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Abstract
We study active structure learning of Bayesian networks in an observational setting, in which
there are external limitations on the number of variable values that can be observed from
the same sample. Random samples are drawn from the joint distribution of the network
variables, and the algorithm iteratively selects which variables to observe in the next sample.
We propose a new active learning algorithm for this setting, that finds with a high probability
a structure with a score that is ε-close to the optimal score. We show that for a class of
distributions that we term stable, a sample complexity reduction of up to a factor of Ω̃(d3)
can be obtained, where d is the number of network variables. We further show that in the
worst case, the sample complexity of the active algorithm is guaranteed to be almost the
same as that of a naive baseline algorithm. To supplement the theoretical results, we report
experiments that compare the performance of the new active algorithm to the naive baseline
and demonstrate the sample complexity improvements. Code for the algorithm and for the
experiments is provided at https://github.com/noabdavid/activeBNSL.
Keywords: Active learning, sample complexity, Bayesian networks, graphical models,
combinatorial optimization.

1. Introduction

In this work, we study active structure learning of Bayesian networks in an observational
(that is, a non-interventional) setting, in which there are external limitations on the number
of variable values that can be observed from the same sample. Bayesian networks are a
popular modeling tool used in various applications, such as medical analysis (Haddawy et al.,
2018; Xu et al., 2018), human activity models (Liu et al., 2018) and engineering (Rovinelli
et al., 2018; Cai et al., 2019), among others. A Bayesian network is a graphical model that
encodes probabilistic relationships among random variables. The structure of a Bayesian
network is represented by a Directed Acyclic Graph (DAG) whose nodes are the random
variables, where the edge structure represents statistical dependency relations between the
variables. Structure learning of a Bayesian network (see, e.g., Koller and Friedman, 2009)
aims to find the structure (DAG) that best matches the joint distribution of given random
variables, using i.i.d. samples of the corresponding random vector. Structure learning is
used, for instance, for uncovering gene interaction (Friedman et al., 2000), cancer prediction
(Witteveen et al., 2018), and fault diagnosis (Cai et al., 2017).
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In the setting that we study, a limited number of variable measurements can be observed
from each random sample. The algorithm iteratively selects which of the variable values to
observe from the next random sample. This is of interest, for instance, when the random
vectors represent patients participating in a study, and each measured variable corresponds
to the results of some medical test. Patients would not agree to undergo many different
tests, thus the number of tests taken from each patient is restricted. Other examples include
obtaining a synchronized measurement from all sensors in a sensor network with a limited
bandwidth (Dasarathy et al., 2016), and recording neural activity with a limited recording
capacity (Soudry et al., 2013; Turaga et al., 2013). The goal is to find a good structure
based on the the restricted observations, using a small number of random samples. Learning
with limited observations from each sample was first studied in Ben-David and Dichterman
(1998) for binary classification, and has thereafter been studied for other settings, such as
online learning (Cesa-Bianchi et al., 2011; Hazan and Koren, 2012) and linear regression
(Kukliansky and Shamir, 2015). This work is the first to study limited observations in the
context of structure learning of Bayesian networks.

We study the active structure-learning problem in a score-based framework (Cooper and
Herskovits, 1992; Heckerman et al., 1995), in which each possible DAG has a score that
depends on the unknown distribution, and the goal is to find a DAG with a near-optimal
score. We propose a new active learning algorithm, ActiveBNSL, that finds with a high
probability a structure with a score that is ε-close to the optimal structure. We compare
the sample complexity of our algorithm to that of a naive algorithm, which observes every
possible subset of the variables the same number of times. We show that the improvement
in the sample complexity can be as large as a factor of Ω̃(d3), where d is the dimension of
the random vector. This improvement is obtained for a class of distributions that we define,
which we term stable distributions. We further show that in the worst case, the sample
complexity of the active algorithm is guaranteed to be almost the same as that of the naive
algorithm.

A main challenge in reducing the number of samples in this setting is the fact that
each structure usually has multiple equivalent structures with the same quality score.
ActiveBNSL overcomes this issue by taking equivalence classes into account directly. An
additional challenge that we address is characterizing distributions in which a significant
reduction in the sample complexity is possible. Our definition of stable distributions captures
such a family of distributions, in which there is a large number of variables with relationships
that are easy to identify, and a small number of variables whose relationships with other
variables are harder to identify.

Finding the optimal structure for a Bayesian network, even in the fully-observed setting,
is computationally hard (Chickering, 1996). Nonetheless, algorithms based on relaxed
linear programming are successfully used in practice (Cussens, 2011; Bartlett and Cussens,
2013, 2017). ActiveBNSL uses existing structure-search procedures as black boxes. This
makes it easy to implement a practical version of ActiveBNSL using existing software
packages. We implement ActiveBNSL and the naive baseline, and report experimental
results that demonstrate the sample complexity reduction on stable distributions. The code
for the algorithms and for the experiments is provided in https://github.com/noabdavid/
activeBNSL.
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Paper structure We discuss related work in Section 2. The setting and notation are
defined in Section 3. In Section 4, a naive baseline algorithm is presented and analyzed.
The proposed active algorithm, ActiveBNSL, is given in Section 5. Its correctness is proved
in Section 6, and sample complexity analysis is given in Section 7, where we show that
significant savings can be obtained for the class of stable distributions that we define. In
Section 8, we describe an explicit class of stable distributions. In Section 9, we report
experiments that compare the performance of our implementation of ActiveBNSL to that
of the naive baseline, on a family of stable distributions. We conclude with a discussion in
Section 10. Some technical proofs are deferred to the appendices.

2. Related work

Several general approaches exist for structure learning of Bayesian networks. In the constraint-
based approach (Meek, 1995; Spirtes et al., 2000), pairwise statistical tests are performed to
reveal conditional independence of pairs of random variables. This approach is asymptotically
optimal, but less successful on finite samples (Heckerman et al., 2006), unless additional
realizability assumptions are made. When restricting the in-degree of the DAG, the constraint-
based approach is computationally efficient. However, the computational complexity and
the sample complexity required for ensuring an accurate solution depend on the difficulty of
identifying the conditional independence constraints (Canonne et al., 2018) and cannot be
bounded independently of that difficulty. The score-based approach assigns a data-dependent
score to every possible structure, and searches for the structure that maximizes this score.
One of the most popular score functions for discrete distributions is the Bayesian Dirichlet
(BD) score (Cooper and Herskovits, 1992). Several flavors of this score have been proposed
(Heckerman et al., 1995; Buntine, 1991). The BD scores are well-studied (Chickering, 2002;
Tsamardinos et al., 2006; Campos and Ji, 2011; Cussens, 2011; Bartlett and Cussens, 2013,
2017) and widely used in applications (see, e.g., Marini et al., 2015; Li et al., 2016; Hu and
Kerschberg, 2018).

Finding a Bayesian network with a maximal BD score is computationally hard under
standard assumptions (Chickering, 1996). However, successful heuristic algorithms have
been suggested. Earlier algorithms such as Chickering (2002); Tsamardinos et al. (2006)
integrate greedy hill-climbing with other methods to try and escape local maxima. Other
approaches include dynamic programming (Silander and Myllymäki, 2012) and integer linear
programming (Cussens, 2011; Bartlett and Cussens, 2013, 2017).

Previous works on active structure learning of Bayesian networks (Tong and Koller, 2001;
He and Geng, 2008; Li and Leong, 2009; Squires et al., 2020) assume a causal structure
between the random variables, and consider an interventional (or experimental) environment,
in which the active learner can set the values of some of the variables and then measure the
values of the others. This is crucially different from our model, in which there is no causality
assumption and the interaction is only by observing variables, not setting their values.

Active learning for undirected graphical models has been studied both in a full obser-
vational setting (Vats et al., 2014; Dasarathy et al., 2016), where all variable values are
available in each sample, and in a setting of limited observations (Scarlett and Cevher, 2017;
Dasarathy, 2019; Vinci et al., 2019).
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More generally, interactive unsupervised learning has been studied in a variety of contexts,
including clustering (Awasthi et al., 2017) and compressive sensing (Haupt et al., 2009;
Malloy and Nowak, 2014).

3. Setting and Notation

For an integer i, denote [i] := {1, . . . , i}. A Bayesian network models the probabilistic
relationships between random variables X = (X1, . . . , Xd). It is represented by a DAG
G = (V,E) and a set of parameters Θ. V = [d] is the set of nodes, where node i represents
the random variable Xi. E is the set of directed edges. We denote the set of parents of a
variable Xi ∈ X under G by Πi(G) := {Xj | (j, i) ∈ E}. We omit the argument G when it
is clear from context. G and Θ together define a joint distribution over X which we denote
by PG,Θ(X). In the case where the distributions of all Xi are discrete, X := (X1, . . . , Xd)
is a multivariate multinomial random vector and Θ specifies the multinomial distributions
P (Xi | Πi). In this case, the joint distribution defined by G and Θ is given by

PG,Θ(X) =
∏
i∈[d]

P (Xi | Πi(G),Θ).

We call any possible pair of a child variable and parent set over [d] a family, and denote
it by 〈Xi,Π〉, where Xi is the child random variable and Π ⊆ {X1, . . . , Xd} \ {Xi} defines
the set of parents assigned to Xi. We refer to a family with a child variable i as a family
of i. For convenience, we will use G to denote also the set of families that the structure G
induces, so that f ∈ G if and only if f = 〈Xi,Πi(G)〉 for some i ∈ [d].

Structure learning is the task of finding a graph G with a high-quality fit to the true
distribution of X. This is equivalent to finding the family of each of the variables in
[d]. The quality of the fit of a specific structure G can be measured using the following
information-criterion score (Bouckaert, 1995):

S(G) := −
∑
i∈[d]

H(Xi | Πi(G)) = −
∑
f∈G

H(f),

where H stands for entropy, and H(f), for a family f = 〈Xi,Π〉, is defined as H(f) :=
H(Xi | Π). As shown in Bouckaert (1995), for discrete distributions, maximizing the plug-in
estimate of S(G) from data, or small variants of it, is essentially equivalent to maximizing
some flavors of the BD score.

For both statistical and computational reasons, in structure learning one commonly
searches for a graph in which each variable has at most k parents, for some small integer
constant k (see, e.g., Heckerman, 1998). Denote by Gd,k the set of DAGs over d random
variables such that each variable has at most k parents. Denote the set of all possible families
over [d] with at most k parents by Fd,k. Denote by S∗ := maxG∈Gd,k

S(G) the optimal score
of a graph in Gd,k for the true distribution of X. Note that X can have any joint distribution,
not necessarily one of the form PG,Θ(X) for some G ∈ Gd,k and Θ. In cases where P (X) is
in fact of the latter form, it has been shown for Gaussian and multinomial random variables
(Chickering, 2002), that for any graph G that maximizes S(G), there is some Θ such that
the distribution of X is equal to PG,Θ(X). In other words, whenever there exists some graph
which exactly describes P (X), score maximization will find such a graph. Our goal is to find
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a structure Ĝ ∈ Gd,k such that with a probability of at least 1− δ, S(Ĝ) ≥ S∗ − ε. Denote
by G∗ the set of all optimal structures, G∗ := {G ∈ Gd,k | S(G) = S∗}.

We study an active setting in which the algorithm iteratively selects a subset of variables
to observe, and then draws an independent random copy of the random vector X. In the
sampled vector, only the values of variables in the selected subset are revealed. The goal is
to find a good structure using a small number of such random vector draws. We study the
case where the maximal number of variables which can be revealed in any vector sample is
k+ 1. This is the smallest number that allows observing the values of a variable and a set of
potential parents in the same random sample. We leave for future work the generalization
of our approach to other observation sizes. For a set A, denote by JAKk+1 the set of subsets
of A of size k + 1. For an integer i, JiKk+1 is used as a shorthand for J[i]Kk+1.

4. A Naive Algorithm

We first discuss a naive approach, in which all variable subsets of size k+ 1 are observed the
same number of times, and these observations are used to estimate the score of each candidate
structure. As an estimator for H(f), one can use various options, possibly depending on
properties of the distribution of X (see, e.g., Paninski, 2003). Denoting this estimator by Ĥ,
the empirical score of graph G is defined as

Ŝ(G) := −
∑
f∈G

Ĥ(f) = −
∑
i∈[d]

Ĥ(Xi | Πi(G)). (1)

For concreteness, assume that {Xi}i∈[d] are discrete random variables with a bounded
support size. In this case, Ĥ can be set to the plug-in estimator, obtained by plugging in the
empirical joint distribution of {Xi} ∪ Π into the definition of conditional entropy, where the
empirical joint distribution is based on samples in which all of these variables were observed
together.

For ε > 0, δ ∈ (0, 1), let N(ε, δ) be a sample-complexity upper bound for Ĥ. N is a
function such that for any fixed f = 〈i,Π〉, if Ĥ(f) is calculated using at least N(ε, δ)
i.i.d. copies of the vector X in which the values of Xi and Π are all observed, then with a
probability of at least 1− δ, |Ĥ(f)−H(f)| ≤ ε. For instance, in the case of discrete random
variables with the plug-in estimator, the following lemma, proved in Appendix A, shows
that one can set N(ε, δ) = Θ̃(log(1/δ)/ε2). Interestingly, this bound is the same order as
the bound for the unconditional entropy (Antos and Kontoyiannis, 2001).

Lemma 1 Let δ ∈ (0, 1) and ε > 0. Let A,B be discrete random variables with support
cardinalities Ma and Mb, respectively. Let Ĥ(A | B) be the plug-in estimator of H(A | B),
based on N i.i.d. copies of (A,B), where

N ≥ max
{ 2
ε2

log(2
δ

) · log2(2 log(2/δ)/ε2), e2,Ma, (Ma − 1)Mb/ε

}
.

Then P (|Ĥ(A | B)−H(A | B)| > ε) ≤ δ.

Now, consider a naive algorithm which operates as follows:

1. Observe each variable subset in JdKk+1 in N(ε/(2d), δ/|Fd,k|) of the random samples;
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2. Output a structure G ∈ Gd,k that maximizes the empirical score defined in Eq. (1),
based on the plug-in estimates of H(f) for each family.

Applying a union bound over all the families in Fd,k, this guarantees that with a probability
at least 1− δ, we have that for each family f ∈ Fd,k, |Ĥ(f)−H(f)| ≤ ε/(2d). Therefore,
for any graph G ∈ Gd,k,

|S(G)− Ŝ(G)| = | −
∑
f∈G

H(f) +
∑
f∈G

Ĥ(f)| ≤
∑
f∈G
|Ĥ(f)−H(f)| ≤ ε/2.

Letting Ĝ ∈ argmaxG∈Gd,k
Ŝ(G) and G∗ ∈ G∗, with a probability at least 1− δ,

S(Ĝ) ≥ Ŝ(Ĝ)− ε/2 ≥ Ŝ(G∗)− ε/2 ≥ S(G∗)− ε = S∗ − ε,

as required. Note that |Fd,k| = d
∑
i∈[k]

(d−1
i

)
≤ d(e(d − 1)/k)k. Therefore, the sample

complexity of the naive algorithm is at most

|JdKk+1| ·N(ε/(2d), δ/|Fd,k|) = Θ̃
(
kdk+3

ε2
· log(1/δ)

)
, (2)

where the right-hand side is given for the case of a discrete distribution with the plug-in
entropy estimator discussed above. Below, we compare the sample complexity of the naive
algorithm to the sample complexity of the interactive algorithm that we propose. Therefore,
it is necessary to discuss the tightness of the upper bound in Eq. (2). Since the naive
algorithm samples each subset of size k + 1 separately, the factor of |JdKk+1| = Θ(dk+1)
cannot be avoided. The dependence on ε/(2d) in N is necessary, as can be observed via
simple symmetry arguments. Thus, the only possible sources of looseness in this upper bound
are the convergence analysis leading to the function N(·, ·), and the use of a union bound
which leads to the factor of log(|Fd,k|) = O(k log(d)). Since we use the same convergence
function N(·, ·) also for analyzing the interactive algorithm, and we treat k as a constant, we
conclude that comparing the sample complexity of the interactive algorithm to the bound in
Eq. (2) is accurate up to possible logarithmic factors in d.

5. An Interactive Algorithm: ActiveBNSL
The naive algorithm observes all variable subsets the same number of times. Thus, it does
not make use of possible differences in difficulty in identifying different parts of the structure.
We propose a new interactive algorithm, ActiveBNSL, which uses previous observations
to identify such differences to reduce the sample complexity. Our approach is based on
incrementally adding families to the output structure, until it is fully defined. This reduces
the sample complexity in cases where the early acceptance of families allows removing some
variables from observation.

A challenging property of Bayesian networks in this respect is Markov equivalence. Two
graphs are considered Markov equivalent if they induce the same conditional independence
constraints (Andersson et al., 1997). It has been shown that for any dataset, the likelihood
of the data given the graph is the same for all Markov equivalent graphs (Heckerman et al.,
1995). Since the score defined in Section 3 is the asymptotic log-likelihood of an infinite
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sample drawn from the distribution, the scores of two Markov equivalent graphs are identical.
Almost all DAGs in Gd,k have other Markov-equivalent DAGs in Gd,k, and usually there is not
even a single family that is shared by all Markov-equivalent graphs. ActiveBNSL addresses
this issue by directly handling Markov equivalence classes, which are the equivalence classes
induced on Gd,k by the Markov-equivalence relation. Denote the set of equivalence classes
(ECs) in Gd,k by Ed,k, and note that each equivalence class E ∈ Ed,k is a set of structures,
E ⊆ Gd,k. Since all the structures in a given EC have the same score, we can discuss the
score of an EC without confusion. For an EC E ∈ Ed,k, denote by S(E) the (identical) score
of the graphs in E. An optimal EC is an EC that maximizes the score over all ECs in Ed,k.
Note that this EC might not be unique.

ActiveBNSL, listed in Alg. 1, gets d (the number of variables) and k (the maximal
number of parents) as inputs, in addition to a confidence parameter δ, the required accuracy
level ε. ActiveBNSL maintains a set V ⊆ [d] of the variables whose families have been
accepted so far (that is, their parent sets in the output structure have been fixed). The
set of accepted families is denoted Accj , where j denotes an iteration within the algorithm.
Accj includes exactly one family for each v ∈ V. The set of candidate families is denoted
Cand(V). This is the set of families that have not been precluded so far from participating
in the output structure. For simplicity, we set Cand(V) to the set of all the families with a
child variable not in V. Note that this does not preclude, for instance, families that would
create a cycle when combined with Accj . As will be evident below, including redundant
families in Cand(V) does not harm the correctness of ActiveBNSL.

ActiveBNSL works in rounds. At each round t, the algorithm observes all the subsets
in JdKk+1 that include at least one variable not in V. Each such subset is observed a
sufficient number of times to obtain a required accuracy. Let Ĥt(f) be the estimator
for H(f) based on the samples observed until round t, and denote the empirical score
at round t by Ŝt(G) := −

∑
f∈G Ĥt(f). Note that unlike the true score, the empirical

score of the graphs in an EC might not be the same for all the graphs, due to the use
of partial observations. Therefore, we define the empirical score of a set of graphs A as
Ŝ(A) := maxG∈A Ŝ(G). Iteratively within the round, ActiveBNSL finds some equivalence
class Ê that maximizes the empirical score Ŝ(Ê) and is consistent with the families accepted
so far. Here, Gj := {G ∈ Gd,k | Accj ⊆ G} denotes the set of graphs that are consistent with
these families in iteration j. We also denote U(A) :=

⋃
G∈AG, the set of all families in any

of the graphs in A.

For E ∈ Ed,k, denote E∩j := E ∩Gj . ActiveBNSL calculates a threshold θj , and searches
for a family such that in each of the ECs whose empirical score is θj-close to the empirical
score of Ê, there exists at least one graph which is consistent with Accj and includes this
family. If such a family exists, it can be guaranteed that it is a part of some optimal structure
along with previously accepted families. Therefore, it is accepted, and its child variable is
added to V. At the end of every round, the required accuracy level εt is halved. Iterations
continue until εt ≤ ε/(d − |V|). It is easy to verify that the total number of rounds is at
most T − 1 = dlog2(d)e, where T is defined in ActiveBNSL. In the last round, which occurs
outside of the main loop, if any families are still active, the remaining variable subsets are
observed based on the required accuracy ε. ActiveBNSL then returns a structure which
maximizes the empirical score, subject to the constraints set by the families accepted so far.
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Algorithm 1: ActiveBNSL
Input: Integers d, k; δ ∈ (0, 1); ε > 0.
Output: A graph Ĝ

1 Intialize: Acc1 ← ∅, V ← ∅, N0 ← 0, t← 1, j ← 1, T ← dlog2(2d)e, ε1 ← ε.
2 while εt > ε/(d− |V|) do
3 Nt ← N(εt/2, δ/(T |Fd,k|))
4 For each subset in JdKk+1 \ JVKk+1, observe it in Nt −Nt−1 random samples.
5 repeat
6 θj ← (d− |V|) · εt
7 Ĝj ← argmax{Ŝt(G) | G ∈ Gj} # Recall: Gj ≡ {G ∈ Gd,k | Accj ⊆ G}
8 Êj ← the EC in Ed,k that includes Ĝj
9 Lj ← {E ∈ Ed,k | (E∩j 6= ∅) ∧ (Ŝt(Ê∩jj )− Ŝt(E∩j) ≤ θj)}

10 if ∃f ∈ U(Ê∩jj ) ∩ Cand(V) such that ∀E ∈ Lj, f ∈ U(E∩j) then
11 Set f ← 〈Xv,Π〉 such that f satisfies the condition above and v ∈ [d]
12 V ← V ∪ {v}, Accj+1 ← Accj ∪ {f} # accept family f

else
13 Accj+1 ← Accj
14 j ← j + 1

until Accj = Accj−1
15 If |V| = d then set Ĝ← Accj and return Ĝ.
16 t← t+ 1
17 εt ← εt−1/2
18 εlast ← ε/(d− |V|), NT ← N(εlast/2, δ/(T |Cand(V)|))
19 For each subset in JdKk+1 \ JVKk+1, observe it in NT −NT−1 random samples.
20 Return Ĝ← argmax{ŜT (G) | G ∈ Gj}.

An execution example. To demonstrate how ActiveBNSL works, we now give an example
trace for ActiveBNSL with d = 4, k = 1. A summary of this trace is provided in Table 1.
F4,1 includes four families with an empty parent set, and twelve families with a parent set of
size one. Table 2 lists three of the ECs in E4,1 that we will refer to in this execution example.
Note that T = log2(8) = 3.

• After the initialization stage (line 1), ActiveBNSL draws N1 samples from each pair
of variables in {1, 2, 3, 4} (line 4).

• Suppose that the graph that maximizes the empirical score in line 7 is Ĝ1 = G3, where
G3 is given in Table 2. Thus, in line 8, Ê1 = E3.

• Since Acc1 is an empty set, Gj = G4,1, and so L1 (line 9) simply includes all the ECs
that are empirically θ1-close to E3. Suppose that L1 = {E1, E2, E3}.

• The condition in line 10 is satisfied by the families 〈1, ∅〉 and 〈2, {1}〉 (see G1, G2, G3
in Table 2), and by the family 〈1, {2}〉 (see G4, G5, G6 in Table 2). Suppose that
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j Accj V Ĝj Êj Lj

1 ∅ ∅ G3 E3 {E1, E2, E3}
2 {〈1, ∅〉} {1} G3 E3 {E1, E2, E3}
3 {〈1, ∅〉, 〈2, {1}〉} {1, 2} G3 E3 {E1, E2, E3}
4 {〈1, ∅〉, 〈2, {1}〉} {1, 2} G2 E2 {E1, E2}

Table 1: A summary of the example trace

E1 E2 E3

1→ 2→ 3→ 4 1→ 2→ 4→ 3 2← 1→ 3→ 4
G1 G2 G3

1← 2→ 3→ 4 1← 2→ 4→ 3 2→ 1→ 3→ 4
G4 G5 G6

1← 2← 3→ 4 1← 2← 4→ 3 2← 1← 3→ 4
G7 G8 G9

1← 2← 3← 4 1← 2← 4← 3 2← 1← 3← 4
G10 G11 G12

Table 2: Three ECs in E4,1. Each of these ECs includes four structures.

f := 〈1, ∅〉 is selected in line 11 and so f is accepted (line 12). Thus, Acc2 = {〈1, ∅〉},
and V = {1}.

• In the next iteration, j = 2, the algorithm hasn’t drawn any new samples. Therefore,
since G3 includes the accepted family, we have Ĝ2 = G3, Ê2 = E3 as in the previous
iteration. Suppose that L2 = L1.

• Note that only one graph in each EC in Table 2 includes the family 〈1, ∅〉. Therefore,
E∩2

1 = {G1}, E∩2
2 = {G2}, and E∩2

3 = {G3}. The accepted family in this iteration
can only be 〈2, {1}〉, which is shared by G1, G2, and G3. Therefore, we now have
Acc3 = {〈1, ∅〉, 〈2, {1}〉}, and V = {1, 2}.

• In iteration j = 3, suppose that L3 = L2 = {E1, E2, E3}. Ĝ3, Ê3 and E∩3
i = {Gi} for

i ∈ {1, 2, 3} are the same as in the previous iterations. There is no family for {3, 4}
that is shared by G1, G2, and G3. Thus, in this iteration the condition on line 10
does not hold, and no family is accepted on iteration 3. The condition ending the
repeat-until loop now holds, and ActiveBNSL proceeds to the next round.

• On the next round, t = 2, N2 −N1 additional samples are drawn, such that the total
number of samples taken from each subset of size 2 of variables (except for the subset
{1, 2}) is equal to N2. Now j = 4.

• Suppose that Ĝ4 = G2 in line 7. Thus, in line 8, Ê4 = E2. Suppose further that
L4 = {E1, E2}, and note that E∩4

2 = {G1} and E∩4
1 = {G2}. Again, no family for
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{3, 4} is shared by G1 and G2, and no family is accepted at iteration 4. This causes
the second round of the algorithm to terminate.

• The main loop now ends, since T − 1 rounds have been completed. The final sampling
round, round T = 3, occurs outside of the main loop. Again all the subsets of size
2 except for {1, 2} are sampled, so the total number of samples is N3. ActiveBNSL
returns the highest-scoring graph that includes the accepted families 〈1, ∅〉, 〈2, {1}〉.

The computational complexity of ActiveBNSL. As mentioned in Section 2 above,
score-based structure learning is NP-hard in the general case (Chickering, 1996). Thus,
ActiveBNSL is not an efficient algorithm in the general case. Nonetheless, ActiveBNSL is
structured so that the computationally hard operations are encapsulated in two specific
black boxes:

• The score maximization procedure, used in lines 7 and 20. A similar procedure is
required by any score-based structure learning algorithm, including the naive algorithm
proposed in Section 4, as well as structure learning algorithms for the full information
setting (see, e.g., Chickering, 2002; Silander and Myllymäki, 2012; Bartlett and Cussens,
2013). Thus, established and successful efficient heuristics exist for this procedure. In
ActiveBNSL, the maximization is constrained to include specific families. This does
not add a significant computational burden to these heuristics.

• The assignment of ECs that satisfy the required constraints in line 9. This procedure
can be divided into two steps:

1. Compute all the high-scored structures that are consistent with the accepted
families;

2. Aggregate equivalent structures into ECs.

Step 1 can be replaced with an efficient heuristic proposed in Liao et al. (2019), which
is derived from score-maximization heuristics. Step 2 requires computing the EC of
each of these structures, which can be done efficiently.

This encapsulation thus allows using heuristics for these black boxes to obtain a practical
algorithm, as we show in Section 9 below, whereas an exact implementation of these black
boxes would be exponential in d in the worst case (see, e.g., Chickering, 2002; Liao et al.,
2019).

In the next section, we show that ActiveBNSL indeed finds an ε-optimal structure with
a probability at least 1− δ.

6. Correctness of ActiveBNSL

The following theorem states the correctness of ActiveBNSL.

Theorem 2 With a probability at least 1− δ, the graph Ĝ returned by ActiveBNSL satisfies
S(Ĝ) ≥ S∗ − ε.

10
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To prove Theorem 2, we first give some preliminaries. Let Vt be the set V at the beginning
of round t. Define the following event:

η := {∀t ∈ [T ],∀f ∈ Cand(Vt), |Ĥt(f)−H(f)| ≤ εt/2}.

Noting that for any family in Cand(Vt), Ĥt(f) is estimated based onNt = N(εt/2, δ/(T |Fd,k|))
samples, it is easy to see that by a union bound over at most T rounds and at most |Fd,k|
families in each round, η holds with a probability at least 1− δ.

Let an iteration of ActiveBNSL be a single pass of the inner loop starting at line 6. Let
J be the total number of iterations during the entire run of the algorithm. Note that a
single round t can include several iterations j. Denote by V(j) the value of V at the start of
iteration j. Under η, it follows from above that at any iteration j in round t, for any graph
G ∈ Gj (recall that we treat G as the set of families that the graph consists of),

|S(G \Accj)− Ŝt(G \Accj)| ≤
∑

f∈G\Accj

|H(f)− Ĥt(f)| ≤ (d− |V(j)|) · εt/2 = θj/2, (3)

where θj is defined in line 6 of Alg. 1. We now give a bound on the empirical score
difference between equivalence classes. For i ∈ 1, 2, let Ei ∈ Ed,k be two equivalence
classes such that E∩ji 6= ∅, and Gi ∈ argmax

G∈E∩j
i
Ŝt(G). We have Gi ∈ Gj . Hence,

|S(Gi \Accj)− Ŝt(Gi \Accj)| ≤ θj/2. In addition, S(Gi \Accj) = S(Ei)−S(Accj), and by
the definition of the empirical score of a set of structures, we have that Ŝt(E∩ji ) = Ŝt(Gi) =
Ŝt(Gi \Accj) + Ŝt(Accj). Therefore, under η,

Ŝt(E∩j1 )− Ŝt(E∩j2 ) = Ŝt(G1 \Accj)− Ŝt(G2 \Accj)
= (Ŝt(G1 \Accj)− S(G1 \Accj)) + (S(G1 \Accj)− S(G2 \Accj))

+ (S(G2 \Accj)− Ŝt(G2 \Accj))
≤ S(G1 \Accj)− S(G2 \Accj) + θj

= S(E1)− S(E2) + θj . (4)

The following lemma shows that if a family is accepted in the main loop of Alg. 1, then it
is in some optimal structure which includes all the families accepted so far. This shows that
in ActiveBNSL, there is always some optimal structure that is consistent with the families
accepted so far.

Denote the set of optimal graphs in Gj by G∗j := G∗ ∩ Gj .

Lemma 3 Assume that η occurs. Then for all j ∈ [J ], G∗j 6= ∅.

Proof The proof is by induction on the iteration j. For j = 1, we have Gj = Gd,k,
hence G∗1 = G∗ 6= ∅. Now, suppose that the claim holds for iteration j. Then G∗j 6= ∅.
We show that if any family f is accepted in this iteration, it satisfies f ∈ U(G∗j ). This
suffices to prove the claim, since G∗j ⊆ Gj implies that all the graphs in G∗j include Accj ;
Combined with f ∈ U(G∗j ), this implies that there is at least one graph in G∗j that includes
Accj+1 ≡ Accj ∪ {f}, thus G∗j+1 6= ∅, as needed.

Suppose that f is accepted at iteration j. Let E∗ ⊆ G∗ be an optimal EC such that E∩j∗ 6=
∅; one exists due to the induction hypothesis. We show that f ∈ U(E∩j∗ ), thus proving that
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f ∈ U(G∗j ). By event η and Eq. (4), we have Ŝt(Ê∩jj )− Ŝt(E∩j∗ ) ≤ S(Êj)−S(E∗) + θj ≤ θj .
The last inequality follows since S(Êt) ≤ S(E∗). Therefore, for Lj as defined in line 9 of
Alg. 1, we have E∗ ∈ Lj . Since f is accepted, it satisfies the condition in line 10, therefore
f ∈ U(E∩j∗ ). This proves the claim.

Using Lemma 3, the correctness of ActiveBNSL can be shown.
Proof [Proof of Theorem 2] Assume that η holds. As shown above, this occurs with a
probability at least 1− δ. Let Acc := AccJ be the set of accepted families at the end of the
main loop of Alg. 1. For any G ∈ GJ , we have Acc ⊆ G, hence S(G) = S(Acc) + S(G \Acc),
and similarly for ŜT . In addition, for each family f ∈ G \ Acc, we have f ∈ Cand(VT ),
since Cand(VT ) includes all the families of a child node whose family was not yet accepted.
So, by event η we have |ĤT (f)−H(f)| ≤ εlast/2, where εlast is defined in line 18 of Alg. 1.
Therefore, as in Eq. (3), for any G ∈ GJ ,

|S(G \Acc)− ŜT (G \Acc)| ≤ (d− |VT |) · εlast/2 = ε/2.

By Lemma 3, we have that G∗J 6= ∅. Let G∗ be some graph in G∗J ⊆ GJ . Recall that also
Ĝ ∈ GJ . By the definition of Ĝ, ŜT (Ĝ) ≥ ŜT (G∗). Hence, ŜT (Ĝ \ Acc) ≥ ŜT (G∗ \ Acc).
Combining this with the inequality above, it follows that

S(Ĝ \Acc) ≥ ŜT (Ĝ \Acc)− ε/2 ≥ ŜT (G∗ \Acc)− ε/2 ≥ S(G∗ \Acc)− ε.

Therefore, S(Ĝ) ≥ S(G∗)− ε, which proves the claim.

7. The Sample Complexity of ActiveBNSL

We now analyze the number of samples drawn by ActiveBNSL. We show that it is never
much larger than that of the naive algorithm, while it can be significantly smaller for some
classes of distributions. For concreteness, we show sample complexity calculations using
the value of N(ε, δ) given in Section 4 for discrete distributions with the plug-in entropy
estimator. We assume a regime with a small constant k and a possibly large d.

ActiveBNSL requires the largest number of samples if no family is accepted until
round T ≡ dlog2(2d)e. In this case, the algorithm pulls all subsets in JdKk+1, each for
N(ε/(2d), δ/(T |Fd,k|)) times. Thus, the worst-case sample complexity of ActiveBNSL is

|JdKk+1| ·N(ε/(2d), δ/(T |Fd,k|)) = Θ̃
(
kdk+3

ε2
log(1/δ)

)
.

In the general case, the sample complexity of ActiveBNSL can be upper-bounded based
on the round in which each variable was added to V. Let t1 < . . . < tn be the rounds in
which at least one variable was added to V, and denote tn+1 := T . Let Vi for i ∈ [n] be the
total number of variables added until the end of round ti, and set V0 = 0, Vn+1 = d. Note
that Vn is the size of V at the end of ActiveBNSL. In round ti, Vi−Vi−1 variables are added
to V. Denoting by Qi the number of subsets that are observed by ActiveBNSL for the last
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time in round ti, we have

Qi := |JViKk+1 \ JVi−1Kk+1| =
(

Vi
k + 1

)
−
(
Vi−1
k + 1

)
≤ (Vi − Vi−1)V k

i .

The sample complexity of ActiveBNSL is at most
∑
i∈[n+1]QiNti , where

Nti ≡ N(εti/2, δ/(T |Fd,k|)) = Õ

(
1
ε2ti
k log(d/δ)

)
.

The sample complexity is thus upper-bounded by

Õ

( ∑
i∈[n]

(Vi − Vi−1)V k
i ·

1
ε2ti

+ kdk(d− Vn)3 · 1
ε2

)
log(d/δ)

 . (5)

Since εt is decreasing in t, if most variables are added to V early in the run of the algorithm,
considerable savings in the sample complexity are possible. We next describe a family
of distributions for which ActiveBNSL can have a significantly smaller sample complexity
compared to the naive algorithm. In the next section, we describe a general construction
that satisfies these requirements.

Definition 4 Let γ > 0, and let V ⊆ X. A (γ, V )-stable distribution over X is a distribution
which satisfies the following conditions.

1. In every G ∈ Gd,k such that S(G) ≥ S∗ − γ, the parents of all the variables in V are
also in V .

2. There is a unique optimal EC for the marginal distribution on V , and the difference
in scores between the best EC and the second-best EC on V is more than γ.

Theorem 5, stated below, states that the sample complexity improvement for a discrete
stable distribution can be as large as a factor of Ω̃(d3). In Section 8, we give a specific
construction of a class of distributions that satisfies the necessary conditions of Theorem 5.
This class is characterized by the existence of two similar variables, one a noisy version of
the other.

Theorem 5 Let γ > 0. Let v := |V |. Let D be a discrete (γ, V )-stable distribution, and
assume that ActiveBNSL samples from D. Then, the sample complexity of ActiveBNSL is
at most

Õ

((
d2vk+1

γ2 + dk(d− v)3

ε2

)
· k log(1/δ)

)
. (6)

Furthermore, if v = d−O(1) and ε = O(γd−3/2), then the sample complexity improvement
factor of ActiveBNSL compared to the naive algorithm is Ω̃(d3).

To prove Theorem 5, we first prove several lemmas. The following lemma gives a sufficient
condition for a family to be accepted by ActiveBNSL at a given iteration.
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Lemma 6 Assume that η occurs. Let j be an iteration in the run of ActiveBNSL. For a
family f , define

S¬j (f) := max{S(E) | E ∈ Ed,k, E∩j 6= ∅, f /∈ U(E∩j)}.

This is the maximal score of an equivalence class which is consistent with families accepted
so far and also inconsistent with f .

Suppose that for some f ∈ U(G∗j ) ∩ Cand(V(j)), we have S¬j (f) < S∗ − 2θj. Then, some
family is accepted by ActiveBNSL at iteration j.

Proof Let E∗ ⊆ G∗ be an optimal EC such that E∩j∗ 6= ∅. By Lemma 3, such an EC exists.
Suppose that the assumption of the lemma holds. Then, for some f ∈ U(G∗j )∩Cand(V(j)), we
have S¬j (f) < S∗ − 2θj . It follows that for any E ∈ Ed,k such that E∩j 6= ∅ and f /∈ U(E∩j),
2θj < S(E∗)− S(E). By the definition of Êj (line 8 in Alg. 1), we have Ŝt(Ê∩jj ) ≥ Ŝt(E∩j∗ ).
In addition, since event η occurs, Eq. (4) holds. Therefore,

Ŝt(Ê∩jj )− Ŝt(E∩j) ≥ Ŝt(E∩j∗ )− Ŝt(E∩j) ≥ S(E∗)− S(E)− θj > θj .

It follows that E /∈ Lj , where Lj is as defined in line 9 of Alg. 1. Therefore, ∀E ∈
Lj , f ∈ U(E∩j). In particular, f ∈ U(Ê∩jj ). Since f ∈ Cand(V(j)), it follows that
f ∈ U(Ê∩jj ) ∩Cand(V(j)). Therefore, the condition in line 10 is satisfied, which implies that
some family is accepted during iteration j.

Next, we give a characterization of the optimal structures for D. Let GV be the set of
DAGs with an in-degree at most k over V . Denote V̄ := X \ V . We term a set of families
F ⊆ Fd,k a legal family set for V̄ if it includes exactly one family for each variable in V̄ and
no other families, and has no cycles. First, we provide an auxiliary lemma.

Lemma 7 If G ∈ GV and F is a legal family set for V̄ , then G ∪ F ∈ Gd,k.

Proof Denote G′ := G ∪ F. First, we show that G′ has an indegree of at most k. Any
G ∈ GV has exactly one family for every variable in V with at most k parents. Thus, in G′,
there is exactly one family for each variable in V ∪ V̄ , and each family includes at most k
parents. Thus, the degree constraint is not violated in G′.

Next, we address the acyclicity constraint. Assume in contradiction that G′ contains a
cycle, and let (A,B) be an edge in the cycle. This means that there is a directed path from
B to A in G′. Let (B, v1, . . . , vm, A) be the nodes in the path. Note that G includes only
edges from V to V , and F includes edges from V ∪ V̄ to V̄ . Consider the possible cases:

1. A ∈ V̄ , B ∈ V : Neither G nor F include edges from V̄ to V . Thus, this case is
impossible.

2. A ∈ V, B ∈ V : In this case, (A,B) must be an edge in G. In addition, since there are
no edges from V̄ to V in G′, all the nodes v1, . . . , vm on the path from B to A are also
in V. This means that this path is entirely in G, which contradicts the acyclicity of G.
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3. A ∈ V, B ∈ V̄ : In this case, the path from B to A includes at least one edge from V̄
to V . However, neither G nor F include edges from V̄ to V . Therefore, this case is
impossible.

4. A ∈ V̄ , B ∈ V̄ : In this case, (A,B) must be in F. In addition, since there are no edges
from V̄ to V in G′, all the nodes v1, . . . , vm on the path form B to A are also in V̄ .
This means that this path is entirely in F , which contradicts the acyclicity of F.

Since all cases are impossible, the existence of a cycle in G′ is impossible. This completes
the proof.

Next, we provide the following characterization of the optimal structures for D.

Lemma 8 Let D be a (γ, V )-stable distribution. Let G∗ ∈ E∗, and let F ⊆ G∗ be set of the
families of V̄ in G∗. Then the following hold:

1. G∗ \ F ∈ GV ;

2. S(G∗ \ F ) = maxG∈GV
S(G);

3. The score of F is maximal among the legal family sets for V̄ .

Proof By the assumptions on the distribution, since G∗ is an optimal structure, V̄ has no
outgoing edges into V . Therefore, G∗ \ F ∈ GV . This proves the first part of the lemma.

To prove the second part of the lemma, let G∗1 ∈ GV be some DAG over V with a maximal
score. Note that F is a legal family set for V̄ . Let G1 := G∗1 ∪ F. By Lemma 7, G1 ∈ Gd,k.
Then,

S(G∗ \ F ) + S(F ) = S(G∗) ≥ S(G1) = S(G∗1) + S(F ).

Therefore, S(G∗ \F ) ≥ S(G∗1). Hence, G∗ \F is also optimal over V . This proves the second
part of the lemma.

To prove the third part of the lemma, let F ′ 6= F be some legal family set for V̄ . Then,
by Lemma 7, G2 := (G∗ \ F ) ∪ F ′ ∈ Gd,k, and S(G2) = S(G∗) − S(F ) + S(F ′). Since G∗
is an optimal structure, S(G2) ≤ S(G∗). Therefore, S(F ) ≥ S(F ′). This holds for all legal
family sets of V̄ . Therefore, the score of F is maximal among such sets, which proves the
third part of the lemma.

The next lemma shows that equivalence classes with a near-optimal score include graphs
with common families.

Lemma 9 Let D be a (γ, V )-stable distribution. For a set of families A ∈ Fd,k and an
equivalence class E, denote E∩A := {G ∈ E | A ⊆ G}. Let G∗ ∈ E∩A∗ , and suppose that
there is some Ẽ ∈ Ed,k such that Ẽ 6= E∗, S(Ẽ) ≥ S∗ − γ and Ẽ∩A 6= ∅.

Then, there exists a graph G̃ ∈ Ẽ∩A such that the families of all the variables in V are
the same in both G∗ and G̃.
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To prove this lemma, we use a known characterization of a Markov equivalence class,
which relies on the notion of a v-structure.1 In a DAG G, a v-structure is an ordered triplet
of nodes (X,Y, Z) such that G contains the edges (X,Y ) and (Z, Y ), and there is no edge
in either direction between X and Z in G.

Theorem 10 (Verma and Pearl 1991) Two DAGs are equivalent if and only if they
have the same skeletons (underlying undirected graphs) and the same set of v-structures.

Proof [of Lemma 9] Let G be some graph in Ẽ∩A. Let F , F ∗ be the families of V̄ in G and
G∗ respectively. Note that both F and F ∗ are legal family sets for V̄ , since they are subsets
of DAGs in Gd,k. Define the graph G1 := G∗ \ F ∗, and set G̃ := G1 ∪ F . By Lemma 8,
G1 ∈ GV . Thus, by Lemma 7, we also have G̃ ∈ Gd,k. Furthermore, all of the variables in V
have the same families in both G∗ and G̃.

To show that G̃ satisfies the conditions of the lemma, it is left to show that G̃ ∈ Ẽ∩A.
First, note that A ⊆ G̃, since any family in A is either in G1 or in F . We now prove that
G̃ ∈ Ẽ, by showing that G and G̃ are Markov equivalent. Define G2 := G \ F . Since
S(G) = S(Ẽ) ≥ S∗ − γ, by assumption 1 in Def. 4, it holds that in G all the variables in V
have parents in V . Thus, G2 ∈ Gv.

We now prove that G1 and G2 are Markov equivalent, and conclude that the same holds
for G and G̃. First, we show that S(G2) = S(G1). We have G1, G2 ∈ Gv, and by Lemma 8,
G1 is an optimal graph on V . Therefore, S(G2) ≤ S(G1). Now, suppose for contradiction
that S(G2) < S(G1). Then, by assumption 2 in Def. 4, we have S(G2) < S(G1)− γ. We
also have, by Lemma 8, that S(F ) ≤ S(F ∗). It follows that

S(G) = S(G2) + S(F ) ≤ S(G2) + S(F ∗) < S(G1)− γ + S(F ∗) = S(G∗)− γ = S∗ − γ.

Therefore, S(G) < S∗− γ. But G ∈ Ẽ, and so S(G) ≥ S∗− γ, leading to a contradiction. It
follows that S(G2) = S(G1), implying that G2 is also an optimal structure on V . Combining
this with the uniqueness of the optimal EC on V , as given in assumption 2 of Def. 4, we
conclude that G1 and G2 are Markov equivalent.

To show that G and G̃ are Markov equivalent, we first observe that since G1 and G2
are equivalent, then by Theorem 10, they have the same skeleton and the same set of
v-structures. Therefore, G1 ∪ F and G2 ∪ F also have the same skeleton. In addition, they
have the same set of v-structures, as follows: The v-structures with a child in V are in G1
and G2 and so they are shared; The v-structures with a child in V̄ are those with parents in
F and no edges between the parents. Since both graphs share the same skeleton, these must
be the same v-structures. This proves that G and G̃ are Markov equivalent, thus G̃ ∈ Ẽ,
and so, as observed above, also G̃ ∈ Ẽ∩A, which completes the proof.

The last lemma required for proving Theorem 5 shows that for a stable distribution,
ActiveBNSL is guaranteed to accept families early.

Lemma 11 Let D be a (γ, V )-stable distribution. Consider a run of ActiveBNSL in which
η holds. Then, ActiveBNSL accepts at least |V | families by the end of the first round t which
satisfies εt ≤ γ/(2d).

1. Also known as an "immorality" (see, e.g., Verma and Pearl, 1990)
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Proof Suppose that ActiveBNSL has accepted less than |V | families until some itera-
tion j. Then V \ V(j) 6= ∅. Let f ∈ U(G∗j ) ∩ Cand(V(j)) be a family of some variable in
V \ V(j) that belongs to an optimal structure in G∗j . Note that such a family exists, since
by Lemma 3, G∗j 6= ∅. Let Ẽ ∈ Ed,k such that Ẽ∩j 6= ∅ and S(Ẽ) ≥ S∗ − γ. Let G∗ ∈ G∗j .
By Lemma 9 with A := Accj , there exists a graph G̃ ∈ Ẽ∩j such that f ∈ G̃. Therefore,
f ∈ U(Ẽ∩j). Since this holds for any Ẽ ∈ Ed,k that satisfies the conditions above, it follows
that for S¬j (f) as defined in Lemma 6, we have that S¬j (f) < S∗ − γ. The conditions of
Lemma 6 thus hold if 2θj ≤ γ. In this case, some family will be accepted at iteration j. In
round t, θj ≤ dεt, and the round only ends when no additional families are accepted. There-
fore, at least |V | families will be accepted until the end of the first round t with εt ≤ γ/(2d).

We are now ready to prove Theorem 5.
Proof [of Theorem 5] Since D is a discrete distribution, the sample complexity upper bounds
in Eq. (5) and Eq. (2) can be used. To upper bound the sample complexity of ActiveBNSL,
observe that by Lemma 11, on the first round t with εt ≤ γ/(2d), at least |V | = v families
have been accepted. Following Eq. (5) and the notation therein, the sample complexity of
ActiveBNSL can be upper bounded by setting n = 1, V1 = v, t1 = t, and getting an upper
bound of

Õ

((
vk+1 · 1

ε2t
+ dk(d− v)3 · 1

ε2

)
· log(dk+1/δ)

)
= Õ

((d2vk+1

γ2 + dk(d− v)3

ε2

)
· k log(1/δ)

)
,

where we used the fact that εt ∈ (γ/(4d), γ/(2d)]. This proves Eq. (6).
By Eq. (2), the sample complexity of the naive algorithm is Ω̃(dk+3

ε2 · k log(1/δ)). Substi-
tuting v = d − O(1) in Eq. (6), we get that ActiveBNSL uses Õ

(
(dk+3

γ2 + dk

ε2 ) · k log(1/δ)
)

samples. Dividing this by the sample complexity of the naive algorithm, we get a sample
complexity ratio of Õ((ε/γ)2 + 1/d3). For ε = O(γd−3/2), this ratio is Õ(1/d3). The sample
complexity of ActiveBNSL is thus a factor of Ω̃(d3) smaller than that of the naive algorithm
in this case. This completes the proof.

Theorem 5 gives a set of conditions that, if satisfied by a distribution, lead to a significant
sample complexity reduction when using ActiveBNSL. In the next section, we give a
construction which satisfies this set of conditions.

8. A Class of Stable Distributions

In this section, we give an explicit construction of a family of distributions that are stable
according to Def. 4. The construction starts with a distribution with a unique optimal
EC, and augments it with a noisy version of one of its variables. This leads to a structure
learning problem in which most variable dependencies are easy to identify, but it is difficult
to discern between the two versions of the noisy variable. In this situation, the advantage
of ActiveBNSL is manifested, since it can request more samples from the families that are
more difficult to choose from.

Let D1 be a distribution over a finite set of at least k variables X1, one of which is
denoted Xa, which satisfies the following properties for some values β, α > 0.
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(I) D1 has a unique optimal EC, and the difference in scores between this EC and the
next-best EC is at least β.

(II) Xa ∈ X1 does not have children in any of the structures in the optimal EC

(III) H(Xa | X1 \ {Xa}) = α.

Property (II) holds, for instance, in the case that the optimal EC includes a graph in which
Xa has no children and no edges between any of its parents (see Figure 1 for illustration).
By Theorem 10, in this case, Xa is the child in a v-structure with each two of its parents,
and since v-structures are preserved within the optimal EC, Xa has no children in any of
the equivalent structures.

X1

X2X3 X4

Xa

Xb

Figure 1: An illustration of an EC that satisfies property (II).

We now define a distribution which is similar to D1, except that Xa has a slightly noisy
copy, denoted Xb. Let the set of variables be X := X1 ∪ {Xb}, and set d := |X|. For any
λ ∈

(
0,min(α, β3d)

)
, we define the distribution D2(λ) of X in which the marginal of D2(λ)

over X1 is D1, and Xb is defined as follows:

(IV) Xb is an independently noisy version of Xa. Formally, there is a hidden Bernoulli
variable C which is independent of X1, such that P (Xb = Xa | C = 1) = 1, and
(Xb⊥X1) | C = 0.

(V) The probability P (C = 1) is such that max(H(Xb | Xa), H(Xa | Xb)) = λ.

The following theorem shows that D2 is stable where the set V includes all but one
variable. Thus, Theorem 5 holds with q = 1, leading to a sample complexity improvement
factor as large as Ω̃(d3) for this construction.

Theorem 12 D2(λ) is a (γ, V )-stable distribution for V := X1 \Xa and for all γ ≤ β−3dλ.
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Before turning to the proof of Theorem 12, we note that Theorem 5 assumes a given required
accuracy ε. If the score of the second-best EC is much smaller than S∗− ε, and this is known
in advance, then one could set ε to a larger value, thus potentially voiding the conclusion of
Theorem 5. The following theorem shows that this is not the case for the construction of
D2. Its proof is provided in Appendix B.

Theorem 13 For ε ∈
(
0, 2 ·min(α, β3d)

)
, there exists a value of λ such that in D2(λ) there

exists a non-optimal EC with a score of at least S∗ − ε.

We now prove Theorem 12 by proving several lemmas. The first lemma gives useful
technical inequalities. Its proof is provided in Appendix B.

Lemma 14 Assume the distribution D2(λ) defined above. For any Π,Πb,Πa ⊆ X1 and any
Y ∈ X1, the following holds:

|H(Xb | Π)−H(Xa | Π)| ≤ λ, (7)
|H(Y | Π, Xb)−H(Y | Π, Xa)| ≤ 3λ. (8)

The next lemma shows that any DAG for D2 can be transformed to a DAG with a similar
score in which Xb has no children. The proof of the lemma is provided in Appendix B.

Lemma 15 Let G ∈ Gd,k. There exists a graph G̃ ∈ Gd,k that satisfies the following
properties:

1. |S(G̃)− S(G)| < 3dλ;

2. In G̃, Xb has no children;

3. The children of Xa in G̃ are exactly the union of the children of Xa and the children
of Xb in G (except for Xa, if it is a child of Xb in G).

Next, we use Lemma 15 to prove that property 1 in Def. 4 holds for D2.

Lemma 16 Assume the distribution D2(λ) as defined above. Let G be a structure such that
at least one of Xa, Xb has children other than Xa, Xb. Then, S(G) < S∗ − β + 3dλ.

Proof In this proof, all scores are calculated for the joint distribution defined by D2(λ).
Let Πb be a parent set of size k for Xb that maximizes the family score. Formally,

Πb ∈ argmax
Π⊆X1:|Π|=k

S({〈Xb,Π〉}).

Let f∗b = 〈Xb,Πb〉. Denote by Gd−1,k the set of DAGs with an in-degree of at most k
over X1. Let G1 ∈ Gd−1,k be such a DAG with a maximal score, and denote this score
S̄. Let G′1 = G1 ∪ {f∗b }. This is a DAG in Gd,k (over X ≡ X1 ∪ {Xb}), with a score
S(G′1) = S̄ + S({f∗b }). Therefore, S∗ ≥ S̄ + S({f∗b }).

Now, let G be a structure such that at least one of Xa, Xb has children other than Xa, Xb.
We consider two cases:

1. Xb has no children in G.
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2. Xb has children in G.

In case 1, Xa has children in X1. Let fb be the family of Xb in G. The graph G \ {fb} is a
DAG over X1 in which Xa has children. Therefore, by assumption (II) in the definition of D1,
G \ {fb} is not an optimal DAG, and so by assumption (I), it holds that S(G \ {fb}) ≤ S̄ −β.
Therefore, we have

S(G) = S(G \ {fb}) + S({fb}) ≤ S(G \ {fb}) + S({f∗b }) ≤ S̄ − β + S({f∗b }) ≤ S∗ − β.

The last inequality follows from the fact proved above that S∗ ≥ S̄ + S({f∗b }). This proves
the statement of the lemma for case 1.

In case 2, Xb has children in G. Denote this set of children by W . By Lemma 15, there
exists a graph G̃ ∈ Gd,k such that |S(G)−S(G̃)| < 3dλ, Xb has no children, and the children
of Xa are W \ {Xa} as well as the children of Xa in G. Now, consider two cases.

• W 6= {Xa}. In this case, W \ {Xa} 6= ∅ but cannot include Xb, and so in G̃, Xa has
at least one child which is different from Xb.

• W = {Xa}. In this case, from the definition of G, it follows that Xa has children other
than Xb in G, and so also in G̃.

In both cases, we get that in G̃, Xb has no children and Xa has at least one child other than
Xb. Thus, G̃ satisfies the conditions of case 1 discussed above. It follows that S(G̃) ≤ S∗−β.
Therefore, S(G) < S∗ − β + 3dλ. This proves the statement of the lemma for case 2, thus
completing the proof.

The next lemma shows that property 2 in Def. 4 of a stable distribution holds for D2,
for any γ < β

Lemma 17 Consider the marginal of D2(λ) on X1 \ {Xa}. There is a unique optimal EC
for this distribution, and the difference in scores between the optimal EC and the second-best
EC is at least β.

Proof Let E1 be an optimal EC for the considered marginal over X1 \ {Xa}. Let G1 ∈ E1.
Let Πa be a parent set of size k for Xa that maximizes the family score. Formally,

Πa ∈ argmax
Π⊆X1\Xa:|Π|=k

S({〈Xa,Π〉}).

Denote f∗a := 〈Xa,Πa〉. Let G be an optimal graph over X1, and let fa be the family of Xa

in G. By assumption (II) on D1, Xa has no children in G. Therefore, G \ {fa} is a DAG
with an in-degree at most k over X1 \ {Xa}. Thus, S(G \ {fa}) ≤ S(G1). It follows that

S(G) = S(G\{fa})+S({fa}) ≤ S(G\{fa})+S({f∗a}) ≤ S(G1)+S({f∗a}) = S(G1∪{f∗a}).

Therefore, G1 ∪ {f∗a} is also optimal on X1. Now, assume for contradiction that there is
another optimal EC over X1 \ {Xa}, denoted E2, and let G2 ∈ E2. By the same analysis as
above, G2 ∪ {f∗a} is also optimal on X1. However, by Theorem 10, since G1 and G2 are not
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equivalent, then G1 ∪ {f∗a} and G2 ∪ {f∗a} are also not equivalent, contradicting assumption
(I) on D1. Therefore, E1 is the only optimal EC over X1 \ {Xa}.

Now, let G3 be non-optimal DAG with an in-degree at most k over X1 \ {Xa}, so
S(G3) < S(G1). By assumption (I) on D1, S(G3 ∪ {f∗a}) ≤ S(G1 ∪ {f∗a}) − β. Therefore,
S(G3) ≤ S(G1)− β. This proves the claim.

Theorem 12 is now an immediate consequence of the lemmas above, since both properties
of Def. 4 hold for all positive γ ≤ β − 3dλ, by Lemma 16 and Lemma 17.

9. Experiments

In this section, we report an empirical comparison between the naive algorithm, given in
Section 4, and ActiveBNSL, given in Section 5. The code for both algorithms and for the
experiments below is available at https://github.com/noabdavid/activeBNSL.

We implemented the algorithms for the case of discrete distributions using the plug-
in estimator for conditional entropy to calculate the empirical score Ŝ (see Eq. (1)), as
discussed in Section 4. To avoid spurious score ties, we augmented the empirical score
with an additional tie-breaking term. Since the empirical entropy never increases when
adding a potential parent to a family, any family with a maximal score that has fewer than
k parents can be augmented with additional parents without decreasing the score. This
creates spurious optimal families, thus significantly reducing the number of cases where
an optimal family can be identified and accepted by ActiveBNSL. To break the score ties,
we added to the entropy of each family a small penalty term that prefers smaller families.
Formally, we used the following modified empirical score:

Ŝ(G) := −
∑
i∈[d]

(
Ĥ(Xi | Πi(G)) + β|Πi(G)| · Ĥ(Xi)

)
, (9)

where β := 0.001.
We now describe how we implemented the non-trivial steps in each algorithm. The naive

algorithm aims to output a network structure in Gd,k that maximizes the empirical score, as
defined above. Finding a structure with the maximal score is computationally hard in the
general case, as discussed in Section 1. We use the well-established algorithm GOBNILP
(Cussens, 2011), as implemented in the eBNSL package2 (Liao et al., 2019), which attempts
to find such a structure using a linear programming approach.

We now turn to the implementation of ActiveBNSL. To compute Nt, the number of
required samples (see line 3), we used the formula given in the bound in Lemma 1. To
compute Lj , the set of possible equivalence classes (see line 9), we used the eBNSL algorithm,
also implemented in the eBNSL package. The input to eBNSL includes the score of each
family and a positive real number ε. The algorithm heuristically attempts to output all
network structures in Gd,k with a score gap of at most ε from the maximal achievable
score. To compute Lj , ActiveBNSL sets the ε input value of eBNSL to θj . The list of
structures provided as output by eBNSL is then divided into equivalence classes, using
the characterization given in Theorem 10. To impose the constraint that Lj should only

2. https://github.com/alisterl/eBNSL
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d r ε ≡ d/r N naive N active sample % accepted
ratio families

6

213 0.00073 43×1012 51×1012 118% 0%
215 0.00018 88×1013 104×1013 118% 0%
217 0.00005 17×1015 20×1015 118% 0%
219 0.00001 33×1016 39×1016 117% 0%

7

213 0.00085 81×1012 73±10× 1012 90% 11% ±5.71%
215 0.00021 16×1014 13×1014 84% 14%
217 0.00005 32×1015 25±4× 1015 79% 17% ±8.57%
219 0.00001 62×1016 21×1016 34% 42%

8

213 0.00098 13×1013 15×1013 116% 0%
215 0.00024 27×1014 24×1014 87% 12%
217 0.00006 54×1015 47×1015 87% 12%
219 0.00002 105×1016 26×1016 24% 50%

9

213 0.00110 21×1013 19×1013 91% 11%
215 0.00027 43×1014 21×1014 48% 33%
217 0.00007 85×1015 41×1015 48% 33%
219 0.00002 165×1016 30×1016 18% 55%

10

213 0.00122 31×1013 24±2× 1013 76% 18% ±4.00%
215 0.00031 64×1014 34×1014 54% 30%
217 0.00008 126×1015 68×1015 54% 30%
219 0.00002 244×1016 69±43× 1016 28% 49% ±13.00%

11

213 0.00134 45×1013 34×1013 75% 18%
215 0.00034 90×1014 53×1014 58% 27%
217 0.00008 17×1016 10×1016 58% 27%
219 0.00002 34×1017 20×1017 59% 27%

12

213 0.00146 61×1013 72×1013 116% 0%
215 0.00037 124×1014 34±6× 1014 27% 47% ±3.82%
217 0.00009 245×1015 67±16× 1015 27% 51% ±3.33%
219 0.00002 475×1016 74±22× 1016 15% 58% ±5.03%

Table 3: Experiment results for the synthetic networks. N stands for the number of sam-
ples used by each algorithm. "sample ratio" is the sample size savings rate by
ActiveBNSL compared to the naive algorithm (N active / N naive). “% accepted
families” is the fraction of the families that ActiveBNSL accepted before the last
stage.

include structures consistent with the accepted families, as required by the definition of
Lj , ActiveBNSL provides eBNSL with structural constraints as additional input. These
constraints specify sets of edges that must or must not be included in the output structures.
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Network d r ε ≡ d/r N naive N active sample % accepted
ratio families

Cancer 5

211 0.00244 96×1010 116×1010 120% 0%
213 0.00061 20×1012 24×1012 119% 0%
215 0.00015 41×1013 30×1013 73% 20%
217 0.00004 81×1014 13×1014 16% 60%
219 0.00001 157×1015 24×1015 15% 60%

Earthquake 5

211 0.00244 96×1010 116×1010 120% 0%
213 0.00061 20×1012 24×1012 119% 0%
215 0.00015 41×1013 49×1013 119% 0%
217 0.00004 81×1014 21±9× 1014 25% 52% ±9.80%
219 0.00001 157×1015 47±18× 1015 30% 48% ±9.80%

Survey 6

211 0.00293 20×1011 24×1011 118% 0%
213 0.00073 43×1012 21×1012 48% 33%
215 0.00018 88×1013 22×1013 25% 50%
217 0.00005 174×1014 44×1014 25% 50%
219 0.00001 338×1015 86×1015 25% 50%

Asia 8

211 0.00391 65×1011 76×1011 116% 0%
213 0.00098 13×1013 15×1013 116% 0%
215 0.00024 27×1014 24×1014 87% 12%
217 0.00006 545×1014 64±28× 1014 11% 65% ±7.50%
219 0.00002 1055×1015 94±39× 1015 8% 67% ±6.12%

Sachs 11

211 0.00537 48×1012 54±6× 1012 111% 1% ±5.45%
213 0.00134 10×1014 11±1× 1014 109% 2% ±5.82%
215 0.00034 204×1014 57±31× 1014 28% 59% ±22.73%
217 0.00008 402×1015 25±15× 1015 6% 75% ±4.17%
219 0.00002 776×1016 49±14× 1016 6% 71% ±2.73%

Table 4: Experiment results for benchmark networks. N stands for the number of sam-
ples used by each algorithm. "sample ratio" is the sample size savings rate by
ActiveBNSL compared to the naive algorithm (N active / N naive). “% accepted
families” is the fraction of the families that ActiveBNSL accepted before the last
stage.

To find a a structure that maximizes the empirical score, ActiveBNSL uses GOBNILP,
providing it with constraints that impose the inclusion of accepted families.

We ran experiments using data generated from synthetically constructed networks, and
from discrete networks from the Bayesian Network Repository,3 which provides Bayesian
networks that are commonly used as benchmarks. We generated synthetic networks with

3. https://www.bnlearn.com/bnrepository/
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6-12 nodes, and tested all benchmark networks from the “small networks” category of the
repository, which includes networks with up to 11 nodes. In all the networks, all nodes
represented Bernoulli random variables taking values in {0, 1}, except for the benchmark
networks Survey and Sachs, which include multinomially distributed variables with 3 possible
values.

The synthetic networks describe stable distributions of the type presented in Section 8,
in which each of the network variables has at most two parents. The nodes in a network
with d nodes, denoted Bd, are denoted: X1, . . . , Xd−2, Xa, Xb. Figure 2 illustrates the
graph structures for B6 and B7. In all networks, X1 has no parents and is a Bernoulli(1-ρ)
random variable, where ρ = 0.99. X2 has only X1 as a parent and is equal to X1 with an
independent probability of 1− ρ (otherwise, it is equal to 1−X1). Each of the variables
Xi for i ∈ {3, ..., d − 2} has two parents Xj , Xj′ for some j, j′ < i. The value of Xi is
xor(Xj , Xj′) with an independent probability of ρ. In all networks, Xa is the child of X3 and
X4, and the value of Xa is xor(X3, X4) with an independent probability of ρ. Xb is a slightly
noisy version of Xa, such that Xa = Xb with an independent probability of 1 − 5 · 10−6.
This construction satisfies the conditions in Section 8 with X1 := {X1, . . . , Xd−2, Xa}. Since
Xb is almost always equal to Xa, it is hard to distinguish between them using samples. In
particular, the structure in which X3, X4 are the parents of Xb and the latter is the parent
of Xa has a score which is very close to optimal. The advantage of the active algorithm is in
being able to focus on observations that distinguish between Xa and Xb.

X1

X2X3 X4

Xa

Xb

X1

X2X3 X4

Xa

Xb

X5

Figure 2: Illustration of the networks B6 and B7 used in the experiments.

In all of the synthetic and benchmark networks, the true network could be represented
with k = 2, except for the benchmark Sachs network, in which the true network requires
k = 3. Accordingly, the value of k was set to 2 for all but the Sachs network, where it was
set to 3. In all of the experiments, we set δ = 0.05.

To set the values of ε in each experiment in a comparable way, we adjusted this value
by the number of network nodes, denoted by d, by fixing the ratio r := d/ε and calculating
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ε based on this ratio. We ran experiments with r := 2j for a range of values of j. Each
experiment configuration was ran 10 times, and we report the average and standard deviation
of the results. In all of the experiments, both the naive algorithm and ActiveBNSL found
an ε-optimal structure. Note that for the naive algorithm, all repeated experiments use the
same sample size, since this size is pre-calculated.

Detailed results of the synthetic and the benchmark experiments are provided in Table 3
and Table 4, respectively. The “sample ratio” column calculates the average reduction in
the number of samples when using ActiveBNSL instead of the naive algorithm, where a
number below 100% indicates a reduction in the number of samples. The last column lists
the percentage of families that were accepted early in each experiment.

It can be seen in both tables that ActiveBNSL obtains a greater reduction for larger
values of r (smaller values of ε). This is also depicted visually in Figure 3, which plots the
sample sizes obtained by the algorithms for the synthetic networks as a function of d for
three values of r. It can be seen that for r = 213, there is almost no difference between the
required sample sizes, while some sample saving is observed for r = 215, and a large saving
is observed for r = 219. For the two greater values of r, it is apparent that the advantage
increases with d, showing that larger values of d lead to a larger sample size reduction.
In the most favorable configurations for both the synthetic and the benchmark networks,
when r = 219, and the largest tested value of d, ActiveBNSL samples only 15% and 6%,
respectively, of the number of samples required by the naive algorithm.

The increase in sample size reduction when increasing r can be explained by observing
in both tables that when r is small, only a small fraction of the families is accepted early by
ActiveBNSL, leading to both algorithms requiring about the same sample size. In general,
ActiveBNSL is more successful when it accepts a larger fraction of the families early.

To summarize, the reported experiments demonstrate that despite the computational
hardness of ActiveBNSL in the general case, it can be successfully implemented in practice
using established approaches, and obtain a substantial improvement in the number of
required samples. We note that the number of samples required for both the naive algorithm
and ActiveBNSL is quite large in our experiments. This is a consequence of the specific
estimator and concentration bounds that we use, which may be loose in some cases. We
expect that this number can be significantly reduced by using tighter concentration bounds
tailored to this task. We leave this challenge for future work.

10. Discussion

This is the first work to study active structure learning for Bayesian networks in an
observational setting. The proposed algorithm, ActiveBNSL, can have a significantly
improved sample complexity in applicable cases, and incurs a negligible sample complexity
penalty in other cases.

We considered the case where k, the maximal number of parents, is smaller by exactly
one than the number of variable observations that can be made in a single sample. We now
briefly discuss the implications of other cases. Denote by l the number of variables that can
be simultaneously observed, as determined based on external constraints (for instance, l
may indicate the maximal number of tests that each patient in an experiment can undergo).
As mentioned in Section 2, if k > l− 1 then the score cannot be computed directly. Thus, if
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Figure 3: Number of samples taken by ActiveBNSL (active) and the naive algorithm, N , as
a function of d, the number of nodes in the network, for three values of r.
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there are no other limitations on k, one may set k := l − 1 to obtain the least constrained
problem. Nonetheless, in some cases this value of k may be too large, especially if l is large,
for instance due to computational reasons. This raises an interesting question: How do
the results above generalize for the case of k < l − 1? In this case, a non-interactive naive
algorithm may be defined by fixing a set of subsets of size l that cover all the possible subsets
of size k + 1, and sampling each of those sufficiently for uniform convergence. A version of
ActiveBNSL might then be suggested, which samples the same set of fixed subsets of size l,
and stops sampling such a subset only if a family was accepted for each of the variables in
the subset. Characterizing the improvement of the active algorithm over the naive one in
this case would depend on the initial choice of fixed subsets and their relationship to the
underlying distribution. We leave a full analysis of this scenario for future work.

We characterized a family of distributions in which ActiveBNSL can obtain a significant
sample complexity reduction, and demonstrated the reduction in experiments. A full
characterization of distributions in which a sample complexity reduction is possible is an
interesting open problem for future work.
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Appendix A. Convergence of the conditional entropy plug-in estimator

In this section, we prove Lemma 1, which gives a bound on the number of random samples
required to estimate the conditional entropy of a discrete random variable. We first bound
the bias of the conditional-entropy plug-in estimator. Paninski (2003) showed that the bias
of the unconditional entropy estimator, for any random variable A with support size Ma,
satisfies

−Ma − 1
N

< E[Ĥ(A)]− E[H(A)] < 0. (10)

The following lemma derives an analog result for the conditional entropy.

Lemma 18 Let A,B be discrete random variables with support cardinalities Ma and Mb,
respectively. Let Ĥ(A | B) be the plug-in estimator of H(A | B), based on N i.i.d. copies of
(A,B). Then

−(Ma − 1)Mb

N
≤ E[Ĥ(A | B)]−H(A | B) ≤ 0.

Proof Let B be the support of B. For any b ∈ B, denote pb := P (B = b) and let Nb be the
number of examples in the sample with B = b. We have

E[Ĥ(A | B)] =
∑
b∈B

E
[
Nb

N
Ĥ(A | B = b)

]
. (11)

Bounding a single term in the sum, we have

E
[
Nb

N
· Ĥ(A | B = b)

]
=

∑
n∈[N ]

n

N
· P (Nb = n) · E[Ĥ(A | B = b)

∣∣Nb = n]

≥
∑
n∈[N ]

n

N
· P (Nb = n) · (H(A | B = b)− (Ma − 1)/n), (12)

= pb ·H(A | B = b)− (Ma − 1)/N,

where the inequality on line (12) follows from Eq. (10), and the last equality follows since∑
n∈[N ]

n

N
P (Nb = n) = E[Nb/N ] = pb,

and ∑
n∈[N ]

n

N
P (Nb = n)(Ma − 1)/n = (Ma − 1)/N.

Plugging this into Eq. (11), we get

E[Ĥ(A | B)] =
∑
b∈B

E
[
Nb

N
· Ĥ(A | B = b)

]
≥
∑
b∈B

(pb ·H(A | B = b)− (Ma − 1)/N)

= H(A | B)− (Ma − 1)Mb/N.
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Proving that the bias is non-positive is done in a similar way. This completes the proof.

We now use the lemma above to prove Lemma 1.
Proof [Proof of Lemma 1] By McDiarmid’s inequality (McDiarmid, 1989), if the maximal
absolute change that a single random sample can induce on the plug-in estimator is θ, then

P (|Ĥ(A | B)− E[Ĥ(A | B)]| > ε) ≤ 2 exp(−2ε2/(Nθ2)).

Let B be the support of B. For any b ∈ B, denote pb := P (B = b) and let p̂b be the empirical
fraction of samples with B = b. We have

Ĥ(A | B) =
∑
b∈B

p̂b · Ĥ(A | B = b),

where B is the support of B and By Shamir et al. (2010), the maximal change that can
be induced on Ĥ(A | B = b) when replacing an example (a, b) in the sample with an
example (a′, b) is log(p̂bN)/(p̂bN). Therefore, this type of replacement induces a change
of at most log(p̂bN)/N ≤ log(N)/N on Ĥ(A | B). Now, if an example (a, b) is replaced
with an example (a′, b′), where b 6= b′, then the maximal change it induces on Ĥ(A | B) is
log(Ma)/N , since for any b, Ĥ(A | B = b) ∈ [0, log(Ma)]. Therefore, if N ≥Ma, both types
of sample replacements induce a change of at most log(N)/N on Ĥ(A | B). It follows that

P (|Ĥ(A | B)− E[Ĥ(A | B)]| > ε) ≤ 2 exp(− 2Nε2

log2(N)
). (13)

If ε ≥ (Ma − 1)Mb/N , then

P (|Ĥ(A | B)−H(A | B)| > 2ε) ≤ 2 exp(− 2Nε2

log2(N)
). (14)

Lastly, we derive a lower bound for N such that the RHS is at most δ. Let α ≥ 1 and assume
N ≥ e2. We start by showing that if N ≥ α log2(α), then N/ log2(N) ≥ α/4. N/ log2(N) is
monotonic increasing for N ≥ e2. Therefore, for N ≥ α log2(α),

N

log2(N)
≥ α log2(α)

log2(α log2(α))
= α log2(α)

(log(α) + log(log2(α)))2

Since α ≥ 1, we have log2(α) ≤ α. It follows that log(log2(α)) ≤ log(α). Therefore,

(log(α) + log(log2(α)))2 ≤ (log(α) + log(α))2 = 4 log2(α).

We conclude that for N ≥ α log2(α), N/ log2(N) ≥ α/4. Setting α := 2 log(2/δ)/ε2, we
obtain that if N ≥ α log2 α, then N/ log2(N) ≥ log(2/δ)/(2ε2), which implies that the RHS
of Eq. (14) is at most δ.
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Appendix B. Proofs for technical lemmas in Section 8

In this section, we provide the proofs of technical lemmas stated in Section 8.
Proof [of Lemma 14] To prove Eq. (7), note that

H(Xa, Xb | Π) = H(Xa, Xb,Π)−H(Π) = H(Xb | Xa,Π) +H(Xa,Π)−H(Π)
= H(Xb | Xa) +H(Xa | Π).

The last equality follows since by assumption (IV), Π → Xa → Xb is a Markov chain, so
that H(Xb | Xa,Π) = H(Xb | Xa). From the above it we have

H(Xa | Π) = H(Xa, Xb | Π)−H(Xb | Xa).

It follows that

|H(Xb | Π)−H(Xa | Π)| = |H(Xb | Π)−H(Xa, Xb | Π) +H(Xb | Xa)|
= |H(Xb,Π)−H(Xa, Xb,Π) +H(Xb | Xa)|
= |H(Xb | Xa)−H(Xa | Xb,Π)|
≤ max(H(Xb | Xa), H(Xa | Xb,Π))
≤ max(H(Xb | Xa), H(Xa | Xb)) ≤ λ.

The last inequality follows from the definition of λ. This proves Eq. (7).
To prove Eq. (8), note that

H(Y,Xb | Π, Xa) = H(Y,Xb,Π, Xa)−H(Π, Xa)
= H(Xb | Π, Y,Xa) +H(Π, Y,Xa)−H(Π, Xa)
= H(Xb | Xa) +H(Y | Π, Xa),

where the last equality follows since by assumption (IV), (Y,Π)→ Xa → Xb is a Markov
chain, so that H(Xb | Π, Y,Xa) = H(Xb | Xa). The equality above implies that

H(Y | Π, Xa) = H(Y,Xb | Π, Xa)−H(Xb | Xa).

It follows that

|H(Y | Π, Xb)−H(Y | Π, Xa)|
= |H(Y,Π, Xb)−H(Π, Xb)−H(Y,Xb | Π, Xa) +H(Xb | Xa)|
= |H(Y,Π, Xb)−H(Π, Xb)−H(Y,Xb,Π, Xa) +H(Π, Xa) +H(Xb | Xa)|
= | −H(Xa | Y,Π, Xb)−H(Xb | Π) +H(Xa | Π) +H(Xb | Xa)|
≤ H(Xa | Y,Π, Xb) + |H(Xb | Π)−H(Xa | Π)|+H(Xb | Xa)
≤ H(Xa | Xb) + |H(Xb | Π)−H(Xa | Π)|+H(Xb | Xa) ≤ 3λ.

The last inequality follows from Eq. (7) and the definition of λ. This proves Eq. (8).

Proof [of Lemma 15] If Xb has no children in G, then set G̃ := G. It is easy to see that in
this case, G̃ satisfies all the required properties.
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Otherwise, denote the set of children ofXb in G byW . Denote by Πb,Πa the parent sets of
Xb, Xa in G, respectively, and by Πw the parents of Xw ∈W . Denote by fv := 〈Xv,Πv〉 ∈ G
the family of Xv in G. We construct G̃ from G by replacing the families fv, for Xa, Xb and
all Xw ∈W , by new families f̃v := 〈Xv, Π̃v〉, as follows. First, define Π̃a and Π̃b:

1. If Xb has no directed path to Xa, define Π̃a := Πa and Π̃b := Πb.

2. Otherwise (Xb has a directed path to Xa), if Xb is a parent of Xa, make Xa a parent
of Xb instead. In any case, switch between the other parents of Xa and Xb. Formally,
set Π̃a = Πb. If Xb ∈ Πa, Π̃b := Πa \ {Xb} ∪ {Xa}. Otherwise, Π̃b := Πa.

Next, for each w ∈ W \ {Xa}, make Xa a parent of w instead of Xb. Formally, Π̃w :=
Πw \ {Xb} ∪ {Xa}. This completes the definition of G̃.

It is easy to see that the maximal in-degree of G̃ is at most that of G, which is at most
k, as required. We now show that G̃ is a DAG, thus proving that G̃ ∈ Gk,d.

Claim: G̃ is a DAG.
Proof of claim: Consider first the case where Xb does not have a directed path to Xa.
Let (A,B) be an edge in G̃ that is not in G. Then B ∈W and A = Xa. In G, there is no
directed path from B to Xa, since B is a child of Xb and this would create a directed path
from Xb to Xa. But all paths from B in G̃ are the same as in G. Thus, there is no cycle in
G̃.

Now, consider the case where Xb has a directed path to Xa. Let (A,B) be an edge in G̃
that is not in G. We will show that it does not create a cycle in G̃. Divide into cases:

1. If B = Xb, then (A,B) is not an edge in a cycle in G̃, since Xb has no children in G̃.

2. If B ∈W , then A = Xa, since Xa is the only parent added to W . Thus, (A,B) is part
of a cycle in G̃ only if B is an ancestor of Xa in G̃. Assume in contradiction that this
is the case, and let v1, . . . , vl be the nodes in a shortest directed path from B to Xa.
vl is a parent of Xa in G̃, thus it is a parent of Xb in G. The nodes v1, . . . , vl cannot
be Xa or Xb (because it has no children in G̃), thus their parents are the same in G
and G̃. It follows that the directed path B, v1, . . . , vl, Xb exists in G. However, B is
a child of Xb in G, thus this implies a cycle in G, a contradiction. Therefore, in this
case (A,B) is not part of a cycle.

3. If B = Xa, then A ∈ Πb. Thus, (A,B) is part of a cycle if there is a directed path from
Xa to A in G̃. Assume in contradiction that this is the case, and let v1, . . . , vl be the
nodes in a shortest directed path from Xa to A in G̃. The nodes v2, . . . , vl and their
parents cannot be Xa or Xb, thus their parents are the same in G and G̃. It follows
that the directed path v1, v2, . . . , vl, A exists in G. Now, if v1 is a child of Xb in G,
this means that there is a directed path in G from Xb to its parent A, which means
that there is a cycle in G. If v1 is a child of Xa in G, then, since Xb has a directed
path to Xa in G, this again means that there is a path from Xb to A in G, leading to
a cycle in G. In both cases, this contradicts the fact that G is a DAG. Thus, in this
case as well, (A,B) is not part of a cycle.

Therefore, in this case as well, G̃ is a DAG. This completes the proof of the claim. 2

35



Ben-David and Sabato

To show that G̃ satisfies the properties stated in the lemma, observe first that properties
(2) and (3) are immediate from the construction of G̃. Property (1) requires a bound on the
difference in scores of G and G̃. We have

|S(G)− S(G̃)| ≤
∑

w∈W\{Xa}
|H(fw)−H(f̃w)|+ |H(fa)−H(f̃a) +H(fb)−H(f̃b)|.

To bound the first term, let Π′b := Πw \ {Xb}. Then

|H(fw)−H(f̃w)| = |H(w | Π′b, Xb)−H(w | Π′b, Xa)| ≤ 3λ,

where the last inequality follows from Eq. (8). Since there are at most d− 2 such terms, the
first term is at most 3(d− 2)λ.

To bound the second term, first note that it is equal to zero if Xb has no directed path
to Xa in G. If Xb does have a directed path to Xa in G, then let Π′a := Πa \ {Xb}. If Xb is
not a direct parent of Xa, then

|H(fb)−H(f̃b) +H(fa)−H(f̃a)|
= |H(Xa | Π′a) +H(Xb | Πb)−H(Xa | Πb)−H(Xb | Π′a)| =: ∆.

If Xb is a direct parent of Xa, then

|H(fa)−H(f̃a) +H(fb)−H(f̃b)|
= |H(Xa | Π′a, Xb) +H(Xb | Πb)−H(Xa | Πb)−H(Xb | Π′a, Xa)|
= |H(Xa | Π′a, Xb) +H(Xb | Πb)−H(Xa | Πb)−H(Xb | Π′a, Xa)|
= |H(Xb | Πb)−H(Xa | Πb) +H(Xa,Π′a)−H(Xb,Π′a)| = ∆.

Now, ∆ can be bounded as follows:

∆ ≤ |H(Xb | Πb)−H(Xa | Πb)|+ |H(Xa | Π′a)−H(Xb | Π′a)| ≤ 2λ,

where the last inequality follows from Eq. (7). Thus, the second term is upper bounded by
2λ in all cases. Property (1) is proved by summing the bounds of both terms.

Lastly, we prove Theorem 13.
Proof [of Theorem 13] Set λ < ε/2. We prove that there exists a non-optimal EC with a score
at least S∗ − 2λ. Let G∗ ∈ Gd,k be an optimal structure for D2(λ). By Theorem 12, D2(λ)
is (β − 3dλ,X1 \ {Xa})-stable. Therefore, by Lemma 8, the set of families of V̄ ≡ {Xb, Xa}
in G∗ is an optimal legal family set. Denote this set F := {fa, fb}. First, we prove that Xa

and Xb must be in a parent-child relationship.

Claim: In F , either Xa is a parent of Xb, or vice versa.
Proof of claim: Assume for contradiction that the claim does not hold. We define a
new legal family set F ′ for V̄ and show that its score is larger than the score of F , thus
contradicting the optimality of F . Denote the parent set of Xa in fa by Π̄a. Define a new

36



Active Structure Learning of Bayesian Networks in an Obervational setting

family f ′a := 〈Xa,Π′a〉, where Π′a is obtained by adding Xb as a parent to Π̄a. In addition, if
this increases the number of parents of Xa over k, then one of the other elements in Π̄a is
removed in Π′a. Let F ′ = {f ′a, fb}. According to Property (II) in the definition of D2, Xa

has no children in X1 \ {Xa}, therefore, Xa has no children in G∗, and so adding the edge
(Xa, Xb) cannot create a cycle. Therefore, F ′ is a legal family set. We have

S(F ′)− S(F ) = S({〈Xa,Π′a〉})− S({〈Xa,Πa〉}) = H(Xa | Πa)−H(Xa | Π′a)
≥ H(Xa | X1 \ {Xa})−H(Xa | Xb) ≥ α− λ,

where the last inequality follows from assumptions (III) and (V). Now, since by definition,
λ < α, it follows S(F ′) > S(F ), which contradicts the optimality of F . This completes the
proof of the claim. 2

Now, define a new graph as follows: Let F̃ a family set which is the same as F , except
that the roles of Xb and Xa are swapped. Define G̃ := G∗\F ∪F̃ . Notice that by Theorem 12,
D2 is (γ, V )-stable for V = X1 \ {Xa}. Then, by Property 1 in Def. 4, both Xa and Xb have
no children in V . This means that in G∗, one of Xa and Xb has the other as a child, and the
other has no children. Thus, swapping them cannot create a cycle, implying that G̃ ∈ Gd,k
and that F̃ is a legal family set.

We now show that S∗ − 2λ ≤ S(G̃) < S∗, thus proving the theorem. Since we have

S∗ − S(G̃) = S(F )− S(F̃ ),

it suffices to show that 0 < S(F )− S(F̃ ) ≤ 2λ.
Let Π̄a, Π̄b be the parent sets of Xa and Xb in F , respectively. Let Πa := Π̄a \ {Xb} and

Πb := Π̄b \ {Xa}. If Xa is a parent of Xb in F , then

S(F )− S(F̃ ) = H(Xa | Πb, Xb) +H(Xb | Πa)−H(Xa | Πa)−H(Xb | Πb, Xa).

Since H(Xb | Πb, Xa) = H(Xb,Πb, Xa) − H(Xa | Πb) − H(Πb), and symmetrically for
H(Xa | Πb, Xb), it follows that

H(Xa | Πb, Xb)−H(Xb | Πb, Xa) = H(Xa | Πb)−H(Xb | Πb).

Therefore,

S(F )− S(F̃ ) = H(Xa | Πb)−H(Xb | Πb) +H(Xb | Πa)−H(Xa | Πa). (15)

By a symmetric argument, Eq. (15) holds also if Xb is a parent of Xa in F . Combining
Eq. (15) with Eq. (7) in Lemma 14, we have that |S(F )−S(F̃ )| ≤ 2λ. We have left to show
that S(F ) > S(F̃ ), which will complete the proof of the theorem.

We have, for any set Π ⊆ X1,

H(Xb, Xa | Π) = H(Xb | Xa,Π) +H(Xa | Π) = H(Xb | Xa) +H(Xa | Π),

where the last inequality follows since by assumption (IV), Π→ Xa → Xb is a Markov chain.
Therefore,

H(Xb | Π) ≡ H(Xb, Xa | Π)−H(Xa | Xb,Π) = H(Xb | Xa) +H(Xa | Π)−H(Xa | Xb,Π).
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Using the above for Πa and Πb, we get

H(Xb | Πa)−H(Xb | Πb) = H(Xa | Πa)−H(Xa | Πb) +H(Xa | Xb,Πb)−H(Xa | Xb,Πa).

Combined with Eq. (15), it follows that

S(F )− S(F̃ ) = H(Xa | Xb,Πb)−H(Xa | Xb,Πa). (16)

Now, in F , one of Xb, Xa is the parent of the other, and in F̃ , the other case holds. We
show that in both cases, S(F )− S(F̃ ) > 0.

1. Suppose that Xa is the parent of Xb. In this case, we can assume without loss of
generality that Πb = ∅ in F , since H(Xb | Xa) = H(Xb | Xa,Πb) for any set Πb ⊆ X1,
due to assumption (IV). Therefore, from Eq. (16),

S(F )− S(F̃ ) = H(Xa | Xb)−H(Xa | Xb,Πa)
= H(Xa, Xb)−H(Xb)−H(Xa, Xb,Πa) +H(Xb,Πa)
= H(Πa | Xb)−H(Πa | Xa, Xb) = H(Πa | Xb)−H(Πa | Xa).

The last inequality follows since Xb → Xa → Πa is a Markov chain by assumption
(IV). Now, by assumption (IV), we have

H(Πa | Xb) ≥ H(Πa | Xb, C) (17)
= H(Πa | Xa, C = 1)P[C = 1] +H(Πa | C = 0)P[C = 0]
= H(Πa | Xa)P[C = 1] +H(Πa)P[C = 0]. (18)

In addition, H(Πa | Xa) < H(Πa). This is because Πa is an optimal parent set for
Xa from X1, and by assumption (I) on D1, it is unique. Therefore, H(Xa | Πa) >
H(Xa), which implies H(Πa | Xa) < H(Πa). Combined with Eq. (18), and since
P[C = 0] > 0 by assumption (IV), we have H(Πa | Xb) > H(Πa | Xa). It follows that
S(F )− S(F̃ ) > 0, as required.

2. Suppose that Xb is a parent of Xa in F . Assume for contradiction that S(F ) = S(F̃ ).
Then F̃ is an optimal legal family set in which Xa is a parent of Xb. Therefore, by the
first case above, S(F̃ ) > S(F ), in contradiction to the optimality of F .

It follows that S(F ) > S(F̃ ), which proves the claim. Thus, G̃ is not an optimal graph,
as required. This completes the proof of the theorem.
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