×n be a matrix such that the rows of W are i.i.d. random vectors distributed
as N (0, In). Define the event Ei as

Ei :=

{
ω :

〈
wi(ω),

m∑
k=1

wk(ω)

〉
≥ 0

}
.

4. https://en.wikipedia.org/wiki/Binomial_coefficient#Sums_of_binomial_coefficients

21

https://en.wikipedia.org/wiki/Binomial_coefficient#Sums_of_binomial_coefficients

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Lemma 17 Let m,n → ∞ so that m
n = c. Then P(Ei) → 1

2erfc
(
− 1√

2c

)
, where erfc(z) =

1− 2√
π

∫ z
0 e
−t2dt.

Proof We have

P (Ei) = P

‖wi‖2 +

〈
wi,
∑
i 6=j

wj

〉
≥ 0

 = P
(
‖wi‖2 + ‖wi‖Y ≥ 0

)

where Y ∼ N (0,m− 1). We now use the fact that ‖wi‖2 concentrates around n. Define the
event

Di =
{
ω : ‖wi(ω)‖2 ∈ [(1− ε)n, n/(1− ε)]

}
.

It holds by standard concentration arguments (for example Barvinok Page 6, Corollary 2.3
2005) that P(Di) ≥ 1− 2 exp(−ε2n/4), and so by the law of total probability,

P
{
‖wi‖2 + ‖wi‖Y ≥ 0

}
= P {‖wi‖+ Y ≥ 0 |Di}P{Di}+ P {‖wi‖+ Y ≥ 0 |Dc

i}P {Dc
i} .
(10)

Choosing ε = ε(n) = n−1/4 yields

P
{√

n− n3/4 + Y ≥ 0
}
≤ P {‖wi‖+ Y ≥ 0 |Di} ≤ P

{√
n/(1− n−1/4) + Y ≥ 0

}
.

Finally, substituting Z = Y√
m−1

∼ N (0, 1) yields

P

Z ≥ −
√
n− n3/4

m− 1

 ≤ P {‖wi‖+ Y ≥ 0 |Di} ≤ P

Z ≥ −
√
n/(1− n−1/4)

m− 1


Both sandwiching probabilities converge to P

{
Z ≥ − 1√

c

}
= 1

2erfc
(
− 1√

2c

)
. Noting that

P {Di} → 1 and P {Dc
i} → 0 we finally have from (10) that

P {Ei} →
1

2
erfc

(
− 1√

2c

)
.

Lemma 18 Under the same conditions as Lemma 17 when i 6= j,

P{Ei ∩ Ej} →
1

4
erfc

(
− 1√

2c

)2

.

We first prove a helper lemma.

22

Globally Injective ReLU Networks

Lemma 19 Let X,Y ∼ N (0, In) be independent Gaussian random vectors. Then

P
{
|〈X,Y 〉| ≥

√
n3/2/(1− ε)

}
≤ e−

√
n/2 + 2e−ε

2n/4.

Proof The distribution of 〈X,Y 〉 is the same as that of ‖X‖ 〈e1, Y 〉 = ‖X‖Z, with
Z ∼ N (0, 1) independently from X and e1 = (1, 0, . . . , 0). Then

P
{
‖X‖Z ≥

√
n3/2/(1− ε)

}
≤ P

{
Z ≥ n1/4

}
+ P

{
‖X‖ ≥

√
n/(1− ε)

}
.

The second term is bounded by e−ε2n/4. For the first term we have

P
{
Z ≥ n1/4

}
=

1

2
erfc

(
n1/4/

√
2
)
≤ 1

2
e−
√
n/2.

The claim follows by noting that Z is symmetric around 0.

Proof of Lemma 18

P

{〈
wi,

m∑
k=1

wk

〉
≥ 0 and

〈
wj ,

m∑
k=1

wk

〉
≥ 0

}
= P

{
‖wi‖2 + 〈wi, wj〉+ 〈wi, X〉 ≥ 0 and ‖wj‖2 + 〈wi, wj〉+ 〈wj , X〉 ≥ 0

}
= (∗).

where X ∼ N (0,m− 2) is independent from wi and wj . Fixing the orientation of X does
not change the probability so we choose X = ‖X‖ (1, 0, . . . , 0) to get

(∗) = P
{
‖wi‖2 + 〈wi, wj〉+ ‖X‖wi,1 ≥ 0 and ‖wj‖2 + 〈wi, wj〉+ ‖X‖wj,1 ≥ 0

}
Similarly as in the proof of Lemma 17 define the event

Di = {ω : ‖wi(ω)‖2 ∈ [(1− ε)n, n/(1− ε)]}

and
DX =

{
ω : ‖X(ω)‖2 ∈ [(1− ε)n(m− 2), n(m− 2)/(1− ε)]

}
,

which individually hold with probability at least 1− 2 exp(−ε2n/4). Let also

D〈i,j〉 =

{
ω : |〈wi(ω), wj(ω)〉| ≤

√
n3/2/(1− ε)

}
.

We have from Lemma 19 that

P
{
D〈i,j〉

}
≥ 1− exp(

√
n/2)− 2 exp(−ε2n/4).

Choosing ε = ε(n) = n−1/4 we get via union bound that

P(Di ∩Dj ∩DX ∩D〈i,j〉) ≥ 1− C1 exp(−C2

√
n),

23

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

for some C1, C2 > 0.
Let D = Di ∩Dj ∩DX ∩D〈i,j〉 and denote

α = P
{
‖wi‖2 + 〈wi, wj〉+ ‖X‖wi,1 ≥ 0 and ‖wj‖2 + 〈wi, wj〉+ ‖X‖wj,1 ≥ 0

∣∣D} .
Dividing the left-hand sides of inequalities in the argument of P by m and denoting κ = c−1,
we have for large enough n (so that the term in the parenthesis in the next line is negative),

α ≤ P

wi,1 ≥
√

m

m− 2

κ−1/2

1− n−1/4

− κ

1− n−1/4
− κ

√
n−1/2

1− n−1/4


and wj,1 ≥

√
m

m− 2

κ−1/2

1− n−1/4

− κ

1− n−1/4
− κ

√
n−1/2

1− n−1/4

 ∣∣∣∣D
 (11)

(Note that unlike in the proof of Lemma 17, conditioning affects the distribution of wi, wj so
we need to keep it.) Similarly,

α ≥ P

wi,1 ≥
√

m

m− 2
κ−1/2(1− n−1/4)

−κ(1− n−1/4) + κ

√
n−1/2

1− n−1/4


and wj,1 ≥

√
m

m− 2
(1− n−1/4)

−κ(1− n−1/4) + κ

√
n−1/2

1− n−1/4

 ∣∣∣∣D
 . (12)

Denote the conjunctions in the arguments of the probabilities in (11) and (12) by Au and
A`. We have

P {Au |D} − P {Au} =
P {Au ∩D}

P {D}
− P {Au}

≤ P {Au}
P {D}

− P {Au}

=
P {Au}
P {D}

(1− P {D})→ 0,

since P {D} → 1, and similarly for A`, so we can remove the conditioning in the limit.
Combining all of the above, we have that

α→ P
{
wi,1 ≥ −

√
κ and wj,1 ≥ −

√
κ
}

=

(
1

2
erfc

(
−
√
κ

2

))2

by independence of wi,1 and wj,1.

Theorem 20 Given a Gaussian weight matrix W ∈ Rm×n, the layer ReLU(Wx) with
m/n = c is not injective with probability → 1 as n→∞ when c < c∗, where c∗ is the unique
positive real solution to

1

2
erfc

(
1√
2c

)
=

1

c
.

The numerical value of c∗ is ≈ 3.4.

24

Globally Injective ReLU Networks

Proof Let Xi = 1〈wi, 1
m

∑m
j=1 wj〉≥0, the indicator function of the event Ei. The expected

number of wi with a positive inner product with
∑m

i=1wi is by the linearity of expectation
equal to

E

(
m∑
i=1

Xi

)
= m · P {Ei} =: mp.

By Chebyshev’s inequality

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − p

∣∣∣∣∣ ≥ t
)
≤ σ2

t2

where σ2 = V
(

1
m

∑m
i=1Xi

)
is the variance of the sum. We compute

m2σ2 = V

(
m∑
i=1

Xi

)
= E

(
m∑
i=1

Xi

)2

−

(
E

m∑
i=1

Xi

)2

= mp+
∑
i 6=j

P(Ei ∩ Ej)− (mp)2.

Since P(Ei ∩ Ej)→ p2 by Lemmas 17 and 18, we have for any i and j 6= i

σ2 =
mp+m(m− 1)P(Ei ∩ Ej)− (mp)2

m2
→ 0.

Thus indeed for any t > 0

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − p

∣∣∣∣∣ ≥ t
)
→ 0.

Finally,

P(noninjectivity) ≥ P

(
m∑
i=1

Xi > m− n

)
= P

(
1

m

m∑
i=1

Xi > 1− 1

c

)
.

Combining with Lemma 17 we get that

1

m

m∑
i=1

Xi
P→ 1

2
erfc

(
− 1√

2c

)

Thus

P(noninjectivity) ≥ P

(
1

m

m∑
i=1

Xi > 1− 1

c

)
→

{
0 c > c∗

1 c < c∗.

25

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

(a) (b)

Figure 8: A Proof aid of the DSS condition when W ∈ R8×2. The blue dots are x0 and x1,
the pink are the weight matrix rows, black lines denote the boundaries between adjacent
wedges, and the multi-colored line is `x0,x1(t). This line changes color each time it crosses
into a new wedge.

A.3 Proof of Theorem 8

We divide the proof into parts for ease of understanding.

Lemma 21 (Inverse Lipschitz Constant: Face Adjacent Wedges) Let W ∈ Rm×n
have a DSS w.r.t. every x ∈ Rn and x0, x1 ∈ Rn.Define

∀t ∈ [0, 1], `x0,x1(t) = (1− t)x0 + tx1

and suppose that x0 and x1 are such that there is a t′ ∈ (0, 1) such that for all t ∈ [0, 1]

W |S(`x0,x1 (t),W) =

{
W |S(x0,W) if t < t′

W |S(x1,W) if t′ < t
. (13)

Suppose further that x0, x1 are such that there is some δ > 0 such that for all δx ∈ Rn, if
‖δx‖2 < δ then there is a t′ + δt such that

W |S(`x0,x1+δx(t),W)≥0 =

{
W |S(x0,W) if t < t′ + δt

W |S(x1,W) if t′ + δt < t
. (14)

Then

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
1√
2

min(σ(W |S(x0,W)), σ(W |S(x1,W))) ‖x0 − x1‖2 ,

where σ(M) is the smallest singular value of the matrix M .

Remark 22 The conditions of Lemma 21 on x0 and x1 may look very odd, but they have a
very natural geometric meaning. The DSS can be thought of as slicing Rn into wedges by a
series of hyperplanes that have the rows of W as normals.

26

Globally Injective ReLU Networks

The condition in (13) is interpreted as that the line segment that connects x0 to x1 passes
from x0’s wedge into x1’s wedge without passing through any wedges in between (see Figure
8a, as opposed to Figure 8b). The implies that x0 and x1 must be in wedges that share a
boundary. The condition in (14) requires that the wedges of x0 and x1 share a face, and not
just a corner.

Proof We denote

W |S(x0,W) = W0,W |S(x1,W) = W1,W0∩1 = W0 ∩W1,W0 =

[
W0∩1

W0\1

]
,W1 =

[
W0∩1

W1\0

]
.

First we will show that if wi, wi′ ∈W0\1, then wi and wi′ must be parallel. From equation
(13) and the continuity of ReLU(W`x0,x1(t)) w.r.t. t, we have that there is a t′ ∈ (0, 1) such
that 〈

wi, (1− t′)x0 + t′x1

〉
= 0 =

〈
wi′ , (1− t′)x0 + t′x1

〉
.

If wi and wi′ are not parallel, then let δx be some vector 0 < ‖δx‖ < δ that is perpendicular
to wi but not wi′ then〈

wi, (1− t′)x0 − t′δx+ t′x1

〉
= −t 〈wi, δx〉 = 0,〈

wi′ , (1− t′)x0 − t′δx+ t′x1

〉
= −t 〈wi′ , δx〉 6= 0,

which contradicts (14). W.l.o.g. the same argument applies to W1\0 and also it is straight
forward to see that all elements of W0\1 must be anti-parallel to all elements of W1\0. From
W1\0 and W0\1 parallelism, there is a c ≥ 0 such that for all x ∈ Rn,∥∥W1\0x

∥∥ = c2
∥∥W0\1x

∥∥ .
Assume that c ≥ 1, then

‖W0x0 −W1x1‖22 = ‖W0∩1x0 −W0∩1x1‖22 +
∥∥W0\1x0

∥∥2

2
+
∥∥W1\0x1

∥∥2

2

= ‖W0∩1x0 −W0∩1x1‖22 +
∥∥W0\1x0

∥∥2

2
+ c2

∥∥W0\1x1

∥∥2

2

≥ ‖W0∩1x0 −W0∩1x1‖22 +
∥∥W0\1x0

∥∥2

2
+
∥∥W0\1x1

∥∥2

2

≥ ‖W0∩1x0 −W0∩1x1‖22 +
1

2

∥∥W0\1(x0 − x1)
∥∥2

2

≥ 1

2
‖W0x0 −W0x1‖22

≥ σ(W0)2

2
‖x0 − x1‖22 .

The antepenultimate inequality comes as from the definition of W0\1, we have that W0\1x0

and −W0\1x1 are the same sign, thus (34) applies. In the case that c < 1, then the rolls
of W0\1 and W1\0 can be switched, and the same result (with σ(W1) in place of σ(W0)) is
obtained. In either case,

‖W0x0 −W1x1‖22 ≥
1

2
min

(
σ(W |2S(x0,W)), σ(W |S(x1,W))

2
)
‖x0 − x1‖22 .

27

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Lemma 23 (Inverse Lipschitz Constant: Connected through Faces) LetW ∈ Rm×n
have a DSS w.r.t. every x ∈ Rn. Let x0, x1 be such that the line connecting passes through
nt wedges, and through their faces (in the sense of Lemma 22). Then

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
1√
2nt

min
t∈[0,1]

σ(W |S(`x0,x1 (t),W)) ‖x0 − x1‖2 .

Proof Let t1 = 0, tnt = 1, and let T = {tk}ntk=1 such that tk < tk+1 for k < nt and
xk := `x0,x1(tk) are each in different wedges. Let c = 1√

2
mint∈[0,1] σ(W |S(`x0,x1 (t),W)), then

c ‖x0 − x1‖2 ≤
nt−1∑
k=1

c
∥∥xtk − xtk+1

∥∥
2

(15)

then by Lemma 21,

nt−1∑
k=1

c
∥∥xtk − xtk+1

∥∥
2
≤

nt−1∑
k=1

∥∥ReLU(Wxtk)− ReLU(Wxtk+1
)
∥∥

2

and by Lemma 34 we have

nt−1∑
k=1

∥∥ReLU(Wxtk)− ReLU(Wxtk+1
)
∥∥

2
≤
√
nt ‖ReLU(Wx0)− ReLU(Wx1)‖2 . (16)

Combining (15) - (16) yields

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
1√
2nt

min
t∈[0,1]

σ(W |S(`x0,x1 (t),W)) ‖x0 − x1‖2 .

Proof [Proof of Theorem 8] Let x0 and x1 be given. If the line connecting x0 and x1 does
not pass through any wedge corners, then we can apply Lemma 23 directly, and get that

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
1√
2nt

min
t∈[0,1]

σ(W |S(`x0,x1 (t),W)) ‖x0 − x1‖2 .

We now argue that the number of wedges that `x0,x1(t) passes through (and so nt) is at most
m. For each j ∈ [[m]],

ReLU(W`x0,x1(t))|j = 〈wj , `x0,x1(t)〉

is monotone increasing or decreasing. This implies that each wj ∈W can enter or exit the
DSS w.r.t. `x0,x1(t) at most once, therefore the total number of unique DSS w.r.t. `x0,x1(t)
(that is wedges `x0,x1(t) pass through) is at most m. Hence, nt ≤ m. Clearly

min
t∈[0,1]

σ(W |S(`x0,x1 (t),W)) ≥ min
x∈Rn

σ(W |S(x,W)),

28

Globally Injective ReLU Networks

hence we have

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
C√
m
‖x0 − x1‖2 .

Now we show that if Lemma 23 does not apply to two points (namely, the line `x0,x1(t)
passes through a corner in the sense of Remark 22), then the two points can be perturbed
an arbitrarily small amount, so that the perturbed points do satisfy Lemma 23. The corners
(again, as in Remark 22) describe the points which are orthogonal to at least two wj1 , wj2 ∈W .
wj1 and wj2 must not be parallel to each other (otherwise Lemma 21 would apply), thus the
set of points orthogonal to both wj1 and wj2 constitute a n− 2 dimensional linear space in
Rn.

Let x0 and x1 be such that `x0,x1(t) intersects one of these corners. By considering
x̃0 = δx+x0, x̃1 = δx+x1 where δx is perpendicular to x1−x0, we can obtain a line `x̃0,x̃1(t)
so that `x̃0,x̃1(t) and `x0,x1(t) do not intersect. The choice of δx is n− 1 dimensional, thus
for every δ > 0 and wj1 and wj2 (that are non-perpendicular) there is a δx so that ‖δx‖2 < δ
and `x̃0,x̃1(t) does not intersect the corner of wj1 and wj2 .

Consider a sequence of x̃(i)
0 , x̃

(i)
1 , i = 1, . . . such that limi→∞(x̃

(i)
0 , x

(i)
1) = (x0, x1) and

`x̃
(i)
0 ,x

(i)
1 (t) does not pass through a corner for any i. Given that ‖·‖2 and ReLU(W (·)) are

continuous and so by Lemma 23∥∥∥ReLU(Wx̃
(i)
0)− ReLU(Wx̃

(i)
1)
∥∥∥

2
− C√

2m

∥∥∥x̃(i)
0 − x̃

(i)
1

∥∥∥
2
≥ 0,

thus

‖ReLU(Wx0)− ReLU(Wx1)‖2 −
C√
2m
‖x0 − x1‖2 ,

= lim
i→∞

∥∥∥ReLU(Wx̃
(i)
0)− ReLU(Wx̃

(i)
1)
∥∥∥

2
− C√

2m

∥∥∥x̃(i)
0 − x

(i)
1

∥∥∥
2
≥ 0.

and so

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
C√
2m
‖x0 − x1‖2 .

Remark 24 (Factor of 1√
m

in Theorem 8.) Throughout this paper we define the discrete
norm of y ∈ Rd as

‖y‖2 =

 d∑
j=1

[y]2j

 1
2

.

This is to be contrasted with the norm that arise from the discretization of the L2 function
norm on a finite domain. For example, if we instead thought of y as a discrete sampling of a

29

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

continuous function ỹ ∈ L2([0, 1]), such that ∀j = 1, . . . , d

ỹ

(
j − 1

m

)
= [y]j ,

then we could approximate the L2([0, 1]) norm of ỹ by

‖ỹ‖L2([0,1]) ≈ ‖y‖l2([0,1]) :=
1√
m

 d∑
j=1

[y]2j

 1
2

.

If we express Theorem 8 in terms of ‖·‖l2([0,1]), then it would become

‖ReLU(Wx0)− ReLU(Wx1)‖l2(0,1) ≥
C(W)

m
‖x0 − x1‖2 .

A.4 Theorem 13

Example 1 (Applying Theorem 13, One Channel) Consider a layer of the form
Reshape(ReLU(Wx)) where W = [CT1 , · · · , CTq]T and each Ck is a convolution operator with
kernel ck. Suppose further that W ∈ R4×4×1024×100 = R16384×100 (as in Radford et al., 2015).
The reshaping operator takes the 16384 single-channel output of W and transforms it into
a multi-channel signal. This is necessary for subsequent convolutions, but plays no role in
injectivity. Let nc = 8, and the 2× 2 convolution kernels be given as

c1 =

[
3 −1
−1 −1

]
, c2 =

[
−1 3
−1 −1

]
, c3 =

[
−1 −1
3 −1

]
, c4 =

[
−1 −1
−1 3

]
c5 = −c1, c6 = −c2, c7 = −c3, c8 = −c4.

Directly proving that a 16384 × 100 dimension operator has a DSS w.r.t. every x ∈ R100

is daunting. However, since each layer of the operator is given by one of only 8 simple
convolutions, we can leverage Theorem 13 to significantly simplify the problem. Choosing
P = (2, 2), implies that P(2,2)(ck) = ck, and so W |P(2,2)

=
⋃8
k=1 ck. Further, it is easy to see,

that {c1, c2, c3, c4} is a basis for R2×2, so Corollary 6 applies, W |PP has a DSS of R4, and
by Theorem 13, ReLU(Wx) is injective.

An example when a layer is injective but P in Theorem 13 must be greater than O is
when W is a convolution of 4 kernels of width 3

c1 =
[
1 0 −1

]
, c2 =

[
1 0 1

]
, c3 =

[
−1 0 1

]
, c4 =

[
−1 0 −1

]
.

If we choose P = (3), then W |P(3)
=
⋃4
k=1{ck}. only has four elements, and so cannot

have a DSS of R3 w.r.t. every x ∈ R3 by Corollary 6. If we however choose P = (4), then
P(4)(ck) =

{[
ck 0

]
,
[
0 ck

]}
and W |P(4)

has a DSS of R4 w.r.t. all x ∈ R4 (from Corollary
6), so W has a DSS w.r.t. all x ∈ RN .

In order to prove Theorem 13, we must first prove Lemma 14, which we do here.

30

Globally Injective ReLU Networks

Proof For every k = 1, . . . ,K Wk|S(x,Wk) has a DSS of Ωk with respect to PΩk(x) where
PΩk is the orthogonal projection of Rn onto Ωk. For every wk,`,

〈wk,`, PΩk(x)〉 = 〈wk,`, x〉

thus S(x,Wk) ⊂ S(x,W). From Ωk ⊂ span(Wk|S(x,Wk)) for each k we have a set spanning
Ωk that lie in W |S(x,W), hence

Rn = span (Ω1, . . . ,ΩK) ⊂ span

(
K⋃
k=1

Nk⋃
`=1

{wk,`}

)
= span(W)

contains a DSS of Rn w.r.t. x. The set
⋃K
k=1{wk,`}

Nk
`=1 has no dependence on x, thus it is

true for all x ∈ Rn.

Lemma 25 Given a convolution operator C ∈ RN×N . Let 0 ≤ V be such that V +O ≤ N .
For each x ∈ C,

augV :V+O(x) ∈ C, where (augV :V+O(x))J =

{
(x)J−V if 1 + V ≤ J ≤ V +O

0 otherwise
.

Note that (augV :V+O(x))J restricted to the indices 1 + V through V + P is exactly x.

The above is always well defined, as cH−T+O+1 is well defined iff 1 ≤ H − T +O+ 1 ≤ O
(recall that the kernel c is of width O), and so

1 ≤ H − T +O + 1 ≤ O ⇐⇒ −O ≤ H − T ≤ −1 ⇐⇒ 1 ≤ T −H ≤ O

Now we proceed with the proof of Theorem 13.
Proof [Proof of Theorem 13] The strategy for this proof will be to use Lemma 14 by
decomposing Rn into some number of different domains {Ωv}nvv=1, each of which are a
restriction of Rn to P non-zero components. For each Ωv, the elements of W that lie in Ωv

can be identified as the elements in W |PP . If for one v the components of W |PP form a DSS
of Ωv w.r.t. every x ∈ Ωv, then it has a DSS for every such Ωk, so we can apply Lemma 14
and get that W has a DSS of Rn w.r.t. all x ∈ Rn.

Given an offset V ′ ≥ 0 such that V ′ + P ≤ N , define ΩV ′ as the subspace of all vectors
x ∈ RN such that

ΩV ′ =
{
x ∈ RN : xJ = 0 if 1 + V ′ 6≤ J or J 6≤ V ′ + P

}
.

From Lemma 25, for any k = 1, . . . , nv, if xk,P ∈ PP (ck), Ck is a submatrix of W and

augV ′:V ′+P (xk,P) ∈ Ck.

Further, for any such xk,P ,

augV ′:V ′+P (xk,P) ∈ ΩV ′ .

31

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

If W |PP contains a DSS of RP w.r.t. all x ∈ RP , then

augV ′:V ′+P (W |PP) contains a DSS of ΩV ′ w.r.t. all x ∈ ΩV ′ . (17)

This follows from Lemma 14. From Lemma 25 for any V ′ such that

augV ′:V ′+P (W |PP) ∈W, (18)

if W |PP has a DSS of RP w.r.t. all x ∈ RP , then W contains a DSS of ΩV ′ for all
0 ≤ V ′ ≤ N − P . Finally, note that span({ΩV ′}N−PV ′=0), and so using (17), (18) we can apply
Lemma 14 and find that W contains a DSS of RN w.r.t. all x ∈ RN .

For a multi-channel input (with nc channels) x ∈ RN × RN × · · · × RN︸ ︷︷ ︸
nc times

, a multi-channel

convolution C on x is given by Cx =
∑nc

q=1Cqxq where Co is a convolution on RN (defined by
Definition 10) and xo ∈ RN is the restriction of x to the o’th channel. Because of the additive
structure of multi-channel convolutions a nc over RN = RN1 × · · · ×RNp dimensional domain
of width O = (O1, . . . , Op) with kernels c1, . . . , cnc is equivalent to a single convolution of
width (O,nc) = (O1, . . . , Op, nc) over R(N,p) = RN1 × · · · × RNp × Rnc . This follows from

(Cx)J =

nc∑
q=1

(Cqxq)J =

nc∑
q=1

O∑
I=1

(cq)O−I−1(xq)J+I =

(O,q)∑
(I,nc)=1

c(O,nc)−(I,q)−1x(J,q)+(I,q).

Appendix B. Robustness to Layer, Instance and Group Normalization

As described in Section 2.5, layer, instance and group normalization take place during both
training and execution and, unlike weight and spectral normalization, the normalization is
done on the input/outputs of layers instead of on the weight matrices. For these normalizations
(1) is modified so that it becomes

N(z) = φL(WLML(· · ·φ2(W2M2(φ1(W1z + b1)) + b2) · · ·+ bL)) (19)

where M` : Rni+1 → Rni+1 are normalization functions that are many-to-one. In general
φ`(W`M`(·) + b`) will not be injective for any φ`,W`, b` on account of M`, but for all of the
mentioned normalization techniques we can get near injectivity. Before we descend into
the particular we make the following observation about normalization methods that obey a
certain structure.

Definition 26 (Scalar-Augmented Injective Normalization) Let M`(x) : Rn → Rn
be a normalization function that is understood to be many-to-one. We say that M`(x)
is scalar-augmented injective if there exists a function m`(x) : Rn → Rk where k � n and
M̃` : Rn × Rk → Rn such that

M`(x) := M̃`(x;m`(x))

and M̃`(x;m`(x)) is injective on x given m`(x).

32

Globally Injective ReLU Networks

An example of a normalization function that is scalar-augmented injective is

M`(x) =
x

‖x‖2
. (20)

For this choice of M`, k = 1, and

M̃`(x; c) =
x

c
m`(x) = ‖x‖2 .

With this definition, we can prove the following trivial but useful result

Lemma 27 (Restricted Injectivity of Scalar-Augmented Normalized Networks)
Let N be a deep network of the form in (19) and let each φ`(W`·) be layer-wise injective.
Let the normalization functions {M`}`=1,...,L each be scalar-augmented injective. Then given
{m`(x)}`=1,...,L, the network

Ñ(z;m1, . . . ,m`) = φL(WLM̃L(· · ·φ2(W2M̃2(φ1(W1z + b1);m2) + b2) · · ·+ bL;mL))

is injective.

Proof The proof of Lemma 27 follows from a straightforward application of induction,
combined with Definition 26.

Remark 28 Note that Lemma 27 implies that for a fixed {m`(x)}`=1,...,L, there is at most
one value of z such that

Ñ(z;m1, . . . ,m`) = N(z), (21)

where N(z) is given by (19), and that the z’s on both sides of (21) are the same. It is still
entirely possible that there are is another choice of z′, {m`(x)}`=1,...,L such that

Ñ(z;m1, . . . ,m`) = Ñ(z′;m′1, . . . ,m
′
`).

An example of this would be if M` is of the form in (20), then

M̃`(x;m`(x)) = M̃`(2x; 2m`(x)).

In other words, Lemma 27 implies that the deep network is injective (in z) for a fixed
{m`(x)}`=1,...,L, but it may still not be injective for all z and {m`(x)}`=1,...,L.

With Lemma 27 in tow, we can show that layer, instance, and group normalization are
all scalar-augmented injective normalizations, so Lemma 27 applies and yields a kind of
injectivity. Layer, instance and group normalization are all related insofar as they can all be
expressed in the same abstract form. For a given input x, all three break x up into K parts
denoted {x|Sk}k=1,...,K such that for each k = 1, . . . ,K

µk =
1

m

m∑
i=1

(x|Sk)i σ2
k =

1

m

m∑
i=1

((x|Sk)i − µk)2

(x̂|Sk)i =
(x|Sk)i − µk√

σ2
k + ε

M(x)|Si = γk(x̂|Sk)i + βk.

33

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

The differences between the three normalization are how {Sk}k=1,...,K is chosen. For layer
normalization K = 1 and the normalization is applied to the entire input signal. For instance
normalization, there is one Sk for each channel, and the x|Sk restricts x to just one channel
of inputs, that is the normalization is done channel-wise. Group normalization is part way
between these two, where k is less than the number of channels, and channels are batched
together.

In any case, for any of these normalization methods, they are all scalar-augmented
injective normalization where

M`(x) = M̃`(x; {σk,`, µk,`}k=1,...,K).

Thus, by Lemma 27 their corresponding deep networks are all injective, provided that for
each `, {σk,`, µk,`}k=1,...,K is saved.

B.1 Pooling Operations

Although pooling may have a different aim than typical normalization, we consider it in
this section, as it is mathematically similar to (19). Pooling is similar to layer, instance and
group normalization in the sense that they partition the input space into K disjoint pieces,
and then output a weighted average upon each piece. Specifically, if Mp(x) : Rn → RK where
for k = 1, . . . ,K,

Mp(x)|Sk = ‖x|Sk‖p
where ‖·‖p is the discrete p norm of x restricted to the set Sk. For p = 1 this is the mean of
the absolute value, for p = 2 this is the Euclidean mean and for p =∞ it is the maximum
of the absolute value. The injectivity of this operation in the cases where p = 1, 2,∞ is
considered in the work Bruna et al. (2013).

Appendix C. Proofs of Theorem 15

Before we present the proof of Theorem 15, we present the following stand-alone lemma which
is used during the proof of Theorem 15. This lemma shows that, generically, an injective
piecewise-affine neural network followed by an orthogonal projector is still injective, provided
that the orthogonal projector projects onto a space of sufficient dimension.

Let V(k,D) denote the set of k-tuples (v1, v2, . . . , vk) where vj are orthonormal vectors
in RD. Such vectors span a k-dimensional linear space. Furthermore, let G(k,D) denote the
set of k-dimensional linear subspaces of RD, and for V ∈ G(k,D), V = span(v1, v2, . . . , vk),
let PV = P(v1,v2,...,vk) : RD → RD be an orthogonal projection which image is the space V .
As the dimension of the orthogonal group O(k) is k(k − 1)/2 and by Milnor and Stasheff
(1974), the set G(k,D), called the Grassmannian, is a smooth algebraic variety, of dimension
k(D − k) and the dimension of V(k,D) is k(D − k) + k(k − 1)/2 = k(2D − k − 1)/2. When
V,W ∈ G(k,D) are two k-dimensional linear subspaces of RD, we define their distance in
G(k,D) to be the operator norm

dG(k,D)(V,W) = ‖PV − PW ‖ (22)

where PV and PW are orthogonal projections in RD onto V and W , respectively, see (p. 49
Mattila, 1995).

34

Globally Injective ReLU Networks

Lemma 29 Let Hθ ∈ NN (n,D), D > m ≥ 2n + 1 be a neural network such that Hθ :
Rn → RD is injective. Let Xθ = {V ∈ G(m,D) : PV ◦Hθ : Rn → RD is injective}. Then
the set Xθ is an intersection of countably many open and dense subsets of G(m,D), that is,
elements of Xθ are generic. Moreover, the m(D −m) dimensional Hausdorff measure of the
complement of Xθ in G(m,D) is zero.

Note that for V ∈ Xθ, we have PV ◦Hθ ∈ NN (n,D).
Proof We use that fact that Hθ : Rn → RD is injective and locally Lipschitz-smooth. Recall
that f : Rn → Rm is locally Lipschitz if for any compact set C ⊂ Rn there is LC > 0 such
that ‖f(x)− f(y)‖2,m ≤ LC ‖x− y‖2,n for all x, y ∈ C.

Let v ∈ Rm be a unit vector and let Qv : RD → RD be the projection Qv(z) = z− (z ·v)v.
Let

P = {(x, y) ∈ Rn × Rn : x 6= y}.

As Hθ : Rn → RD is an injection, we can define SD−1 = {w ∈ RD : ‖w‖2,D = 1} and the
map

sθ : P→ SD−1, sθ(x, y) =
Hθ(x)−Hθ(y)

‖Hθ(x)−Hθ(y)‖2,D
. (23)

Observe that sθ(P) == {sθ(x, y) : (x, y) ∈ P} = −sθ(P) = {−sθ(x, y) : (x, y) ∈ P}.
As observed in the proof of the Whitney’s embedding theorem (Chapter 2, Theorem

3.5 Hirsch, 2012), the map Qw ◦ Hθ : Rn → RD is an injection when w 6∈ sθ(P). To see
this, assume that w ∈ SD−1 satisfies w 6∈ sθ(P), that is, w is not in the image of sθ. Then,
if there are x, y ∈ Rn, x 6= y such that QwHθ(x) = QwHθ(y), we see that there is t ∈ R
such that Hθ(x)−Hθ(y) = tw. By changing the roles of x and y, in needed, without loss of
generality we may assume that t ≥ 0. As w is a unit vector and Hθ(x) 6= Hθ(y), this yields
t = ‖Hθ(x)−Hθ(y)‖2,D 6= 0 and

w = (Hθ(x)−Hθ(y))/t = (Hθ(x)−Hθ(y))/‖Hθ(x)−Hθ(y)‖2,D = sθ(x, y),

which is in contradiction with the assumption that w 6∈ sθ(P). Hence, w 6∈ sθ(P) yields that
Qw ◦Hθ : Rn → RD is an injection.

We consider the image sθ(P) ⊂ SD−1. For h > 0, let

Ph = {(x, y) ∈ Bn
(0, h−1)×Bn

(0, h−1) : ‖Hθ(x)−Hθ(y)‖2,D ≥ h}.

As Hθ : B
n
(0, h−1)→ Rm is Lipschitz-smooth with some Lipschitz constant Lh, we see that

the map sθ : Ph → SD−1 is Lipschitz-smooth. Since the set P has the Hausdorff dimension
2n and the map sθ : Ph → SD−1 is Lipschitz-smooth, the Hausdorff dimension of the set
sθ(Ph) is at most 2n, see for example Morgan (p. 26 2016). The set P is the union of all
sets Phj , where hj = 1/j and j ∈ Z. By Mattila (p. 59 1995) the Hausdorff dimension of a
countable union of sets Sj is the supremum of the Hausdorff dimension of the sets Sj . Hence
sθ(P) =

⋃∞
j=1 sθ(Phj) has the Hausdorff dimension less or equal 2n.

Since the dimension D − 1 of SD−1 is strictly larger than 2n, we see that the set sθ(Phj)
is closed, its complement is an open and dense set, and thus the set Y1(θ) := SD−1 \ sθ(P) is
an intersection of countably many open and dense sets.

35

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Observe that as Qw1 is a linear map, the map Qw1 ◦Hθ is also a neural network that
belongs in NN (n,D), and we can denote Qw1 ◦Hθ = Hθ1 with some parameters θ1. Thus we
can repeat the above arguments using the map Qw1◦Hθ : Rn → span(w1)⊥ ≡ RD−1 instead of
Hθ : Rn → RD. Repeating the above arguments D−m times, can choose orthonormal vectors
wj ∈ SD−1, j = 1, 2, . . . , D − m, and sets Yj(θ, w1, . . . , wj−1) ⊂ SD−1 ∩ (w1, . . . , wj−1)⊥,
which D− j dimensional Hausdorff measures vanish and which complements are intersections
of countably many open and dense sets. Let Bθ to be the set of all n-tuples (w1, . . . , wD−m)
where w1 ∈ Y1(θ) and wj ∈ Y2(θ, w1, . . . , wj−1) for all j = 2, . . . , D −m. Note that all such
vectors wj , j = 1, 2, . . . , D −m are orthogonal vectors spanning a D −m dimensional vector
space V , and the map

PV ◦Hθ : Rn → RD, where PV = QwD−m ◦ · · · ◦Qw2 ◦Qw1

is injective. By the above, construction the (D− (m+1)/2)m dimensional Hausdorff measure
of the complement of Bθ in V(D,m) is zero and Bθ is generic set. As the dimension of the set
of the orthogonal basis in a m-dimensional vector space is (m−1)m/2, we obtain the claim.

Now that this lemma is established, we proceed to the proof of Theorem 15.
Our proof is divided into two parts. First we prove the universality part (the statement

that an Nθ exists), and then show that we can make a small perturbation to the Nθ to obtain
N ′θ′ , with the prescribed inverse Lipschitz Constant.

To prove the universality result, we combine the approximation results for neural networks
and the low regularity version of the generic orthogonal projector technique used to prove
the easy version of the Whitney’s embedding theorem (Hirsch, 2012, Chapter 2, Theorem
3.5) that shows that a C2-smooth manifold of dimension n can be embedded in R2n+1

with an injective, C2-smooth map. To prove the result, we first approximate f(x) by a
ReLU-type neural network that is only Lipschitz-smooth, so the graph of the map Fθ is only
a Lipschitz-manifold. We note that limited regularity often causes significant difficulties for
embedding results, as for example for the Lipschitz-smooth manifolds it is presently known
only that a n-dimensional manifold can be embedded (without preserving distances) in the
Euclidean space RN of dimension N = (n+ 1)2, and the classical Whitney problem, whether
a n-dimensional manifold can be embedded in R2n+1, is still open Luukkainen and Väisälä
(1977); Cobzaş et al. (2019). Due to this lack of smoothness, we recall the details how this
generic projector technique works.
Proof [Proof of Theorem 15, universality result] Let ε > 0 and C ⊂ Rn be a compact set.
As a continuous function f : Rn → Rn can be uniformly approximated in a compact set by
a C∞-smooth function (see for example Thm. 2.29 Adams, 1975), we can without loss of
generality assume that f smooth and therefore a locally Lipschitz function.

By classical results of approximation theory for shallow neural networks, see Hornik
(1991); Leshno et al. (1993); Pinkus (1999), for any L ≥ 1 there are n and a neural network
Fθ ∈ NN (n,m,L,n) such that

‖f(x)− Fθ(x)‖2,m ≤
1

2
ε1, for all x ∈ C. (24)

36

Globally Injective ReLU Networks

We note that by using recent results for deep neural networks, for example by Yarotsky
(2017), one can obtain efficient estimates on how a given accuracy ε1 can be obtained using
sufficiently large L and n. Our aim is the perturb Fθ : Rn → Rm so that it becomes injective.

We assume that C ⊂ Bn(0, r1), where Bn(0, r1) ⊂ Rn is an open ball having centre 0 and
radius r1 > 0. We denote the closure of this ball by Bn

(0, r1).
Let D = m+ n, α > 0, and define a map Hθ : Rn → Rm+n,

Hθ(x) = (αx, Fθ(x)) ∈ Rn × Rm = RD. (25)

Observe that the map Hθ : Rn → RD is injective.
Now we continue with the proof Theorem 15 universality result. Let V0 = {(0, 0, . . . , 0)}×

Rm ⊂ RD. By Lemma 29, the complement of the set Xθ in the manifold G(m,D) has measure
zero and thus it does not contain any open subset of the manifold G(m,D). Thus for any
ε0 > 0 there is V ∈ Xθ such that dG(m,D)(V, V0) < ε0, see (22). Below, we use

ε0 = min

(
1

16
(
1 + α+ ‖Fθ‖C(C)

)ε1,
1

2

)
.

As them-dimensional vector space V satisfies V ∈ Xθ, the map PV ◦Hθ is injective. Moreover,

‖(PV − PV0) ◦Hθ‖C(C) ≤ ‖PV − PV0‖ · ‖Hθ‖C(C) <
1

4
ε1.

Moreover, as ‖PV −PV0‖ < 1, it is show in Kato (1995), Section I.4.6, that there is orthogonal
matrix RV ∈ O(D) maps the subspace V onto the subspace V0. The matrix RV is obtained
by considering the matrices PV and PV0 as linear operators in the complex vector space CD.
Then PV and PV0 are orthogonal projectors in CD onto the (complixified) linear subspaces
V̂ = CV and V̂0 = CV0. Then, following Kato (1995), Section I.4.6, formula (4.38), one
defines the operators A,B : CD → CD by setting A = (PV − PV0)2 and

B =

(
Id− (PV + PV0)(PV0 − PV)

)
(Id−A)−1/2, (Id−A)−1/2 =

∞∑
n=0

(
−1

2

n

)
An,

where Id is the identity function and the series converges as ‖A‖ ≤ ε2
0 <

1
4 . It is shown in

Kato (1995), Section I.4.6, formula (4.2) that the map B satisfies PV0 = BPVB
−1 and hence

V̂0 = Ran(PV0) = B(Ran(PV)) = B(V̂). Moreover, by Kato (1995), Section I.6.8, it holds
that B−1 = B∗. As ‖A‖ ≤ ε2

0, we see that

‖Id−B‖ ≤ 2ε0

(∞∑
n=0

(
−1

2

n

)
‖A‖n

)
+

(∞∑
n=1

(
−1

2

n

)
‖A‖n

)
≤ 2ε0

1

1− ε2
0

+
ε2

0

1− ε2
0

≤ 4ε0.

Let RV : RD → RD be the restriction of B in RD. Then the operator RV ∈ O(D) and
RV maps the subspace V = RD ∩ V̂ onto the subspace V0 = RD ∩ V̂0. Moreover, it satisfies

‖RV − Id‖RD→RD = ‖B − Id‖CD→CD <
1

4(1 + α+ ‖Fθ‖C(C))
ε1.

37

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Let π0 : RD → Rm be the map π0(y′, y′′) = y′′ be the projection to the last m coordinates.
Then

‖RV ◦ PV ◦Hθ − PV ◦Hθ‖C(C) <
1

4
ε1, π0 ◦Hθ = Fθ

This and (24) imply that the result of the first half of Theorem 15 applies to the neural
network Nθ = π0 ◦RV ◦ PV ◦Hθ : Rn → Rm.

Now we prove the latter half of Theorem 15, the construction of the N ′θ′ with the
prescribed inverse Lipschitz constant.

Lemma 30 Assume that D1 ≥ 2n + 2 and n ≥ 1. Let v1 ∈ SD1−1, Rn =
⋃J
j=1Bj, where

Bj are open disjoint sets and let Hθ : Rn → RD1 be a continuous map whose restriction to
the sets Bj are affine maps, that is Hθ|Bj (x) = Wjx+ bj. Further, let δ, ρ ∈ R be such that
0 < 8ρ ≤ δ < π, then there exists c0 ∈ (0, 1) such that if

c0
1

J2/(D1−(2n+1))
δ ≤ ρ

then there exists w ∈ SD1−1 such that

dist(w, v1) < δ, dist(w, sθ(P)) ≥ ρ,

where the distances are measured in RD1. In other words, there exists a w that is a slight
perturbation of v and is at least ρ away from sθ(P).

Proof First, we decribe our proof technique in words. We show Lemma 30 by using sphere
packing arguments (Schneider, 2015) by bounding the size of various the manifolds Ljk
(defined in Equation 26), which denote directions that we need to stay away from. We bound
the size above by considering overlapping spheres, and then below by non-overlapping spheres
of half of the radius. By showing that the size of sθ(P) ⊂

⋃
jk Ljk is ‘small enough,’ there is

always room to find a w suitable for the lemma that avoids being too close to sθ(P).
We write

sθ(x, y) = P (rθ(x, y))

where P (z) = z/ ‖z‖D1
, P : RD1 → SD1−1 and

rθ : P→ RD1 , rθ(x, y) = Hθ(x)−Hθ(y).

Observe that as Hθ is a piecewise affine map, so is also rθ. By our assumptions,

P =

J⋃
j,k=1

(Bj ×Bk) ∩ P

and rθ is affine in all sets (Bj ×Bk) ∩ P. Let Djk be linear space that is spanned by the set

{Wjy −Wky
′ + bj − bk : y, y′ ∈ Rn, t ∈ R}, j, k = 1, 2, . . . , J.

38

Globally Injective ReLU Networks

Note that the dimension Djk is at most 2n+ 1. To simplify the notations below, we consider
linear subspaces Tjk ⊂ RD1 that have dimension 2n + 1 and satisfy Djk ⊂ Tjk. Then for
all j and k the sets rθ((Bj × Bk) ∩ P) and sθ((Bj × Bk) ∩ P) = P (rθ((Bj × Bk) ∩ P)) are
subsets of Tjk. Let

Ljk = Tjk ∩ SD1−1. (26)

Note that sθ(P) ⊂
⋃
jk Ljk. Observe also that as Ljk is the intersection of a linear subspace

Tjk ⊂ RD1 of dimension 2n+ 1 and the unit sphere, we have that the dimension of Ljk is
2n+ 1− 1 = 2n. We recall that D1 ≥ 2n+ 2. Then dimension of Ljk is 2n < D1 − 1.

Next we estimate the maximal distance of point, in a metric δ-ball of the sphere SD1−1,
to the union of the sets Ljk.

Let ρ̃ = 1
8ρ and Bδ = BSD1−1(v1, δ) be a metric ball of radius δ centred at v1 on the

sphere SD1−1 ⊂ RD1 . Let ξi, i = 1, 2, . . . ,K be a maximal ρ̃-separated subset of Bδ. Then
we see that ρ̃-balls BSD1−1(ξi, ρ̃) cover the set Bδ, that is

Bδ ⊂
K⋃
i=1

BSD1−1(ξi, ρ̃).

Thus the sum of the (D1 − 1)-volumes of the balls BSD1−1(ξi, ρ̃) is larger or equal to
the volume of the ball Bδ. Using the comparision estimates for manifolds with a bounded
sectional curvature (Ch. 6, Cor. 2.4 Petersen et al., 2006), we see that if c3 = sin(1) then
cD1−1

3 δD1−1 ≤ Kρ̃D1−1, that is

K ≥ cD1−1
3

(
δ

ρ̃

)D1−1

. (27)

In other words, a maximal ρ̃-separated set in Bδ contains at least cD1−1
3 (δ/ρ̃)D1−1 points.

On the other hand, we see that ρ̃/2-balls BSD1−1(ξi, ρ̃/2) are disjoint subsets of the ball
BSD1−1(v1, 2δ) of radius 2δ. Thus the sum of volumes of the balls BSD1−1(ξi, ρ̃/2) is smaller
or equal to the volume of BSD1−1(v1, 2δ). Again by using (Ch. 6, Cor. 2.4 Petersen et al.,
2006), we see that, when we denote c4 = 4c−1

3 ≥ 1, we have

K ≤ cD1−1
4

(
δ

ρ̃

)D1−1

. (28)

In other words, a maximal ρ̃-separated set in Bδ contains at most cD1−1
4 (δ/ρ̃)D1−1 points.

Next, for any j, k = 1, 2, . . . , J , let {xjkp : p = 1, . . . ,Kjk}, consisting of Kjk points, be a
maximal ρ̃/2 separated subset set in Ljk. Recall that Ljk = Tjk ∩ SD1−1 and that Tjk are
linear spaces of dimension 2n+ 1. Thus Ljk are isometric to the 2n dimensional sphere S2n.
By the above considerations in (28), we have that

Kjk ≤ c2n
4 (2δ/ρ̃)2n, j, k = 1, 2, . . . , J. (29)

Next we show that if

ρ̃ <
1

8
c0

1

J2/(D1−(2n+1))
δ,

39

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

then the ρ̃/2-neighborhood of the set
⋃J
j,k=1 Ljk does not contain the set Bδ. To show this,

assume the opposite that the ρ̃/2-neighborhood of the set
⋃J
j,k=1 Ljk contains the set Bδ.

Then the ρ̃-neighborhood of the set Y =
⋃J
j,k=1{x

jk
p : p = 1, . . . ,Kjk} contains the set Bδ,

and hence the set Y contains a maximal 2ρ̃-separated subset of Bδ. Let Y1 denote this set.
Let K be the number of the points in the set Y1.

From Equation 27 we have cD1−1
3 (δ/ρ̃)D1−1 ≤ K. From Y1 ⊂ Y we have K ≤

∑J
j,k=1Kjk.

From Equation 29 we have
∑J

j,k=1Kjk ≤ J2c2n
4 (2δ/ρ̃)2n, this in total we have

cD1−1
3 (δ/ρ̃)D1−1 ≤ J2c2n

4 (2δ/ρ̃)2n

or equivalently,

cD1
3 (δ/ρ̃)D1−(2n+1) ≤ J2(2c4)2n,

or equivalently,

ρ̃ ≥ c
(D1−1)/(D1−(2n+1))
3

(2c4)2n/(D1−(2n+1))

1

J2/(D1−(2n+1))
δ.

And so

ρ̃ ≥ c0
1

J2/(D1−(2n+1))
δ, c0 =

c
(D1−1)/(D1−(2n+1))
3

(2c4)2n/(D1−(2n+1))
.

Summarizing, the above shows that if

ρ < c0
1

J2/(D1−(2n+1))
δ,

so that also ρ̃ ≤ ρ < c0
1

J2/(D1−(2n+1)) δ, then there exists w ∈ Bδ such that w is not in the
ρ̃/2-neighborhood of the set

⋃J
j,k=1 Ljk in SD1−1. As

⋃J
j,k=1 Ljk contains the sets sθ(P) and

for w1, w2 ∈ Bδ ⊂ SD1−1 ⊂ RD1 ,

‖w1 − w2‖RD1 ≤ distSD1−1(w1, w2) ≤ 4‖w1 − w2‖RD1 ,

the claim follows.

Next we apply that above lemma to obtain inverse Lipschitz estimates for the map
Qw ◦Hθ.

Lemma 31 Let Hθ : Rn → RD satisfy ‖Hθ(x)−Hθ(y)‖2,D ≥ α ‖x− y‖2,n and assume that
w ∈ SD−1 satisfies dist(w, sθ(P)) ≥ ρ. Then

‖QwHθ(x)−QwHθ(y)‖2,D ≥
1√
2
ρα ‖x− y‖2,n .

40

Globally Injective ReLU Networks

Proof Assume that w ∈ SD−1 satisfies

distRD(w, sθ(P)) ≥ ρ.

Let β ≥ 1√
2
ρα. Let x, y ∈ Rn, x 6= y and

v = QwHθ(x)−QwHθ(y) ∈ RD.

Note that ‖v‖2,D < β ‖x− y‖2,n. Then, we see that there is t ∈ R

Hθ(x)−Hθ(y) = tw + v.

Let r = ‖Hθ(x)−Hθ(y)‖2,D 6= 0. Again, by changing roles of x and y, if needed, we can
assume that t ≥ 0. Note that w ⊥ v.

The above yields

t

r
w = (Hθ(x)−Hθ(y)− v)/r = sθ(x, y)− v

r
.

Then,
t

r
w +

v

r
= s := sθ(x, y) ∈ sθ(P).

Assume first that 〈s, w〉 ≥ 0. Then, as w and s are unit vectors, we have for any b ∈ R

‖s− bw‖22,D ≥ ‖s− 〈s, w〉w‖
2
2,D = ‖s‖22,D − 2〈s, 〈s, w〉w〉+ 〈s, w〉2 = 1− 〈s, w〉2

and as 0 ≤ 〈s, w〉 ≤ 1,

‖s− w‖22,D = ‖s‖22,D − 2〈s, w〉+ ‖w‖22,D = 2(1− 〈s, w〉) ≤ 2(1− 〈s, w〉2)

and hence ‖s− w‖22,D ≤ 2 infb∈R ‖s− bw‖22,D . Thus,

‖w − s‖2,D ≤
√

2 inf
b∈R
‖s− bw‖2,D ≤

√
2

∥∥∥∥s− t

r
w

∥∥∥∥
2,D

=
√

2
∥∥∥v
r

∥∥∥
2,D

.

Hence

ρ ≤ dist(w, sθ(P)) (30)

≤
√

2
∥∥∥v
r

∥∥∥
2,D

≤
√

2

r
β ‖x− y‖2,n .

Recall that by our assumptions in the claim

‖Hθ(x)−Hθ(y)‖2,D ≥ α ‖x− y‖2,n

Hence, by (30),

ρ <

√
2

r
β ‖x− y‖2,n ≤

√
2

α ‖x− y‖2,n
β ‖x− y‖2,n =

√
2β

α
.

41

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

This shows that for all x, y ∈ Rn

‖QwHθ(x)−QwHθ(y)‖2,D ≥
1√
2
ρα ‖x− y‖2,n .

Next we apply Lemma 31 for the neural networks H(0)
θ = Hθ and

H
(j)
θ = Qwj ◦ · · · ◦Qw1Hθ : Rn → RD, j = 1, 2, . . . , n, D = n+m,

with suitably chosen orthogonal vectors wj . We choose these vectors using a recurrent
procedure: Let v1, . . . , vn+m be the unit coordinate vectors in Rn+m. Our initial choice of w1 is
arbitrary. Once the first w1, w2, . . . , wk−1 are chosen, we choose wk ∈ {w1, w2, . . . , wk−1}⊥ ⊂
RD. Next, we use the isomorphism

Ak : {w1, w2, . . . , wk−1}⊥ → RD−(k−1), A1 = I : RD → RD

where {w1, w2, . . . , wk−1}⊥ ⊂ RD. The map Ak is used to identify the linear space
{w1, w2, . . . , wk−1}⊥ ⊂ RD with a D − (k − 1) dimensional Euclidean space, and it can
be also considered as a map that gives coordinates in the space {w1, w2, . . . , wk−1}⊥. By ap-
plying Lemma 30 for the map Ak◦H

(k−1)
θ : Rn → RD−(k−1), that is a map from n dimensional

space to an Euclidean space of dimension dk−1 = D− (k− 1) ≥ n+ 2n+ 1− (n− 1) ≥ 2n+ 2.
In this, we use the values

ρk =
c0

2J2/((D−(k−1))−(2n+1))
δ =

c0

2J2/(m−n−k)
δ

and

αk =

(k∏
j=1

1√
2
ρj

)
α,

so that αk = (1√
2
ρk)αk−1 and α0 = α.

By replacing the vector v1 by Akvk, ρ by ρk, and α by αk+1, respectively, Lemma 30
implies that there is a vector w ∈ Sdk−1−1 such that

dist(w,Akvk) < δ, dist(w, sθ(P)) ≥ ρk, (31)

where distances are measured in Rdk−1 and sθ(P) is defined in formula (23) with Hθ replaced
by the neural network Ak ◦H

(k−1)
θ : Rn → Rdk−1 . We define wk = A−1

k w. Then by Lemma
31, H(k)

θ = Qwk ◦H
(k−1)
θ satisfies∥∥∥H(k)

θ (x)−H(k)
θ (y)

∥∥∥
2,D
≥ αk ‖x− y‖2,n . (32)

Observe that as Qwj are linear maps, the restrictions of all maps H(j)
θ are affine in the

the same sets B1, . . . , BJ . Then, apply map the vectors vn+m, . . . , vn+1, wn, . . . , w1 to the
vectors vn+m, . . . , v1. The above yields that∥∥∥H(n)

θ (x)−H(n)
θ (y)

∥∥∥
2,D
≥ a ‖x− y‖2,n , a = αn, C0 =

1

2
√

2
c0.

42

Globally Injective ReLU Networks

Moreover, we have

‖Hθ(x)‖2,D ≤ (CR + αR), CR = ‖Fθ‖C(B(R)),

and as ‖Qwj‖ ≤ 1, ∥∥∥H(j)
θ (x)

∥∥∥
2,D
≤ (CR + αR).

Moreover, for j = 1, 2, . . . , n we have∥∥∥H(j)
θ (x)−QvjH

(j−1)
θ (x)

∥∥∥
2,D
≤ ‖Qwj −Qvj‖

∥∥∥H(j−1)
θ (x)

∥∥∥
2,D

≤ 2 ‖wj − vj‖2,D
∥∥∥H(j−1)

θ (x)
∥∥∥

2,D
.

Let Rwn,...,w1,vn,...,v1 ∈ R(n+m)×(n+m) be an invertable matrix that maps the vectors
vn+m, vn+m−1, . . . , vn+1, wn, . . . , w1 to vn+m, vn+m−1, . . . , vn+1, vn, . . . , v1, respectively. We
recall that ‖wj − vj‖2,n < δ. For any x ∈ Rm+n, let x =

∑n
i=1 αivi +

∑m+n
i=n+1 αivi, then∥∥(R−1

wn,...,w1,vn,...,v1
− I
)
x
∥∥

2,D

=

∥∥∥∥∥
n∑
i=1

αi
(
R−1
wn...w1,vn...v1

vi − vi
)

+
m+n∑
i=n+1

αi
(
R−1
wn...w1,vn...v1

vi − vi
)∥∥∥∥∥

2,D

=

∥∥∥∥∥
n∑
i=1

αi (wi − vi)

∥∥∥∥∥
2,D

≤
n∑
i=1

‖αi (vi − wi)‖2,D

<
n∑
i=1

αiδ ≤ δ ‖x‖l1(Rm+n)

≤
√
m+ nδ ‖x‖2,D

where ‖x‖l1(Rm+n) denotes the discrete L1 norm of x in Rm+n. Further

‖Rwn,...,w1,vn,...,v1 − I‖2,D =
∥∥(I −R−1

wn,...,w1,vn,...,v1

)
Rwn,...,w1,vn,...,v1

∥∥
2,D

≤
∥∥R−1

wn,...,w1,vn,...,v1
− I
∥∥

2,D
‖Rwn,...,w1,vn,...,v1‖2,D

≤
√
m+ n

1−
√
m+ nδ

δ

where the last inequality comes from ‖Rwn,...,w1,vn,...,v1‖2,D
=
∥∥∥(I +

(
R−1
wn,...,w1,vn,...,v1

− I
))−1

∥∥∥
2,D

. Since Qvn . . . Qv1Hθ(x) = F̃θ(x) := (Fθ(x), 0, . . . , 0)

we see that ∥∥∥F̃θ(x)−H(n)
θ (x)

∥∥∥
2,m
≤ 2nδ(CR + αR).

Then,

fθ(x) = P0Rwn,...,w1,vn,...,v1H
(n)
θ (x) (33)

43

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

where P0 : Rm × Rn → Rm maps P0(x, z) = x. The above yields

‖fθ(x)− Fθ(x)‖2,m ≤ 2nδ(CR + αR) +

√
m+ n

1−
√
m+ nδ

δ(CR + αR)

=

(
2n+

√
m+ n

1−
√
m+ nδ

)
δ (CR + αR)

for x ∈ B(R).
Further, from ‖R‖2,D ≥

∥∥I +
(
R−1 − I

)∥∥
2,D

, the fact that Rwn,...,w1,vn,...,v1H
(n)
θ (x) be-

longs in the image of P0, and from (32) & (33) we have

‖fθ(x)− fθ(y)‖2,m ≥ a ‖x− y‖2,n , a =
αn

1 +
√
m+ nδ

≥ αn.

Above, using the definition Euler’s constant and the harmonic series, we see that there
are c6, c5 ∈ R+ such that

ln(m) + c6 ≤
m∑
j=1

1

j
≤ ln(m) + c7

and as ln(m+1)+c6− ln 2 ≤ ln(2m)+c6− ln 2 ≤ ln(m)+c6 and ln(m)+c7 ≤ ln(m+1)+c7,
we see that for C2 = 2(c7 + c6 + ln 2)

n∑
j=1

1

m− n− j
=

m−n−1∑
j=1

1

j
−
m−2n−1∑
j=1

1

j
≤ ln(m− n)− ln(m− 2n) + C2/2

and

a =
α

1 +
√
m+ nδ

CnD0 δnJ
−2(

∑n
j=1

1
m−n−j) ≥ αCn(n+m)

0 δnJ−2 ln((m−n)/(m−2n))−C2 .

We choose

ε2 =

(
2n+

√
m+ n

1−
√
m+ nδ

)
δ (CR + αR)

so that δ =
((

2n+
√
m+n

1−
√
m+nδ

)
(CR + αR)

)−1
ε2 and(

CD0(
2n+

√
m+ n

)
(CR + αR)

ε2

)n
J−2 ln((m−n)/(m−2n))−C2α

≤

 CD0(
2n+

√
m+n

1−
√
m+nδ

)
(CR + αR)

ε2

n

J−2 ln((m−n)/(m−2n))−C2α

≤ a.

When we use above α = 1 and C1 = C0/10, this yields the final part of Theorem 15.

44

Globally Injective ReLU Networks

Lemma 29 used in the above proof yields also Corollary 16.

Proof [Proof of Corollary 16] Observe that a measure µ that is absolutely continuous
with respect to the Lebesgue

∏k
j=1 Rd2j×d2j−1 is absolutely continuous also with respect

to the normalized Gaussian distribution, and that if the set S = {Fk is not injective} has
measure zero with respect to the normalized Gaussian distribution, then its µ-measure is
also zero. Thus we can assume without loss of generality that the elements of matrices Bj
are independent and have normalized Gaussian distributions.

Assume next that we have shown that Fj−1 : Rn → Rd2j−2 is injective almost surely.
Then, f (j)

θ ◦ Fj−1 : Rn → Rd2j−1 is injective almost surely. If d2j > d2j−1, the matrix Bj
is almost surely injective and so is Fj = Bj ◦ f (j)

θ ◦ Fj−1 : Rn → Rd2j . Thus, it is enough
to consider the case when d2j−1 ≥ d2j ≥ 2n + 1. Then the matrix Bj : Rd2j−1 → Rd2j

has almost surely rank d2j . By using the singular value decomposition, we can write
Bj = R1

jDjR
2
j where R

1
j ∈ O(d2j), R

2
j ∈ O(d2j−1), Dj ∈ Rd2j×d2j−1 is matrix which principal

diagonal elements are almost surely strictly positive and the other elements are zeros. Let
Vj = (R2

j)
−1(Rd2j × {(0, 0, . . . , 0)}) ⊂ Rd2j−1 . Let PVj be an orthogonal projector in Rd2j−1

onto the space Vj of dimension d2j . As the distribution of the matrix Bj is invariant in
rotations of the space, so is the distribution of linear space Vj in G(d2j−1, d2j). By Lemma
29, we see that the map PVj ◦ f

(j)
θ ◦ Fj−1 : Rn → Rd2j−1 is injective almost surely. This

implies that the map Bj ◦ f (j)
θ ◦ Fj−1 : Rn → Rd2j is injective almost surely, that is, the map

Fj : Rn → Rd2j is injective almost surely. The claim follows by induction.

In Baraniuk and Wakin (2009), see also Hegde et al. (2008); Iwen and Maggioni (2013),
and Broomhead and Kirby (2001, 2000), the authors study manifold learning using random
projectors. These results are related to the proof of the first, universal, half of Theorem
15 above. Let Hθ be given by (25), a ReLU-based neural network whose graph M ⊂ Rd,
d = 2n+m. When PV is a random projector in Rd onto a m-dimensional linear subspace V ,
the injectivity of the neural network PV ◦Hθ is closely related to the property that PV (M) is
an n-dimensional submanifold with a large probability. In Broomhead and Kirby (2001, 2000)
the authors use Whitney embedding results for C2-smooth manifold for dimension reduction
of data. Our proof applies similar techniques for Lipschitz-smooth maps. In (Baraniuk and
Wakin, 2009), (Hegde et al., 2008), and (Iwen and Maggioni, 2013), the authors apply the
result that when M ⊂ RD is a submanifold and D is large enough, a random m-dimensional
projector PV satisfies on M the restricted isometry property with a large probability. In
this case, PV ◦Hθ is not only an injection but its inverse map is also a local Lipschitz map.
In this sense, the techniques in Baraniuk and Wakin (2009),Hegde et al. (2008), and Iwen
and Maggioni (2013) would give improved results to the generic projection technique used
in this paper. The results in Baraniuk and Wakin (2009), Hegde et al. (2008), and Iwen
and Maggioni (2013), however, require that the dimension m of image space of the map
f : Rn → Rm satisfies m ≥ C log(ε−1), where ε is the precision parameter in the inequality
(6). Our result, Theorem 15 requires only that m ≥ 2n+ 1.

45

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Appendix D. Miscellaneous Lemmas

Lemma 32 Let x, y, z ∈ R and z ≥ 0. Then

ReLU(x+ z) = ReLU(y + z) =⇒ ReLU(x) = ReLU(y).

Lemma 33 (Useful Inequalities) The following geometric inequalities are useful and have
straight forward proofs. Suppose that a, b, c ∈ Rn, then

1. For i = 1, . . . , k, let ai ∈ Rm. If

k∑
i=1

‖ai‖22 ≤

∥∥∥∥∥
k∑
i=1

ai

∥∥∥∥∥
2

2

,

then if for each j = 1, . . . ,m, ai|j · ai′ |j ≥ 0 for each pair i, i′ ∈ [[m]], then

k∑
i=1

‖ai‖2 ≤
√
k

∥∥∥∥∥
k∑
i=1

ai

∥∥∥∥∥
2

. (34)

2. If a, b ∈ Rn and 〈a, b〉 ≥ 0, then

‖a‖22 + ‖b‖22 ≤ ‖a+ b‖22 . (35)

Lemma 34 (Co-linear Additivity of ReLU(W ·)) LetW ∈ Rm×n, x1, x2 ∈ Rn, `x1,x2(t) =
(1− t)x1 + tx2. Let there be

0 = t1 ≤ t2 ≤ · · · ≤ tnt−1 ≤ tnt = 1

then
nt−1∑
k=1

∥∥ReLU(Wxtk)− ReLU(Wxtk+1
)
∥∥2

2
≤ ‖ReLU(Wx1)− ReLU(Wx2)‖22 . (36)

and
nt−1∑
k=1

∥∥ReLU(Wxtk)− ReLU(Wxtk+1
)
∥∥

2
≤
√
nt ‖ReLU(Wx1)− ReLU(Wx2)‖2 . (37)

Proof Let xt = `x1,x2(t), then as a function of t, the j’th component of ReLU(Wxt) is
either increasing (if 〈wj , x2 − x1〉 ≥ 0) or decreasing (if 〈wj , x2 − x1〉 ≤ 0). In either case, it
is clear that for each j = 1, . . . ,m

(ReLU(Wx1)− ReLU(Wx2))|j · (ReLU(Wx2)− ReLU(Wx3))|j ≥ 0

hence clearly

〈(ReLU(Wx1)− ReLU(Wx2)), (ReLU(Wx2)− ReLU(Wx3))〉 ≥ 0

thus we can apply (35) and we obtain (36). Applying (34) then yields (37).

46

Globally Injective ReLU Networks

Appendix E. Detailed Comparison to Prior Work

In this section we detail how our work is related to the works of Bruna et al. (2013) and
Mallat et al. (2018)

E.1 Comparison to Bruna et al. (2013)

In Bruna et al. (Proposition 2.2. 2013) the authors give a result invoking a condition similar
to our DSS condition (Definition 1). It also concerns injectivity of a ReLU layer in terms of
the injectivity of the weight matrix restricted to certain rows. The authors also compute a
bi-Lipschitz bound for a layer (similar to our Theorem 8), though as we show in the following
examples their analysis is in some cases not precisely aligned with injectivity.

Their criterion is given in two parts. For a weight matrix, they first define a notion
of admissible set which indicates the points where the weight matrix’s injectivity must be
tested. Injectivity follows provided that the weight matrix is non-singular when restricted
to each admissible set. Given a weight matrix W ∈ RM×N and bias b, the authors say that
Ω ⊂ {1, . . . ,M} is admissible if⋂

i∈Ω

{x : 〈x,wi〉 > bi} ∩
⋂
i 6∈Ω

{x : 〈x,wi〉 < bi} (38)

is not empty. For our analysis we focus on the case when b ≡ 0. In this case Ω is admissible
if and only if

∃x ∈ Rn such that 〈x,wi〉

{
> 0 if i ∈ Ω

< 0 if i 6∈ Ω
. (39)

Note that the inequality in (39) is strict, unlike (1). If, for example, W has a column that is
the zero vector, then there are no admissible Ω. The authors use the notation Ω to denote all
admissible sets for a given weight matrix. In their notation F is the transpose of our weight
matrix W , FΩ are the Ω rows of the weight matrix, FΩ|VΩ

is the subspace generated by the
Ω rows of W . The authors also call the ReLU function the half-rectification function. λ−(F)
and λ+(F) denote the lower and upper frame bounds of F respectively. The injectivity
criterion from Bruna et al. (2013) is

Proposition 35 Let A0 = minΩ∈Ω λ−(FΩ|VΩ
). Then the half-rectification operator Mb(x) =

ReLU(F Tx+ b) is injective if and only if A0 > 0. Moreover, it satisfies

∀x, x′, A0

∥∥x− x′∥∥ ≤ ∥∥Mb(x)−Mb(x
′)
∥∥ ≤ B0

∥∥x− x′∥∥
with B0 = maxΩ∈Ω λ+(FΩ) ≤ λ+(F).

We now show that Proposition 35 does not precisely align with injectivity of ReLU(W (·)).
We construct a weight matrix for which A0 > 0, but does not yield an injective ReLU(W (·)).
If

W =

 1 0
0 1
−1 0


47

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

then clearly ReLU(Wx) is not injective (for all α < 0,ReLU(W

[
0
α

]
) = 0). The only

admissible sets are Ω̄ = {{1}, {3}, {1, 2}, {2, 3}} (notably {2} is not admissible). W is full
rank on all Ω ∈ Ω̄, so A0 > 0 so Proposition 35 implies that ReLU(W (·)) is injective. Now
consider the case when

W =

 B
−DB

0

 (40)

where B is a basis of Rn, D is a strictly positive diagonal matrix, and 0 is the zero row vector.
From Corollary 6, W satisfies Theorem 2, and so ReLU(W (·)) is injective. On account of
the zero row vector in (40), ∀x ∈ Rn, 〈x, 0〉 = 0 so there are no Ω that are admissible Ω
according to (38). Thus A0 is undefined.

Now we construct an example of a W and x, x′ ∈ Rn for which
A0 ‖x− x′‖ > ‖ReLU(Wx)− ReLU(Wx′)‖. Let

W =


1 0
0 1
−1 0
0 −1

 , x =
1√
2

[
1
1

]
, x′ =

1√
2

[
−1
1

]
.

Clearly on every admissible set λ−(WΩ|VΩ
) = 1, so

ReLU(Wx) =
1√
2

ReLU




1
1
−1
−1


 =

1√
2


1
1
0
0

 ,

ReLU(Wx′) =
1√
2

ReLU



−1
1
1
−1


 =

1√
2


0
1
1
0

 ,
hence,

∥∥ReLU(Wx)− ReLU(Wx′)
∥∥ =

1√
2

∥∥∥∥∥∥∥∥


1
0
−1
0


∥∥∥∥∥∥∥∥ = 1

and ∥∥x− x′∥∥ =
1√
2

∥∥∥∥[20
]∥∥∥∥ =

√
2.

From this we have
√

2 = A0

∥∥x− x′∥∥ > ∥∥ReLU(Wx)− ReLU(Wx′)
∥∥ = 1.

On the other hand, substituting this into (3) yields
C√
m

∥∥x− x′∥∥ =
1√
8

√
2 =

1

2
≤ 1,

which does hold, suggesting that the lower bound in Proposition 1 is not pessimistic enough.

48

Globally Injective ReLU Networks

E.2 Relationship to Mallat et al. (2018)

In Mallat et al. (2018) the authors consider a construction analogous to our convolutional
construction (in Definition 11) defined on a continuum (that is infinite-dimensional function
defined on an interval) rather than on a vector (that is discrete finite dimensional function)
defined on a subset of Rn. The authors posit that CNNs first learn a layer of filters localized
in frequency varied in phase. The authors also show that a a ReLU activation function acts
as a filter on the phase of the convolution of the filters against the input signal and that,
provided that the filters are sufficiently different in phase and satisfy a frame condition then
the layer is bi-Lipschitz, and hence is injective. Their analysis a particularized version of
ours, and can be straight forwardly subsumed by our work.

The frame condition is given by Proposition 2.6 in Mallat et al. (2018) that the weight
matrix must satisfy in order ensure that W is invertible and stable. In the notation of Mallat
et al. (2018) the filters ψ̂λ are analogous to the Fourier transform of the kernels in Definition
10, and the condition in (2.25) in Mallat et al. (2018) is one natural way to generalize the
notion of a basis to a continuous signal. Hence, Proposition 2.6 in Mallat et al. (2018) can
be loosely interpreted as a statement that the kernels in a given layer of width P form a
basis of RP .

The second condition is that kernels are given in terms of belonging to a family, and
members of this family are related to each other in the sense that members of the same
family are centered in the same Fourier domain, and act as phase offsets of differing phase.
Equation 2.14 of Mallat et al. (2018) describes that a phase filter H : C × [0, 2, π] → C is
defined by

∀z ∈ C, α ∈ [0, 2π], Hz(α) = |z|h(α− ϕ(z))

where |z| standard modulus of a complex number, ϕ(z) is the complex phase, and h(α) =
ReLU(cos(α)). If we consider just the value of Hz(0) and Hz(π), then we find

Hz(0) =|z|ReLU(cos(ϕ(z))) = ReLU(|z| cos(ϕ(z))) = ReLU(Rz), (41)
Hz(π) =|z|ReLU(− cos(ϕ(z))) = ReLU(−|z| cos(ϕ(z))) = ReLU(−Rz), (42)

where Rz is the real part of z. If, as in Mallat et al. (2018), z is given by z = x ? ck, where x
is a real signal and ?ck denotes the convolution against a kernel ck, then (41) and (42) imply
that

Hz(0) = ReLU(x ? Rck),

Hz(π) = ReLU(x ? (−Rck)),

that is, that for every kernel ck in a layer, the kernel −ck is also in that layer.-
Combining the two logical conditions above implies that the kernels of width ck form

a basis of RP and that for every kernel ck there is also a kernel −ck. Together these two
(by Corollary 6) that the ck form a DSS of RP , and thus by Theorem 13 the entire layer is
injective.

49

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Appendix F. Architecture Details for Experiments

Generator network: We train a generator with 5 convolutional layers. The input latent
code is 256-dimensional which is treated by the network as a 1× 1× 256 size tensor. The
first layer is a transposed convolution with a kernel size of 4 × 4 with stride 1 and 1024
output channels. This is followed by a leaky ReLU. We follow this up by 3 conv layers
each of which halve the number of channels and double the image size (that is we go from
N/2×N/2×C to N ×N ×C/2 tensor) giving an expansivity of two, the minimum required
for injectivity of ReLU networks. Each of these 3 convolution layers has kernel size 3, stride
2 and is followed by the ReLU activation. These layers are made injective by having half the
filters as w and the other half as −s2w. Here, w and s are trainable parameters. The biases
in these layers are kept at zero. We do not employ any normalization schemes. Lastly, we
have a convolution layer at the end to get to 3 channels and required image size. This layer
is followed by the sigmoidal activation. We compare this to a regular GAN which has all the
same architectural components including nonlinearities except the filters are not chosen as w
and −s2w and we also allow biases. We found that our injective architecture was able to
achieve the same performance visually as a ‘off the shelf’ Bora et al. (2017) non-injective
counterpart.

Critic network: The discriminator has 5 convolution layers with 128, 256, 512, 1024 and
1 channels per layer. Each convolution layer has 4× 4 kernels with stride 2. Each layer is
followed by the leaky-ReLU activation function. The last layer of the network is followed by
identity.

Inference network: The inference network has the same architecture as the first 4
convolution layers of the discriminator. This is followed by 3 fully-connected layers of size
512, 256 and 256. The first 2 fully-connected layers have a Leaky ReLU activation while the
last layer has identity activation function. The inference net is trained in tandem with the
GAN.

We use the Wasserstein loss with gradient penalty (Gulrajani et al., 2017) to train our
networks. We train for 40 epochs on a data set of size 80000 samples. We use a batch size of
64 and Adam optimizer for training with learning rate of 10−4.

We report FID (Heusel et al., 2017) and Inception score (Salimans et al., 2016) using
10000 generated samples. The standard deviation was calculated using 5 sets of 10000
generated samples. In order to calculate the mean and covariance of generated distributions,
we sample 50000 codes.

References

Aviad Aberdam, Dror Simon, and Michael Elad. When and how can deep generative models
be inverted? arXiv preprint arXiv:2006.15555, 2020.

Robert A. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich,
Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.

Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W Pellegrini, Ralf S
Klessen, Lena Maier-Hein, Carsten Rother, and Ullrich Köthe. Analyzing inverse problems
with invertible neural networks. arXiv preprint arXiv:1808.04730, 2018.

50

Globally Injective ReLU Networks

Simon Arridge, Peter Maass, Ozan Öktem, and Carola-Bibiane Schönlieb. Solving inverse
problems using data-driven models. Acta Numerica, 28:1–174, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

Yu Bai, Tengyu Ma, and Andrej Risteski. Approximability of discriminators implies diversity
in gans. arXiv preprint arXiv:1806.10586, 2018.

Randall Balestriero, Sebastien Paris, and Richard Baraniuk. Max-affine spline insights into
deep generative networks. arXiv preprint arXiv:2002.11912, 2020.

Richard G. Baraniuk and Michael B. Wakin. Random projections of smooth manifolds.
Found. Comput. Math., 9(1):51–77, 2009. ISSN 1615-3375. doi: 10.1007/s10208-007-9011-z.
URL https://doi.org/10.1007/s10208-007-9011-z.

Alexander Barvinok. Math 710: Measure concentration. Lecture notes, 2005. URL http:
//www.math.lsa.umich.edu/~barvinok/total710.pdf.

Lucas Benigni and Sandrine Péché. Eigenvalue distribution of nonlinear models of random
matrices. arXiv preprint arXiv:1904.03090, 2019.

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using
generative models. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 537–546. JMLR. org, 2017.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Neural photo editing
with introspective adversarial networks. arXiv preprint arXiv:1609.07093, 2016.

D. S. Broomhead and M. Kirby. A new approach to dimensionality reduction: theory
and algorithms. SIAM J. Appl. Math., 60(6):2114–2142, 2000. ISSN 0036-1399. doi:
10.1137/S0036139998338583. URL https://doi.org/10.1137/S0036139998338583.

David S Broomhead and Michael J Kirby. The whitney reduction network: A method for
computing autoassociative graphs. Neural Computation, 13(11):2595–2616, 2001.

Joan Bruna, Arthur Szlam, and Yann LeCun. Signal recovery from pooling representations.
arXiv preprint arXiv:1311.4025, 2013.

Peter Bürgisser and Felipe Cucker. Condition: The geometry of numerical algorithms, volume
349. Springer Science & Business Media, 2013.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
Infogan: Interpretable representation learning by information maximizing generative
adversarial nets. In Advances in neural information processing systems, pages 2172–2180,
2016.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.
Parseval networks: Improving robustness to adversarial examples. arXiv preprint
arXiv:1704.08847, 2017.

51

https://doi.org/10.1007/s10208-007-9011-z
http://www.math.lsa.umich.edu/~barvinok/total710.pdf
http://www.math.lsa.umich.edu/~barvinok/total710.pdf
https://doi.org/10.1137/S0036139998338583

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

Ştefan Cobzaş, Radu Miculescu, and Adriana Nicolae. Lipschitz functions, volume 2241
of Lecture Notes in Mathematics. Springer, Cham, 2019. ISBN 978-3-030-16488-1;
978-3-030-16489-8. doi: 10.1007/978-3-030-16489-8. URL https://doi.org/10.1007/
978-3-030-16489-8.

Constantinos Daskalakis, Dhruv Rohatgi, and Manolis Zampetakis. Constant-expansion
suffices for compressed sensing with generative priors. arXiv preprint arXiv:2006.04237,
2020.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv
preprint arXiv:1605.09782, 2016.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Mar-
tin Arjovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint
arXiv:1606.00704, 2016.

Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing.
Birkhäuser Basel, 2013. ISBN 0817649476.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual
network: Backpropagation without storing activations. In Advances in neural information
processing systems, pages 2214–2224, 2017.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud.
Ffjord: Free-form continuous dynamics for scalable reversible generative models. arXiv
preprint arXiv:1810.01367, 2018.

Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Combining maximum likelihood
and adversarial learning in generative models. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In Advances in neural information processing systems,
pages 5767–5777, 2017.

Paul Hand and Vladislav Voroninski. Global guarantees for enforcing deep generative priors
by empirical risk. arXiv preprint arXiv:1705.07576, 2017.

Paul Hand, Oscar Leong, and Vlad Voroninski. Phase retrieval under a generative prior. In
Advances in Neural Information Processing Systems, pages 9136–9146, 2018.

Chinmay Hegde, Michael Wakin, and Richard Baraniuk. Random projections
for manifold learning. In J. C. Platt, D. Koller, Y. Singer, and S. T.
Roweis, editors, Advances in Neural Information Processing Systems 20, pages

52

https://doi.org/10.1007/978-3-030-16489-8
https://doi.org/10.1007/978-3-030-16489-8

Globally Injective ReLU Networks

641–648. Curran Associates, Inc., 2008. URL http://papers.nips.cc/paper/
3191-random-projections-for-manifold-learning.pdf.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium.
In Advances in neural information processing systems, pages 6626–6637, 2017.

Morris W Hirsch. Differential topology, volume 33. Springer Science & Business Media, 2012.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-
normalized models. In Advances in neural information processing systems, pages 1945–1953,
2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Mark A. Iwen and Mauro Maggioni. Approximation of points on low-dimensional manifolds
via random linear projections. Inf. Inference, 2(1):1–31, 2013. ISSN 2049-8764. doi:
10.1093/imaiai/iat001. URL https://doi.org/10.1093/imaiai/iat001.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4401–4410, 2019.

Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag,
Berlin, 1995. ISBN 3-540-58661-X. Reprint of the 1980 edition.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 con-
volutions. In Advances in Neural Information Processing Systems, pages 10215–10224,
2018.

Abhishek Kumar, Ben Poole, and Kevin Murphy. Regularized autoencoders via relaxed
injective probability flow. arXiv preprint arXiv:2002.08927, 2020.

Qi Lei, Ajil Jalal, Inderjit S Dhillon, and Alexandros G Dimakis. Inverting deep generative
models, one layer at a time. In Advances in Neural Information Processing Systems, pages
13910–13919, 2019.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural
networks, 6(6):861–867, 1993.

Zinan Lin, Kiran Koshy Thekumparampil, Giulia Fanti, and Sewoong Oh. Infogan-cr:
Disentangling generative adversarial networks with contrastive regularizers. arXiv preprint
arXiv:1906.06034, 2019.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), 12 2015.

53

http://papers.nips.cc/paper/3191-random-projections-for-manifold-learning.pdf
http://papers.nips.cc/paper/3191-random-projections-for-manifold-learning.pdf
https://doi.org/10.1093/imaiai/iat001

Puthawala, Kothari, Lassas, Dokmanić, and de Hoop

J. Luukkainen and J. Väisälä. Elements of Lipschitz topology. Ann. Acad. Sci. Fenn. Ser.
A I Math., 3(1):85–122, 1977. ISSN 0066-1953. doi: 10.5186/aasfm.1977.0315. URL
https://doi.org/10.5186/aasfm.1977.0315.

Stéphane Mallat, Sixin Zhang, and Gaspar Rochette. Phase harmonic correlations and
convolutional neural networks. arXiv preprint arXiv:1810.12136, 2018.

Morteza Mardani, Enhao Gong, Joseph Y Cheng, Shreyas S Vasanawala, Greg Zaharchuk,
Lei Xing, and John M Pauly. Deep generative adversarial neural networks for compressive
sensing mri. IEEE transactions on medical imaging, 38(1):167–179, 2018.

Pertti Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. ISBN
0-521-46576-1; 0-521-65595-1. doi: 10.1017/CBO9780511623813. URL https://doi.org/
10.1017/CBO9780511623813. Fractals and rectifiability.

John W. Milnor and James D. Stasheff. Characteristic classes. Princeton University Press,
Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies,
No. 76.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normal-
ization for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Frank Morgan. Geometric measure theory: a beginner’s guide. Academic press, 2016.

Amiya Mukherjee. Differential topology. Hindustan Book Agency, New Delhi;
Birkhäuser/Springer, Cham, second edition, 2015. ISBN 978-3-319-19044-0; 978-
3-319-19045-7. doi: 10.1007/978-3-319-19045-7. URL https://doi.org/10.1007/
978-3-319-19045-7.

Augustus Odena, Jacob Buckman, Catherine Olsson, Tom B Brown, Christopher Olah, Colin
Raffel, and Ian Goodfellow. Is generator conditioning causally related to gan performance?
arXiv preprint arXiv:1802.08768, 2018.

Jeffrey Pennington and Pratik Worah. Nonlinear random matrix theory for deep learning.
In Advances in Neural Information Processing Systems, pages 2637–2646, 2017.

Peter Petersen, S Axler, and KA Ribet. Riemannian geometry, volume 171. Springer, 2006.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica, 8:
143–195, 1999.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Advances in neural information processing
systems, pages 901–909, 2016.

54

https://doi.org/10.5186/aasfm.1977.0315
https://doi.org/10.1017/CBO9780511623813
https://doi.org/10.1017/CBO9780511623813
https://doi.org/10.1007/978-3-319-19045-7
https://doi.org/10.1007/978-3-319-19045-7

Globally Injective ReLU Networks

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing
systems, pages 2234–2242, 2016.

Rolf Schneider. Curvatures of typical convex bodies—the complete picture. Proceedings of
the American Mathematical Society, 143(1):387–393, 2015.

Stefan Scholtes. Homeomorphism conditions for coherently oriented piecewise affine mappings.
Mathematics of operations research, 21(4):955–978, 1996.

Viraj Shah and Chinmay Hegde. Solving linear inverse problems using gan priors: An
algorithm with provable guarantees. In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4609–4613. IEEE, 2018.

Richard P Stanley. Enumerative combinatorics volume 1 second edition. Cambridge studies
in advanced mathematics, 2011.

Andreas M Tillmann and Marc E Pfetsch. The computational complexity of the restricted
isometry property, the nullspace property, and related concepts in compressed sensing.
IEEE Transactions on Information Theory, 60(2):1248–1259, 2013.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The
missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

RO Winder. Partitions of n-space by hyperplanes. SIAM Journal on Applied Mathematics,
14(4):811–818, 1966.

Yan Wu, Mihaela Rosca, and Timothy Lillicrap. Deep compressed sensing. arXiv preprint
arXiv:1905.06723, 2019.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 3–19, 2018.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks,
94:103–114, 2017.

55

	Introduction
	Our Results
	Layerwise Results
	Multilayer Results

	Why Global Injectivity?
	Related Work
	Notation

	Layerwise Injectivity of ReLU Networks
	Directed Spanning Set
	Fully Connected Layer
	Inverse Lipschitz Constant for Networks
	Convolutional Layer
	Normalization During Runtime

	Universality and Expansivity of Deep Injective Networks
	Numerical Experiments
	Experiments Testing the Minimal Expansivity Threshold
	Injective GANs Improve Inference

	Conclusion
	Appendix
	Proofs from Subsection 2.2
	Proof of Theorem 7
	Upper Bound on Minimal Expansivity
	Lower Bound on Minimal Expansivity of Layers with Gaussian Weights

	Proof of Theorem 8
	Theorem 13

	Robustness to Layer, Instance and Group Normalization
	Pooling Operations

	Proofs of Theorem 15
	Miscellaneous Lemmas
	Detailed Comparison to Prior Work
	Comparison to Bruna et al. (2013)
	Relationship to Mallat et al. (2018)

	Architecture Details for Experiments

