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Abstract

We introduce a novel approach to estimation problems in settings with missing data. Our
proposal – the Correlation-Assisted Missing data (CAM) estimator – works by exploiting
the relationship between the observations with missing features and those without missing
features in order to obtain improved prediction accuracy. In particular, our theoretical
results elucidate general conditions under which the proposed CAM estimator has lower
mean squared error than the widely used complete-case approach in a range of estimation
problems. We showcase in detail how the CAM estimator can be applied to U -Statistics
to obtain an unbiased, asymptotically Gaussian estimator that has lower variance than the
complete-case U -Statistic. Further, in nonparametric density estimation and regression
problems, we construct our CAM estimator using kernel functions, and show it has lower
asymptotic mean squared error than the corresponding complete-case kernel estimator. We
also include practical demonstrations throughout the paper using simulated data and the
Terneuzen birth cohort and Brandsma datasets available from CRAN.

Keywords: Missing data, U -Statistics, kernel density estimation, local constant regres-
sion, nonparametric

1. Introduction

Data is a primary commodity in today’s economy, it is valued and traded like any other asset.
Statistics and machine learning allow us to extract this value by improving operational
efficiency, increasing revenue, or understanding the behaviour of customers. A common
complication in modern applications is that the data may be incomplete. For example, some
users may choose not to disclose their personal details (age, gender, geographic location,
etc.) to a smartphone application; optional questions on an on-line form are often left blank;
or data is sometimes removed or hidden to guarantee privacy. In other situations, missing
data problems can arise when two or more different data sources have been combined.

Missing data is not a new problem. As early as the 1950s, Anderson (1957) found
the maximum likelihood estimator in a multivariate normal distribution when some of the
observations were missing. In a seminal paper, Rubin (1976) studied missing data in a
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rigorous general framework, introduced the notion of data missing at random, and specified
conditions under which the process that causes data to be missing may be ignored. See also
the comprehensive book on the subject by Little and Rubin (2002) and the recent special
issue of Statistical Science (Josse and Reiter, 2018).

A simple and widely used approach to deal with missing data is to discard any incomplete
observations – a technique referred to as complete-case analysis (Little and Rubin, 2002,
Chapter 3). There is an obvious drawback with this method that perhaps much of the data
is ignored. An alternative approach is to impute the missing values (Ford, 1983). There is
an extensive body of work on different imputation techniques; see, for instance, Little and
Rubin (2002, Chapters 4 and 5) and Molenberghs et al. (2015, Chapter IV) for an overview.
Other techniques are based on the expectation–maximisation (EM) algorithm (Dempster
et al., 1977). Another important line of work is known as doubly-robust estimation (Tsiatis,
2006), which combines the inverse probability weighted estimator with a bias correction.
The term double robustness here refers to the fact that the method is consistent if either
the missingness model or the regression model is correctly specified; see Kang and Schafer
(2007) for an accessible overview. Missing data has also been studied in a range of high-
dimensional settings, including regression (Loh and Wainwright, 2012), covariance matrix
estimation (Lounici, 2014; Cai and Zhang, 2016), classification (Cai and Zhang, 2018), and
(sparse) principal component analysis (Elsener and van de Geer, 2018; Zhu et al., 2019).

In this paper, we develop a novel approach to missing data problems. Our new proposal,
the correlation-assisted missing data (CAM) estimator, exploits the relationship between
the complete cases and the observations with missing values, in order to improve on the per-
formance of the complete-case estimator. More precisely, we construct an (approximately)
mean-zero statistic, using both the complete-cases and the data with missing entries, which
is correlated with the complete-case estimator. We then exploit this correlation to construct
our new estimator, by making a linear adjustment to the complete-case estimator.

Our first main result, Proposition 1, elucidates when the proposed CAM estimator will
be more accurate than the complete-case estimator in terms of mean squared error. The
result does not require any assumptions on the data generating mechanism. In particular,
we do not assume the data to be missing completely at random. Further, Proposition 1
motivates an optimal (but typically unknown) choice of the adjustment term used in the
construction of the CAM estimator. This optimal choice leads to the greatest reduction in
mean squared error. We also show that we can then construct a data-driven version of the
CAM estimator that performs well in many practical settings.

As a second main contribution, we showcase how the CAM estimation technique can be
applied in specific settings. First, when the complete-case estimator is a U-Statistic, we show
that the optimal adjustment term also takes the form of a U-statistic. This motivates us
to consider a CAM estimator with a general U-statistic as the adjustment term and allows
for detailed theoretical analysis. In particular, when the data is missing completely at
random, we show that our CAM estimator is unbiased, asymptotically Gaussian, and has a
smaller asymptotic variance than the complete-case U -Statistic (cf. Theorem 3). We provide
two concrete examples where a clear improvement can be shown analytically. Moreover,
the numerical properties of the CAM estimator are demonstrated using simulated and real
data, including an application using the Terneuzen birth cohort dataset available from CRAN.
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We then investigate an application of the CAM technique to kernel based methods in
nonparametric density estimation and regression problems. Under standard nonparametric
assumptions on the data generating distribution, we quantify the leading order asymptotic
improvement in mean squared error obtained by the CAM estimator compared with the
complete-case approach. We provide further theoretical justification for the construction
of the CAM estimator in these settings, in terms of approximating the optimal adjustment
term. This leads to a fast, fully data-driven construction of our estimator. Finally, we
demonstrate our method and the improvement it offers over the compete-case estimator
in a simulation study and show how it can be used in an application with the Brandsma
dataset on CRAN.

Related methods to the CAM approach have been utilised in various double-sample
design settings. Fuller (1998) considers the problem of marginal mean estimation when
one observes a small set of pairs of data and a larger set of univariate observations. Chen
and Chen (2000) proposed an estimator of the regression parameters in a generalised linear
model, where the practitioner has one sample in which the observations may be noisy or
proxy versions of the variables of interest, and a second validation sample where complete
and exact observations of the features are available. Chen and Chen (2000) show that their
estimator of the regression parameter is asymptotically unbiased and has smaller (asymp-
totic) variance than a naive estimator based solely on the validation sample. Similar ideas
have been used more recently in different statistical problems. Jiang et al. (2011) propose
a nonparametric kernel-based regression estimate in double sampling designs, where the re-
sponse is missing in one of the samples, but a surrogate outcome is observed instead. Yang
and Ding (2020) propose an estimator of the average causal treatment effect in a general set-
ting, by combining multiple observational datasets; see also Lin and Chen (2014), who focus
on the logistic regression setting. Very recently, Zhang et al. (2019) considered estimating
the marginal mean response in a semi-supervised setting, where one has a large number of
unlabelled observations alongside a small labelled training dataset. Our work extends these
existing works to a much wider range of estimation problems, including estimators based
on U -Statistics, and nonparametric density estimation and regression.

Finally, we note here that, in contrast to many imputation approaches, the CAM tech-
nique has a clear and direct aim – that is to reduce the mean squared error of the complete-
case estimator. On the other hand, while imputation is widely applicable, the properties of
estimators derived from imputed data are typically not well understood. Indeed, imputa-
tion methods are often treated as a black-box solution to missing data problems, and the
subsequent steps of estimation and inference are conducted independently of the imputation
step, which may lead to unreliable results. In our numerical work in Section 4.3, we see
that a regression estimator computed with imputed data can in fact perform worse than
simply using a complete-case approach. Moreover, in problems such as density estimation,
it is unclear whether imputation offers a viable solution – the distribution of the imputed
data may not be the same as the target distribution.

The remainder of this paper is as follows. In Section 2 we fix our general statistical
and missing data settings and introduce the CAM estimator. Section 3 is dedicated to
studying U -Statistics. We then demonstrate how the CAM estimator can be applied us-
ing kernel methods in density estimation and regression problems in Section 4. We also
provide, throughout the paper, a number of practical demonstrations of the method using
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Figure 1: Left: 500 observations from the joint distribution of (U, V ) (see (1)), with νX =
νY = 1, Γ = 1

10I + 9
10(1, 1)T (1, 1) and n = 1000. Right: Sampling distributions

of ν̂X,1 in black and ν̃X in red.

real and simulated datasets. We conclude our paper with a discussion of various practical
considerations and possible extensions in Section 5. All technical details and proofs of our
theoretical results are presented in Section A in the appendix. We first end this section
with an illustrative example that demonstrates how our estimator is constructed.

1.1 Illustrative example

Let (X1, Y1)T , . . . , (X2n, Y2n)T be independent and identically distributed bivariate Gaus-
sian random variables with unknown mean ν = (νX , νY )T ∈ R2, but known covariance
Γ = (Γij); we write N2(ν,Γ) as shorthand. Suppose we observe {(X1, Y1), . . . , (Xn, Yn)}
and {Yn+1, . . . , Y2n}; in other words, in the language of missing data, the first component
is missing completely at random in the second set of observations. Our task is to estimate
νX .

The complete-case estimator in this example ignores the second set of observations
and takes the sample mean of the X observations only. That is ν̂X,1 := 1

n

∑n
i=1Xi ∼

N(νX ,Γ11/n); this is unbiased and is the maximum likelihood estimator if there are no
Y observations. Now consider ν̂Y,1 := 1

n

∑n
i=1 Yi and ν̂Y,2 := 1

n

∑2n
i=n+1 Yi. Then, letting

U := ν̂X,1 and V := ν̂Y,1 − ν̂Y,2, we have

(U, V )T ∼ N2((νX , 0)T , Γ̃), (1)

where Γ̃ = n−1Γ + n−1Γ22(0, 1)T (0, 1); see Figure 1. This motivates the estimator

ν̃X := ν̂X,1 −
Γ̃12

Γ̃22

(ν̂Y,1 − ν̂Y,2) ∼ N
(
νX ,

1

n

(
Γ11 −

Γ̃2
12

Γ̃22

))
. (2)
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We see that ν̃X is also unbiased for νX , but has a strictly smaller variance than ν̂X,1 whenever
Γ12 6= 0.

There is a neat connection between our estimator and the Rao–Blackwell Theorem in
this example. The statistic T = (T1, T2)T = (ν̂X,1−ν̂Y,1Γ12/Γ22, ν̂Y,1+ν̂Y,2)T is sufficient (the
technical details are presented in Section A.1) for ν, and the Rao–Blackwellised version of
ν̂X,1 is E(ν̂X,1|T ) = ν̃X . In fact, one can show that ν̃X is the maximum likelihood estimator
of νX in this setting (cf. Anderson (1957)).

2. Missing data and the CAM estimator

Suppose Z = (X,Y ) is a random pair taking values in Rd × R with joint distribution P .
We are interested in estimating θ ≡ θ(P ) ∈ R, which may be any real valued function of
the distribution P . Examples studied in detail in this paper include the mean of the first
component of X; the covariance between X and Y ; the value of a regression function of Y
on X at the point x ∈ Rd; or the value of the density fX(x), if it exists, of X at x ∈ Rd.

We study a setting where some of the features ofX are missing, but where the response Y
is always observed. In order to model this, suppose that we have (Z,M), where the marginal
distribution of Z is P , and M is a missingness indicator taking values in {0, 1}d. More
precisely, we only observe the features j ∈ {1, . . . , d}, with M j = 0, that is ZM := (XM , Y ),
where for x = (x1, . . . , xd)T ∈ Rd and m = (m1, . . . ,md)T ∈ {0, 1}d, we write xm :=
(xj : mj = 0) ∈ Rdm , where dm :=

∑d
j=1 1{mj=0}. Define the missingness probabilities

pm(x, y) := P(M = m|X = x, Y = y). Further write Pm and Qm for the joint distribution
of (Xm, Y ) and (Xm, Y )|{M = m}, respectively. Note that under certain missing data
assumptions we have Pm = Qm, but that this is not the case in general.

We say the data is missing completely at random (MCAR) if M is independent of the
pair (X,Y ). In this case we write pm := P(M = m). The data is missing at random (MAR)
if the missingness indicator only depends on the observed data. Formally, this means that
M is conditionally independent of Z given ZM . Whereas, the data is said to be missing
not at random (MNAR) if M depends on the unobserved value. See, for example, Little
and Rubin (2002, Chapter 1.3) for further discussion of these three scenarios. Our most
general results in this paper make no assumption on the missingness type. However, if the
data is missing not at random, then the parameter of interest θ(P ) may not be identifiable
from the missing data and estimation will be problematic; see, for example, Wang et al.
(2014) and Miao et al. (2016). For our technical analysis in the U -Statistics setting and the
nonparametric learning problems, we focus on the MCAR case. Further discussion of the
more challenging non-MCAR scenarios is given in Section 5.

Let (Z1,M1), . . . , (Zn,Mn) be independent and identically distributed pairs with the
same distribution as (Z,M). It is convenient to consider the missingness indicators
M1, . . . ,Mn as fixed and equal to m1, . . . ,mn, and from this point on all probability state-
ments should be interpreted to be conditional on (M1, . . . ,Mn) = (m1, . . . ,mn). We ob-
serve Zm1

1 , . . . , Zmn
n . The popular complete-case approach uses only the observations with

mi = (0, . . . , 0) ∈ Rd. Our goal in this paper is to construct an estimator which also
uses the observations with missing values in order to improve on the performance of the
complete-case estimator.
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It is also useful to introduce some further notation here. For m ∈ {0, 1}d, let Am :=
{i ∈ {1, . . . , n} : mi = m} be the set of indices of the data missing m, let nm := |Am|. In
particular, A0 is the set of indices of the complete cases, where here and throughout we
use the shorthand 0 in place of 0d := (0, . . . , 0) ∈ Rd. We have that Am1 ∩ Am2 = ∅ for
m1 6= m2. Finally, for a set A ⊆ {1, . . . , n} and m ∈ {0, 1}d, let TA,m := {Zmi : i ∈ A}.
Of course, TA,m is not necessarily observed for every A and m, but we do observe TAm,m.
We assume that A0 is non-empty, and moreover, for each m ∈ {0, 1}d with Am non-empty,
we have that limn→∞

nm
n = qm ∈ (0, 1), almost surely. That is, either a set of features m

is never missing, or, for those that are missing, the relative sample sizes are more or less
balanced. If the data is MCAR, then we have that qm = pm, for m ∈ {0, 1}d.

We now define a generic version of our correlation-assisted missing data (CAM) estima-
tor. The main idea underpinning our proposal is to mimic the approach in the toy example
in Section 1.1 by combining appropriate, correlated estimators, which are constructed using
different parts of the data. We first assume that there is a suitable complete-case estimator
of θ that only uses the data in TA0,0; this is denoted by θ̂0 = θ̂A0,0. Furthermore, suppose
that, for each m and each A ⊆ {1, . . . , n}, we have access to a statistic denoted by ϕ̂A,m,
which only depends on the data in TA,m. Notice that, for m 6= 0, ϕ̂A,m is not an estimator
for θ. A detailed discussion of the choice of ϕ̂A,m is given at the end of this section.

Consider m ∈ {0, 1}d \ {0d} such that Am is non-empty. The CAM estimator is con-
structed using θ̂0, ϕ̂Am,m and ϕ̂A0,m. The hope is that the latter two statistics have similar

expected values, and that ϕ̂A0,m is (highly) correlated with the complete-case estimator θ̂0.
We then exploit this correlation in the same way as we did in the illustrative example –
see (2).

In fact, we can construct similar statistics using many m ∈ {0, 1}d\{0d} simultaneously.
Let M⊆ {0, 1}d \ {0d} denote the set of values of m that we would like to use (a detailed
discussion of how to choose M in practice is postponed until Section 5). Consider the

two column vectors of length |M|, given by ϕ̂0,M :=
(
{ϕ̂A0,m : m ∈ M}

)T
and ϕ̂M :=(

{ϕ̂Am,m : m ∈ M}
)T

. Finally, for γ ∈ R|M|, define the correlation-assisted missing data
(CAM) estimator

θ̂Mγ := θ̂0 − γT (ϕ̂0,M − ϕ̂M).

In practice we will use a data-driven choice of γ, which aims to minimise the mean squared
error (cf. the discussion after the statement of Proposition 1). It’s perhaps useful to relate
back to the illustrative example in Section 1.1: there we have M = {m} = {1}, θ̂0 = ν̂X,1,
ϕ̂0,m = ν̂Y,1, ϕ̂m = ν̂Y,2 and γ = Γ̃12/Γ̃22 (note also that A0 = {1, . . . , n} and Am =
{n+ 1, . . . , 2n}).

We now study properties of the CAM approach in the general estimation problem. For an
estimator θ̂, let MSE(θ̂) = E{(θ̂− θ)2} denote its mean squared error. Let b(θ̂) := E(θ̂− θ)
be the bias of an estimator θ̂ and let BM := E(ϕ̂0,M − ϕ̂M). Let Ω denote the |M|-
dimensional vector of covariances Cov(θ̂0, ϕ̂0,M) and let Λ be the |M| × |M| covariance
matrix Var(ϕ̂0,M − ϕ̂M).

Proposition 1 We have that

MSE(θ̂Mγ )−MSE(θ̂0) = γT (Λ +BMB
T
M)γ − 2γT {Ω + b(θ̂0)BM}.
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In particular, if Λ is nonsingular and BM = 0, then γ = γ∗ := Λ−1Ω is the optimal weight
vector achieving the maximum reduction in MSE, and

MSE(θ̂Mγ∗ )−MSE(θ̂0) = −ΩTΛ−1Ω ≤ 0.

Proposition 1 compares the MSE of our CAM estimator and the complete-case estimator.
We have made no assumption on the missing data mechanism and, in particular, we do not
assume here that the data is missing completely at random. It is worth noting, however,
that if the data is not MCAR, the complete-case estimator may be (even asymptotically)
biased (cf. Section 5). In which case, simply improving on the performance of the complete-
case estimator will not necessarily be effective. Furthermore, for general missing data
mechanisms, we do not have control of BM. However, we will see that under appropriate
conditions in many estimation problems, ϕ̂0,M − ϕ̂M will be (asymptotically) mean zero.

The role of ϕ̂m here is to estimate E(ϕ̂0,m). If we can reduce the MSE of this estima-
tor, then this may lead in turn to an overall reduction in MSE for estimating θ. To see
this, suppose M = {m} and b(θ̂0) = 0, then the best MSE reduction for estimating θ is

Cov2(θ̂0,ϕ̂0,m)
Var(ϕ̂0,m)+MSE(ϕ̂m) , where MSE(ϕ̂m) = E{(ϕ̂m−Eϕ̂0,m)2} = Var(ϕ̂m)+B2

{m}. We see, then,

that one should choose ϕ̂m to minimise the MSE in estimating E(ϕ̂0,m). On the other hand,
if the complete case-estimator is biased, then the effect of minimising the MSE of ϕ̂m is
unclear.

We see from the second part of Proposition 1 that to achieve maximum mean squared
error reduction when BM = 0, we should set γ = γ∗ := Λ−1Ω. If, moreover, M = {m},
then we have that

MSE(θ̂Mγ∗ )−MSE(θ̂0) = −Var(θ̂0)
Var(ϕ̂0,m)

Var(ϕ̂0,m) + Var(ϕ̂m)
Corr2(θ̂0, ϕ̂0,m), (3)

where Corr(θ̂0, ϕ̂0,m) =
Cov(θ̂0,ϕ̂0,m)√

Var(θ̂0)Var(ϕ̂0,m)
. Here we have used that ϕ̂0,m and ϕ̂m are

independent since they are constructed using disjoint sets of observations. Thus, to achieve
a maximal reduction in MSE, we’d like ϕ̂0,m to be maximally correlated with θ̂0 and Var(ϕ̂m)

to be minimised. The first is achieved by the conditional expectation ϕ̂∗0,m = E(θ̂0|TA0,m).
Moreover, Var(ϕ̂m) is minimised by ϕ̂∗m = E(ϕ̂0,m), but this is typically unknown. In
practice, we use the data TAm,m to construct an estimate of E(ϕ̂0,m) that has low variance.
The situation when |M| > 1 is similar by noting the independence of TAm1 ,m1 and TAm2 ,m2 ,
for m1 6= m2.

To understand this further, note that with the optimal choice ϕ̂∗0,m we have

Cov(θ̂0, ϕ̂
∗
0,m) = E{Cov(θ̂0, ϕ̂

∗
0,m|TA0,m)}+ Cov{E(θ̂0|TA0,m),E(ϕ̂∗0,m|TA0,m)} = Var(ϕ̂∗0,m).

Thus, in the ideal case that Var(ϕ̂m) is negligible compared with Var(ϕ̂∗0,m) (e.g. if nm � n0),

the improvement in MSE is simply Var(ϕ̂∗0,m) = Var{E(θ̂0|TA0,m)}.
Of course, the conditional expectation E(θ̂0|TA0,m) is also typically unknown. We will

see in practice that, for instance, assuming a parametric form for ϕ̂∗0,m works well. In
particular, in our study of U -Statistics in Section 3, we see that a data-driven choice of ϕ̂0,m

will often lead to similar performance to the optimal choice. Moreover, for nonparametric
methods using kernels, the optimal ϕ̂∗0,m can often be well approximated by the same type
of nonparametric estimator with a practical choice of kernel (see Section 4).
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3. U-Statistics

In this section we specialise to the setting of U -Statistics. Suppose we are interested in
estimating a parameter of the form θ = θ(P ) = E

{
φ
(
Z1, . . . , Zr

)}
, for r ≥ 1 and some

function φ : (Rd×R)⊗r → R, which is permutation symmetric in its r arguments (i.e. we have
that φ

(
Z1, . . . , Zr

)
= φ

(
Zσ(1), . . . , Zσ(r)

)
, for all permutations σ : {1, . . . , r} → {1, . . . , r}).

In the non-missing setting, an unbiased estimator of θ is given by

θ̂ =
1(
n
r

) ∑
{i1,...,ir}⊆{1,...,n}

φ
(
Zi1 , . . . , Zir

)
,

where the sum is taken over all unordered subsets {i1, . . . , ir} ⊆ {1, . . . , n} of size r.
Statistics of this form have been studied in detail in the non-missing setting, see for in-
stance van der Vaart (1998, Chapter 12.1). In particular, if E

{
φ2
(
Z1, . . . , Zr

)}
<∞, then

n1/2(θ̂ − θ)→d N(0, r2ψU ), where ψU = Cov{φ
(
Z1, . . . , Zr

)
, φ
(
Z1, Zr+1, . . . , Z2r−1

)
}.

We now construct the CAM U -Statistic. First, the complete-case U -Statistic is

θ̂0 = θ̂A0,0 =
1(
n0

r

) ∑
{i1,...,ir}⊆A0

φ
(
Zi1 , . . . , Zir

)
,

where now the sum is taken over all unordered subsets {i1, . . . , ir} ⊆ A0 of size r. In this
case, for m ∈M, we have

E(θ̂0|TA0,m) =
1(
n0

r

) ∑
{i1,...,ir}⊆A0

E{φ
(
Zi1 , . . . , Zir

)
|Zmi1 , . . . , Z

m
ir }.

In other words, the optimal form of the adjustment term in the construction of the CAM
estimator is itself a U -Statistic with oracle kernel

φ∗m(Zm1 , . . . , Z
m
r ) = E{φ

(
Z1, . . . , Zr

)
|Zm1 , . . . , Zmr }. (4)

This depends on φ and the conditional distribution of Z given Zm, which is typically
unknown. We therefore consider a general construction of the adjustment term as follows:
for m ∈ M, let φm : (Rdm × R)⊗r → R be a permutation symmetric function in its r
arguments, and, for A ⊆ {1, . . . , n}, define

ϕ̂A,m =
1(|A|
r

) ∑
{i1,...,ir}⊆A

φm
(
Zmi1 , . . . , Z

m
ir

)
.

We will make use of ϕ̂0,m = ϕ̂A0,m and ϕ̂m = ϕ̂Am,m. Recall that ϕ̂0,M = (ϕ̂0,m : m ∈M)T

and ϕ̂M = (ϕ̂m : m ∈M)T . For γ ∈ R|M|, define the CAM U -Statistic

θ̂Mγ := θ̂0 − γT (ϕ̂0,M − ϕ̂M).

Here φm is left unspecified, in practice one would aim to choose φm to mimic the oracle
choice above.
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Suppose that the data is missing completely at random. Then we have that BM =
E(ϕ̂0,M − ϕ̂M) = 0. Recall also that Ω = Cov(θ̂0, ϕ̂0,M) and Λ = Var(ϕ̂0,M − ϕ̂M). It

follows directly from Proposition 1 that MSE(θ̂Mγ )−MSE(θ̂0) = γTΛγ − 2γTΩ.

Our next two results concern the asymptotic properties of the CAM U -Statistic. Let
ΩU be the |M|-dimensional vector with entries

ΩU,m := Cov
{
φ
(
Z1, . . . , Zr

)
, φm

(
Zm1 , Z

m
r+1, . . . , Z

m
2r−1

)}
.

Further, let ΛU be the |M| × |M| symmetric matrix with diagonal entries

ΛU,m,m :=
(

1 +
p0

pm

)
Cov

{
φm
(
Zm1 , . . . , Z

m
r

)
, φm

(
Zm1 , Z

m
r+1, . . . , Z

m
2r−1

)}
and off-diagonal entries

ΛU,m1,m2 := Cov
{
φm1

(
Zm1

1 , . . . , Zm1
r

)
, φm2

(
Zm2

1 , Zm2
r+1, . . . , Z

m2
2r−1

)}
.

We see in Theorem 2 that, under moment assumptions, we have Ω → ΩU and Λ → ΛU as
n→∞, and that the CAM U -Statistic is unbiased and asymptotically Gaussian.

Theorem 2 Suppose the data is missing completely at random, E{φ2
(
Z1, . . . , Zr

)
} < ∞

and, for m ∈M, E{φ2
m

(
Zm1 , . . . , Z

m
r

)
} <∞. Then, for γ ∈ R|M|,

√
n0(θ̂Mγ − θ)→d N

(
0, r2(ψU + γTΛUγ − 2γTΩU )

)
as n→∞.

Theorem 2 shows that an asymptotically optimal choice of γ, which minimises the
asymptotic variance of the CAM U -Statistic, is γ∗ = Λ−1

U ΩU . The optimal leading or-
der asymptotic variance reduction is n−1

0 r2ΩT
UΛ−1

U ΩU . This is of the same order as the
asymptotic variance of the complete-case U -Statistic, which is n−1

0 r2ψU . Of course ΩU and
ΛU are typically unknown. However, to estimate these we can further exploit the use of
U -Statistics. Note that

ΩU,m =
1

2
E
[{
φ(Z1, . . . , Zr)− φ(Z2r, . . . , Z3r−1)

}
{
φm(Zm1 , Z

m
r+1, . . . , Z

m
2r−1)− φm(Zm2r, Z

m
3r, . . . , Z

m
4r−2)

}]
.

Thus, we can estimate ΩU using a U -Statistic of order 4r − 2 (see (16) in Section A.3).
A similar expression can be derived for the entries of ΛU , but for brevity we exclude the
formulas here – they are given in (17) and (18) in Section A.3. Let Λ̂U and Ω̂U denote
resulting U -Statistic estimators of ΛU and ΩU , respectively. (In practice, averaging over all
subsamples of size 4r− 2 will be computationally expensive, in our simulations Ω̂U and Λ̂U
are approximated using 105 random subsamples.)

Now, let γ̂ := Λ̂−1
U Ω̂U and consider the practical CAM U -Statistic θ̂Mγ̂ . Theorem 3

shows that we can mimic the performance of the optimal CAM U -Statistic θ̂Mγ∗ using the
data-driven choice of γ.

9
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Theorem 3 Suppose the data is missing completely at random, E{φ4
(
Z1, . . . , Zr

)
} < ∞

and, for m ∈M, E{φ4
m

(
Zm1 , . . . , Z

m
r

)
} <∞. Then

√
n0(θ̂Mγ̂ − θ)→d N

(
0, r2(ψU − ΩT

UΛ−1
U ΩU )

)
. (5)

We remark that in fact (5) holds with γ̂ replaced by any other consistent estimator of γ∗.
In particular, if we estimate ΩU and ΛU using incomplete U -Statistics based on B = Bn0

randomly chosen subsamples, then (5) holds so long as Bn0 →∞ as n0 →∞. As mentioned
above, in our numerical experiments we set B = 105. Moreover if θ̂0, ϕ̂0,m and ϕ̂m are
themselves replaced by the incomplete U -statistics based on B randomly chosen subsamples,
then the conclusion in (5) holds so long as B−1 maxm{nm} → 0; see, for example, Janson
(1984, Corollary 1). One crucial aspect here would be to ensure that the same subsamples
are used in the construction of θ̂0 and ϕ̂0,m in order to ensure that the covariance between
these two estimators is as large as possible.

The asymptotic variance in (5) can be estimated by plugging in the estimators of ψU , ΩU ,
and ΛU . Here a U -Statistic estimator of ψU , denoted by ψ̂U , can be constructed in the same
way as Ω̂U and Λ̂U . Then one can show that

√
n0(ψ̂U−Ω̂T

U Λ̂−1
U Ω̂U )−1/2(θ̂Mγ̂ −θ)→d N(0, r2),

which can be used for statistical inference such as constructing confidence intervals and
testing hypotheses. For example, an asymptotic (1 − α)100% confidence interval can be
constructed as(

θ̂Mγ̂ −
rzα/2√
n0

√
ψ̂U − Ω̂T

U Λ̂−1
U Ω̂U , θ̂Mγ̂ +

rzα/2√
n0

√
ψ̂U − Ω̂T

U Λ̂−1
U Ω̂U

)
,

where zα/2 = Φ−1(1− α/2) and Φ denotes the standard normal distribution function.

Remark 4 The form of oracle kernel in (4) suggests the possibility of using a data
driven kernel constructed via data splitting. Specifically, suppose we have access to an-
other complete case dataset Ã0 with ñ := |Ã0|, and we use some mean regression tech-
nique, either parametric or nonparametric, to obtain an estimate φ̃m of φ∗m satisfying
‖φ̃m−φ∗m‖∞ = Op(añ) with añ → 0 as ñ→∞. Denote by ϕ̂0,M− ϕ̂M and ϕ̃0,M− ϕ̃M the
bias adjustment term using the oracle kernel and data driven kernel, respectively. Then we
have

‖(ϕ̂0,M − ϕ̂M)− (ϕ̃0,M − ϕ̃M)‖2 = Op(añ),

as ñ→∞. Consequently, for θ̃Mγ := θ̂0 − γT (ϕ̃0,M − ϕ̃M), we have

|θ̃Mγ − θ̂Mγ | ≤ ‖γ‖2 · ‖(ϕ̂0,M − ϕ̂M)− (ϕ̃0,M − ϕ̃M)‖2 = ‖γ‖2Op(añ).

Thus, the asymptotic normality in Theorem 2 holds if añ
√
n0 → 0 and ‖γ‖2 is bounded. The

condition añ
√
n0 → 0 implicitly requires that ñ/n0 →∞, suggesting that a large independent

complete case dataset is needed to make the estimation error of the kernel negligible, in which
case it is likely that complete case estimator based on A0 ∪ Ã0 would perform better. We
therefore choose not to pursue this data-splitting idea further.

In order to understand the improvement the CAM U -Statistic achieves over the
complete-case method it is helpful to consider some examples.
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The correlation-assisted missing data estimator

Example 1 (Marginal mean estimation) Suppose we are interested in estimating the
parameter θ = E(X) of the pair (X,Y ) ∈ R2 (i.e. d = 1). Suppose further that the X
variable is missing completely at random with probability 0.5. Here, then, mi is either 0 (if
xi is not missing) or 1 (if xi is missing), and A0 = {i ∈ {1, . . . , n} : mi = 0} and A1 = {i ∈
{1, . . . , n} : mi = 1}, where the respective sample sizes are n0 and n1, and n = n0 + n1. In
contrast to the illustrative example in Section 1.1, we are not assuming the joint distribution
of (X,Y ) is Gaussian. In this setting the complete-case U -Statistic is θ̂0 = 1

n0

∑
i∈A0

Xi. Of

course, by the Central Limit Theorem, if E(X2) <∞, then
√
n0(θ̂0 − θ)→d N(0,Var(X)).

Next we consider the CAM estimator with M = {1} which takes into account the infor-
mation from variable Y . For a generic function φ1 : R → R satisfying Var(φ1(Y1)) < ∞
define

ϕ̂0,1 =
1

n0

∑
i∈A0

φ1(Yi); ϕ̂1 =
1

n1

∑
i∈A1

φ1(Yi).

Then Λ =
(

1
n0

+ 1
n1

)
Var{φ1(Y1)} and Ω = 1

n0
Cov{X1, φ1(Y1)}. We have that

MSE(θ̂Mγ∗ )−MSE(θ̂0) = Var(θ̂Mγ∗ )−Var(θ̂0) = −n1Cov2{X,φ1(Y )}
n0nVar{φ1(Y )}

≤ 0.

Thus, there is a guaranteed improvement in MSE as long as X and φ1(Y ) are correlated.

The optimal choice of φ1 in this case is φ∗1(y) := E(X|Y = y), (cf. the discussion at
the end of the previous section), and the corresponding first order variance reduction is
n1
n0n

Var{E(X|Y )}. If X and Y are independent, then Var{E(X|Y )} = 0, i.e. as expected,
the CAM estimator will not lead to an improvement over the complete-case estimator, since
the Y variable tells us nothing about the marginal X distribution. On the other hand, in
the pathological case that X can be written as a deterministic function of Y , we see that the
variance reduction is n1

n0n
Var(X). Consequently, Var(θ̂Mγ∗ ) = Var(X)

n0

(
1 − n1

n

)
= Var(X)

n , i.e.
the variance that could be achieved by using a fully observed dataset!

Of course the regression function E(X|Y = y) will typically be unknown to the user.
Consider instead therefore the practical choice φm(y) := y. Then we have that

Var(θ̂Mγ∗ ) =
Var(X)

n0

{
1− n1

n
Corr2(X,Y )

}
,

where Corr(X,Y ) = Cov(X,Y )√
Var(X)Var(Y )

denotes the correlation between X and Y . In fact, the

above derivation holds as long as φm(y) is a linear function of y.

In the left panel of Figure 2, we present the sampling distributions of the complete-case
and CAM U -Statistic for the mean of X ∼ Exp(1), where Y |{X = x} ∼ N(x, σ2). We
set n = 1000, σ = 0.2 and the X variable is missing with probability 0.5. We present
the results for the practical choice φm(y) = y and the optimal choice φm(y) = E(X|Y =

y) = y − σ2 + σ Φ′(σ−y/σ)
1−Φ(σ−y/σ) , where Φ′(·) and Φ(·) denote the standard Normal density and

distribution function, respectively. The variance reduction can be clearly seen from the plots.
We see also that the practical CAM U -Statistic has very similar performance to the optimal
CAM U -Statistic.
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Figure 2: Sampling distributions of the complete-case U -Statistic θ̂0 in black, the CAM
U -Statistic θ̂Mγ̂ in red and the optimal CAM U -Statistic (i.e. with φm = φ∗m and
γ = γ∗) in blue for Example 1 (left) and 2 (right).

Example 2 (Covariance estimation) Consider the same set-up as in Example 1, but
suppose now we are interested in the parameter θ = Cov(X,Y ) = 1

2E{(X1−X2)(Y1− Y2)}.
In this case, we have the complete-case U -Statistic

θ̂0 =
1

2
(
n0

2

) ∑
{i,j}⊆A0

(Xi −Xj)(Yi − Yj).

If E{(X1−X2)2(Y1−Y2)2} <∞, then by van der Vaart (1998, Theorem 12.3) we have that√
n0(θ̂0 − θ)→d N(0, ψ1), where ψ1 := 1

4Cov{(X1 −X2)(Y1 − Y2), (X1 −X3)(Y1 − Y3)}.
Now, for a generic function φ1 : R2 → R consider

ϕ̂0,1 =
2

n0(n0 − 1)

∑
{i,j}⊆A0

φ1(Yi, Yj); ϕ̂1 =
2

n1(n1 − 1)

∑
{i,j}⊆A1

φ1(Yi, Yj).

Here the optimal function is φ∗1(y1, y2) = 1
2{E(X|Y = y1)− E(X|Y = y2)}(y1 − y2). Recall

that p1 = limn→∞
n1
n . The corresponding CAM U-statistic satisfies

lim
n→∞

n0Var(θ̂Mγ∗ ) = ψ1 −
p1

4
Cov{φ∗1(Y1, Y2), φ∗1(Y1, Y3)}.

Thus, we have first order variance reduction as long as Cov{φ∗1(Y1, Y2), φ∗1(Y1, Y3)} 6= 0.
However, since φ∗1 is generally unknown, consider the practical choice φ1(y1, y2) = 1

2(y1−
y2)2. This is motivated by supposing that E(X|Y = y) is a linear function of y. Then we
have

lim
n→∞

n0Var(θ̂Mγ∗ ) = ψ1 −
p1Cov2{(X1 −X2)(Y1 − Y2), (Y1 − Y3)2}

4Cov{(Y1 − Y2)2, (Y1 − Y3)2}

12



The correlation-assisted missing data estimator

In the right panel of Figure 2, we present the sampling distributions of the complete-case,
practical CAM, and optimal CAM U -Statistics for θ = Cov(X,Y ). As in Example 1, the
data generating distribution is X ∼ Exp(1) and Y |{X = x} ∼ N(x, σ2), n = 1000, and
p1 = 0.5.

3.1 The Terneuzen birth cohort dataset

We now demonstrate how the CAM U -Statistic can be used in practice. In particular, we
will apply our proposal from the previous two examples to the Terneuzen birth cohort data
available from the mice package on CRAN. The full dataset consists of 3951 observations
of 11 features covering 306 people. We simplify the problem by taking a subset of the data
and only include the first measurement for each person. Furthermore, we retain only 4 of
the features, namely “sex”, “height Z-score”, “weight Z-score”, and “bmi Z-score”. In the
resulting dataset, there are 306 observations (one for each patient), of which 105 are missing
both the height and bmi features. In order to fit this in the framework introduced above let
Y denote sex (1 for female, 0 for male), and let X be the 3-dimensional vector of weight,
height, and bmi.

We have 201 complete cases in A0, and 105 cases in Am for m = (1, 0, 1)T , where only
Y (sex) and X(2) (weight) are observed. We consider two problems; (i) to estimate the
average bmi Z-score in the cohort, and (ii) estimate the covariance between the height and
weight Z-scores. In both cases, we have M = {(1, 0, 1)T }, and we consider two choices of
φm, for m = (1, 0, 1)T , a simple choice, and a regression estimate.

In problem (i), recall that we can write the marginal mean as a U -Statistic with φ(Z) =

X(3), and the complete-case estimator is 1
n0

∑
i∈A0

X
(3)
i . To construct the CAM U -Statistics,

we first consider φm(Zm) = X(2), i.e. the weight Z-score. For our second choice, write

φm(Zm) = β0 + β1Y + β2X
(2) + β3X

(2)Y. (6)

We choose (β0, β1, β2, β3) by fitting a linear model (with an interaction) of bmi on height
and sex using the complete cases (in R this is simply done using the lm function). The idea
here is to approximate φ∗m(Zm) = E{φ(Z)|Zm}. Then ϕ̂0,m is the sample average of the
fitted values, and ϕ̂m is the average of the predictions made on the data in Am.

For problem (ii), we have φ(Z1, Z2) = 1
2(X

(1)
1 − X(1)

2 )(X
(2)
1 − X(2)

2 ). In this case, to

construct the CAM estimator, we first use the simple choice φm(Zm1 , Z
m
2 ) = (X

(2)
1 −X

(2)
2 )2.

Then, similarly to the previous problem we consider

φm(Zm1 , Z
m
2 ) = {(β1(Y1 − Y2) + β2(X

(2)
1 −X(2)

2 ) + β4(X
(2)
1 Y1 −X(2)

2 Y2)}(X(2)
1 −X(2)

2 ), (7)

where, again, the idea is to approximate the optimal φ∗m(Zm1 , Z
m
2 ) = E{φ(Z1, Z2)|Zm1 , Zm2 }.

We compare the performance to the complete-case estimator with both versions of the
CAM U -Statistic in Table 1. In each case, we present the point estimate, an approximate
95% confidence interval based on the result in Theorem 3 and the corresponding interval
width. We see that the CAM estimator has a much narrower interval width in both prob-
lems. Moreover, in problem (i) the two CAM approaches lead to identical results (up to 3
significant figures), whereas in the second problem, the second CAM U -Statistic performs
slightly better.
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Method Point est. 95% CI CI width

(i) Marginal mean of bmi score

Complete-case 0.55 (0.38, 0.73) 0.35

CAM: φm(Zm) = X(2) 0.55 (0.44, 0.66) 0.22
CAM: φm(Zm) linear – see (6) 0.55 (0.44, 0.66) 0.22

(ii) Covariance between height and weight

Complete-case 1.27 (0.50, 2.04) 1.54

CAM: φm(Zm1 , Z
m
2 ) = 1

2(X
(2)
1 −X(2)

2 )2 1.17 (0.66, 1.68) 1.02
CAM: φm(Zm1 , Z

m
2 ) linear – see (7) 1.19 (0.70, 1.69) 0.99

Table 1: Comparison of the complete-case and CAM U -Statistics using the Terneuzen birth
cohort dataset

4. Nonparametric statistical learning

We now study two fundamental statistical learning problems, namely density estimation
and regression. Typically in these problems, we are interested in estimating a function from
Rd to R, we show how the CAM estimator can be applied locally, i.e. for each x ∈ Rd.
Throughout this section we assume that the data is missing completely at random.

Density estimation and regression are canonical problems in statistics, and many non-
parametric approaches have been proposed and studied in detail – see, for instance, Rosen-
blatt (1956), Parzen (1962), Wahba (1990), Wand and Jones (1995), Fan and Gijbels (1996),
Carroll et al. (1998), Tsybakov (2004) and Biau and Devroye (2015). We focus our study
on kernel based methods.

4.1 Kernel density estimation

In this subsection, assume we only observe Xm1
1 , . . . , Xmn

n and we are interested in estimat-
ing fX , the density of the marginal distribution of X. We specialise the setting introduced
in Section 2 by letting θ(P ) = fX(x), the marginal density of X at a fixed x ∈ Rd.

Let h > 0 be the bandwidth and, for m ∈ M, let Km : Rdm → [0,∞) be a dm-
dimensional Kernel function. For x ∈ Rd, A ⊆ {1, . . . , n} and m ∈M, let

f̂A,m(xm) = f̂A,m,h,Km(xm) :=
1

|A|hdm
∑
i∈A

Km

(Xm
i − xm

h

)
. (8)

This can be thought of as an estimator of the marginal density fXm(xm) of Xm at xm. In
particular, the complete-case estimator of fX(x) is f̂0 := f̂A0,0,h,K(x), where K = K0 is

the d-dimensional kernel. Our CAM density estimator is constructed using f̂0, as well as
f̂0,m := f̂A0,m,h,Km(xm) and f̂m := f̂Am,m,h,Km(xm), for m ∈ M. To understand our choice

of f̂0,m and f̂m, recall from the discussion after Proposition 1 that the optimal choice of

f̂0,m is

f̂∗0,m = E(f̂0|TA0,m) =
1

n0hd

∑
i∈A0

E
{
K
(Xi − x

h

)∣∣∣Xm
i

}
. (9)
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The correlation-assisted missing data estimator

This takes a similar form as the kernel density estimator in (8). At the end of this subsection
we will see that f̂∗0,m can often be well approximated using a local constant estimator with

a practical choice of kernel Km that depends on K. Finally, we have also chosen f̂m so that
E(f̂m) = E(f̂0,m).

Now let f̂0,M := (f̂0,m : m ∈ M)T ∈ [0,∞)|M|, and f̂M := (f̂m : m ∈ M)T ∈ [0,∞)|M|.
Then, for γ ∈ R|M|, define the CAM kernel density estimator

f̂Mγ = f̂Mγ (x) := f̂0 − γT (f̂0,M − f̂M).

Our theoretical results in this section will make use of conditions A1 and A2 given in
Section A.4. The Lipshitz assumption on fX and fXm in A1 allows us to approximate
the accuracy of the kernel density estimates of fX and fXm , respectively. Whereas the
assumption on the Kernel functions in A2 is satisfied by many commonly used kernels.

For an estimate f̂ of fX(x), let MSE(f̂) = MSE(f̂)(x) := E[{f̂ − fX(x)}2]. Under
our assumptions, it is well-known that the complete-case estimator satisfies MSE(f̂0) =
O(1/(n0h

d) + h2) as n0 →∞; see, for example, Tsybakov (2004, Propositions 1.1 and 1.2)
for the d = 1 case.

Let ν = ν(K) :=
∫
Rd K

2(z) dz < ∞, and, for each m ∈ M, let νm = νm(Km) :=∫
Rdm K2

m(z) dz < ∞. Furthermore, for m1 6= m2 ∈ M, let m1,2 = pmax{m1,m2} ∈
{0, 1}d and m1,2 = pmin{m1,m2} ∈ {0, 1}d denote the entrywise maximums and mini-
mums, respectively, of m1 and m2. For m1 6= m2, let νm1,m2 = νm1,m2(Km1 ,Km2) :=∫
Rdm1,2

Km1(zm1)Km2(zm2) dzm1,2 .
Our next result shows that the asymptotic difference between the mean squared error

of our proposal and the complete-case estimator can be written in terms of γ, the |M|-
dimensional vector ΩD := (

ν0,mfX(x)

n0hdm
: m ∈M)T and ΛD, the symmetric |M| × |M| matrix

with entries

ΛD,m,m :=
νmfXm(xm)

hdm

( 1

n0
+

1

nm

)
; ΛD,m1,m2 :=

νm1,m2fXm1,2 (xm1,2)

n0h
dm1,2

, (10)

for m,m1 6= m2 ∈M.

Theorem 5 Assume A1 and A2. For 0 < α < β < 1/d, we have

MSE(f̂Mγ )−MSE(f̂0) =
(
γTΛDγ − 2γTΩD

)
{1 + o(1)}

as n→∞, uniformly for h ∈ [n−β, n−α].

Recall that by Proposition 1, the optimal γ, which maximises the improvement in mean
squared error over the complete-case estimator, is

γ∗ = Λ−1Ω = Λ−1
D ΩD{1 +O(h)}. (11)

Further, suppose that M = {m}, then the corresponding maximum mean squared error
reduction can be derived to be

MSE(f̂0)−MSE(f̂Mγ∗ ) =
Cov2(f̂0, f̂0,m)

Var(f̂0,m) + Var(f̂m)

=
nmν

2
0,mfX(x)fX|Xm(x|xm)

n0hdm(n0 + nm)νm
{1 +O(h)} = O

( 1

n0hdm

)
,
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as n → ∞, uniformly for h ∈ [n−β, n−α]. Here fX|Xm(x|xm) denotes the conditional
density of X at x given Xm = xm. We see that a larger improvement is possible when nm
is large compared to n0, or if fX|Xm(x|xm) is large. Note, however, that we only obtain
a second order improvement over the complete-case approach. To understand this further,
in contrast to the U -Statistics setting, in the density estimation problem f̂0 and f̂0,m − f̂m
have different convergence rates, with the later converging at a faster rate because of the
smaller dimension dm. Therefore the covariance between f̂0 and f̂0,m − f̂m is negligible

compared to the asymptotic variance of f̂0. Nevertheless, we will see in our numerical
study in Section 4.3, that the improvement CAM offers over the complete-case method is
appreciable in finite sample problems. Of course, Ω and Λ are unknown. Nonetheless, we
have an immediate corollary that for any γ such that γTΛγ < 2γTΩ the corresponding
CAM estimator will lead to an improvement over the complete-case approach.

It remains to propose practical choices of tuning parameters. First, we suppose that
the complete-case kernel K and bandwidth h are given to us; if needed these can be chosen
using cross-validation on the complete cases. Now, to choose γ we attempt to approximate

the optimal choice in (11) above. More precisely, let γ̂D,m =
ν0,mnmf̂0

νm(n0f̂0,m+nmf̂m)
, where we

have used f̂0 and
n0f̂0,m+nmf̂m

n0+nm
as estimates of fX(x) and fXm(xm), respectively. We also

approximate the off-diagonal terms in ΛD by 0, since they are of smaller order than the
terms on the diagonal, i.e. ΛD = diag(ΛD){1 + o(1)} – see (10). Finally, then, we let
γ̂D := ({γ̂D,m : m ∈M})T .

We choose the kernel Km in an attempt to mimic the optimal choice in (9). Lemma 8
in Section A.4 shows that for a large family of kernels, under appropriate smoothness
conditions on fX|Xm , we can approximate f̂∗0,m up to first order using a kernel density
estimator with practical choice of kernel Km that depends only on K. For instance, if K is
the Gaussian kernel K(t) = 1

(2π)d/2
exp(−‖t‖2/2), for t ∈ Rd, then f̂∗0,m is well-approximated

by using the dm-dimensional Gaussian kernel Km(z) = 1
(2π)dm/2 exp(−‖z‖2/2), for z ∈ Rdm ,

in (8).

4.2 Local constant regression

We now consider the standard homoscedastic nonparametric regression problem, where the
pair (X,Y ) takes values in Rd × R and satisfies the relationship

Y = η(X) + σε.

Here σ > 0 and η : Rd → R is the regression function, i.e. η(x) := E(Y |X = x). The random
variable ε has mean zero and variance one, and is independent of X. We are interested in
estimating θ(P ) = η(x), the regression function at a fixed x ∈ Rd.

Consider also the regression model when X is missing the features m ∈ {0, 1}d. It is
convenient to define ηm(xm) := E(Y |Xm = xm), and τm(xm) := Var{η(X)|Xm = xm},
where τ0(·) = Var{η(X)|X = x} = 0. Finally, for m1,m2 ∈ M, let τm1,m2(xm1,2) :=
E[{η(X)− ηm1(xm1)}{η(X)− ηm2(xm2)}|Xm1,2 = xm1,2 ].
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Recall the bandwidth h > 0 and kernel function Km, for m ∈ M, used in the previous
section. For x ∈ Rd and A ⊆ {1, . . . , n}, the local constant estimator of ηm(xm) is

η̂A,m(xm) = η̂A,m,h,K(xm) := argmin
α∈R

{∑
i∈A

Km

(Xm
i − xm

h

)
(Yi − α)2

}
. (12)

In particular, the complete-case estimator of η(x) is η̂0 := η̂A0,0,h,K(x), where K = K0 is
a d-dimensional kernel. Further, let η̂0,m := η̂A0,m,h,Km(x) and η̂m := η̂Am,m,h,Km(x); in
contrast to the density estimation setting, it is less clear why the form of η̂0,m is effective
here – we postpone discussion of this until the end of this subsection.

Let η̂0,M = (η̂0,m : m ∈M)T and η̂M = (η̂m : m ∈M)T . Then, for γ ∈ R|M|, we define
the CAM local constant regression estimator

η̂Mγ = η̂Mγ (x) := η̂0 − γT (η̂0,M − η̂M).

Our main theoretical result in this section will make use of two further assumptions on
the regression function; see A3 and A4 given in Section A.4. In particular, we ask that
the functions η, ηm, τm and τm1,m2 are Lipschitz, which means that these functions can
be estimated efficiently using a local constant estimator. Now, for m ∈ M, let µ0,m =
µ0,m(Km) :=

∫
Rdm Km(z) dz <∞. Further, let

ΩR :=
( σ2ν0,m

µ0,mfXm(xm)n0hdm
: m ∈M

)T
.

Let ΛR be the |M| × |M| matrix with diagonal entries

ΛR,m,m :=
νm{σ2 + τm(xm)}
µ2

0,mfXm(xm)hdm

( 1

n0
+

1

nm

)
,

and off diagonal entries

ΛR,m1,m2 :=
νm1,m2fXm1,2 (xm1,2)

{
σ2 + τm1,m2(xm1,2)

}
µ0,m1fXm1 (xm1)µ0,m2fXm2 (xm2)n0h

dm1,2
.

Note that the off-diagonal terms of ΛR are of smaller order than the terms on the diagonal,
i.e. ΛR = diag(ΛR){1 + o(1)}. Finally, for a regression estimator η̂ of η(x), we write

MSE(η̂) = MSE(η̂)(x) := E[{η̂ − η(x)}2|Zm1
1 , . . . , Zmn

n ].

Theorem 6 Assume A1, A2, A3 and A4. Then, for each 0 < α < β < 1/d, we have

MSE(η̂Mγ )−MSE(η̂0) =
(
γTΛRγ − 2γTΩR

)
{1 + op(1)}

as n→∞, uniformly for h ∈ [n−β, n−α].

17



Cannings and Fan

Theorem 6 gives the leading order asymptotic difference in mean squared error between the
CAM estimator and the complete-case estimator. We see that the optimal leading order
improvement in this case is ΩT

RΛ−1
R ΩR, which can achieved by taking γ = γ∗R := Λ−1

R ΩR.
Note also that, similarly to (11), the optimal γ∗ given by Proposition 1 satisfies, γ∗ =
γ∗R{1 +O(h)}.

Again, in practice, we attempt to mimic the performance of the optimal estimator.
First, ignoring the off-diagonal terms in ΛR, we have

γ∗R ≈
( σ2ν0,mµ0,mnm
{σ2 + τm(xm)}νm(n0 + nm)

: m ∈M
)T
.

For the unknown terms, write σ2 = E[{Y − η(x)}2|X = x] and σ2
m := σ2 + τm(xm) =

E[{Y − ηm(xm)}2|Xm = xm]. These can be estimated in a natural way using the local
constant method. In practice, the estimates σ̂2 and σ̂2

m say can be calculated directly by
reusing the weights from the regression estimators; cf. (22). Finally, this leads to a practical
choice of

γ̂R =
( σ̂2ν0,mµ0,mnm
σ̂2
mνm(n0 + nm)

: m ∈M
)T
.

As noted above, the choice of kernel Km is less straightforward than in the density
estimation setting. Here we can write η̂0 =

∑
i∈A0

YiK
(
Xi−x
h

)
/{
∑

i∈A0
K
(
Xi−x
h

)
}, and the

optimal choice of η̂0,m is

η̂∗0,m = E(η̂0|TA0,m) =
∑
i∈A0

YiE
{ K

(
Xi−x
h

)∑
j∈A0

K
(Xj−x

h

)∣∣∣TA0,m

}
.

Lemma 9 in Section A.6 shows that, under certain conditions, this optimal choice is well-
approximated by our practical choice η̂0,m with kernel Km depending only on K. In par-
ticular, if K is the d-dimensional Gaussian kernel, then η̂0,m can be constructed as in (12)
using the dm-dimensional Gaussian kernel. We see in our numerical study, that our CAM
approach with this practical choice of η̂0,m does often lead to an appreciable improvement
over the complete-case estimator.

4.3 Numerical examples

We now demonstrate the CAM density and regression estimators with some numerical
examples. Consider the following models

(a) Density model 1: X ∼ N2(0,Σ), where Σ = 0.3I2 + 0.7(121T2 ), where 12 := (1, 1)T .

(b) Density model 2: X ∼ U(B1(0)), where B1(0) ⊆ R2 denotes the unit disk centred at
0.

(c) Density model 3: X ∼ 1
4U([−2,−1]× [−1/2, 1/2]) + 3

4U([1, 2]× [−1/2, 1/2]).

(d) Regression model 1: Let X ∼ U([0, 1]3), and Y = X(1)+X(2)+0.1ε, where ε ∼ N(0, 1)
is independent of X.

(e) Regression model 2: Let X ∼ U([0, 1]3), and Y = (X(1) − X(2))2 + 0.1ε, where
ε ∼ N(0, 1) is independent of X.
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(f) Regression model 3: Let X ∼ N2(0,Σ), where Σ = 0.3I2 + 0.8(121T2 ) and Y =
sin(2X(1)) + 0.3ε, where ε ∼ N(0, 1) is independent of X.

In each case, we generate a training set of size n ∈ {200, 500}, and then introduce missing-
ness by removing first component of X independently with probability p1 ∈ {0.25, 0.5, 0.75}.
Therefore, in settings (a), (b), (c), and (f), when d = 2, we have on average n(1− p1) com-
plete cases in A0 and an average of np1 observations in Am, for m = (1, 0), whereas A(0,1)T

and A(1,1)T are empty; in other wordsM = {(1, 0)T }. For settings (d) and (e), where d = 3,
we again have an average of n(1 − p1) complete cases in A0, but now an average of np1

observations in A(1,0,0)T , all other sets Am are empty and M = {(1, 0, 0)T }.
The kernel density estimators are computed using the ks package available from CRAN.

In particular, we use the kde function with a Gaussian kernel, and the diagonal bandwidth
matrices were chosen using the Hpi.diag function. In the regression settings, we make use
of the regpro package available from CRAN.

To measure the performance, recall that for two density functions f and g, say, the
Total Variation distance between f and g is TV(f, g) := 1

2

∫
Rd |f(x)− g(x)| dx. We present

boxplots of

TV(f̂0, fX)− TV(f̂Mγ̂D , fX)

TV(f̂0, fX)
. (13)

In the regression problems, we use the mean integrated squared error: for an estimate η̂ of
η that is MISE(η̂) :=

∫
Rd{η̂(x)− η(x)}2 dPX(x). Then we present boxplots of

MISE(η̂0, η)−MISE(η̂Mγ̂R , η)

MISE(η̂0, η)
. (14)

We see in Figure 3 that the CAM estimator outperforms the CC estimator in terms of
total variation distance. As expected the CAM estimator leads to a greater reduction in
error as the missingness probability p1 increases. On the other hand, as n increases, the
relative reduction in error is smaller. Finally, note that there are a small number of repeats
of the experiment in each case where the difference in mean squared error is negative – this
is likely due to the fact that we need to estimate the γ using the observed data, there is
also a small Monte Carlo error.

Figure 4 shows that the CAM local constant regression estimator outperforms the CC
estimator. Similarly to the density estimation problems, the CAM estimator leads to a
greater reduction in error as the missingness probability p1 increases. Here we see further
that for larger sample sizes, the improvement relative to using the full data set appears to
decrease slightly – this is in agreement with our Theorem 6, since we only expect a second
order improvement in asymptotic mean squared error.

Finally, as discussed in the introduction, a popular approach to overcome issues with
missing data is to impute the missing values and treat the result as a full dataset. We now
compare the CAM approach to density estimation and regression with a number of state
of the art imputation methods. These include mean imputation, where the missing entries
for each feature are imputed with the sample mean (of the observed values) for that feature
(Little and Rubin, 2002, Section 4.2.1); Predictive mean matching (PMM) imputation, here
the missing values are replaced by a value sampled from the observed data, where the
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Figure 3: Boxplot of the relative performance of the CC and CAM kernel density estimators
given by (13) for 100 repetitions of the experiment for density model 1 (top left),
density model 2 (top right) and density model 3 (bottom).
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Figure 4: Boxplots of the relative performance of the CC and CAM local constant regres-
sion estimators given by (14) for 100 repetitions of the experiment for regression
problem 1 (top left), regression problem 2 (top right) and regression problem 3
(bottom).
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Model Full CAM CC Mean PMM RF

Density

1 4.970.02 6.070.03 6.230.03 23.770.24 6.760.10 6.860.10

2 35.310.07 40.280.08 40.580.08 101.801.04 50.211.07 38.310.31

3 51.840.10 52.490.10 52.720.10 69.660.72 52.910.34 52.850.35

Regression

1 2.740.01 4.290.02 4.350.02 6.490.10 2.650.04 6.400.11

2 2.860.02 4.120.03 4.200.03 5.820.11 12.280.23 6.020.12

3 19.290.11 29.510.19 29.840.20 61.901.01 112.221.63 24.440.46

Table 2: Average estimated total variation errors (∗103) for the density estimation problems
and mean integrated squared error (∗103) for the regression problems. In each case,
n = 500 and the first component of X is missing with probability 1/2.

sample is taken from the observations that are close to the observation with the missing
value (Little and Rubin, 2002, Section 4.3.2); and Random Forest (RF) imputation, this
uses the Random Forests algorithm to predict the missing entries based on the observed
data (Breiman, 2002; Pantanowitz and Marwala, 2009). For the latter two methods, we use
multiple imputation; the missing values are imputed five times and we then take the average
of the results after fitting the model on the five imputed datasets. A detailed outline of these
methods can be found in Little and Rubin (2002, Chapters 4 and 10). Our implementation
utilises the mice R package available from CRAN (van Buuren et al., 2018).

In our experiments, the kernel density estimators are computed using the ks package
available from CRAN. In particular, we use the kde function with a Gaussian kernel, and
the diagonal bandwidth matrices were chosen using the Hpi.diag function. In the regres-
sion settings, we make use of the regpro package available from CRAN. For the imputation
approaches, the corresponding kernel methods are applied to the imputed datasets.

In Table 2 we present the estimated total variation or mean integrated squared errors
(with standard errors in subscript) over 100 repetitions of each experiment. For comparison,
we also present the results of applying the kernel methods to the full dataset of size n. We
see that the CAM technique improves on the complete-case approach in every setting.
On the other hand, as discussed in the introduction, the imputation approaches are not
always successful: indeed, there are many settings here where the imputation methods
lead to worse performance than the complete-case method. Notice that occasionally the
imputation methods, eg. random forests in Density Model 2 and predictive mean matching
in Regression Model 1, perform very well (even outperforming the full data estimator in a
few cases) – it is unclear why this is the case due to the black-box nature of these approaches.

4.4 The Brandsma school dataset

In this subsection, we show how the CAM local constant regression estimator can be used in
practice with the brandsma dataset available in the MICE package. The full data set consists
of 4106 observations of 14 features. We simplify the problem by retaining only 4 features,
namely the “verbal IQ score”, the “SES score”, “language score pre”, and “language score
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Figure 5: The average predictive MSE on the test set for the complete-case and CAM
estimators for the Brandsma data application. The straight line is “y = x”.

post”. Suppose that we are interested in predicting the verbal IQ score, Y , from the
remaining features, i.e. X is the 3-dimensional vector consisting of “SES score”, “language
score pre”, and “language score post”. We remove 17 observations for which the response
is missing. In the resulting dataset, we have 3464 complete-cases, 302 with m = m1 :=
(0, 1, 0)T , 182 with m = m2 := (0, 0, 1)T , and 108 with m = m3 := (1, 0, 0)T . There are a
few observations for other values of m, but the corresponding sample sizes are very small
and are therefore ignored. Here we have M = {m1,m2,m3}.

In order to evaluate the performance of the CAM estimator, we take a subsample of size
1000 from the complete-cases to use as a test set (this is fixed throughout). We carry out
100 experiments. In each one, we form a training set by taking another sample of size 200
from the remaining 2464 complete-cases (this sample is different in each experiment). The
200 chosen complete-cases are then combined with the observations in Am1 , Am2 and Am3

(which are the same in every experiment). Thus, in each experiment, we have n0 = 200,
nm1 = 302, nm2 = 182, and nm3 = 108.

In Figure 5 we plot the average (over the test set) of {η̂(X)−Y }2 for the complete-case
and CAM estimators in each of the 100 experiments. We use a Gaussian kernel and the
bandwidth was chosen using leave-one-out cross-validation. We see that the CAM estimator
has a lower predictive MSE than the complete-case in 94% of the cases. In the remaining
6% of cases, the performance of the two estimators is similar and the discrepancy can be
explained by the small sample size used to estimate the MSE. The overall average MSE
(with standard errors) of the complete-case and CAM estimators were 2.28 (0.007) and
2.25 (0.006), respectively, the average improvement in MSE is 0.03 (0.002), whereas the
maximum improvement over the 100 experiments was 0.09.
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5. Discussion

We have seen that our proposed CAM estimator can be used to improve the complete-case
estimator in a wide range of statistical problems. We conclude our paper with a discussion
of the computational cost and few extensions of our method.

First, the computational cost of our proposal consists of three main components. We
need to compute complete-case estimator based on the data in A0, as well as the correction
term ϕ̂0,m − ϕ̂m, for each m ∈ M. Computing the complete case estimator is an unavoid-
able step, and under our assumptions, cost of calculating ϕ̂0,m − ϕ̂m will typically be of
the same order as calculating the complete case estimator. Finally, we need to choose γ,
which involves estimating the corresponding variance and covariance terms in γ∗. In many
applications, when |M| is fixed, the main computational burden, then, may be in estimating
γ∗. However, as we have demonstrated, there is often an efficient option available. In the
U -statistics setting, the optimal γ is well approximated by using computationally feasible
incomplete U -statistics as estimators; see the remarks immediately after the statement of
Theorem 3. For the nonparametric density estimation problem, a data-driven choice of γ
may be made at negligible extra computational cost by reusing our estimates of f0, f0,m

and fm, and a similar technique may be used in nonparametric regression. When |M| is
large, then the computational cost involved in using all m ∈ M may become burdensome
and this may enter into the choice of M.

A key aspect of our CAM proposal is to construct ϕ̂0,M and ϕ̂M, so that ϕ̂0,M −
ϕ̂M is centered. One way to guarantee this is to use a resampling method. Let n0,m :=
min{n0, nm}. Consider the sets of all subsamples (without replacement) of n0,m observations
from the data in A0 and Am, respectively, denoted by A1

0, . . . , A
B0
0 and A1

m, . . . , A
Bm
m , where

B0 =
(
n0

n0,m

)
and Bm =

(
nm

n0,m

)
. Notice that at least one of B0 and Bm will be equal to

one. Then, for m ∈ M, consider the two (independent) statistics ϕ̄0,m := 1
B0

∑B0
b=1 ϕ̂Ab

0,m

and ϕ̄m := 1
Bm

∑Bm
b=1 ϕ̂Ab

m,m
. At least in the missing completely at random setting, we have

E(ϕ̄0,m) = E(ϕ̄m) – each of the terms in the sums are estimators calculated on datasets
of the same size. Let ϕ̄0,M = (ϕ̄0,m : m ∈ M)T , and ϕ̄M = (ϕ̄m : m ∈ M)T . Then, for
γ ∈ R|M|, define

θ̄Mγ := θ̂0 − γT
(
ϕ̄0,M − ϕ̄M

)
.

We have the following corollary to Proposition 1, which holds for any estimation method
and requires no assumptions on the distribution P . The only restriction is that the data is
MCAR.

Corollary 7 Suppose the data is missing completely at random. Then

MSE(θ̄Mγ )−MSE(θ̂0) = γTVar(ϕ̄0,M − ϕ̄M)γ − 2γTCov(θ̂0, ϕ̄0,M). (15)

Another consideration is the choice of the setM. This choice is primarily driven by the
data – in the first instance we might let M = M∗ := {m ∈ {0, 1}d \ {0d} : |Am| > 0}. In
some cases, however, we may consider using a different set M. For instance, for some m,
the corresponding sample size nm may be non-zero but small. In our numerical analysis in
Section 4.3, we drop m if |Am|/|A0| is less than 0.1. Another potential option here is to use a
data integration method. More specifically, let Ām := {i ∈ Ac0 : mi ≤ m}, where the partial
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order on {0, 1}d is defined by mi ≤ m if {j : mj
i = 1} ⊆ {j : mj = 1}. Then Ām is the

largest set in Ac0 which has complete observations for variables in {j ∈ {1, . . . d} : mj = 0}.
Notice also that by construction Ām and A0 are disjoint. To include the data integration
in our CAM method, we can simply replace Am with Ām, for m ∈ M. There are other
options too. Suppose we have m1 6= m2 ∈ {0, 1}d \ {0d}, with |Am1 | > 0, |Am2 | = 0 and
m1 ≤ m2. Then rather than using Am1 , we may opt to use Ām2 ⊇ Am1 instead.

Finally we discuss the challenging non-MCAR settings. When the data is MAR or
MNAR there is an additional challenge. In this case, the naive complete-case estimator will
potentially be asymptotically biased. Conditionally on M1, . . . ,Mn, the data in TA0,0 can
be interpreted as independent and identically distributed pairs from Q0, that is the joint
distribution of a generic pair (X,Y )|{M = 0}. Thus, we expect the complete-case estimator
θ̂0 to be close to θ(Q0) as opposed to θ(P0). Two natural questions arise: (i) under what
conditions do we have θ(P0) = θ(Q0) and E(ϕ̂0,m− ϕ̂m) ≈ 0 (cf. Proposition 1)?; and (ii) if
the conditions in (i) do not hold, how can we adapt the CAM estimator.

A partial answer to (i) is provided by the following in the regression setting: Suppose
we observe n independent and identically distributed copies of ZM = (XM , Y ) and are
interested in estimating η(x) = E(Y |X = x). Assume that M is independent of Y given
XM . (Note that this is slightly different to the missing at random condition, which assumes
that M is independent of Z given ZM .) In this case, we have that θ(Q0) = E(Y |X =
x,M = 0) = E(Y |X = x) = θ(P0) and

θm(Qm)=E(Y |Xm = xm,M = m) = E(Y |Xm = xm) = E(Y |Xm = xm,M = 0)=θm(Q0).

Thus, we can still expect that the complete-case approach will target η(x), and moreover,
can hope that Bm = E(ϕ̂0,m − ϕ̂m) ≈ θm(Q0)− θm(Qm) = 0.

Relating to the problem in (ii), in the missing at random case, there are many methods
that aim to correct the bias of the naive complete-case estimator; see, for instance, Little
and Rubin (2002, Chapter 3.3). One approach is to weight the observations according to
the probability that they are (non)missing. For concreteness, we focus on one such idea,
which advocates reweighting the observations according to their (inverse) propensity score
– see Little and Rubin (2002, Chapter 3.7). Recall that pm(z) = pm(x, y) = P(M = m|X =
x, Y = y). Of course, pm(x, y) is typically unknown, and needs to be estimated; in fact,
we can only hope to estimate pm(x, y) from the observed data in the missing at random
setting.

Consider the U -Statistics setting, where we are interested in estimating θ = θ(P ) =
E{φ(Z1, . . . , Zr)}. The complete-case approach we will in fact construct an unbiased esti-
mator for θ(Q) = E

{
φ(Z1, . . . , Zr)

∣∣M1 = . . . = Mr = 0
}
6= θ(P ). One solution here is to

consider the Horvitz-Thompson estimators (Horvitz and Thompson, 1956) in place of θ̂0,
ϕ̂0,m and ϕ̂m. In this problem, the complete-case analogue is

θ̃0 = θ̃A0,0 =
1∑

{i1,...,ir}⊆A0

1∏r
j=1 p0(Zij

)

∑
{i1,...,ir}⊆A0

φ(Zi1 , . . . , Zir)∏r
j=1 p0(Zij )

.

Moreover, similar expressions can be derived for ϕ̃0,m and ϕ̃m. The CAM estimator can
then be constructed as in the MCAR case. Of course, in practice, p0(z) and pm(zm) need to
be estimated using the observed data. This is non-trivial, and further study in this direction
is left for future work.
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Appendix A. Technical arguments

In this appendix, we present the proofs of all our theoretical results, as well as two auxiliary
lemmas which justify our choice of the kernel estimators used in Section 4.

A.1 Proofs for Section 1.1

Proof [Proof of claims in Section 1.1] Claim 1 : The statistic T = (T1, T2)T = (ν̂X,1 −
ν̂Y,1Γ12/Γ22, ν̂Y,1 + ν̂Y,2)T is sufficient for ν = (νX , νY )T . To see this we use the factorisation
criteria: let Zi = (Xi, Yi)

T , the full likelihood is

L(ν) =
n∏
i=1

1√
2π|Γ|

exp
(
−1

2
(Zi − ν)TΓ−1(Zi − ν)

) 2n∏
i=n+1

1√
2πΓ22

exp
(
− 1

2Γ22
(Yi − νY )2

)

=
1

(2π)n|Γ|n/2Γ
n/2
22

exp
(
−1

2

n∑
i=1

(Zi − ν)TΓ−1(Zi − ν)− 1

2Γ22

2n∑
i=n+1

(Yi − νY )2
)

∝ exp
( n∑
i=1

νTΓ−1Zi −
1

2
νTΓ−1ν +

1

Γ22

2n∑
i=n+1

YiνY −
nv2

Y

2Γ22

)
= exp

(
nνTΓ−1(ν̂X,1, ν̂Y,1)T − 1

2
νTΓ−1ν +

1

Γ22
nν̂Y,2νY −

nv2
Y

2Γ22

)
.

Now write

νTΓ−1(ν̂X,1, ν̂Y,1)T =
1

|Γ|

{
(Γ22ν̂X,1 − Γ12ν̂Y,1)νX + (Γ11ν̂Y,1 − Γ12ν̂X,1)νY

}
.

By collecting the coefficients of νX and νY , it follows that(
ν̂X,1 − ν̂Y,1

Γ12

Γ22
, ν̂X,1 − ν̂Y,1

Γ11

Γ12
− ν̂Y,2

Γ11

Γ12
+ ν̂Y,2

Γ12

Γ22

)T
=
(
T1, T1 +

(Γ12

Γ22
− Γ11

Γ12

)
T2

)T
is a sufficient statistic for ν. Thus Claim 1 is true.

Claim 2: We have that ν̃X = E(ν̂X,1|T ). To prove this, first observe that

(ν̂X,1, ν̂Y,1, ν̂Y,2)T ∼ N3((νX , νY , νY )T ,Γ′),

where

Γ′ =

(
Γ 0
0 Γ22

)
.
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Therefore

(ν̂X,1, T1, T2)T ∼ N3((νX , νX − νY Γ12/Γ22, 2νY )T ,Γ′′),

where

Γ′′ =

 Γ11 Γ11 − Γ2
12/Γ22 Γ12

Γ11 − Γ2
12/Γ22 Γ11 − Γ2

12/Γ22 0
Γ12 0 2Γ22

 .

By standard Gaussian distribution theory, it follows that

E{ν̂X,1|(T1, T2)}

= νX + (Γ11 − Γ2
12/Γ22,Γ12)

(
Γ11 − Γ2

12/Γ22 0
0 2Γ22

)−1(
T1 − νX + νY Γ12/Γ22

T2 − 2νY

)
= T1 − T2Γ12/(2Γ22) = ν̃X ,

which completes the proof.

A.2 Proofs of the results in Section 2

Proof of Proposition 1. First, we have that

E{(θ̂Mγ − θ)2 − (θ̂0 − θ)2}

= E{(θ̂Mγ − θ̂0)2 + 2{θ̂Mγ − θ̂0)(θ̂0 − θ)}

= γTE{(ϕ̂0,M − ϕ̂M)(ϕ̂0,M − ϕ̂M)T }γ − 2γTE{(ϕ̂0,M − ϕ̂M)(θ̂0 − θ)}.

Then, using the fact that ϕ̂0,M and ϕ̂M are independent, write

E{(ϕ̂0,M − ϕ̂M)(ϕ̂0,M − ϕ̂M)T }
= E(ϕ̂0,Mϕ̂

T
0,M)− E(ϕ̂0,Mϕ̂

T
M)− E(ϕ̂Mϕ̂

T
0,M) + E(ϕ̂Mϕ̂

T
M)

= Var(ϕ̂0,M) + Var(ϕ̂M) + {E(ϕ̂0,M)− E(ϕ̂M)}{E(ϕ̂0,M)− E(ϕ̂M)}T

= Var(ϕ̂0,M − ϕ̂M) + {E(ϕ̂0,M)− E(ϕ̂M)}{E(ϕ̂0,M)− E(ϕ̂M)}T .

Moreover, since θ̂0 and ϕ̂M are independent, we have

E{(ϕ̂0,M − ϕ̂M)(θ̂0 − θ)} = E[(ϕ̂0,M − ϕ̂M){θ̂0 − E(θ̂0) + E(θ̂0)− θ}]
= E[(ϕ̂0,M − ϕ̂M){θ̂0 − E(θ̂0)}] + E(ϕ̂0,M − ϕ̂M)E(θ̂0 − θ)
= Cov(ϕ̂0,M, θ̂0) + E(ϕ̂0,M − ϕ̂M)E(θ̂0 − θ).

The result follows.
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A.3 Proofs of the results in Section 3

Proof of Theorem 2. Note that θ̂Mγ can be written as

θ̂Mγ = (θ̂0 − γT ϕ̂0,M) + γT ϕ̂M.

The two terms on the right hand side are independent because the former uses data in
A0 and the latter uses data in Ac0. In addition, the first term on the right hand side is a
U -Statistic with kernel

φ̃(z1, · · · , zr) = φ(z1, · · · , zr)−
∑
m∈M

γmφm(zm1 , · · · , zmr ),

and the second term is a linear combination ofM independent U -Statistics each with kernel
φm(zm1 , · · · , zmr ). If E{φ2(Z1, · · · , Zr)} <∞ and E{φ2

m(Zm1 , · · · , Zmr )} <∞ for all m ∈M,
we have

E
{
φ(Z1, · · · , Zr)−

∑
m∈M

γmφm(Zm1 , · · · , Zmr )
}2

<∞.

Let ϕm = E{φm
(
Zm1 , . . . , Z

m
r

)
} and ϕM = (ϕm,m ∈M)T . By classical U -Statistics theory

(see for, example, van der Vaart (1998, Theorem 12.3)), we have that

√
n0

{
θ̂0 − γT ϕ̂0,M − (θ − γTϕM)

}
→d N(0, r2v0);

√
nm(ϕ̂m − ϕm)→d N(0, r2vm)

as n→∞, where v0 := Cov{φ̃(Z1, Z2, · · · , Zr), φ̃(Z1, Zr+2, · · · , Z2r)} and
vm := Cov{φm(Zm1 , Z

m
2 , · · · , Zmr ), φ(Zm1 , Z

m
r+2, · · · , Zm2r)}.

Now, by the independence of θ̂0 − γT ϕ̂0,M and ϕ̂M, and noting that limn→∞
nm
n0

= qm
q0

,
we have √

n0

(
θ̂Mγ − θ

)
→d N

(
0, r2

(
v0 +

∑
m∈M

γmq
−1
m q0vm

))
.

Finally, by the definition of φ̃(z1, · · · , zr) we can derive that v0 +
∑

m∈M γmq
−1
m q0vm =

ψ1 + γTΛ1γ − 2γTΩ1. This completes the proof of the theorem.

Proof of Theorem 3. First, we formally define our U -Statistic estimates of ΩU and ΛU .
We have

Ω̂U,m :=
1

2
(
n0

4r−2

) ∑
{i1,...,i4r−2}⊆A0

[{
φ
(
Zi1 , . . . , Zir

)
− φ

(
Zi2r , . . . , Zi3r−1

)}
{
φm
(
Zmi1 , Z

m
ir+1

, . . . , Zmi2r−1

)
− φm

(
Zmi2r , Z

m
i3r , . . . , Z

m
i4r−2

)}]
.

(16)

Moreover

Λ̂U,m,m :=
(

1 +
n0

nm

) 1

2
(
n0+nm

4r−2

) ∑
{i1,...,i4r−2}⊆A0∪Am

[{
φm
(
Zmi1 , . . . , Z

m
ir

)
− φm

(
Zmi2r , . . . , Z

m
i3r−1

)}
{
φm
(
Zmi1 , Z

m
ir+1

, . . . , Zmi2r−1

)
− φm

(
Zmi2r , Z

m
i3r , . . . , Z

m
i4r−2

)}]
; (17)

28



The correlation-assisted missing data estimator

and

Λ̂U,m1,m2 :=
1

2
(n0+nm1,2

4r−2

) ∑
{i1,...,i4r−2}⊆A0∪Am1,2

[{
φm1

(
Zm1
i1
, . . . , Zm1

ir

)
− φm1

(
Zm1
i2r
, . . . , Zm1

i3r−1

)}
{
φm2

(
Zm2
i1
, Zm2

ir+1
, . . . , Zm2

i2r−1

)
− φm2

(
Zm2
i2r
, Zm2

i3r
, . . . , Zm2

i4r−2

)}]
. (18)

Then, by classical U -Statistics theory (van der Vaart, 1998, Theorem 12.3), we can prove
that Λ̂ and Ω̂ are consistent estimators of Λ and Ω, respectively. Then the consistency of γ̂
to γ∗ follows automatically. Next note that

√
n0(θ̂Mγ̂ − θ)−

√
n0(θ̂Mγ − θ) =

√
n0(θ̂Mγ̂ − θ̂Mγ ) =

√
n0(ϕ̂0,M − ϕ̂M)T (γ̂ − γ∗).

By the proof of Theorem 2, the vector
√
n0(ϕ̂0,M − ϕ̂M) is jointly asymptotically normal.

Since γ̂ − γ∗ = op(1), it follows from the Slutsky’s theorem that

√
n0(θ̂Mγ̂ − θ)−

√
n0(θ̂Mγ − θ)→p 0.

This, together with Theorem 2, completes the proof of the theorem.

A.4 Conditions and proofs for the results in Section 4

We first formally state our assumptions. In the following, L > 0 is some universal constant.

A1 Suppose that PX and, for m ∈ {0, 1}d\{(1, . . . , 1)T }, the marginal Xm distribution PXm

have densities fX , and fXm, respectively, that satisfy |fX(z1) − fX(z2)| ≤ L‖z1 − z2‖, for
all z1, z2 ∈ Rd, and, for each m ∈ {0, 1}d \ {(1, . . . , 1)T }, we have |fXm(zm1 )− fXm(zm2 )| ≤
L‖zm1 − zm2 ‖, for all zm1 , z

m
2 ∈ Rdm.

A2 Suppose the kernel is such that K̄ := supz∈Rd(1 + ‖z‖)K(z) < ∞, and that
µ0 = µ0(K) :=

∫
Rd K(z) dz = 1, µ1 = µ1(K) :=

∫
Rd ‖z‖K(z) dz < ∞. We also

ask that ν = ν(K) :=
∫
Rd K

2(z) dz < ∞. Moreover, for each m ∈ M, we have
K̄m := supz∈Rdm (1 + ‖z‖)Km(z) < ∞, µ0,m = µ0,m(Km) :=

∫
Rdm Km(z) dz < ∞, µ1,m =

µ1,m(Km) :=
∫
Rdm ‖z‖Km(z) dz < ∞, and νm = νm(Km) :=

∫
Rdm K2

m(z) dz < ∞. Finally
for m1 6= m2 ∈ M, letting m1,2 = pmax{m1,m2} ∈ {0, 1}d and m1,2 = pmim{m1,m2} ∈
{0, 1}d denote the entrywise maximums and minimums, respectively, of m1 and m2, finally
we suppose that νm1,m2 = νm1,m2(Km1 ,Km2) :=

∫
Rdm1,2

Km1(zm1)Km2(zm2) dzm1,2 <∞.

A3 We have that |η(z1) − η(z2)| ≤ L‖z1 − z2‖, for all z1, z2 ∈ Rd, and, for each m ∈ M,
|ηm(zm1 )− ηm(zm2 )| ≤ L‖zm1 − zm2 ‖, for all zm1 , z

m
2 ∈ Rdm.

A4 For each m ∈ M, we have |τm(zm1 ) − τm(zm2 )| ≤ L‖zm1 − zm2 ‖, for all zm1 , z
m
2 ∈ Rdm.

Finally, we ask, for all m1,m2 ∈M, that |τm1,m2(z
m1,2

1 )−τm1,m2(z
m1,2

2 )| ≤ L‖zm1,2

1 −zm1,2

2 ‖,
for all z

m1,2

1 , z
m1,2

2 ∈ Rdm1,2 .
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Proof of Theorem 5. First, we have

E[{f̂Mγ − fX(x)}2 − {f̂0 − fX(x)}2]

= E[(f̂Mγ (x)− f̂0)2 + 2(f̂Mγ − f̂0){f̂0 − fX(x)}]

= γTE{(f̂0,M − f̂M)(f̂0,M − f̂M)T }γ − 2γTE[(f̂0,M − f̂M){f̂0 − fX(x)}].

Now observe that, for each m ∈M,

E(f̂0,m − f̂m) =
1

n0hdm

∑
i∈A0

E
{
Km

(Xm
i − xm

h

)}
− 1

nmhdm

∑
i∈Am

E
{
Km

(Xm
i − xm

h

)}
= 0.

Thus, using also that f̂0,M and f̂M are independent, we can write

E{(f̂0,M − f̂M)(f̂0,M − f̂M)T }
= E[{f̂0,M − E(f̂0,M) + f̂M − E(f̂M)}{f̂0,M − E(f̂0,M) + f̂M − E(f̂M)}T ]

= Cov(f̂0,M) + Cov(f̂M). (19)

It remains to show that Cov(f̂0,M) + Cov(f̂M) = ΛD(1 + o(1)) and E[(f̂0,M − f̂M){f̂0 −
fX(x)}] = ΩD(1 + o(1)).

For the diagonal terms in the covariances in (19), we have

Var(f̂0,m) + Var(f̂m) =
1

h2dm

( 1

n0
+

1

nm

)
Var
{
Km

(Xm − xm

h

)}
=

1

h2dm

( 1

n0
+

1

nm

)[∫
Rdm

K2
m

(zm − xm
h

)
fXm(zm) dzm

−
{∫

Rdm

Km

(zm − xm
h

)
fXm(zm) dzm

}2
]
.

After making the substitution um = zm−xm
h and using assumptions A1 and A2, we deduce

that∣∣∣∫
Rdm

K2
m

(zm − xm
h

)
fXm(zm) dzm − hdmfXm(xm)νm

∣∣∣
≤ hdm

∫
Rdm

K2
m(um)|fXm(xm + hum)− fXm(xm)| dum ≤ Lhdm+1K̄mµ1,m.

Whereas∣∣∣∫
Rdm

Km

(zm − xm
h

)
fXm(zm) dzm − hdmfXm(xm)µ0,m

∣∣∣
≤ hdm

∫
Rdm

Km(um)|fXm(xm + hum)− fXm(xm)| dum ≤ Lhdm+1µ1,m. (20)

It follows that

Var(f̂0,m) + Var(f̂m) =
fXm(xm)νm

hdm

( 1

n0
+

1

nm

)
{1 + o(1)},
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as n→∞, uniformly for h ∈ [n−β, n−α].
For the off-diagonal terms in (19): first, for m1 6= m2 ∈ M, we have that

Cov(f̂m1 , f̂m2) = 0, since Am1 and Am2 are disjoint for m1 6= m2. For the remaining
terms, we have

Cov(f̂0,m1 , f̂0,m2)

=
1

n0h
dm1+dm2

Cov
{
Km1

(Xm1 − xm1

h

)
,Km2

(Xm2 − xm2

h

)}
=

1

n0h
dm1+dm2

{∫
Rd

Km1

(zm1 − xm1

h

)
Km2

(zm2 − xm2

h

)
fX(z) dz

}
− 1

n0h
dm1+dm2

{∫
Rd

Km1

(zm1 − xm1

h

)
fX(z) dz

}{∫
Rd

Km2

(zm2 − xm2

h

)
fX(z) dz

}
.

As above, we make the substitution u = z−x
h , which gives∫

Rd

Km1

(zm1 − xm1

h

)
Km2

(zm2 − xm2

h

)
fX(z) dz

= hd
∫
Rd

Km1(um1)Km2(um2)fX(x+ hu) du

= hd
∫
Rdm1,2

∫
Rd−dm1,2

Km1(um1)Km1(um2)fX(x+ hu) du1d−m1,2dum1,2

= hd
∫
Rdm1,2

Km1(um1)Km2(um2)

∫
Rd−dm1,2

fX(x+ hu) du1d−m1,2dum1,2

= hdm1,2

∫
Rdm1,2

Km1(um1)Km2(um2)fXm1,2 (xm1,2 + hum1,2) dum1,2

= hdm1,2νm1,m2fXm1,2 (xm1,2){1 + o(1)},

uniformly for h ∈ [n−β, n−α]. It follows from the previous calculation and (20), that

Cov(f̂0,m1 , f̂0,m2) =
νm1,m2fXm1,2 (xm1,2)

n0h
dm1,2

{1 + o(1)},

uniformly for h ∈ [n−β, n−α]. This proves that first claim that Cov(f̂0,M) + Cov(f̂M) =
ΛD(1 + o(1)).

Finally, since f̂0 and f̂M are independent, we have that

E[(f̂0,M − f̂M){f̂0 − fX(x)}] = E[(f̂0,M − f̂M){f̂0 − E(f̂0) + E(f̂0)− fX(x)}]
= E[{f̂0,M − E(f̂0,M)− f̂M + E(f̂M)}{f̂0 − E(f̂0)}]
= Cov(f̂0,M, f̂0) + Cov(f̂M, f̂0) = Cov(f̂0,M, f̂0).

Then, reusing the covariance calculation above, for m ∈M, we have

Cov(f̂0, f̂0,m) =
1

n0hd+dm
Cov

{
K
(X − x

h

)
,Km

(Xm − xm

h

)}
=
ν0,mfX(x)

n0hdm
{1 + o(1)},

uniformly for h ∈ [n−β, n−α]. This completes the proof of the second claim and hence
concludes the proof of the theorem.
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Proof of Theorem 6. First, conditionally on the observed data, we have

E[{η̂Mγ − η(x)}2|Xm1
1 , . . . , Xmn

n ]− E[{η̂0 − η(x)}2|Xm1
1 , . . . , Xmn

n ]

= E{(η̂Mγ − η̂0)2|Xm1
1 , . . . , Xmn

n }+ 2E[{η̂0 − η(x)}{η̂Mγ − η̂0}|Xm1
1 , . . . , Xmn

n ]. (21)

We analyse the two terms in (21) separately. We first introduce some notation and facts that
will be used repeatedly in the proof. Recall that we can write the local constant estimator
as a linear function of the responses Y[n] := (Y1, . . . , Yn)T ∈ Rn. Indeed, let

WA,m = WA,m,h,Km :=

(
Km

(Xm
1 − xm

h

)
1{1∈A}, . . . ,Km

(Xm
n − xm

h

)
1{n∈A}

)T
. (22)

Then η̂A,m(xm) = HT
A,m,h,Km

Y[n], where HA,m = HA,m,h,Km := (
∑n

i=1WA,m,i)
−1WA,m. For

simplicity of presentation, write H0 = HA0,0, H0,m = HA0,m and Hm = HAm,m, and let
H0,M = (H0,m : m ∈ M) be the n × |M| matrix with columns H0,m, for m ∈ M, and
similarly let HM = (Hm : m ∈M) ∈ Rn×|M|.

Next, let E = E(Y[n]|Xm1
1 , . . . , Xmn

n ) =
(
ηm1(Xm1

1 ), . . . , ηmn(Xmn
n )

)T
be the conditional

expectation of the responses, and let Γ := diag{τm1(Xm1
1 ), . . . , τmn(Xmn

n )}. Further, let
Γ∗ = diag{τm1(xm1), . . . , τmn(xmn)} and E∗ = {ηm1(xm1), . . . , ηmn(xmn)}T . We will make
use of the following facts (i) 1TnHA,m = 1; (ii) E∗TH0 = η(x), (iii) HT

mE
∗ = ηm(xm), (iv)

HT
0,mE

∗ = η(x), (v) HT
mΓ∗Hm = τm(xm)HT

mHm, (vi) HT
0,mΓ∗ = 0, (vii) ΓH0 = Γ∗H0 = 0

and (viii) HT
MH0 = 0.

Furthermore, we claim that, for m ∈M, the following results are true

HT
0 H0,m =

ν0,m

µ0,mfXm(xm)n0hdm
{1 +Op(h)}; (23)

HT
0,mH0,m =

νm
µ2

0,mfXm(xm)n0hdm
{1 +Op(h)}; (24)

and
HT
mHm =

νm
µ2

0,mfXm(xm)nmhdm
{1 +Op(h)}, (25)

uniformly for h ∈ [n−β, n−α]. Furthermore, for m1 6= m2 ∈M, we have

HT
0,m1

H0,m2 =
νm1,m2fXm1,2 (xm1,2)

µ0,m1fXm1 (xm1)µ0,m2fXm2 (xm2)n0h
dm1,2

{1 +Op(h)}; (26)

uniformly for h ∈ [n−β, n−α]. To see (23), write

HT
0 H0,m =

∑
i∈A0

K
(
Xi−x
h

)
Km

(Xm
i −xm
h

)∑
i∈A0

K
(
Xi−x
h

)∑
i∈A0

Km

(Xm
i −xm
h

)
=

1
n2
0h

d+dm

∑
i∈A0

K
(
Xi−x
h

)
Km

(Xm
i −xm
h

)
1

n0hd

∑
i∈A0

K
(
Xi−x
h

)
1

n0hdm

∑
i∈A0

Km

(Xm
i −xm
h

) . (27)
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We consider the numerator and denominator above separately. For the numerator, observe
that

E
{ 1

n2
0h
d+dm

∑
i∈A0

K
(Xi − x

h

)
Km

(Xm
i − xm

h

)}
=

1

n0hd+dm

∫
Rd

K
(z − x

h

)
Km

(zm − xm
h

)
fX(z) dz

=
1

n0hdm

∫
Rd

K(u)Km(um)fX(x+ hu) dz

=
ν0,mfX(x)

n0hdm
+

1

n0hdm

∫
Rd

K(u)Km(um){fX(x+ hu)− fX(x)} dz.

Moreover, by Assumptions A1 and A2, we have∫
Rd

∣∣∣K(u)Km(um){fX(x+ hu)− fX(x)}
∣∣∣ dz ≤ Lh∫

Rd

K(u)Km(um)‖u‖ du ≤ Lhµ1K̄m.

Hence, using Markov’s inequality, the numerator in (27) admits the following expression

1

n2
0h
d+dm

∑
i∈A0

K
(Xi − x

h

)
Km

(Xm
i − xm

h

)
=
ν0,mfX(x)

n0hdm
+Op(1/(n0h

dm−1)),

uniformly for h ∈ [n−β, n−α]. For the denominator, by appealing to similar arguments to
those in the proof of Theorem 5, we have that

1

n0hd

∑
i∈A0

K
(Xi − x

h

)
= fX(x) +Op(h),

and
1

n0hdm

∑
i∈A0

Km

(Xm
i − xm

h

)
= fXm(xm)µ0,m +Op(h),

uniformly for h ∈ [n−β, n−α]. The claim in (23) then follows by Slutsky’s Theorem. More-
over, the claims in (24) and (25) follow by the same argument with only minor changes. To
see (26), observe that

E
{ 1

n2
0h
dm1+dm2

∑
i∈A0

Km1

(Xm1
i − xm1

h

)
Km2

(Xm2
i − xm2

h

)}
=

1

n0h
dm1+dm2

∫
Rd

Km1

(zm1 − xm1

h

)
Km2

(zm2 − xm2

h

)
fX(z) dz

=
1

n0h
dm1+dm2

∫
Rdm1,2

Km1

(zm1 − xm1

h

)
Km2

(zm2 − xm2

h

)
fXm1,2 (zm1,2) dzm1,2

=
1

n0h
dm1+dm2−dm1,2

∫
Rdm1,2

Km1(um1)Km2(um2)fXm1,2 (xm1,2 + hum1,2) dum1,2

=
νm1,m2fXm1,2 (xm1,2)

n0h
dm1,2

+O(1/(n0h
dm1,2−1)),
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uniformly for h ∈ [n−β, n−α]. In the last step above we have used the fact that, by Assump-
tions A1 and A2, we have∫

Rdm1,2

Km1(um1)Km2(um2){fXm1,2 (xm1,2 + hum1,2)− fXm1,2 (xm1,2)} dum1,2

≤ Lh
∫
Rdm1,2

Km1(um1)Km2(um2)‖um1,2‖ dum1,2

≤ Lh
∫
Rdm1,2

Km1(um1)Km2(um2)(‖um1‖+ ‖um2‖) dum1,2 ≤ Lh(µ1,m1K̄m2 + µ1,m2K̄m1).

The claim in (26) then follows by similar arguments used to prove (23). We now return to
the main argument.

Part I: the first term in (21): By definition of Y[n] we have

E(Y[n]Y
T

[n]|X
m1
1 , . . . , Xmn

n ) = EET + σ2In×n + Γ.

It follows from the definitions of η̂Mγ and η̂0 that the first term in (21) takes the form

E{(η̂Mγ − η̂0)2|Xm1
1 , . . . , Xmn

n } = γT
(
HT

0,M −HT
M
)
(EET + σ2In×n + Γ)

(
H0,M −HM

)
γ

= γTΛRγ +R1 +R2, (28)

where
R1 := γTHT

M(Γ− Γ∗)HMγ

and

R2 := {γT (HT
0,M −HT

M)E}2 + σ2γTHT
0,MH0,Mγ + γTHT

M(σ2I + Γ∗)HMγ − γTΛRγ.

Here we have used that HT
0,M(Γ − Γ∗)H0,M = 0. We next show that both R1 and R2 are

small order terms.
To bound R1: By assumption A4, we have that

|τm(xmi )− τm(xm)| ≤ L‖xmi − xm‖.

Moreover, similarly to (25), by Assumption A2, we have

HT
mdiag(‖Xmi

i − x
mi‖, i = 1, . . . , n)Hm =

∑
i∈Am

‖Xm
i − xm‖K2

m

(Xm
i −xm
h

)∑
i∈Am

Km

(Xm
i −xm
h

)∑
i∈Am

Km

(Xm
i −xm
h

)
≤

1
n2
mh

2dm−1

∑
i∈Am

K̄mKm

(Xm
i −xm
h

)
{ 1
nmhdm

∑
i∈Am

Km

(Xm
i −xm
h

)
}2

= Op
( 1

nmhdm−1

)
.

uniformly for h ∈ [n−β, n−α]. Thus

|R1| =
∣∣∣γTHT

M(Γ− Γ∗)HMγ
∣∣∣

≤
∑
m∈M

γ2
mH

T
mdiag(‖Xmi

i − x
mi‖, i = 1, . . . , n)Hm = Op

( ∑
m∈M

γ2
m

nmhdm−1

)
,
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uniformly for h ∈ [n−β, n−α].

To bound R2: First we decompose R2 into the sum of three terms. To that end, let

R21 := {γT (HT
0,M −HT

M)E}2 −
∑
m∈M

γ2
mνmτm(xm)

µ2
0,mfXm(xm)n0hdm

−
∑

m1 6=m2∈M

γm1γm2τm1,m2(xm1,2)νm1,m2fXm1,2 (xm1,2)

µ0,m1fXm1 (xm1)µ0,m2fXm2 (xm2)n0h
dm1,2

;

R22 := σ2γTHT
0,MH0,Mγ −

∑
m∈M

γ2
mνmσ

2

µ2
0,mfXm(xm)n0hdm

−
∑

m1 6=m2∈M

γm1γm2σ
2νm1,m2fXm1,2 (xm1,2)

µ0,m1fXm1 (xm1)µ0,m2fXm2 (xm2)n0h
dm1,2

;

and

R23 := γTHT
M(σ2I + Γ∗)HMγ −

∑
m∈M

γ2
mνm{σ2 + τm(xm)}
µ2

0,mfXm(xm)nmhdm
.

Note that R2 = R21 +R22 +R23, since

γTΛRγ =
∑
m∈M

γ2
mνm{σ2 + τm(xm)}
µ2

0,mfXm(xm)n0hdm
+
∑
m∈M

γ2
mνm{σ2 + τm(xm)}
µ2

0,mfXm(xm)nmhdm
.

−
∑

m1 6=m2∈M

γm1γm2{σ2 + τm1,m2(xm1,2)}νm1,m2fXm1,2 (xm1,2)

µ0,m1fXm1 (xm1)µ0,m2fXm2 (xm2)n0h
dm1,2

.

We now bound R21, R22 and R23 in turn.

To bound R21: Write Em = (ηm(Xm
1 ), . . . ηm(Xm

n ))T and let δm = E − Em. Then
Hmδm = 0 and

γT
(
HT

0,M −HT
M
)
E =

∑
m∈M

γm
(
HT

0,m −HT
m

)
E

=
∑
m∈M

γm
(
HT

0,m −HT
m

)
(E − Em + Em)

=
∑
m∈M

γm
{
HT

0,mδm + (HT
0,m −HT

m)Em
}
. (29)
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For m ∈M, using the fact HT
0,m1n = HT

m1n = 1 we have that

|(HT
0,m −HT

m)Em| = |(HT
0,m −HT

m){Em − ηm(xm)1n}|

=
∣∣∣ 1
n0hdm

∑
i∈A0

Km

(Xm
i −xm
h

)
{ηm(Xm

i )− ηm(xm)}
1

n0hdm

∑
i∈A0

Km

(Xm
i −xm
h

)
−

1
nmhdm

∑
i∈Am

Km

(Xm
i −xm
h

)
{ηm(Xm

i )− ηm(xm)}
1

nmhdm

∑
i∈Am

Km

(Xm
i −xm
h

) ∣∣∣
=

1

f̂0,mf̂mn0nmh2dm

∣∣∣ ∑
i∈A0,j∈Am

[
Km

(Xm
i − xm

h

)
{ηm(Xm

i )− ηm(xm)}Km

(Xm
j − xm

h

)
−Km

(Xm
j − xm

h

)
{ηm(Xm

j )− ηm(xm)}Km

(Xm
i − xm

h

)]∣∣∣,
The last line in the display above is the sum of n0nm mean zero terms. Moreover, for each
term we have

E
[
Km

(Xm
i − xm

h

)
{ηm(Xm

i )− ηm(xm)}Km

(Xm
j − xm

h

)
−Km

(Xm
j − xm

h

)
{ηm(Xm

j )− ηm(xm)}Km

(Xm
i − xm

h

)]2

=

∫
Rdm

∫
Rdm

[
Km

(z1 − xm

h

)
{ηm(z1)− ηm(xm)}Km

(z2 − xm

h

)
−Km

(z2 − xm

h

)
{ηm(z2)− ηm(xm)}Km

(z1 − xm

h

)]2
fXm(zm1 )fXm(zm2 ) dz1dz2

= 2

∫
Rdm

∫
Rdm

[
K2
m

(z1 − xm

h

)
{ηm(z1)− ηm(xm)}2K2

m

(z2 − xm

h

)
fXm(zm1 )fXm(zm2 ) dz1dz2

− 2

∫
Rdm

∫
Rdm

K2
m

(z2 − xm

h

)
{ηm(z1)− ηm(xm)}

{ηm(z2)− ηm(xm)}K2
m

(z1 − xm

h

)
fXm(zm1 )fXm(zm2 ) dz1dz2

≤ 2L2h2dm+2

∫
Rdm

K2
m(u)‖u‖2fXm(xm + hu) du

∫
Rdm

K2
m(u)fXm(xm + hu) dzu

+ 2L2h2dm+2
{∫

Rdm

Km(u)‖u‖fXm(xm + hu) du
}2

≤ 2L2h2dm+2{fXm(xm)µ1,mK̄m + Lhµ2,mK̄m + (fXm(xm)µ1,m + Lhµ1,mK̄m)2}.

Therefore, by Markov’s inequality we obtain that

1

n0nmh2dm

∣∣∣ ∑
i∈A0,j∈Am

[
Km

(Xm
i − xm

h

)
{ηm(Xm

i )− ηm(xm)}Km

(Xm
j − xm

h

)
−Km

(Xm
j − xm

h

)
{ηm(Xm

j )− ηm(xm)}Km

(Xm
i − xm

h

)]∣∣∣ = Op

( 1

n
1/2
0 n

1/2
m hdm−1

)
,
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uniformly for h ∈ [n−β, n−α]. Using also the fact that f̂0,m = fXm(xm) + Op(h) and

f̂m = fXm(xm) +Op(h), we have by Slutsky’s Theorem that

|(HT
0,m −HT

m)Em| = Op

( 1

n
1/2
0 n

1/2
m hdm−1

)
, (30)

uniformly for h ∈ [n−β, n−α]. Now, for the terms involving δm in (29), first write

HT
0,mδm =

1
n0hdm

∑
i∈A0

Km

(Xm
i −xm
h

)
{η(Xi)− ηm(Xm

i )}
1

n0hdm

∑
i∈A0

Km

(Xm
i −xm
h

)
=

1

f̂0,mn0hdm

∑
i∈A0

Km

(Xm
i − xm

h

)
{η(Xi)− ηm(Xm

i )}.

The last term is a sum of n0 mean zero terms, with

E
[
K2
m

(Xm
i − xm

h

)
{η(Xi)− ηm(Xm

i )}2
]

= E
{
K2
m

(Xm
i − xm

h

)
τm(Xm

i )
}

=

∫
Rdm

K2
m

(zm − xm
h

)
τm(zm)fXm(zm) dz

= hdm
∫
Rdm

K2
m(u)τm(xm + hu)fXm(xm + hu) du

≤ hdm [τm(xm)fXm(xm) + LhK̄mµ0,m{τm(xm) + fXm(xm)}+ L2h2K̄mµ1,m].

Thus by Markov’s inequality we have |HT
0,mδm| = Op(n

−1/2
0 h−dm/2), uniformly for h ∈

[n−β, n−α], and it follows immediately that |(HT
0,m−HT

m)Em| = Op

(
h(HT

0,mδm)2
)

, uniformly

for h ∈ [n−β, n−α]. Thus, the first term in R21 can be written as

{γT
(
HT

0,M −HT
M
)
E}2 =

( ∑
m∈M

γmH
T
0,mδm

)2
{1 +Op(h)},

uniformly for h ∈ [n−β, n−α]. Now observe that

E{
∑
m∈M

γ2
m(HT

0,mδm)2|Xm
1 , . . . , X

m
n } −

∑
m∈M

γ2
mνmτm(xm)

µ2
0,mfXm(xm)n0hdm

=
∑
m∈M

γ2
mH

T
0,mE{δmδTm|Xm

1 , . . . , X
m
n }H0,m −

∑
m∈M

γ2
mνmτm(xm)

µ2
0,mfXm(xm)n0hdm

=
∑
m∈M

γ2
mH

T
0,mdiag{τm(Xm

1 ), . . . , τm(Xm
n )}H0,m −

∑
m∈M

γ2
mνmτm(xm)

µ2
0,mfXm(xm)n0hdm

=
∑
m∈M

γ2
mH

T
0,mdiag{τm(Xm

1 ), . . . , τm(Xm
n )}H0,m −

∑
m∈M

γ2
mτm(xm)HT

0,mH0,m

+
∑
m∈M

γ2
mτm(xm)HT

0,mH0,m −
∑
m∈M

γ2
mνmτm(xm)

µ2
0,mfXm(xm)n0hdm

.
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Then, by assumption A4, we have that

∣∣∣ ∑
m∈M

γ2
mH

T
0,mdiag{τm(Xm

1 ), . . . , τm(Xm
n )}H0,m −

∑
m∈M

γ2
mτm(xm)HT

0,mH0,m

∣∣∣
=
∣∣∣ ∑
m∈M

γ2
mH

T
0,mdiag{τm(Xm

i )− τm(xm)}H0,m

∣∣∣
≤
∑
m∈M

γ2
m

∑
i∈A0

K2
m

(Xm
i −xm
h

)
|τm(Xm

i )− τm(xm)|

{
∑

i∈A0
Km

(Xm
i −xm
h

)
}2

≤ L
∑
m∈M

γ2
m

1
n2
0h

2dm

∑
i∈A0

K2
m

(Xm
i −xm
h

)
‖Xm

i − xm‖

f̂0,m

= Op

( ∑
m∈M

γ2
m

1

n0hdm−1

)
, (31)

uniformly for h ∈ [n−β, n−α]. Moreover, by (24), we have

∣∣∣ ∑
m∈M

γ2
mτm(xm)HT

0,mH0,m −
∑
m∈M

γ2
mνmτm(xm)

µ2
0,mfXm(xm)n0hdm

∣∣∣ = Op

( ∑
m∈M

γ2
m

1

n0hdm−1

)
, (32)

uniformly for h ∈ [n−β, n−α]. Similarly

E
{ ∑
m1 6=m2∈M

γm1γm2H
T
0,m1

δm1H
T
0,m2

δm2

∣∣∣Xm1,2

1 , . . . , X
m1,2
n

}
−

∑
m1 6=m2∈M

γm1γm2τm1,m2(xm1,2)νm1,m2fXm1,2 (xm1,2)

µ0,m1fXm1 (xm1)µ0,m2fXm2 (xm2)n0h
dm1,2

;

=
∑

m1 6=m2∈M
γm1γm2H

T
0,m1

[
E
{
δm1δ

T
m2

∣∣∣Xm1,2

1 , . . . , X
m1,2
n

}
− τm1,m2(xm1,2)In×n

]
H0,m2

+
∑

m1 6=m2∈M
γm1γm2H

T
0,m1

H0,m2τm1,m2(xm1,2)

−
∑

m1 6=m2∈M

γm1γm2τm1,m2(xm1,2)νm1,m2fXm1,2 (xm1,2)

µ0,m1fXm1 (xm1)µ0,m2fXm2 (xm2)n0h
dm1,2

.

Now, by the last part of Assumption A4 and similar arguments to those used above, we
have

∣∣∣ ∑
m1 6=m2∈M

HT
0,m1

[
E
{
δm1δ

T
m2

∣∣∣Xm1,2

1 , . . . , X
m1,2
n

}
− τm1,m2(xm1,2)In×n

]
H0,m2

∣∣∣
= Op

( ∑
m1 6=m2∈M

γm1γm2

1

n0h
dm1,2−1

)
, (33)
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uniformly for h ∈ [n−β, n−α]. Furthermore, by (26), we have∣∣∣ ∑
m1 6=m2∈M

γm1γm2H
T
0,m1

H0,m2τm1,m2(xm1,2)

−
∑

m1 6=m2∈M

γm1γm2τm1,m2(xm1,2)νm1,m2fXm1,2 (xm1,2)

µ0,m1fXm1 (xm1)µ0,m2fXm2 (xm2)n0h
dm1,2

∣∣∣
= Op

( ∑
m1 6=m2∈M

1

n0h
dm1,2−1

)
, (34)

uniformly for h ∈ [n−β, n−α]. Then, using (30), (31), (32), (33) and (34), we conclude that

|R21| = Op

( ∑
m∈M

1

n0hdm−1
+

∑
m1 6=m2∈M

1

n0h
dm1,2−1

)
,

uniformly for h ∈ [n−β, n−α].
Furthermore, by (24) and (26), we have that

|R22| = Op

( ∑
m∈M

1

n0hdm−1
+

∑
m1 6=m2∈M

1

n0h
dm1,2−1

)
,

uniformly for h ∈ [n−β, n−α]. Finally, by (25) we have

|R23| = Op

( ∑
m∈M

1

nmhdm−1

)
,

uniformly for h ∈ [n−β, n−α]. This concludes the bound on R2 and Part I of the proof.
Part II: the second term in (21). Using the definition of local linear estimators and

noting that ΓH0 = 0 and HT
MH0 = 0, the second term in (21) can be written as

E[(η̂Mγ − η̂0){η̂0 − η(x)}|Xm1
1 , . . . , Xmn

n ]

= E
[
(η̂Mγ − η̂0)

{
η̂0 − E(η̂0|Xm1

1 , . . . , Xmn
n )+E(η̂0|Xm1

1 , . . . , Xmn
n )− η(x)

}∣∣Xm1
1 , . . . , Xmn

n

]
= −γT

(
HT

0,M −HT
M
)
E{Y[n](Y

T
[n] − E

T )|Xm1
1 , . . . , Xmn

n }H0

− γT
(
HT

0,M −HT
M
)
E{ETH0 − η(x)}

= −γT
(
HT

0,M −HT
M
)
(σ2I + Γ)H0 − γT

(
HT

0,M −HT
M
)
E{ETH0 − η(x)}

= −σ2γTHT
0,MH0 − γT

(
HT

0,M −HT
M
)
E{ETH0 − η(x)}. (35)

For the first term in (35), by (23) we have

σ2γTHT
0,MH0 = σ2γTΩR{1 +Op(h)},

uniformly for h ∈ [n−β, n−α].
It remains to bound the second term. Let

R3 = −γT (H0,M −HM)E{ETH0 − η(x)}.
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Recall from Part I of this proof that γT (H0,M − HM)E = Op
(∑

m∈M
γm

n0hdm

)
. Moreover,

by assumption A3, we have that

|η(Xi)− η(x)| ≤ L‖Xi − x‖,

for i = 1, . . . , n. Recall that E∗TH0 = η(x). Therefore

|ETH0 − η(x)| = |(ET − E∗T )H0| ≤
∑

i∈A0
K
(
Xi−x
h

)
|η(X)− η(x)|∑

i∈A0
K
(
Xi−x
h

)
≤ 1

f̂0n0hd

∑
i∈A0

K
(Xi − x

h

)
|η(X)− η(x)| = Op(h),

uniformly for h ∈ [n−β, n−α], where the last equality is by Markov’s inequality due to the
facts that K

(
Xi−x
h

)
|η(X)− η(x)| > 0 and

E
{
K
(Xi − x

h

)
|η(X)−η(x)|

}
≤ Lhd+1

∫
Rd

K(u)‖u‖fX(x+hu) du ≤ Lhd+1{µ1fX(x)+Lhµ2}.

This completes the proof.

A.5 Proofs for the results in Section 5

Proof of Corollary 7. Consider the bias and variance separately: we claim

E(ϕ̂∗m) = E(θ̂0) (36)

and

Var(ϕ̂∗m) = Var(θ̂0)−
Cov(θ̂0, ϕ̄A0,m)2

Var(ϕ̄A0,m − ϕ̄Ām,m)
≤ Var(θ̂0). (37)

To see (36) it suffices to show that E(ϕ̄A0,m) = E(ϕ̄Ām,m). First, since the missing data is
MCAR, we have that the data in TA0,m∪TĀm,m are independent and identically distributed
with distribution Qm. Furthermore, for each b1, b2, the estimators ϕ̂

Ã
b1
0 ,m

and ϕ̂
Ã

b2
m ,m

are constructed using n0,m pairs from TA0,m and TĀm,m, respectively. Thus, these two
estimators have the same distribution, and in particular, they have the same mean. It
follows that E(ϕ̄A0,m) = E(ϕ̄Ām,m). The result in (37) follows via a direct calculation.

A.6 Auxilliary Lemmas

The results in this section motivate our choice of the dm-dimensional kernel, Km, used to
construct f̂0,m and f̂m in the density estimation problem, and η̂0,m and η̂m in the regression
problem. For m ∈ {0, 1}d, let mc = (1, . . . , 1)T −m. Recall that we write fX|Xm(xm

c
;xm),

for the conditional density of X given Xm = xm at xm
c
.
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We see from Lemma 8 that, up to rescaling, if the kernel can be factorised as K(t) =
Km(tm)Kmc(tm

c
), then the optimal choice of f̂0,m is well approximated by

1

n0hdm

∑
i∈A0

Km

(Xm
i − xm

h

)
.

On the other hand, Lemma 9 shows that the optimal choice of η̂0,m is well approximated
by ∑

i∈A0
YiKm

(Xm
i −xm
h

)∑
i∈A0

Km

(Xm
i −xm
h

) .

Any d-dimensional kernel constructed from the product of 1-dimensional kernels satisfy
the factor assumption in Lemmas 8 and 9 . For example the condition is satisfied by the
Gaussian kernel 1

(2π)d/2
exp(−‖t‖2/2) and the box kernel 1

2d
1{maxj=1,...,d |tj |≤1}. Moreover,

other kernels, such as 1{‖t‖2≤1}, are not covered by the lemma but enjoy similar properties
to that in (38), which can be proved by using similar ideas.

Lemma 8 Assume A1 and suppose that, for t ∈ Rd and m ∈ {0, 1}d, we have K(t) =
Km(tm)Kmc(tm

c
), for some Km : Rdm → [0,∞) and Kmc : Rd−dm → [0,∞), that satisfy

µ0,m =
∫
Rdm Km(z) dz <∞, µ1,m =

∫
Rdm ‖z‖Km(z) dz <∞, µ0,mc =

∫
Rdmc Kmc(z) dz <∞

and µ1,mc =
∫
Rdmc ‖z‖Kmc(z) dz <∞. Then, for z ∈ Rdm,∣∣∣∣E{K(X − xh

)∣∣∣Xm = zm
}
− hd−dmKm

(zm − xm
h

)
fX|Xm(xm

c
; zm)µ0,mc

∣∣∣∣
≤ Lh1+d−dm

fXm(zm)
Km

(zm − xm
h

)
µ1,mc .

(38)

Therefore, for 0 < α < β < 1/d,

1

n0hd

∑
i∈A0

E
{
K
(Xi − x

h

)∣∣∣Xm
i

}
=

µ0,mc

n0hdm

∑
i∈A0

Km

(Xm
i − xm

h

)
fX|Xm(xm

c
;xm) +Op(h)

as n→∞, uniformly for h ∈ [n−β, n−α].

Proof To see (38), first observe that by making the substitution u = zm
c−xmc

h , we have

E
{
K
(X − x

h

)∣∣∣Xm = zm
}

=

∫
Rd−dm

Km

(zm − xm
h

)
Kmc

(zmc − xmc

h

)
fX|Xm(zm

c
; zm) dzm

c

= hd−dmKm

(zm − xm
h

)∫
Rd−dm

Kmc(u)fX|Xm(xm
c

+ hu; zm) du.

Now, write

fX|Xm(zm
c
; zm) =

fX(z)

fXm(zm)
.
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Thus, by assumption A1, we have that

|fX|Xm(xm
c

+ hu; zm)− fX|Xm(xm
c
; zm)| ≤ Lh‖u‖

fXm(zm)
.

It follows that∣∣∣∣E{K(X − xh

)∣∣∣Xm = zm
}
− hd−dmKm

(zm − xm
h

)
fX|Xm(xm

c
; zm)µ0,mc

∣∣∣∣
≤ Lh1+d−dm

fXm(zm)
Km

(zm − xm
h

)∫
Rd−dm

Kmc(u)‖u‖ du.

This proves (38).
For the remainder of the proof, first observe that

E
{ 1

fXm(Xm
i )

Km

(Xm
i − xm

h

)}
=

∫
Rdm

Km

(zm − xm
h

)
dz = hdmµ0,m.

It remains to bound the following:

E
∣∣∣ 1

n0hdm

∑
i∈A0

Km

(Xm
i − xm

h

)
{fX|Xm(xm

c
;Xm

i )− fX|Xm(xm
c
;xm)}

∣∣∣
=

1

hdm

∫
Rdm

∣∣∣Km

(zm − xm
h

)
{fX|Xm(xm

c
; zm)− fX|Xm(xm

c
;xm)}

∣∣∣fXm(zm) dzm

=

∫
Rdm

Km(u)|fX|Xm(xm
c
;xm + hu)− fX|Xm(xm

c
;xm)|fXm(xm + hu) dzm

=

∣∣∣∣∫
Rdm

Km(u)
∣∣fX(xm

c
, xm + hu)− fX(x)fXm(xm + hu)

fXm(xm)

∣∣ du
≤ Lh

{
1 +

fX(x)

fXm(xm)

}∫
Rdm

Km(u)‖u‖ du = Lh
{

1 +
fX(x)

fXm(xm)

}
µ1,m.

The proof is completed using Markov’s inequality.

Our results on the choice of Km in the regression problem need a slightly stronger
condition on the joint distribution of (X,Y ):

A5 Suppose that P and Pm, for m ∈ {0, 1}d\{(1, . . . , 1)T }, have densities fX,Y , and fXm,Y ,
respectively, that satisfy |fX,Y (z1, y)− fX,Y (z2, y)| ≤ L‖z1 − z2‖, for all z1, z2 ∈ Rd, y ∈ R,
and, for each m ∈ {0, 1}d \ {(1, . . . , 1)T }, we have |fXm,Y (zm1 , y)− fXm,Y (zm2 , y)| ≤ L‖zm1 −
zm2 ‖, for all zm1 , z

m
2 ∈ Rdm , y ∈ R. Moreover, we ask that the densities fX , fXm,Y are

bounded, and that fXmc |Xm,Y (xm; zm, y) is a bounded function of zm and y.

Lemma 9 Assume A3 and A5, and suppose that Y is supported on DY ⊆ [−Ȳ , Ȳ ],
for some Ȳ > 0. Suppose further that for t ∈ Rd and m ∈ {0, 1}d, we have K(t) =
Km(tm)Kmc(tm

c
), for some Km : Rdm → [0,∞) and Kmc : Rd−dm → [0,∞), that
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satisfy K̄m := supz∈Rdm (1 + ‖z‖)Km(z) < ∞, µ0,m =
∫
Rdm Km(z) dz < ∞, µ1,m =∫

Rdm ‖z‖Km(z) dz < ∞, µ0,mc =
∫
Rdmc Kmc(z) dz < ∞ and µ1,mc =

∫
Rdmc ‖z‖Kmc(z) dz <

∞. Then, for 0 < α < β < 1/d,∑
i∈A0

YiE
{ K

(
Xi−x
h

)∑
j∈A0

K
(Xj−x

h

)∣∣∣TA0,m

}
=

η(x)

ηm(xm)

∑
i∈A0

YiKm

(Xm
i −xm
h

)
∑

j∈A0
Km

(Xm
j −xm
h

) + op(1)

as n→∞, uniformly for h ∈ [n−β, n−α].

Proof Part I : We first show that

Π0 :=
∑
i∈A0

YiE
{ K

(
Xi−x
h

)∑
j∈A0

K
(Xj−x

h

)∣∣∣TA0,m

}
−
∑
i∈A0

Yi
E
{
K
(
Xi−x
h

)∣∣TA0,m

}
E
{∑

j∈A0
K
(Xj−x

h

)∣∣TA0,m

} = op(1).

(39)
To see (39), let

W1 :=
1

n0hd

∑
i∈A0

Yi

[
K
(Xi − x

h

)
− E

{
K
(Xi − x

h

)∣∣∣Xm
i , Yi

}]
and

W2 :=
1

n0hd

∑
i∈A0

[
K
(Xi − x

h

)
− E

{
K
(Xi − x

h

)∣∣∣Xm
i , Yi

}]
.

Then we can write

η̂0 =

∑
i∈A0

YiE
{
K
(
Xi−x
h

)∣∣TA0,m

}
E
{∑

j∈A0
K
(Xj−x

h

)∣∣TA0,m

} +
W1

f̂0

− W2

f̂0

∑
i∈A0

YiE
{
K
(
Xi−x
h

)∣∣TA0,m

}
E(f̂0|TA0,m)

It follows that

Π0 = E
(W1

f̂0

∣∣∣TA0,m

)
+ E

(W2

f̂0

∣∣∣TA0,m

) 1
n0hd

∑
i∈A0

YiE
{
K
(
Xi−x
h

)∣∣TA0,m

}
E(f̂0|TA0,m)

.

Now, by Markov’s inequality, we have

P(|W1| > t|TA0,m) ≤
E(W 2

1 |TA0,m)

t2
=

1

n2
0h

2dt2

∑
i∈A0

Y 2
i Var

{
K
(Xi − x

h

)∣∣∣Xm
i , Yi

}
and

P(|W2| > t|TA0,m) ≤
E(W 2

2 |TA0,m)

t2
=

1

n2
0h

2dt2

∑
i∈A0

Var
{
K
(Xi − x

h

)∣∣∣Xm
i , Yi

}
.

Note further that, since |Yi| ≤ Ȳ , for each i, we have that |Π0| ≤ 2Ȳ . Therefore, for
0 < t < E(f̂0|TA0,m)/2,∣∣E(Π0|TA0,m

)∣∣ ≤ E
(
|Π0|1{|W1|<t}1{|W2|<t}|TA0,m

)
+ E

{
|Π0|(1{|W1|>t} + 1{|W2|>t})|TA0,m

}
≤ 2t

E(f̂0|TA0,m)
+

2t

E(f̂0|TA0,m)

1
n0hd

∑
i∈A0

YiE
{
K
(
Xi−x
h

)∣∣TA0,m

}
E(f̂0|TA0,m)

+
2Ȳ (1 + Ȳ 2)

n2
0h

2dt2

∑
i∈A0

Var
{
K
(Xi − x

h

)∣∣Xm
i , Yi

}
.

(40)
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Now, using the tower property of expectation, we have

E
∣∣E(f̂0|TA0,m)− fX(x)

∣∣ ≤ E
∣∣f̂0 − fX(x)

∣∣ ≤ Lhµ1,

by assumption A1. Thus, we have E(f̂0|TA0,m) = fX(x) + Op(h), by Markov’s inequality.
Similarly

1

n0hd

∑
i∈A0

YiE
{
K
(Xi − x

h

)∣∣∣TA0,m

}
= η(x)fX(x) +Op(h).

Finally, using the facts that

E
[
Var
{
K
(Xi − x

h

)∣∣∣Xm
i , Yi

}]
≤ Var

{
K
(Xi − x

h

)}
≤ hd{νfX(x) + LhK̄µ0},

and that the conditional variances are all non-negative, by applying Markov’s inequality we
have

1

n0

∑
i∈A0

Var
{
K
(Xi − x

h

)∣∣∣Xm
i , Yi

}
= Op(h

d),

uniformly for h ∈ [n−β, n−α]. The proof of Part I is then completed by taking t = tn :=√
logn0

n0hd
in (40) and using Markov’s inequality.

Part II: We claim that

Π1 :=
1

n0hd

∑
i∈A0

Yi

[
E
{
K
(Xi − x

h

)∣∣∣TA0,m

}
− µ0,mcfX(x)η(x)

fXm(xm)ηm(xm)
Km

(Xm
i − xm

h

)]
= op(1),

(41)
uniformly for h ∈ [n−β, n−α], and

Π2 =
1

n0hd

∑
i∈A0

E
{
K
(Xi − x

h

)∣∣∣TA0,m

}
− µ0,mcfX(x)

fXm(xm)n0hdm

∑
i∈A0

Km

(Xm
i − xm

h

)
= op(1),

(42)
uniformly for h ∈ [n−β, n−α].

To see (41), first observe that, for all zm ∈ Rdm and y ∈ R, we have

∣∣∣E{Kmc

(Xmc

i − xmc

h

)∣∣∣(Xm
i , Yi) = (zm, y)

}
− hdmcµ0,mcfXmc |Xm,Y (xm

c
; zm, y)

∣∣∣
=
∣∣∣∫

Rdmc
Kmc

(zmc − xmc

h

)
fXmc |Xm,Y (zm

c
; zm, y) dzm

c − hdmcµ0,mcfXmc |Xm,Y (xm
c
; zm, y)

∣∣∣
= hdmc

∣∣∣∫
Rdmc

Kmc(u)fXmc |Xm,Y (xm
c

+ hu; zm, y) dum
c − µ0,mcfXmc |Xm,Y (xm

c
; zm, y)

∣∣∣
≤ Lhdmc+1µ1,mc

fXm,Y (zm, y)
.
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Therefore

E
∣∣∣ 1

n0hd

∑
i∈A0

Yi

[
Km

(Xm
i − xm

h

)
E
{
Kmc

(Xmc

i − xmc

h

)∣∣Xm
i , Yi

}
−Km

(Xm
i − xm

h

)
µ0,mcfXmc |Xm,Y (xm

c
;Xm

i , Yi)
]∣∣∣

≤ Lhµ1,mcE
{ 1

n0hdm

∑
i∈A0

|Yi|Km

(Xm
i −xm
h

)
fXm,Y (Xm

i , Yi)

}
= Lhµ1,mc

1

hdm

∫
Rdm×DY

|y|Km

(zm − xm
h

)
dzdy ≤ Lhµ1,mcµ0,mȲ

2.

It follows that

Π1 =
µ0,mc

n0hdm

∑
i∈A0

YiKm

(Xm
i − xm

h

)[
fXmc |Xm,Y (xm

c
;Xm

i , Yi)−
fX(x)η(x)

fXm(xm)ηm(xm)

]
+R4,

(43)
where R4 = Op(h), uniformly for h ∈ [n−β, n−α], by Markov’s inequality. Now, writing
(with a slight abuse of notation) η(zm

c
, zm) := E(Y |Xmc

= zm
c
, Xm = zm), the first

term in (43) is the average of n0 independent and identically distributed terms each with
expectation

1

hdm

∫
Rd+1

yKm

(zm − xm
h

){
fXmc |Xm,Y (xm

c
; zm, y)− fX(x)η(x)

fXm(xm)ηm(xm)

}
fXm,Y (zm, y) dzmdy

=
1

hdm

∫
Rd+1

yKm

(zm − xm
h

){
fXmc ,Xm,Y (xm

c
, zm, y)−

fX(x)η(x)fXm,Y (zm, y)

fXm(xm)ηm(xm)

}
dzmdy

=
1

hdm

∫
Rd

Km

(zm − xm
h

){
η(xm

c
, zm)fXmc ,Xm(xm

c
, zm)− fX(x)η(x)ηm(zm)fXm(zm)

fXm(xm)ηm(xm)

}
dzm

=

∫
Rd

Km(u)
{
η(xm

c
, xm + hu)fXmc ,Xm(xm

c
, xm + hu)

− fX(x)η(x)ηm(xm + hu)fXm(xm + hu)

fXm(xm)ηm(xm)

}
du

=

∫
Rd

Km(u)
{
η(xm

c
, xm + hu)fXmc ,Xm(xm

c
, xm + hu)− fX(x)η(x)

}
du

+ µ0,mc

∫
Rd

Km(u)
{
fX(x)η(x)− fX(x)η(x)ηm(xm + hu)fXm(xm + hu)

fXm(xm)ηm(xm)

}
du

≤ Lh
[
µ1,m

{
η(x) + fX(x) +

fXm(xm) + ηm(xm)

fXm(xm)ηm(xm)

}
+ Lhµ1,mK̄m

{
1 +

1

fXm(xm)ηm(xm)

}]
.

Furthermore, we show below that

Var
{µ0,mc

hdm
YiKm

(Xm
i − xm

h

)(
fXmc |Xm,Y (xm

c
;Xm

i , Yi)−
fX(x)η(x)

fXm(xm)ηm(xm)

)}
= O

( 1

hdm

)
,

(44)
uniformly for h ∈ [n−β, n−α]. It follows that |Π1| = op(1), uniformly for h ∈ [n−β, n−α], by
Chebychev’s inequality – this proves (41).
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Next, to see (42), write

Π2 =
1

n0

∑
i∈A0

[ 1

hd
E
{
K
(Xi − x

h

)∣∣TA0,m

}
− µ0,mcfX(x)

fXm(xm)hdm
Km

(Xm
i − xm

h

)]
=

1

n0

∑
i∈A0

Km

(Xm
i − xm

h

)[ 1

hd
E
{
Kmc

(Xmc

i − xmc

h

)∣∣∣Xm
i , Yi

}
− µ0,mcfX(x)

fXm(xm)hdm

]
=

µ0,mc

n0hdm

∑
i∈A0

Km

(Xm
i − xm

h

)[
fXmc |Xm,Y (xm

c
;Xm

i , Yi)−
fX(x)

fXm(xm)

]
+R5, (45)

where, using the same technique used to bound R4, we have

E|R5| ≤ Lhµ1,mcE
{ 1

n0hdm

∑
i∈A0

Km

(Xm
i −xm
h

)
fXm,Y (Xm

i , Yi)

}
= Lhµ1,mc

1

hdm

∫
Rdm×DY

Km

(zm − xm
h

)
dzdy ≤ 2Lhµ1,mcµ0,mȲ .

Thus by Markov’s inequality R5 = Op(h), uniformly for h ∈ [nβ, n−α]. Finally, the remain-
ing term in (45) is the average of n0 independent and identically distributed terms, each
with expectation given by

1

hdm

∫
Rd×R

Km

(zm − xm
h

){
fXmc |Xm,Y (xm

c
; zm, y)− fX(x)

fXm(xm)

}
fXm,Y (zm, y) dzmdy

=
µ0,mc

hdm

∫
Rd×R

Km

(zm − xm
h

){
fXmc ,Xm,Y (xm

c
, zm, y)−

fX(x)fXm,Y (zm, y)

fXm(xm)

}
dzmdy

=
µ0,mc

hdm

∫
Rd

Km

(zm − xm
h

){
fXmc ,Xm(xm

c
, zm)− fX(x)fXm(zm)

fXm(xm)

}
dzm

= µ0,mc

∫
Rd

Km(u)
{
fXmc ,Xm(xm

c
, xm + hu)− fX(x)fXm(xm + hu)

fXm(xm)

}
du

= µ0,mc

∫
Rd

Km(u)
{
fXmc ,Xm(xm

c
, xm + hu)− fX(x)fXm(xm + hu)

fXm(xm)

}
du

≤ Lhµ0,mcµ1,m

{
1 +

fX(x)

fXm(xm)

}
.

Moreover, we will show below that

Var
{µ0,mc

hdm
Km

(Xm
i − xm

h

)(
fXmc |Xm,Y (xm

c
;Xm

i , Yi)−
fX(x)η(x)

fXm(xm)ηm(xm)

)}
= O

( 1

hdm

)
,

(46)
uniformly for h ∈ [n−β, n−α]. It follows that |Π2| = op(1), uniformly for h ∈ [n−β, n−α].
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It remains to show (44) and (46). We have that

Var
{
YiKm

(Xm
i − xm

h

)(
fXmc |Xm,Y (xm

c
;Xm

i , Yi)−
fX(x)η(x)

fXm(xm)ηm(xm)

)}
≤ E

[{
YiKm

(Xm
i − xm

h

)(
fXmc |Xm,Y (xm

c
;Xm

i , Yi)−
fX(x)η(x)

fXm(xm)ηm(xm)

)}2]
≤ sup

zm∈Rdm ,y∈DY

[
y2
{
fXmc |Xm,Y (xm

c
; zm, y)

− fX(x)η(x)

fXm(xm)ηm(xm)

}2
fXm(zm)

] ∫
Rdm

K2
m

(zm − xm
h

)
dzm

= sup
zm∈Rdm ,y∈DY

[
y2
{
fXmc |Xm,Y (xm

c
; zm, y)− fX(x)η(x)

fXm(xm)ηm(xm)

}2
fXm(zm)

]
νmh

dm

Thus, (44) holds since the density functions are bounded. The claim in (46) can be seen by
the same argument.

The proof is competed by combining Part I, Part II and Slutsky’s Theorem.
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