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Abstract

This article introduces a novel approach to the classification of categorical time series
under the supervised learning paradigm. To construct meaningful features for categorical
time series classification, we consider two relevant quantities: the spectral envelope and its
corresponding set of optimal scalings. These quantities characterize oscillatory patterns in
a categorical time series as the largest possible power at each frequency, or spectral envelope,
obtained by assigning numerical values, or scalings, to categories that optimally emphasize
oscillations at each frequency. Our procedure combines these two quantities to produce
an interpretable and parsimonious feature-based classifier that can be used to accurately
determine group membership for categorical time series. Classification consistency of the
proposed method is investigated, and simulation studies are used to demonstrate accuracy
in classifying categorical time series with various underlying group structures. Finally,
we use the proposed method to explore key differences in oscillatory patterns of sleep
stage time series for patients with different sleep disorders and accurately classify patients
accordingly. The code for implementing the proposed method is available at https://
github.com/zedalilé/envsca.

Keywords: categorical time series, classification, optimal scaling, multiple time series,
spectral envelope

1. Introduction

Categorical time series are frequently observed in a variety of fields, including sleep medicine,
genetic engineering, rehabilitation science, and sports analytics (Stoffer et al., 2000). In
many applications, multiple realizations of categorical time series from different underlying
groups are collected in order to construct a classifier that can accurately identify group
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membership. As a motivating example, we consider a sleep study in which participants with
different types of sleep disorders are monitored during a night of sleep via polysomnography
to understand important clinical and behavioral differences among these sleep disorders.
All participants were monitored during a full night of sleep and their sleep stages were
annotated by experienced technicians every 30 seconds according to well-established sleep
staging criteria (Rechtschaffen and Kales, 1968). During sleep, the body cycles through
different sleep stages: movement/wakefulness, rapid eye movement (REM) sleep, and non-
rapid eye movement (NREM) sleep, which is further divided into light sleep (S1, S2) and
deep sleep (S3, S4). Our analysis focuses on two particular sleep disorders, nocturnal frontal
lobe epilepsy (NFLE) and REM behavior disorder (RBD), for which differential diagnosis is
especially challenging due to a significant overlap in their associated clinical and behavioral
characteristics (Tinuper and Bisulli, 2017). For example, NFLE and RBD patients both
exhibit complex, bizarre motor behavior and vocalizations during sleep. However, we posit
that differences in sleep cycling behavior may still exist due to fundamental differences in the
sleep disruption mechanisms of NFLE and RBD. The goal of our analysis is to investigate
potential differences in sleep cycling behavior for NFLE and RBD patients and use this
information to accurately classify these patients accordingly. This data-driven classification
can potentially improve accuracy in differential diagnoses of NFLE and RBD in patients
presenting clinical and behavioral characteristics common to both conditions. Figure 1
displays examples of study participants’ full night sleep stages series from two different
groups.

In the statistical literature, classification methods for multiple real-valued time series
have been well-studied; see Shumway and Stoffer (2016) for a review. However, classifica-
tion of categorical time series has not received much attention. The majority of statistical
methods for categorical time series analysis have been developed for analyzing a single cat-
egorical time series. Some examples include the Markov chain model of Billingsley (1961),
the link function approach of Fahrmeir and Kaufmann (1987), the likelihood-based method
of Fokianos and Kedem (1998), and the spectral envelope approach for analyzing a single
time series introduced in Stoffer et al. (1993). A comprehensive discussion of this research
direction can be found in Fokianos and Kedem (2003). More recently, Krafty et al. (2012)
introduces the spectral envelope surface for quantifying the association between the oscilla-
tory patterns of a collection of categorical time series and continuous covariates. However,
this work considers a nonparametric regression problem in which the spectral envelopes are
treated as responses and a local polynomial estimator is used for estimation of covariate
effects. Moreover, the approach of Krafty et al. (2012) assumes that the enveloping spec-
tral surface is continuous in both frequency and the covariate and that the covariates are
continuous random variables, which makes the method not immediately useful for classifi-
cation. To the best of our knowledge, this article presents the first statistical approach for
supervised classification of multiple categorical time series.

In the computer science literature, however, many methods have been developed to clas-
sify so-called string-valued time series, which can also be used for classification of categorical
time series. These include the minimum edit distance classifier with sequence alignment
(Navarro, 2001; Jurafsky and Martin, 2009), Markov chain-based classifiers (Deshpande and
Karypis, 2002), the Haar Wavelet classifier (Aggarwal, 2002), and the state-of-the-art se-
quence learner that uses a gradient-bounded coordinate-descent algorithm for efficiently se-
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Figure 1: Sleep stage time series from six sleep study participants: three nocturnal frontal
lobe epilepsy (NFLE) patients (top row) and three REM behavior disorder (RBD)
patients (bottom row).

lecting discriminative subsequences and then uses logistic regression for classification (Ifrim
and Wiuf, 2011). These methods are black-box in nature and offer little help in understand-
ing key differences among groups. On the other hand, the proposed method addresses the
classification problem using the spectral envelope and optimal scalings, which provide low-
dimensional, interpretable summary measures of oscillatory patterns and traversals through
categories. These patterns are often associated with scientific mechanisms that distinguish
different groups and also produce lower classification error compared to state-of-the-art
computer science methods like sequence learner.

Many classification and clustering methods for real-valued time series rely on feature
extraction, a process in which low-dimensional summary quantities are constructed that
capture essential features of the underlying groups. These quantities are then used to de-
velop feature-based distance measures, such as the Kullback-Leibler distance (Huang et al.,
2004), the Chernoff information measure (Shumway and Stoffer, 2016), and the total vari-
ance distance (Euédn et al., 2018; Eudn and Sun, 2019), which can be used to measure
differences between groups and classify time series of unknown group membership. Fea-
tures and distance measures based on eigendecomposition of the spectral matrix of real-
valued time series, similar to the spectral envelope approach, have also been developed.
Eudn et al. (2019) introduces a distance measure based on the eigenvalues of the cluster
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Figure 2: Four simulated categorical time series: (a) and (b) have the same dominating
categories but different cyclical patterns; (c¢) and (d) have the same frequency
patterns but different dominating categories.

coherence matrix of two groups, or clusters, of time series, and Purdon et al. (2013) uses
the largest eigenvalue and eigenvector of the median spectral matrix to characterize time-
varying changes in principal modes of oscillations over time. Training data can then be used
to estimate group-level quantities and construct a classifier that minimizes the distance be-
tween time series and their predicted group. To obtain useful low-dimensional interpretable
features for classifying categorical time series, we propose using the spectral envelope and
its corresponding set of optimal scalings (Stoffer et al., 1993) as low-dimensional, inter-
pretable features for differentiating groups of categorical time series. Use of these features
is motivated by noticing that most categorical time series can be represented in terms of
their prominent oscillatory patterns, characterized by the spectral envelope, and by the set
of mappings from categories to numeric values that accentuate specific oscillatory patterns,
characterized by the optimal scalings.

For example, Figures 2(a) and 2(b) display two categorical time series with similar
traversals through categories, but different oscillatory patterns. More specifically, the time
series in Figure 2(b) cycles between categories faster than the time series in Figure 2(a).
On the other hand, Figures 2(c) and 2(d) display two categorical time series with similar
oscillatory patterns, but different traversals through categories. More specifically, the time
series in Figure 2(c) spends approximately equal amounts of time in each category, while
the time series in Figure 2(d) spends more time in categories 2 and 3. Moreover, Figure 3
displays the estimated spectral envelope for the two series in Figures 2(a) and 2(b) and the
estimated optimal scalings for the two series in Figures 2(c) and 2(d). The spectral envelope
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and optimal scalings clearly reflect the corresponding differences between these series. In
particular, the spectral envelope indicates more high frequency power for the time series
in Figure 2(b) since it cycles between categories faster relative to the time series in Figure
2(a). Also, the optimal scalings for the time series in Figure 2(c) and Figure 2(d) are quite
different, reflecting the different traversals over categories resulting in different distributions
of time spent in categories. In summary, these figures indicate that both the spectral
envelope and scalings carry important information about categorical time series, and should
be used jointly for classification purposes. Note that the regression model proposed by
Krafty et al. (2012) uses the spectral envelope only to describe the association between the
frequency domain properties of categorical time series and covariates. It doesn’t consider
the importance of the optimal scalings in characterizing the cyclical traversals through
categories associated with the frequency-domain properties of the time series. Our proposed
classifier, on the other hand, takes advantage of both the spectral envelope and scalings to
provide low-dimensional, interpretable features for differentiating groups of categorical time
series.

The proposed method is briefly described as follows. For each time series to be classi-
fied, we represent it as a vector-valued time series through the use of indicator variables.
The smoothed spectral density matrix of this vector-valued time series is then obtained,
and the spectral envelope and optimal scalings at each frequency are computed from the
estimated spectral matrix. Next, the spectral envelope and optimal scalings for each group
are estimated respectively via training data. These features are then used to estimate the
distance from each group by adaptively summing the differences in the spectral envelope
and optimal scalings. Finally, time series with unknown group membership are assigned to
groups with the most similar features (i.e. minimum distance). Under the proposed frame-
work, we show that the misclassification probability is bounded, as long as the spectral
density matrix estimator is consistent. The procedure is demonstrated to perform well in
simulation studies and a real data analysis.

The remainder of the paper is organized as follows. Section 2 provides definitions of the
spectral envelope and optimal scalings and corresponding estimators. Section 3 introduces
the proposed classification procedure and its theoretical properties. Section 4 provides
detailed simulation studies, which explore the empirical properties of the proposed method.
Section 5 details the application of the proposed classifier to the analysis of sleep stage time
series to better understand and accurately classify sleep disorders. Section 6 provides some
closing discussions and impactful extensions of this work.

2. The Spectral Envelope and Optimal Scalings

In this section, we provide a brief review of the spectral envelope and optimal scalings. In
Section 2.1, we define the spectral envelope and optimal scalings used in our framework.
Note that our definitions are slightly different from the one used in Stoffer et al. (1993).
In Section 2.2, we present a reparameterization that aids computation. In Section 2.3, we
discuss consistent estimators of the spectral envelope and optimal scalings.
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2.1 Definition

Let X; be a categorical time series with finite state-space C = {c1,ca,...,cn}. We assume

that X; is stationary such that {X1, Xo,..., X3} i{XHh,Xngh, ooy Xgyp} for h > 0 and
infpm1 2. mP(Xy = ¢/) > 0 so that there are no absorbing states. In order to obtain
a quantifiable measure of oscillatory patterns for categorical time series, a typical way is
to consider a real-valued time series, X;(f), obtained by assigning numerical values, or
scalings, to categories such that 8 = (81, 52,...,8m) € R™ and X¢(8) = By when X; = ¢;.
We assume that X;(5) has a continuous and bounded spectral density

folw; B) = > Cov[Xy(B), Xisn(B)] exp(—2miwh).

h=—0oc0

The spectral envelope is defined as the maximal spectral density among all possible
scalings not proportional to 1,, at frequency w, where 1,, is the m-dimensional vector of
ones. Scalings that assign the same value to each category are excluded since the power
spectrum is not well defined. Formally, we define the spectral envelope and set of optimal
scalings for frequency w as

AMw)= max fy(w;p), B(w)= argmax f.(w;S),
(@)= e, Solwi ), Ble) = argman fo(: )

respectively, where {1} is the subspace of R™ that is proportional to 1,,. It should be noted
that our formulations of the spectral envelope and optimal scalings are slightly different
from those in Stoffer et al. (1993) and Krafty et al. (2012). These works define the spectral
envelope as the maximal normalized spectral density and the optimal scalings that attain
the largest proportion of the total power (variance) at frequency w. Our formulations, on
the other hand, define the spectral envelope and optimal scalings without normalizing the
spectral density. This allows us to classify groups that differ not only with respect to the
proportion of total power across frequencies, but also in their total power as well. One such
example is the case of groups of white noise signals with different variances for which the
spectral densities are different for all frequencies, but the normalized spectral densities are
the same for all frequencies.

Consider the following example to illustrate the usefulness of the spectral envelope and
optimal scalings. Figures 3(a) and 3(b) display the estimated spectral envelopes for time
series displayed in Figures 2(a) and 2(b) respectively. It can be seen that the time series
in Figure 2(a), which oscillates more slowly than the time series in Figure 2(b), has more
power in the estimated spectral envelope at lower frequencies. The set of optimal scalings
that maximize the spectral density at frequency w, B(w), provides important information
about the traversals through categories associated with prominent oscillatory patterns at
frequency w. For further illustration, Figures 3(c) and 3(d) display the estimated optimal
scalings for time series displayed in Figures 2(c) and 2(d), respectively. It should be noted
that these time series have similar spectral envelopes with more power at lower frequencies.
The optimal scalings in Figure 3(d) for categories 2 and 3 are similar at lower frequencies
(w < 0.2), but the optimal scalings in Figure 3(c) for categories 2 and 3 are different at lower
frequencies. This is because the corresponding time series in Figure 2(d) visits categories 2
and 3 more frequently than the time series in Figure 2(c).
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Figure 3: (a) and (b): The spectral envelopes of the time series shown in panels (a) and
(b) of Figure 2; (c¢) and (d): The scalings of the time series presented in panels
(c) and (d) of Figure 2.

2.2 Computation Through Reparameterization

A common approach to the analysis of any type of categorical data is to represent it in terms
of random vectors of indicator variables. Similar to the formulations used in Stoffer et al.
(1993) and Krafty et al. (2012), we define the (m — 1)-dimensional stationary time series Yz,
which has a one in the ¢th element if X; = ¢, for £ =1,...,m — 1 and zero elsewhere. This
reparameterization is widely known as the baseline-categorical representation in categorical
data analysis (Agresti, 2003). It is equivalent to setting the category c,, as the reference
category and restricting the set of optimal scalings to a lower-dimensional space. We define
the spectral density matrix of Y; as

fy(w) = Z Covl]Yy, Yiin] exp(—2miwh).

h=—0o0

The spectral density f,(w) is a complex-valued positive definite Hermitian (m —1) x (m—1)
matrix. We assume f,(w) for all w € (—1/2,1/2] and the variance of Y; are non-singular
(Brillinger, 2002). Formally, we define the spectral envelope and the corresponding set of
optimal scalings used in our proposed classification algorithm as follows.

Definition 1 For w € (—1/2,1/2|, the spectral envelope, \(w), is defined as the largest
eigenvalue of fy(w). The (m — 1)-variate vector of optimal scalings, v(w), is defined as the
eigenvector associated with \(w).

Several aspects of the definition should be noted. First, since the spectral density matrix
is complex-valued and Hermitian with a skew symmetric imaginary component, for every
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a € R™1, we have d fy(w)a = d'f}*(w)a, where f}°(w) is the real part of f,(w). Thus,
the spectral envelope is equivalent to the largest eigenvalue of f* (w). Second, a connection
between this formulation and the spectral envelope defined in Section 2.1 can be established
(Krafty et al., 2012). In particular, if y(w) is an eigenvector of f;¢(w) associated with A(w),
then

|:’Y(0w):| = arg max fx(wﬂﬁ)
BER™\{1}

When the multiplicity of A(w) as an eigenvalue of f;(w) is one, there exists a unique (w)
such that y(w) is an eigenvector of f;¢(w) associated with A(w) where v(w)y(w) = 1 and
with the first nonzero entry of 7(w) to be positive. Third, the scalings are optimal in the
sense that if there is a significant frequency component near w, then A(w) will be large, and
the values of «y(w) are dependent on the particular cyclical traversal of the series through
categories that produces the value of A(w) at frequency w.

To ensure valid estimation of A(w) and y(w), and allow for theoretical development of
classification consistency, we assume the following regularity conditions.

Assumption 1 Y; is strictly stationary and all cumulant spectra of Yy exist for all orders.
Assumption 2 The largest eigenvalue of f,)°(w) is distinct for all w € (=1/2,1/2].

Assumption 3 The spectral density matriz fy(w) is continuous and each element of f,(w)
s bounded.

Assumption 1 allows for the application of a general theory in obtaining asymptotic
properties for the estimates of the spectral density matrix (Brillinger, 2002). Taking As-
sumptions 1 and 2 together, the asymptotic consistency of the estimates of A(w) and ~y(w)
discussed in Section 2.3 can be established. Assumptions 2 and 3 ensure the largest eigen-
value of the spectral density matrix is continuous and bounded from above, which is needed
for establishing classification consistency. The assumption that f,(w) is continuous is neces-
sary and sufficient for ensuring that X;(3) has a continuous spectral density for all 5 € R™
(Stoffer et al., 1993).

It should be noted that there are other strategies for encoding categorical data, such as
hash encoding, similarity encoding, and binary system encoding (Weinberger et al., 2009;
Cerda et al., 2018). These approaches can also be used in our framework to produce a
binary multivariate time series Y; as well and can lead to substantial dimension reduction
when m is large. For example, the binary system encoding assigns each of the m categories
a binary number consisting of [log, m]| binary digits. In this case, a series with m = 8
categories is represented by a collection of 3-digit binary numbers, and Y; would then be
a 3-dimensional binary vector-valued time series, instead of a 7-dimensional series using
baseline encoding. The use of different encoding strategies represents an interesting and
appealing tradeoff between computational complexity and the ability to accurately recover
second-order and cyclical properties of the categorical time series. The baseline encoding
strategy used in combination with the eigendecomposition of the corresponding spectral
matrix is the only encoding strategy that has been shown to be connected with the original
definition of the spectral envelope and scales (Krafty et al., 2012) and to obtain the largest
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power across frequencies as the spectral envelope. The use of different encoding strategies
that lead to significant dimension reduction may not produce the largest power at each
frequency, since the elements of the vector-valued time series represent movement in and out
of groups of categories rather than individual categories. This restricts the characterization
of oscillatory patterns at each frequency to movement in and out of particular groups of
categories, which may not adequately represent traversals through categories producing the
largest power. Also, the scalings lose some of their interpretability since they no longer
correspond to a direct comparison between each category and a reference category, but
instead compare groups of categories with other groups of categories. The utility of different
encoding strategies and their respective tradeoffs is certainly worth exploring in more detail
in future research.

2.3 Estimation

Consider a realization of a categorical time series, Xy,%...,T, and its corresponding multi-
variate process realization Y;, t. .., T defined in Section 2.2. Let fy (w) represent the estimate
of the spectral matrix fy(w). There is an extensive literature on estimation of the power
spectral matrix. We use periodograms, or sample analogues of the spectrum

2

T
I(s)=T"" ZYtexp(—%ist/T) , s=1,...T.
t=1

It is well known that the periodogram is an asymptotically unbiased but inconsistent estima-
tor of the true spectral matrix. A common way to obtain a consistent estimator of the spec-
tral matrix is to smooth periodogram ordinates over frequencies using kernels (Brillinger,
2002). In this paper, we consider the smoothed periodogram estimator

Br

fylws) = D WayiI(s+ ),

j=—Br

where ws = s/T for s=1,..., K = |(T — 1)/2] are the Fourier frequencies, 2By + 1 is the
smoothing span, and Wp,, ; are nonnegative weights that satisfy the following conditions:

Br
VVBTJ'::VVBTFJ’ § : VVBTJ =1
j=—Br

Generally, the weights are chosen such that Wpg, o is a decreasing function of Bp. It is
known that fy(wk) is comsistent if By — oo and B7T~' — 0 as T — oo (Brillinger,
2002). One possible data-driven way to select Br is through generalized cross-validation
(GCV) proposed by Ombao et al. (2001). We, however, set By = |v/T| according to
Theorem 10.4.1 of Brockwell and Davis (1991) in our simulation studies and application,
which reduces computational complexity without sacrificing classification accuracy. Given
the sample spectral matrix fy (w), the estimate of the spectral envelope A(w) is the largest
eigenvalue of f;’e (w), and the optimal scaling, §(w), is the eigenvector of f;e(w) associated

with A(w). The asymptotic consistency of 4(w) and A(w) are established in Lemma 2.
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Lemma 2 Under Assumptions 1 and 2, if Br — oo and T — oo with BrT~' — 0, then,
E{Aw)} = Aw)+O(BrT™Y,
E{i(w)} = ~(w)+0(BrT™).

Proof of Lemma 2 is straightforward from (Brillinger, 2002, Theorems 9.4.1) and thus
omitted.

It should be noted that other approaches for nonparametric estimation of the spectral
matrix, such as those in Dai and Guo (2004), Rosen and Stoffer (2007), and Krafty and
Collinge (2013), can also be used. We use the kernel smoothing approach for computational
efficiency and ease of theoretical exposition. In some applications, power in the spectral
matrix may be concentrated within a narrow band of frequencies. In this case, traditional
smooth spectral estimators may fail to distinguish slight frequency changes between groups
within a narrow band of frequencies. In this case, we can adopt the recently proposed
nonparametric narrowband spectral estimator of Stoffer (2023), which offers a higher degree
of resolution in the frequency domain needed to distinguish narrowband frequency changes.

3. The Classification Methods

Consider a population of categorical time series composed of J > 2 groups, II,...II;. De-
note the jth group-level spectral envelope and (m — 1)-variate scaling as AY) (w) and ') (w)
for j =1,...,J, respectively. Suppose we observe N = Z}]:1 N; independent training time
series of length 7 and R independent testing time series of length 7', X(") = {X,1, ..., X1},
r =1,..., R, with unknown group membership. In Section 3.1, we introduce a classifier
based on the spectral envelope. In Section 3.2, we discuss a classifier based on the optimal
scalings. The adaptive classification algorithm that uses both the spectral envelope and its
optimal scalings is presented in Section 3.3.

3.1 Classification via the Spectral Envelope

As shown in Figures 2 and 3, groups of categorical time series may exhibit distinct oscilla-
tory patterns. In this case, the spectral envelope, which characterizes dominant oscillatory
patterns, can be used as a signature for each group and an important feature for categorical
time series classification. In particular, we consider the following distance of the rth testing
time series to the jth group

Dy = IR = AD3, ey
forj=1,...,Jand r =1,..., R, where || -||2 denotes the Ly norm. Based on the distance

(1), we propose a categorical time series classification procedure in Algorithm 1. Since it
uses the spectral envelope, we call it ENV.

Classification consistency can be established under an additional condition (Assumption
4), which implies that the spectral envelopes of the two groups are well-separated. The
following theorem states the classification consistency of using the spectral envelope as a
classifier. To aid the presentation, we consider the case of J = 2 groups, 1I; and Iy, while
similar results can be derived for J > 2.

Assumption 4 |[[AY) — A@)||2 > CT for a positive constant C.

10
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Data: R independent testing time series , X") = {X,1,..., X,r} forr =1,... R.
Result: Estimated group assignment for each testing time series, {g1,...,dr},
where g, € (1,...,J) forr=1,...,R.

forr=1,...Rdo

Convert the testing time series X (") with m categories into a
(m — 1)-dimensional time series Y (") defined in Section 2.2 and compute the
(m —1) x (m — 1) spectral matrix fy(w)

Compute the sample spectral envelopes, (") (ws), where ws = s/T are the
Fourier frequencies with s =1,..., K and K = |(Ty — 1)/2]. Denote

AT = LA (w1), . A (wpe) Y

as a K-dimensional vector;
for j=1,...J do
Compute
Dj(‘,%NV = HA(T) - AO)H%-

end

Classify the time series X(") to group I1; if DJ(T])E Ny 18 the smallest among all

DY)y for j=1,...,J, that is, §, = argmin; D'} .

end

return {gi1,...,Jr};
Algorithm 1: ENVELOPE CLASSIFIER (ENV)

Theorem 3 Under the stated conditions in Lemma 2 and Assumptions 3 and 4, the prob-
ability of misclassifying X"), a testing time series from group II;, to group Iy, can be
bounded as follows:

P(DY;J)ENV > Dg:]);NV) = O(B}T7?),

where D%Nv and Dg)ENV are defined in (1).

3.2 Classification via Optimal Scalings

While the spectral envelope adequately characterizes dominant oscillatory patterns, it doesn’t
account for traversals through categories responsible for such oscillatory patterns. Differ-
ences among groups may also be due to different traversals through categories that produce
particular oscillatory patterns, which are characterized by optimal scalings for each fre-
quency component. To this end, we consider the following distance of the rth testing time
series to the jth group

Diidea =137 =D, (2)

for j =1,...,J and r = 1,..., R, where || - || denotes Frobenius norm. Based on the
distance (2), we outline a categorical time series classifier using optimal scalings, called
SCA, in Algorithm 2.

11
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Data: R independent testing time series of T, X (") = {zr1,..., 2,7} for
r=1,...,R.
Result: Estimated group assignments for each testing time series, {g1,...,Jr},
where g, € [1,J] forr=1,...,R.

forr=1,...Rdo

Convert the testing time series X (") with m categories into a
(m — 1)-dimensional time series Y (") defined in Section 2.2 and compute the
(m —1) x (m — 1) spectral matrix fy(w) ;

Compute the (m — 1)-dimensional sample scaling, 4(") (w;), of the testing time

series X, where w, = s /T are the Fourier frequencies with s = 1,..., K and
K = [(T; — 1)/2]. Denote

30 = (3@ A i) Y

as a K x (m — 1) matrix;

for j=1,...J do
Compute

end

Classify the time series X(") to group I1; if D%C 4 is the smallest among all

DJ('T;CA for j=1,...,J, that is g, = arg min; D%CA.

end

return {g1,...,dr};
Algorithm 2: SCALING CLASSIFIER (SCA)

In addition to Assumptions 1-3, the following assumption is necessary to establish the
classification consistency of the scaling classifier, which indicates that the optimal scalings
of the two groups are well-separated.

Assumption 5 For fived m categories, ||[TV) —T2)||2, > CT for a positive constant C.
Theorem 4 states the consistency of classification based on the scalings.

Theorem 4 Under the stated conditions in Lemma 2 and Assumptions § and 5, the prob-
ability of misclassifying X"), a testing time series from group Iy, to group Iy, can be
bounded as follows:

P(DYE?CA > Dg,?@CA) = O(BFT?),
where D%%CA and Dg,%CA are defined in (2).

3.3 Proposed Adaptive Envelope and Scaling Classifier

The envelope classifier (Section 3.1) works well in situations where oscillatory patterns are
different among groups, while the scaling classifier (Section 3.2) is effective when traversals
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through categories are distinct among groups. However, in practice, different groups are
likely to exhibit different oscillatory patterns and traversals through categories to some
extent. Thus, it is desirable to construct an adaptive classifier that can automatically
identify the extent to which groups are different with respect to their oscillatory patterns,
traversals through categories, or both, and optimally classify time series accordingly. To
this end, we propose a general purpose, flexible classifier that adaptively weights differences
in the spectral envelope and optimal scalings in order to determine the characteristics that
best distinguish groups and provide accurate classification. Specifically, we consider the
following distance of the rth testing time series to the jth group

A — AW 2 |5 — 1)) 2
D('T)Tw ca — KZHA—Z + (1 - K)A—Fv (3)
. A3 3O
for j =1,...,J and » = 1,...,R. Since the spectral envelope A" is a K-dimensional

vector and the scaling 4(") is (m — 1) x K matrix, we rescale these distances by their
corresponding norms. The unknown tuning parameter « controls the relative importance of
the spectral envelope and optimal scalings in classifying time series. Our proposed adaptive
classification algorithm is presented in Algorithm 3. Since it uses both the spectral envelope
and the corresponding optimal scalings, we call it EnvSca.

Several remarks on the algorithm should be noted. First, the group-level spectral en-
velopes A and optimal scalings T'¥) are unknown in practice. We obtain AY) and T'W) by
averaging the sample spectral envelopes and sample optimal scalings across training time
series replicates within the jth group, respectively. In particular, we replace AY) and ')
by their sample estimates

LN L N
AU — — NTZ\GR) DO = 5(7:k)
N, > AR, N, 23,
k=1 k=1
for j = 1,...,J, where AU®) and 4% are the estimated spectral envelope and optimal

scalings of the kth training time series among group j, respectively. Second, we select the
tuning parameter x by using a grid search through leave-one-out (LOO) cross-validation.
In particular, let k € (0,0.1,0.2,...,1). The estimated & corresponds to the value that
produces the highest leave-one-out classification rate via Algorithm 3. Although a finer
grid could be used as well, in our experience, using £ € (0,0.1,0.2,...,1) performs well
without sacrificing computational efficiency. Third, to obtain more parsimonious measures
that still can discriminate among different groups, we may select a subset of elements in the
spectral envelope and optimal scalings that are most different among groups. This strategy
has been used in Fryzlewicz and Ombao (2009) for classifying nonstationary quantitative
time series. For example, we first compute

J J
Apav(s) =3 3 [A(j)(ws) ~ AW )], and
J=1 h=j+1
J J
Asca(s)=> > T (ws) —TW(w,)[3, s=1,...,K,

<
Il
A
>
I

1

_l’_

J
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Data: R independent testing time series , X") = {X,1,..., X,7} forr=1,... R.
Result: Estimated group assignment for each testing time series, {g1,...,dr},
where g, € (1,...,J) forr=1,...,R.

Step 1: Use Leave-one-out cross validation to select tuning parameter .

Step 2:

forr=1,...Rdo

Convert the testing time series X (") with m categories into a
(m — 1)-dimensional time series Y (") defined in Section 2.2 and compute the
(m — 1) x (m — 1) spectral matrix f,(w) ;

Compute the sample spectral envelope, A (ws), of the testing time series X (),
where ws; = /T are the Fourier frequencies with s =1,..., K and
K = [(T; — 1)/2]. Denote

3O = (A0 (wy), .. A0 ()

as a K-dimensional vector;

Compute the (m — 1)-dimensional sample optimal scalings, 4" (w;), of the
testing time series X (") where ws = s /T are the Fourier frequencies with
s=1,...,K and K = |[(T; — 1)/2]. Denote

A7 = 0@ A )Y

as a K x (m — 1) matrix;
for j=1,...J do

Compute
(r) _ ™ —A@) 3 150 = TO)|%
3, EnvSca HS‘(T)H% H,-S/(T)H%
end
Classify the time series X(") to group I1; if DJ(.TI)EMS o 18 the smallest among all
DY) osea for j=1,...,J, that is, §, = argmin; D) o .
end
return {g1,...,dr};

Algorithm 3: ENVELOPE AND SCALING CLASSIFIER (EnvSca)

where AU (w,) is the spectral envelope for group j and frequency w, and I'Y) (w,) is an m — 1
dimensional vector of optimal scalings for group j and frequency ws. Then, order Agpyy(s)
and Agca(s) decreasingly and choose the top proportion of the elements in Agyy(s) and
Agca(s) for classification. A fixed proportion can be used, or a leave-one-out cross valida-
tion approach that minimizes the classification error can be used to select an appropriate
proportion.

14
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Assumption 6 is needed to establish classification consistency of EnvSca, which is satis-
fied when either Assumption 4 or Assumption 5 is satisfied.

Assumption 6 For fited m categories, ||A1V) — A@|3+||[TD) —T@)| 2, > CT for a positive
constant C.

Theorem 5 establishes classification consistency of EnvSca.

Theorem 5 Under the stated conditions in Lemma 2 and Assumptions § and 6, the prob-
ability of misclassifying X, a time series from group Iy, to group Ila, can be bounded as
follows:

P(Dgf)E‘ncha > Dg:)Encha) = O(B%Tizh
where DY)Encha and D;Tgmsca are defined in Equation (3).

)

3.4 Comparisons to Related Works

Alternatively, one could use the spectral density matrix fy(w) as the discriminant feature
directly, and then compute distance measures based on fy(w) for classification. A test time
series is classified into II; when the distance measure between its smoothed periodogram and
the average of the smoothed periodograms for the training series belonging to 1I; is smaller
than its distance to the average of the smoothed periodograms from the training data from
the other groups. Popular spectral-matrix-based (SMB) distance measures for classification
or clustering include the Kullback-Leibler distance (Huang et al., 2004), Chernoff informa-
tion measure (Shumway and Stoffer, 2016), and total variance distance (Euén et al., 2018;
Eudn and Sun, 2019). Our proposed method has two main advantages over SMB classifica-
tion approaches. First, although f,(w) contains all information that the spectral envelope
and scalings can provide, it also can contain a large amount of noise that may be unrelated
to classification and hinder interpretability. On the other hand, the spectral envelope and
corresponding scalings provide low-dimensional, interpretable summary measures of oscil-
latory patterns and traversals through categories. The patterns quantified by the spectral
envelope and optimal scalings are often associated with scientific mechanisms that distin-
guish different groups, such as those in our motivating sleep stage time series. Second, the
proposed method reduces the dimension of the spectral matrix with minimal information
loss by considering the spectral envelope and scalings, which has roots in frequency-domain
principal component analysis of multivariate time series (Brillinger, 2002). Consequently,
when the number of categories m is small, we would expect the SMB classifiers and the
proposed method to perform similarly; when m is moderate to large, we expect that the
proposed method would outperform the SMB classifiers. Numerical comparisons between
the proposed method and the SMB classifiers across various values of m are explored in
simulation studies (see Section 4.2). It is worth pointing out that the proposed method may
also be extended to incorporate more eigenpairs of the spectral matrix for more complex
problems if necessary. We leave this for future research.

In addition, methods that use eigenvalues and eigenvectors of the spectral matrix for
clustering have been proposed. For example, Purdon et al. (2013) uses the largest eigenvalue
and the corresponding eigenvector of the median spectral matrix to characterize prominent
spatial modes of oscillation in EEG signals and then assess their time-varying power. Euan
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et al. (2019) introduces cluster coherence to find clusters among multivariate time series,
which can be potentially used for classification. However, there are a few fundamental
differences between these approaches and the proposed method. First, the proposed method
converts the categorical time series X; with m categories to a m — 1 dimensional numerical
time series Y;. Then, the spectral envelope and scalings (eigenpairs) of the spectral matrix of
Y; are computed. Thus, for n training categorical time series, there are n spectral matrices
of dimension (m —1) x (m — 1) to be considered. This data structure is quite different from
that considered in Purdon et al. (2013) and Euédn et al. (2019) since these works consider
an n-dimensional numerical multivariate time series and work with a single n x n spectral
matrix only. Second, if the number of training time series n is moderate or large, it would
be challenging for these approaches to estimate the n x n spectral matrix. However, this
would not be a problem for the proposed method as the dimension of our spectral matrix
is determined by the number of categories m only. Third, the criteria for discrimination
are different. Euan et al. (2019) distinguishes numerical time series based on within-group
and between-group correlations through the cluster coherence; while Purdon et al. (2013)
does not propose any discriminant function for classification or clustering since their goal is
to describe the spatial distribution of power for particular groups. The proposed method,
however, classifies categorical time series based on prominent frequency-domain patterns
and the cyclical traversals associated with those patterns.

4. Simulation Studies

We conduct simulation studies to evaluate performance of the proposed classification proce-
dures. In Section 4.1, we compare the performance of four different methods: the proposed
classifier which uses both the spectral envelope and optimal scalings (EnvSca), the classi-
fier using the spectral envelope only (ENV), the classifier using the optimal scalings only
(SCA), and the sequence learner classifier (SEQ) of Ifrim and Wiuf (2011). In Section 4.2,

we demonstrate the relative advantages of the proposed method over some SMB classifiers.

4.1 Comparisons of ENV, SCA, EnvSca, and Sequence Learner

Following Fokianos and Kedem (2003), categorical time series X; are generated from the
multinomial logit model as follows

!
Y,
N . JC/AL) (=1 . m-1
1+>05 eXP(%Yt 1)

and
1

1+ 37 exp(alYig)

where Y; is a (m — 1)-dimensional time series which has a one in the fth element if X; = ¢,
for 0 =1,. — 1 and zero elsewhere, py for £ = 1,...,m are the probabilities of X; = ¢y
at time ¢t and satlsfy Ze 1P =1, and oy for/=1,. m are the regression parameters.
The simulated model incorporates a lagged value of order one of Y; or X;. We consider
three different cases under the multinomial logit model. For the first two cases, we let the
number of categories m = 4 and the number of groups J = 2. For Case 1, we consider the

ptm( )
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following regression parameters

a; = (1.2,1,1), a0 = (1,1.2,1), a3 = (1,1,1.2) if ¥} € Iy,
a; = (0.3,1,1),a2 = (1,0.3,1), a3 = (1,1,0.3)" if V; € Il;.

Figures 2(a) and 2(b) display realizations of time series from groups II; and Iy in Case 1,
respectively. For Case 2, the regression parameters are set to be

ar = (1.2,1,1),a0 = (1,0.8,1), a3 = (1,1,0.4) if V; € II;,
ar = (04,1,1), a0 = (1,0.8,1), 03 = (1,1,1.2) it Y; € II,.
Figures 2(c) and 2(d) present realizations of time series from groups II; and Ils in Case 2,

respectively. For Case 3, we consider J = 3 different groups with the following regression
parameters

a; = (0.3,1,1), a0 = (1,0.3,1), a3 = (1,1,0.3)" if ¥; € I,
ar = (1.2,1,1),a2 = (1,0.8,1), a3 = (1,1,0.4)" if Y; € Ily,
a; = (1.25,0.5,1), a0 = (—2,-.75, 1), a3 = (2,.75,-3)" if ¥; € II3.

One hundred replications are generated for the 27 combinations of 3 cases, 3 numbers of
time series per group in the training data, N; = 20,50,100 for all j, and 3 time series
lengths T' = 100, 200, 500. A test data set of 50 time series per group is generated for each
repetition to evaluate the out-of-sample classification performance. Four different methods
are implemented: EnvSca, ENV, SCA, and the sequence learner classifier (SEQ) of Ifrim
and Wiuf (2011).

Table 4.1 summarizes the means and standard deviations of the correct classification
rates. For Case 1, the proposed classifier and the envelope classifier perform similarly, and
they both outperform sequence learner. The scaling classifier has classification rates around
50%, meaning that it is not better than a random guess. These results are unsurprising be-
cause I and Il have different oscillatory patterns but similar traversals through categories,
resulting in a poor classification rate if we use only the optimal scalings for classification.
For Case 2, where the two groups are distinct mainly in the optimal scalings, the envelope
classifier produces the lowest correct classification rate (around 50%) among all methods
considered. The proposed classifier and the scaling classifier perform similarly. They have
slightly lower classification rates than sequence learner, which is designed to select and use
all subsequences that are important in classifying responses and thus is well-suited for the
setting in Case 2. In Case 3, we consider three groups, and groups differ in cyclical patterns
and scalings. The proposed classifier has higher mean classification rates than the envelope
and scaling classifiers. This is because groups are different in both oscillatory patterns and
traversals through categories. The proposed classifier, by incorporating both the spectral
envelope and optimal scalings, can produce better classification rates in this case. It should
be noted that sequence learner is developed under the framework of logistic regression and
cannot classify a population of time series with more than two groups in its current form.
One could extend sequence learner to multinomial logistic regression, but extensive pro-
gramming efforts are needed and no prior results are available. Thus, no simulation results
are available for sequence learner in Case 3.
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In addition to classification, estimates of the tuning parameter s in the proposed al-
gorithm allow for interpretable inference. For example, the average of estimated tuning
parameters & in our simulations for Cases 1, 2, and 3 are 1.00, 0.24, and 0.66, respectively.
This suggests that x can help us to identify whether groups are different in oscillatory
patterns only, traversals through categories only, or a mixture of the two.

4.2 Comparisons of the Proposed Methods and SMB Classifiers

To demonstrate the relative advantages of the proposed EnvSca classifier to the SMB clas-
sifiers, we extend Case 1 in Section 4.1 to consider different numbers of categories m. In
particular, we let the regression parameters oy be an (m—1)-dimensional vector of ones with
the fth element replaced by 1.2 if Y; € IIj, and let ay be an (m — 1)-dimensional vector of
ones with the fth element replaced by 0.3 if ¥; € Il for £ =1,2,...,m —1. We fix N; = 20
and simulate 100 replications for 5 different numbers of categories: m = 4,6,8,10,12. A
test data set of 50 time series per group is generated for each repetition to evaluate the out-
of-sample classification performance. Three different distance measures are considered for
the SMB classifiers, including the total variance distance (SMB-TVD), the Kullback-Leibler
distance (SMB-KL), and the Chernoff information measure (SMB-CH). The tuning param-
eter for the Chernoff measure is selected using a leave-out-one cross-validation procedure.
Sequence learner (SEQ) is also implemented and included for comparison.

Figure 4 displays side-by-side boxplots of classification rates over replications. Unsur-
prisingly, the classification rate decreases as the number of categories m increases, which is
attributed to challenges in estimating higher-dimensional spectral matrices accurately. In
general, EnvSca outperforms SMB-CH and SMB-KL regardless of the number of categories
m. When m is relatively small (m = 4,6), SMB-TVD has slightly higher classification rates
than that of the proposed EnvSca classifier. However, when m = §8,10,12, the proposed
EnvSca produces better classification rates. We also see that EnvSca is least impacted by
the increasing number of categories m as the gap in classification rates becomes larger as m
increases. These results indicate that the proposed method is more robust in the presence
of moderate or large numbers of categories since it reduces the dimension of the spectral
matrix while preserving important information by considering the spectral envelope and
scalings.

5. Analysis of Sleep Stage Time Series

During a full night of sleep, the body cycles through different sleep stages, including rapid
eye movement (REM) sleep, in which dreaming typically occurs, and non-rapid eye move-
ment (NREM) sleep, which consists of four stages representing light sleep (S1, S2) and
deep sleep (S3, S4). These sleep stages are associated with specific physiological behaviors
that are essential to the rejuvenating properties of sleep. Disruptions to typical cyclical
behavior and changes in the amount of time spent in each sleep stage have been found to be
associated with many sleep disorders (Zepelin et al., 2005; Institute of Medicine (US) Com-
mittee on Sleep Medicine and Research, 2006). Particular sleep disorders, such as nocturnal
frontal lobe epilepsy (NFLE), are also difficult to accurately diagnose since clinical, behav-
ioral, and electroencephalography (EEG) patterns for NFLE patients are often similar to
those of patients with other sleep disorders, such as REM behavior disorder (RBD) (D’Cruz
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Case | Ny | T EnvSca SCA ENV SEQ
100 | 92.21 (3.41) 49.42 (4.72) 93.32 (2.39) 87.13 (3.32)
20 | 200 | 96.91 (1.99) 49.84 (4.60) 98.16 (1.39) 93.24 (2.70)
500 | 98.78 (1.66) 50.04 (4.71) 99.98 (0.14) 98.44 (1.40)
100 | 92.99 (2.68) 49.92 (4.79) 93.54 (2.28) 90.40 (2.97)
1 50 | 200 | 97.64 (1.99) 50.10 (4.31) 98.47 (1.19) 96.46 (2.04)
500 | 99.56 (0.64) 49.63 (4.48) 99.98 (0.14) 99.56 (0.76)
100 | 93.68 (2.67) 50.67 (5.00) 93.76 (2.37) 91.55 (2.71)
100 | 200 | 98.26 (1.30) 49.73 (4.58) 98.49 (1.19) 96.73 (4.96)
500 | 99.80 (0.45) 50.22 (4.72) 99.97 (0.17) 99.68 (0.60)
100 | 71.13 (6.23) 71.66 (6.00) 50.42 (5.02) 75.16 (4.45)
20 | 200 | 78.69 (5.76) 79.30 (5.03) 49.85 (5.29) 83.32 (4.21)
500 | 88.27 (3.89) 88.65 (3.96) 49.94 (4.51) 93.14 (2.58)
100 | 76.01 (5.36) 76.25 (5.34) 50.71 (4.39) 77.94 (4.11)
2 50 | 200 | 84.14 (4.03) 84.22 (4.10) 50.17 (4.92) 86.71 (3.43)
500 | 94.20 (2.47) 99.40 (2.34) 50.93 (5.22) 95.95 (2.23)
100 | 79.19 (4.60) 79.48 (4.51) 50.58 (4.83) 78.56 (4.45)
100 | 200 | 87.59 (3.73) 87.65 (3.67) 39.61 (5.05) 88.46 (3.32)
500 | 96.29 (1.83) 96.31 (1.89) 50.38 (5.04) 96.68 (1.87)
100 | 81.02 (4.69) 70.43 (4.67) 70.88 (3.97) NA
20 | 200 | 89.64 (3.58) 75.17 (3.48) 80.61 (3.62) NA
500 | 97.39 (1.80) 81.80 (3.12) 93.04 (2.27) NA
100 | 83.79 (3.30) 72.91 (3.67) 71.08 (3.38) NA
3 50 | 200 | 92.28 (2.62) 78.18 (2.90) 81.82 (2.91) NA
500 | 98.42 (1.28) 84.51 (3.02) 94.32 (2.12) NA
100 | 84.97 (3.34) 73.07 (3.29) 71.37 (3.48) NA
100 | 200 | 93.04 (2.09) 79.99 (3.05) 82.69 (2.87) NA
500 | 98.67 (1.00) 87.01 (2.59) 94.29 (1.96) NA

Table 1: Mean (standard deviation) of the percent of correctly classified time series across
different methods for Case 1, 2, and 3. The proposed classifier which uses both the
spectral envelope and optimal scalings (EnvSca), the classifier using the spectral
envelope only (ENV), the classifier using the optimal scalings only (SCA), and the

sequence learner classifier (SEQ)

19



L1, BRUCE, AND CAI

1.0' r#
g ¢
©
o
= 0.8-
o E3 EnvSca
T B3 SMB-TVD
Q0 E3 SMB-CH
5 B2 SMB-KL
@ B SEQ
0 0.6

m=4 m=6 m=8 m=10 m=12

Figure 4: Percent of correctly classified time series across different methods and dimensions.
EnvSca represents the proposed method; SMB-TVD, SMB-CH, and SMB-KL rep-
resent competing spectral-matrix-based approaches using the total variation dis-
tance, Chernoff information measure, and Kullback-Leibler distance respectively;
SEQ represents sequence learner.

and Vaughn, 1997; Tinuper and Bisulli, 2017). Accordingly, there is a need for statistical
procedures that can automatically identify cyclical patterns in sleep stage time series as-
sociated with specific sleep disorders and accurately classify patients with different sleep
disorders. The data for this analysis was collected through a study of various sleep-related
disorders (Terzano et al., 2001) and is publicly available via physionet (Goldberger et al.,
2000). All participants were monitored during a full night of sleep and their sleep stages
were annotated by experienced technicians every 30 seconds according to well-established
sleep staging criteria (Rechtschaffen and Kales, 1968). We consider classifying sleep stage
time series data collected from NFLE and RBD patients, for which differential diagnosis is
particularly challenging (Tinuper and Bisulli, 2017). NFLE and RBD patients both expe-
rience significant sleep disruptions associated with complex, often bizarre motor behavior
(e.g. violent movements of arms or legs, dystonic posturing) and vocalization (e.g. scream-
ing, shouting, laughing), which is due to nocturnal seizures for NFLE patients (Tinuper and
Bisulli, 2017) and due to dream-enacting behavior in REM sleep for RBD patients (Schenck
et al., 1986). This makes differentiating RBD and NFLE patients particularly challenging.
An objective, data-driven classification procedure that can automatically distinguish pa-
tients and aide differential diagnosis is needed.

The current analysis considers sleep stage time series from N = 54 participants: 39
NFLE patients and 15 RBD patients with m = 6 sleep stages (REM, S1, S2, S3, S4, and
Wake/Movement). Examples are provided in Figure 1. Since the majority of REM sleep
occurs in the second half of the night, the classification procedure is trained using subsets
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of the full night time series beginning at the 40th percentile of total sleep time and ending
at the 90th percentile of total sleep time for each participant. This also removes portions of
the time series that typically exhibit nonstationary behavior associated with falling asleep
at the beginning of the night and awakening at the end of the night. Since sleep stage time
series can vary in length, we follow Caiado et al. (2009) and Maharaj et al. (2019) and
interpolate periodogram ordinates at the Fourier frequencies associated with the shortest
time series in order to estimate the spectral envelope and optimal scalings. Wake/Movement
is used as the reference category. Leave-one-out (LOO) cross-validation is then used to
empirically evaluate the effectiveness of the classification rule. For this data, the overall
correct classification rate is 81.5%, with 34 of the 39 NFLE patients correctly classified
and 10 of the 15 RBD patients correctly classified. The tuning parameter estimated via
LOO cross-validation is £ = 0.817. This indicates that differences in spectral envelopes are
relatively more important for accurately classifying members of each group compared to
differences in optimal scalings for this data.

In addition to providing a classification rule for categorical time series, the estimated
group-level spectral envelopes and optimal scalings (see Figure 5) provide insights into key
differences in oscillatory patterns between the groups. For both groups, power is concen-
trated at lower frequencies (< 0.08) representing cycles lasting longer than 6.3 minutes and
accounting for 91.2% and 88.0% of total power for the NFLE and RBD groups respectively.
This is expected as longer sleep cycles tend to dominate sleep, with typical NREM-REM
sleep cycles lasting between 70 to 120 minutes (Institute of Medicine (US) Committee on
Sleep Medicine and Research, 2006). Accordingly, our analysis focuses on differences be-
tween groups among low frequencies.

First, the estimated spectral envelopes for the two groups (see Figure 5) are reasonably
well-separated for frequencies below 0.02 (representing cycles longer than 25 minutes), with
NFLE patients generally exhibiting more low frequency power than RBD patients. This
result is not completely unexpected, since RBD patients tend to wake up abruptly at the
end of a dream-enacting episode and are alert (Foldvary-Schaefer and Alsheikhtaha, 2013),
which can disrupt typical sleep cycles and reduce the prominence of low frequency oscilla-
tions. On the other hand, NFLE patients do not typically wake up immediately following a
nocturnal seizure (Foldvary-Schaefer and Alsheikhtaha, 2013). The contrasting effects are
also reflected in the data, in which RBD patients spend more than twice as much time in
the Wake/Movement stage during the night on average compared to NFLE patients (17.2%
vs. 7.5% of total sleep time).

Second, differences in optimal scalings (see Figure 5) are more subtle, with noticeable
differences over some categories (e.g. S3, S4), but not all. More specifically, scalings for
frequencies below 0.03 indicate low frequency behavior in NFLE patients due to cycling
through three broader sleep stage groupings: 1) light sleep (S2), 2) deep sleep (S4) and
REM (R), and 3) a combination of transitional sleep stages (S1, S3, and Wake/Movement).
On the other hand, RBD patients exhibit low frequency power primarily due to cycling in
and out of light sleep (S2) and REM (R) sleep. This can be attributed to more regular
periods of deep sleep (S4) observed in NFLE patients, occurring 7.5 times on average and
covering 18.9% of total sleep time on average, compared to RBD patients, occurring 5.2
times on average and covering 11.7% of total sleep time on average. To better illustrate the
differences in the optimal scalings, Figure 6 provides a sample series from each group along
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Left: Estimated spectral envelope for nocturnal frontal lobe epilepsy (NFLE)
patients (solid red) and REM behavior disorder (RBD) patients (dashed blue)
for low frequencies (below 0.08). Group-level estimated spectral envelopes are
represented by the two thicker lines. Right: Estimated optimal scalings for NFLE
patients (top) and RBD patients (bottom) for low frequencies (below 0.08).

with the scaled time series obtained by averaging optimal scalings over frequencies below
0.03. Given the propensity for RBD patients to experience immediate sleep disruptions
more so than NFLE patients, it is not surprising that RBD patients experience less deep
sleep than NFLE patients.

It is important to note that the proposed classification rule automatically adapts to these
particular features of the spectral envelopes and optimal scalings through the data-driven
estimate of &£ = 0.817 using LOO cross-validation, which assigns more weight to differences
in spectral envelopes in distinguishing between the two groups. This is an important feature
of the proposed classification procedure as it allows for the classification rule to adapt to
differences between groups in the spectral envelope, optimal scalings, or both.
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Figure 6: Top: Sample time series from the nocturnal frontal lobe epilepsy (NFLE) and
REM behavior disorder (RBD) groups. Bottom: Corresponding scaled time series
based on the mean scaling for frequencies below 0.03 (i.e. cycles lasting longer
than 16.7 minutes). Color corresponding to NREM (purple), REM (blue) and
W/MT (yellow) sleep stages also provided.

6. Discussion

This article presents a novel approach to classifying categorical time series. An adaptive
algorithm that takes advantage of both the spectral envelope and its corresponding set of
optimal scalings for classification of categorical time series is developed. Classification con-
sistency is also established. We conclude this article by discussing some limitations and
related future extensions. First, the proposed method assumes that the collection of time
series is stationary. However, in some applications, the time series could be nonstationary,
which would require time-varying extensions of the spectral envelope and optimal scalings
for proper characterization. Incorporating nonstationarity may also further improve classi-
fication accuracy. A possible extension of the proposed method for classifying nonstationary
categorical time series could use time-varying spectral envelope and scalings that are possi-
bly derived from the time-varying power spectral matrix (Li and Krafty, 2019). Second, the
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proposed method assumes all categories are observed across all time series, which may not
happen in practice. Future research will focus on developing theory and methods that can
accommodate these kinds of time series observations. Third, our algorithm assumes that
time series within the same group have the same cyclical patterns, while extra variability
may be present in some applications (Krafty, 2016). A topic of future research would be to
incorporate within-group variability into the classification framework. Finally, rather than
scaling the categorical time series to emphasize particular frequencies, it is reasonable to
consider alternative scalings that may directly offer improved discriminative ability, similar
to what is done in the change point literature (Ye, 2016).
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Appendix A: Additional Simulation Results

In this section, we show that the proposed method is able to accurately classify white noise
signals. We consider two additional models with m = 4 categories and J = 2 groups.
For Case 4, we generate X; from a multinomial distribution with the probabilities of each
category being

pi1 =01, ppo=0.2, pi3 =0.3, pyu =04, forallt=1,---,T, if Xy € Iy,
p1 = 0.3, pro =02, pi3=0.1, py =04, forallt =1,---,T, if X; € 1ls.

In this case, time series in both groups are white noise with the same variance but different
optimal scalings. For Case 5, the probabilities of each category are

b = 0.1, Pt2 = 0.1, Pt3 = 0.1, Pta = 07, for all t = 1,-- ,T, if X; € Hl,
p1=0.2, pro=0.2, pi3=0.2, pu =04, forallt =1, ---,T, if X; € Il,.

In this case, time series in the two groups are white noise with the same scaling but
different variances. Again, 100 replications are generated. Three numbers of time series
per group in the training data, N; = 20,50,100 for all j and three time series lengths,
T = 100, 200, 500, are considered. Four different methods, including EnvSca, ENV, SCA,
and SEQ, are applied.

Table 6 presents the means and standard deviations of the correct classification rate for
Cases 4 and 5. It can be seen that SCA performs well for Case 4 but performs badly for
Case 5; while ENV has low correct classification rate for Case 4 but high classification rate
for Case 5. The proposed EnvSca classifier, comparable to SEQ learner, has high correct
classification rate for both cases. This indicates that the proposed EnvSca classifier can
be effectively used to classify white noise signals that are different with respect to their
variances, optimal scalings, or both.
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Case | Ny | T EnvSca SCA ENV SEQ

100 | 98.79 (1.23) 98.79 (1.23) 50.42 (5.03) 98.32 (1.94)

20 | 200 | 99.91 (0.28) 99.93 (0.26) 49.66 (4.76) 99.99 (0.10)

500 | 100 (0.00) 100 (0.00)  50.16 (4.75) 100 (0.00)

100 | 99.10 (0.86) 99.09 (0.86) 49.62 (5.24) 99.56 (0.66)

4 50 | 200 | 99.96 (0.19) 99.96 (0.19) 50.47 (4.91) 99.57 (4.02)
500 | 100 (0.00) 100 (0.00)  50.16 (4.99) 100 (0.00)

100 | 99.12 (0.91) 99.06 (0.86) 49.79 (5.00) 99.55 (0.66)

100 | 200 | 99.91 (0.32) 99.91 (0.32) 50.53 (4.71) 99.99 (0.10)

500 | 100 (0.00) 100 (0.00)  50.16 (5.21) 100 (0.00)

100 | 98.70 (1.62) 55.14 (5.04) 99.72 (0.55) 98.60 (1.32)

20 | 200 | 99.10 (1.44) 56.79 (4.59) 100 (0.00)  99.84 (0.39)

500 | 99.13 (1.81) 60.01 (4.96) 100 (0.00)  99.98 (0.14)

100 | 99.26 (1.22) 57.66 (5.15) 99.73 (0.54) 99.04 (0.97)

5 50 | 200 | 99.68 (0.78) 59.07 (5.12) 100 (0.00)  99.93 (0.29)
500 | 99.71 0.70) 64.18 (4.98) 100 (0.00) 100 (0.00)

100 | 99.49 (0.75) 58.02 (5.26) 99.78 (0.41) 99.28 (0.98)

100 | 200 | 99.90 (0.30) 61.07 (4.83) 100 (0.00)  99.78 (0.34)

500 | 99.91 (0.29) 67.48 (5.02) 100 (0.00)  99.98 (0.14)

Table 2: Mean (standard deviation) of the percent of correctly classified time series across
different methods for Case 4 and Case 5. The proposed classifier which uses
both the spectral envelope and optimal scalings (EnvSca), the classifier using the
spectral envelope only (ENV), the classifier using the optimal scalings only (SCA),

and the sequence learner classifier (SEQ)

Appendix B: Proofs

Proof of Theorem 1
Recall that A = {;\(wl)

Dopny = ||A = AC

D1 env — Do pny =

It remains to show that

P (D1 gnv — Do pnv > 0)

3 ) (9

:p<
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)} where K = [(T
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2 ) 0
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s). It can be shown that
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is bounded. From Chebyshev inequality, we have

p ([ () (40 - 2)])

|:Z€I’{:1 <)\g1) _ Agz)>2:|2

P (Dy,gnv — Do pny > 0) <

(4)

Consider the numerator of (4),

K 2
_ LAWY (A @
E{ 2521(AS Al )(A Al )}
K 2
_ iAW) (A0 @
4E{; </\S Al ></\ Al )}

y {i (3o = B + B =A%) (A0 - A2) }

[y

S=
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where

K 2
I = 8 {Z (E(Xs) - AgU) (Agn - A@)} .

For I, since the elements of f,(w) are bounded (Assumption 3), we have

(5 5 w_sen | )\ 5
SE{Z(/\S—E()\S)> <)\s Y )} < 8C7 lecov(AS,As,>

s=1 s,8'=

)

where C] is a constant. Following Theorem 9.4.3 in Brillinger (2002), we have I = O(Br).
For II, using the Cauchy inequality,

8 {f (EG) =20 (AW - 2@) }2 <8 fj (B - )\(1))2 f (A - )\(2))2
S S S S — pot S S S S .

S= S=

From Lemma 2 and the assumption that elements of f,(w) are bounded as in Assumption
3, we have II = O(B2Z). Combine I and II, the numerate of (4) is O(B%.).

The denominator [Zﬁil()\gl) - /\(f))?]? is of order T2 from Assumption 4,. Combine the
results for numerator and denominator of (4), we have

P (D1 gnv — Dapny > 0) = O(BFT™2).
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Proof of Theorem 2

Recall that 4 = {fy(wl) CA(wr)'Y, a K x (m — 1) matrix, Dy sca = || — TM]|? and
Dy.sca = ||5 — T2 Tt can be shown that

m—1 K K
~ 1 1 (2)
Dy sca—Dasca=—2 Z Z <’Yz s ”Yé s)> (”Yé 3) ’Ygs> Z (743 ’Ygs) :

f=1 s=1 {=1 s=1

m—1

We aim to show P(D1 sca — D2 sca > 0). Similar to the proofs of Theorem I, we have
2
1K (- 1 1 2
E <|:_2 E?:l Zs:l (7&5 - ’Ylg,s)> <’Yl§ s) Pylg,s)):| )

[ 2 2 () -2) r

P (D1,sca — Dasca >0) < (5)
For the numerator of (5), we have

m—1

K 2
2 Z(ws ws) (%E,s) wﬂ’)]

/=1 s=1

s=1

_ 2
{ 'S (B -0 (12 - vgg)},

(=1 s=1

m—1 K . ) 2
{;Z:: ’Ws 725 ) (’Ygas) _/\25)>}
K

Using similar arguments as in the proof of Theorem 1 and under the conditions stated in
Assumption 5, we have,

m—1 K 2
1 2
253 () ()| ) -
¢=1 s=1
This completes the proof since the denominator of (5) is O(T?). |

Proof of Theorem 3

We would like to show P(D1 gnvSca — D2,Envsca > 0) is bounded. It can be shown than
Dl,Em;Sca - D2,En'uSca =A+ B, where

Ll () (0 4) 5 (00

A=k& =
Yoy A2 Yoy A2

and
-2 (%,s = vﬁ,?) (vé,ls) - %5,25)) - yira) Dl (%5,15) - %5,23))2

m—1 K +9 m—1 K +9
(=1 Zszl ’76,5 (=1 Zszl 7(,8

B=(1-k)
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Using the results in the proofs of Theorems 1 and 2, and under the conditions stated in
Assumption 6, we have

P(A>0)
m—1 K . . ) m—1 K .
( =23 (s =) (W2 =) = X (58 - 2) ] > 0)
/=1 s=1 /=1 s=1
= O(B3T2
and
P(B >0)
S o)y @)* 272
= -2 As — Ay — A — A >0 =0(BT™ 7).
(230 (o) (0 0) - 3= (0 02)7] 2 0) = 00
Since
P (Dl,Encha - DQ,EnUSca > 0) < P<A > 0) + P(B > 0)7
we have the desired results. |
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