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Abstract

We introduce a novel approach to estimation problems in settings with missing data. Our
proposal — the Correlation-Assisted Missing data (CAM) estimator — works by exploiting
the relationship between the observations with missing features and those without missing
features in order to obtain improved prediction accuracy. In particular, our theoretical
results elucidate general conditions under which the proposed CAM estimator has lower
mean squared error than the widely used complete-case approach in a range of estimation
problems. We showcase in detail how the CAM estimator can be applied to U-Statistics
to obtain an unbiased, asymptotically Gaussian estimator that has lower variance than the
complete-case U-Statistic. Further, in nonparametric density estimation and regression
problems, we construct our CAM estimator using kernel functions, and show it has lower
asymptotic mean squared error than the corresponding complete-case kernel estimator. We
also include practical demonstrations throughout the paper using simulated data and the
Terneuzen birth cohort and Brandsma datasets available from CRAN.

Keywords: Missing data, U-Statistics, kernel density estimation, local constant regres-
sion, nonparametric

1. Introduction

Data is a primary commodity in today’s economy, it is valued and traded like any other asset.
Statistics and machine learning allow us to extract this value by improving operational
efficiency, increasing revenue, or understanding the behaviour of customers. A common
complication in modern applications is that the data may be incomplete. For example, some
users may choose not to disclose their personal details (age, gender, geographic location,
etc.) to a smartphone application; optional questions on an on-line form are often left blank;
or data is sometimes removed or hidden to guarantee privacy. In other situations, missing
data problems can arise when two or more different data sources have been combined.
Missing data is not a new problem. As early as the 1950s, Anderson (1957) found
the maximum likelihood estimator in a multivariate normal distribution when some of the
observations were missing. In a seminal paper, Rubin (1976) studied missing data in a
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rigorous general framework, introduced the notion of data missing at random, and specified
conditions under which the process that causes data to be missing may be ignored. See also
the comprehensive book on the subject by Little and Rubin (2002) and the recent special
issue of Statistical Science (Josse and Reiter, 2018).

A simple and widely used approach to deal with missing data is to discard any incomplete
observations — a technique referred to as complete-case analysis (Little and Rubin, 2002,
Chapter 3). There is an obvious drawback with this method that perhaps much of the data
is ignored. An alternative approach is to impute the missing values (Ford, 1983). There is
an extensive body of work on different imputation techniques; see, for instance, Little and
Rubin (2002, Chapters 4 and 5) and Molenberghs et al. (2015, Chapter IV) for an overview.
Other techniques are based on the expectation-maximisation (EM) algorithm (Dempster
et al., 1977). Another important line of work is known as doubly-robust estimation (Tsiatis,
2006), which combines the inverse probability weighted estimator with a bias correction.
The term double robustness here refers to the fact that the method is consistent if either
the missingness model or the regression model is correctly specified; see Kang and Schafer
(2007) for an accessible overview. Missing data has also been studied in a range of high-
dimensional settings, including regression (Loh and Wainwright, 2012), covariance matrix
estimation (Lounici, 2014; Cai and Zhang, 2016), classification (Cai and Zhang, 2018), and
(sparse) principal component analysis (Elsener and van de Geer, 2018; Zhu et al., 2019).

In this paper, we develop a novel approach to missing data problems. Our new proposal,
the correlation-assisted missing data (CAM) estimator, exploits the relationship between
the complete cases and the observations with missing values, in order to improve on the per-
formance of the complete-case estimator. More precisely, we construct an (approximately)
mean-zero statistic, using both the complete-cases and the data with missing entries, which
is correlated with the complete-case estimator. We then exploit this correlation to construct
our new estimator, by making a linear adjustment to the complete-case estimator.

Our first main result, Proposition 1, elucidates when the proposed CAM estimator will
be more accurate than the complete-case estimator in terms of mean squared error. The
result does not require any assumptions on the data generating mechanism. In particular,
we do not assume the data to be missing completely at random. Further, Proposition 1
motivates an optimal (but typically unknown) choice of the adjustment term used in the
construction of the CAM estimator. This optimal choice leads to the greatest reduction in
mean squared error. We also show that we can then construct a data-driven version of the
CAM estimator that performs well in many practical settings.

As a second main contribution, we showcase how the CAM estimation technique can be
applied in specific settings. First, when the complete-case estimator is a U-Statistic, we show
that the optimal adjustment term also takes the form of a U-statistic. This motivates us
to consider a CAM estimator with a general U-statistic as the adjustment term and allows
for detailed theoretical analysis. In particular, when the data is missing completely at
random, we show that our CAM estimator is unbiased, asymptotically Gaussian, and has a
smaller asymptotic variance than the complete-case U-Statistic (cf. Theorem 3). We provide
two concrete examples where a clear improvement can be shown analytically. Moreover,
the numerical properties of the CAM estimator are demonstrated using simulated and real
data, including an application using the Terneuzen birth cohort dataset available from CRAN.
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We then investigate an application of the CAM technique to kernel based methods in
nonparametric density estimation and regression problems. Under standard nonparametric
assumptions on the data generating distribution, we quantify the leading order asymptotic
improvement in mean squared error obtained by the CAM estimator compared with the
complete-case approach. We provide further theoretical justification for the construction
of the CAM estimator in these settings, in terms of approximating the optimal adjustment
term. This leads to a fast, fully data-driven construction of our estimator. Finally, we
demonstrate our method and the improvement it offers over the compete-case estimator
in a simulation study and show how it can be used in an application with the Brandsma
dataset on CRAN.

Related methods to the CAM approach have been utilised in various double-sample
design settings. Fuller (1998) considers the problem of marginal mean estimation when
one observes a small set of pairs of data and a larger set of univariate observations. Chen
and Chen (2000) proposed an estimator of the regression parameters in a generalised linear
model, where the practitioner has one sample in which the observations may be noisy or
proxy versions of the variables of interest, and a second validation sample where complete
and exact observations of the features are available. Chen and Chen (2000) show that their
estimator of the regression parameter is asymptotically unbiased and has smaller (asymp-
totic) variance than a naive estimator based solely on the validation sample. Similar ideas
have been used more recently in different statistical problems. Jiang et al. (2011) propose
a nonparametric kernel-based regression estimate in double sampling designs, where the re-
sponse is missing in one of the samples, but a surrogate outcome is observed instead. Yang
and Ding (2020) propose an estimator of the average causal treatment effect in a general set-
ting, by combining multiple observational datasets; see also Lin and Chen (2014), who focus
on the logistic regression setting. Very recently, Zhang et al. (2019) considered estimating
the marginal mean response in a semi-supervised setting, where one has a large number of
unlabelled observations alongside a small labelled training dataset. Our work extends these
existing works to a much wider range of estimation problems, including estimators based
on U-Statistics, and nonparametric density estimation and regression.

Finally, we note here that, in contrast to many imputation approaches, the CAM tech-
nique has a clear and direct aim — that is to reduce the mean squared error of the complete-
case estimator. On the other hand, while imputation is widely applicable, the properties of
estimators derived from imputed data are typically not well understood. Indeed, imputa-
tion methods are often treated as a black-box solution to missing data problems, and the
subsequent steps of estimation and inference are conducted independently of the imputation
step, which may lead to unreliable results. In our numerical work in Section 4.3, we see
that a regression estimator computed with imputed data can in fact perform worse than
simply using a complete-case approach. Moreover, in problems such as density estimation,
it is unclear whether imputation offers a viable solution — the distribution of the imputed
data may not be the same as the target distribution.

The remainder of this paper is as follows. In Section 2 we fix our general statistical
and missing data settings and introduce the CAM estimator. Section 3 is dedicated to
studying U-Statistics. We then demonstrate how the CAM estimator can be applied us-
ing kernel methods in density estimation and regression problems in Section 4. We also
provide, throughout the paper, a number of practical demonstrations of the method using
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Figure 1: Left: 500 observations from the joint distribution of (U, V) (see (1)), with vx =
vy =1, T = %OI + 1%(17 DT(1,1) and n = 1000. Right: Sampling distributions
of Ux 1 in black and 7x in red.

real and simulated datasets. We conclude our paper with a discussion of various practical
considerations and possible extensions in Section 5. All technical details and proofs of our
theoretical results are presented in Section A in the appendix. We first end this section
with an illustrative example that demonstrates how our estimator is constructed.

1.1 Illustrative example

Let (X1,Y1)7,...,(Xon, Y2,)T be independent and identically distributed bivariate Gaus-
sian random variables with unknown mean v = (vx,vy)? € R2, but known covariance
I' = (I';j); we write Na(v,T") as shorthand. Suppose we observe {(X1,Y1),..., (X, Yn)}
and {Y,+1,..., Y2, }; in other words, in the language of missing data, the first component
is missing completely at random in the second set of observations. Our task is to estimate
vx.

The complete-case estimator in this example ignores the second set of observations
and takes the sample mean of the X observations only. That is Ux 1 := %Z?:l X; ~
N(vx,T'11/n); this is unbiased and is the maximum likelihood estimator if there are no
Y observations. Now consider Dy := %2?21 Y; and Dy = %Zf’;n 41 Yi. Then, letting
U:=0x1 and V := Dy — Dy, we have

(U?V)TNNQ((VXaO)Taf)7 (1)

where T' = n 1T 4+ n~T'9(0,1)7(0,1); see Figure 1. This motivates the estimator

_ . INPI . 1 f‘%g
= Dy — = _ ~N< ,7<r _ = )) 2
Ux =Ux PQQ(VY,l Dy2) v, A = = (2)
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We see that vx is also unbiased for vx, but has a strictly smaller variance than 2x ; whenever
I2 # 0.

There is a neat connection between our estimator and the Rao—Blackwell Theorem in
this example. The statistic T' = (11, T2)T = (Ox1—0yil12/T 22, Dy +19K2)T is sufficient (the
technical details are presented in Section A.1) for v, and the Rao—Blackwellised version of
Ux 1 is E(Dx 1|T) = Ux. In fact, one can show that 7y is the maximum likelihood estimator
of vx in this setting (cf. Anderson (1957)).

2. Missing data and the CAM estimator

Suppose Z = (X,Y) is a random pair taking values in R? x R with joint distribution P.
We are interested in estimating § = 6(P) € R, which may be any real valued function of
the distribution P. Examples studied in detail in this paper include the mean of the first
component of X; the covariance between X and Y'; the value of a regression function of Y
on X at the point € R?; or the value of the density fx(x), if it exists, of X at z € R%.

We study a setting where some of the features of X are missing, but where the response Y’
is always observed. In order to model this, suppose that we have (Z, M), where the marginal
distribution of Z is P, and M is a missingness indicator taking values in {0,1}¢. More
precisely, we only observe the features j € {1,...,d}, with M7 = 0, that is ZM := (XM V),
where for z = (z!,...,29)T € R? and m = (m',...,m9)T € {0,1}4, we write 2™ :=
(x7 : m/ = 0) € R¥, where d,, := Z?Zl 1{mi=o}- Define the missingness probabilities
pm(x,y) :=P(M = m|X = z,Y = y). Further write P,, and @, for the joint distribution
of (X™Y) and (X™,Y)|{M = m}, respectively. Note that under certain missing data
assumptions we have P, = Q;,, but that this is not the case in general.

We say the data is missing completely at random (MCAR) if M is independent of the
pair (X,Y). In this case we write p,, := P(M = m). The data is missing at random (MAR)
if the missingness indicator only depends on the observed data. Formally, this means that
M is conditionally independent of Z given ZM. Whereas, the data is said to be missing
not at random (MNAR) if M depends on the unobserved value. See, for example, Little
and Rubin (2002, Chapter 1.3) for further discussion of these three scenarios. Our most
general results in this paper make no assumption on the missingness type. However, if the
data is missing not at random, then the parameter of interest #(P) may not be identifiable
from the missing data and estimation will be problematic; see, for example, Wang et al.
(2014) and Miao et al. (2016). For our technical analysis in the U-Statistics setting and the
nonparametric learning problems, we focus on the MCAR case. Further discussion of the
more challenging non-MCAR scenarios is given in Section 5.

Let (Zy,My),...,(Zn, M,) be independent and identically distributed pairs with the
same distribution as (Z, M). It is convenient to consider the missingness indicators
My, ..., M, as fixed and equal to m1,..., my, and from this point on all probability state-
ments should be interpreted to be conditional on (My,...,M,) = (m1,...,my). We ob-
serve Z{"', ..., Z". The popular complete-case approach uses only the observations with
m; = (0,...,0) € RL Our goal in this paper is to construct an estimator which also
uses the observations with missing values in order to improve on the performance of the
complete-case estimator.
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It is also useful to introduce some further notation here. For m € {0,1}%, let A, :=
{i € {1,...,n} : mj = m} be the set of indices of the data missing m, let n,, := |A;|. In
particular, Ag is the set of indices of the complete cases, where here and throughout we
use the shorthand 0 in place of 04 := (0,...,0) € R We have that A,,, N A,,, = 0 for
my # my. Finally, for a set A C {1,...,n} and m € {0,1}9, let Ta,, := {Z" : i € A}.
Of course, T4, is not necessarily observed for every A and m, but we do observe Ty,, m-
We assume that Ay is non-empty, and moreover, for each m € {0,1}¢ with A,, non-empty,
we have that lim,, o % = ¢y, € (0,1), almost surely. That is, either a set of features m
is never missing, or, for those that are missing, the relative sample sizes are more or less
balanced. If the data is MCAR, then we have that g, = py,, for m € {0, 1}<.

We now define a generic version of our correlation-assisted missing data (CAM) estima-
tor. The main idea underpinning our proposal is to mimic the approach in the toy example
in Section 1.1 by combining appropriate, correlated estimators, which are constructed using
different parts of the data. We first assume that there is a suitable complete-case estimator
of § that only uses the data in T4, ; this is denoted by éo =0 Ao,0- Furthermore, suppose
that, for each m and each A C {1,...,n}, we have access to a statistic denoted by ¢4 m,
which only depends on the data in 74 ,,,. Notice that, for m # 0, ¢, is not an estimator
for 0. A detailed discussion of the choice of ¢4 ,, is given at the end of this section.

Consider m € {0,1}¢\ {04} such that A,, is non-empty. The CAM estimator is con-
structed using éo, P A,m and @4,m. The hope is that the latter two statistics have similar
expected values, and that ¢4, ,, is (highly) correlated with the complete-case estimator fo.
We then exploit this correlation in the same way as we did in the illustrative example —
see (2).

In fact, we can construct similar statistics using many m € {0,1}\ {04} simultaneously.
Let M C {0,1}?\ {04} denote the set of values of m that we would like to use (a detailed
discussion of how to choose M in practice is postponed until Section 5). Consider the

two column vectors of length |[M|, given by @or = ({@agm : m € M})T and P =

({@Am,m tm € M})T Finally, for v € RM! define the correlation-assisted missing data
(CAM) estimator
07 = 0o — " (Po.m — o).

In practice we will use a data-driven choice of 7y, which aims to minimise the mean squared
error (cf. the discussion after the statement of Proposition 1). It’s perhaps useful to relate
back to the illustrative example in Section 1.1: there we have M = {m} = {1}, 6y = UX 1,
Com = Dyi, Pm = Dyg and y = flg/f‘22 (note also that Ay = {1,...,n} and 4,, =
{n+1,...,2n}).

We now study properties of the CAM approach in the general estimation problem. For an
estimator 6, let MSE(f) = E{(0 — 0)2} denote its mean squared error. Let b(0) := E(6 — 0)
be the bias of an estimator 6 and let By := E(@om — $am). Let Q denote the |M]-
dimensional vector of covariances Cov(fy, o) and let A be the |M| x | M| covariance
matrix Var(go m — Pm)-

Proposition 1 We have that

MSE(62") — MSE(g) = 7" (A + BmBy)y — 277 {Q + b(00) Bt }-
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In particular, if A is nonsingular and By = 0, then v = v* := A~'Q is the optimal weight
vector achieving the mazimum reduction in MSE, and

MSE(624) — MSE(6,) = —Q"A™'Q < 0.

Proposition 1 compares the MSE of our CAM estimator and the complete-case estimator.
We have made no assumption on the missing data mechanism and, in particular, we do not
assume here that the data is missing completely at random. It is worth noting, however,
that if the data is not MCAR, the complete-case estimator may be (even asymptotically)
biased (cf. Section 5). In which case, simply improving on the performance of the complete-
case estimator will not necessarily be effective. Furthermore, for general missing data
mechanisms, we do not have control of Bx,. However, we will see that under appropriate
conditions in many estimation problems, ¢g pm — Paq Will be (asymptotically) mean zero.
The role of ¢, here is to estimate E({g ). If we can reduce the MSE of this estima-
tor, then this may lead in turn to an overall reduction in MSE for estimating 6. To see
this, suppose M = {m} and b(fy) = 0, then the best MSE reduction for estimating 6 is

2/ A A
Var(c‘;:m()ei’l\ﬁ%g()@m), where MSE($r,) = E{($m —E@o.m)?} = Var(¢m) —I—B%m}. We see, then,
that one should choose ¢, to minimise the MSE in estimating E(¢q ). On the other hand,
if the complete case-estimator is biased, then the effect of minimising the MSE of ¢, is
unclear.

We see from the second part of Proposition 1 that to achieve maximum mean squared
error reduction when By = 0, we should set v = ~* := A~'Q. If, moreover, M = {m},

then we have that

. . X Var($o.m .
MSE(Q{YZ‘)—MSE(GO):—Var(ao)var(% )(“ffvvir(@ )Corrz(eo,cpom), (3)

Cov(ég,@gym)

\/Var(éo)\/ar(g?;o,m) '
independent since they are constructed using disjoint sets of observations. Thus, to achieve

a maximal reduction in MSE, we’d like ¢ ,, to be maximally correlated with éo and Var(,,)

where Corr(ég,cﬁo,m) = Here we have used that ¢g,, and ¢, are

to be minimised. The first is achieved by the conditional expectation @5, = E(éolﬂmm).
Moreover, Var(g,,) is minimised by ¢}, = E(@om,), but this is typically unknown. In
practice, we use the data 7a,, » to construct an estimate of E(¢¢ ) that has low variance.
The situation when [M| > 1 is similar by noting the independence of T4, m, and T4
for my # mo.

To understand this further, note that with the optimal choice ¢y, we have

Cov(fo, $m) = E{Cov(Bo, 5 m| Tag.m)} + Cov{E(Go| Tag.m), E(5 m|Tagm)} = Var(@g ).
Thus, in the ideal case that Var(#y,) is negligible compared with Var(¢g ,,,) (e.g. if nm > no),

mo M2

the improvement in MSE is simply Var(pg ,,,) = Var{E(éo\TAO,m)}.

Of course, the conditional expectation E(fp|Ta,.m) is also typically unknown. We will
see in practice that, for instance, assuming a parametric form for ¢g,, works well. In
particular, in our study of U-Statistics in Section 3, we see that a data-driven choice of pg
will often lead to similar performance to the optimal choice. Moreover, for nonparametric
methods using kernels, the optimal ¢f ,,, can often be well approximated by the same type
of nonparametric estimator with a practical choice of kernel (see Section 4).
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3. U-Statistics

In this section we specialise to the setting of U-Statistics. Suppose we are interested in
estimating a parameter of the form 6 = 0(P) = E{qb(Zl, . .,Zr)}, for r > 1 and some
function ¢ : (R¢xR)®" — R, which is permutation symmetric in its 7 arguments (i.e. we have
that (;S(Zl, .. .,ZT) = qﬁ(ZU(l), .. .,Zg(r)), for all permutations o : {1,...,r} — {1,...,r}).
In the non-missing setting, an unbiased estimator of # is given by

é:(}L) > o(Ziy, ..., Zi,),

{i1,ir}C{1,....n}

where the sum is taken over all unordered subsets {ii,...,i,} C {1,...,n} of size r.
Statistics of this form have been studied in detail in the non-missing setting, see for in-
stance van der Vaart (1998, Chapter 12.1). In particular, if E{¢2 (Zl, ceey ZT)} < 00, then
n'/2(0 — ) = N(0,r%¢y), where Yy = Cov{d(Z1,...,Z;), d(Z1, Zrsr, ... Zor_1) }-

We now construct the CAM U-Statistic. First, the complete-case U-Statistic is

A A 1
o = 9140,0 = (no) Z ¢(Zi17"'aZZ'r)a

T/ {i1,...,ir }CAg

where now the sum is taken over all unordered subsets {i1,...,i,} C Ag of size r. In this
case, for m € M, we have

N 1
E(f0| Taom) = e > E{¢(Zi,..- 2|27 2

In other words, the optimal form of the adjustment term in the construction of the CAM
estimator is itself a U-Statistic with oracle kernel

o (2T, 2 =B{&(Z1, ..., Z,)| 27", ..., Z]"}. (4)

This depends on ¢ and the conditional distribution of Z given Z", which is typically
unknown. We therefore consider a general construction of the adjustment term as follows:
for m € M, let ¢,, : (R% x R)®*" — R be a permutation symmetric function in its r
arguments, and, for A C {1,...,n}, define

. 1
Pam= T D Om(Z. 2.
( T ) {il,...,’ir}gA

We will make use of ¢gm = @ag,m and Gm = @a,,.m. Recall that oo pm = (Qom :m € M)T
and ¢aq = (Pm :m € M)T. For v € RMI| define the CAM U-Statistic

6" = 0 — " (Go.m — P).
Here ¢,, is left unspecified, in practice one would aim to choose ¢,, to mimic the oracle
choice above.
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Suppose that the data is missing completely at random. Then we have that By =
E(@om — $m) = 0. Recall also that Q = Cov(fy, o) and A = Var(@om — Gar). It
follows directly from Proposition 1 that MSE(%M) — MSE(6p) = AT Ay — 297Q.

Our next two results concern the asymptotic properties of the CAM U-Statistic. Let
Qp be the | M|-dimensional vector with entries

QU,m = COV{QS(Zl) o '7Zr)7¢m(Z{n7 77‘7—11—1> .. '7Z£?—1)}'

Further, let Ay be the |[M| x | M| symmetric matrix with diagonal entries
p
A = (1+ p—O>Cov{¢)m(Z{”,...,Z]f"’),d)m(Z{”, e 25 )}
m
and off-diagonal entries

Aty = CoV{bmy (Z7, .o, ZIY), g (272, 202, 202 1) ).

We see in Theorem 2 that, under moment assumptions, we have Q — Qpy and A — Ay as
n — oo, and that the CAM U-Statistic is unbiased and asymptotically Gaussian.

Theorem 2 Suppose the data is missing completely at random, E{¢? (Zl, .. .,Z,_)} < o0
and, for m € M, E{d)?n( ™ ZI”)} < 00. Then, for~ € RMI

Vo (031 = 0) =4 N (0,72 (¢y + " Avy — 297 Q)
as n — oQ.

Theorem 2 shows that an asymptotically optimal choice of 7y, which minimises the
asymptotic variance of the CAM U-Statistic, is v* = AEIQU. The optimal leading or-
der asymptotic variance reduction is ng 1r2§25A51§2U. This is of the same order as the
asymptotic variance of the complete-case U-Statistic, which is n L2y, Of course Qp and
Ay are typically unknown. However, to estimate these we can further exploit the use of
U-Statistics. Note that

1
Qum = gE[{QS(Zl, s Zy) = ) Zory .. D3r1) }
{¢m(Z{na 77"7—11-17 ] Zg;—l) - gbm(ZZTZa Zg}w ey Z4mr—2)}] .

Thus, we can estimate )y using a U-Statistic of order 4r — 2 (see (16) in Section A.3).
A similar expression can be derived for the entries of Ay, but for brevity we exclude the
formulas here — they are given in (17) and (18) in Section A.3. Let Ay and Qp denote
resulting U-Statistic estimators of Ay and Qp, respectively. (In practice, averaging over all
subsamples of size 41 — 2 will be computationally expensive, in our simulations QU and f\U
are approximated using 10° random subsamples.)

Now, let 4 := AEIQU and consider the practical CAM U-Statistic 94‘/‘ Theorem 3

shows that we can mimic the performance of the optimal CAM U-Statistic Hx\f using the
data-driven choice of ~.
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Theorem 3 Suppose the data is missing completely at random, E{qﬁ4 (Zl, .. .,ZT)} < o0
and, for m € M, B{¢y,(Z}",...,Z")} < oo. Then

V(02— 0) =% N (0,7 (v — QG AL Q). (5)

We remark that in fact (5) holds with 4 replaced by any other consistent estimator of v*.
In particular, if we estimate {2y and Ay using incomplete U-Statistics based on B = By,
randomly chosen subsamples, then (5) holds so long as B, — 0o as ngp — co. As mentioned
above, in our numerical experiments we set B = 10°. Moreover if éo, Yo,m and @, are
themselves replaced by the incomplete U-statistics based on B randomly chosen subsamples,
then the conclusion in (5) holds so long as B~! max,,{n,} — 0; see, for example, Janson
(1984, Corollary 1). One crucial aspect here would be to ensure that the same subsamples
are used in the construction of éo and (g, in order to ensure that the covariance between
these two estimators is as large as possible.

The asymptotic variance in (5) can be estimated by plugging in the estimators of ¥y, Q7,
and Ay. Here a U-Statistic estimator of ¢y, denoted by zﬂU, can be constructed in the same
way as QO and Ay, Then one can show that \/nio(ﬁﬁU—QEA?QU)_lﬂ(%\"—é’) —4 N(0,7?),
which can be used for statistical inference such as constructing confidence intervals and
testing hypotheses. For example, an asymptotic (1 — «)100% confidence interval can be
constructed as

M TFay2 o M TRa
(9& \/nio\/dJU—QTA Qu, M+ r\/¢U—QTA QU>

where z,/2 = ®1(1 — /2) and ® denotes the standard normal distribution function.

Remark 4 The form of oracle kernel in (4) suggests the possibility of using a data
driven kernel constructed via data splitting. Specifically, suppose we have access to an-
other complete case dataset Ay with 7 = |Ag|, and we use some mean regression tech-
nique, either parametric or nonparametric, to obtain an estimate ng of @, satisfying
b — &% lloo = Op(an) with az — 0 as 7t — co. Denote by o — Pam and Go — P the
bias adjustment term using the oracle kernel and data driven kernel, respectively. Then we
have
(o.M — &) = (Bom — @m)l2 = Oplan),

as n — co. Consequently, for 97;/‘ =0y — Y (Gom — $am), we have

103 = 05 < Ivll2 - [1(Bo.m = ) = (Bom = Bad)ll2 = [120p(an)-

Thus, the asymptotic normality in Theorem 2 holds if az\/no — 0 and ||Y||2 is bounded. The
condition ap~/ng — 0 implicitly requires that n/ng — 0o, suggesting that a large independent
complete case dataset is needed to make the estimation error of the kernel negligible, in which
case it is likely that complete case estimator based on Ag U Ay would perform better. We
therefore choose not to pursue this data-splitting idea further.

In order to understand the improvement the CAM U-Statistic achieves over the
complete-case method it is helpful to consider some examples.

10
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Example 1 (Marginal mean estimation) Suppose we are interested in estimating the
parameter 0 = E(X) of the pair (X,Y) € R? (i.e. d = 1). Suppose further that the X
variable is missing completely at random with probability 0.5. Here, then, m; is either O (if
x; is not missing) or 1 (if x; is missing), and Ag = {i € {1,...,n} :m; =0} and Ay = {i €
{1,...,n} : m; = 1}, where the respective sample sizes are ng and ny, and n =mng+ny. In
contrast to the illustrative example in Section 1.1, we are not assuming the joint distribution
of (X,Y) is Gaussian. In this setting the complete-case U-Statistic is 6o = n% Y ica, Xi- Of
course, by the Central Limit Theorem, if E(X?) < oo, then \/7T0(é0 —0) —»¢ N(0, Var(X)).

Next we consider the CAM estimator with M = {1} which takes into account the infor-
mation from variable Y. For a generic function ¢1 : R — R satisfying Var(¢1(Y1)) < oo
define

Po,1 = nlo Z $1(Ys); @1 = nll Z #1(Y7)-

i€Agp 1€AY

Then A = (nio + n—ll)Var{qbl(Yl)} and ) = niOCOV{Xl7 $1(Y1)}. We have that

. nlcOV2 {X, (251 (Y)}
nonVar{¢:(Y)}

MSE(624) — MSE(fy) = Var(64) — Var(f,) = <0.

Thus, there is a guaranteed improvement in MSE as long as X and ¢1(Y') are correlated.

The optimal choice of ¢1 in this case is ¢7(y) = E(X|Y = y), (c¢f. the discussion at
the end of the previous section), and the corresponding first order variance reduction is
aoVar{E(X|Y)}. If X and Y are independent, then Var{E(X|Y)} = 0, i.e. as expected,
the CAM estimator will not lead to an improvement over the complete-case estimator, since
the Y wariable tells us nothing about the marginal X distribution. On the other hand, in
the pathological case that X can be written as a deterministic function of Y, we see that the
variance reduction is 1t Var(X). Consequently, Var(éé\f) = V%E)X)(l - = VaryEX)
the variance that could be achieved by using a fully observed dataset!

Of course the regression function E(X|Y = y) will typically be unknown to the user.

Consider instead therefore the practical choice ¢, (y) :=y. Then we have that

, i.e.

Var(éfy\f) = Va;(X){l - %Coer(X, Y)},
0
where Corr(X,Y) = % denotes the correlation between X and Y. In fact, the

above derivation holds as long as ¢ (y) is a linear function of y.

In the left panel of Figure 2, we present the sampling distributions of the complete-case
and CAM U-Statistic for the mean of X ~ Exp(1), where Y|{X = x} ~ N(z,0%). We
set n = 1000, 0 = 0.2 and the X wariable is missing with probability 0.5. We present
the results for the practical choice ¢n(y) = y and the optimal choice ¢, (y) = E(X|Y =
y) =y —o’+ Uﬁé‘é{f;%, where ®'(-) and ®(-) denote the standard Normal density and
distribution function, respectively. The variance reduction can be clearly seen from the plots.
We see also that the practical CAM U -Statistic has very similar performance to the optimal
CAM U-Statistic.

11
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Estimate Estimate

Figure 2: Sampling distributions of the complete-case U-Statistic 6y in black, the CAM
U-Statistic 94\4 in red and the optimal CAM U-Statistic (i.e. with ¢, = ¢}, and
v = %) in blue for Example 1 (left) and 2 (right).

Example 2 (Covariance estimation) Consider the same set-up as in Example 1, but
suppose now we are interested in the parameter § = Cov(X,Y) = 1E{(X; — Xo)(Y1 — Ya)}.
In this case, we have the complete-case U-Statistic

X —X;)(Y; —Y5).
2(20) {w«}ZCAO( J)( J)

IFE{(X, — X5)2(Y1 — Y3)%} < oo, then by van der Vaart (1998, Theorem 12.8) we have that
V(0o — 0) =% N(0,401), where ¢y := 2Cov{(X1 — X2)(Y1 — Ya), (X1 — X3)(Y1 — Y3)}.
Now, for a generic function ¢1 : R> = R consider

Po1 = Z n(Ys, ;) f1= Z $1(Y3,Y;)

{l,]}CAO {Z,J}CAl

Here the optimal function is ¢} (y1,y2) = H{E(X|Y = y1) — E(X|Y = y2)}(y1 — y2). Recall
that p1 = lim,, o 7. The corresponding CAM U-statistic satisfies

lim noVar( My =4 — —Cov{ngl(Yl,Yg) 1 (Y1,Ys)}.
n—oo
Thus, we have first order variance reduction as long as Cov{¢;(Y1,Y2), ¢7(Y1,Y3)} # 0.
However, since ¢7 is generally unknown, consider the practical choice ¢1(y1,y2) = %(yl—
y2)%. This is motivated by supposing that E(X|Y = y) is a linear function of y. Then we
have

p1Cov{(X1 — Xo) (Y1 — Ya), (Y1 — Y3)?}
4Cov{(Y1 — Y2)?, (Y1 — Y¥3)%}

lim ngVar(62) = ¢ —

n—o0 v

12
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In the right panel of Figure 2, we present the sampling distributions of the complete-case,
practical CAM, and optimal CAM U -Statistics for 0 = Cov(X,Y). As in Example 1, the
data generating distribution is X ~ Exp(1) and Y{X = 2z} ~ N(x,0?), n = 1000, and
p1 = 0.5.

3.1 The Terneuzen birth cohort dataset

We now demonstrate how the CAM U-Statistic can be used in practice. In particular, we
will apply our proposal from the previous two examples to the Terneuzen birth cohort data
available from the mice package on CRAN. The full dataset consists of 3951 observations
of 11 features covering 306 people. We simplify the problem by taking a subset of the data
and only include the first measurement for each person. Furthermore, we retain only 4 of
the features, namely “sex”, “height Z-score”, “weight Z-score”, and “bmi Z-score”. In the
resulting dataset, there are 306 observations (one for each patient), of which 105 are missing
both the height and bmi features. In order to fit this in the framework introduced above let
Y denote sex (1 for female, 0 for male), and let X be the 3-dimensional vector of weight,
height, and bmi.

We have 201 complete cases in Ag, and 105 cases in A, for m = (1,0,1)”, where only
Y (sex) and X (weight) are observed. We consider two problems; (i) to estimate the
average bmi Z-score in the cohort, and (ii) estimate the covariance between the height and
weight Z-scores. In both cases, we have M = {(1,0,1)T}, and we consider two choices of
ém, for m = (1,0,1)7, a simple choice, and a regression estimate.

In problem (i), recall that we can write the marginal mean as a U-Statistic with ¢(Z) =

X3 and the complete-case estimator is = Y ic Ao X ) To construct the CAM U -Statistics,

no i
we first consider ¢,,(Z™) = X?), i.e. the weight Z-score. For our second choice, write

Om(Z™) = Bo + BiY + foX@ + B Xy (6)

We choose (5o, 81, B2, f3) by fitting a linear model (with an interaction) of bmi on height
and sex using the complete cases (in R this is simply done using the 1m function). The idea
here is to approximate ¢}, (Z™) = E{¢(Z)|Z™}. Then g, is the sample average of the
fitted values, and @, is the average of the predictions made on the data in A,,.

For problem (ii), we have ¢(Z1,Z2) = %(Xfl) - XZ(I))(Xl(Q) - X§2)). In this case, to
construct the CAM estimator, we first use the simple choice ¢, (27", Z5") = (X£2) - X§2))2.
Then, similarly to the previous problem we consider

Sm(Z7, Z5) = {(B1(Y1 — Ya) + Bo(X (P — X)) + By X P11 — X)X — x3P), (7)

where, again, the idea is to approximate the optimal ¢}, (27", Z5") = E{¢(Z1, Z2)|Z]", Z5"}.

We compare the performance to the complete-case estimator with both versions of the
CAM U-Statistic in Table 1. In each case, we present the point estimate, an approximate
95% confidence interval based on the result in Theorem 3 and the corresponding interval
width. We see that the CAM estimator has a much narrower interval width in both prob-
lems. Moreover, in problem (i) the two CAM approaches lead to identical results (up to 3
significant figures), whereas in the second problem, the second CAM U-Statistic performs
slightly better.
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Method Point est. | 95% CI | CI width
(i) Marginal mean of bmi score

Complete-case 0.55 (0.38, 0.73) 0.35
CAM: ¢ (Z2™) = X2 0.55 (0.44, 0.66) | 0.22
CAM: ¢,,,(Z™) linear — see (6) 0.55 (0.44, 0.66) 0.22
(ii) Covariance between height and weight

Complete-case 1.27 (0.50, 2.04) 1.54
CAM: ¢ (2, 23y = L(x® —xP)2 | 117 | (0.66,1.68) | 1.02
CAM: ¢, (Z7", Z3") linear — see (7) 1.19 (0.70, 1.69) 0.99

Table 1: Comparison of the complete-case and CAM U-Statistics using the Terneuzen birth
cohort dataset

4. Nonparametric statistical learning

We now study two fundamental statistical learning problems, namely density estimation
and regression. Typically in these problems, we are interested in estimating a function from
R? to R, we show how the CAM estimator can be applied locally, i.e. for each z € R%.
Throughout this section we assume that the data is missing completely at random.

Density estimation and regression are canonical problems in statistics, and many non-
parametric approaches have been proposed and studied in detail — see, for instance, Rosen-
blatt (1956), Parzen (1962), Wahba (1990), Wand and Jones (1995), Fan and Gijbels (1996),
Carroll et al. (1998), Tsybakov (2004) and Biau and Devroye (2015). We focus our study
on kernel based methods.

4.1 Kernel density estimation

In this subsection, assume we only observe X|"*, ..., X" and we are interested in estimat-
ing fx, the density of the marginal distribution of X. We specialise the setting introduced
in Section 2 by letting (P) = fx (), the marginal density of X at a fixed z € R%.

Let h > 0 be the bandwidth and, for m € M, let K,, : R¥ — [0,00) be a d,-
dimensional Kernel function. For z € R% A C {1,...,n} and m € M, let

: : 1 X am
Fam@™) = Famtin @)1= P 2 Kon(F), )

This can be thought of as an estimator of the marginal density fxm (™) of X™ at ™. In
particular, the complete-case estimator of fx(z) is fo := fa,0n Kk (), where K = Kj is
the d-dimensional kernel. Our CAM density estimator is constructed using f(], as well as
f07m = on,m hK, (™) and fm = fAm’mth( ™), for m € M. To understand our choice
of fo,m and fm, recall from the discussion after Proposition 1 that the optimal choice of

fO,m is

fim = Efol Tagm) = hdZ e (20 ). (9)

14
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This takes a similar form as the kernel density estimator in (8). At the end of this subsection
we will see that fg,, can often be well approximated using a local constant estimator with

a practical choice of kernel Ky, that depends on K. Finally, we have also chosen fm so that
E(fm) = ]E(fO,m)’

Now let fo == (fom : m € M)T € [0,00) Ml and faq := (frn : m € M)T € [0, 00)M.

Then, for v € RM! define the CAM kernel density estimator
M= M=) = fo— 2" (fom — fm)-

Our theoretical results in this section will make use of conditions A1 and A2 given in
Section A.4. The Lipshitz assumption on fx and fxm in A1l allows us to approximate
the accuracy of the kernel density estimates of fx and fxm, respectively. Whereas the
assumption on the Kernel functions in A2 is satisfied by many commonly used kernels.

For an estimate f of fx(z), let MSE(f) = MSE(f)(z) := E[{f — fx(z)}?]. Under
our assumptions, it is well-known that the complete-case estimator satisfies MSE( fo) =
O(1/(noh?) + h?) as ng — oo; see, for example, Tsybakov (2004, Propositions 1.1 and 1.2)
for the d =1 case.

Let v = v(K) = [pa K?(2)dz < oo, and, for each m € M, let vy = v (Kp) =
fRdm K2 (2)dz < oo. Furthermore, for m; # ma € M, let m'? = pmax{mi,ma} €
{0,1}¢ and my 2 = pmin{my,ma} € {0,1}% denote the entrywise maximums and mini-
mums, respectively, of m; and mg. For mi # ma, let Vi me = Vg me (Kmy, Kimy) 1=
fRdml,2 K, (Zml)sz (zmQ) dzm2.

Our next result shows that the asymptotic difference between the mean squared error
of our proposal and the complete-case estimator can be written in terms of v, the |[M|-
dimensional vector Qp := (%ﬁz) :m € M)T and Ap, the symmetric |M| x | M| matrix
with entries

m m 1 1 m mi,2
P (L LY gy = el ne 6T

hdm no hdm1’2 ’

AD,m,m = n n
0 m

for m, my # mgy € M.

Theorem 5 Assume A1 and A2. For 0 < a < 8 < 1/d, we have
MSE(fM) — MSE(fo) = (v"Apy — 29" Qp){1 + o(1)}

as n — 0o, uniformly for h € [n=% n=°].

Recall that by Proposition 1, the optimal v, which maximises the improvement in mean
squared error over the complete-case estimator, is

v = AT = A5 Qp {1 + O(h)}. (11)

Further, suppose that M = {m}, then the corresponding maximum mean squared error
reduction can be derived to be

Cov2(fo, fom)
Var(fom) + Var(fm)
Tl fx () fxpxom (]2™)
- nohdm (ng + N ) Vim,

MSE(fo) — MSE(f{) =

1400y =0(—),

no hdm
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as n — oo, uniformly for b € [n™% n=°].  Here fx|xm(z[z™) denotes the conditional
density of X at x given X" = 2. We see that a larger improvement is possible when n,,
is large compared to ng, or if fx|xm(z|z™) is large. Note, however, that we only obtain
a second order improvement over the complete-case approach. To understand this further,
in contrast to the U-Statistics setting, in the density estimation problem fo and f() m fm
have different convergence rates, with the later converging at a faster rate because of the
smaller dimension d,,. Therefore the covariance between fu and fo,m — fp is negligible
compared to the asymptotic variance of fo. Nevertheless, we will see in our numerical
study in Section 4.3, that the improvement CAM offers over the complete-case method is
appreciable in finite sample problems. Of course, 2 and A are unknown. Nonetheless, we
have an immediate corollary that for any « such that v7Ay < 277Q the corresponding
CAM estimator will lead to an improvement over the complete-case approach.

It remains to propose practical choices of tuning parameters. First, we suppose that
the complete-case kernel K and bandwidth h are given to us; if needed these can be chosen
using cross-validation on the complete cases. Now, to choose v we attempt to approximate

VO,mnme
Vm(nOfO,m+nmfm)

the optimal choice in (11) above. More precisely, let 4p ,, = , Where we

have used fy and W as estimates of fx(x) and fxm(z™), respectively. We also

approximate the off-diagonal terms in Ap by 0, since they are of smaller order than the
terms on the diagonal, i.e. Ap = diag(Ap){l + o(1)} — see (10). Finally, then, we let
Ap = ({’A)/D,m tm e M})T

We choose the kernel K, in an attempt to mimic the optimal choice in (9). Lemma 8
in Section A.4 shows that for a large family of kernels, under appropriate smoothness
conditions on fx|xm, we can approximate fé‘m up to first order using a kernel density
estimator with practical choice of kernel K, that depends only on K. For instance, if K is
the Gaussian kernel K (t) = (Qﬂ)d/2 exp(—||t)|2/2), for t € R, then f&m is well-approximated

by using the d,,-dimensional Gaussian kernel K,,(z) = W exp(—||z]|2/2), for z € R
in (8).

4.2 Local constant regression

We now consider the standard homoscedastic nonparametric regression problem, where the
pair (X,Y) takes values in R? x R and satisfies the relationship

Y =n(X) + oe.

Here o > 0 and n : R? — R is the regression function, i.e. n(z) := E(Y|X = z). The random
variable € has mean zero and variance one, and is independent of X. We are interested in
estimating 6(P) = n(x), the regression function at a fixed = € R%.

Consider also the regression model when X is missing the features m € {0,1}¢. It is
convenient to define 9y, (z™) = E(Y|X™ = 2™), and 7, (™) := Var{n(X)|X™ = 2™},
where 79(-) = Var{n(X)|X = z} = 0. Finally, for mi,mg € M, let 7, m,(z"?) =
E[{n(X) = 1y (2™ ) HN(X) = 1ng (272) X T2 = 22,
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Recall the bandwidth h > 0 and kernel function K,,, for m € M, used in the previous

section. For x € R? and A C {1,...,n}, the local constant estimator of n,,(x™) is
~ m A m : sz -z 2
Nam(x™) = Nam i (™) = argmin ZKm( - >(YZ —a)’ . (12)
@€k Lica

In particular, the complete-case estimator of n(x) is Mo := 74,04,k (), where K = Kj is
a d-dimensional kernel. Further, let 7om = NagmnK,, () and 0y = G4, m K, (T); in
contrast to the density estimation setting, it is less clear why the form of 7y, is effective
here — we postpone discussion of this until the end of this subsection.

Let o = (fom @ m € M)T and fjag = (2 m € M)T. Then, for v € RMI| we define
the CAM local constant regression estimator

i =i (@) =10 — 7" (o — i)

Our main theoretical result in this section will make use of two further assumptions on
the regression function; see A3 and A4 given in Section A.4. In particular, we ask that
the functions 7, 7, Tm and T, m, are Lipschitz, which means that these functions can
be estimated efficiently using a local constant estimator. Now, for m € M, let pg,, =
tom(Km) == [gam Km(2) dz < co. Further, let

U2V07m
tho,m fxxm (2™ )nghdm

QR::( :meM)T.

Let Ar be the | M| x | M| matrix with diagonal entries

Um{o? + Tm(l‘m)}( 1 1 )
R’ ) = o )
. Iu,g’mem (I’m)hdm no Nm

and off diagonal entries

Vmq,mo J x™1,2 (x™1:2) {(72 + Ty ,me (xm1,2)}

10,y Fxm1 (270) 0 my frma (€2 )nghtmt 2

AR,ml,m2 =

Note that the off-diagonal terms of Ar are of smaller order than the terms on the diagonal,
i.e. Ap = diag(Ar){1 + o(1)}. Finally, for a regression estimator 7 of n(x), we write

MSE() = MSE(#)(z) := E[{) — n(2)}*| 2", ..., Z;'"].

Theorem 6 Assume A1, A2, A3 and Aj4. Then, for each 0 < a < 8 < 1/d, we have
MSE(#}") — MSE(io) = (v Ary — 29" Qr) {1 + 0,(1)}
as n — oo, uniformly for h € [n=%, n=].

17



CANNINGS AND FAN

Theorem 6 gives the leading order asymptotic difference in mean squared error between the
CAM estimator and the complete-case estimator. We see that the optimal leading order
improvement in this case is QEA;{IQR, which can achieved by taking v = 7 = A;{IQR.
Note also that, similarly to (11), the optimal v* given by Proposition 1 satisfies, v* =
{1+ O()}.

Again, in practice, we attempt to mimic the performance of the optimal estimator.
First, ignoring the off-diagonal terms in Ag, we have

o2 10,m o,mn T
s T tm € M) .
R ({02 + T (™) Y (R + 1)
For the unknown terms, write 02 = E[{Y — n(z)}?|X = 2] and 02, := 0% + 7, (2™) =

E{Y — nn(2™)}2|X™ = 2™]. These can be estimated in a natural way using the local
constant method. In practice, the estimates 62 and 62, say can be calculated directly by
reusing the weights from the regression estimators; cf. (22). Finally, this leads to a practical

choice of )
0V0,mHMHO,mMm

TR (Eﬁnym(no + )
As noted above, the choice of kernel K, is less straightforward than in the density
. . . . « X;— X, —
estimation setting. Here we can write o = Y, 40 il (25-2) /{> ;e 4, K (557%)}, and the
. X K X;,—x
.m = E(fo| Tagm) = > YiE{ C)

optimal choice of g ,, is
A }
(Xix 0,
i€Ap ZjEAo ( Jh )

Lemma 9 in Section A.6 shows that, under certain conditions, this optimal choice is well-
approximated by our practical choice 7y, with kernel K, depending only on K. In par-
ticular, if K is the d-dimensional Gaussian kernel, then 7jy ,, can be constructed as in (12)
using the d,,-dimensional Gaussian kernel. We see in our numerical study, that our CAM
approach with this practical choice of 7, does often lead to an appreciable improvement
over the complete-case estimator.

:mEM)T.

4.3 Numerical examples

We now demonstrate the CAM density and regression estimators with some numerical
examples. Consider the following models

(a) Density model 1: X ~ Ny(0,Y), where ¥ = 0.315 + 0.7(121%), where 15 := (1,1)7.

(b) Density model 2: X ~ U(Bj(0)), where B1(0) C R? denotes the unit disk centred at
0.

(¢) Density model 3: X ~ 1U([-2,—1] x [-1/2,1/2]) + 2U([1,2] x [-1/2,1/2]).

(d) Regression model 1: Let X ~ U([0,1]?), and Y = XM 4+ X @) 40.1¢, where € ~ N(0,1)
is independent of X.

(e) Regression model 2: Let X ~ U([0,1]%), and ¥ = (X1 — X®)2 1 0.1¢, where
e ~ N(0,1) is independent of X.
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(f) Regression model 3: Let X ~ Ny(0,%), where ¥ = 0.3l + 0.8(1211) and Y =
sin(2X ™M) 4+ 0.3¢, where € ~ N(0, 1) is independent of X.

In each case, we generate a training set of size n € {200,500}, and then introduce missing-
ness by removing first component of X independently with probability p; € {0.25,0.5,0.75}.
Therefore, in settings (a), (b), (c), and (f), when d = 2, we have on average n(1 — p;) com-
plete cases in Ag and an average of np; observations in Ay, for m = (1,0), whereas A )r
and Ay 1yr are empty; in other words M = {(1, 0)7}. For settings (d) and (e), where d = 3,
we again have an average of n(l — p;) complete cases in Ap, but now an average of np;
observations in A g gyr, all other sets A, are empty and M = {(1,0, 0)71.

The kernel density estimators are computed using the ks package available from CRAN.
In particular, we use the kde function with a Gaussian kernel, and the diagonal bandwidth
matrices were chosen using the Hpi.diag function. In the regression settings, we make use
of the regpro package available from CRAN.

To measure the performance, recall that for two density functions f and g, say, the
Total Variation distance between f and g is TV(f, g) := % [oa|f(2z) — g(2)| dz. We present
boxplots of

TV (fo, fx) = TV(f24, fx)
TV(fo, fx)

In the regression problems, we use the mean integrated squared error: for an estimate 7 of
n that is MISE(7) := [pa{A(z) — n(z)}? dPx (). Then we present boxplots of

. (13)

MISE (i, 7) — MISE(74, )

. (14)

We see in Figure 3 that the CAM estimator outperforms the CC estimator in terms of
total variation distance. As expected the CAM estimator leads to a greater reduction in
error as the missingness probability p; increases. On the other hand, as n increases, the
relative reduction in error is smaller. Finally, note that there are a small number of repeats
of the experiment in each case where the difference in mean squared error is negative — this
is likely due to the fact that we need to estimate the ~ using the observed data, there is
also a small Monte Carlo error.

Figure 4 shows that the CAM local constant regression estimator outperforms the CC
estimator. Similarly to the density estimation problems, the CAM estimator leads to a
greater reduction in error as the missingness probability p; increases. Here we see further
that for larger sample sizes, the improvement relative to using the full data set appears to
decrease slightly — this is in agreement with our Theorem 6, since we only expect a second
order improvement in asymptotic mean squared error.

Finally, as discussed in the introduction, a popular approach to overcome issues with
missing data is to impute the missing values and treat the result as a full dataset. We now
compare the CAM approach to density estimation and regression with a number of state
of the art imputation methods. These include mean imputation, where the missing entries
for each feature are imputed with the sample mean (of the observed values) for that feature
(Little and Rubin, 2002, Section 4.2.1); Predictive mean matching (PMM) imputation, here
the missing values are replaced by a value sampled from the observed data, where the
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Figure 3: Boxplot of the relative performance of the CC and CAM kernel density estimators

given by (13) for 100 repetitions of the experiment for density model 1 (top left),
density model 2 (top right) and density model 3 (bottom).
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Figure 4: Boxplots of the relative performance of the CC and CAM local constant regres-
sion estimators given by (14) for 100 repetitions of the experiment for regression
problem 1 (top left), regression problem 2 (top right) and regression problem 3
(bottom).
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Model Full | CAM | CC|  Mean PMM RF
Density
1 497902 | 6.07003 | 6.230.03 | 23.770.24 6.760.10  6.86¢.10
2 35.310.07 | 40.28¢.0s8 | 40.58p.9s | 101.801 04 50.211 97 38.31p.31
3 51.84¢p.10 | 52.499.10 | 52.729.10 | 69.66972  52.91p34 52.850.35
Regression
1 2.740.01 4.290 02 4.350.02 6.490.10 2.650.04 6.400.11
2 2.860.02 | 4.12903 | 4.200.03 5.82011  12.28p923  6.02p.12
3 19.299.11 | 29.51¢9.19 | 29.8409209 | 61.90101 112.22743 24.44¢.46

Table 2: Average estimated total variation errors (¥10%) for the density estimation problems
and mean integrated squared error (x¥10%) for the regression problems. In each case,
n = 500 and the first component of X is missing with probability 1/2.

sample is taken from the observations that are close to the observation with the missing
value (Little and Rubin, 2002, Section 4.3.2); and Random Forest (RF) imputation, this
uses the Random Forests algorithm to predict the missing entries based on the observed
data (Breiman, 2002; Pantanowitz and Marwala, 2009). For the latter two methods, we use
multiple imputation; the missing values are imputed five times and we then take the average
of the results after fitting the model on the five imputed datasets. A detailed outline of these
methods can be found in Little and Rubin (2002, Chapters 4 and 10). Our implementation
utilises the mice R package available from CRAN (van Buuren et al., 2018).

In our experiments, the kernel density estimators are computed using the ks package
available from CRAN. In particular, we use the kde function with a Gaussian kernel, and
the diagonal bandwidth matrices were chosen using the Hpi.diag function. In the regres-
sion settings, we make use of the regpro package available from CRAN. For the imputation
approaches, the corresponding kernel methods are applied to the imputed datasets.

In Table 2 we present the estimated total variation or mean integrated squared errors
(with standard errors in subscript) over 100 repetitions of each experiment. For comparison,
we also present the results of applying the kernel methods to the full dataset of size n. We
see that the CAM technique improves on the complete-case approach in every setting.
On the other hand, as discussed in the introduction, the imputation approaches are not
always successful: indeed, there are many settings here where the imputation methods
lead to worse performance than the complete-case method. Notice that occasionally the
imputation methods, eg. random forests in Density Model 2 and predictive mean matching
in Regression Model 1, perform very well (even outperforming the full data estimator in a
few cases) — it is unclear why this is the case due to the black-box nature of these approaches.

4.4 The Brandsma school dataset

In this subsection, we show how the CAM local constant regression estimator can be used in
practice with the brandsma dataset available in the MICE package. The full data set consists
of 4106 observations of 14 features. We simplify the problem by retaining only 4 features,
namely the “verbal 1Q score”, the “SES score”, “language score pre”, and “language score
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Figure 5: The average predictive MSE on the test set for the complete-case and CAM
estimators for the Brandsma data application. The straight line is “y = z”.

post”. Suppose that we are interested in predicting the verbal 1Q score, Y, from the
remaining features, i.e. X is the 3-dimensional vector consisting of “SES score”, “language
score pre”, and “language score post”. We remove 17 observations for which the response
is missing. In the resulting dataset, we have 3464 complete-cases, 302 with m = m; :=
(0,1,0)T, 182 with m = mg := (0,0,1)T, and 108 with m = m3 := (1,0,0)7. There are a
few observations for other values of m, but the corresponding sample sizes are very small
and are therefore ignored. Here we have M = {my, ma, ms}.

In order to evaluate the performance of the CAM estimator, we take a subsample of size
1000 from the complete-cases to use as a test set (this is fixed throughout). We carry out
100 experiments. In each one, we form a training set by taking another sample of size 200
from the remaining 2464 complete-cases (this sample is different in each experiment). The
200 chosen complete-cases are then combined with the observations in A,,,, Ap, and A,,,
(which are the same in every experiment). Thus, in each experiment, we have nyg = 200,
N, = 302, Ny, = 182, and n,y, = 108.

In Figure 5 we plot the average (over the test set) of {f)(X) — Y'}? for the complete-case
and CAM estimators in each of the 100 experiments. We use a Gaussian kernel and the
bandwidth was chosen using leave-one-out cross-validation. We see that the CAM estimator
has a lower predictive MSE than the complete-case in 94% of the cases. In the remaining
6% of cases, the performance of the two estimators is similar and the discrepancy can be
explained by the small sample size used to estimate the MSE. The overall average MSE
(with standard errors) of the complete-case and CAM estimators were 2.28 (0.007) and
2.25 (0.006), respectively, the average improvement in MSE is 0.03 (0.002), whereas the
maximum improvement over the 100 experiments was 0.09.
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5. Discussion

We have seen that our proposed CAM estimator can be used to improve the complete-case
estimator in a wide range of statistical problems. We conclude our paper with a discussion
of the computational cost and few extensions of our method.

First, the computational cost of our proposal consists of three main components. We
need to compute complete-case estimator based on the data in Ag, as well as the correction
term Qom — Pm, for each m € M. Computing the complete case estimator is an unavoid-
able step, and under our assumptions, cost of calculating @g,, — ¢ Will typically be of
the same order as calculating the complete case estimator. Finally, we need to choose 7,
which involves estimating the corresponding variance and covariance terms in y*. In many
applications, when | M| is fixed, the main computational burden, then, may be in estimating
~v*. However, as we have demonstrated, there is often an efficient option available. In the
U-statistics setting, the optimal ~ is well approximated by using computationally feasible
incomplete U-statistics as estimators; see the remarks immediately after the statement of
Theorem 3. For the nonparametric density estimation problem, a data-driven choice of ~
may be made at negligible extra computational cost by reusing our estimates of fo, fo.m
and fn,, and a similar technique may be used in nonparametric regression. When | M| is
large, then the computational cost involved in using all m € M may become burdensome
and this may enter into the choice of M.

A key aspect of our CAM proposal is to construct ¢g g and @aq, so that ¢o g —
®m is centered. One way to guarantee this is to use a resampling method. Let ng,, :=
min{ng, ny, }. Consider the sets of all subsamples (without replacement) of ng ,, observations
from the data in Ay and A,,, respectively, denoted by A}, ... ,AOB Oand AL, ..., ABm where
By = (nzom) and B, = ("’" ) Notice that at least one of By and B,, will be equal to

0,m
one. Then, for m € M, consider the two (independent) statistics @g m, = BLO 25:01 P AL m
and @, = ﬁ Ef:ml PAb m- At least in the missing completely at random setting, we have
E(@o,m) = E(@m) — each of the terms in the sums are estimators calculated on datasets
of the same size. Let o a1 = (Gom : m € M)T, and g = (@m : m € M)T. Then, for
v € RMI define
94” =00 — v (Bom — PM).

We have the following corollary to Proposition 1, which holds for any estimation method

and requires no assumptions on the distribution P. The only restriction is that the data is
MCAR.

Corollary 7 Suppose the data is missing completely at random. Then
MSE(62") — MSE(f) = v" Var(gom — @a0)7 — 27" Cov(bo, Po.m)- (15)

Another consideration is the choice of the set M. This choice is primarily driven by the
data — in the first instance we might let M = M* := {m € {0,1}¢\ {04} : |Am| > 0}. In
some cases, however, we may consider using a different set M. For instance, for some m,
the corresponding sample size n,, may be non-zero but small. In our numerical analysis in
Section 4.3, we drop m if | A;,|/| Ao| is less than 0.1. Another potential option here is to use a
data integration method. More specifically, let A,, := {i € A§ - m; < m}, where the partial
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order on {0,1}% is defined by m; < m if {j : m? =1} C {j : m? = 1}. Then A,, is the
largest set in AS which has complete observations for variables in {j € {1,...d} : m/ = 0}.
Notice also that by construction A,, and Aq are disjoint. To include the data integration
in our CAM method, we can simply replace A,, with 4,,, for m € M. There are other
options too. Suppose we have m; # ma € {0,114\ {04}, with |A,,,| > 0, |A,| = 0 and
my < mg. Then rather than using A,,,, we may opt to use f_lmQ D A,,, instead.

Finally we discuss the challenging non-MCAR settings. When the data is MAR or
MNAR there is an additional challenge. In this case, the naive complete-case estimator will
potentially be asymptotically biased. Conditionally on Mjy,..., M,, the data in T4, o can
be interpreted as independent and identically distributed pairs from @Qq, that is the joint
distribution of a generic pair (X,Y)|[{M = 0}. Thus, we expect the complete-case estimator
6o to be close to 0(Qo) as opposed to §(Fy). Two natural questions arise: (i) under what
conditions do we have §(Fy) = 0(Qo) and E(Pg.m — Pm) =~ 0 (cf. Proposition 1)7; and (ii) if
the conditions in (i) do not hold, how can we adapt the CAM estimator.

A partial answer to (i) is provided by the following in the regression setting: Suppose
we observe n independent and identically distributed copies of Z¥ = (XM V) and are
interested in estimating n(x) = E(Y|X = z). Assume that M is independent of Y given
XM (Note that this is slightly different to the missing at random condition, which assumes
that M is independent of Z given Z™.) In this case, we have that 0(Qo) = E(Y|X =
z,M =0)=EY|X =x) =0(F) and

O (Qu) =E(Y|X™ = 2™ M = m) = E(Y|X™ = 2™) = E(Y|X™ = 2™, M = 0) =6, (Qo).

Thus, we can still expect that the complete-case approach will target n(z), and moreover,
can hope that B, = IE(950,m - @m) ~ em(QO) - em(Qm) =0.

Relating to the problem in (ii), in the missing at random case, there are many methods
that aim to correct the bias of the naive complete-case estimator; see, for instance, Little
and Rubin (2002, Chapter 3.3). One approach is to weight the observations according to
the probability that they are (non)missing. For concreteness, we focus on one such idea,
which advocates reweighting the observations according to their (inverse) propensity score
— see Little and Rubin (2002, Chapter 3.7). Recall that p,,(z) = pm(z,y) = P(M = m|X =
x,Y = y). Of course, py,(x,y) is typically unknown, and needs to be estimated; in fact,
we can only hope to estimate p,,(z,y) from the observed data in the missing at random
setting.

Consider the U-Statistics setting, where we are interested in estimating 0 = 6(P) =
E{¢(Z1,...,Z,)}. The complete-case approach we will in fact construct an unbiased esti-
mator for 6(Q) = E{¢(Z1, ... ,ZT)‘Ml =...= M, =0} # 6(P). One solution here is to
consider the Horvitz-Thompson estimators (Horvitz and Thompson, 1956) in place of éo,
©0,m and @y,. In this problem, the complete-case analogue is

- - 1 Z; 7-~,ZiT
90:61407[): ¢)( 1 )

1 T )
Z{il,m,ir}QAo [Tj=1p0(Zi;) {i1,...,ir}T Ao Hj:lpO(Z’j)

Moreover, similar expressions can be derived for ¢g ,, and ¢,,. The CAM estimator can
then be constructed as in the MCAR case. Of course, in practice, po(z) and pp,(2™) need to
be estimated using the observed data. This is non-trivial, and further study in this direction
is left for future work.
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Appendix A. Technical arguments

In this appendix, we present the proofs of all our theoretical results, as well as two auxiliary
lemmas which justify our choice of the kernel estimators used in Section 4.

A.1 Proofs for Section 1.1

Proof [Proof of claims in Section 1.1] Claim 1: The statistic T = (T1,T2)T = (¥x1 —
vyali2/Tag, Dy + ﬁKQ)T is sufficient for v = (vx,vy)T. To see this we use the factorisation
criteria: let Z; = (X;,Y;)7, the full likelihood is

n 2n
1 1 1 1
Lv) = exp(—f(Z,- - )Ir(z; - V)) T —— exp(——(Yi - Uy)2>
i1;[1 \/ 27T’F| 2 iznl_‘[+1 \/27TP22 2F22
1 1 n . ) 1 2n )
= exp(—5 D (Z— ) TN Zi—v) = 5o > (Vi-w)?)
2
(2m)n[T|n/21%) 23 Mo 2,
- 1 1 2n nov2
T1—1 T1—1 Y
r1z, — 20T — Yivy — )
X exp (Z v f 21/ v+ Ty _Z 114% 5Ty
i=1 i=n+1
1 1 2
= exp (nUTF_l(ﬁXJ, ﬁY,l)T — §I/TI‘_1V + Pinnﬁyvgl/y — ;;2;)

Now write

1

— m{(FwﬁXJ —Tdya)vx + Ty — F12ﬁX,1)I/y}.

vIT (o1, 0v1)"

By collecting the coefficients of vx and vy, it follows that

. . TI'a o I'n o T'n . T'ia\T I'e TI'ip T
Ux1—UVyie—Ux1—Vyios— — Vyo=s— + VY,27) = (TI; T+ (—— =— T2>
( oo I'12 IRP) 2 (F22 F12)
is a sufficient statistic for v. Thus Claim 1 is true.

Claim 2: We have that vx = E(0x1|T"). To prove this, first observe that

(Ix.1,0v1, v2)! ~ Na((vx, vy, vy)T,T),

, (T 0
v )
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Therefore
(ﬁX,b T17 TZ)T ~ N3((1/X7 vx — VYFlQ/FQQ, 2VY)T7 F”)v
where
' Ly —T%,/Ty  Tio
I"=| Iy -T2, /Ty T3 —T2,/Ts 0
I'i2 0 292

By standard Gaussian distribution theory, it follows that

E{oxq|(T1,T2)}

-1
' — F%2/P22 0 > < Th —vx + VYF12/F22 )

_ 2
=vx + (['11 — Tyy/Ta2,T12) < 0 o Ty — 20y

=T —ToI'12/(2T92) = vx,

which completes the proof.

A.2 Proofs of the results in Section 2

Proof of Proposition 1. First, we have that

E{ (6" — 6)* — (60 — 6)°}
= E{(05" — 00)* + 2{05" — 00) (60 — 0)}
= 7 E{(@o.m — @) (Bomt — )" 1y — 29 E{(Po.m — Pa0) (60 — 6)}.
Then, using the fact that ¢g o4 and P are independent, write
E{(o.m — @) (Pom — dan) "}
= E(¢o,m%0m) — E(@o,m@0) — E(@m@0.01) + E(@mel)

= Var(om) + Var(@am) + {E(Gom) — E(@m) HE(Gom) — E(@m) )
= Var(¢o.m — Pm) + {E(@o.m) — E(@a) HE(Gom) — E(er)}

Moreover, since 0y and ¢ are independent, we have

E{(Po,m — $m) (00 — 0)} = E[(Po,m — @) {00 — E(Bo) + E(bo) — 0}]
= E[(po,m — $m) {00 — E(00)}] + E(pom — pm)E (0o — 0)
= Cov(gom, b0) + E(Pom — am)E(0y — 0).

The result follows.
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A.3 Proofs of the results in Section 3
Proof of Theorem 2. Note that éM can be written as

02 = (00 — v  Gom) + 7 G-

The two terms on the right hand side are independent because the former uses data in
Ap and the latter uses data in Af. In addition, the first term on the right hand side is a
U-Statistic with kernel

(Z‘;(zla”' 727‘) :(b(zla"’ 72’/‘) - Z ’Ymd’m(?f{na 7277“n)7

meM
and the second term is a linear combination of M independent U-Statistics each with kernel
G (27, 2. E E{p*(Z1, -+, Zr)} < 0o and E{¢2,(Z™, -+, Z™)} < oo for all m € M,
we have

2
B{o(Z1, . Z) = > ambml 20+ 2N} < .
meM
Let om = E{¢m (27", ...,Z™)} and oa1 = (om,m € M)T. By classical U-Statistics theory
(see for, example, van der Vaart (1998, Theorem 12.3)), we have that

\/770{@0 - fYT@O,M - (9 - ’YTSOM)} _>d N(07T27}0); V nm( Pm Som) _> N(O r Um)

as n — oo, where vy := Cov{qg(Zl, VTR ,Zr),(;(Zl,ZT_A,_Q, v+, Zar)} and
U i= Cov{om (27", 23", - -+ Z"), (21", Z) o, - -+, Z5}) )
Now, by the independence of 6y — 7% po r and G, and noting that limy, o 2= = I

nQ qo "’
we have

Vo031 = 0) > N (0,2 (w0 + Y A aovm) )-

meM

Finally, by the definition of ¢(z1,--- ,2-) we can derive that vy + Y meMm Voo GoVm =
1 + T A1y — 29T Q. This completes the proof of the theorem. |

Proof of Theorem 3. First, we formally define our U-Statistic estimates of Qy and Ay.
We have

T (1 3 [{(ﬁ(Zil,.,.,Zir) ~&(Ziges s Zigy 1) }

no )
4r=2/ Ly, iar—2}CAp

{d)m(Zln;’ZZm-;-N” 12r 1) ¢m( 1279 137‘ ZZZ« 2)}}
(16)

M= (1400 gy 3 [(on(Z e 2~ o (s 2

T
m 4r=2 My, iar—2}CAgUAM

{gbm(Z,Z?,ZZLH,.. ) ¢m( (] 13 ’e s Zm 2)}}; (17)

28



THE CORRELATION-ASSISTED MISSING DATA ESTIMATOR

and

A 1
Avmym, = Ny > [{qu1 (Z7 . Z0") = by (200 20 )}
( 4r—2 ){il,...,i4r_2}§A0UAm1’2

{¢m2 (ZZL2, f;m+217 sty ZZZT{I) - ¢m2 (nguu Zgqu e Z’fofg)}} . (18)

Then, by classical U-Statistics theory (van der Vaart, 1998, Theorem 12.3), we can prove
that A and 2 are consistent estimators of A and €2, respectively. Then the consistency of ¥
to v* follows automatically. Next note that

V(04" = 60) — /ng(6" — 0) = v/no(94" — 6) = o (Gom — a0)" (7 =)

By the proof of Theorem 2, the vector \/ng(pom — Pam) is jointly asymptotically normal.
Since 4 — v* = 0p(1), it follows from the Slutsky’s theorem that

V(02— 0) — /ng(62" — 6) =P 0.

This, together with Theorem 2, completes the proof of the theorem. |

A.4 Conditions and proofs for the results in Section 4

We first formally state our assumptions. In the following, L > 0 is some universal constant.

A1 Suppose that Px and, form € {0,1}\{(1,...,1)T}, the marginal X™ distribution Pxm
have densities fx, and fxm, respectively, that satisfy |fx(z1) — fx(22)| < L||z1 — 22|, for
all 21,29 € RY, and, for each m € {0,1}2\ {(1,..., )T}, we have |fxm (2]*) — fxm(25")| <
L|| 27" — 23|, for all 2%, 25" € R9m,

A2 Suppose the kernel is such that K := sup,cpa(l + ||z])K(2) < oo, and that
o = = fRd z)dz = 1, i1 = p(K) = [palz|K(2)dz < oo. We also
ask that v = U(K = fRd K2 )dz < oo. Moreover for each m € M, we have
Ko = s1pcgon (14 [} Ko (2) < 0, o = () = fun K312 < 20 i =
p1m(Km) = [pam 121 Km(2) dz < 00, and vy, = v (Knm) = [pan, K dz < c0. Finally
for mi # mg € M, letting m'? = pmax{my,ms} € {0, 1}d and ml,g = pmlm{ml,mg} IS
{0,1}? denote the entrywise mazimums and minimums, respectively, of m1 and me, finally
we suppose that Vi, my = Vmy me (Kmy s Km,) f dmy 5 Kiny (271) Ky (2™2) d2™12 < o0

A3 We have that |n(z1) — n(22)| < L||z1 — 22||, for all z1, 20 € R?, and, for each m € M,
[ (27") — 10 (257)] < Lll23* — 25|, for all 27, 25" € R

A4 For each m € M, we have |7y, (2]") — T (25" )\ < L||27 — 25|, for all 27, 25" € R,
Finally, we ask, for allmy,ma € M, that [Ty my (2] 2) = Timy.ma (29 2)| < L2 — 25 2],

for all 2/ zy"* € Rm12,
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Proof of Theorem 5. First, we have

E[{ /M = fx(2)}* = {fo— fx(2)}’]
=E[(fM(x) — fo)® + 2(f" = fo){fo — fx(x)}]
= YTE{(fom — Fr) (Ffom — Fr) ™1y — 297 El(fom — Fr){fo — fx (@)}

Now observe that, for each m € M,

m

E(fom — fin) = no;dm gAj B, (1)) nmzdm EZ B{r (X))

Thus, using also that fo’ M and f ‘M are independent, we can write
E{(fom = fa) (fom = fa) ™
= E[{fom — E(fom) + fad = E(Fa) HFo ot = E(ford) + Frr — B(fa)}"]
= Cov(fom) + Cov(fum). (19)

It remains to show that Cov(fo) + Cov(fa) = Ap(1+ o(1)) and E[(fo — fa){fo —

fx(@)}] = Qp(1 + o(1)).
For the diagonal terms in the covariances in (19), we have

V(o) 4 Ve () = s (4 o) var s (S

no Nm

= i (i ) [ 0 (5 ey

L R iy

After making the substitution ©™ = #—*— and using assumptions A1 and A2, we deduce
that

m m

) 0
< fr /Rdm K (™) fogr (2™ 4 ™) = fogn (™) du™ < Lh T Ko g
Whereas
‘/Rdm Ky, (#)fxm(zm) dz"™ — h¥™ fxm (™) 10, m
< pidm /R o Ko™ e (27 h™) = foom ()] du™ < LR i . (20)
It follows that

Var(fom) + Var(fn) = W (nlo + nlm){l +o(1)},
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as n — oo, uniformly for h € [n=% n=].

For the off-diagonal terms in (19): first, for m; # my € M, we have that
Cov( fml, me) = 0, since A,,, and A,,, are disjoint for m; # mg. For the remaining
terms, we have

COV(fO,ml ) f07m2)

1 X gm Xm2 _ gm2
- noh®mitdm, COV{Kml ( h )’ Km ( h ) }

= g o (5T o (o

N e,

As above, we make the substitution u = *3*, which gives

Lo (5 (5

_ / Ko, (0™ Ko, (™) fx (& + htt) du
Rd

[ Lo, B (07) o+ )

_ hdmLQ le,mzmeva ({L‘ml,Q){l + 0(1)}7

uniformly for h € [n=?,n=%]. Tt follows from the previous calculation and (20), that

~ ~ . my, xml,Q
Cov(fomis foms) = mlmjﬁd;fﬁ ){1 +o(1)},

uniformly for & € [n=% n~°]. This proves that first claim that Cov(fo) + Cov(fam) =
Ap(1+o(1)). A
Finally, since fy and faq are independent, we have that
E[(fom — fa){fo = fx(2)}) = B[(fora — Fa){fo = E(fo) + E(fo) — fx(2)}]
= E[{ fom — E(fom) = faa + E(fa0) H o — E(fo)}]
= Cov(fo.ms fo) + Cov(fat; fo) = Cov(fou, fo)-

Then, reusing the covariance calculation above, for m € M, we have

Cov(fo, fom) = nomllermCOV{K(X; :E),Km (g)} — W{l +o(1)},

uniformly for h € [n=% n™°]. This completes the proof of the second claim and hence
concludes the proof of the theorem. |
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Proof of Theorem 6. First, conditionally on the observed data, we have
E[{ﬁ'/y\/l - n(x)}QlXinlv ce 7X1Tn] - E[{ﬁo - 77(‘73>}2’X{n17 ce 7X7T1nn]
= E{(7y" = 70)*[ X7, Xi} + 2E[{7 — (@) Hag! — i} X7, X (21)

We analyse the two terms in (21) separately. We first introduce some notation and facts that
will be used repeatedly in the proof. Recall that we can write the local constant estimator
as a linear function of the responses Y, := (¥1,..., Y,,)T € R™. Indeed, let

m m m m
X' —x X' —x

Woam = Wimni, = (Km<h)]1{1€A}, o Km<T) 11{n€A}>T. (22)

Then ﬁA,m(CEm) = HAT,m,h,KmY[n], where Ha g = Hamnk, = (Z?:1 WA,m,i)_lwA,m- For
simplicity of presentation, write Hy = Ha, 0, Hom = Haym and Hy, = Ha,, m, and let
Hom = (Hopm : m € M) be the n x |[M| matrix with columns Hy,,, for m € M, and
similarly let Hyg = (Hy, : m € M) € RP*IMI

Next, let B = E(Y,| X1, ..., X7™) = (Dmy (X757, (XTT"))T be the conditional
expectation of the responses, and let I' := diag{7, (X7™),..., 7m, (X")}. Further, let
I'* = diag{7m, (z™), ..., T, (™)} and E* = {0y, (™), ..., 9m, (z™)}T. We will make
use of the following facts (i) 1L Ha,, = 1; (i) E*THy = n(z), (iii) HLE* = nyu(a™), (iv)
Hi o E* = n(z), (v) HLT*Hy, = 7 (™) HL Hyp, (vi) H,, T* = 0, (vil) THy = T*Ho = 0
and (viil) H},Ho = 0.

Furthermore, we claim that, for m € M, the following results are true

HTHy,, = H0,m 14 0,(h)}; 23
0 410, ,ljl()’mem (xm)nohdm { p( )} ( )
HE Hom = —5——" {1+ Op(h)}; (24)
T g fxem (@) nohtm
and
T Vm
HT'H,, = {1+ 0,(h)}, (25)

i S xm (2 )1 A
uniformly for h € [n™%,n~%]. Furthermore, for m; # ms € M, we have

le,mzmeL? (xml’z)

HE, Hom, =
;mi 2 140,m, me1 (me )MO,mg me2 (xmz)nohdm1,2

{14+ 0p(h)}; (26)

uniformly for h € [n=,n=%]. To see (23), write

e K (575 Ko (F557)
le—:cm

Picao K(F5E) Ticao Km (77

s Diea, K () K (S5 (27)
ﬁ ZZEA() K(le;x) noh#dm Z'LEA() Km(XZ ;mm)

Hy Hom =
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We consider the numerator and denominator above separately. For the numerator, observe
that

1 Xi—a, . X7
JE{,W%:OK( ) En(F )

m m

1 — _
= s f KT () )

1 m
= » K(u) Ky, (u™) fx (z + hu) dz
_ VO,me(x> 1
nohdm nohdm R4

K (u) K (u™){ fx (2 + hu) = fx(2)} dz.

Moreover, by Assumptions A1l and A2, we have

J.

Hence, using Markov’s inequality, the numerator in (27) admits the following expression

K () K (0™ { f (z + hu) — fX(x)}( dz < Lh /Rd K (w) K (u™)|[u]] du < Lhpiy K.

1 X -z X —a™\  vomfx(z) dn—1
_ K( : )K ( J ) - 0, (1/(ngh® 1Y),
uniformly for h € [n=%,n=%]. For the denominator, by appealing to similar arguments to
those in the proof of Theorem 5, we have that

e () = k@) + 0,0,

and

1 1% X —am™y m 0
nohdm Z m(T) = fxm(@"™)pom + Op(h),
i€Ap

uniformly for h € [n=%,n~?]. The claim in (23) then follows by Slutsky’s Theorem. More-
over, the claims in (24) and (25) follow by the same argument with only minor changes. To

see (26), observe that

1 Xml - $m1 Xm2 J— :CmQ
B s 2 Ko () Ko (R )}
0 i€ Ao

1 Zml _ ;Uml Z’ITLQ _ xmg

" nghtmi tdmy /]Rd Koy (T)sz (?)fx(z) dz
1 Zm1 . xm1 ng _ $m2 . .

= m /Rdml,Q Kml (?)KmQ(T)mel’Q (Z 1,2)dZ 1,2

1

_ mi ma mi 2 mi 2 mi 2
B nohdm1+dm2*dm1,2 RY™1,2 Kml(u )Km2 (u )me1,2 (x +hu )du

m mi 2
_ Vm1,m2fXd172(x ) —I—O(l/(nohdml’zil)),
noh®m1:2
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uniformly for h € [n*fB ,n~%]. In the last step above we have used the fact that, by Assump-
tions A1 and A2, we have

/ i B (W) By () { figma 2 (2702 4 hu™2) — fgma o (a™02) } du™
R“™1,2

< Lh / Koy (0™ Ky (w72) ™ 2| ™2
Rdml,Q

<L [ B () Koy (™)™ [ ) ™ < L Bos 5B
R™™1,

The claim in (26) then follows by similar arguments used to prove (23). We now return to
the main argument.
Part I: the first term in (21): By definition of Y}, we have

E(Yj Vi IXT™, .. X) = BET 4 0% L + T
It follows from the definitions of ﬁfy\/‘ and 7o that the first term in (21) takes the form
E{(ﬁ/y\/{ - ﬁ0)2|XIn17 s >X7Tznn} = ’YT(H({M - Hfj\_l/l)(EET + UQIan + F) (HO,M - HM)’V
=~"Ary+ R + Ry, (28)

where
Ry :=yTH (T — T*)Hpqy

and
Ry = {v"(H{ yy — HX)EY? + o>y HE y(Homy + 7" Hig(0?T +T*)Hpry — v Ary.

Here we have used that ngM (I' =T*)Ho,m = 0. We next show that both R; and Ry are
small order terms.
To bound R;: By assumption A4, we have that

|Tm (") = T (2™)| < Ll — ™.

Moreover, similarly to (25), by Assumption A2, we have

m

Siea, IXm — o) K2 (X2
Sican Kn(F5) Tiea,, Ko (F57)
e Siea, Knkin(155)

(it Siea,, Em(F550) 12

1
= OP(W)-

HEdiag(|| X[ — 2™|,i=1,...,n)Hy, =

uniformly for h € [n7% n~%]. Thus

[Ry| = |y HE(T = T*) Hoy

< 3 R HLdiag(|1X]" = 2 i =1, n) Hy = 0 Y ),
meM mem
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uniformly for h € [n=F,n=].

To bound Rs: First we decompose Ry into the sum of three terms. To that end, let

2 m
YmVmTm (™)
Roy := {y"(Hy pg — HM)EY = >
b (Hou ME} e 11 Fxm (™) R

_ Z TYmiVYma Tmy,ma (xml'Q)thmzmeLQ (zm12) .

m1#maeM Ho,my fxm (l“ml)ﬂo,mg fxma (xmz)nohdmm ’

Rog = o*y" HY \Homy — Z Tn¥n®”
, 7 meM 'M(Q),mem (mm)nohdm

B Z 7m17m202Vm1,m2 X"1,2 (xml’Q)
mi1#ma€M Noaml mel (xml ),Uf(),mg meQ ({L’m2 )nohdml,Q ’

and

2 m

'm +7—m(x )}
Ros = ~ATHT (621 + T%)H gy — TmVm{o .
R i mze%/llu’Ome’"(xm)nmhdm

Note that Ry = Ra1 + Roo + Rog, since

TA W= Z fymym{o + 7 (z Z fymym{a + 7 (™) }
fxm(@ "ohdm o 1 S (a7
Ly 20l g ) e i (1)

e HOma fxma () 0,my fxma (2712 )nghtmt 2

meM MO m

We now bound Rs;, Ros and Rsg in turn.

To bound Ro1: Write Ey = (0 (X7, ... 0 (X™)T and let 6,, = E — E,,. Then
H,,0,, =0 and

YV (Hipu — HA)E = > vm(H,, — HY,)E

meM

= Ym(Hipy — HL)(E = Ep + En)
meM

= vf{HGw0m + (H,, — HY)E ) (29)
meM
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For m € M, using the fact HOTJnln = Hgln = 1 we have that

|(H o = H) | = |(H3 = HI{ Epy — 0 (™)1}
e Yieay Kon () (0 (XT7) = (@)}
o Loiey Kom (F)
o Lieay, Ko () 0 (X7) = (@ >}’
mzmm m(“";:"”””)
- fo’mfmntnmhzdm‘ 2 [Km(XiTxﬁ"m(X?) _”m(meKm(X]hx)

iEA() 7j6Am

(S o)

S ) X7 = ™) (S

)

The last line in the display above is the sum of ngn,, mean zero terms. Moreover, for each
term we have

— XM —z
E [ Ko (S ) 0 (X]") = (™) Ko ()
(T () e B (K]
:/Rdm/mm[xmw‘h ) (21) = (&™)} Ko ()
~ Ko ‘h =)= e i (2 W )] P o (57) 1
2 [ (K2, (220 () — @™ (220 o () o (1) dzad
Rdm Rdm
Z9 x™ m
- Rdea( ) () = (™))
{m(22) = ™V (T fron (o) e (281)

< 2L2p2dm+2 / K2 (w)||ul|?fxm (@™ + hu) du K2 () fxm (™ + hu) dz,
]Rdm Rdm

2
+ 2L2thm+2 / K (uw)lJul| fxm (™ + hu) du}
271 2dm+2 m m 7 2
< 2L°h {me (.73 )Nl,me + Lh/JfQ m m + (me( ),Ufl,m + Lh,u*l,me) }

Therefore, by Markov’s inequality we obtain that

XM gm XM — gm

nonmlhm‘. > [En (T (X)) o ()

X7 — g™ . . Xm — gm 1
—Km(jT){nm(Xj ) = m(z )}Km(T)” = Op(nlﬂnl/‘zhdm_l)’
0 m
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THE CORRELATION-ASSISTED MISSING DATA ESTIMATOR

uniformly for h € [n7 n~=®]. Using also the fact that fo,, = fxm(z™) + Op(h) and
fm = fxm(z™) + Op(h), we have by Slutsky’s Theorem that

1
T  gT _
‘(HO,m Hm)Em‘ Op(n(l]/Qn}Y{zhdm1>, (30)

uniformly for h € [n™?,n~°]. Now, for the terms involving &,, in (29), first write

Y () — (X))

1 X7
nohd'm Zier Km( :
1 XM _pm
o DicAg K (55—)
1

= S K (T (%) — (X0,

fovmnohdm i€ Ao

ng O =

The last term is a sum of ng mean zero terms, with

E[KQ(Xm ) in(x) - T (X2 = E{KQ(W)W(X?)}

— / K?n(iz — )Tm(Zm)fxm(Zm) dz
Rdm h
= pdm K2 (u) T (2™ 4 hu) fxm (2™ + hu) du
Rdm

< W [ (&™) fxem (™) + LhK 0, {Tm (™) + fxm (™)} 4+ LER2 K i1 m)-

Thus by Markov’s inequality we have ]HOT mOm| = Op(ng V2 =dm/ %), uniformly for h €
[n=%,n~?], and it follows immediately that \(Hg:m—HT)Em] =0, (h(H({mém)Q), uniformly

m
for h € [n=%,n~?]. Thus, the first term in Ry; can be written as

OF (g~ H)EY = (X v o) {1+ 0p(h),
meM

uniformly for h € [n=% n~°]. Now observe that

2y 1 (™
ELS 2 (HE b IXT . Xy = 3y dmm Tl

2 m
VeV Tm (T
= Y 2 HT E{0. 00X X o — Y 7; m(;nm)n )hdm
meM et Hom X 0
2 m
i VT (2
= Y i (X]). . (X) Hog = 3
meM memM lu’()m Xm\T no
= D ImHidi X" H VHT H,
- Y Ho mdiag{ T (XT"), -+ o, T (X5") Y Hom — ZVme T Hom
meM e
2 m
’YmeTm(a7 )
+ V2 T (™ HE  Hom — '
m%:w il dmnm mgw 14 o fxm (™) mg
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Then, by assumption A4, we have that

‘ Z Vi Hy mdlag{Tm(Xl ) Tm(X0") FHom — Z Vi Tm (T HO mHom
meM meM

= | 37 228 diag{rn(XI") = (™)} Houm|
meM

(Xm—x

Z 2 Ezer K72n )|Tm(Xm) - Tm(xm”

e {Cien, Km (Fr755)12

b Yica, Ko () | X" — @ ||
2 h2dm ZZEAO m
<Ly 25 - (Z Vo hdm_l) (31)
meM fO,m n

meM

IA

uniformly for h € [n=%,n~%]. Moreover, by (24), we have

m l’m n hdm
meM meM ’uo me 0

V2 U, 1
|3 e o~ S B 0,3 ). (3
n(]h m
meM
uniformly for h € [n=%,n=%]. Similarly

E{ Z 'le'YmQHO m15m1H3m25m2
mi#maEM

m12 mi2

LY s (87 frma (712),
mi#maem HOm1 Fxem (1) 110 g fxema (22 )nohdm1,2 ’

= 5 [l X
mi1#£moEeEM

X2 mi 2 mi2
ooy Xn } _Tmhmg(x ’ )Inxn HO,mz

T
- Z Yima Yima Ho g Ho,mo Ty o (27712)
mi1#£moeM

N Z Jma Yma Tmy,me (xml’Q)Vm1,m2me1,2 ($m1’2)
iy e 10y Fxm (270 110, foxma (2772 Ynghdm1:2

Now, by the last part of Assumption A4 and similar arguments to those used above, we
have

Y HE., {E{amlaf,m

Tn1 ,2 mi,2 mi,2
XD } Ty g (2™ )I,m] Ho.m,
mi1#moeEM

1
= Op< Z Yma Yme W), (33)
m1#maEM
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uniformly for A € [n™%,n~%]. Furthermore, by (26), we have

T m
E YmiVYme HO,ml HO,szml,mQ (1’ 1’2>
m1#£moEM

LY DT ey s (272
my#maem HOma JFxma (T70) o, my fxma (22 )nohdml,z

:op< 3 nohdilrl) (34)

mi#ma€EM

uniformly for A € [n=%,n~%]. Then, using (30), (31), (32), (33) and (34), we conclude that
| R | = Op( > # + > %)
meM 0 mi1#£moeEM noh m
uniformly for h € [n=%, n=e].
Furthermore, by (24) and (26), we have that

1 1
\322!=OP(ZW+ 2 W)

meM m1#£moEM

uniformly for h € [n™?,n~%]. Finally, by (25) we have

| Ras| = Op( Z W)?

meM

uniformly for h € [n=? n~?]. This concludes the bound on Ry and Part I of the proof.
Part II: the second term in (21). Using the definition of local linear estimators and
noting that THy = 0 and H1Hy = 0, the second term in (21) can be written as

E[(75" = f0){f0 — n(@)}XT™, ..., X7
= B[ (7" — o) {flo — EGlo| XJ™ .. X )+E (| X[, X7) = (@)} X7, X5
=~ (Hop — HA) B{Yj (Y — ED)IXT™, . X0 Y H
— 7" (Hop — Hig) E{E" Ho — n(z)}
= —y"(Hg pg — Hjy) (0®1 +T)Ho — 7" (Hj g — Hiy) E{E" Hy — n(z)}
= —o*y"H{ yHo — 7" (Ho p — Hig) E{E"Ho — n()}. (35)
For the first term in (35), by (23) we have
027TngMH0 = UQ'yTQR{l +O,(h)},
2l

uniformly for h € [n=%, n~
It remains to bound the second term. Let

Ry = —~"(Hopm — HM)E{ET Hy — n(x)}.
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Recall from Part I of this proof that v* (Ho s — HM)E = Op(X e mjﬁ) Moreover,
by assumption A3, we have that

In(X;) —n(x)| < LI|X; — =,

for i = 1,...,n. Recall that E*T Hy = n(z). Therefore

Sieao K (F55) In(X) — n(@)]
ETHy —n(z)| = |(E" — E*")H 0
|E" Ho —n(z)| = |( JHol < S K(52)

< SR (X) ()| = Oy(h),

uniformly for h € [n*ﬁ ,n~%], where the last equality is by Markov’s inequality due to the
facts that K(%)\n( ) —n(x)| > 0 and

Xi — T
B{K (S () —nl@)l} < Lh [ K)ol o) du < R o)+ L),
This completes the proof.
|
A.5 Proofs for the results in Section 5
Proof of Corollary 7. Consider the bias and variance separately: we claim
E(¢7,) = E(0o) (36)
and . )
A Cov(0y, PAg.m ~
Var(¢F,) = Var(6y) — 0v(60, & 40.m) < Var(6p). (37)

Var(@ag,m — PA,,m)

To see (36) it suffices to show that E(pa,m) = E(¢4,, ). First, since the missing data is

MCAR, we have that the data in T4,,m U7y, ,, are independent and identically distributed

with distribution @,,. Furthermore, for each by, bs, the estimators ¢ A and ¢ i
0

m

are constructed using ng,, pairs from Ta,, and 7~Am,m7 respectively. Thus, these two
estimators have the same distribution, and in particular, they have the same mean. It
follows that E(pay,m) = E(@4,, ). The result in (37) follows via a direct calculation. M

A.6 Auxilliary Lemmas

The results in this section motivate our choice of the d,,-dimensional kernel, K,,, used to
construct fg,m and fm in the density estimation problem, and %), and 7, in the regression
problem. For m € {0,1}%, let m¢ = (1,...,1)7 — m. Recall that we write Ixixm (™ ™),
for the conditional density of X given X™ = 2™ at 2™".
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We see from Lemma 8 that, up to rescaling, if the kernel can be factorised as K (t) =
Ky (™) K e (#™°), then the optimal choice of fo,, is well approximated by

1 XM — g™
nohdm Z Km( Z h >
i€Ap

On the other hand, Lemma 9 shows that the optimal choice of 7, is well approximated
by

m_gm
ZZEAOYK ( h )
Xl?”—wm :
ZiEAo Km( h )
Any d-dimensional kernel constructed from the product of 1-dimensional kernels satisfy
the factor assurnption in Lemmas 8 and 9 . For example the condition is satisfied by the

,,,,,

other kernels, such as 1yjy2<1y, are not covered by the lemma but enjoy snrnllar propertles
to that in (38), which can be proved by using similar ideas.

Lemma 8 Assume A1 and suppose that, for t € R? and m € {0,1}%, we have K(t) =
Kp,(t"™) K, (tmc) for some K, : R9m — [0,00) and Kye : RT4m — [0, oo) that satisfy
,UJOJTL - fRdnL dZ < OO’ /"Ll m f]Rd"L || ”K ( )dZ < OO iu“oymc = fRd c dZ < 00
and i1 me = fRdmc H | Kme(2) dz < o0o. Then, for z € Rdm,

e (S5 ) e = = e () e 6

h >“1vmc'
(38)

Therefore, for 0 < a < f < 1/d,
1 X;
nohd Z E{K<
i€AQ

as n — oo, uniformly for h € [n=% n=?].

x) ’le} - 7/;0]’;3; > Km (W)fm)(m(mmc;wm) + Op(h)
=

Proof To sce (38), first observe that by making the substitution u = - ;mm , we have

s{ae (52 o) -
L T o (S e s

_ hd—dem(%) / ch(u)fX|Xm (xmc + hu; zm) du.
Rd—dm

c

Now, write
mc. _m\ __ fX(Z)
;2 ) - me (Zm) .

fx|xm (2
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Thus, by assumption A1, we have that

c c Lh”u”
m(x™ + hu; 2™) — m(x™ ;2" < ———.
| fxxm ( ) — Fxpxm( ) Frm ()

It follows that

'E{K(X;x) ‘Xm _ zm} _ i (#)mm(wc; 2™ 0,me

Lh1+d—dm LM pm
< K, Kope du.
<o () /R - o)l d

This proves (38).
For the remainder of the proof, first observe that

L G | B G LA

It remains to bound the following:

C

E‘nohdm Z K (u){fmxm( XY = fxpxm (2 ;f'?m)}‘

- /Rdm o () e (75 27) = a5 oo (27

= Km(u)\fmxm (l‘mc; ™ + hu) — fX|Xm (ﬁfmc; )| fxm (™ + hu) d2™

Rdm
C m m h
e fxm(z™)
fx (@)
< LhJ1l+ K, du— Lh fx(@) N
<o{t s g} L, K= 2+
The proof is completed using Markov’s inequality. -

Our results on the choice of K,, in the regression problem need a slightly stronger
condition on the joint distribution of (X,Y):

A5 Suppose that P and Py, form € {0,1}\{(1,...,1)T}, have densities fxy, and fxmy,
respectively, that satisfy |fxy(z1,y) — fxy(22,9)| < L||z1 — 22|, for all 21,29 € R% y € R,
and, for each m € {0,134\ {(1,..., )T}, we have |fxm y (27", y) — fxmy (z5% y)| < Lz —
25|, for all 21", 25" € R 4 € R. Moreover, we ask that the densities fx, fxmy are
bounded, and that meC|Xm7Y(a:m; 2™, y) is a bounded function of 2™ and y.

Lemma 9 Assume A3 and A5, and suppose that Y is supported on Dy C [-Y,Y],
for some Y > 0. Suppose further that for t € R and m € {0,1}%, we have K(t) =
Ky (t™) Kppe (™), for some K, : Rim — [0,00) and Kpe : R¥=4m — [0,00), that
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satisfy Km = sup,epam (1 + [|2]]) K (2) < 00, flom = [pam Km(2)dz < 00, p1m =
fRdm |2|| Km(2) dz < 00, pome = fR‘imc me(2) dz < 00 and iy me = fRdmc |2]| K e (2 )dz <
oo. Then, for 0 < a < p < 1/d,

Xi—x
Z EE{ K( : X)~fx
1€AQ ZjGAo K( ]h )
as n — oo, uniformly for h € [n=% n=?].
Proof Part I: We first show that
K (% E{K (%52)| Tag.m
( h sz Ao,m} N Z Y; { ( h XZ‘IA(), } _ Op(l).
icny e K(F5) icro B{Yjea, K(F5) | Tagm}

Sien, Vi (-
TAO,m} _ 77('7;) €Ao (Xm,hxm ) +0p(1)
() 2 jen, Km (=)

(39)

and

Then we can write

s VELK(52) [Tagm)  Wo Wa Sieny VE{K (52) [T
E{>jca, K(%)W}xgm} fo fo E(fo| Tagm)

It follows that

A~

iear ViELK (=) Tag,m
HOZE(@ m)—HE(% )"OhdZEAO (K ) Tanin}
fo fo E(fol Tagm)
Now, by Markov’s inequality, we have
E(WE|Tagm) _ 2 TN | ym
P(|Wi| > | Tag.m) < Taom) _ thtz > vEvar{K ( )‘X Vi)
1€AQ
and
E(W3|Ta0,m) 1 Xi =2\ | ym
P(|Wa| > |Tag.m) < i = o GZA: Var{K( . )‘X Y}
1€ Ao

Note further that, since [Y;| < Y, for each i, we have that |IIy] < 2Y. Therefore, for
0 <t <E(folTaom)/2,

|E(Io| Tagm) | < E( ol 1wy <ty Liwal<ey Taomm) + E{IHo|(Lwy>er + Lgwa > Tagm §

26 % ot e ao VE{K (%575) [ Tagm }
E(folTapm)  E(folTag,m) (folTAo, )
2Y (1 +Y?) — T\ wm
2h2dt2 )‘Xz 7Y;}‘
i€Ap

(40)
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Now, using the tower property of expectation, we have
E[E(fo| Tapm) — fx(@)] <E|fo— fx(@)| < Lhy,

by assumption A1. Thus, we have E(fo|Ta,m) = fx(z) + Op(h), by Markov’s inequality.
Similarly
1 XZ — T
o 2 VE{E (Z577) [Taom | = n(a)fx(@) + Oy(h).
1€Ap
Finally, using the facts that

E [var{ (

and that the conditional variances are all non-negative, by applying Markov’s inequality we

have
oo > var K (F5E) [ v = 0,0,
1€Ap

uniformly for h € [n=% n~?]. The proof of Part I is then completed by taking t = t,, :=

log ng
hd

)‘ }] = Var{ (th_x)} < h{vfx(x) + LhK o},

in (40) and using Markov’s inequality.

Part II: We claim that

1 X 1o me fx (x)n(z) X" —a™
= —— Y-[E{K }— : Ko (2 ]zo 1),
! nohd zEZAO ! me(xm)nm<$m> m( h ) p( )
(41)
uniformly for h € [n=%,n™?], and
po,me fx (2 z"
M= Z E{ m} dm Z K (————) = 0p(1),
noh icAg me Im noh ieAo
(42)
uniformly for h € [n=%,n=].
To see (41), first observe that, for all 2™ € R% and y € R, we have
Ximc —a™ m m dme me. ,m
e (FE 030 = (700} 10 e o 5270
‘/Rd Km(- 7)mec|Xm7Y(ch, Zm’y) dzmc . h me 1o mcmec|Xm Y( mc; Zm,y)‘
= pme /d Kope (u) fme xm y (27 4 hu; 2™, y) du™ = o me frome xm y (275 2™, y)’
Rme

Lhdmc +1,LL17mc

< 2T Hme
me,Y(Zmay)
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Therefore

| e v (T e () v

i€Ag

Xm — gm .
— K (T)MO,meXmﬂXm,Y(fUm %sz,Y%)”
1 Y| K (25220
< Lh mcE{ }
> M1, nohdm igA:O me’Y(Xij E)

m __ ..m

1 z T _
m Y

It follows that

H0,me le —z™ mc. yvm v fx(l‘)n(l’)
I, = nohdm ZEZAO }/sz( h )|:me0|ij}/(£ 7Xi 7}/Z) - me (xm)nm(xm) + R,
(43)
where Ry = Op(h), uniformly for h € [n=%,n=%], by Markov’s inequality. Now, writing
(with a slight abuse of notation) n(z™",2™) := E(Y|X™ = 2™, X™ = z™), the first

term in (43) is the average of ng independent and identically distributed terms each with
expectation

1 ZM — ™ me. m fx(x)n(x) " m
Mlm/RHlem(h){meﬂXm,Y(x ;2" y) — From (7)o (27 )}fxm,y(z y) dz"dy

— 1 M- me _m X(37)77 )meY( 7y) m
_W/Rd+?{Km(h){mec,Xm,Y($ 2" Y) — fX @™ @™ }dz dy
1 LM pem

m _m me _m ( ) ( ) m( )me(zm) m
= e S I e a2 = S

= Km(u){n(xmc, " + hu) fxme xm (™, 2™ + hu)

_ Ix(@)n(@)nm (e + hu) fxm (2™ 4 hu) } d
Fxm (@) (2™)

— [ Bl {na" 2 4 ) o 3™ ) fx(@n(e) ) du
R

+ [10,me /R ) Km(u){ Fx(@)n(z) — fx(x)n(w)%f; ;r) Z:)(ii:; (2™ + hu) } "

Fxm (™) + N (2™) X L
< Lh [Nl,m{n($) + fx(l’) + me (l‘m)nm(ﬂfm) } + LhﬂLme{l + me (l’m)nm(xm) }} .
Furthermore, we show below that
,me Xm —z™ mec m 1
(44)

uniformly for h € [n=%,n=2]. It follows that |II;| = o0,(1), uniformly for h € [n=?,n=%], by
Chebychev’s inequality — this proves (41).
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Next, to see (42), write

= LS [ () T o dxte) e (X

"0 2, h h fxm (xm) hdm
L1 X -l X[ —a™ e ) Home fx (@)
" ng iEZAo Ko h ) [th{ch h )‘XZ ’Yl} me(xm)hdm}
o H0,me XZTL_:ETTL mc. vm - fX(x)
~ nghdm i;:g Km(T) [mechm,Y(x X YG) — W] + Rs, (45)

where, using the same technique used to bound Ry, we have

X;ﬂ_xm

m m

1 z T —
- LhHl meT g fdm /Rd D Km(T> dZdy < 2Lh/£17mcu0,my.
m Y

Thus by Markov’s inequality Rs = O,(h), uniformly for h € [n®,n~%]. Finally, the remain-
ing term in (45) is the average of ny independent and identically distributed terms, each
with expectation given by

1 m _ ,.m .
hdm/Rd RKW(%){meC\Xm,Y@mQZmay)— fX( ) }fX vy (2™, y)dz"dy

fxm (™)
_ Ho,me 2" =z mc _m fX(x)me,Y(vay) m
— Jdm /Rdx]RKm( h ){mec’Xm,Y(eT 4 ,y)— fXM(JZm) }dz dy
_ H0o,me 2" =™ mc _m fX(J:)me (zm) m
= dm /Rde(h){meC,Xm(x )2 )—me—(xm)}dZ
_ m¢ _.m ( )me(x +hu)
= Ho,me /Rd Km(u){mec,Xm(l’ 2™+ hu) — Fxm (™) }du

= Uo.me /Rd Km(u){mecxm (™, 2™ + hu) — fx(@ )me((;C:)+ hu) } du

~
>
3

< Lhuo,mcm,m{l + m}

Moreover, we will show below that

pome . X" —a™ m vy Ix(@)n(z) _ o L
Var{ G Ko (2 (P (&7 X0 ¥ = 7o s ) | = 0 ()
(46)
uniformly for h € [n=%,n=%]. It follows that |IIs| = 0,(1), uniformly for h € [n=%,n=].
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It remains to show (44) and (46). We have that

e L R )
m _ ,m . )
< B0 (S50 (pmen 53090 = )
< sup [yz{fxqum’y(me; 2™ y)
zmeRIm yeDy
- fxfé(rfmlm) Pronem)] [ om0 ae
B z’"GR?TlnI,)yGDy [y2{meC|vaY($mc5 2" y) — fxﬁicgzsc(lm) }Zme(zm)} Vinh™™

Thus, (44) holds since the density functions are bounded. The claim in (46) can be seen by
the same argument.
The proof is competed by combining Part I, Part II and Slutsky’s Theorem. |
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