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Abstract

Most high-dimensional matrix recovery problems are studied under the assumption that
the target matrix has certain intrinsic structures. For image data related matrix recovery
problems, approximate low-rankness and smoothness are the two most commonly imposed
structures. For approximately low-rank matrix recovery, the robust principal component
analysis (PCA) is well-studied and proved to be effective. For smooth matrix problem,
2d fused Lasso and other total variation based approaches have played a fundamental
role. Although both low-rankness and smoothness are key assumptions for image data
analysis, the two lines of research, however, have very limited interaction. Motivated by
taking advantage of both features, we in this paper develop a framework named projected
robust PCA (PRPCA), under which the low-rank matrices are projected onto a space of
smooth matrices. Consequently, a large class of image matrices can be decomposed as
a low-rank and smooth component plus a sparse component. A key advantage of this
decomposition is that the dimension of the core low-rank component can be significantly
reduced. Consequently, our framework is able to address a problematic bottleneck of
many low-rank matrix problems: singular value decomposition (SVD) on large matrices.
Theoretically, we provide explicit statistical recovery guarantees of PRPCA and include
classical robust PCA as a special case.

Keywords: Image analysis, Robust PCA, Low-rankness, smoothness, Interpolation
matrices.

1. Introduction

In the past decade, high-dimensional matrix recovery problems have drawn numerous
attentions in the communities of statistics, computer science and electrical engineering due
to its wide application, particularly in image and video data analysis. Notable problems
include face recognition (Parkhi et al., 2015), motion detection in surveillance video (Candès
et al., 2011), brain structure study through fMRI (Maldjian et al., 2003), etc. In general,
most studies on high-dimensional matrix recovery problems are built upon the assumption
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that the target matrix has certain intrinsic structures. For image data related problems, the
two most commonly imposed structures are 1) approximate low-rankness and 2) smoothness.

The approximate low-rankness refers to the property that the target matrix can be
decomposed as a low-rank component plus a sparse component. Such a decomposition has
been intensively studied in the literature, for example, Candès et al. (2011) who proposed the
robust principal component analysis (RPCA), Chandrasekaran et al. (2011) who developed
a notion of rank-sparsity incoherence, etc. The RPCA was originally studied under the
noiseless setting and has been extended to various other settings. For instance, Zhou et al.
(2010) studied RPCA in a noise case, Vaswani et al. (2018) considered RPCA for robust
subspace tracking, etc. We refer to Bouwmans et al. (2018) for a survey of applications
of RPCA in computer vision. Moreover, the low-rank and sparse decomposition has also
been intensively studied for matrix completion problems with partially observed entries,
e.g., Jain and Dhillon (2013); Wright et al. (2013); Chen (2015); Klopp et al. (2017); Chen
et al. (2020).

On the other hand, when a matrix is believed to be smooth, Total Variation (TV) based
approach has played a fundamental role since the pioneering work of Rudin et al. (1992)
and Rudin and Osher (1994). The TV has been proven to be effective in preserving image
boundaries/edges. In statistics community, a well-studied TV approach is the 2d fused
Lasso (Tibshirani et al., 2005), which penalizes the total absolute difference of adjacent
matrix entries using `1 norm. The 2d fused Lasso has been shown to be efficient when the
target matrix is piecewise smooth. More recently, a TV based approach was also used in
image-on-scalar regression to promote the piecewise smoothness of image coefficients (Wang
et al., 2017).

Although both low-rankness and smoothness are key assumptions for image data
analysis, the two lines of study, however, have very limited interaction. On the other
hand, the matrices that are both approximately low-rank and smooth not only commonly
exist in image data, but also exist in video analysis. Consider a stacked video surveillance
matrix—obtained by stacking each video frame into a matrix column. Candès et al.
(2011) demonstrates that this matrix is approximately low-rank: the low-rank component
corresponding to the stationary background and the sparse component corresponding to
the moving objects. However, a critical but often neglected fact is that the low-rank
component is roughly column-wise smooth. In other words, each column of the low-rank
matrix is roughly the same—because they all represent the same background. In this case,
the original matrix is the superposition of a low-rank and smooth component and a sparse
component. How to effectively take advantage of both assumptions? This motivates our
study in this paper.

1.1 This paper

We propose the following model to build a bridge between the approximate low-rankness
and smoothness in high-dimensional matrix recovery problem,

Z “ Θ`E,
Θ “ PX0Q

J ` Y 0. (1)

Here Z P RMˆN is the observed matrix with unknown mean matrix Θ and noise E,
X0 P Rmˆn is an unknown low-rank matrix, Y 0 P RMˆN is an unknown sparse matrix,
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P P RMˆm and Q P RNˆn are respectively certain “row-smoother” and “column-smoother”
matrix that will be discussed in detail later. The target is to recover the unknown matrices
X0, Y 0 and the resulting Θ. We refer to model (1) as the Projected Robust Principal
Component Analysis (PRPCA) since the low-rank component in model (1) is projected
onto a constrained domain.

We study the following convex optimization problem to estimate the pair pX0,Y 0q and
account for the low-rankness of X0 and sparseness of Y 0 in PRPCA,

pxX, pY q P arg min
XPRnˆm

Y PRNˆM

1

2

›

›Z ´ PXQJ ´ Y
›

›

2

F
` λ1}X}˚ ` λ2}Y }vecp1q, (2)

where λ1 and λ0 are the regularization parameters, }¨}˚ is the nuclear norm (sum of singular
values) and } ¨ }vecp1q is the entrywise `1-norm.

With different pairs of pP ,Qq and sparsity assumption on Y 0, model (1) includes many
popular existing models. For example, when P “ IN and Q “ IM are identity matrices and
Y 0 is entrywise sparse, model (1) reduces to the classical RPCA and the convex optimization
problem (2) reduces to the noisy version of principal component pursuit (PCP, Candès et al.
2011). When P is a general matrix, Q is the identity matrix and Y 0 is columnwise sparse,
model (1) reduces to the robust reduced rank regression studied by She and Chen (2017).
Under such case, the } ¨ }vecp1q norm in (2) can be replaced by a mixed } ¨ }2,1 to account
for the columnwise sparsity of Y 0 and our analysis below can be rephrased easily. Here for
any matrix M , }M}2,1 “

ř

j }M¨,j}2.

As mentioned before, our study of PRPCA is motivated by taking advantage of both low-
rankness and smoothness features of image data. In this paper, we show that the recovery
accuracy of RPCA can be improved significantly when introducing the “row-smoother” and
“column-smoother” matrices P and Q. Beyond recovery accuracy, the PRPCA also brings
computational advantages compared to RPCA. Indeed, the computation of RPCA or other
low-rank matrix related problems usually involves iterations of singular value decomposition
(SVD), which could be a problematic bottleneck for large matrices (Hastie et al., 2015). For
smooth matrix recovery, the TV based approaches also pose great computational challenges.
On the contrary, when we are able to combine the low-rankness with smoothness, problem
(2) allows us to find a low-rank matrix of dimension nˆm, rather than the original matrix
with dimension N ˆM . As to be demonstrated in Section 2.1, the “smoother” matrices we
considered are mostly “tall and thin” matrices, i.e., N ě n and M ě m. That is to say,
we are allowed to find a much smaller low-rank matrix and thus the computational cost is
reduced. A real image data analysis in Section 7 shows that the computation of PRPCA
with n “ N{2 and m “ M{2 could be more than 10 times faster than RPCA while also
achieving better recovery accuracy.

More specifically, we in this paper study the theoretical properties of model (1) and the
convex optimization problem (2) with general matrices P and Q. Specifically, we provide
explicit theoretical error bounds for the estimation of the sparse component Y 0 and low-
rank component PX0Q

J with general noise matrix E. Our results include Hsu et al.
(2011) as a special case, where the statistical properties of classical RPCA is studied. The
key in our analysis of (2) is a careful construction of a dual certificate through a least-
squares method. In addition, a proximal gradient algorithm and its accelerated version are
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developed to implement (2). Furthermore, a comprehensive simulation study along with a
real image data analysis further demonstrate the superior performance of PRPCA in terms
of both recovery accuracy and computational advantage.

1.2 Notations and organizations

A variety of matrix and vector norms are used in this paper. For a vector v “ pv1, ...vpq
J,

}v}q “
ř

1ďjďpp}vj}
qq1{q is the `q norm, }v}0 is the `0 norm (number of nonzero entries).

For a matrix M “ tMi,j , 1 ď i ď n, 1 ď j ď mu, }M}vecpqq “
`
ř

i,j |Mi,j |
q
˘1{q

is the entry-
wise `q-norm. In particular, }M}vecp2q is the Frobenius norm and also denoted as }M}F ,

}M}vecp0q is the number of non-zero entries in M . Moreover, }M}q “ r
ř

i σ
q
i pMqs

1{q
is the

Schatten q-norm, where σipMq are the singular values. In particular, }M}1 is the nuclear
norm (sum of the singular values) and also denoted as }M}˚. Furthermore, }M}2,1 “
ř

j }M¨,j}2 is a mixed `2,1 norm. In addition, M i,¨ is the i-th row of M , M ¨,j is the j-
th column, vecpMq is the vectorization of M , σminpMq and σmaxpMq are the smallest
and largest singular values, respectively, M` is the Moore-Penrose inverse of M , M˚ “

MpMJMq´1MJ is the projection matrix (for full column rank matrix M). Finally, we
use In to denote an identity matrix of dimension n ˆ n, and b to denote the Kronecker
product.

The rest of the paper is organized as follows. Section 2.1 introduces the interpolation
matrices based PRPCA. In Section 3 we discuss the computation of (2) with proximal
gradient algorithm. Section 4 provides our main theoretical results for PRPCA. In Section
5 we generalize PRPCA to a noiseless setting. Section 6 includes a comprehensive simulation
study. In Section 7, we conduct two real data analysis: one image data and one surveillance
video data. Section 8 includes conclusions and future directions.

2. Projected Robust PCA with Smoothing Matrices

In this section, we consider two types of smoothing mechanisms on the low-rank matrix:
data-independent smoothing and data-dependent smoothing. Moreover, we provide general
assumptions of the “smoother matrices” P and Q that our analysis can be applied.

2.1 The data-independent smoothing and interpolation matrix

Definition 1 Let N be an even integer and n “ N{2 1 . We define the normalized
interpolation matrix JN of dimension N ˆ n as

JN “
1

2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 0 0 0 ¨ ¨ ¨ 0 0
2 0 0 0 ¨ ¨ ¨ 0 0
1 1 0 0 ¨ ¨ ¨ 0 0
0 2 0 0 ¨ ¨ ¨ 0 0
0 1 1 0 ¨ ¨ ¨ 0 0

¨ ¨ ¨

0 0 0 0 ¨ ¨ ¨ 0 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

P RNˆn, (3)

1. When N is odd, we can let n “ pN ` 1q{2 and a slightly different interpolation matrix can be defined in
a similar way.
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i.e., the j-th column of JN is

tJNu.,j “ p0, . . . , 0
loomoon

2pj´1q

,
1

2
, 1,

1

2
, 0, . . . , 0
loomoon

N´2j´1

qJ, j “ 2, ..., n´ 1,

tJNu.,1 “ p1, 1,
1
2 , 0, ..., 0q and tJNu.,n “ p0, ..., 0,

1
2 , 1q.

The interpolation matrices JN and JM play the role of “row smoother” and “column
smoother”, respectively. That is to say, when P “ JN , PU P RNˆM is a row-wisely smooth
matrix for any matrix U P RnˆM , i.e., except the first row (boundary effect), any odd row
of PU is the average of adjacent two rows,

pPUqi,¨ “
1

2
tpPUqi´1,¨ ` pPUqi`1,¨u , (4)

for row i “ 3, 5, . . . , N ´ 1, and for the boundary row,

pPUq1,¨ “ pPUq2,¨. (5)

Also, when Q “ JM , V JJM P RNˆM is a column-wisely smooth matrix for any matrix
V P RNˆm:

pV QJq¨,j “
1

2

 

pV QJq¨,j´1 ` pV QJq¨,j`1
(

,

for column j “ 3, 5, . . . ,M ´ 1, and for the boundary column,

pV QJq¨,1 “ pV QJq¨,2.

As a consequence, PX0Q
J in model (1) is a smooth matrix both row-wisely and column-

wisely.
We note that the interpolation matrix has also been used in other image analysis

literature. For example, when implementing RPCA, Hovhannisyan et al. (2019) used
interpolation matrix to build connections between the original “fine” model and a smaller
“coarse” model and reduce the computational burden of RPCA. Their work is mainly from
a computational perspective, but the principle behind is the same: by applying SVD in
models of lower-dimension, the computational burden can be significantly reduced.

Indeed, by introducing the smoothing matrices P and Q, the PRPCA enjoys
significant computational advantages compared to the standard RPCA. When P and Q are
interpolation matrices, we are allowed to find a low-rank matrix of dimension N{2ˆM{2,
rather than the original matrix with much higher-dimension N ˆ M . Considering that
computing a low-rank matrix usually involves SVD, the computational advantage that (2)
brings is even more significant. More aggressively, we may further interpolate the low-rank
matrix by using a double interpolation matrix

pP ,Qq “ pJN ˆ JN{2, JM ˆ JM{2q.

This would allow us to find a low-rank matrix of even lower dimension, N{4 ˆM{4, and
further reduce the computational burden.
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The smoothing mechanism here is data-independent in the sense that the odd row
(column) of the low-rank matrix is an equal-weight average of the adjacent two rows
(columns). Such mechanism can be modified to a data-dependent smoothing approach,
which will be introduced in the next subsection. On the other hand, we observe that the
data-independent averaging performs consistently well across a large range of image recovery
problems in our simulation and real data analysis. We refer to Sections 6 and 7 for more
details.

2.2 The data-dependent smoothing with robust linear regression

In this subsection, we introduce a data dependent smoothing mechanism based on robust
linear models. We start with introducing the data-dependent interpolation matrix.

Definition 2 Let N be an even integer and n “ N{2. Let wiur, w
i
lr, i “ 1, . . . , n ´ 1

represent the i-th unknown upper-row weight and lower-row weight, respectively. We define
the generalized interpolation matrix KN of dimension N ˆ n as

K “KN pW q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 ¨ ¨ ¨ 0 0
1 0 0 0 ¨ ¨ ¨ 0 0
w1
ur w1

lr 0 0 ¨ ¨ ¨ 0 0
0 1 0 0 ¨ ¨ ¨ 0 0
0 w2

ur w2
lr 0 ¨ ¨ ¨ 0 0

¨ ¨ ¨

0 0 0 0 ¨ ¨ ¨ 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

P RNˆn, (6)

i.e., the j-th column of KN is

tKNu.,j “ p0, . . . , 0
loomoon

2pj´1q

, wj´1l , 1, wju, 0, . . . , 0
loomoon

N´2j´1

qJ, j “ 2, ..., n´ 1,

tKNu.,1 “ p1, 1, w
1
u, 0, ..., 0q and tKNu.,n “ p0, ..., 0, w

n´1
lr , 1q.

The weights wiur, w
i
lr are unknown parameters and need to be estimated. Clearly, the

normalized interpolation matrices JN defined in the previous section is a special case of
KN with the weights wiur “ 0.5 and wilr “ 0.5. As in (4) and (5), when P “KN , PU is a
weighted smoothing matrix for any matrix U of dimension nˆM :

pPUqi1,¨ “ wiurpPUqi1´1,¨ ` w
i
lrpPUqi1`1,¨,

and for the boundary row,

pPUq1,¨ “ pPUq2,¨.

Similarly, we may define KM in the same way as KN , but with wiur, w
i
lr, i “ 1, . . . , n´ 1

replaced by wjlc, w
j
rc, j “ 1, . . . ,m´ 1, representing left-column and right-column weights.

Then, when Q “KM , V QJ P RNˆM is a column-wisely smooth matrix for any V P RNˆm.
Now we present the estimation procedure of wiur and wilr, or the row smoothing matrix

KN . We only present the estimation of KN as the column smoothing matrix KM , or wjlc,
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wjrc, can be estimated in the same way. Let ∆ “ PX0Q
J denote the unknown low-rank

and smooth matrix. Intuitively, if we treat the odd rows in ∆ as missing, then the values
of wiur and wilr can be viewed as the linear weights when inserting the odd rows based on
their neighborhood. Thus, it is ideal to estimate wiur and wilr based on ∆, in particular,
the pi1 ´ 1q-th, i1-th and pi1 ` 1q-th row of the matrix ∆, or ∆pi1´1q:pi1`1q,, with i1 “ 2i` 1.
However, as ∆ is unobserved, wiur and wilr are unable to be estimated directly from ∆.
While on the other hand, we note that ∆ “ Z ´Y ´E. Considering that 1) Y is a sparse
matrix and can be viewed as outliers from ∆, and 2) E is a noise matrix with small entry-
wise magnitude, we propose to estimate wiur and wilr based on the observable Z through
robust linear regression to account for the outliers Y . Specifically, we consider the following
minimization problem:

pŵiur, ŵ
i
lrq “ arg min

wi
ur,w

i
lr

M
ÿ

j“1

ρpwiurZi1´1,j ` w
i
lrZi1`1,j ´ Zi1,jq, i1 “ 2i` 1, i “ 1, . . . , n´ 1.

Here ρp¨q is certain robust loss function. For example, we may take ρp¨q as the Huber loss
(Huber, 1992), where

ρpxq “

#

x2, if |x| ď κ,

2κ|x| ´ κ2, if |x| ą κ.

The tuning parameter κ ą 0 is assumed to be given in our estimation of wiur and wilr. When
P “KN and Q “KM , we have the following property.

Proposition 3 Let P “KN P RNˆn and Q “KM P RMˆm be the matrices in Definition
2 with N ě 4, M ě 4 and any weights wiur, w

i
lr, w

j
lc and wjrc. Then for any nonzero matrix

X0 P Rnˆm,

}X0}˚ ă }PX0Q
J}˚. (7)

When Θ can be decomposed as in model (1), the RPCA is the optimization problem
(2) with the nuclear penalty on X replaced by that on PXQJ. Proposition 3 suggests that
smaller penalty is applied in (2) compared to that of RPCA with the same λ1.

2.3 PRPCA with general P and Q

Although our study of PRPCA is motivated by smooth matrix analysis and resulting
interpolation matrices, our results in fact work for general matrices P and Q.

Specifically, we proceed our analysis to consider P and Q of full-column rank. Indeed,
when the target is to recover PX0Q

J as a whole instead of X0, it is sufficient to consider
P and Q of full column rank. This can be seen from the following arguments. For any
P P RNˆn and Q P RMˆm, there exist r1 ď minpN,nq, r2 ď minpM,mq and full column
rank matrices P 0 P RNˆr1 , Q0 P RMˆr2 such that

P “ P 0Λ, Q “ Q0Ω
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hold for some Λ P Rr1ˆn and Ω P Rr2ˆm. As a result, an alternative representation of
model (1) with full column rank matrices P 0 and Q0 is

Z “ P 0pΛX0Ω
JqQJ0 ` Y 0 `E.

Here the columns of P 0 (or Q0) can be viewed as the “factors” of P (or Q). This confirms
the sufficiency of considering PRPCA with full-column rank matrices P and Q. In the
following sections, we derive properties of PRPCA with general P and Q of full-column
rank.

3. Computation with Proximal Gradient Algorithm

Given P and Q, the problem (2) is a convex optimization problem. In this section, we show
that it can be solved easily through a proximal gradient algorithm.

We first denote the loss and penalty function in problem (2) as

LpX,Y q “
1

2

›

›Z ´ PXQJ ´ Y
›

›

2

F
, (8)

and

PpX,Y q “ λ1}X}˚ ` λ2}Y }vecp1q, (9)

respectively. Also, note that if we let A “ QbP , the loss function (8) could be written as

LpX,Y q “
1

2
}AvecpXq ` vecpY q ´ vecpZq}22 . (10)

To minimize LpX,Y q ` PpX,Y q, we utilize a variant of Nesterov’s proximal-gradient
method (Nesterov, 2013), which iteratively updates

pxXk`1, pY k`1q Ð arg min
X,Y

ψpX,Y |xXk, pY kq, (11)

where

ψpX,Y |xXk, pY kq

“LpxXk, pY kq ` x∇XLpxXk, pY kq,X ´xXky ` x∇Y LpxXk, pY kq,Y ´ pY ky

`
Lk
2

´

}X ´xXk}
2
F ` }Y ´ pY k}

2
F

¯

` PpX,Y q,

Lk is the step size parameter at step k, ∇XLpxXk, pY kq and ∇Y LpxXk, pY kq are the gradients

∇XLpxXk, pY kq “ PJpPxXkQ
J ` pY k ´ZqQ,

∇Y LpxXk, pY kq “ PxXkQ
J ` pY k ´Z.

The proximal function ψpX,Y |xXk, pY kq is much easier to optimize compared to
LpX,Y q ` PpX,Y q. In fact, a closed-form expression is available for the updates.

xXk`1 “ SVT
ˆ

xXk ´
1

Lk
∇XLpxXk, pY kq;

λ1
Lk

˙

,
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pY k`1 “ ST
ˆ

pY k ´
1

Lk
∇Y LpxXk, pY kq;

λ2
Lk

˙

,

where SVT and ST are the Singular Value Thresholding and Soft Thresholding operators
with specifications below.

Given any non-negative number τ1 ě 0 and any matrix M1 P Rnˆm with singular
value decomposition M1 “ UΣV J, where Σ “ diagptσiu1ďiďrq, σi ě 0, the SVT operater
SVT p¨; ¨q, which was first introduced by Cai et al. (2010), is defined as

SVT pM1, τ1q “ arg min
XPRnˆm

1

2
}X ´M1}

2
F ` τ1}X}˚

“ UDτ1pΣqV J,

where Dτ1pΣq “ diagptσi ´ τ1u`q. For any τ2 ě 0 and any matrix M2 P RNˆM , the ST
operator ST p¨; ¨q is defined as

ST pM2; τ2q “ arg min
Y PRNˆM

1

2
}Y ´M2}

2
F ` τ2}Y }vecp1q

“ sgnpM2q ˝
`

|M2| ´ τ21N1JM
˘

`
.

We summarize the proximal gradient algorithm for PRPCA in Algorithm 1 below.

Algorithm 1: Proximal gradient for PRPCA

Given: Z P RNˆM , P P RNˆn, Q P RMˆm, λ1 and λ2

Initialization: xX0 “xX´1 “ 0nˆm, pY 0 “ pY ´1 “ 0NˆM

Iteration: GY
k “ PxXkQ

J ` pY k ´Z

GX
k “ PJGY

k Q

xXk`1 “ SVT
´

xXk ´ p1{L
kqGX

k ; p1{Lkqλ1

¯

,

pY k`1 “ ST
´

pY k ´ p1{L
kqGY

k ; p1{Lkqλ2

¯

,

Note: Lk can be taken as the reciprocal of a Lipschitz constant for ∇LpX,Y q or
determined by backtracking.

The proximal gradient algorithm for PRPCA iteratively implements SVT and ST.
Note that in the SVT step, the singular value decomposition is implemented on xXk ´

p1{Lkq∇XLpxXk, pY kq, which is of dimension n ˆ m. Compared to the RPCA problem
which requires singular value decomposition on matrices of much larger dimension N ˆM ,
the PRPCA greatly reduces the computational cost.
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Algorithm 2: Accelerated proximal gradient for PRPCA

Given: Z P RNˆM , P P RNˆn, Q P RMˆm, λ1 and λ2

Initialization: xX0 “xX´1 “ 0nˆm, pY 0 “ pY ´1 “ 0NˆM, t0 “ t1 “ 1

Iteration: FX
k “

xXk ` t
´1
k ptk´1 ´ 1qpxXk ´

xXk´1q

F Y
k “

pY k ` t
´1
k ptk´1 ´ 1qp pY k ´

pY k´1q

GY
k “ PxXkQ

J ` pY k ´Z

GX
k “ PJGY

k Q
xXk`1 “ SVT

`

FX
k ´ p1{L

kqGX
k ; p1{Lkqλ1

˘

,
pY k`1 “ ST

`

F Y
k ´ p1{L

kqGY
k ; p1{Lkqλ2

˘

,

tk`1 “ t1` p1` 4t2kq
1{2u{2

We shall note that the Algorithm 1 can be further accelerated in different ways. First,
our approach is an Iterative Shrinkage-Thresholding Algorithm (ISTA), and it can be
accelarated in a Fast ISTA (Beck and Teboulle, 2009, FISTA) style as in Algorithm 2.
For all the simulation studies and real image data analysis in Section 6 and 7, we adopt the
accelerated proximal gradient algorithm.

Second, we realize that various online versions of singular value decomposition are
available, and thus it would be interesting to incorporate some online SVD in each update
to further accelerate the computation of FISTA. As we discussed earlier, a problematic
bottleneck of many low-rank matrix related problem is the SVD computation. Our
algorithm allows us to implement SVD on a smaller matrix and reduce the computation
burden. To combine the online strategy into our algorithm, a key issue is how to process
the input matrix part-by-part. This would be an intersting direction for our future work.

4. Main Theoretical Results

In this section, we present our main theoretical results for recovering the PRPCA.
Specifically, we provide sharp theoretical error bounds for the estimation of the low-rank and
smooth component PX0Q

J and the sparse component Y 0 when P and Q are correctly
specified. Note that Hsu et al. (2011) studied the theoretical properties of RPCA, i.e.,
PRPCA with P “ IN and Q “ IM being identity matrices. Our results can be viewed as
a generalization of theirs.

4.1 Technique preparations

For a target decomposition of Θ “ PX0Q
J ` Y 0, we consider the following spaces and

projections related to X0 and Y 0. We start with considering the low-rank component X0.
Let T0 be the span of matrices with either the row space of X contained in that of X0 or

10
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the column space of Xx contained in that of X0:

T0 “T0pX0q

“

!

X1 `X2 :P Rnˆm : rangepX1q Ď rangepX0q,

rangepXJ
2 q Ď rangepXJ

0 q

)

. (12)

Let PT0 be the orthogonal projector to T0. Under the inner product xA,By “ trpAJBq,
the projection is given by

PT0pMq “ U0U
T
0 M `MV 0V

J
0 ´U0U

J
0 MV 0V

J
0 . (13)

where U0 P Rnˆr and V 0 P Rmˆr are the matrices of left and right orthogonal singular
vectors corresponding to the nonzero singular values of X0, and r is the rank of X0.

Furthermore, let T be the span of matrices taking the form of PXQJ, with either the
row space of X contained in that of X0, or the column space of X contained in that of X0:

T “ T pX0;P ,Qq

“

!

P pX1 `X2qQ
J :P RNˆM : rangepX1q Ď rangepX0q,

rangepXJ
2 q Ď rangepXJ

0 q

)

.

Apparently, T reduces to T0 when P and Q are identity matrices. We further define the
orthogonal projector onto T as PT :

PT pMq “ rU0
rU
T

0 M `M rV 0
rV
J

0 ´
rU0

rU
J

0 M
rV 0

rV
J

0 , (14)

where rU0 P RNˆr and rV 0 P RMˆr are the left singular matrices of PU0 and QV 0,
respectively. Given such projections, we introduce a property that measures the sparseness
of the singular vectors of PX0Q

J:

βpρq “ ρ´1} rU0
rU
J

0 }vecp8q ` ρ}
rV 0

rV
J

0 }vecp8q ` }
rU0}2Ñ8} rV 0}2Ñ8. (15)

We shall note that the projection (14) is equivalent to the following form:

PT pMq “ sU0
sU
T
0 M `M sV 0

sV
J

0 ´
sU0

sU
T
0 M

sV 0
sV
J

0 , (16)

where sU0 P RNˆr and sV 0 P RMˆr are, respectively, matrices of left and right orthogonal
singular vectors corresponding to ĂX0 “ PX0Q

J. In other words, (14) and (16) are
equivalent in the sense that

rU0
rU
J

0 “
sU0

sU
T
0 ,

rV 0
rV
J

0 “
sV 0

sV
T
0 . (17)

Note that rU0 and sU0 (or rV 0 and sV 0) are not necessarily the same to hold (17). Built on
sU0 and sV 0, βpρq could also be defined as

βpρq “ ρ´1} sU0
sU
J

0 }vecp8q ` ρ}
sV 0

sV
J

0 }vecp8q ` }
sU0}2Ñ8} sV 0}2Ñ8. (18)

11
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Here we note that } rU0}2Ñ8 “ } sU0}2Ñ8 and } rV 0}2Ñ8 “ } sV 0}2Ñ8 due to (17). We will
mainly use the definition (14) for the projection PT pMq in our following analysis as it
allows us to “separate” the construction of rU0 and rV 0 and brings us a lot of benefits when
we bound the estimation errors later.

Let PT Kp¨q and PT K0 p¨q be the projections to the orthogonal complement of T and T0
respectively, i.e., PT KpM 1q “ M 1 ´ PT pM 1q and PT K0 pM

2q “ M2 ´ PT0pM2q for any

matrix M 1 P RNˆM , M2 P Rnˆm. We define the following quantity to link the projections
PT Kp¨q and PT K0 p¨q,

η1 “max
!

η : η ą 0,

η}PT KpPXQJq}˚ ď }PT K0 pXq}˚, @X P Rnˆm
)

. (19)

The existence of η1 can be guaranteed through Proposition 4 below.

Proposition 4 Let PT p¨q and PT0p¨q be as in (14) and (13). Then, for any X P Rnˆm,

}PT K0 pXq}˚ “ 0 ñ }PT KpPXQJq}˚ “ 0.

Now we consider the sparse component Y 0. Define the space of matrices whose supports
are subsets of the supports of Y 0:

S “ SpY 0q :“ tY P RNˆM , supppY q Ď supppY 0qu.

Define the orthogonal projector to S as PS . Under the inner product xA,By “ trpAJBq,
this projection is given by

rPSpXqsi,j “
"

Xi,j , pi, jq P supppX0q,
0, otherwise,

(20)

for i “ 1, ¨ ¨ ¨ , N and j “ 1, ¨ ¨ ¨ ,M . Furthermore, for any matrix M , define a } ¨ }pÑq
transformation norm as

}M}pÑq “ maxt}Mν}q : ν P Rn, }ν}p ď 1u.

Then we define the following quantity that measures the sparseness of Y 0:

αpρq “ max
 

ρ}sgnpY 0q}1Ñ1, ρ
´1}sgnpY 0q}8Ñ8

(

, (21)

where tsgnpMqui,j “ sgnpM i,jq is the sign ofMi,j , and ρ ą 0 is a parameter to accommodate
disparity between the number of rows and columns with a natural choice of ρ being ρ “
a

M{N . As }M}1Ñ1 “ maxj }Mej}1 and }M}8Ñ8 “ maxi }M
Jei}1, }sgnpY 0q}1Ñ1 and

}sgnpY 0q}8Ñ8 respectively measures the maximum number of nonzero entries in any row
and any column of Y 0. This explains why αpρq is a quantity that measures the sparseness
of Y 0.

Now we introduce a quantity related to the projection PSp¨q in (20) and PSKp¨q,

η2 “max
!

η : η ą 0, η}P ˚Y Q˚}vecp1q

ď η}PSpY q}vecp1q ` }PSKpY q}vecp1q,@Y P RNˆM
)

. (22)

12
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The existence of η2 is obvious. By replacing the vecp1q-norm in (22) with the vecp2q-norm,
we could have an idea about the scale of η2. As P ˚ and Q˚ are projection matrices, we
have

}P ˚Y Q˚}vecp2q ď }Y }vecp2q ď }PSpY q}vecp2q ` }PSKpY q}vecp2q, @Y P RNˆM .

As a consequence,

1 ďmax
!

η : η ą 0, η}P ˚Y Q˚}vecp2q

ď η}PSpY q}vecp2q ` }PSKpY q}vecp2q,@Y P RNˆM
)

.

Although vecp1q-norm is used in (22), an η2 close to 1 can be expected for many combinations
of P ˚, Q˚ and PSp¨q.

4.2 Main results

Define the rank of X0 as r and the sparisty of Y 0 as s. To introduce our main results
on recovering PX0Q

J and Y 0, we need the following properties related to pU0,V 0q and
pP ,Qq,

Γ “
`

pPU0q
`
˘J

V J
0 Q

` ` pP`qJU0pQV 0q
`

´
`

pPU0q
`
˘J
pQV 0q

`,

γ1 “}Γ}vecp8q, γ2 “ }Γ}2Ñ2. (23)

The quantity Γ plays a key role in our analysis below. Note that when P and Q are identity
matrices, Γ “ U0V

J
0 and γ2 “ }U0V

J
0 }2Ñ2 “ 1.

Furthermore, define the following random error terms related to the noise matrix E
introduced in model (1).

ε2Ñ2 “ }E}2Ñ2,
ε8 “ }PT pEq}vecp8q ` }E}vecp8q,
ε18 “ }PT pP ˚EQ˚q}vecp8q ` }P

˚EQ˚}vecp8q,
ε˚ “ }PT pP ˚EQ˚q}˚, (24)

where for any matrix M , M˚ is the projection matrix onto the column space of M . When
M is of full-column rank, M˚ “MpMJMq´1MJ. Given these error terms, we suppose
that the penalty levels λ1 and λ2 satisfy the condition below for certain c ą 1 and ρ ą 0,

αpρqβpρq ă 1 (25)
„

σ´1maxpP qσ
´1
maxpQq ´

cγ1αpρq

1´ αpρqβpρq



λ1 (26)

ě c

ˆ

αpρq

1´ αpρqβpρq
λ2 `

αpρq

1´ αpρqβpρq
ε8 ` ε2Ñ2

˙

,

r1´ p1` cqαpρqβpρqsλ2 ě c pγ1λ1 ` p2´ αpρqβpρqqε8q , (27)

13
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We note that when P and Q are interpolation matrices with appropriate dimensions, e.g.,
N ě 20, M ě 20, we have σmaxpP q « σmaxpQq « 1.53, and σminpP q « σminpQq « 1.00.

Finally, we define δ1, δ2 and δ as functions of r, s, γ1, γ2, αpρq, βpρq, λ1, λ2 and the
error terms. These quantities will be used in Theorem 5 below.

δ1 “r
´ 2αpρq

1´ αpρqβpρq
pλ2 ` γ1λ1 ` ε8q ` 2ε2Ñ2 ` λ1γ2

¯

,

δ2 “
s

1´ αpρqβpρq
pλ2 ` λ1γ1 ` ε8q,

δ “pλ1γ2 ` ε2Ñ2qδ1 ` pλ2 ` ε8qδ2. (28)

Now we are ready to state our main results.

Theorem 5 Let r “ |rankpX0q| and s “ |supppY 0q|. Let error terms ε2Ñ2, ε8, ε18, ε˚ be
as in (24), γ1 and γ2 be as in (23) and δ be as in (28). Further let η1, η2 be as in (19), (22)
and η0 “ min pη2, η1σmaxpP qσmaxpQqq. Assume that P and Q are of full column rank.
Then, when (25) to (27) hold for some ρ ą 0 and c ą 1, we have

p1´ αpρqβpρqq}P ˚p pY ´ Y 0qQ
˚}vecp1q

ď rλ2p1´ 1{cqη0s
´1δ ` 5λ2s` 2sε8 ` 3sε18

`2σ´1minpP qσ
´1
minpQqλ1

?
sr, (29)

p1´ αpρqβpρqq} pY ´ Y 0}vecp1q

ď r2p1´ 1{cqλ2s
´1p1` η´10 qδ ` 5λ2s` 2sε8

`3sε18 ` 2σ´1minpP qσ
´1
minpQqλ1

?
sr, (30)

and

}P pxX ´X0qQ
J}˚

ď r2p1´ 1{cqλ1η1s
´1δ ` ε˚ ` 2σ´1minpP qσ

´1
minpQqλ1r

`
?

2r}P ˚p pY ´ Y 0qQ
˚}vecp2q. (31)

We note that the last term in the RHS of (31) can be easily bounded by
?

2r}P ˚p pY ´

Y 0qQ
˚}vecp1q and then (29) can be applied. To understand the derived bounds in Theorem

5, we first recall that the matrices P and Q are of full column rank. When σminpP q —
σmaxpP q — σminpQq — σmaxpQq — Op1q as of interpolation matrices, γ1αpρq — γ2 — Op1q,
and the penalty levels λ1 and λ2 are of order

λ1 “O
´

rαpρqε8s _ ε2Ñ2

¯

,

λ2 “Opr1{αpρqsλ1q, (32)

the conditions (26) and (27) could be satisfied. As a consequence, the error bounds in
Theorem 5 are of order

} pY ´ Y 0}vecp1q —}P
˚p pY ´ Y 0qQ

˚}vecp1q

“O
´

rαpρq
 

rαpρqpε8 _ ε
1
8qs _ ε2Ñ2

(

¯

, (33)
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and

}P pxX ´X0qQ
J}vecp1q

“O
´

r3{2αpρq
 

rαpρqpε8 _ ε
1
8qs _ ε2Ñ2

(

` ε˚

¯

. (34)

Hsu et al. (2011) derived the upper bounds for } pY ´ Y 0}vecp1q and }xX ´ X0}˚ under

the classical RPCA setup, i.e., pP ,Qq “ pIN , IM q. They imposed the constraint } pY ´

Z}vecp8q ď b in the optimization for some b ě }Y 0 ´ Z}vecp8q, while also allowing b to go
to infinity. We note that the error bounds in (33) and (34) are of the same order as their
results when no knowledge of b is imposed, i.e., b “ 8. In fact, Theorem 5 can be viewed
as a generalization of Hsu et al. (2011) for arbitrary full column rank matrices P and Q.

We still need to understand the random error terms in the bound. When the noise
matrix E has i.i.d. Gaussian entries, Ei,j „ N p0, σ2q, by Davidson and Szarek (2001), we
have the following probabilistic upper bound,

}E}2Ñ2 ď σ
?
N ` σ

?
M `Opσq,

}P ˚EQ˚}2Ñ2 ď σ
?
N ` σ

?
M `Opσq.

In addition, for the terms with vecp8q-norm, we have the following inequalities hold with
high probability

}E}vecp8q ď Opσ logpMNqq,
}PT pEq}vecp8q ď Opσ logpMNqq,
}P ˚EQ˚}vecp8q ď Opσ logpMNqq,

}PT pP ˚EQ˚q}vecp8q ď Opσ logpMNqq.

Finally, for the nuclear-normed error term,

}PT pP ˚EQ˚q}˚ ď 2r}P ˚EQ˚}2Ñ2 ď 2rσ
?
N ` 2rσ

?
M `Oprσq

holds with high probability, where the first inequality holds by Lemma 14 in the
supplementary material. We summarize above analyses into the following Corollary.

Corollary 6 Let r “ |rankpX0q| and s “ |supppY 0q|. Assume that the noise matrix E has
i.i.d. Gaussian entries. Assume that P and Q are of full column rank with singular values
σminpP q — σmaxpP q — σminpQq — σmaxpQq — Op1q. Assume that infρą0 αpρqβpρq ă 1. Let
γ1 and γ2 defined as in (23). When γ1αpρq — γ2 — Op1q and

λ1 — O
´

rαpρq logpMNqs _ r
?
N `

?
M s

¯

,

λ2 — O pr1{αpρqsλ1q ,

we have

} pY ´ Y 0}vecp1q —}P
˚p pY ´ Y 0qQ

˚}vecp1q

“O
´

rαpρq
 

rαpρq logpMNqs _ r
?
N `

?
M s

(

¯

,

}P pxX ´X0qQ
J}˚ “O

´

r3{2αpρq
 

rαpρq logpMNqs _ r
?
N `

?
M s

(

¯

.
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We note that such an order of estimation error matches that in Hsu et al. (2011), but,
significant computational benefits could be gained through imposing the smoothing matrices
P and Q. Moreover, the bound on }P pxX ´X0qQ

J}˚ can be improved if prior knowledge
is known on the upper bound of }Y 0}8.

4.3 Outline of proof

The key to prove Theorem 5 is the following two theorems. In Theorem 7, we provide a
transfer property between the two projections PT Kp¨q and PT K0 p¨q through Γ. Building on

the transfer property, we in Theorem 8 construct a dual certificate pDS ,DT q such that (1)
DS `DT `E is a subgradient of λ2}Y }vecp1q at Y “ Y 0, and (2) PJpDS `DT `EqQ is
a subgradient of λ1}X}˚ at X “X0.

Theorem 7 (Transfer Property) Suppose P and Q are of full column rank. Let Γ be
as in (23). Let D P RNˆM be any matrix satisfying

PT pDq “ Γ.

Then, P TDQ is a sub-gradient of }X}˚ at X0, in other words,

PT0pPJDQq “ U0V
J
0 .

Theorem 8 (Dual Certificate) Let r “ rankpX0q, s “ }Y }0 and ρ ą 0. Let error terms
ε2Ñ2, ε8, ε18, ε˚ be as in (24) and η1, η2 be as in (19), (22), respectively. Assume that
infρą0 αpρqβpρq ă 1 and the penalty level λ1 and λ2 satisfy (26) and (27) for some c ą 1.
Suppose P and Q are of full column rank. Then, the following quantity DS and DT are
well defined,

DS “ pI ´ PS ˝ PT q´1 pλ2sgnpY 0q ´ λ1PSpΓq ´ pPS ˝ PT KqpEqq ,
DT “ pI ´ PT ˝ PSq´1

`

λ1Γ´ λ2PT
`

sgnpY 0q
˘

´ pPT ˝ PSKqpEq
˘

.

They satisfy

PSpDS `DT `Eq “ λ2sgnpY 0q,
PT pDS `DT `Eq “ λ1Γ,
PT0

`

PJpDS `DT `EqQ
˘

“ λ1U0V
J
0 , (35)

and

}PSKpDS `DT `Eq}vecp8q ď λ2{c,

}PT K0
`

PJpDS `DT `EqQ
˘

}2Ñ2 ď λ1{c. (36)
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Moreover,

}DS}2Ñ2 ď
αpρq

1´ αpρqβpρq
pλ2 ` γ1λ1 ` ε8q,

}DT }vecp8q ď
1

1´ αpρqβpρq
pγ1λ1 ` λ2αpρqβpρq ` ε8q ,

}DT }˚ ď r

ˆ

2αpρq

1´ αpρqβpρq
pλ2 ` γ1λ1 ` ε8q ` 2ε2Ñ2 ` λ1γ2

˙

,

}DS}vecp1q ď
s

1´ αpρqβpρq
pλ2 ` λ1γ1 ` ε8q,

}DT `DS}
2
2 ď pλ2 ` ε8q}DS}vecp1q ` pλ1γ2 ` ε2Ñ2q}DT }˚. (37)

5. The Noiseless Case

Although this paper focuses on noisy imaging recovery problems, our study could also be
extended to the noiseless case. When the noise term E “ 0, model (1) reduces to

Z “ PX0Q
J ` Y 0. (38)

We consider the following optimization problem to solve (38)

min
XPRnˆm,Y PRNˆM

}X}˚ ` µ}Y }vecp1q

s.t. PXQJ ` Y “ Z. (39)

Here the parameter µ could be viewed as the ratio of regularization parameters in problem
(2), i.e., µ “ λ2{λ1. The problem (39) could be solved by a similar proximal gradient as in
Section 3. We omit the details of computation but rather focus on the theoretical analysis.

Let γ1 and γ2 be defined as in (23) and error quantities ε2Ñ2 and ε8 “ 0 be as in (24).
Under such noiseless case, we have ε2Ñ2 “ ε8 “ 0. As a consequence, the regularization
condition (25) to (27) reduce to the following form:

inf
ρą0

αpρqβpρq ă 1, (40)

cγ1
1´ p1` cqαpρqβpρq

ď µ ď
σ´1maxpP qσ

´1
maxpQq

c ¨ αpρq
´ γ1, (41)

where as before, c ą 1 and ρ ą 0 are certain constants. Building on this regularization
requirement, we have the following exact recovery performance of PRPCA.

Theorem 9 Suppose the noiseless model (38) holds for certain X0, Y 0 and full column
rank matrices P and Q. Assume the condition (40) and (41) hold for certain c ą 1 and

ρ ą 0. Then, the solution pxX, pY q to the problem (39) exactly recovers pX0,Y 0q:

xX “X0, pY “ Y 0.

The exact recovery performance of standard RPCA has been showed in many existing
literature, e.g., Candès et al. (2011); Hsu et al. (2011). We provide here in Theorem
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9 a generalization of such results by allowing general full-column rank matrices P and
Q. As discussed earlier, when σminpP q — σmaxpP q — σminpQq — σmaxpQq — Op1q as of
interpolation matrices and γ1αpρq — γ2 — Op1q, we have

µ “ λ2{λ1 “ Op1{αpρqq. (42)

Theorem 9 suggests that when infρą0 αpρqβpρq ă 1 and µ “ Op1{αpρqq, X0 and Y 0

could be exactly recovered. To further understand the condition infρą0 αpρqβpρq ă 1,
we consider the case of recovering a square matrix, i.e., M “ N . Under such case, αp1q
measures the maximum column-wise and row-wise sparsity of Y 0, i.e., the maximum number
of nonzero entries in any row or column. We denote such sparsity as s0. While for βpρq,
if the entries of rU0 and rV 0 are bounded by

a

c{M for certain c ě 1, then βp1q ď 3cr{M .
Therefore, to guarantee the condition infρą0 αpρqβpρq ă 1, a sufficient requirement is
αp1qβp1q ď 3crs0{M ă 1. In other words, the maximum row/column-wise sparsity s0
is allowed to be upper bounded by OpM{rq. Note that when s0 is of order OpM{rq, the
total number of nonzero entries s of the sparse component could be as large as OpMN{rq.
That is to say, PRPCA works even for the case that the sparse and smooth component has
OpMN{rq nonzero entries.

6. Simulation Studies

In this section, we conduct a comprehensive simulation study to demonstrate the
performance of PRPCA. Without loss of generality, all the simulations are for square matrix
recovery, i.e., M “ N .

We consider the model

Z “ P 0X0Q
J
0 ` Y 0 `E (43)

under two cases

(Case 1) P 0 and Q0 are the interpolation matrices, i.e., P 0 “ Q0 “ JN

(Case 2) P 0 and Q0 are the generalized interpolation matrices in (6) with all the i.i.d weights
wiur, w

i
lr generated from N p0.5, 0.22q.

We study the the following optimization problem

pxX, pY q P arg min
XPRnpP qˆmpQq

Y PRNˆM

1

2

›

›Z ´ PXQJ ´ Y
›

›

2

F
` λ1}X}˚ ` λ2}Y }vecp1q, (44)

with four sets of pP ,Qq, where npP q and mpQq refers to the number of columns of P and
Q, respectively.

• The standard RPCA, with both P and Q being identity matrices, is denoted as “no
interpolation”. With such P and Q, apparently there exists X such that PXQJ “
P 0X0Q

J
0 under both cases. In other words, the optimization problem (44) is correctly

specified under both cases.
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• Both P and Q are interpolation matrices, i.e., P “ Q “ JN , denoted as “single
interpolation”. With such P and Q, the optimization problem (44) is correctly
specified under Case 1, while mis-specified under Case 2.

• Both P and Q are estimated based on robust linear regression (LR) with Huber Loss
described in Section 2.2, denoted as “LR interpolation”. With such P and Q, the
optimization problem (44) is mis-specified under both cases as the estimated pP and
pQ may not recover P 0 and Q0 exactly with probability goes to 1.

• Both P and Q are double interpolation matrices, i.e., P “ Q “ JN ˆ JN{2, denoted
as “double interpolation”. With such P and Q, the optimization problem (44) is
mis-specified under both cases.

Under both cases, we generate each entry of the noise term E from an i.i.d N p0, σ2q
distribution. The low-rank matrix X0 is generated as X0 “ U0V

J
0 , where both U0 and

V 0 are N ˆ r matrices with i.i.d. N p0, σ20q entries. Each entry of the sparse component Y 0

is i.i.d. generated, being 0 with probability 1´ρs, and uniformly distributed in r´5, 5s with
probability 1´ ρs. The simulation is run over a grid of values for the matrix dimension N ,
noise level σ and sparsity level ρs.

• σ “ 0.2, 0.4, 0.6, 0.8, 1

• ρs “ 0.05, 0.1, 0.15, 0.2, 0.25

• N “ 60, 100, 200, 300, 400

The other parameters are fixed at r “ 10 and σ0 “ 0.6 if not otherwise specified. For all
four sets of pP ,Qq, we use the same penalty level with λ1 “

?
2Nσ and λ1 “

?
2σ. This

penalty level is commonly used in RPCA with noise, for example, in Zhou et al. (2010).
When P and Q are single or double interpolation matrices, other carefully tuned penalty
levels may further increase the estimation accuracy. In other words, this penalty level setup
may not favor the PRPCA with interpolation matrices. But it allows us to better tell the
effects of pP ,Qq on the matrix recovery accuracy.

We report the root mean square errors (RMSE) of recovering P 0X0Q
J
0 , Y 0 and Θ with

different choices of pP ,Qq:

RMSEpPXQJq “

›

›

›
PxXQJ ´ P 0X0Q

J
0

›

›

›

F?
N ˚M

,

RMSEpY q “
} pY ´ Y 0}F
?
N ˚M

,

RMSEpΘq “
} pΘ´Θ}F
?
N ˚M

.

Finally, we report the required computation time (in seconds; all calculations were
performed on a 2018 MacBook Pro laptop with 2.3 GHz Quad-Core Processor and 16GB
Memory).

19



Feng and Wang

6.1 Case 1 study: effect of noise level σ

Figure 1 below reports the performance of PRPCA and RPCA over different noise levels
under Case 1, with σ0 “ σ and fixed ρs “ 0.1, N “M “ 200 and r “ 10.

We first observe that the PRPCA with both single interpolation and LR interpolation
demonstrate clear advantages in recovering all three targets: P 0X0Q

J
0 , Y 0 and Θ.

Particularly, PRPCA with single interpolation performs the best across the whole range
of σ. While for the LR interpolation based PRPCA, we need to estimate the weights in
the interpolation matrix first and then recover xX and pY . It still outperforms RPCA in
recovering Θ across the whole range of σ, and in recovering PXQJ and Y with relatively
large σ (σ ě 0.6). In terms of PRPCA with the mis-specified double interpolation matrix,
its overall performance is not as good as the RPCA. But note that when the noise level is
small, it achieves similar recovery accuracy in recovering Y 0 and Θ compared to RPCA.

Regarding the computation time, it is clear that imposing interpolation matrices
expedites the computation and such improvement is significant.
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Figure 1: RMSE and running time with different pP ,Qq ranges over different σ under Case
1. ρs “ 0.1, N “ M “ 200, r “ 10. Here: ˝ refers to no interpolation, ´4´
refers to single interpolation, ´ ˆ ´ refers to LR interpolation, ´ ` ´ refers to
double interpolation. The running times are in seconds.
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6.2 Case 1 study: effect of sparsity level ρs

Figure 2 reports the performance of PRPCA and RPCA over different ρs, the sparsity level
of Y 0, under Case 1, with fixed σ “ 0.6, N “M “ 200 and r “ 10.

It is clear that both the single interpolation and LR interpolation based PRPCA
demonstrate clear advantages in recovering P 0X0Q

J
0 , Y 0 and Θ. Indeed, both of them

outperforms RPCA across the whole range of ρs in estimating all three targets. Moreover,
the PRPCA with mis-specified double interpolation also achieves smaller RMSE compared
to RPCA in recovering Θ when ρs is relatively large, e.g., ρs ě 0.15. One possible
explanation for such phenomena is that when ρs goes up, the mis-modeled entries in PXQJ

are more likely to be modeled by the sparse component Y , thus further leveling up the
performance of PRPCA. For the computation time, we also see a significant speed-up when
interpolation matrices are imposed.
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Figure 2: RMSE and running time with different pP ,Qq ranges over different ρs under
Case 1. The sparsity of Y 0. σ “ 0.6, N “ M “ 200, r “ 10. Here: ´ ˝ ´ refers
to no interpolation, ´4´ refers to single interpolation, ´ ` ´ refers to double
interpolation, ´ˆ´ refers to LR interpolation. The running times are in seconds.
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6.3 Case 1 study: effect of matrix dimension N

Figure 3 reports the performance of PRPCA and RPCA over different matrix dimension N
under Case 1. The noise level and sparsity level of Y 0 are fixed at σ “ 0.6 and ρs “ 0.05.

We again see that the advantage of PRPCA with single and LR interpolation in
recovering P 0X0Q

J
0 , Y 0 and Θ across all the values of N . In addition, the PRPCA with

double interpolation also outperforms RPCA in recovering Y 0 and Θ when the matrix is
of high dimension, e.g., N ě 200. In terms of computation, the running time of RPCA
increases almost exponentially as N increase. The computational benefits of applying
PRPCA are even more significant for high-dimensional matrix problems.

Under Case 1, the PRPCA with single interpolation is expected to outperform LR
interpolation as the P and Q are correctly specified. We now consider Case 2, under which
the P 0 and Q0 are generated with noise. This allows us to test the performance of PRPCA
when P and Q are not perfectly specified.
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Figure 3: RMSE and running time with different pP ,Qq ranges over different N and r.
σ “ 0.6, ρs “ 0.1, M “ N . In the first four plots, r is fixed at 10, while in the
second four plots, r “ 0.05N . Here: ˝ refers to no interpolation, ´4´ refers
to single interpolation, ´ˆ´ refers to LR interpolation, ´`´ refers to double
interpolation. The running times are in seconds.
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6.4 Case 2 study: effect of mis-specified P 0 and Q0 across N

Figure 4 reports the performance of PRPCA and RPCA when P 0 and Q0 are generated
with noise across N . The noise level and sparsity level of Y 0 are fixed at σ “ 0.2 and
ρs “ 0.05.

Under Case 2, we observe that the performance of PRPCA with LR interpolation
demonstrate clear advantages over other approaches. Such advantage is resulted from the
fact that the LR interpolation is data-dependent and able to achieve a better estimation of
pP 0,Q0q. While for the PRPCA with single and double interpolation matrices, they use a
mis-specified pP ,Qq but still demonstrate robust performances, especially for recovering Θ.
Indeed, although the PRPCA with mis-specified smoothing mechanism may not perform as
good as RPCA in recovering PXQJ and Y , but they in general achieve an better accuracy
in recovering Θ. An explanation for such phenomena is that the PRPCA could decompose
Θ differently with the sparse component accounting for more signals. As a consequence,
the target Θ can be recovered well even with mis-specified smoothing matrices. In terms
of computation, we see a similar pattern as before: imposing the interpolation matrices is
able to expedite computation significantly.
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Figure 4: RMSE and running time with different pP ,Qq ranges over different N and r.
σ “ 0.6, ρs “ 0.05, M “ N , r “ 10. Here: ˝ refers to no interpolation, ´4´
refers to single interpolation, ´ ˆ ´ refers to LR interpolation, ´ ` ´ refers to
double interpolation. The running times are in seconds.
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After all, we conclude that the PRPCA with interpolation matrices performs consistently
well across a large range of noise levels, matrix dimensions, sparsities of Y 0. Moreover,
even with mis-specified smoothing matrices, the PRPCA is still able to produce robust
estimation, especially for recovering the mean matrix Θ.

7. Real Data Analysis

In this section, we conduct two real data analyses: 1) the image of Lenna, a benchmark in
image data analysis, and 2) a surveillance video, to demonstrate the advantage of PRPCA
with interpolation matrices over the RPCA.

7.1 The Lenna image analysis

We consider the gradyscale Lenna image, which is of dimension 512ˆ512 and can be found
at https://www.ece.rice.edu/ wakin/images/. The image is displayed in Figure 5 (left).

Figure 5: The Lenna image with different noise levels, σ “ 0.05 (left), σ “ 0.15 (middle),
σ “ 0.25 (right).

We re-scale the Lenna image such that each pixel of the image ranges from 0 to 1, with
0 representing pure black and 1 representing pure white. Our target is to recover the Lenna
image from its noisy version with different noise levels. That is, we observe

Z “ Θ`E,

where Θ is the true Lenna image and E is the noise term with i.i.d entries generated
from N p0, σ2q. We consider the noise levels ranging from 0.05 to 0.25. Specifically, we
let σ “ 0.05, 0.1, 0.15, 0.2, 0.25. Figure 5 below plots the Lenna image with different noise
levels.

As in the simulation study, we recover the image with three sets of pP ,Qq: 1) identity
matrices 2) single interpolation matrices 3) LR interpolation and 4) double interpolation
matrices.
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The penalty levels are still fixed at λ1 “
?

2Nσ and λ1 “
?

2σ for all three sets of pP ,Qq.
As the true low-rank component PX0Q

J and sparse component Y 0 are not available in
the real image analysis, we only measure the RMSE of Θ and the computation time. We
generate 100 independent noise terms E and report the mean running time and RMSE in
Figure 7. In addition, we plot the recovered Lenna image with different noise levels in one
implementation in Figure 6.

Figure 6: Recovered Lenna image with no interpolation (first column), single interpolation
(second column), double interpolation (third column), LR interpolation (last
column) when, σ “ 0.05 (the first row), σ “ 0.15 (the middle row), σ “ 0.25
(the last row).

From Figure 7 and Figure 6, it is clear that the three PRPCA approaches outperform the
RPCA significantly in terms of both image recovery accuracy and computation time across
the whole range of σ. Recall that the Lenna image is of dimension 512ˆ 512. Under such
dimension, the computational benefits of PRPCA are even more significant. The PRPCA
with single or LR interpolation is on average 10 times faster than RPCA, while PRPCA
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Figure 7: The RMSE of Θ and running time of the Lenna image analysis with different

pP ,Qq and different σ. Here: ˝ refers to no interpolation, ´4´ refers to
single interpolation, ´ ˆ ´ refers to LR interpolation, ´ ` ´ refers to double
interpolation. The running times are in seconds.

with double interpolation is at least 30 times faster than RPCA. In extreme cases, when
the noise level is low, e.g., σ “ 0.05, the average running time of PRPCA with double
interpolation is 3.6 seconds. While RPCA requires 311.7 second, more than 86 times of
that of PRPCA.

In terms of recovery accuracy, we see that the PRPCA with double interpolation even
outperforms PRPCA with single or LR interpolation across the whole range of σ. In the
simulation study, we conclude that when the target matrix is of large dimension and the
sparsity of Y 0, ρs, is high, the PRPCA with double or even more interpolation matrices
would work well in terms of mean matrix Θ recovery. The Lenna image can be viewed as
such kind, with resolution 512ˆ 512 and although unknown, but potentially large ρs. Thus
it is not surprised to see the outstanding performance of double interpolated PRPCA for
the Lenna image analysis.

On the other hand, we note that for the Lenna image analysis, the single interpolated
PRPCA demonstrates clear advantages not only compared to the classical RPCA, but also
compared to the more adaptive PRPCA with LR interpolation. In other words, although the
single interpolation matrix is not data-dependent, a simple equal-weight average smoothing
mechanism could benefit many image problems tremendously.

7.2 The surveillance video analysis

In this subsection, we consider the problem of recovering a surveillance video from the
CAVIAR project: https://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/. In this project, a
number of video clips were recorded for different scenarios. In our study, we consider the
scenario with one person walking on straight line.
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The video is half-resolution PAL standard (288*384 pixels, 25 frames per second), with
a total of 611 frames. From computational perspectives, we first resize each frame of video
into 56ˆ 80 p“ 4480q pixels and then keep the last 411 frames. We stack each frame into a
matrix column and obtain a large matrix of dimension 4480ˆ 411. Denote the large matrix
as Θ.

As in the Lenna image analysis, we consider recovering Θ from noisy observations Z “

Θ ` E, with E „ N p0, σ2q and the same set of σ: σ “ 0.05, 0.1, 0.15, 0.2, 0.25. Such
setting refers to the case that each frame is compromised with independent white noise. We
implement PRPCA with the same sets of pP ,Qq as in the previous subsection. The RMSE
and running time for the surveillance video analysis are plotted in Figure 8 below. Note
that we omit the running time for “no interpolation” as its running time is of difference
scale compared to the others (5 times more than that of single interpolation).
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Figure 8: The RMSE of Θ and running time of the surveillance video analysis with different
pP ,Qq and different σ. Here: ˝ refers to no interpolation, ´4´ refers to
single interpolation, ´ ˆ ´ refers to LR interpolation, ´ ` ´ refers to double
interpolation. We omit the running time for “no interpolation” as its running
time is of difference scale compared with others (5 times more than that of single
interpolation). The running times are in seconds.

In Figure 8, we see a similar pattern as in the Lenna image analysis: all three
PRPCA approaches outperform the RPCA in terms of both image recovery accuracy and
computation time across different noise levels. Within three PRPCA approaches, the LR
interpolation shows more advantages when the noise is small. It is because under such
cases we could produce a more accurate estimates for the LR weights. While on the other
hand, the double interpolation performs better when the noise is large. It is more beneficial
to impose the smoothness structure and allow the neighborhood pixels to learn from each
other when the noise is large.
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After all, the surveillance video and Lenna image analysis further validate the advantages
of PRPCA over RPCA for smooth image and video recovery. Especially when image/video
is of high resolution and complex (large latent ρs or noise level σ), the advantages of PRPCA
could be more significant. Such advantages are reflected not only in computation, but also
in recovery accuracy.

8. Conclusions and Future Work

In this paper, we develop a novel framework of projected RPCA motivated by smooth image
recovery. This framework is general in the sense that it includes not only the classical RPCA
as a special case, but also works for multivariate reduced rank regression with outliers.
Theoretically, we derive explicit error bounds on the estimation of PX0Q

J and Y 0. Our
bounds match the optimum bounds in RPCA. In addition, by bringing the interpolation
matrices into PRPCA model, we could not only significantly speed up the computation of
the RPCA, but also improve matrix accuracy, which was demonstrated by a comprehensive
simulation study and a real image data analysis. Due to the prevalence of low-rank and
smooth images and (stacked) videos, this paper would greatly advance future research on
many computer vision problems and demonstrate the potential of statistical methods on
computer vision study.

We conclude with the discussion of future works. The first direction is to explore the
performance of PRPCA in a missing entry scenario. That is, when the entries of Z are
observed with both missingness and noise, how would the PRPCA perform in terms of
matrix recovery accuracy compared to RPCA? Consider an image inpainting problem, where
images are observed with missing pixels. Intuitively, it would be more beneficial if we
could borrow information from the observed pixels for its neighbor missing entries. In
other words, the interpolation matrices could play an even more significant role in image
inpainting problems. Empirically, it is interesting to discover how different missing patterns
and missing rates would affect the performance of PRPCA. Theoretically, it would also be
significant to derive the error bounds under missing entry scenarios. Such derivation may be
more challenging as the dual certificate we construct in Theorem 8 may not be generalized
directly.

Second, note that our study is restricted to the matrix version. Indeed, considering the
fact the tensor data would usually be of even higher dimension, it would be interesting to
generalize PRPCA to the tensor case. However, a tensor version RPCA or PRPCA is far
more than simple generalizations of their matrix version. In particular, the low-rankness of a
tensor is a much more complicated property compared to its matrix counterpart. Indeed, the
tensor rank is defined differently under different tensor decompositions, such as Canonical
Polyadic (CP) decomposition or Tucker decomposition. In a rather recent work, Cai et al.
(2021) considered a tensor recovery problem when the input tensor can be decomposed as
a sparse component plus a (Tucker) low-rank component, without considering the potential
smoothness in image recovery. Moreover, they proposed a Riemannian gradient descent
algorithm to solve such a tensor decomposition problem. For tensor PRPCA, how to
appropriately incorporate the smooth property into tensors would be our great interest
in the future work.
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Appendix A.

In the appendix, we provide proofs in the following order: Proposition 3, Proposition 4,
Theorem 7, Theorem 8, Theorem 5.

Proof of Proposition 3. We first show that the smallest singular value of interpolation
matrices σminpP q is greater than 1. This is because for any u P Rn,

}Pu}22 “
N
ÿ

j“1

pP j,¨uq
2 ą

ÿ

1ďjďN & j is even

pP j,¨uq
2 “

n
ÿ

j“1

u2
j “ }u}

2
2.
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Similarly we have σminpQq ą 1. Then it follows that

}PX}˚ ě
r
ÿ

i“1

σipXqσminpP q ą }X}˚

where r is the rank of X. Furthermore,

}PXQJ}˚ ě
r
ÿ

i“1

σipPXqσminpQq ą }PX}˚ ą }X}˚.

This completes the proof.

Proof of Proposition 4. When }PT K0 pXq}˚ “ 0, we have X “ PT0pXq, in other words,

X P T0. Thus X can be written as X “ U0X
J
1 `X2V

J
0 for certain matrices X1 P Rmˆr

and X2 P Rnˆr. It then follows that

PT pPXQJq

“PT pPU0X
J
1 Q

J ` PX2V
J
0 Q

Jq

“ rU0
rU
T

0 PU0X
J
1 Q

J ` rU0
rU
T

0 PX2V
J
0 Q

J

` PU0X
J
1 Q

J
rV 0

rV
J

0 ` PX2V
J
0 Q

J
rV 0

rV
J

0

´ rU0
rU
T

0 PU0X
J
1 Q

J
rV 0

rV
J

0 `
rU0

rU
T

0 PX2V
J
0 Q

J
rV 0

rV
J

0

“PU0X
J
1 Q

J ` rU0
rU
T

0 PX2V
J
0 Q

J

` PU0X
J
1 Q

J
rV 0

rV
J

0 ` PX2V
J
0 Q

J

´ PU0X
J
1 Q

J
rV 0

rV
J

0 `
rU0

rU
T

0 PX2V
J
0 Q

J

“PU0X
J
1 Q

J ` PX2V
J
0 Q

J

“PXQJ (45)

Therefore, PT KpPXQJq “ 0. This completes the proof.

Proof of Theorem 7. The condition

PT pDq “ Γ

suggests that

rU0
rU
T

0 D `D rV 0
rV
J

0 ´
rU0

rU
J

0 D
rV 0

rV
J

0 “ Γ. (46)

Left-multiply U0U
J
0 P

J and right-multiply Q on both sides of (46), we get

U0U
J
0 P

J
´

rU0
rU
T

0 D `D rV 0
rV
J

0 ´
rU0

rU
J

0 D
rV 0

rV
J

0

¯

Q “ U0U
J
0 P

JΓQ. (47)
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For the LHS of (47),

U0U
J
0 P

J
´

rU0
rU
T

0 D `D rV 0
rV
J

0 ´
rU0

rU
J

0 D
rV 0

rV
J

0

¯

Q

“

´

U0U
J
0 P

JD `U0U0P
JD rV 0

rV
J

0 ´U0U0P
JD rV 0

rV
J

0

¯

Q

“U0U
J
0 P

JDQ, (48)

For the RHS of (47),

U0U
J
0 P

JΓQ

“U0U
J
0 P

J
`

pPU0q
`
˘J

V J
0 Q

`Q`U0U
J
0 P

JpP`qJU0pQV 0q
`Q

´U0U
J
0 P

J
`

pPU0q
`
˘J
pQV 0q

`Q

“U0V
J
0 `U0pQV 0q

`Q´U0pQV 0q
`Q

“U0V
J
0 . (49)

Plug (48) and (49) into (47), we have

U0U
J
0 P

JDQ “ U0V
J
0 . (50)

Similarly, left-multiply PJ and right-multiply QV 0V
J
0 on both sides of (46), we get

PJDQV 0V
J
0 “ U0V

J
0 . (51)

Finally, left-multiply U0U
J
0 P

J and right-multiply QV 0V
J
0 on both sides of (46), we

get

U0U
J
0 P

JDQV 0V
J
0 “ U0V

J
0 . (52)

Combine (50), (51) and (52) together, we have

U0U
J
0 P

JDQ` PJDQV 0V
J
0 ´U0U

J
0 P

JDQV 0V
J
0 “ U0V

J
0 .

In other words,

PT0pPJDQq “ U0V
J
0 .

This completes the proof.

Before proving Theorem 8, we first provide the following Definitions and Lemmas from
Hsu et al. (2011).

Definition 10 The matrix norm } ¨ }#1 is said to be the dual norm of } ¨ }# if for all M ,
}M}#1 “ sup}N}#ď1xM ,Ny.

Lemma 11 For any linear matrix operator T : Rnˆm Ñ Rnˆm, and any pair of matrix
norms } ¨ }# and } ¨ }˚, we have

}T }#Ñ˚ “ }T ˚}˚1Ñ#1

where } ¨ }#1 is the dual norm of } ¨ }# and } ¨ }˚1 is the dual norm of } ¨ }˚.
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Lemma 12 For any matrix M P Rnˆm and p P t1,8u, we have

}PS}vecp8qÑ‹pρq ď αpρq.

where the norm } ¨ }‹pρq is defined as

}M}‹pρq “ maxtρ}M}1Ñ1, ρ
´1}M}8Ñ8u.

Lemma 13 For any matrix M P Rnˆm, we have for all ρ ą 0,

}M}2Ñ2 ď }M}‹pρq.

Lemma 14 For any matrix M P RNˆM and p P t1,8u, we have

}PSpMq}pÑp ď }sgnpX0q}pÑp}M}vecp8q,

}PS}vecp8qÑ‹pρq ď αpρq,

}PT pMq}˚ ď 2r}M}2Ñ2,

}PT pMq}vecp2q ď 2
?
r}M}2Ñ2.

Lemma 15 For any linear matrix operator T1 : Rnˆm Ñ Rnˆm and T2 : Rnˆm Ñ Rnˆm,
and any matrix norm } ¨ }#, if }T1 ˝ T2}# ă 1, then I ´ T1 ˝ T2 is convertible and satisfies

}pI ´ T1 ˝ T2q´1}#Ñ# ď
1

1´ }T1 ˝ T2}#Ñ#
,

where I is the identity operator.

Now we are ready to prove Theorem 8.

Proof of Theorem 8. First, it is not hard to verify that DS P S, DT P T and the first
two equality of (35). The third equality of (35) followed by Theorem 7. We now prove (37).

}DS}2Ñ2

ď }DS}‹pρq
“

›

›pI ´ PS ˝ PT q´1 pλ2sgnpY 0q ´ λ1PSpΓq ´ pPS ˝ PT KqpEqq
›

›

‹pρq

ď
1

1´ αpρqβpρq
}λ2sgnpY 0q ´ λ1PSpΓq ´ pPS ˝ PT KqpEq}‹pρq

“
1

1´ αpρqβpρq

´

λ2}sgnpY 0q}‹pρq ` λ1 }PSpΓq}‹pρq ` }pPS ˝ PT KqpEq}‹pρq
¯

ď
αpρq

1´ αpρqβpρq
pλ2 ` γ1λ1 ` ε8q,

where the first inequality holds by Lemma 13, the second inequality holds by Lemma 15,
the last inequality hods by Lemma 14 and

}pPS ˝ PT KqpEq}‹pρq ď αpρq}PT KpEq}8 ď αpρqp}E}8 ` }PT pEq}8q ď αpρqε8.
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Similarly, for }DT }8,

}DT }8

“

›

›

›
pI ´ PT ˝ PSq´1

´

λ1Γ´ λ2PT
`

sgnpY 0q
˘

´ pPT ˝ PSKqpEq
¯
›

›

›

8

ď
1

1´ αpρqβpρq

`

λ1}Γ}8 ` λ2
›

›PT
`

sgnpY 0q
˘›

›

8
`
›

›pPT ˝ PSKqpEq
›

›

8

˘

ď
1

1´ αpρqβpρq
pγ1λ1 ` λ2αpρqβpρq ` ε8q ,

where for the last inequality we used the bound
›

›pPT ˝ PSKqpEq
›

›

8
ď }PT pEq ´ pPT ˝ PSqpEq}8 ď }PT pEq} ` αpρqβpρq}pEq}8 ď ε8.

For }DT }˚,

}DT }˚
ď r}DT }2Ñ2

“ r}PT pDS `Eq ´ λ1Γ}2Ñ2

“ r p}DS}2Ñ2 ` }E}2Ñ2 ` λ1γ2q

ď r

ˆ

2αpρq

1´ αpρqβpρq
pλ2 ` γ1λ1 ` εvecp8qq ` 2ε2Ñ2 ` λ1γ2

˙

.

For }DS}vecp1q, we have

}DS}vecp1q
ď s}DS}vecp8q

ď
s

1´ αpρqβpρq

´

λ2}sgnpY 0q}vecp8q ` λ1
›

›PSpΓq
›

›

vecp8q
` }pPS ˝ PT KqpEq}vecp8q

¯

ď
s

1´ αpρqβpρq
pλ2 ` λ1γ1 ` ε8q.

Finally,

}DT `DS}
2
2 “ xDS ,PSpDS `DT qy ` xDT ,PT pDS `DT qy
“ xDS , λ2PSpsgnpY 0qq ´ PSpEqy

`xDT , λ1PT pΓq ´ PT pEqy
ď }DS}vecp1qpλ2 ` ε8q ` }DT }˚pλ1γ2 ` ε2Ñ2q.

This finish the proof for (37). To prove (36), let D “DS `DT `E,

›

›PT K0 pP
JDQq

›

›

2Ñ2
“

›

›

›
PT K0

`

PJpDS `EqQ
˘

›

›

›

2Ñ2
ď σmaxpP qσmaxpQq p}DS}2Ñ2 ` }E}2Ñ2q

ď σmaxpP qσmaxpQq

ˆ

αpρqpλ2 ` γ1λ1 ` ε8q

1´ αpρqβpρq
` ε2Ñ2

˙

ď
λ1
c
,

where the last inequality holds by penalty condition (i). Similarly, we can bound
›

›PSKpDq
›

›

vecp8q
as below,

›

›PSKpDq
›

›

vecp8q
“

›

›

›
PSK pDT `Eq

›

›

›

vecp8q
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ď }DT }8 ` ε8

ď
1

1´ αpρqβpρq
pγ1λ1 ` λ2αpρqβpρq ` ε8q ` ε8 ď

λ2
c
,

where the last inequality holds by penalty condition (ii).

Proof of Theorem 5. To prove Theorem 5, we need the following Propositions.

Proposition 16 For any λ1 ą 0, λ2 ą 0, define the penalty function PenpX,Y q “
λ1}X}˚ ` λ2}Y }vecp1q with domain X P Rnˆm and Y P RNˆM . Then, if there exists
D satisfies

PT pDq “ λ1Γ
PSpDq “ λ2 sgnpY 0q,

and }PT K0 pP
JDQq}2Ñ2 ď λ1{c, }PSKpDq}vecp8q ď λ2{c, we have

λ1 }X0 `∆X}˚ ´ λ1}X0}˚ ´ xP
JDQ,∆Xy ě λ1p1´ 1{cq}PT K0 p∆Xq}˚,

and

λ2 }Y 0 `∆Y }˚ ´ λ2 }Y 0}˚ ´ xD,∆Y y ě λ2p1´ 1{cq
›

›PSKp∆Y q
›

›

vecp1q
.

Proof of Proposition 16. First, by the construction of D and Theorem 7, we have
PT0pP TDQq “ U0V

J
0 . On the other hand, for any other sub-gradient G P BXpλ1}X0}˚q,

we have

PT0pGq “ U0V
J
0 .

It then follows that

G´ PJDQ “ PT0pGq ` PT K0 pGq ´ PT0pP
JDQq ´ PT K0 pP

JDQq

“ PT K0 pGq ´ PT K0 pP
JDQq.

As a consequence,

λ1 }X0 `∆X}˚ ´ λ1}X0}˚ ´ xP
JDQ,∆Xy

ě sup
 

xG,∆Xy ´ xP
JDQ,∆Xy : G P BXpλ1}X0}˚q

(

“ sup
 

xG´ PJDQ,∆Xy : G P BXpλ1}X0}˚q
(

“ sup
!

xPT K0 pG´ PJDQq,∆Xy : G P BXpλ1}X0}˚q

)

“ sup
!

xPT K0 pGq,PT K0 p∆Xqy ´ xPT K0 pP
JDQq,∆Xy : G P BXpλ1}X0}˚q

)

ěλ1}PT K0 p∆Xq}˚ ´ }PT K0 pP
JDQq}2Ñ2}PT K0 p∆Xq}˚

ěλ1p1´ 1{cq}PT K0 p∆Xq}˚.

(53)
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Similarly,

λ2 }Y 0 `∆Y }˚ ´ λ2 }Y 0}˚ ´ xD,∆Y y

ě sup
 

xG,∆Y y ´ xD,∆Y y : G P BY pλ2}Y 0}vecp1qq
(

“ sup
 @

tPSKpGq ´ PSKpDqu , ∆Y

D

: G P BY pλ1}Y 0}vecp1qq
(

ěλ2
›

›PSKp∆Y q
›

›

vecp1q
´
@

PSKpDq, PSKp∆Y q
D

ěλ2
›

›PSKp∆Y q
›

›

vecp1q
´
›

›PSKpDq
›

›

vecp8q

›

›PSKp∆Xq
›

›

vecp1q

ěλ2p1´ 1{cq
›

›PSKp∆Y q
›

›

vecp1q
. (54)

This completes the proof of Proposition 16.

Proposition 17 Suppose the conditions in Theorem 8 holds and let DS and DT be as in
Theorem 8, then

λ1}PT K0 p∆Xq}˚ ` λ2
›

›PSKp∆Y q
›

›

vecp1q
ď p1´ 1{cq´1p1{2q}DT `DS}

2
2

Proof of Proposition 17. By the optimality of pxX, pY q, we have

λ1p}xX}˚ ´ }X0}˚q ` λ2p} pY }1 ´ }Y 0}1q

ď ´
1

2

›

› pΘ´Θ
›

›

2
` xE,P∆XQ

Jy ` xE,∆Y y (55)

Combining (53), (54) and (55), we have

λ1p1´ 1{cq}PT K0 p∆Xq}˚ ` λ2p1´ 1{cq
›

›PSKp∆Y q
›

›

vecp1q

ď ´xPJpDT `DSqQ,∆Xy ´ xDT `DS ,∆Y y ´
1

2
}pΘ´Θ}2F

“ ´xDT `DS ,P∆XQJy ´ xDT `DS ,∆Y y ´
1

2
}P∆XQJ `∆Y }

2
F

ď
1

2
}DT `DS}

2
2.

This completes the proof of Proposition 17.

Now we are ready to prove Theorem 5. By KKT condition,

λ1GX “ PJpZ ´ PxXQJ ´ pY qQ

λ2GY “ Z ´ PxXQJ ´ pY (56)

By algebra,

λ2GY “ E ´ P∆XQJ ´∆Y (57)

Left-multiply P ˚ and right-multiply Q˚ on both sides,

λ2P
˚GYQ

˚ “ P ˚EQ˚ ´ P∆XQJ ´ P ˚∆Y Q˚ (58)
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Project both sides of (58) onto S, we have

λ2PSpP ˚GYQ
˚q “ PSpP ˚EQ˚q ´ PSpP∆XQJq ´ PSpP ˚∆Y Q˚q, (59)

Similarly,

λ1GX “ PJEQ´ PJP∆XQJQ´ PJ∆Y Q. (60)

Multiply above by pP`qJ and Q` on left and right respectively,

λ1pP
`qJGXQ

` “ P ˚EQ˚ ´ P∆XQJ ´ P ˚∆Y Q˚. (61)

Project onto T on both sides, we obtain

λ1PT
`

pP`qJGXQ
`
˘

“PT pP ˚EQ˚q ´ PT pP∆XQJq ´ PT pP ˚∆Y Q˚q (62)

Further project onto S on both sides of (62),

λ1pPS ˝ PT q
`

pP`qJGXQ
`
˘

“pPS ˝ PT qpP ˚EQ˚q ´ pPS ˝ PT qpP∆XQJq

´ pPS ˝ PT qpP ˚∆Y Q˚q (63)

Subtracting (63) from (59) we have

PSpP ˚∆Y Q˚q ´ pPS ˝ PT qpP ˚∆Y Q˚q ` pPS ˝ PT KqpP∆XQJq

“pPS ˝ PT KqpP ˚EQ˚q ´ λ2PSpP ˚GYQ
˚q ` λ1pPS ˝ PT q

`

pP`qJGXQ
`
˘

.

(64)

As xsgn ppP ˚∆YQ
˚qSq ,PSpP ˚∆YQ

˚qy “ }PSpP ˚∆YQ
˚q}vecp1q, take inner product on

both sides of (64), we have

}PSpP ˚∆Y Q˚q}vecp1q

ď}pPS ˝ PT qpP ˚∆Y Q˚q}vecp1q ` }pPS ˝ PT KqpP∆XQJq}vecp1q

` }pPS ˝ PT KqpP ˚EQ˚q}vecp1q ` λ2}PSpP ˚GYQ
˚q}vecp1q

` λ1}pPS ˝ PT q
`

pP`qJGXQ
`
˘

}vecp1q

ďαpρqβpρq}P ˚∆Y Q˚}vecp1q

`
?
s}PT KpP∆XQJq}vecp2q ` }pPS ˝ PT KqpP ˚EQ˚q}vecp1q

` λ2s` λ1
?
s}PT

`

pP`qJGXQ
`
˘

}vecp2q

ďαpρqβpρq}PSpP ˚∆Y Q˚q}vecp1q ` αpρqβpρq}PSKpP ˚∆Y Q˚q}vecp1q

`
?
s}PT KpP∆XQJq}˚ ` s}PT KpP ˚EQ˚q}vecp8q

` λ2s` 2σ´1minpP qσ
´1
minpQqλ1

?
sr,
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where in the last inequality, we used the Lemma 14 and the inequalities }P`}2Ñ2 ď σ´1minpP q,
}Q`}2Ñ2 ď σ´1minpQq. Rearrange above inequality, we obtain

p1´ αpρqβpρqq }PSpP ˚∆Y Q˚q}vecp1q

ďαpρqβpρq}PSKpP ˚∆Y Q˚q}vecp1q `
?
s}PT KpP∆XQJq}˚

` s}PT KpP ˚EQ˚q}vecp8q ` λ2s` 2σ´1minpP qσ
´1
minpQqλ1

?
sr. (65)

To bound αpρqβpρq}PSKpP ˚∆Y Q˚q}vecp1q `
?
s}PT KpP∆XQJq}˚, we subtract (57) from

(58), we have

∆Y “ λ2P
˚GYQ

˚ ´ λ2GY `E ´ P ˚EQ˚ ` P ˚∆Y Q˚ (66)

Project both sides of (66) onto S, we have

PSp∆Y q “λ2PS pP ˚GYQ
˚q ´ λ2PS pGY q

` PSpEq ´ PSpP ˚EQ˚q ` PSpP ˚∆Y Q˚q. (67)

It then follows that

}PSp∆Y q}vecp1q

ďλ2 }PSpP ˚GYQ
˚q}vecp1q ` λ2 }PSpGY q}vecp1q ` }PSpEq}vecp1q

` }PSpP ˚EQ˚q}vecp1q ` }PSpP
˚∆Y Q˚q}vecp1q

ď2λ2s` s }E}vecp8q ` s }P
˚EQ˚}vecp8q ` }PSpP

˚∆Y Q˚q}vecp1q . (68)

On the other hand, by the definition of η2, we have

}P ˚∆Y Q˚}vecp1q ď }PSp∆Y q}vecp1q ` η
´1
2 }PSKp∆Y q}vecp1q. (69)

Combine (68) and (69), it follows that

}PSKpP ˚∆Y Q˚q}vecp1q ď η´12 }PSKp∆Y q}vecp1q ` 2λ2s

`s }E}vecp8q ` s }P
˚EQ˚}vecp8q . (70)

Similarly, by the definition of η1,

}PT KpP∆XQJq}˚ ď η´11 }PT K0 p∆Xq}˚. (71)

Combine (70) and (71) and Proposition 17, we have

αpρqβpρq}PT KpP∆XQJq}˚ `
?
s }PSKpP ˚∆Y Q˚q}vecp1q

ď

ˆ

αpρqβpρq

2λ2η2
_

?
s

2λ1η1

˙

p1´ 1{cq´1}DT `DS}
2
2

` 2λ2s` s }E}vecp8q ` s }P
˚EQ˚}vecp8q

ďr2p1´ 1{cqη0λ2s
´1}DT `DS}

2
2

` 2λ2s` s }E}vecp8q ` s }P
˚EQ˚}vecp8q . (72)
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where we used the fact αpρqβpρq ă 1, αpρq ě
?
s and λ1 ě λ2αpρqσmaxpP qσmaxpQq by (26).

Further combine (65) and (72), we have

p1´ αpρqβpρqq }PSpP ˚∆Y Q˚q}vecp1q

ďr2p1´ 1{cqη0λ2s
´1}DT `DS}

2
2 ` 3λ2s` s }E}vecp8q

` s }P ˚EQ˚}vecp8q ` s}PT KpP
˚EQ˚q}vecp8q

` 2σ´1minpP qσ
´1
minpQqλ1

?
sr. (73)

It further follows from (73), (70) and and Proposition 17 that

p1´ αpρqβpρqq }P ˚∆Y Q˚}vecp1q
ď p1´ αpρqβpρqq

`

}PSpP ˚∆Y Q˚q}vecp1q ` }PSKpP ˚∆Y Q˚q}vecp1q
˘

ď r2λ2p1´ 1{cqs´1pη´10 ` η´12 q}DT `DS}
2
2

`5λ2s` 2s }E}vecp8q ` 2s }P ˚EQ˚}vecp8q
`s}PT KpP ˚EQ˚q}vecp8q ` 2σ´1minpP qσ

´1
minpQqλ1

?
sr.

ď rλ2p1´ 1{cqη0s
´1}DT `DS}

2
2

`5λ2s` 2sε8 ` 3sε18 ` 2σ´1minpP qσ
´1
minpQqλ1

?
sr. (74)

This proves (29). To prove (30), we note that by (68), (73) and Proposition 17,

p1´ αpρqβpρqq}∆Y }vecp1q

ďp1´ αpρqβpρqq}PSp∆Y q}vecp1q ` }PSKp∆Y q}vecp1q

ď2λ2s` s }E}vecp8q ` s }P
˚EQ˚}vecp8q

` p1´ αpρqβpρqq }PSpP ˚∆Y Q˚q}vecp1q ` r2p1´ 1{cqλ2s
´1}DT `DS}

2
2

ď5λ2s` 2s }E}vecp8q ` 2s }P ˚EQ˚}vecp8q ` s}PT KpP
˚EQ˚q}vecp8q

` 2σ´1minpP qσ
´1
minpQqλ1

?
sr ` r2λ2p1´ 1{cqs´1pη´10 ` 1q}DT `DS}

2
2

ď5λ2s` 2s }E}vecp8q ` 3sε18 ` 2σ´1minpP qσ
´1
minpQqλ1

?
sr

` r2λ2p1´ 1{cqs´1pη´10 ` 1q}DT `DS}
2
2.

(75)

Finally, to prove (31), note that by (62),

}PT pP∆XQJq}˚

ďλ1
›

›PT
`

pP`qJGXQ
`
˘›

›

˚
` }PT pP ˚EQ˚q}˚ ` }PT pP ˚∆Y Q˚q}˚

ď2σ´1minpP qσ
´1
minpQqλ1r ` ε˚ `

?
2r}P ˚∆Y Q˚}vecp2q. (76)

Then (31) follows from above.

Proof of Theorem 9.
By the feasibility of xX and pY , we have

P∆XQ
J `∆Y “ P pxX ´X0qQ

J ` p pY ´ Y 0q “ rΘ´ rΘ “ 0 (77)
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By Proposition 16 we have

λ1 }X0 `∆X}˚ ´ λ1}X0}˚ ´ xD,P∆XQ
Jy ě λ1p1´ 1{cq}PT K0 p∆Xq}˚,

and

λ2 }Y 0 `∆Y }1 ´ λ2 }Y 0}1 ´ xD,∆Y y ě λ2p1´ 1{cq
›

›PSKp∆Y q
›

›

vecp1q
.

Combine above two inequalities with (77) we have

λ1 }X0 `∆X}˚ ` λ2 }Y 0 `∆Y }vecp1q ´ λ1}X0}˚ ´ λ2 }Y 0}vecp1q

ě λ1p1´ 1{cq}PT K0 p∆Xq}˚ ` λ2p1´ 1{cq
›

›PSKp∆Y q
›

›

vecp1q
(78)

On the other hand, by the optimality of xX and pY , we have

λ1 }X0 `∆X}˚ ` λ2 }Y 0 ´∆Y }˚ ´ λ1}X0}˚ ´ λ2 }Y 0}˚ ď 0 (79)

Combine (78) and (79) we have

λ1}PT K0 p∆Xq}˚ ` λ2
›

›PSKp∆Y q
›

›

vecp1q
“ 0.

As a consequence,

}PT K0 p∆Xq}˚ “ 0, (80)

and

›

›PSKp∆Y q
›

›

vecp1q
“ 0. (81)

It further follows from (80) and Proposition 4 that

}PT KpP∆XQ
Jq}˚ “ 0 (82)

On the other hand, due to (77),

PT pP∆XQ
Jq ` PT KpP∆XQ

Jq ` PSp∆Y q ` PSKp∆Y q “ 0

It is equivalently to

PT pP∆XQ
Jq ` PSp∆Y q “ ´PT KpP∆XQ

Jq ´ PSKp∆Y q

Separately applying PT and PS on both sides gives

ˆ

I PT
PS I

˙ˆ

PT pP∆XQ
Jq

PSp∆Y q

˙

“

ˆ

´pPT ˝ PSKqp∆Y q

´pPS ˝ PT KqpP∆XQ
Jq

˙

It further follows that

PSp∆Y q “ pI ´ PS ˝ PT q´1
`

pPS ˝ PT ˝ PSKqp∆Y q ´ pPS ˝ PT KqpP∆XQ
Jq
˘
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Then,

}PSp∆Y q}vecp1q

ď
1

1´ αpρqβpρq

´

}pPS ˝ PT ˝ PSKqp∆Y q}vecp1q `
›

›pPS ˝ PT KqpP∆XQ
Jq
›

›

vecp1q

¯

ď
1

1´ αpρqβpρq

´

}pPS ˝ PT ˝ PSKqp∆Y q}vecp1q `
?
s
›

›PT KpP∆XQ
Jq
›

›

vecp2q

¯

ď
1

1´ αpρqβpρq

´

}pPS ˝ PT ˝ PSKqp∆Y q}vecp1q `
?
s
›

›PT KpP∆XQ
Jq
›

›

˚

¯

ď
1

1´ αpρqβpρq

´

αpρqβpρq }PSKp∆Y q}vecp1q `
?
s
›

›PT KpP∆XQ
Jq
›

›

˚

¯

“ 0, (83)

where the last equality holds due to (81) and (82). Combining (81) and (83), we have

}∆Y }vecp1q “ }PSp∆Y q}vecp1q ` }PSKp∆Y q}vecp1q “ 0

As a consequence, we have

∆Y “ 0.

Finally,

∆X “ pP
JP q´1PJpPXQJqQpQJQq´1 “ 0.

This completes the proof.
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