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Abstract

Learning optimal individualized treatment rules (ITRs) has become increasingly important
in the modern era of precision medicine. Many statistical and machine learning methods
for learning optimal ITRs have been developed in the literature. However, most existing
methods are based on data collected from traditional randomized controlled trials and thus
cannot take advantage of the accumulative evidence when patients enter the trials sequen-
tially. It is also ethically important that future patients should have a high probability
to be treated optimally based on the updated knowledge so far. In this work, we propose
a new design called sequentially rule-adaptive trials to learn optimal ITRs based on the
contextual bandit framework, in contrast to the response-adaptive design in traditional
adaptive trials. In our design, each entering patient will be allocated with a high prob-
ability to the current best treatment for this patient, which is estimated using the past
data based on some machine learning algorithm (for example, outcome weighted learning
in our implementation). We explore the tradeoff between training and test values of the
estimated ITR in single-stage problems by proving theoretically that for a higher probabil-
ity of following the estimated ITR, the training value converges to the optimal value at a
faster rate, while the test value converges at a slower rate. This problem is different from
traditional decision problems in the sense that the training data are generated sequentially
and are dependent. We also develop a tool that combines martingale with empirical process
to tackle the problem that cannot be solved by previous techniques for i.i.d. data. We show
by numerical examples that without much loss of the test value, our proposed algorithm
can improve the training value significantly as compared to existing methods. Finally, we
use a real data study to illustrate the performance of the proposed method.
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1. Introduction

For many diseases, patients respond heterogeneously to treatments and a one-size-for-all
strategy is often not effective. Recent technology advances allow personalized treatment
suggestions by tailoring it to patient characteristics, including demographics, medical his-
tories or genetic information (Hamburg and Collins, 2010). The personalized policy is often
referred to as the Individualized Treatment Rule (ITR), which aims to maximize a prede-
fined reward such as the patient’s health status.

The optimal ITR can be estimated through regression-based or classification-based
methods. The former fits a regression model for the rewards and finds the treatment with
the maximum estimated reward (Qian and Murphy, 2011). The latter obtains the optimal
ITR directly by maximizing the average reward. For example, Zhao et al. (2012) proposed a
weighted classification algorithm called outcome weighted learning (OWL), which is based
on the support vector machine (SVM) and equipped with various kernels. There are also
variations of OWL designed for ITR estimation in single-stage problems (Zhou et al., 2017;
Chen et al., 2018) and multi-stage problems (Zhao et al., 2015; Liu et al., 2018).

For all the above methods, to avoid unobserved confounding bias as present in obser-
vational studies, data used to learn optimal ITRs are typically obtained from randomized
controlled trials (RCTs), where patients receive treatments based on a prefixed probability
rule. RCTs are conducted primarily to compare the efficacy of new treatments. However,
in the case when the control drug is not beneficial or is even harmful, patients may have
to switch treatments or withdraw from the study due to little benefit or adverse events
under the assigned treatments. This may cause violation of the randomization and result
in bias in estimating clinical efficacy. In fact, as data are gathered during the process, we
already have an inference about which treatment should be better for the next patient. A
more effective design for the trial should be sequentially adaptive so that any new patients
entering the trial are more likely to receive the best treatment learned from the past. This is
especially important ethically since an inferior treatment may cause severe health issues to
a patient. A sequentially adaptive trial has the advantage to better maintain randomization
while keeping most of the study participants benefiting from their assigned treatments. As
commented in Thall (2002), a clinical trial ideally should provide patients in the trial with
the best treatment available, while also generate data for improving therapies. We will
discuss the tradeoff between the two goals from a statistical viewpoint in this paper. We
refer to the clinical trial data as the training set and refer to an independent population as
the test set for clarity.

The clinical trials that allow the trial protocol to be modified according to observed
patient information as the trial continues are called adaptive clinical trials (ACTs) (Chow,
2014). A special class of ACTs is the response-adaptive randomization (Hu and Rosen-
berger, 2006), which is divided into four categories: restricted randomization, response-
adaptive randomization, covariate-adaptive randomization, and covariate-adjusted response-
adaptive (CARA) randomization. The latter three are adjusted for response, covariates,
and response with covariates respectively. As an example of CARA, Zhang et al. (2007)
proposed a framework for the treatment distribution to converge to a predefined distri-
bution, which can be applied to generalized linear models. Hu et al. (2015) suggested to
balance ethics in avoiding assigning patients to inferior arms and efficiency in the power of
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detecting treatment differences. ACTs sometimes also use Bayesian designs to find the op-
timal dose schedule based on efficacy and toxicity and maximize survival time by combining
different phases (Thall et al., 2013; Riviere et al., 2018; Chapple and Thall, 2019). These
methods mainly use adaptive designs to improve the efficiency, which refer to the power of
estimating average treatment effects, and are not suitable for learning optimal ITRs. There
are also a few papers for learning subgroup treatment effects through enrichments (Kim
et al., 2011; Lai et al., 2012; Renfro et al., 2016), but they are not optimal for finding ITRs.
Furthermore, theoretical justification is lacking for the estimated treatment effects for all
subgroups.

There is a close connection between the sequentially adaptive design and the contex-
tual bandit, which is a class of algorithm that deals with online decision problems. As a
single-stage special case of reinforcement learning, it aims at making sequential decisions
through trial and error. All reinforcement learning algorithms encapsulate an “exploration-
exploitation” dilemma. Various exploration methods have been proposed in the contextual
bandit literature. The ε-greedy methods assign the current optimal arm with a probability
of 1−ε or chooses from all arms randomly with a total probability of ε (Yang and Zhu, 2002;
Chen et al., 2020). Boltzmann exploration assigns probabilities of whether to follow the
current optimal policy using the soft-max function based on the estimated mean rewards
of arms (Sutton and Barto, 2018). Upper-Confidence Bound (UCB) methods choose the
arm with the largest upper confidence bound, which either has a large estimated mean re-
ward or a large estimated variance (implying great uncertainty) (Li et al., 2010; Chu et al.,
2011; Krause and Ong, 2011). Bayesian methods assign a treatment to a future patient
according to the posterior distribution of reward parameters (Chapelle and Li, 2011; Liao
et al., 2020). Action elimination is another branch that ignores the inferior arms gradually
(Perchet and Rigollet, 2013). Different estimation methods have also been proposed in lin-
ear scenarios (Auer, 2002; Li et al., 2010; Chu et al., 2011; Chen et al., 2020; Bastani and
Bayati, 2020) and nonlinear scenarios (Yang and Zhu, 2002; Krause and Ong, 2011; Zhou
et al., 2020) under the contextual bandits framework. Interested readers are referred to
Tewari and Murphy (2017); Lattimore and Szepesvári (2020) for a comprehensive review of
bandit problems. However, most works in contextual bandits focus on the training phase
and do not address the test performance theoretically. Pure exploration with a fixed budget
in multi-armed bandits (MAB, Lattimore and Szepesvári (2020)) also tries to minimize the
test regret (also called simple regret), but they generally do not require a small training
regret (also called cumulative regret). Bubeck et al. (2009) illustrated the tradeoff between
training and test performance in MAB algorithms without a context, that an asymptotically
optimal policy for training regret will lead to a suboptimal policy for test regret. Lattimore
and Szepesvári (2020) also discussed in Chapter 33 that algorithms with logarithmic cumu-
lative regret in MAB settings (for example UCB) are not well suited for pure exploration.
In contrast, we consider more complex settings with context and also provide a way to find
the balance point.

To our best knowledge, the most relevant clinical trial design for learning ITR is the
active clinical trial (Minsker et al., 2016), which is an active-learning based algorithm. In
terms of data collection, they focus on exploring patients close to the decision boundary
and omit the trials on patients known to benefit from one of the treatments with a high
probability. However, the actually conducted trials are still purely randomized, and will not
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benefit from previous information. Practically speaking, the patients omitted from the trial
still need to be recruited to collect their basic information before deciding whether they are
close to the boundary, which can still create a burden on the trial and the patients.

We propose a sequentially adaptive trial design named “rule-adaptive design” in con-
trast to “response-adaptive design”. It updates the treatment assignment policy during the
clinical trial using some statistical or machine learning methods, so that the outcomes in the
clinical trial are improved. In the meantime, we also allow for some exploration probability
in order to learn an efficient final ITR. In the current work, we consider estimating the
two-armed ITR with OWL and explore with ε-greedy or a variation of Boltzmann explo-
ration. Different from most contextual bandit methods which rely on a regression model of
the rewards, our OWL-based algorithm is a weighted classification method which tries to
maximize the rewards directly. Only a model for the treatment effect is specified and thus
minimum assumption (for example, boundedness) is needed for the main effect, unlike in
Li et al. (2010) and Chen et al. (2020) where a reward model is constructed for the total
effect. While Chambaz et al. (2017) and Chen et al. (2020) focused on the inference of the
parameters or value functions, we perform the regret analysis.

Specifically, we consider a trial with n sequentially enrolled patients with independent
feature variables. Since some of the characteristics of a patient can only be observed after
the patient is enrolled in the clinical trial and the process maybe expensive, we assume that
we cannot choose which patients to enroll. After a pilot trial of some patients, we assign
any incoming patient the estimated optimal treatment learnt from the available data with
a probability of p and the other treatment with a probability of 1 − p. We restrict that p
is bounded by 1− ε and ε, where ε is a positive constant between 0 and 0.5. Furthermore,
we let ε decay to zero as the ITR estimation gets more accurate over the trial. If the
probability p is a constant that does not depend on the current context or the history
information, including the characteristics, treatments and rewards of previous patients, the
above method is actually ε-greedy. Note that the ε defined here is one half of that in
the definition of ε-greedy in most reinforcement learning literature. However, we allow p
to be dependent on the current status and the history in theory and in simulation. In
this algorithm, p governs the chance of exploration. Intuitively, a small p indicates a high
tendency to follow the current estimated ITR. Future patients to enter the trial are likely
to receive a favorable treatment when data accumulate. On the other hand, a small p limits
the chance of exploring new treatments. This leads to a slow convergence of the learnt ITR
to the optimal one, yielding a suboptimal ITR if the training sample size in the trial is not
large enough. This suggests a tradeoff between training and test performance. Our proposed
class of algorithms allows adaptive probabilities to depend on already collected data in a
flexible way, and includes Boltzmann exploration and an approximate UCB algorithm as
special cases.

In this paper, to fully characterize the performance of the rule-adaptive design, we
establish the convergence rate of both the test regret for the learnt ITR if implemented in
an independent population, and the training regret for patients in the training set. The
former concerns the expected reward loss as compared to the theoretically optimal ITR.
The latter describes the cumulative reward loss between actually observed rewards and
the hypothetical rewards if each patient would receive the learnt optimal ITR over time.
The established bounds depend on the number of initial patients, the number of patients
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enrolled in the main trial, and the decay rate of the ε-sequence. The bounds clearly indicate
a tradeoff between the training and test performance of the algorithm. This tradeoff can be
useful for us to choose an ε-sequence that guarantees a small loss of rewards for the testing
sample due to the reduction of exploration in the training process, while at the same time
allowing a majority of the experiment patients to receive better than random treatments.
To our knowledge, these are the first rigorous results for contextual bandits.

Our proofs for establishing bounds are substantially different from the ones that are
based on i.i.d. training data, due to the challenge that the treatment assignment depends
on the past data. In the proof, we derive a new concentration inequality for suprema of
a martingale sequence by extending the results in Rakhlin et al. (2015). Particularly, to
obtain the sequential Rademacher complexity of function classes needed in the inequal-
ity, we develop a new mathematical tool that applies the empirical process and bracketing
number technique to martingale sequences. Bae and Levental (1995) showed that Freed-
man’s inequality (Freedman, 1975) works well for ergodic Markov chains as a substitution
for Bernstein’s inequality in i.i.d. sequences. Van de Geer (1995), Nishiyama (1997) and
Nishiyama et al. (2000) also took similar approaches in continuous-time martingales or some
martingales with jumps. Rakhlin et al. (2015) created a scheme of extending empirical pro-
cess and symmetrization methods to martingale. Chambaz et al. (2017) derived a new
maximal inequality for martingales based on the uniform entropy integral. However, to our
knowledge, our paper is the first one to make use of bracketing numbers in the test value
bound of martingale sequences. As a remark, we note that Rakhlin and Sridharan (2014)
provided a bound for sequential Rademacher complexity of linear functions on dual spaces
of covariates and linear coefficients. In contrast, our method applies to any function class
with bounded bracketing integral.

The rest of this paper is organized as follows. In Section 2, we describe our proposed
algorithm that uses the OWL algorithm for learning ITRs over time. Section 3 gives theo-
retical guarantees for the performance of our algorithm on the training and test sets. We
describe the implementation details of our proposed algorithm, and discuss the connections
and differences between our algorithm and existing methods in Section 4. In Section 5, we
conduct extensive simulation studies to examine how parameters in our algorithm influence
the empirical results, and compare our method with randomized controlled trials, LinUCB
(Li et al., 2010) and active clinical trials (Minsker et al., 2016). We further use a real data
example to illustrate the advantage of the proposed method in Section 6. The paper is
concluded with some remarks in Section 7.

2. Methodology

We consider the single-stage decision problem, the case where a single treatment recom-
mendation is made for every patient. For each patient, the feature variables or covariates
X ∈ X ⊂ Rd are observed. We assume that the covariates {Xi}∞i=1 are drawn from a
population independently and identically. Based on the covariates, we need to decide which
treatment to take for the patient. We focus on a two-armed problem in this paper. That is,
the treatment A takes values in A = {1,−1}. An outcome R ∈ R is then observed, which
is also called the reward, with higher values desirable. An ITR is a map D : X 7→ A that
assigns the patient of covariates X to a treatment A. An optimal ITR can generate the
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largest mean reward for the test data. If there exists a measurable discriminant function
f : X 7→ R such that D = sign{f}, we only need to find such a function f .

2.1 Learning Algorithm for Updating ITRs

We propose to estimate the ITR using machine learning methods, OWL in particular, since
it is shown to provide useful ITR recommendations in various scenarios (Zhao et al., 2012).
We briefly describe the method of OWL below.

Let P be the joint distribution of Z := (X, A,R) and E be the corresponding expec-
tation. If the data are sampled according to the ITR D, that is, given A = D(X), the
distribution and expectation are denoted as PD and ED respectively. Then the optimal
ITR can be defined as D∗ := arg maxD ED(R) and the optimal decision function f∗ satisfies
sign{f∗} = D∗. Qian and Murphy (2011) showed that the expected reward under policy D
is given by

ED(R) = E
„

R1(A = D(X))

π(A;X)



, (1)

where π(A;X) is the probability of taking treatment A given covariates X of a patient.
After transforming (1) to a loss function based on the 0-1 loss, Zhao et al. (2012) proposed
OWL to instead minimize a surrogate loss, hinge loss φ(x) = [1− x]+. That is, they try to
find the function f that minimizes E[gf (Z)], where gf (Z) = Rφ(Af(X))/π(A;X). If we
obtain a total number of n observations, OWL tries to minimize

1

n

n∑
i=1

Ri
πi(Ai;Xi)

φ(Aif(Xi)).

A penalty term can be added to the loss function for high-dimensional settings to avoid
overfitting. This is a weighted classification problem that can make use of the framework of
SVM. The estimated ITR can be obtained by taking D̂ = sign{f̂}. The resulting estimator
of ITR generated by OWL is consistent (Zhao et al., 2012). Moreover, Ri can be replaced
by Ri − E(R|Xi) to further improve the learning performance (Liu et al., 2018).

2.2 Sequentially Rule-Adaptive Trials (SRATs)

We describe the proposed algorithm to improve the clinical trial outcome and learn the
optimal ITR as follows. Before the trial begins, assume we already have a pure randomized
pilot trial of small size n0, from which our first function f̂0 can be estimated. Then the
first patient i = 1 can choose to follow D̂0 or not. The observations in initial samples all
have a propensity score of 0.5. The function is updated after each patient has been treated.
Denote the estimated function based on data before the ith patient coming as f̂i−1, and the
corresponding ITR as D̂i−1 for i = 1, . . . , n. Assume pi is a probability that can depend on
the current feature variables Xi and the history information of previous patients, bounded
away from 0 and 1 for all i. At each time point i, we choose to follow our current estimated
ITR D̂i−1 with a probability pi or choose the other treatment with a probability 1− pi. Let
Ii be a binary variable such that the ith treatment follows D̂i−1 if Ii = 1 and follows −D̂i−1

if Ii = −1. That is, Ii takes the value 1 with a probability of pi and the value −1 with a
probability of 1− pi. Then the treatment can be chosen as Ai = IiD̂i−1(Xi).
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When pi only depends on the order i but not on the history and covariates, our algorithm
actually follows the ε-greedy exploration method. Note that the randomization probability is
sometimes described in another way. In most reinforcement learning literature, for ε̃i ∈ (0, 1]
at stage i, ε-greedy chooses the best arm with a probability of 1 − ε̃i; and with a total
probability of ε̃i, it chooses from all arms randomly with equal probability. Our definition
coincides with this in the sense that 1−pi = ε̃i/2. We use the slightly different notation here
to describe the boundedness assumption of pi in a more general way. In the special case when
pi = 0.5 for all i = 1, . . . , n, the adaptive clinical trial degenerates into a purely randomized
clinical trial. Besides, as a limiting case without truncation, Boltzmann exploration assumes
pi = logit−1(benefiti), where benefiti is the difference between the estimated rewards of two
treatments for the patient i.

Although we choose the presumed best arm with a high probability, there is also some
chance that we explore the other arm and observe consequences. When i is small, estima-
tions are usually not accurate due to the large sampling bias and estimation bias. A large
probability should be assigned to the inferior arm to allow for exploration and reduce vari-
ances. When data accumulate and the ITR estimation gets more accurate as i increases, we
will take a higher probability for following the current estimated ITR. Therefore, a decreas-
ing sequence of {pi}ni=1 is desirable. As n goes to infinity, we want pn → 0 if our estimation
method is consistent. The speed at which pn decreases depends on the convergence rate of
estimation.

Let Z
(0)
i = {X(0)

i , A
(0)
i , R

(0)
i , I

(0)
i } be the feature variables, treatments and rewards of

the patient i = 1, . . . , n0 in the pilot trial. Here I
(0)
j can take any value since we do not

have an estimated ITR to follow in the pilot trial. Similarly, denote Zi = {Xi, Ai, Ri, Ii}
to be all the information about the patient i = 1, . . . , n in the main trial. Extend the
definition of P,PD and E,ED to be the joint distributions and expectations of Z respectively.
For simplicity, denote Hi−1 as the history information for the ith patient, where H0 :=

{Z(0)
1 ,Z

(0)
2 , . . .Z

(0)
n0 } and Hi := {Z(0)

1 ,Z
(0)
2 , . . .Z

(0)
n0 ,Z1,Z2, . . . ,Zi}, i = 1, . . . , n. Then

before we decide which treatment to take for the ith (i = 1, . . . , n) patient, the data that
we can base our decision on are {Hi−1,Xi}. The final ITR is estimated from the whole
training sample Hn.

To adapt the algorithm of estimating ITRs to our sequential setting, we will denote
πi(Ai;Hi−1,Xi) as the probability of taking treatment Ai at stage i to indicate that it
depends on the history Hi−1 and the covariates Xi for the main trial. The probability
pi = pi(Hi−1,Xi) defined as P(Ii = 1|Hi−1,Xi) also depends on the history and covariates,
and is a simplified notation for πi(D̂i−1(Xi);Hi−1,Xi).

We make the following assumptions to quantify potential outcomes for both the pilot
trial and the main trial. Although data are sequentially generated in the main trial, Ri still
only depends on Ai and Xi for each i = 1, . . . , n.

Assumption 1 (Ignorability) The treatment Ai (A
(0)
i ) is independent of the potential

outcome R∗i (a) (R
(0)∗
i (a)) given feature variables Xi (X

(0)
i ) for all a ∈ A and all i = 1, . . . , n

(i = 1, . . . , n0).
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Assumption 2 (Consistency) The observed outcome Ri (R
(0)
i ) under a treatment Ai = a

(A
(0)
i = a) equals the potential outcome R∗i (a) (R

(0)∗
i (a)) for all a ∈ A and all i = 1, . . . , n

(i = 1, . . . , n0).

For the pilot trial, we make an additional assumption on propensity scores.

Assumption 3 (Positivity) There exists a constant c0 > 0 such that πi(a;X
(0)
i ) ≥ c0 for

all a ∈ A and all X
(0)
i ∈ X for all i = 1, . . . , n0.

We do not need to make the positivity assumption for the main trial since it is guaranteed
by our data generating process when we require pi(Hi−1,Xi) to be bounded away from
0 and 1. We will formally quantify the assumptions on the probability pi(Hi−1,Xi) in
Sections 3.1 and 3.2. Different choices of pi(Hi−1,Xi) will be discussed in Section 4 and
their performances will be compared in Section 5.

Following the scheme of OWL, we propose to minimize the φ-risk using the hinge loss
in a function class F : X 7→ R. Using OWL, we can obtain the first estimated function

f̂0 = arg min
f∈F

1

n0

n0∑
j=1

R
(0)
j

πj(A
(0)
j )

φ(A
(0)
j f(X

(0)
j )) (2)

using the pilot trial and update it to get

f̂i = arg min
f∈F

1

n0 + i

{
n0∑
j=1

R
(0)
j

πj(A
(0)
j )

φ(A
(0)
j f(X

(0)
j )) +

i∑
j=1

Rj
πj(Aj ;Hj−1,Xj)

φ(Ajf(Xj))

}
(3)

for i = 1, . . . , n along with the main trial. For weighted SVM problems, the function class
F is generally taken to be a linear space for linear decision rules or a reproducing kernel
Hilbert space (RKHS) for nonlinear decision rules. The full algorithm is summarized in
Algorithm 1.

3. Theoretical Results for SRAT

In order to demonstrate a tradeoff between training and test performance of our algorithm,
we need to bound the estimated value function on both sets. Previous work has shown a
bound for the test value trained on i.i.d. data (Zhao et al., 2012). We will expand the
bounds of OWL to dependent training samples.

3.1 Performance Guarantee for the Test Set

Define V(f) := Esign{f}(R) as the value function of f . We use value function V(f̂n) as an
indicator of how well our algorithm performs on the test set, after training on n observations.
We will call V(f̂n) the test value, and define V(f∗) − V(f̂n) as the test regret. Remember
that V(f∗) = maxf V(f) according to the definition of f∗. In this paper we assume that
the optimal function f∗ belongs to the function class F , in which we find the estimated
ITR. As a consequence, Zhao et al. (2012, Theorem 3.2) implies that the excess risk satisfies
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Algorithm 1: Sequentially Rule-Adaptive Trial

Initialize. For n0 number of patients, assign treatments randomly with equal

probabilities and observe {Z(0)
j }

n0
j=1;

Estimate f̂0 with {Z(0)
j }

n0
j=1 by (2);

for i = 1, . . . , n do
Observe feature variables Xi;

Estimate the best treatment D̂i−1(Xi) = sign{f̂i−1(Xi)};
Sample Ii from {−1, 1} with a probability {1− pi(Hi−1,Xi), pi(Hi−1,Xi)}
respectively;

Take the treatment Ai = IiD̂i−1(Xi) and observe the reward Ri;

Update the function f̂i with {Z(0)
j }

n0
j=1 ∪ {Zj}ij=1 by (3).

end

Let D̂n = sign{f̂n} be the final estimated ITR.

0 ≤ Esign{f∗}(R)−Esign{f}(R) ≤ E[gf (Z)]−E[gf
∗
(Z)]. If f minimizes E[gf (Z)], the right-

hand side cannot be larger than zero since f∗ is also in the function class F . Therefore,
we have Esign{f}(R) = Esign{f∗}(R), which suggests that f and f∗ have the same Bayesian
risk. For example, we would reasonably assume that f∗ is linear in the covariates or in the
basis function of covariates for a linear space F . The following result shows that the test
regret converges in probability and gives the convergence rate.

We first introduce some key notations. With N[](η,F , ‖·‖) being the bracketing number
for the set F with respect to the semi-norm ‖·‖, define a bracketing integral of F as

J[](δ,F , ‖·‖) :=

∫ δ

0

b

1 + logN[](η,F , ‖·‖)dη.

Let L2(P) norm be the L2 norm with respect to measure P. An envelope of function class
F is any function F : X 7→ R such that f(x) ≤ F (x) for every x ∈ X and f ∈ F . The
minimal envelope function is F (x) = supf∈F |f(x)|, for all x ∈ X . The ∗ symbols on the top
right corner of P and E indicate outer probability and the corresponding outer expectation
respectively in order to avoid measurability problems (Van der Vaart and Wellner, 1996).

Assumption 4 Suppose we have a nonincreasing sequence of {ε1, . . . , εn} with εi ∈ (0, 0.5]
for all i = 1, . . . , n, where each εi can only depend on the order i. Assume εi ≤ pi(Hi−1,Xi) ≤
1− εi almost surely for all i.

Assumption 5 There exists a positive constant r such that ‖Ri‖∞ ≤ r for all i.

Assumption 6 Suppose F is a class of measurable functions satisfying∫ ∞
0

b

1 + logN[](η,F , L2(P))dη <∞. (4)

Let F be the minimal envelope function of F and assume F has a weak second moment,
that is, x2P∗(F (X) > x)→ 0 as x→∞.
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Theorem 1 Assume the pilot trial satisfies Assumptions 1, 2, 3, 5 and the main trial satis-
fies Assumptions 1, 2, 4, 5. If we take c0 = 0.5 and a function class satisfying Assumption 6
in Algorithm 1, then with a probability higher than 1− e−δ for any δ > 0,

V(f∗)− V(f̂n) ≤ C

n0 + n

„

(J +
?
δb)r

?
n0 + rbδ +

r2bJ

ε2n

b

δn log3 n



, (5)

where J := supP J[](‖F‖P,2 ,F , L2(P)), b := supf∈F ‖f‖∞, and C is a constant depending
on δ, r, b, J and {εi}ni=1.

Remark 2 The above bound shows that the terms containing n0 are not dominant as long
as the order of n0 does not exceeds the order of n, since εn is nonincreasing and ε−2

n has an
order of Ω(1). In practice, n0 can be taken as the minimum value that a stable initial rule
f̂0 can be estimated with. For example, if the covariates X has a dimension d including an
intercept, n0 can be taken as d + 1 for linear kernel. We choose n0 to be a small constant
in our simulation study in Section 5. For generality, we will assume that n0 = O(n) in the
following analysis, which includes the constant n0 as a special case.

Remark 3 Note that the bracketing number and covering number here are defined for i.i.d.
data, since F is defined on X and the observed feature variables {Xi}∞i=1 are i.i.d. The
constant J characterizes the complexity of the function class F . It generally increases as
the dimension d of covariates increases, and will result in a larger upper bound.

Remark 4 For the bound (5) to be non-trivial, we need the right-hand side to be op(1).

That is, when assuming n0 = O(n), we need εn to decay slower than n−1/4 log3/4(n) and
J to be finite. Intuitively speaking, if the ε sequence decays too fast and the algorithm is
extremely greedy in the training process, then the data sample is biased and cannot be used
to learn an efficient final ITR.

Remark 5 Theorem 1 holds when n is large enough but finite, so Assumption 4 ensures
that the positivity assumption is satisfied for all n. The randomness parameter εn, which can
be close to zero, is incorporated in the error bounds and accounts for the variance inflation
in the value estimation. Simulation study in Section 5 shows that there is no significant
variance inflation for different choices of εn sequences in practice. The complexity of the
function class containing πi increases as the lower and upper bounds of propensity score get
wider, but our proof only relies on the lower bound εi.

In our sequentially dependent algorithm, any constant sequence {ε1, . . . , εn} can generate
a convergence rate of n−1/2 log3/2(n) as long as n0 = O(n). If we take εi = 0.5 for all i, the
algorithm degenerates to pure randomization. Therefore, the traditional RCT is actually
a special case contained in our framework. Zhao et al. (2012) proved that the convergence
rate of OWL with the Gaussian kernel almost achieves n−1/2 under the Geometric noise
assumption. The extra log3/2(n) term comes from a martingale concentration inequality
that we used, as shown in Section C in the supplementary material. This indicates that the
efficiency of learning ITR is not significantly affected by using sequentially generated data.
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Non-asymptotic Properties of ITRs from SRATs

Example 1 If F is a class of linear functions with bounded parameters β ∈ B ⊂ Rd, the
above assumptions are satisfied. Linear functions are Lipschitz in parameters in the sense
that |fβ1(x)− fβ2(x)| ≤ m(β1,β2)G(x) for Euclidean metric m on the index parameter
set, G(x) = ‖x‖2, and for every β1,β2 by Cauchy–Schwarz inequality. By Theorem 2.7.11
of Van der Vaart and Wellner (1996), N[](2η ‖G‖ ,F , ‖·‖) is bounded by N(η,B,m). Since

N(η,B,m) ≤ K/ηd for some constant K, N[](η,F , L2(P)) can be bounded by 2dK ‖G‖dP,2 /ηd
for all measure P. If we further assume that ‖G‖P,2 ≤ u for all measure P and some constant
u > 0, for example, when the covariate space X is bounded, then the constant J and the
integral in (4) is finite. The assumptions in Theorem 1 are then satisfied.

The general idea of proof is to find a classification risk bound for the weighted SVM on
sequentially generated data. It is quite similar to the proof idea of Theorem 4 in Bartlett
et al. (2006). However, the key step of their proof relies on a variant of Talagrand’s in-
equality (Talagrand, 1994; Bousquet, 2002), which is a concentration inequality of suprema
of empirical process on i.i.d data. On the contrary, our algorithm generates data that are
adapted to a filtration.

We will define some new notations here. For any sequence {Yi}i∈N adapted to a filtration
{Gi}i∈N, observe that {Ei−1f(Yi) − f(Yi)}i∈N is a martingale difference sequence for any
measurable function f , where Ei−1(·) := E(·|Gi−1). Define a martingale process indexed by
f ∈ F analogous to an empirical process as

f 7→Mn(f) :=
1

n

n∑
i=1

{Ei−1f(Yi)− f(Yi)} .

In accordance with Rakhlin et al. (2015), the scaling factor
?
n is not included in the

definition.
In our setting, let G0 = σ{H0} and Gi = σ{Hi}, i ∈ N, so that {Zi}i∈N is adapted to

the filtration {Gi}i∈N. Similar as the definition in Section 2.1, let the loss function on a
single observation in a sequential experiment be

gf (Zi) =
Riφ(Aif(Xi))

πi(Ai;Hi−1,Xi)
.

Note that Zi is implicitly dependent on the history Hi−1 through Ai. Define hf (Zi) =
gf (Zi) − gf

∗
(Zi) as the difference between the loss generated by any f and the optimal

function f∗. Based on our weighted classification setting, we can further define a weighted
version of the martingale process by

Wn(f) := Mn(hf ) =
1

n

n∑
i=1

”

Ei−1h
f (Zi)− hf (Zi)

ı

.

The key step is to bound the test regret by the conditional expectations of hf . To
extend the idea to a martingale sequence, we make use of sequential complexity techniques
and a suprema concentration inequality presented in Rakhlin et al. (2015, Lemma 13). The
inequality essentially relies on E supf∈FWn(f), so we first present the following lemma for
the upper bound of the expectation of suprema. We use the symbol “À” to indicate that
the left-hand side is no larger than the right-hand side for all n up to a universal constant.

11
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Lemma 6 Assume the main trial satisfies Assumptions 1, 2, 4, 5. If we take a function
class satisfying Assumption 6 in Algorithm 1, then

E sup
f∈F

Wn(f) À
r

?
nεn

J[](‖F‖P,2 ,F , L2(P)). (6)

The above lemma suggests that if some f performs well enough on the training set
compared to f∗, then it should not be too bad on the test set as well. When εn does not
depend on n, E supf∈FWn(f) converges at a rate of n−1/2, which is the same as the rate
for independent data.

3.2 Performance Guarantee for the Training Set

We propose to use R̄n :=
∑n

i=1Ri/n as the measure of performance on the training set,
which does not concern the pilot trial. We will call R̄n the training value and it indicates
what we really observe in n patients drawn out of the population. Furthermore, we define
our regret on the training set as

∑n
i=1[V(f̂i−1)−Ri]/n. Each observed reward Ri is compared

with the corresponding V(f̂i−1), which is the value function based on previous (i− 1) data
points, and the sum of differences is recorded.

A common metric in bandit problems for training data is the cumulative regret for n
observations. It is defined as the difference between the expectation of the sum of rewards
under the optimal ITR and that under the estimated ITR, that is,

∑n
i=1 ExiR(D∗(xi)) −

ExiR(D̂i−1(xi)), where xi is the instantiated tailoring variable vector for the ith (i =
1, . . . , n) patient. It mainly measures how much benefit the actual treatments generate
compared with the optimal ones for fixed tailoring variables (x1, . . . ,xn) regardless of the
randomness in rewards. A bound on the expectation of regret or a probably approximately
correct (PAC) bound is often derived. However, the true optimal rule D∗ and the expec-
tation of rewards are unknown in the training process. Furthermore, the cumulative regret
does not include the intrinsic randomness in rewards.

Here we present the training regret bound in terms of our definition with an additional
assumption on the randomization probability pi.

Assumption 7 Suppose we have another nonincreasing sequence of {ε′1, . . . , ε′n} with ε′i ∈
(0, 1) for all i = 1, . . . , n, where each ε′i can only depend on the order i. Assume that
pi(Hi−1,Xi) ≥ 1− ε′i almost surely for all i.

Under Assumptions 4 and 7, the two sequences {εi}ni=1 and {ε′i}ni=1 actually help create
upper and lower bounds of 1 − pi(Hi−1,Xi), which are needed in the test and training
regret bounds respectively.

Theorem 7 Assume the main trial satisfies Assumptions 1, 2, 5, 7 and we have 0 <
pi(Hi−1,Xi) < 1 for all i. Then with a probability higher than 1− e−δ for any δ > 0,∣∣∣∣∣ 1n

n∑
i=1

”

V(f̂i−1)−Ri
ı

∣∣∣∣∣ ≤ C ′r
«

c

δ ∧ δ2

n
+

˜

1

n

n∑
i=1

ε′i

¸ff

, (7)

where C ′ is a constant depending on δ, r and {ε′i}ni=1.

12



Non-asymptotic Properties of ITRs from SRATs

Remark 8 The concentration bound implies that the training regret is upper bounded by the
average of the ε′i sequence plus a term of order Op(1/

?
n). ε′i should be of order o(1) if we

need the training regret to converge to zero. Otherwise, if there is always some probability
that the inferior treatment is taken, the training reward cannot be optimal. Specifically,
when {ε′i}ni=1 is constant and does not rely on i, the above bound is a constant. The purely
randomized clinical trial is a special case of this setting.

Remark 9 In most of the cases, the randomization probability of following the inferior
treatment is 1− pi(Hi−1,Xi) ≤ ε′i ≤ 0.5 and is nonincreasing. For example, Assumption 7
is satisfied by ε-greedy with nonincreasing ε′i = εi for all i. However, in some special cases
such as Boltzmann exploration, pi(Hi−1,Xi) can be less than 0.5 if the estimated benefit is
negative. This can happen when the method for learning ITR (OWL in our design) and that
for estimating benefit (for example, linear regression) are different. While OWL recommends
D̂i−1(Xi), the difference between the estimated rewards of D̂i−1(Xi) and −D̂i−1(Xi) can be
negative. In this case, we also need the probability of a negative benefit to converge to zero
at a certain rate.

If we assume the true optimal value function V(f∗) is known and compare each Ri for
i = 1, . . . , n with it, we have the following result. Note that

∣∣V(f∗)− R̄n
∣∣ is a notion more

similar to the cumulative regret. Except for the randomness in rewards, the difference only
lies in the optimal value. While the cumulative regret considers maximum rewards for each
individual, we still focus on the population value.

Corollary 10 Let the assumptions in Theorems 1 and 7 hold. With a probability higher
than 1− e−δ for any δ > 0,

∣∣V(f∗)− R̄n
∣∣ ≤ C ′′«rcδ ∧ δ2

n
+ r

˜

1

n

n∑
i=1

ε′i

¸

+
1

n(n0 + i)

n−1∑
i=0

˜

(J +
a

(δ + log n)b)r
?
n0

+ rb(δ + log n) +
r2bJ

ε2i

b

i log3 i(δ + log n)

¸ff

,

where C ′′ is a constant depending on r, b, J, δ and the sequences {εi}ni=1, {ε′i}ni=1, if we take
i log3 i = 0 for i = 0.

The above corollary demonstrates the well-known exploration-exploitation tradeoff in
contextual bandits when the observed reward is compared to the true optimal value. The
first two terms on the left-hand side come from Theorem 7, which characterize the loss in
the value due to exploration and increases as ε′i increases. On the other hand, the last
term, which comes from Theorem 1, describes the regret of exploiting the estimated ITR
compared to the optimal ITR and decreases with more exploration. The optimal rate is
achieved when the two components strike a balance.

3.3 Tradeoff Between Training and Test Values

In this section, we discuss the tradeoff between the training value and the test value. To
better describe the convergence rates of training and test values, we can set a decreasing
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schedule for εn and ε′n. Here we assume εn and ε′n decreases polynomially with n since the
upper bounds in (5) and (7) are dominated by polynomial terms of n.

Theorem 11 Assume εn = ε0n
−(1−θ)/4 with ε0 ∈ (0, 0.5], θ ∈ (0, 1] and ε′n = ε′0n

−(1−θ′)/4

with ε′0 ∈ (0, 1), θ′ ∈ (−∞, 1]. Let Assumptions 1-7 hold and assume εn ≤ ε′n for all n. If
n0 = O(n), then the test value V(f̂n) converges to V(f∗) at a rate of Op(n

−θ/2(log n)3/2),

and the training value
∑n

i=1Ri/n converges to
∑n

i=1 V(f̂i−1)/n at a rate of Op(n
−(1−θ′)/4).

If we further assume that θ = θ′ and ε0 ≤ ε′0, then the two regrets converge at the same rate
Op(n

−1/6) when θ = 1/3.

The above results suggest that the convergence rate in the logarithmic scale is negative
in θ for the test regret and positive in θ′ for the training regret. When θ and θ′ are close to
0, {εi}ni=1 and {ε′i}ni=1 decay fast and the algorithm is greediest on the training set, leading
to a fast convergence of the training value and a slow convergence of the test value. On
the contrary, when θ = θ′ = 1, {εi}ni=1 and {ε′i}ni=1 are constant sequences that does not
change with the order i. The test value converges quickly while the training value may not
converge in this case. This demonstrates in theory why there is a tradeoff between training
and test values. Where the “balance” point is can be defined differently in difference
settings. Theorem 11 provides a balance point where the two rates match with each other.
In Sections 5 and 6, we will further demonstrate the tradeoff between training and test
values using numerical examples. Note that ε-greedy satisfies the assumptions with θ = θ′

and ε0 = ε′0.

4. Implementation

Recall that in theory we allow the randomization probability pi(Hi−1,Xi) to be a constant
or be dependent on the current covariates Xi and the history Hi−1. In implementation,
when pi(Hi−1,Xi) is a constant that only depends on the order i, the exploration method
becomes the special case ε-greedy. We call the full algorithm SRAT-E in this case.

To build a bridge between ε-greedy and UCB methods, for example LinUCB (Li et al.,
2010) in linear cases, we propose to let pi(Hi−1,Xi) depend on the history in the following
way. While OWL provide an estimation of ITR, we need a separate regression model to
show how much benefit a patient will gain from one treatment against the other. In the
case of a greatly positive benefit, we can assign the current patient D̂i−1(Xi) with a large
probability since we are almost sure that this treatment is the better one. On the contrary,
if the benefit is negative, we allow for more exploration. Specifically, let µ̂a(Hi−1,Xi) and
σ̂a(Hi−1,Xi) be the estimated mean and standard deviation of the reward of the ith patient
given the treatment a, where a ∈ {D̂i−1(Xi),−D̂i−1(Xi)}. Denote Ûa(αi,Hi−1,Xi) =
µ̂a(Hi−1,Xi) + αiσ̂a(Hi−1,Xi) as the upper confidence bound of the estimated reward,
where αi is a constant tuning parameter that does not depend on Gi−1 or Xi. Note that
the estimations rely on the regression model completely, since OWL does not provide an
estimation of rewards, but only provides a distance between the covariate point and the
decision boundary. Further define

B̂i(αi,Hi−1,Xi) = ÛD̂i−1(Xi)
(αi,Hi−1,Xi)− Û−D̂i−1(Xi)

(αi,Hi−1,Xi)
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as the UCB-based benefit, which is the difference between the estimated UCB of rewards
given two treatments. Let the probability pi be

pi(Hi−1,Xi) =

{
1− εi if B̂i(αi,Hi−1,Xi) ≥ 0,

max
{
εi, logit−1

{
B̂i(αi,Hi−1,Xi)

γi

}}
if B̂i(αi,Hi−1,Xi) < 0,

where γi is a constant tuning parameter that does not depend on Gi−1 or Xi. Recall that
we truncate the probability by εi because we require that pi is bounded away from 0 and
1. We call this method SRAT-B since the randomization probability is partially based on
Boltzmann exploration.

In practice, we can estimate µ̂a and σ̂a for a ∈ A by µ̂a(Hi−1,Xi) = XT
i β̂a(Hi−1) and

σ̂a(Hi−1,Xi) = [XT
i Ŵa(Hi−1)−1Xi]

1/2, where β̂a(Hi−1) and Ŵa(Hi−1) are the estimated
linear parameter and variance matrix before stage i. Following Li et al. (2010, Algorithm
1), the initial estimates can be obtained by

Ŵa(H0) = Id+(X(0)
a )TX(0)

a , Ŷa(H0) = (X(0)
a )TR(0)

a , and β̂a(H0) = Ŵa(H0)−1Ŷa(H0),

where
X(0)
a := [X

(0)
j ]T

j:A
(0)
j =a

and R(0)
a := [R

(0)
j ]T

j:A
(0)
j =a

for all a ∈ A. The identity matrix Id of dimension d is added to avoid the singularity of
Ŵa when the sample size is small. Then we iteratively update β̂a and Ŵa for a = Ai after
each stage i by

Ŵa(Hi) = Ŵa(Hi−1) +XiX
T
i , Ŷa(Hi) = Ŷa(Hi−1) +RiXi

and let β̂a(Hi) = Ŵa(Hi)
−1Ŷa(Hi). The parameters for the treatment not selected at the

stage i, which is a = −Ai, will not be updated at this stage.
When B̂i(αi,Hi−1,Xi) ≥ 0, it means that the regression model prefers D̂i−1(Xi) than

−D̂i−1(Xi). This is also the conclusion by the OWL model. Therefore, we are actually
requiring the treatment to follow D̂i−1 with high probability when the two models agree
with each other. However, when the two models disagree, we assign treatment −D̂i−1 with
a soft probability based on the estimated benefit.

In LinUCB, the treatment is taken as sign{Û1(αi,Hi−1,Xi)− Û−1(αi,Hi−1,Xi)} with
a probability 1, where the regression model is the ordinary least squares (OLS) model.
This implies that P(Ii = 1) = P(Ai = D̂i−1(Xi)) = 1[B̂i(αi,Hi−1,Xi) ≥ 0]. The actual
value of D̂i−1(Xi) does not really matter here since the probability is symmetric for the two
treatments. If D̂i−1(Xi) = 1, then

P(Ai = 1|Hi−1,Xi) = 1[Û1(αi,Hi−1,Xi)− Û−1(αi,Hi−1,Xi) ≥ 0];

otherwise, if D̂i−1(Xi) = −1, then

P(Ai = −1|Hi−1,Xi) = 1[Û−1(αi,Hi−1,Xi)− Û1(αi,Hi−1,Xi) ≥ 0]

= 1− P(Ai = 1|Hi−1,Xi)

and they are equivalent if P(Û1(αi,Hi−1,Xi) = Û−1(αi,Hi−1,Xi)) = 0.
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Figure 1: The randomization probability P(Ai = D̂i−1(Xi)|Hi−1,Xi) of SRAT-E, SRAT-B
and LinUCB when εi = 0.05 and γi = 0.4.

The relationship between SRAT-E, SRAT-B and LinUCB can be illustrated in Figure 1.
While the randomization probability of SRAT-E is not affected by the estimated benefit of
D̂i−1(Xi) over −D̂i−1(Xi), the probability of LinUCB is purely determined by this benefit.
Note that the dot-dashed line is symmetric about zero for LinUCB, since the value of
D̂i−1(Xi) does not affect the probability of Ai = 1 as we discussed before. SRAT-B is a
method that has an exploration probability in between, which actually approximates that
of LinUCB when εi → 0 and γ → 0. In this sense, our proposed variation of Boltzmann
exploration is a soft version of UCB. If we also take OLS to be our model for estimating
the benefit, we can view LinUCB as a limiting case of SRAT-B in the training process.
However, since the treatment rules are learnt from OLS and OWL respectively, the test
values are based on completely different final ITRs.

5. Simulation Study

We assess the empirical performance of SRAT on training and test samples using synthetic
data. Here we examine two scenarios. In both scenarios, let X be a 10-dimensional vector
(X1, X2, . . . , X10). Assume X has a joint distribution N(0,Σ) truncated by [−1, 1] for
each dimension, where Σ is the covariance matrix with 1 on the diagonal and 0.1 off-
diagonal. The treatment A is generated from {−1, 1} according to the SRAT algorithm and
other algorithms to be compared. Assume the reward R is normally distributed with mean
Q0(X, A) = m0(X) +T0(X, A) and variance ν0(X) = 0.2(X2

1X3 + 1). Here m0 is the main
effect and T0 is the treatment effect. The variance ν0 is allowed to be a function of X to
show that our proposed SRAT does not rely on the variance of rewards. We consider two
scenarios as follows:

1. Linear treatment effect T0(X, A) = 0.5(0.2−X1 −X2)A;

2. Nonlinear treatment effect T0(X, A) = 0.5(0.2−X2
1 −X2)A.
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In both scenarios, the main effect m0(X) = 1 + 2X1 +X2
2 + 2X2X3 is nonlinear. It can be

easily seen that the optimal ITR is determined by T0(X, A).
For our proposed SRAT algorithm, we first generate n0 patients along with their purely

randomized treatments and observed clinical outcomes. Then at each step i, we get a
new sample of feature variables Xi, and estimate its current optimal treatment by D̂i−1.
In accordance with our theoretical results in Example 1, we only use the linear kernel for
OWL. The package DTRlearn2 (Chen et al., 2019) is used to implement the OWL algorithm
with L2 penalty. It improves the learning performance by removing the main effect from
the rewards and takes care of negative rewards by flipping the sign of the reward and the
action simultaneously (Liu et al., 2018). Next, we sample the binary indicator Ii with a
probability {1− pi(Hi−1,Xi), pi(Hi−1,Xi)} and take Ai = IiD̂i−1(Xi). Here pi(Hi−1,Xi)
is defined in Section 4 for SRAT-E and SRAT-B differently, and the truncation parameter
εn is defined as

ε0n
−(1−θ)/4, where ε0 ∈ (0, 0.5], θ ∈ (0, 1]

as in Theorem 11. The final estimated ITR decision function f̂n will be evaluated using
the test data. We also include RCT, estimated by OWL, as a special case of SRAT with
ε0 = 0.5 and θ = 1 in our simulation.

To compare our algorithm with existing bandit methods in linear scenario, we also
implement LinUCB (Li et al., 2010) for demonstration. It is widely used in reinforcement
learning and its variation SupLinUCB (Chu et al., 2011) is known to be rate optimal in
contextual bandit problems with linear reward functions. LinUCB chooses the treatment
with the largest upper confidence bound of reward, which is estimated by linear regression.
It does not require a pilot trial for initialization, but we still generate one of size n0 for it
in consistency with our algorithm.

The active clinical trial (Minsker et al., 2016) is also compared here, which targets an
effective ITR. Minsker et al. (2016) applied the active learning technique in the clinical trial
and proposed to only conduct clinical trials on patients close to the decision boundary. In
this way, patients that will benefit from one of the treatments with a high probability can be
omitted from the trial and thus save experiment expenses and efforts. Minsker et al. (2016)
considered two nonparametric methods, Gaussian process regression (AL-GP) and kernel
smoothing (AL-BV) to construct a confidence interval around the decision boundary. The
actually recruited patients are assigned to each treatment with equal probabilities. Since
the two methods generally perform similarly in different scenarios, we only compare with
AL-GP in our simulation study. AL-GP also requires a pilot trial, and we take n0 as the
initial sample size as well.

We fit each estimation model of the corresponding algorithm with linear terms of
X1, . . . , X10 for scenario 1, and with both linear and quadratic terms of X1, . . . , X10 for
scenario 2. While SRAT-E, RCT, LinUCB and AL-GP involve only one model, SRAT-B
relies on both OWL and OLS models. Since at least 21 observations are needed to fit an
initial model with 20 predictors and an intercept for OWL in scenario 2, we choose n0 = 30
for both scenarios, which is almost the least possible for a reliable estimate of the initial
rule. By comparing different values of n0, we see that n0 does not affect the results of
SRAT-E and SRAT-B significantly. Larger n0 reduces randomness but does not improve
the average performance. This verifies the theoretical result that n0 is not a dominating
term in the theoretical bound as long as it has an order O(n).
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Figure 2: Scenario 1. The regret (logarithmic scale) and the false decision ratio on the
training or test set against sample size n.

We have proved the properties of training and test regrets of SRAT in theoretical anal-
ysis and they will be used here as an indication of training and test performance of each
algorithm. Each value function V is computed numerically using a sample of size 100, 000
randomly drew out of an independent population. The value function is estimated using
the mean reward on this set.

We first compare the convergence rate of regret for different algorithms. SRAT-E and
SRAT-B are implemented with ε0 = 0.1 and θ = 0.01 or 1. As will be discussed later in
Figure 4, the training and test regrets are monotone in the parameters ε0 and θ. Therefore,
to save space, we only show two possible combinations of parameters here. The scheduling
parameter γi for SRAT-B is taken as 0.999i so that it will not decay too fast to zero. RCT
is a special case of SRAT with ε0 = 0.5 and θ = 1. According to Li et al. (2010), the click-
through rate (mean reward) of LinUCB in news article recommendation does not change
much on the deployment bucket (test set) when α ≥ 0.2, while it decreases quickly on the
learning bucket (training set) as α increases from 0.2. In our experiment settings, α does
not affect training and test regrets significantly. Therefore, we will fix αi = 0.2 for all
i for LinUCB and SRAT-B in our following experiments. The process is repeated 1, 000
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Figure 3: The weighted sum of training and test regrets in scenario 1 when n = 800.

times and the resulting values are averaged across all iterations. To better illustrate the
polynomial relationship between training or test regret and the sample size n, we plot the
regret values and the sample sizes on the logarithmic scale. The false decision ratio, or
1 − accuracy in classification literature, is also displayed against n. One standard error of
the mean regret or the mean false decision ratio across the 1, 000 iterations is reported on
each point. The result of scenario 1 is plotted in Figure 2. The plot of scenario 2, Figure 7,
is included in the supplementary material since it shows a similar conclusion as scenario 1.

According to Figure 2, LinUCB is the greediest on the training process, with the least
regret and false decision ratio. As discussed in Section 4, LinUCB can actually be viewed as
a limiting case of SRAT-B on the training set. Indeed, our proposed greediest algorithms,
SRAT-E and SRAT-B with parameters ε0 = 0.1 and θ = 0.01, perform similarly as LinUCB
in terms of training regret. AL-GP and RCT take purely randomized treatments on the
training set, so they have the largest training regret and a 50% training accuracy. Since the
training regret is calculated based on V(f̂n−1) which is increasing as n grows, the training
regret actually increases for largely randomized methods. In theory, the training regret of
RCT is bounded by a constant that does not rely on n when the ε-sequence is constant.
SRAT-E and SRAT-B perform similarly in terms of regrets on both training and test sets,
but SRAT-B has a lower false decision ratio on the training set. The logarithms of their
training and test regrets are approximately linear in log n, which is consistent with our
theory.

On the test set, AL-GP and RCT perform the best due to their full exploration in the
training process. LinUCB needs to fit the regression model of rewards and thus relies on
both the main effect and the treatment effect model. In addition, to estimate the upper
confidence bound, it needs an assumption on the inference model. With these limitations,
the regret or false decision ratio of LinUCB on the test set does not decrease. When n is
small, the final ITR estimated by LinUCB can sometimes be optimal since the true ITR is
linear. However, the ITR converges to the projection onto that of the linear total reward
space when n is large and thus the average regret gets pulled up. On the other hand,
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Figure 4: Scenario 1 with ε0 = 0.5. The regret (logarithmic scale) and the false decision
ratio on the training or test set against parameter θ.

OWL tries to find the decision function that maximizes the reward directly. It only requires
a correct model of the treatment effect for consistency, without any assumption on the
main effect or the distribution of the error term. Therefore, SRATs with ε0 = 0.1, θ = 1
outperform LinUCB on the test set when n is larger than 200.

We plot a weighted sum of training and test regrets in Figure 3 to show their balance.
Specifically, the weighted sum is defined as

λRegrettest + (1− λ)Regrettrain = λ
1

n

n∑
i=1

[V(f̂i−1)−Ri] + (1− λ)[V(f∗)− V(f̂n)]

for λ ∈ [0, 1], so that it equals the training regret when λ = 0 and equals the test regret
when λ = 1. The sample size is fixed at 800. The initial value of truncation parameter
ε0 equals 0.1 and the decay parameter θ takes values in 0.01, 1 for SRAT-E and SRAT-B.
The plot shows that we should choose LinUCB when we consider the training regret only,
and should choose AL-GP or RCT when we consider the test regret only. However, if we
want to consider the performance on both the training and the test sets, we should choose
SRAT-E or SRAT-B with θ = 1.

The change of SRAT-E with different parameters θ and sample size n is demonstrated
in Figure 4 for scenario 1. Since SRAT-B performs quite similarly to SRAT-E as shown
in Figures 2 and 7, we omit it here to save space. The parameter θ can take values from
0.01, 0.1, 0.2, . . . , 1 and n can take values from 100, 200, 400, 800. Note that only when
ε0 = 0.5 and θ = 1, our algorithm represents pure RCT. Thus we only illustrate our
findings with ε0 = 0.5 here. Other ε0’s give similar conclusion, and smaller ε0 means better
training performance and worse test performance. The values and standard errors of the
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Figure 5: Sample size consideration for SRAT-E in scenario 1 with ε0 = 0.5. Correct
decision ratios on the test set against that on the training set. Each line represents
a sample size n and each point on the line represents a value of θ. Points to the
right correspond to smaller θ, and thus lead to higher correct decision ratio on
the training set and lower ratio on the test set.

mean regret and mean false decision ratio are shown. For all sample sizes, the plots clearly
show the tradeoff between training and test performance. Note that when θ increases, εi
increases for all i and the treatments are more randomized in the training process. While
the training regret increases with more randomization, the test regret decreases. The false
decision ratio shows a similar tendency. All the points with θ = 1 have an accuracy of
50% on the training set, which indeed illustrates the pure randomization. In accordance
with the theory, the logarithm of training and test regrets are approximately linear in θ.
In practice, the training regret is more affected than the test regret by θ. As shown in
Figure 4, when n = 800, the training regret increases by e−1.27 − e−2.93 = 0.227 while the
test regret decreases by e−3.85 − e−4.91 = 0.014 when θ increases from 0.01 to 1.

Using this simulation example, we can also illustrate how to find the sample size needed
for a clinical trial of certain purposes. Given different requirements for the trial and the
population, we need different sample sizes. Here we illustrate the situation when the pro-
portion of patients assigned the better treatments is required to reach a certain level in
Figure 5 for SRAT-E in scenario 1. Note that the variation trends of correct decision ratios
against θ are opposite for the training and test data. In particular, θ should be small enough
so that the decision process is greedy on the training set, and in the meanwhile it should
be large enough so that the final ITR is efficient on the test set. It is clear that the two
accuracies are negatively correlated. For example, when we need the training ratio to be
greater than 65%, θ ≤ 0.1 for n = 150, θ ≤ 0.2 for n = 200, θ ≤ 0.3 for n = 250, θ ≤ 0.4
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Test
Training

0.74 0.78 0.82 0.86 0.90

0.49 50(1.0) 100(1.0) 150(1.0) 300(1.0) 800(1.0)
0.55 50(0.6) 100(0.7) 150(0.7) 300(0.8) 800(0.8)
0.60 50(0.1) 100(0.3) 200(0.6) 350(0.6)
0.65 150(0.1) 150(0.1) 250(0.3) 400(0.4)
0.70 350(0.01) 350(0.01) 350(0.01) 500(0.2)

Table 1: Clinical trial sample sizes needed for different requirements of correct decision
ratios on the training and test sets.

for n = 300, θ ≤ 0.4 for n = 350, θ ≤ 0.4 for n = 400, θ ≤ 0.5 for n = 500, θ ≤ 0.5 for
n = 600, θ ≤ 0.5 for n = 700, and θ ≤ 0.6 for n = 800 will all do. When we need the test
ratio to be greater than 86%, θ ≥ 0.8 for n = 300, θ ≥ 0.6 for n = 350, θ ≥ 0.4 for n = 400,
θ ≥ 0.2 for n = 500, θ ≥ 0.1 for n = 600, any θ for n = 700, and any θ for n = 800 all
satisfy the requirement. However, only points lie in the top right rectangle marked by the
two dot-dashed lines meet the two requirements simultaneously. The smallest sample size
among these points is n = 400, with θ = 0.4. Other levels of the correct decision ratios and
their required sample sizes are listed in Table 1. Since larger θ generates better ITR and
ITR is our ultimate goal, we report the largest θ corresponding to the minimum sample size
required.

6. Real Data Analysis

We use a real study to illustrate the performance of the proposed method. The Nefazodone-
CBASP trial was designed to compare the efficacy of several treatment options for patients
with nonpsychotic chronic major depressive disorder (MDD) (Keller et al., 2000). Specifi-
cally, 681 outpatients were randomized to either Nefazodone, Cognitive Behavioral-Analysis
System of Psychotherapy (CBASP), or the combination of Nefazodone and CBASP with
equal probabilities. The primary outcome was the score on the 24-item Hamilton Rating
Scale for Depression (HRSD). Lower HRSD scores indicate satisfactory therapeutic effi-
cacy. T -tests have shown that the combination treatment generated significantly lower
HRSD scores than the other two treatments, and there are no significant differences be-
tween the Nefazodone group and the CBASP group. However, CBASP requires two onsite
visits to the clinic weekly, which burdens patients compared with Nefazodone alone. Con-
sequently, we want to investigate whether CBASP is necessary for all patients. Here we
compare Nefazodone with the combination treatment only. We consider three feature vari-
ables for treatment suggestions: the baseline HRSD scores, the alcohol dependence, and the
HAMA somatic anxiety scores, following Minsker et al. (2016), which referred to Gunter
et al. (2007). There were 436 patients with complete information on treatments, rewards
and feature variables, among which 216 were randomized to Nefazodone and 220 belonged
to the combined treatment group.
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Figure 6: Mean cross-validated HRSD scores against the sample size n.

To simulate an adaptive clinical trial, we first generate a treatment suggestion based on
the tailoring variables of the next patient using our algorithm. If the actual treatment taken
is consistent with our suggestion, we take down the whole record of this patient, including
feature variables, the treatment and the reward; otherwise, we drop this record and move
on to the next. Note that the first n0 suggestions are given with equal probabilities on each
treatment. Five-fold cross validation is used here to avoid overfitting. Specifically, the data
set is partitioned into five parts randomly. Four of the five parts are used iteratively as
training data to apply our algorithm in generating the treatment suggestion. The last part
is used as the test set to evaluate the ITR. The performance on the test data is evaluated
using an unbiased estimator of the value function V(f) (Qian and Murphy, 2011; Minsker
et al., 2016)

n∑
i=1

Ri1 rAi = sign{f(Xi)}s
πi(Ai;Xi)

O

n∑
i=1

1 rAi = sign{f(Xi)}s
πi(Ai;Xi)

.

Here the rewards Ri’s are defined as the negative HRSD scores.

The initial sample size n0 is fixed at 50. The recruitment stops when the sample size
n reaches 100, or the training data run out. We average the mean reward on each test
fold for n = 10, 20, . . . , 100. The process is repeated 1, 000 times. Finally, the means and
standard errors of means across all iterations are reported. From Section 5, we know that
the training and test values are monotone in ε0 and θ. Therefore, we only demonstrate the
situation when ε0 = 0.1 and θ = 0.01, 1. The contextual bandit algorithm LinUCB and the
active clinical trial method AL-GP are also compared here. Figure 6 displays the negative
mean rewards, that is, the mean cross validated HRSD scores, against the sample size n.
Lower scores are more satisfactory.
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On the training set, LinUCB produces the least HRSD scores on the training set and
SRAT-B with ε = 0.1, θ = 0.01 is the second best. Note that LinUCB can be viewed as a
limiting case of SRAT-B on the training set as discussed before, and is actually the greediest
among the algorithm family. Patients taking purely randomized treatments suggested by
RCT and AL-GP have higher HRSD scores. On the test set, RCT produces the most
desirable HRSD score, followed by SRAT-B with θ = 1. LinUCB is slightly worse due to
its greediness. AL-GP is not competitive on both sets, maybe because the nonparametric
method is not efficient when the sample size is small.

7. Discussion

Our goal is to construct an efficient ITR, and in the meantime make the data collection pro-
cess, the clinical trial, as beneficial to the patients as possible. We propose a classification-
based bandit algorithm, SRAT, that uses OWL to update the ITR and ε-greedy or a vari-
ation of Boltzmann exploration for exploration. This is a work of finding the tradeoff
between the ethics of patients involved in the clinical trial and the general population. We
also present a new theoretical analysis tool based on empirical process for estimating finite
sample risk bound on martingale sequences. Given different requirements of training and
test performance, the sample size needed is illustrated by simulation.

In this paper, we assume that the true optimal decision function lies in the function
class where we search for the estimated function, and proved a n−1/2 convergence rate of
test regret up to logarithmic factors for a constant {εi}ni=1 sequence. If tailoring variables
have high dimensions, a penalty term can be added in finding the optimal solution to avoid
overfitting. For i.i.d. data, when Gaussian kernel is used with a penalty term and the
optimal function need not be in the function class, Steinwart and Scovel (2007) proved a
rate faster than n−1/2 for SVM under Tsybakov’s noise assumption and geometric noise
assumption, and Zhao et al. (2012) proved a rate a little bit slower than n−1/2 for OWL
under the geometric noise assumption. How to extent these ideas to sequentially generated
data is still an open question.

Currently, the estimated ITR is updated after each trial. However, it can be a burden on
the computation resources and running time if the algorithm runs slowly or the sample size
is too large. Batch sampling is an efficient approach that worths investigation. Apart from
accelerating the training process, it also allows in-time evaluation of the current estimated
optimal ITR. Part of the batch can be drew randomly as a test set. How the estimation
improves through time can be recorded as well.

Another interesting question is how to set up an early stopping rule. We can stop
enrolling new patients into a clinical trial if the learnt ITR is good enough. This can be
done by constructing a confidence interval for the estimated value of the learnt ITR. If we
have enough confidence that the estimated value is satisfactory in the clinical sense, we can
stop the trial at this point. Future work is needed on constructing a confidence interval for
sequentially generated data.

This article focuses on a single-stage problem. However, it is widely recognized that some
diseases require multiple treatments throughout the therapeutic session. For example, the
sequential multiple assignment randomized trial (SMART) is a way of connecting potential
outcomes with observed data (Lavori and Dawson, 2000; Murphy, 2005; Murphy et al.,
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2007). Patients are randomized at every decision point. An abundance of literature has
discussed this issue on independent data (Zhao et al., 2015; Liu et al., 2018). Problems
on infinite horizon can be solved with additional Markovian assumptions and offline data
(Luckett et al., 2020). However, multi-stage decision problems with slack constraints on the
value function or with online data still worth investigation.
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Appendix A. Preliminaries

We provide useful lemmas used for proving our main theorems, among which Lemmas 12
to 15 are quoted from existing literature without proof.

Talagrand’s inequality (Talagrand, 1994; Bousquet, 2002) below is used to prove the
convergence rate in Theorem 1 for i.i.d. data in the pilot trial. The following version is
taken from Steinwart and Scovel (2007, Theorem 5.3).

Lemma 12 (Talagrand’s inequality) Assume {Xi}ni=1 are independent X -valued ran-
dom variables on P. Let F be a countable set of functions from X to R and assume that
all functions f in F are P-measurable, square-integrable such that ‖f‖∞ ≤ U < ∞ and
E[f(X1)] = · · · = E[f(Xn)] = 0. Let Z := supf∈F

∑n
i=1 f(Xi), µ

∗ := EZ and let σ2 be a

positive real number such that σ2 ≥ 1
n

∑n
i=1 supf∈F Var[f(Xi)]. Then for all δ ≥ 0,

P
´

Z ≥ 3µ∗ +
?

2δσ2n+ Uδ
¯

≤ e−δ.

The following lemma gives an analogy of Talagrand’s inequality on martingale processes.
A Z-valued tree z of depth n is a rooted complete binary tree with nodes generated by
elements of Z. The tree z = (z1, . . . ,zn) is a sequence of labeling functions such that
zi : {±1}i−1 7→ Z. Let η = (η1, . . . , ηn) be a sequence of i.i.d. Rademacher random
variables. Then the sequential Rademacher complexity of a function class F ⊂ RZ on a
Z-valued tree z is defined as

Rn(F , z) := E

«

sup
f∈F

1

n

n∑
i=1

ηif(zi(η))

ff

.

Further, define

Rn(F) := sup
z
Rn(F , z),

and Rakhlin et al. (2015) showed that

1

2
E sup
f∈F

Mn(f) ≤ Rn(F) ≤ 2 sup
P

E sup
f∈F

Mn(f) +
D

2
?
n
, (8)
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where D = infz∈Z supf,f ′∈F [f(z)− f ′(z)] ≥ 0. This indicates that Rn(F) and the expecta-
tion of the martingale process suprema supP E supf∈F Mn(f) are on the same scale.

The covering numbers are also extended to sequential data. A set V of R-valued
trees of depth n is a (sequential) ε-cover with respect to Lp-norm of F ⊂ RZ on a tree
z of depth n if for any f ∈ F and any η ∈ {±1}n, there exists v ∈ V such that
`

1
n

∑n
i=1 |vi(η)− f(zi(η))|p

˘1/p ≤ ε. The sequential covering number of a function class
F on a given tree z is defined as

Np(ε,F , z) = min {|V | : V is an ε-cover with respect to Lp-norm of F on z} .

Moreover, define the maximal Lp covering number of F over depth-n trees as Np(ε,F , n) =
supzNp(ε,F , z).

Lemma 13 (Lemma 15 in Rakhlin et al. 2015) For F ⊂ [−1, 1]Z , for n ≥ 2 and any
t > 0, we have that

P

˜

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− Ei−1f(Zi)

∣∣∣∣∣ > t

¸

≤ 8L exp

ˆ

− t2

c log3 nR2
n(F)

˙

(9)

under the mild assumptions Rn(F) ≥ 1/n and N∞(2−1,F , n) ≥ 4. Here c is an absolute
constant and L > e4 is such that L >

∑∞
j=1N∞(2−j ,F , n)−1.

From the above lemma, we can see that the concentration inequality essentially relies
on the sequential Rademacher complexity Rn(F), which can be upper and lower bounded
by functions of E supf∈F Mn(f).

To obtain a bound on the suprema of martingale process over a finite set, we take use
of a martingale inequality and a conclusion about Lψ-Orlicz norm. Freedman’s inequality
is an extension of Bernstein’s inequality to martingale difference sequences.

Lemma 14 (Freedman’s inequality, Freedman 1975) Suppose {Xi}i≥1 is a Gi-adapted
martingale difference sequence and Sn =

∑n
i=1Xi. Then for all t > 0,

P(Sn ≥ t) ≤ exp

{
−1

2

t2

‖〈S〉n‖∞ + maxi ‖Xi‖∞ t/3

}
,

where 〈S〉n =
∑n

i=1 E
`

X2
i |Gi−1

˘

is the quadratic variation of S.

The following lemma gives a bound on the expectation of suprema over a finite set using
Lψ-Orlicz norm.

Lemma 15 (Van der Vaart and Wellner 1996) Suppose that X1, . . . , Xn are arbitrary
random variables satisfying the probability tail bound

P(|Xi| > t) ≤ 2 exp

{
−1

2

t2

d+ cx

}
,
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for all t > 0 and i = 1, . . . , n for fixed positive numbers c and d. Then there is a universal
K <∞ so that ∥∥∥∥max

1≤i≤n
|Xi|

∥∥∥∥
ψ1

≤ K
{
cLog n+

?
d
a

Log n
}
,

where the Lψ-Orlicz norm is defined as ‖X‖ψ = inf {c > 0 : Eψ(|X| /c) ≤ 1} for any random

variable X, and ψp = ex
p − 1 is a Young modulus for each p ≥ 1.

The following inequality is a key step in the proof of Lemma 6. It bounds the expectation
of the suprema of a martingale process over a finite set, after which the bound on a general
set can be derived.

Corollary 16 Suppose {Xi}i≥1 is a X -valued, Gi-adapted martingale difference sequence.
For any finite set F : X 7→ R,

E
∥∥?

nMn

∥∥
F À

1
?
n

max
f∈F
‖f‖∞ Log |F|+ 1

?
n

max
f∈F

b

‖〈M〉n‖∞
a

Log |F|,

where 〈M〉n =
∑n

i=1 Var[f(Xi)|Gi−1].

Proof First we rewrite Lemma 14 in the form of a martingale process. For a Gi-adapted
sequence {Yi}i≥1, take E[f(Yi)|Gi−1] − f(Yi) as Xi in Lemma 14, which is a martingale
difference sequence. The supremum term can be bounded as ‖E[f(Yi)|Gi−1]− f(Yi)‖∞ ≤
2 ‖f‖∞. Scale both sides by a factor of

?
n and we get

P(
∣∣?nMn(f)

∣∣ > t) ≤ 2 exp

{
−1

2

t2

‖〈M〉n‖∞ /n+ 2 ‖f‖∞ t/(3
?
n)

}
, (10)

where t > 0 and 〈M〉n =
∑n

i=1 Var[f(Yi)|Gi−1]. The result follows by applying the inequal-
ity (10) to Lemma 15 and expand the Lψ-Orlicz norm.

The following lemma shows how the dependence of πi on f̂i−1 can be canceled by the
sampling probability so that it reduces to a constant term.

Lemma 17 Under our problem settings, remember that the covariates Xi are i.i.d. Be-
sides, Gi is defined as σ{Hi}, i ∈ N and f̂i−1 is the estimated ITR based on Hi−1. For any
function G : X 7→ R, we have

E
„

G(Xi)

πi(Ai;Hi−1,Xi)



= E
„

G(Xi)

πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1



= 2E[G(Xi)], (11)

E
„

G(Xi)

π2
i (Ai;Hi−1,Xi)



= E
„

G(Xi)

π2
i (Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1



≤
ˆ

1

εi
+

1

0.5

˙

E[G(Xi)]. (12)

Proof For the first equation (11), notice that by tower property and the definition of Ii,

E
„

G(Xi)

πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1



=E

{
G(Xi)E

«

1 pIi = 1q

πi(f̂i−1(Xi);Hi−1,Xi)
+

1 pIi = −1q

πi(−f̂i−1(Xi);Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

ˇ

Xi,Gi−1

ffˇ

ˇ

ˇ

ˇ

ˇ

Gi−1

}
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We have that πi(f̂i−1(Xi);Hi−1,Xi) is a fixed function of Hi−1,Xi and that it equals
E[1 pIi = 1q |Hi−1,Xi]. It is also true for the second term in the bracket. Therefore, the
right-hand side equals E r2G(Xi)|Gi−1s. The result follows from the assumption that Xi is
independent of the history. The first equality in (11) can be proved by taking expectation
of both sides of the equation.

Similarly, when G is divided by the square term of πi in (12),

E
„

G(Xi)

π2
i (Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1



=E

{
G(Xi)E

«

1 pIi = 1q

π2
i (f̂i−1(Xi);Hi−1,Xi)

+
1 pIi = −1q

π2
i (−f̂i−1(Xi);Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

ˇ

Xi,Gi−1

ffˇ

ˇ

ˇ

ˇ

ˇ

Gi−1

}

=E

{
G(Xi)

«

1

πi(f̂i−1(Xi);Hi−1,Xi)
+

1

πi(−f̂i−1(Xi);Hi−1,Xi)

ff
ˇ

ˇ

ˇ

ˇ

ˇ

Gi−1

}
.

Since one of πi(f̂i−1(Xi);Hi−1,Xi) and πi(−f̂i−1(Xi);Hi−1,Xi) must be lower bounded
by 0.5 and the other one is lower bounded by εi, the inequality follows. Now for the first
term in (12), its upper bound can be proved by taking expectation of both sides of the
inequality.

Appendix B. Proof of Lemma 6

The proof essentially follows the proof of Van der Vaart and Wellner (1996, Theorem 2.5.6),
the bracketing entropy Donsker theorem, with an extension to martingale sequences.

In this proof, we assume that there exists a constant τ2 such that the second conditional
moment E(R2|X, A) ≤ τ2. This also implies that the conditional variance Var(R|X, A) is
bounded by τ2. However, we will show that τ2 does not appear in the dominating term of
the final bound.

Proof Define L2,∞(P) norm as ‖f‖P,2,∞ = supx>0[x2P(|f(X)| > x)]1/2. Note that L2,∞(P)
norm is not actually a norm, but it can be shown that there is a norm equivalent to it up
to a constant multiple. The assumption (4) implies that∫ ∞

0

b

logN[](η,F , L2,∞(P))dη +

∫ ∞
0

a

logN(η,F , L2(P))dη <∞,

because ‖f‖P,2 ≥ ‖f‖P,2,∞ for any measurable function f , and we have N[](η,F , L2(P)) ≥
N(η,F , L2(P)) for any function class F .

For each positive integer q, define a bracketing number N1
q := N[](2

−q,F , L2,∞(P)) and

a covering number N2
q := N(2−q,F , L2(P)). Then there are two partitions {Fqj}

N1
q

j=1 and

{Fqk}
N2

q

k=1 of F into disjoint sets such that
∑

q 2−q
b

logN1
q < ∞ and

∑
q 2−q

b

logN2
q <

∞. Take intersection of the two partitions that correspond to the bracketing number and
covering number respectively. The total number of sets will be Nq := N1

qN
2
q and this joint
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partition {Fqj}
Nq

j=1 satisfies the combined conditions:∑
q

2−q
a

logNq <∞, (13)∥∥∥∥∥( sup
f,g∈Fqj

|f − g|)∗
∥∥∥∥∥
P,2,∞

< 2−q, ∀j ∈ {1, . . . , Nq} , (14)

sup
f,g∈Fqj

‖f − g‖P,2 < 2−q, ∀j ∈ {1, . . . , Nq} . (15)

Furthermore, the sequence of partitions can be chosen to be nested. To see this, consider

a sequence of partitions
{
F̄qj
}N̄q

j=1
that are possibly not nested. Take the partition at stage

q to consist of all intersections of the form
⋂q
p=1 F̄p,ip . Then this generates Nq = N̄1 . . . N̄q

sets. Conditions (13) - (15) continue to hold since (log
∏q
p=1 N̄p)

1/2 ≤
∑q

p=1(log N̄p)
1/2.

Now for each q, fix a function fqj ∈ Fqj to be the representative of the set Fqj and let ξ
be the function of choosing the representative. In addition, let ∆ be the function of finding
the “size” of the set that a function belongs to. Then we have

ξqf :=
∑
j

I(f ∈ Fqj)fqj , and ∆qf :=
∑
j

I(f ∈ Fqj) sup
f1,f2∈Fqj

|f1 − f2|∗ .

For the weighted function hf of f , define

ξqh
f := hξqf , and ∆qh

f :=
∑
j

I(f ∈ Fqj) sup
f1,f2∈Fqj

∣∣∣hf1 − hf2∣∣∣∗ .
Note that ∆qh

f =
∑

j I(f ∈ Fqj) supf1,f2∈Fqj

∣∣gf1 − gf2∣∣∗ and |φ(Af1)− φ(Af2)| ≤ |f1 − f2|
since φ(Af) is Lipschitz 1 with respect to f . Hence we obtain that |Ri|∆qh

f (Zi) ≤
∆qf(Xi)/πi(Ai; f̂i−1). Note that ξqh

f and ∆qh
f form sets of only Nq functions when hf

ranges over F . We will actually approximate each hf with ξqh
f and ∆qh

f . While F may
be infinite, ξqh

f and ∆qh
f run over finite sets.

Let Log(x) := 1 + log(x). For each fixed n and q0, define truncation levels aq and
indicator functions Aq, Bq for q ≥ q0 as

aq = 2−q/
a

LogNq+1, ∀q ≥ q0,

Aq−1f = 1
{

∆q0f ≤
?
naq0 , . . . ,∆q−1f ≤

?
naq−1

}
, ∀q > q0,

Bqf = Aq−1f1
{

∆qf >
?
naq
}
, ∀q > q0,

Bq0f = 1
{

∆q0f >
?
naq0

}
.

Since the partitions are nested, the functions Aq and Bq are constants in f on each set Fqj
in level q. The key observation here is that

hf − ξq0hf = (hf − ξq0hf )Bq0f +

∞∑
q=q0+1

(hf − ξqhf )Bqf +

∞∑
q=q0+1

(ξqh
f − ξq−1h

f )Aq−1f (16)

pointwise in x. To see this, note that either Bqf = 0 for all q or there is a unique q1 such
that Bqf = 1. In the former case, the first two terms are all zero and the third term has
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canceling components and converges to f − ξq0f . In the latter case, the right-hand side of
(16) is equivalent to hf − ξq1hf +

∑q1
q=q0+1(ξqh

f − ξq−1h
f ), and the result follows.

Write ‖Mn(f)‖F as the supremum of |Mn(f)| as f ranges over F . Then E∗ supf∈FWn(f)
can be bounded as

E∗
∥∥?

nWn(f)
∥∥
F ≤E

∗
∥∥∥?

nMn(hf − ξq0hf )Bq0f
∥∥∥
F

(17)

+ E∗
∥∥∥∥∥∥
∞∑

q=q0+1

?
nMn(hf − ξqhf )Bqf

∥∥∥∥∥∥
F

(18)

+ E∗
∥∥∥∥∥∥
∞∑

q=q0+1

?
nMn(ξqh

f − ξq−1h
f )Aq−1f

∥∥∥∥∥∥
F

(19)

+ E∗
∥∥∥?

nMnξq0h
f
∥∥∥
F
. (20)

To bound the first term (17), note that for any function class H with some envelope
function H, |Mn(h)| ≤ 1

n

∑n
i=1(Ei−1H(Zi) +H(Zi)) for all h ∈ H. Then we have

E∗ ‖Mn(h)‖H ≤ E∗
∥∥∥∥∥ 1

n

n∑
i=1

Ei−1H(Zi) +H(Zi)

∥∥∥∥∥
H

=
2

n

n∑
i=1

E∗H(Zi).

An envelope function of (hf − ξq0hf )Bq0f is

|Ri|
πi(Ai;Hi−1,Xi)

∣∣∣hf − ξq0hf ∣∣∣Bq0f ≤ r

πi(Ai;Hi−1,Xi)
2F1

{
2F >

?
naq0

}
by the definitions of envelope function F and indicator function Bq0 . Therefore,

E∗
∥∥∥?

nMn(hf − ξq0hf )Bq0f
∥∥∥
F
≤ 2

?
n

n∑
i=1

E∗
r

πi(Ai;Hi−1,Xi)
2F (Xi)1

{
2F (Xi) >

?
naq0

}
=

4r
?
n

n∑
i=1

E∗2F (Xi)1
{

2F (Xi) >
?
naq0

}
≤ 4r

aq0
E∗

“

(2F )2
1
{

2F >
?
naq0

}‰
À
r

aq0
‖F‖2P,2 .

The equality comes from Lemma 17 and the third line is true since Xi’s are i.i.d. Choose
q0 such that 2−q0 = δ ‖F‖P,2 for some δ > 0. Then

E∗
∥∥∥?

nMn(hf − ξq0hf )Bq0f
∥∥∥
F

À r2−q0
a

LogNq0 . (21)

For any function class H with some envelope function H, we can bound |Mnh| by
1
n

∑n
i=1(Ei−1H + H) = −MnH + 2

n

∑n
i=1 Ei−1H for any h ∈ H. Since

∣∣(hf − ξqhf )Bqf
∣∣ ≤
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|Ri|∆qfBqf/πi(Ai; f̂i−1), the second term (18) can be bounded by

E∗
∥∥∥∥∥∥
∞∑

q=q0+1

?
nMn(hf − ξqhf )Bqf

∥∥∥∥∥∥
F

=

∞∑
q=q0+1

E∗
∥∥∥∥?

nMn
|Ri|

πi(Ai;Hi−1,Xi)
∆qfBqf

∥∥∥∥
F

+
∞∑

q=q0+1

2
?
nE∗

∥∥∥∥∥ 1

n

n∑
i=1

Ei−1
|Ri|

πi(Ai;Hi−1,Xi)
∆qfBqf

∥∥∥∥∥
F

.

(22)

By Corollary 16, for each q in the first term in (22), the expectation can be split into two
parts:

E∗
∥∥∥∥?

nMn
|Ri|

πi(Ai;Hi−1,Xi)
∆qfBqf

∥∥∥∥
F

À
1

?
n

max
f∈F

∥∥∥∥ |Ri|
πi(Ai;Hi−1,Xi)

∆qfBqf

∥∥∥∥
∞

LogNq

+
1

?
n

max
f∈F

g

f

f

e

∥∥∥∥∥
n∑
i=1

Var

„

|Ri|
πi(Ai;Hi−1,Xi)

∆qfBqf

ˇ

ˇ

ˇ

ˇ

Gi−1



∥∥∥∥∥
∞

a

LogNq.

Since ∆qfBqf ≤ ∆q−1fAq−1f ≤
?
naq−1, the L∞ term in the first part can be bounded by∥∥∥∥ |Ri|

πi(Ai;Hi−1,Xi)
∆qfBqf

∥∥∥∥
∞
≤ r

εn

?
naq−1 (23)

for any f ∈ F . For the second part, by the assumption of the second conditional moment,∥∥∥∥∥
n∑
i=1

Var

„

|Ri|
πi(Ai;Hi−1,Xi)

∆qfBqf

ˇ

ˇ

ˇ

ˇ

Gi−1



∥∥∥∥∥
∞

≤
n∑
i=1

∥∥∥∥E „

τ2

π2
i (Ai;Hi−1,Xi)

∆2
qfB

2
qf

ˇ

ˇ

ˇ

ˇ

Gi−1

∥∥∥∥
∞

≤
n∑
i=1

∥∥∥∥ˆ 1

εi
+

1

0.5

˙

E
`

τ2∆2
qfB

2
qf

˘

∥∥∥∥
∞
.

(24)

The last inequality comes from Lemma 17. For any non-negative random variable X, we
have the inequality ‖X‖22,∞ ≤ supt>0 tE rX1(X > t)s ≤ 2 ‖X‖22,∞. Then

?
naqE p∆qfBqfq ≤

?
naqE

`

∆qf1(∆qf >
?
naq)

˘

≤ 2 ‖∆qf‖2P,2,∞ ≤ 2 · 2−2q. (25)

Since ∆qfBqf is bounded by
?
naq−1 for q > q0, it follows that

E
`

∆2
qfB

2
qf

˘

≤
?
naq−1E p∆qfBqfq ≤ 2

aq−1

aq
2−2q.
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Using Lemma 17 again and the inequality (25), the second term in (22) can be bounded as

E∗
∥∥∥∥∥ 1

n

n∑
i=1

Ei−1
|Ri|

πi(Ai;Hi−1,Xi)
∆qfBqf

∥∥∥∥∥
F

≤ 1

n

n∑
i=1

E∗ ‖2rE p∆qfBqfq‖F ≤ 4r
1

?
naq−1

2−2q.

(26)

Now apply the above bounds (23), (24), (26) on (18) to find

E∗
∥∥∥∥∥∥
∞∑

q=q0+1

?
nMn(hf − ξqhf )Bqf

∥∥∥∥∥∥
F

À

∞∑
q=q0+1

»

–

1
?
n

r

εn

?
naq−1 LogNq +

1
?
n

g

f

f

e2τ2

n∑
i=1

ˆ

1

εi
+

1

0.5

˙

aq−1

aq
2−2q

a

LogNq

+
?
n4r

1
?
naq−1

2−2q



À

∞∑
q=q0+1

»

–

r

εn
+ τ

g

f

f

e

1

n

n∑
i=1

1

εi
+ r

fi

fl 2−q
a

LogNq.

(27)

The last inequality comes from the fact that aq−1/aq ≤ (aq−1/aq)
2 for decreasing aq.

To handle the third term (19), first note that it is bounded by

∞∑
q=q0+1

E∗
∥∥∥∥?

nMn
|Ri|

πi(Ai;Hi−1,Xi)
∆q−1fAq−1f

∥∥∥∥
F
,

since the partition is nested. Then we can use Corollary 16 as in the bound of the second
term (18). The maximum of L∞ norm over F in the first part is upper bounded by
r
?
naq−1/εn. For the second part, use Lemma 17 and assumption (15) to find∥∥∥∥∥

n∑
i=1

Var

„

|Ri|
πi(Ai;Hi−1,Xi)

∆q−1fAq−1f

ˇ

ˇ

ˇ

ˇ

Gi−1



∥∥∥∥∥
∞

≤

∥∥∥∥∥
n∑
i=1

E
„

τ2

π2
i (Ai;Hi−1,Xi)

∆2
q−1f

ˇ

ˇ

ˇ

ˇ

Gi−1



∥∥∥∥∥
∞

≤τ2
n∑
i=1

ˆ

1

εi
+

1

0.5

˙ ∥∥E∆2
q−1f

∥∥
∞

≤τ2
n∑
i=1

ˆ

1

εi
+

1

0.5

˙

(2−q+1)2.
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Combining the two parts together, we have

E∗
∥∥∥∥∥∥
∞∑

q=q0+1

?
nMn(ξqh

f − ξq−1h
f )Aq−1f

∥∥∥∥∥∥
F

À

∞∑
q=q0+1

»

–

1
?
n

r

εn

?
naq−1 LogNq +

1
?
n

g

f

f

e2τ2

n∑
i=1

ˆ

1

εi
+

1

0.5

˙

2−2q+2
a

LogNq

fi

fl

À

∞∑
q=q0+1

»

–

r

εn
+ τ

g

f

f

e

1

n

n∑
i=1

1

εi

fi

fl 2−q
a

LogNq.

(28)

For the last term (20), consider two cases on whether the envelope function F is bounded
by

?
naq0 or not. Apply Corollary 16 in the first case. With the supremum part bounded

by ∥∥∥ξq0hf1 `F ≤ ?
naq0

˘

∥∥∥
∞
≤ r

εn

∥∥2F1
`

F ≤
?
naq0

˘∥∥
∞ ≤

2r

εn

?
naq0

and the conditional variance part bounded by∥∥∥∥∥
n∑
i=1

Var
`

ξq0h1
`

F ≤
?
naq0

˘ˇ

ˇGi−1

˘

∥∥∥∥∥
∞

≤ τ2
n∑
i=1

ˆ

1

1− εi
+

1

εi

˙

‖F‖2P,2 ,

we have

E∗
∥∥∥?

nMnξq0h
f
1
`

F ≤
?
naq0

˘

∥∥∥
F

À
1

?
n

r

εn

?
naq0 LogNq0 +

1
?
n

g

f

f

eτ2

n∑
i=1

ˆ

1

εi
+

1

0.5

˙

‖F‖2P,2
a

LogNq0

À
r

εn
2−q0

a

LogNq0 + τ

g

f

f

e

1

n

n∑
i=1

1

εi
‖F‖P,2

a

LogNq0 .

In the second case, since ξq0h
f
1 pF >

?
naq0q is bounded by 2r

εn
F1 pF >

?
naq0q,

E∗
∥∥∥?

nMnξq0h
f
1
`

F >
?
naq0

˘

∥∥∥
F

À
r

aq0
‖F‖2P,2

by the same argument in the bounds for (21). Therefore, by applying the triangle inequality
and choosing q0 so that 2−q0 = δ ‖F‖P,2 for some constant δ > 0,

E∗
∥∥∥?

nMnξq0h
f
∥∥∥
F

À
r

εn
2−q0

a

LogNq0 + τ

g

f

f

e

1

n

n∑
i=1

1

εi
‖F‖P,2

a

LogNq0 +
r

aq0
‖F‖2P,2

À

»

–

r

εn
+ τ

g

f

f

e

1

n

n∑
i=1

1

εi
+ r

fi

fl 2−q0
a

LogNq0 ,

(29)
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where Nq0 = N[](δ ‖F‖P,2 ,F , L2(P)).

Finally, combine the four upper bounds (21), (27), (28) and (29) together to get

E∗
∥∥?

nWn(f)
∥∥
F À

∞∑
q=q0

»

–

r

εn
+ τ

g

f

f

e

1

n

n∑
i=1

1

εi
+ r

fi

fl 2−q
a

LogNq

À
r

εn
J[](‖F‖P,2 ,F , L2(P)).

Appendix C. Proof of Theorem 1

Using Lemma 13 and Lemma 6, we can give our proof of Theorem 1. Apart from applying
the bound on the expectation of supremum to the concentration inequality of martingale
process, we also combine the pilot trial with the main trial which follows the adaptive
design.

Proof First note that V(f∗)−V(f) = Esign{f∗}(R)− Esign{f}(R), which is the opposite of
excess 0-1 risk. For the initial n0 i.i.d. observations, we know that the excess 0-1 risk is
bounded by excess φ-risk, that is,

Ehf (Z
(0)
i ) ≥ Esign{f∗}(Ri)− Esign{f}(Ri)

for any i = 1, . . . , n0 and any measurable f by Theorem 3.2 in Zhao et al. (2012). For
sequentially generated data {Zi}ni=1, note that conditioning on Gi−1,

Ei−1h
f (Zi) =E

ˆ

Riφ(Aif)

πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

˙

− E
ˆ

Riφ(Aif
∗)

πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

˙

≥E
ˆ

Ri1{Ai 6= sign{f}}
πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

˙

− E
ˆ

Ri1 {Ai 6= sign{f∗}}
πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

˙

=Esign{f∗}(Ri)− Esign{f}(Ri)

for any i = 1, . . . , n and any measurable f . The inequality can be proved similarly as in the
i.i.d. case of Theorem 3.2 in Zhao et al. (2012), but with a condition on Gi−1. Therefore,
the value function difference V(f∗)− V(f̂n) is upper bounded by

1

n0 + n

«

n0∑
i=1

Ehf̂n(Z
(0)
i ) +

n∑
i=1

Ei−1h
f̂n(Zi)

ff

.

In SRAT, f̂n should be minimizing
∑n0

i=1 g
f (Z

(0)
i ) +

∑n
i=1 g

f (Zi), so we have

n0∑
i=1

hf̂n(Z
(0)
i ) +

n∑
i=1

hf̂n(Zi) ≤ 0.
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It follows that

V(f∗)− V(f̂n)

≤ 1

n0 + n

«

n0∑
i=1

Ehf̂n(Z
(0)
i ) +

n∑
i=1

Ei−1h
f̂n(Zi)−

n0∑
i=1

hf̂n(Z
(0)
i )−

n∑
i=1

hf̂n(Zi)

ff

≤ sup
f∈F

1

n0 + n

«

n0∑
i=1

”

Ehf (Z
(0)
i )− hf (Z

(0)
i )

ı

+
n∑
i=1

”

Ei−1h
f (Zi)− hf (Zi)

ı

ff

.

(30)

Now it suffices to bound the right-hand side of (30).
We will use Lemma 13 to bound the martingale part. First we test the conditions of

the lemma. Since Rn(F) and supP E supf∈F Mn(f) are on the same scale and the latter one
supP E supf∈F Mn(f) is in the order of 1/

?
n, the first assumption in Lemma 13 is satisfied.

The second one can be satisfied when taking a large class F , for example, a linear class
with parameters bounded loosely.

Let H(F) be the class of functions constructed by hf as f ranges over F . According to
(8),

Rn(H(F)) ≤ 2 sup
P

E sup
f∈F

Wn(f) +
D

2
?
n
,

where D = infz∈Z suphf ,hf ′∈F [hf (z) − hf ′(z)] ≥ 0. Since R and hf can take value zero,

D = 0 here. Therefore, Rn(H(F)) is bounded by rJ[](‖F‖P,2 ,F , L2(P))/(
?
nεn) up to a

constant by Lemma 6. Since Ei−1h
f (Zi)− hf (Zi) is upper bounded by 2rb/εn for all i and

all f ∈ F , scale (9) and we get

P

˜

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

”

Ei−1h
f (Zi)− hf (Zi)

ı

∣∣∣∣∣ > t

¸

≤ 8L exp

{
− nε4n

log3 n

t2

Cr4b2J2

}
for some constant C and any t > 0. In other words,

P

˜

sup
f∈F

∣∣∣∣∣
n∑
i=1

”

Ei−1h
f (Zi)− hf (Zi)

ı

∣∣∣∣∣ > C
r2bJ

ε2n

b

n log3 nδ

¸

≤ e−δ (31)

for some constant C and any δ > 0.
To derive a bound for the initial randomized treatments of size n0, we will take use of

a variant of Talagrand’s inequality (Talagrand, 1994) in Lemma 12, which is a common
approach in i.i.d. classification problems. In our setting, Ei−1h

f (Zi) − hf (Zi) has an ex-
pectation zero for all i and all f ∈ F and

∥∥Ei−1h
f (Zi)− hf (Zi)

∥∥
∞ ≤ 2rb/(1/2). Note that

πi(Ai) = 1/2 for all i ∈ {1, . . . , n0} in pilot data. By assumption, 1
n

∑n
i=1 supf∈F Var[hf (Zi)]

is bounded by 4b2r2. The key step here is to bound

µ∗ = E

{
sup
f∈F

n0∑
i=1

[Ehf (Z
(0)
i )− hf (Z

(0)
i )]

}

in Lemma 12. By Theorem 2.14.2 in Van der Vaart and Wellner (1996), the expectation
of supremum of an empirical process is bounded by the bracketing integral. Following
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a similar proof of Lemma 6, with only Freedman’s inequality (Freedman, 1975) replaced
by Bernstein’s inequality, we know µ∗ ≤ rJ

?
n0, since J is the supremum of bracketing

integrals over all possible measures. Therefore,

P

˜

sup
f∈F

n0∑
i=1

”

Ehf (Z
(0)
i )− hf (Z

(0)
i )

ı

≥ 3rJ
?
n0 +

a

4δbr2n0 + 4rbδ

¸

≤ e−δ. (32)

Now by the triangle inequality and the fact that P(|X + Y | ≥ a + b) ≤ P(|X| ≥ a) +
P(|Y | ≥ b),

P

˜

sup
f∈F

1

n0 + n

«

n0∑
i=1

”

Ehf (Z
(0)
i )− hf (Z

(0)
i )

ı

+

n∑
i=1

”

Ei−1h
f (Zi)− hf (Zi)

ı

ff

≥ C

n0 + n

„

(rJ + r
?
δb)

?
n0 + rbδ +

r2bJ

ε2n

b

n log3 nδ

˙

≤ e−δ (33)

for some constant C and any δ > 0. The result on test data follows by combining inequali-
ties (30) and (33).

Appendix D. Proof of Theorem 7

Proof First note that∣∣∣∣∣ 1n
n∑
i=1

”

V(f̂i−1)−Ri
ı

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

rRi − Ei−1Ris

∣∣∣∣∣+
1

n

n∑
i=1

∣∣∣Ei−1Ri − V(f̂i−1)
∣∣∣ . (34)

Given Gi−1 and Ii, E(Ri|Gi−1, Ii) is actually V(f̂i−1Ii). Then Ei−1Ri can be written as

E rE(Ri|Gi−1, Ii)|Gi−1s = E[pi(Hi−1,Xi)|Gi−1]V(f̂i−1) + E[1− pi(Hi−1,Xi)|Gi−1]V(−f̂i−1),

where pi(Hi−1,Xi) is the probability of Ii = 1. So the second term of the right-hand side
of (34) is upper bounded by

1

n

n∑
i=1

E[1− pi(Hi−1,Xi)|Gi−1]|V(f̂i−1)− V(−f̂i−1)|≤ 2r

n

n∑
i=1

ε′i.

For the first term, note that {Ri − Ei−1Ri}ni=1 is a martingale difference sequence. We
will use the Freedman’s inequality in Lemma 14. The two parameters can be bounded as
‖Ri − Ei−1Ri‖∞ ≤ 2r and

∥∥∑n
i=1 Ei−1(Ri − Ei−1)2/n

∥∥
∞ ≤ nr

2. Therefore,

P

˜∣∣∣∣∣ 1n
n∑
i=1

rRi − Ei−1Ris

∣∣∣∣∣ ≥ t
¸

≤ 2 exp

{
−1

2

nt2

r2 + 2rt/3

}
. (35)

Let the right-hand side be e−δ and the result follows.
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Appendix E. Proof of Corollary 10

Proof First note that∣∣V(f∗)− R̄n
∣∣

≤

∣∣∣∣∣ 1n
n∑
i=1

rRi − Ei−1Ris

∣∣∣∣∣+
1

n

n∑
i=1

∣∣∣Ei−1Ri − V(f̂i−1)
∣∣∣+

1

n

n∑
i=1

∣∣∣V(f̂i−1)− V(f∗)
∣∣∣ ,

where the first two terms are the same as in the decomposition (34). Now let the right-hand
side of (35) be e−δ/3 and the right-hand side of (31) and (32) be e−δ/3n by inverting the
two bounds in the proof of Theorem 1. Note that in the third term we are comparing V(f̂i)
with V(f∗) for i = 0, . . . , n−1. When i = 0, the term in (31) does not actually exist. Hence
letting i log3 i = 0 will work.

Appendix F. Proof of Theorem 11

Proof For the test regret bound (5), note that the last term

1

n0 + n

r2bJ

ε2n

b

δn log3 n

is in the order of O(n−1/2(log n)3/2ε−2
n ) and the sum of the first two terms

1

n0 + n

”

(J +
?
δb)r

?
n0 + rbδ

ı

is in the order of Op(n
−1/2). So the last term dominates. In addition, we also want ε to

be non-increasing and the last term to converge to 0. Therefore, θ should be no greater
than 1 and larger than 0. Similarly, for the training regret bound (7), the second term that
contains εn dominates. The result follows by substituting εn into the convergence rate and
letting the two rates be equal. Note that

1

n

n∑
i=1

εi = O(

ˆ

1

n

∫ n

0
x−(1−θ)/4dx

˙

= O(n−(1−θ)/4).

Appendix G. Additional Simulation Results

Figure 7 of scenario 2 demonstrates similar results as Figure 2. However, since the dimension
of predictors increases, the regret and false decision ratio of the test set are larger than that
of scenario 1, especially for small sample sizes. LinUCB is not largely affected by the
dimension compared to other methods. Therefore, SRATs with ε0 = 0.1, θ = 1 exceed
LinUCB on the test set only when n is larger than 600. RCT is better than AL-GP on the
test set in this scenario, possibly because the nonparametric method is not efficient in a
linear setting with a high dimension.
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Figure 7: Scenario 2. The regret (logarithmic scale) and the false decision ratio on the
training or test set against sample size n.
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