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Abstract

α-posteriors and their variational approximations distort standard posterior inference by
downweighting the likelihood and introducing variational approximation errors. We show
that such distortions, if tuned appropriately, reduce the Kullback–Leibler (KL) divergence
from the true, but perhaps infeasible, posterior distribution when there is potential para-
metric model misspecification. To make this point, we derive a Bernstein–von Mises the-
orem showing convergence in total variation distance of α-posteriors and their variational
approximations to limiting Gaussian distributions. We use these limiting distributions to
evaluate the KL divergence between true and reported posteriors. We show that the KL
divergence is minimized by choosing α strictly smaller than one, assuming there is a van-
ishingly small probability of model misspecification. The optimized value of α becomes
smaller as the misspecification becomes more severe. The optimized KL divergence in-
creases logarithmically in the magnitude of misspecification and not linearly as with the
usual posterior. Moreover, the optimized variational approximations of α-posteriors can
induce additional robustness to model misspecification beyond that obtained by optimally
downweighting the likelihood.

Keywords: α-posterior, variational inference, model misspecification, robustness
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1. Introduction

A recent body of work in Bayesian statistics (Grünwald, 2011; Holmes and Walker, 2017;
Grünwald, 2012; Bhattacharya et al., 2019; Miller and Dunson, 2019; Knoblauch et al., 2019)
and probabilistic machine learning (Huang et al., 2018; Higgins et al., 2017; Burgess et al.,
2018) has analyzed the statistical properties of α-posteriors and their variational approxi-
mations. The α-posteriors—also known as fractional, tempered, or power posteriors—are
proportional to the product of the prior and the α-power of the likelihood (Ghosal and
Van der Vaart, 2017, Chapter 8.6). Their variational approximations are defined as those
distributions within some tractable subclass that minimize the Kullback–Leibler (KL) di-
vergence to the α-posterior; see Alquier and Ridgway (2020), Definition 1.2.

We contribute to this growing literature by investigating the robustness to misspecifica-
tion of α-posteriors and their variational approximations, with a focus on low-dimensional,
parametric models. Our analysis—motivated by the seminal work of Gustafson (2001)—is
based on a simple idea. Suppose two different procedures lead to incorrect a posteriori
inference (either due to a likelihood misspecification or computational considerations). De-
fine one procedure to be more robust than the other if the former is closer—in terms of KL
divergence—to the true posterior, which we define as the posterior distribution based on
the correctly specified likelihood function. Is it true that α-posteriors (or their variational
approximations) are more robust than standard Bayesian inference?

We answer this question using asymptotic approximations. We establish a Bernstein–von
Mises (BvM) theorem in total variation distance for α-posteriors (Theorem 1) and for their
(Gaussian mean-field) variational approximations (Theorem 2). Our result allows for both
model misspecification and non i.i.d. data. The main assumptions are that the likelihood
ratio of the presumed model is stochastically locally asymptotically normal (LAN) as also
assumed in Kleijn and Van der Vaart (2012) and that the α-posterior concentrates around
the (pseudo)-true parameter at rate

√
n. Our theorem generalizes the results obtained by

Wang and Blei (2019a,b), who focus on the case in which α = 1. We also extend the results
of Li et al. (2019), who establish the BvM theorem for α-posteriors under a weaker norm
but under more primitive conditions.

These asymptotic distributions allow us to study our suggested measure of robustness by
computing the KL divergence between multivariate Gaussians with parameters that depend
on the data, sample size, and “curvature” of the likelihood. One interesting observation is
that relative to the BvM theorem for the standard posterior or its variational approximation,
the choice of α only rescales the limiting variance, with no effect on the mean. The new
scaling is as if the observed sample size were α · n instead of n, but the location for the
Gaussian approximation continues to be the maximum likelihood (ML) estimator. Thus,
the mean of α-posteriors and their variational approximations has the same limit regardless
of the value of α.

When computing our measures of robustness, we think of a researcher who, ex-ante,
places some small exogenous probability εn of model misspecification and is thus interested
in computing an expected KL. Under the assumption that as the sample size n increases, the
probability of misspecification decreases as nεn → ε for constant ε ∈ (0,∞), we establish
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three main results (Theorem 3) that we believe speak to the robustness of α-posteriors and
their variational approximations.

The first result shows that for a large enough sample size, the expected KL divergence
between α-posteriors and the true posterior is minimized for some α∗n ∈ (0, 1). This means
that for a properly tuned value of α ∈ (0, 1), inference based on the α-posterior is asymptot-
ically more robust than regular posterior inference (corresponding to the case α = 1). Our
calculations suggest that α∗n decreases as both the probability of misspecification εn and the
difference between the parameter that generated the data—which we denote as θ0—and the
pseudo-true parameter—which we denote as θ∗—increase, where by pseudo-true parameter
we mean the point in the parameter space that provides the best approximation (in terms
of KL divergence) to the distribution that generated the data. In other words, this analysis
makes the reasonable suggestion that as the probability of the likelihood function being
wrong increases, one should put less emphasis on it when computing the posterior.

The second result demonstrates that the Gaussian mean-field variational approximations
of α-posteriors inherit some of the robustness properties of α-posteriors. In particular, it is
shown that the expected KL divergence between the true posterior and the mean-field vari-
ational approximation to the α-posterior is also minimized at some α̃∗n ∈ (0, 1). Our second
result thus provides support to the claim that variational approximations to α-posteriors
are more robust to model misspecification than regular variational approximations (corre-
sponding to α = 1). Our result also provides some theoretical support for the recent work
of Higgins et al. (2017) that suggests introducing an additional hyperparameter β to temper
the posterior when implementing variational inference (see Eq. 9 and the discussion that
follows it).

The final result contrasts the expected KL of the optimized α-posterior (and also of
the optimized α-variational approximation) against the expected KL of the regular pos-
terior and its variational approximation. We find that the latter increases linearly in the
magnitude of misspecification (in a sense we make precise), whereas the former does so
logarithmically. This suggests that when the model misspecification is large, there will be
significant gains in robustness from using α-posteriors and their variational approximations
(relative to standard posteriors and their variational approximations). Our results also
show that the optimized variational approximations of α-posteriors can induce additional
robustness to model misspecification beyond that obtained by the optimized α-posteriors
(see Section 4.4).

1.1 Related Work

The idea that Bayesian procedures can be enhanced by adding an α parameter to decrease
the influence of the likelihood in the posterior calculation has been suggested independently
by many authors in the past, predating the more recent research studying its robustness
properties under the name of α-posteriors. This includes work by Vovk (1990), McAllester
(2003), Barron and Cover (1991), Walker and Hjort (2001), and Zhang et al. (2006).

A large part of the theoretical literature studying the robustness of α-posteriors and
their variational approximations has focused on nonparametric or high-dimensional mod-
els. In these works, the term robustness has been used to mean that, in large samples,
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α-posteriors and their variational approximations concentrate around the pseudo-true pa-
rameter even when the standard posterior does not. Bhattacharya et al. (2019) illustrate
this point by providing examples of heavy-tailed priors in both density estimation and re-
gression analysis where the α-posterior can be guaranteed to concentrate at (near) minimax
rate but the regular posterior cannot. Alquier and Ridgway (2020) also derive concentration
rates for α-posteriors for high-dimensional and non-parametric models. Although compar-
ison of the conditions required to verify concentration properties is natural in nonpara-
metric or high-dimensional models, there are alternative suggestions in the literature for
the analysis of low-dimensional parametric models. For example, Wang and Blei (2019a)
compare the posterior predictive distribution based on the regular posterior and also its
variational approximation, and they show that under likelihood misspecification, the dif-
ference between the two posterior predictive distributions converges to zero. Grünwald
and Van Ommen (2017) also used (in-sample) predictive distributions to assess the perfor-
mance of α-posteriors. They show that in a misspecified linear regression problem (where
the researcher assumes homoskedasticity but the data is heteroskedastic) α-posteriors can
outperform regular posteriors.

Our work complements this recent body of literature by demonstrating robustness in a
different sense while still connecting to previous work on the subject. Although it is true
that one may be content with just studying “first-order” properties of α-posteriors (like
contraction) whenever the BvM does not hold, it remains unclear how to properly formalize
the first-order benefits of α-posteriors and their variational approximations under misspec-
ification. Yang et al. (2020) show that the necessary conditions for optimal contraction in
misspecified models can be relaxed, but there are no results yet that formally identify the
benefits of α-posteriors compared to the usual posteriors.

Our results exploit heavily the BvM theorem, which, in a sense, is based on “second-
order” approximations. We believe that our results may be useful in studying other models
where BvM results are available but are more complicated than those considered in this
paper, in that the underlying model is not necessarily low-dimensional and/or parametric;
for example, semiparametric models where the objects of interest are smooth functionals as
in Castillo and Rousseau (2015).

More importantly, our results provide an additional rationale for the use of variational
inference methods due to their robustness to model misspecification, as opposed to solely
based on computational considerations. We hope that our results will encourage the use
of variational methods in fields like applied statistics and econometrics where variational
inference remains somewhat underutilized despite its tremendous impact in machine learn-
ing. Recent applications of variational inference in econometrics include Bonhomme (2021),
Mele and Zhu (2019), and Koop and Korobilis (2018).

We finally mention that the origins of studying the asymptotic normality of posterior
distributions go back at least to the early 1900s; see Lehmann and Casella (2006); Ghosh and
Ramamoorthi (2003) for historical references. To our knowledge, our Theorem 1 provides
the first BvM result specialized to α-posteriors that relies entirely on standard assumptions
and techniques to account for model misspecification. It is worth mentioning, however, that
BvM for α-posteriors can be derived from the asymptotic results for generalized posteriors
in Miller (2021) or from the BvMs for quasi-posteriors in Chernozhukov and Hong (2003);
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Hooker and Vidyashankar (2014); Ghosh and Basu (2016); Matsubara et al. (2021). These
papers make different assumptions and obtain different statements for the form of conver-
gence compared to our study. For example, Miller (2021) shows almost sure convergence of
the total variation distance, whereas our results only guarantee convergence in probability.
However, the more general results in Miller (2021) require slightly more restrictive assump-
tions. We also note that our BvM for variational approximations of α-posteriors in Theorem
2 and its proof (which relies on Lemma 6 in Appendix B) are novel. An alternative proof for
this result could be obtained by generalizing the results of Wang and Blei (2019b) using the
Γ-convergence strategy in Lu et al. (2017) for studying Gaussian approximations to target
distributions found by minimizing the KL divergence. We think that our results could be
useful for studying variational approximations to generalized posteriors or quasi-posteriors.

1.2 Organization

The rest of this paper is organized as follows. Section 2 presents definitions and notation.
Section 3 presents the BvM theorem for α-posteriors and their variational approximations.
Section 4 presents our main results on the theoretical analysis of our suggested measure of
robustness. Section 5 presents an example concerning a Gaussian linear regression model
with omitted variables and some numerical experiments. Section 6 presents some concluding
remarks and discussion. The proofs of our main results are collected in Appendix A.

2. Notation and General Framework

We begin by introducing notation and definitions that we will use throughout the paper.

2.1 Preliminaries

We use φ(·|µ,Σ) to denote the density of a multivariate normal random vector with mean
µ and covariance matrix Σ. The indicator function of event A, which is the function that
takes the value 1 if event A occurs and 0 otherwise, is denoted as 1{A}. If p and q are two
densities with respect to the Lebesgue measure in Rp, the total variation distance between
them, denoted as dTV(p, q), equals

dTV(p, q) ≡ 1

2

∫
Rp
| p(u)− q(u) | du . (1)

See Section 2.9 in Van der Vaart (2000) for more details on the total variation distance. The
KL divergence between the two distributions with densities p and q, denoted as K(p || q), is
defined as

K(p || q) ≡
∫
p(u) log

(
p(u)

q(u)

)
du . (2)

For a sequence of distributions Pn on random variables (or matrices) Xn, we say that
Xn = oPn(1) if limn Pn(‖Xn‖ > ε) = 0 for every ε > 0 where ‖Xn‖ := ‖Xn‖2 is the
standard Euclidean norm (or Frobenius norm) and that the sequence Xn is “bounded in
Pn-probability” if for every ε > 0 there exists Mε > 0 such that Pn(‖Xn‖ < Mε) ≥ 1− ε.
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2.2 Statistical Model

Let Fn ≡ {fn(· | θ) : θ ∈ Θ ⊆ Rp} be a parametric family of densities used as a statistical
model for the random vector Xn ≡ (X1, . . . , Xn). The statistical model may be misspecified,
in the sense that if f0,n is the true density for the random vector Xn, then f0,n may not

belong to Fn. As usual, we define the ML estimator—denoted by θ̂ML -Fn—as

θ̂ML -Fn ≡ arg max
θ∈Θ

fn(Xn | θ) . (3)

For simplicity, we assume that the ML estimator is unique, and that there is a parameter
value θ∗ in the interior of Θ for which

√
n (θ̂ML -Fn−θ∗) is asymptotically normal. Sufficient

conditions for the consistency and asymptotic normality of the ML estimator under model
misspecification with i.i.d. data can be found in Huber (1967); White (1982); Kleijn and
Van der Vaart (2012). Examples of other papers establishing consistency and asymptotic
normality under misspecification for certain types of non i.i.d. data are given in Pouzo et al.
(2016).

If the model is correctly specified, then θ∗ is simply the true parameter, but if the model
is misspecified, then θ∗ provides the best approximation (in terms of KL divergence) to the
true data-generating process. In the latter misspecified case, it is then common to refer
to θ∗ as the pseudo-true parameter. We focus on the case in which the ML estimator is
asymptotically normal to highlight the fact that none of our results depend on atypical
asymptotic distributions.

The main restriction we impose on Fn is the
√
n-stochastic LAN condition of Kleijn and

Van der Vaart (2012), around θ∗ (which, again, is assumed to belong to the interior of the
parameter space).

Assumption 1 Denote ∆n,θ∗ ≡
√
n (θ̂ML -Fn − θ∗). There exists a positive definite matrix

Vθ∗ such that

Rn(h) ≡ log

(
fn (Xn | θ∗ + h/

√
n)

fn (Xn | θ∗)

)
− h> Vθ∗ ∆n,θ∗ +

1

2
h> Vθ∗ h , (4)

satisfies

sup
h∈K

|Rn(h)| → 0 , (5)

in f0,n-probability for any compact set K ⊆ Rp.

Noticing that

h> Vθ∗ ∆n,θ∗ −
1

2
h> Vθ∗ h = log

(
φ(θ∗ + h/

√
n | θ̂ML -Fn , (nVθ∗)−1)

φ(θ∗ | θ̂ML -Fn , (nVθ∗)−1)

)
, (6)

we can see that Assumption 1 implies that the corresponding likelihood ratio process for
Fn approximates, asymptotically, that of a normal random variable.
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2.3 α-posteriors and Their Variational Approximations

We now present the definition of α-posteriors and their variational approximations. Starting
from the statistical model Fn, a prior density π for θ, and a scalar α > 0, the α-posterior
is defined as the distribution having density:

πn,α(θ |Xn) ≡ [fn(Xn | θ)]α π(θ)∫
[fn(Xn | θ)]α π(θ) dθ

. (7)

See Chapter 8.6 in Ghosal and Van der Vaart (2017) for a textbook definition.

The projection of (7)—in KL divergence—onto the space of probability distributions
with independent marginals, also referred to as the mean-field family and denoted QMF,
provides the mean-field variational approximation to the α-posterior:

π̃n,α(· |Xn) ∈ arg min
q ∈QMF

K(q || πn,α(· |Xn)) . (8)

There is a trade-off between choosing a flexible and rich enough domain for the opti-
mization in (8) so that q can be close to πn,α(θ |Xn) and choosing a domain that is also
constrained enough such that the optimization is computationally feasible. The projection
onto the Gaussian mean-field family, studied in equation (8), is a particular case of the
more general variational approximations studied in the recent work of Alquier and Ridgway
(2020) who allow for other sets of distributions over which the KL is minimized. A key in-
sight of the variational framework is that minimizing the KL divergence in (8) is equivalent
to solving the program

π̃n,α(· |Xn) ≡ arg min
q ∈QMF

{∫
q(θ) log (fn(Xn | θ)) dθ − (1/α)K(q || π)

}
. (9)

The objective function in (9) is reminiscent of penalized estimation: it involves a data-fitting
term (the average log-likelihood) and a regularization or penalization term that forces the
distribution q to be close to a baseline prior π with regularization parameter 1/α.

The optimization scheme in (9) has been the subject of recent work in the representation
learning literature in Burgess et al. (2018) and Higgins et al. (2017) under the name of the
β-variational autoencoder. The optimization problem has also been studied in axiomatic
decision theory; see, for example, the multiplier preferences introduced in Hansen and
Sargent (2001) and their axiomatization in Strzalecki (2011). More generally, the objective
function in (9) with an arbitrary divergence function is analogous to the so-called divergence
preferences studied in Maccheroni et al. (2006). This literature is potentially useful in
understanding the role of the different divergence functions in penalizations, as well as the
multiplier parameter α. We think that relating these ideas from economics and decision
theory to what has been found in investigations of various forms of regularization coming
from the statistical machine learning community, for example Alquier (2021); Knoblauch
(2019); Knoblauch et al. (2019), is an interesting subject for future work.
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3. Bernstein–von Mises Theorem for α-posteriors and Their Variational
Approximations

Before presenting a formal definition of the measure of robustness used in this paper, we
show that α-posteriors and their variational approximations are asymptotically normal.
This extends the BvM theorem for misspecified models in Kleijn and Van der Vaart (2012),
which shows that posteriors under misspecified models are asymptotically normal, and the
recent variational BvM of Wang and Blei (2019a), which shows that variational approx-
imations of true posteriors are asymptotically normal. We show that the total variation
distance between the studied distribution and its limiting Gaussian distribution converges
in probability to zero with growing sample size.

3.1 BvM for α-posteriors

We say that the α-posterior, πn,α(· |Xn) defined in (7), concentrates at rate
√
n around θ∗

if for every sequence of constants rn →∞,

Ef0,n
[ ∫

1
{
‖
√
n (θ − θ∗)‖ > rn

}
πn,α(θ |Xn) dθ

]
→ 0 . (10)

Notice that

Ef0,n
[ ∫

1
{
‖
√
n (θ − θ∗)‖ > rn

}
πn,α(θ |Xn) dθ

]
= Ef0,n

[
Pπn,α(· |Xn)

(
‖
√
n (θ − θ∗)‖ > rn

)]
.

Theorem 1 Suppose that the prior density π is continuous and positive on a neighborhood
around the (pseudo-) true parameter θ∗ and that πn,α(· |Xn) concentrates at rate

√
n around

θ∗, as in (10). If Assumption 1 holds, then

dTV

(
πn,α(· |Xn), φ(· | θ̂ML -Fn , V

−1
θ∗ /(αn))

)
→ 0 , (11)

in f0,n-probability, where dTV(·, ·) denotes the total variation distance and is defined in (1)
and Vθ∗ is the positive definite matrix satisfying Assumption 1.

In a nutshell, the theorem states that the α-posterior distribution behaves asymptotically
as a multivariate normal distribution centered at the ML estimator, θ̂ML -Fn , which is based
on the potentially misspecified model Fn. Thus, the theorem shows that the choice of α
does not asymptotically affect the location of the α-posterior distribution.

However, Theorem 1 shows that the asymptotic covariance matrix of the α-posterior is
given by V −1

θ∗ /(αn); hence, the parameter α inflates the asymptotic variance when α < 1,
and deflates it otherwise. The matrix Vθ∗ is the second-order term in the stochastic LAN
approximation in Assumption 1, and its inverse is the usual variance in the BvM theorem
for correctly or incorrectly specified models. Intuitively, Vθ∗ can be thought of as measuring
the curvature of the likelihood.
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The proof and its details are presented in Appendix A.1. For the sake of exposition, we
present a brief intuitive argument for why the result should hold. By assumption, the α-
posterior concentrates around θ∗ at rate

√
n, in the sense of (10). Consider the log-likelihood

ratio for some vector h ∈ Rd,

log

(
πn,α(θ∗ + h/

√
n |Xn)

πn,α(θ∗ |Xn)

)
= log

([
f(Xn | θ∗ + h/

√
n)

f(Xn | θ∗)

]α
π(θ∗ + h/

√
n)

π(θ∗)

)
. (12)

If πn,α(· |Xn) were exactly a multivariate normal having mean θ̂ML -Fn and covariance ma-
trix V −1

θ∗ /(αn), the log-likelihood ratio in (12) would equal

h>(αVθ∗)
√
n (θ̂ML -Fn − θ∗)−

1

2
h>(αVθ∗)h . (13)

The log-likelihood ratios in (12) and (13) are not equal because πn,α(· |Xn) is not exactly
multivariate normal, but the continuity of π at θ∗ and the stochastic LAN property of
Assumption 1 makes them equal up to an of0,n(1) term.

Most of the work in the proof of Theorem 1 consists of relating the closeness in log-
likelihood ratios to closeness in total variation distance. The arguments we use to make
this connection follow verbatim the arguments used by Kleijn and Van der Vaart (2012).
To the best of our knowledge, a BvM in total variation specialized to α-posteriors has
not appeared previously in the literature although Section 4.1 in Li et al. (2019) presents a
different version of this result in a weaker metric (convergence in distribution, as opposed to
total variation) but using lower-level conditions (as opposed to our high-level assumptions).

3.2 BvM for Variational Approximations of α-posteriors

Given that the πn,α is close to a multivariate normal distribution, it is natural to conjecture
that the variational approximation π̃n,α will converge to the projection of such multivariate
normal distribution onto the mean-field family QMF.

To formalize this argument, let QGMF−p denote the family of multivariate normal distri-
butions of dimension p with independent marginals. An element in this family is parame-
terized by a vector µ ∈ Rp and a positive semidefinite diagonal covariance matrix Σ ∈ Rp×p.
When convenient, we denote such an element as q(·|µ,Σ) and will always implicitly assume
that Σ is diagonal.

We focus on the Gaussian mean-field approximation to the α-posterior. Given a sample
of size n, this can be defined as the Gaussian distribution with parameters µ̃n, Σ̃n satisfying

π̃n,α(· |Xn) = q(· | µ̃n, Σ̃n) ∈ arg min
q ∈QGMF-p

K(q(·) || πn,α(· |Xn)) . (14)

We note that the variational parameters (µ̃n, Σ̃n) := (µ̃n,α, Σ̃n,α) also depend on α; however,
with a slight abuse of notation we drop the explicit dependence in the subscript to simplify
notation in the following sections.
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Theorem 1 has shown that πn,α(· |Xn) is close to a multivariate normal distribution

with mean θ̂ML -Fn and variance V −1
θ∗ /(αn). Let q(· |µ∗n,Σ∗n) denote the multivariate normal

distribution in the Gaussian mean-field family closest to such a limit. That is,

q(· |µ∗n,Σ∗n) = arg min
q ∈QGMF-p

K(q(·) || φ(· | θ̂ML -Fn , V
−1
θ∗ /(αn))) . (15)

Note that we are also abusing notation when we write (µ∗n,Σ
∗
n) instead of (µ∗n,α,Σ

∗
n,α).

Algebra shows that the optimization problem (15) has a simple (and unique) closed-form
solution when Vθ∗ is positive definite:

µ∗n = θ̂ML -Fn , Σ∗n = diag(Vθ∗)−1/(αn) . (16)

In other words, q(· |µ∗n,Σ∗n) is the distribution in the Gaussian mean-field family having
the same mean as the limiting distribution of πn,α(· |Xn); however, as we will show, it
underestimates the covariance.

We would like to show that the total variation distance between the distributions
π̃n,α(· |Xn) and q(· |µ∗n,Σ∗n) converges in probability to zero, provided the prior and the
likelihood satisfy some regularity conditions. To do this, let θ∗ and Rn(h) be defined as in
Assumption 1.

Assumption 2 For any sequence (µn,Σn) such that (
√
n(µn − θ∗), nΣn) is bounded in

f0,n-probability, the residual Rn(h) in Assumption 1 and the prior π are such that∫
φ(h |

√
n(µn − θ∗), nΣn) log

(
π(θ∗ + h/

√
n)

π(θ∗)

)
dh→ 0 , (17)

and ∫
φ(h |

√
n(µn − θ∗), nΣn)Rn(h) dh→ 0 . (18)

In both cases the convergence is in f0,n-probability.

Theorem 2 Suppose that (
√
n(µ̃n− θ∗), nΣ̃n) is bounded in f0,n-probability where (µ̃n, Σ̃n)

is the sequence defining π̃n,α(· |Xn) = q(· | µ̃n, Σ̃n). If Assumptions 1 and 2 hold, then

dTV (π̃n,α(· |Xn), q(· |µ∗n,Σ∗n))→ 0 , (19)

in f0,n-probability, where µ∗n and Σ∗n are defined in (16).

In other words, Theorem 2 shows that the Gaussian mean-field approximation to the
α-posterior converges to the Gaussian mean-field approximation of asymptotic distribution
of the α-posterior. Indeed, the mean and variance parameter of this normal distribution are
obtained by projecting the limiting distribution obtained in Theorem 1 onto the Gaussian
mean-field family.

A detailed proof of Theorem 2 can be found in Appendix A.2. A similar result was
obtained by Wang and Blei (2019a) for the case of α = 1. Thus, Theorem 2 can be
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viewed as a generalization of their variational BvM theorem, applicable to the variational
approximations of α-posteriors. We note, however, that our proof technique is quite different
from theirs. Indeed, we require a simpler set of assumptions because we restrict ourselves
to Gaussian mean-field variational approximations to the α-posterior. This enables us to
work out a simplified argument that explicitly leverages formulas obtained by computing
the KL divergence between two Gaussians. The key intermediate step in our proof is an
asymptotic representation result stated formally in Lemma 6 in Appendix B showing that
under Assumption 1 and 2, for any sequence (µn,Σn) such that (

√
n(µn − θ∗), nΣn) is

bounded in f0,n-probability, we have

K(q(· |µn, Σn) ||πn,α(· |Xn)) = K
(
q(· |µn, Σn) ||φ(· | θ̂ML -Fn , V

−1
θ∗ /(αn))

)
+ of0,n(1) .

We use this lemma to show that projecting the α-posterior onto the space of Gaussian mean-
field distributions is approximately equal to projecting the α-posterior’s total variation limit
in Theorem 1. In particular, the proof of Theorem 2 shows that

K(π̃n,α(· |Xn; µ̃n, Σ̃n) || q(· |µ∗n,Σ∗n))→ 0 , (20)

in f0,n-probability. The statement in (19) then follows from the above limit by Pinsker’s
inequality i.e., dTV (P,Q) ≤

√
2K(P ||Q) for any two probability distributions P and Q.

See part iii) of Lemma B.1 in Ghosal and Van der Vaart (2017) for a textbook reference on
Pinsker’s inequality.

4. Robustness to Misspecification

In this section we introduce our measure of robustness and our main results related to
it. As we will explain below, the main idea is to measure robustness by computing the
KL divergence between the α-posterior (or its variational approximations) and the true
posterior.

4.1 Data-generating Process under Model Misspecification

In Section 2.2, we introduced the parametric family of densities Fn ≡ {fn(· | θ) : θ ∈ Θ ⊆
Rp} to denote the model used by the statistician. While it is standard to assume that
the statistician—as a modeler or decision maker—is either misspecified or well specified,
we depart from the literature by instead considering a decision maker who does not know
ex-ante whether their model Fn is correct. To do this, we introduce an alternative family
of densities Gn ≡ {gn(· | θ, γ) : θ ∈ Θ, γ ∈ Γ} and assume that the data observed by the
statistician is generated as follows.1

1. The parameter γ could be of finite or infinite dimension (thus, Gn could be a nonparametric model). We
do not require Fn to be nested in Gn. That is, we do not posit the existence of a parameter γ(θ) for
which fn(·|θ) = gn(·|θ, γ(θ)). The main restriction of our framework is that θ is well defined in both Fn
and Gn, which means that the parameter space of Gn can be written as the Cartesian product of the
parameter space of Fn and some other space Γ.
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A nonadversarial nature picks parameters (θ0, γ0) and then draws a Bernoulli random
variable, Tn, with success probability εn. If Tn = 0, nature draws data Xn(0) according to
the statistician’s model—that is, Xn(0) ∼ fn(·|θ0). However, if Tn = 1, nature draws Xn(1)
independently according to the alternative model Gn; in particular, Xn(1) ∼ gn(·|θ0, γ0). If
gn(·|θ0, γ0) /∈ Fn, then we can interpret εn as the probability that the statistician’s model
is misspecified.

The data observed by the statistician can be represented as Xn = (1 − Tn)Xn(0) +
TnX

n(1). Thus, our model posits that the true data-generating process can be viewed as a
mixture with density:

(1− εn)fn(·|θ0) + εngn(·|θ0, γ0),

which is conceptually analogous to the seminal ε-contamination model of Huber (1964) in
which fn(·|θ0) is a baseline model known to the statistician, and gn(·|θ0, γ0) is an unknown
contamination distribution. As in Huber’s original formulation, the departure from fn(·|θ0)
is not a consequence of the modeler’s ignorance; it arises from the very nature of the
experiment. One important difference is that in the standard Huber contamination model,
one typically assumes there is a well-specified central model and a small fraction of the data
that is drawn from a different arbitrary distribution and is usually viewed as a subset of
outliers. 2 In our framework all of the data comes from either a well-specified model or a
misspecified one.

There are two justifications for our choice. First, it seems reasonable to think that even
a modeler who has been extremely careful in choosing a statistical model Fn may still doubt
it and may believe the model is incorrect with some probability. Second, our framework
nests the standard set-up where the model is either misspecified or well specified. In fact,
we will argue later that εn = 0 or εn = 1 leads to obvious conclusions (asymptotically)
regarding the use of α-posteriors: if the model is well specified, α = 1 is the best choice; if
the model is incorrectly specified, then α = 0 is optimal.

4.2 Robustness Measures

To assess the robustness of α-posteriors, we compare the KL divergence between reported
and true posteriors.3 To do this, it is convenient to explain what we mean by true posterior
and how this meaning changes depending on whether the statistician is misspecified.

Suppose first that Tn = 1. In this case Xn = Xn(1) is drawn according to gn(·|θ0, γ0).
We take π∗ to be a prior over Θ × Γ and, in a slight abuse of notation, use π∗n(θ |Xn) to

2. More specifically, in the Huber contamination model, one assumes a random i.i.d. sample X1, . . . , Xn
where Xi = (1 − Ti)Xi(0) + TiXi(1) with Ti ∼ Ber(ε), Xi(0) ∼ f(· | θ0) and Xi(1) ∼ g(·) for some
arbitrary distribution g. Hence, we have, (X1(0), . . . , Xn(0)) = Xn(0) ∼ fn(· | θ0) as in our framework.
Typically, g(·) is thought of as distribution that can generate potentially large outliers that can damage
the statistical inference that one would like to carry out exclusively based on the central model fn(· | θ0).
In contrast, we think of the misspecified model Gn as one that potentially differs from fn(· | θ0) but still
satisfies some regularity conditions that allow for the posterior distributions computed relative to this
model to be asymptotically normal.

3. As defined in Section 1, the term true posterior refers to the posterior distribution based on the correctly
specified likelihood function. This is a slight abuse of terminology as it is not typical to label objects as
true in Bayesian inference.
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denote the posterior for θ based on the model Gn, prior π∗, and data Xn(1). Consequently,
when Tn = 1, we refer to π∗n(θ|Xn) as the true posterior since it is based on the correctly
specified likelihood function. If the statistician reports πn,α(θ|Xn), then the quality of this
report can be measured using the KL divergence K(π∗n(θ|Xn) || πn,α(θ|Xn)).

Suppose now that Tn = 0. In this case Xn = Xn(0) is drawn according to f(·|θ0). In
this case, the true posterior is simply πn,1, which corresponds to the posterior for θ based on
the model Fn (which is now correctly specified), prior π, and data Xn(0). If the statistician
reports πn,α(θ|Xn), the quality of this report can be measured using the KL divergence
K(πn,1(θ|Xn) || πn,α(θ|Xn)).

Thus, the expected value of KL divergence—as we average over the realizations of Tn
but keep the values of Xn(1) and Xn(0) fixed—becomes

rn(α) ≡ εnK(π∗n(θ|Xn) || πn,α(θ|Xn)) + (1− εn)K(πn,1(θ|Xn) || πn,α(θ|Xn)) , (21)

where, for the sake of notation, we have replaced Xn(1) in the left KL divergence and
Xn(0) in the right KL divergence by Xn because the dataset should be clear depending
on whether we are comparing the α-posterior to the correctly specified posterior. The α-
posteriors corresponding to values of α that lead to smaller values of rn(α) are said to be
more robust to parametric specification.4 To the best of our knowledge, the idea of using
the KL divergence between reported posteriors and true posteriors was first introduced by
Gustafson (2001).

Analogously, we could analyze the robustness of variational α-posteriors by studying

r̃n(α) ≡ εnK(π∗n(θ|Xn) || π̃n,α(θ|Xn)) + (1− εn)K(πn,1(θ|Xn) || π̃n,α(θ|Xn)) , (22)

where (22) is the same as (21), except we have replaced the α-posterior πn,α(θ|Xn) in
(21) with its variational approximation π̃n,α(θ|Xn) in (22). Both rn(α) and r̃n(α) are
random variables as they depend on the sampled data Xn(1) and Xn(0) that are used
to construct the posterior distributions. The magnitudes of rn(α) and r̃n(α) depend on
the likelihoods of the correctly and incorrectly specified models, on the priors, and on the
sample size. We are able to make progress on the analysis of (21) and (22) by relying on
asymptotic approximations to the infeasible posterior, regular posterior, and α-posterior
and its variational approximation.

It is well known that the BvM theorem for correctly specified models—e.g., DasGupta
(2008), p. 291—implies that under some regularity conditions on the statistical model Gn and
the prior π∗ (analogous to Assumption 1 and (10)), the true, infeasible posterior π∗n(θ|Xn)
is close in total variation distance to the p.d.f. of a N (θ̂ML,Ω

−1
0 /n) random variable, where

θ̂ML denotes the ML estimator of θ based on Gn, and Ω0 is a matrix that depends on
(θ0, γ0) and the model Gn. The same theorem also implies that when Xn ∼ fn(·|θ0), then
πn,1(θ|Xn) is close in total variation distance to the p.d.f. of a N (θ̂ML−Fn , V

−1
θ0
/n). These

results, combined with our theorems 1 and 2, naturally suggest surrogates for (21) and (22),
where we replace the densities by their asymptotically normal approximations. When the

4. Because rn(·) is a measure of robustness, we decided to use the letter r to remind a reader that we are
using this function to measure robustness.
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data is generated by gn(θ0, γ0), but analyzed using Fn, our Bernstein-von Mises theorem
will depend on the pseudo-true parameter (White, 1982) as

θ∗ ≡ argminθ∈ΘK (gn(·|θ0, γ0) || fn(·|θ)) , (23)

which we will assume to be unique and to belong to the interior of Θ.

Replacing true and reported posteriors by their asymptotically normal approximations,
we can define the surrogate measures r∗n(α) and r̃∗n(α) where

r∗n(α) ≡ εnK
(
φ(· | θ̂ML,Ω

−1
0 /n) || φ(· | θ̂ML -Fn , V

−1
θ∗ /(αn))

)
+ (1− εn)K

(
φ(· | θ̂ML -Fn , V

−1
θ0
/n) || φ(· | θ̂ML -Fn , V

−1
θ0
/(αn))

)
,

(24)

and

r̃∗n(α) ≡ εnK
(
φ(· | θ̂ML,Ω

−1
0 /n) || φ(· | θ̂ML -Fn ,diag(Vθ∗)−1/(αn))

)
+ (1− εn)K

(
φ(· | θ̂ML -Fn , V

−1
θ0
/n) || φ(· | θ̂ML -Fn ,diag(Vθ0)−1/(αn))

)
.

(25)

We provide a brief discussion of the terms that appear in Equations (24)-(25).

Consider first the surrogate measure r∗n(α) in Equation (24). The first term in the
formula for the expected KL captures the behavior of reported α-posteriors under mis-
specification by comparing two normal distributions with different locations and different
variances. One of these normal distributions is centered at the ML estimator based on the
true (but infeasible) model Gn, whereas the other is centered at the ML estimator based on
the postulated model Fn. Both variances converge to zero at rate 1/n, but they are dif-
ferent because as they are based on different models. Note that the normal approximation
for the reported α-posterior depends on the pseudo-true parameter θ∗. The second term
in the formula for the expected KL captures the behavior of reported α-posteriors under
correct specification, which now involves the comparison of two normal distributions with
only a different scaling (α-posteriors adjust the variance by a factor 1/α). Because the
data was generated by f(·|θ0), the parameter θ0 determines the covariance matrix in these
approximations.

The interpretation of the surrogate measure r̃∗n(α) is analogous. One important differ-
ence is that in the well-specified regime, the discrepancy between the variances is not only
an issue of scaling. The covariance matrix for the variational approximation of α-posteriors
is diagonal, whereas that of the true posterior need not be. The goal is also to find the
value of α that makes the expected KL in Equation (25) as small as possible.

4.3 Optimal Tuning of α-posteriors and Their Variational Approximations

Our goal is to find the value of α that makes the expected KL in Equations (24) and (25)
as small as possible. Denote these values as

α∗n ≡ arg min
α≥0

r∗n(α) , α̃∗n ≡ arg min
α≥0

r̃∗n(α) . (26)
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The following result provides exact, nonasymptotic expressions for α∗n and α̃∗n:

Lemma 1 Let p ≡ dim(θ). Let θ̂ML -Fn and θ̂ML denote the ML estimators based on Fn
and Gn, respectively. Let Ω0, Vθ∗, and Vθ0 be the positive definite matrices in Equations (24)
and (25). For any n ∈ N and εn ∈ [0, 1]:

α∗n =
p

εntr(Vθ∗Ω−1
0 ) + (1− εn)p+ nεn(θ̂ML -Fn − θ̂ML)>Vθ∗(θ̂ML -Fn − θ̂ML)

,

α̃∗n =
p

εntr(Ṽθ∗Ω−1
0 ) + (1− εn)tr(Ṽθ0V

−1
θ0

) + nεn(θ̂ML -Fn − θ̂ML)>Ṽθ∗(θ̂ML -Fn − θ̂ML)
,

where
Ṽθ0 = diag (Vθ0) , Ṽθ∗ ≡ diag (Vθ∗) . (27)

The lemma shows that the optimal tuning for α-posteriors and their variational approxi-
mations will vary depending on how large the probability of misspecification is relative to
the sample size. For example, when nεn is large (which will be the case when n is large and
the misspecified regime has probability one), both α∗n and α̃∗n will be close to zero, provided
θ̂ML and θ̂ML−Fn are sufficiently different. Likewise, when nεn is small (which will be the
case when the well-specified regime has probability close to one), α∗n will be close to one,
and α̃∗n will be close to p/tr(Ṽθ0V

−1
θ0

), which can be shown to be less than or equal to one.
We think these cases are of limited interest because they lead to obvious recommendations
for the tuning of α-posteriors (either ignore the likelihood completely or take it at face
value).

Consequently, we choose to focus on the case in which nεn converges to a strictly positive
constant. Our main result is stated in Theorem 3 below, where we show that the optimal
values α∗n and α̃∗n lie strictly in (0, 1), provided we consider sequences εn such that nεn →
ε. This asymptotic regime aims to approximate situations in which i) the probability of
misspecification decreases as more data are available, but at the same time ii) the probability
of misspecification is not negligible relative to the sample size. We think this regime is
interesting for two reasons. First, it is interesting from a technical perspective because
whenever the probability of misspecification is too small or too large, α∗n and α̃∗n have trivial
limits that are unlikely to be useful in finite samples (if nεn → ∞, then both α∗n and α̃∗n
converge to zero). Second, and from a more practical perspective, we think that assuming
that the probability of misspecification decreases as more data are available is potentially
a good description of empirical work. Think of a researcher who, before committing to a
statistical model, looks at the data to assess whether the model is reasonable. If the original
model is at odds with the data, the researcher is likely to suggest a new model. Regardless
of whether model selection is done formally or informally, there is always a chance that
the researcher’s model remains misspecified. Assuming that this probability is decreasing
as more data are available is equivalent to saying that model selection—whether formal or
informal—helps select models that are less likely to be misspecified.

We now present our main result:

Theorem 3 Let p ≡ dim(θ). Let Vθ∗ and Vθ0 be the positive definite matrices in Equations
(24) and (25), where θ0 and θ∗ are the true and pseudo-true parameters, respectively. If
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nεn → ε ∈ (0,∞), then

α∗n → α∗ ≡ p

p+ ε(θ0 − θ∗)>Vθ∗(θ0 − θ∗)
≤ 1 , (28)

α̃∗n → α̃∗ ≡ p

tr(Ṽθ0V
−1
θ0

) + ε(θ0 − θ∗)>Ṽθ∗(θ0 − θ∗)
≤ 1 , (29)

where the convergence is in probability relative to the data-generating process described in
Section 4.1. Moreover, if θ0 6= θ∗, then the inequalities above are strict.

We now discuss the meaning and implications of Theorem 3. Equation (28) says that for a
properly tuned value of α, the α-posterior is—with high probability and in large samples—
more robust than the regular posterior. The limit of α∗n suggests that the properly tuned
value of α decreases as the probability of misspecification increases. This makes conceptual
sense: it seems reasonable to downweight the likelihood if it is known that is very likely
misspecified. On the other extreme, if the likelihood is known to be correct, there is no gain
from downweighting the likelihood as this simply creates a difference in the scaling of the
α-posterior relative to the true posterior.

The formula also says that if the misspecification implied by the model is large (the
difference between θ0 and θ∗ is large), then the properly tuned value of α must be small.

Equation (29) refers to the properly calibrated value of α for the variational approxima-
tions of α-posteriors. The analysis is similar to what we have already discussed, but here, we
need to take into account that variational approximations tend to further distort the vari-
ance matrix. Indeed, Theorem 2 has shown that the asymptotic variance of the variational
approximations is Ṽ −1

θ /αn, as opposed to V −1
θ /αn, where we have defined Ṽθ ≡ diag(Vθ) for

positive definite Vθ and θ ∈ {θ∗, θ0} depending on whether the BvM theorem is derived for
a correctly specified model. It is well known that the variational approximation understates
the variances of each coordinate of θ (Blei et al. (2017)); hence, [(Ṽθ0)−1]jj ≤ [V −1

θ0
]jj for

j = 1, . . . , p. Therefore, tr(Ṽθ0V
−1
θ0

) ≥ p, which establishes the inequality in (29).

4.4 Additional Robustness of Variational Inference

In this section, we present additional derivations showing that the optimized variational
approximation to α-posteriors can be more robust than the optimized α-posteriors.

To formalize our argument, consider the optimized expected value of the KL divergence
based on the asymptotic approximations to α-posteriors and their variational approxima-
tions. From the definition of r∗n and Theorem 3:

2 lim
n→∞

r∗n(α∗n) =− p log(p) + p log
(
p+ ε(θ0 − θ∗)>Vθ∗(θ0 − θ∗)

)
. (30)

Likewise,

2 lim
n→∞

r̃∗n(α̃∗n) = −p log(p) + p log
(

tr
(
Ṽθ0V

−1
θ0

)
+ ε(θ0 − θ∗)>Ṽθ∗(θ0 − θ∗)

)
+ log

(
|Vθ0 |
|Ṽθ0 |

)
.

(31)
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We first compare these two equations with the expected KL of the usual posterior
(α = 1) and its standard variational approximation. Algebra shows that

2 lim
n→∞

r∗n(1) = ε(θ0 − θ∗)>Vθ∗(θ0 − θ∗) , (32)

and

2 lim
n→∞

r̃∗n(1) = tr
(
Ṽθ0V

−1
θ0

)
+ ε(θ0 − θ∗)>Ṽθ∗(θ0 − θ∗) + log

(
|Vθ∗ |
|Ṽθ∗ |

)
. (33)

These expressions immediately show that the expected KL distance for the regular posterior
and its variational approximation increases linearly in ε · ‖θ0 − θ∗‖2, which we refer to as
the magnitude of misspecification. The optimized KL for both the α-posteriors and their
variational approximations is also monotonically increasing in this term, but its growth is
logarithmic.

Equations (30)-(33) thus allow us to conclude that when α-posteriors and their corre-
sponding variational approximations are optimally tuned, they can be considerably more ro-
bust to model misspecification than standard variational inference, provided the magnitued
of misspecification is large. Note, however, that Equations (30) and (31) are only equal when
p = 1. Consequently, optimally tuned variational approximations to α-posteriors can be
more or less robust to model misspecification than optimally tuned α-posteriors depending
on the values of ε, θ0, θ

∗, Vθ∗ , and Vθ0 .

To illustrate this point, Figure 1 plots Equations (30)-(33) as a function of ε · ‖θ0−θ∗‖2.
Equation (32), which represents the expected KL of the standard posterior, is the solid
straight line starting at the origin (because the expected KL is zero when ε = 0). Equation
(33), which represents the expected KL of the variational approximation of the standard
posterior, is a dashed straight line, with a strictly positive ordinate at the origin (when
ε = 0, the variational approximation distorts the variance of the posterior and thus incurs
in a positive KL). The plot considers the case in which the slope of the solid line is larger
than the slope of the dashed line; that is:

∆ ≡ (θ0 − θ∗)>Vθ∗(θ0 − θ∗)/‖θ0 − θ∗‖2 > ∆̃ ≡ (θ0 − θ∗)>Ṽθ∗(θ0 − θ∗)/‖θ0 − θ∗‖2. (34)

Interestingly, Lemma 7 in Appendix B shows that whenever Equation (34) holds, there
exists a threshold t∗ such that Equation (30) is strictly larger than Equation (31) if and
only if ε‖θ0 − θ∗‖2 > t∗. In Figure 1, t∗ can be found at the intersection of the two lines at
the bottom of the figure, which represent the optimally tuned α-posterior and the optimally
tuned α-variational approximation.

Lemma 7 thus shows that the optimized variational approximation to α-posteriors can
be more robust than the optimized α-posteriors, provided the magnitude of misspecification
is large enough. It is helpful to provide further graphical intuition for this result. Consider
Figure 2 below where we plot the difference between Equations (30) and (31) as a function
of ε · ‖θ0 − θ∗‖2.

When ε = 0, the optimized α-posterior achieves an expected KL of zero by setting
α∗ = 1. Optimizing the variational approximation in this scenario yields a positive expected
KL. Thus, because the difference between these two equations is continuous near zero,
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Figure 1: Robustness of α-posteriors and their variational approximations

Notes: This plot uses the following parameters: p = 2, θ0 = [−0.626 , 0.184], θ∗ = θ0 + (5/6) · [1 , 1]′,

Vθ∗ = Vθ0 = 0.25 · [1 , 1/2; 1/2 , 1]. These are the same as in Section 5.5.

Figure 2: Difference in the expected Kullback–Leibler divergence between optimized α-
posteriors and optimized variational approximations as a function of the mag-
nitude of misspecification
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Notes: This plot uses the following parameters: p = 2, θ0 = [−0.626 , 0.184], θ∗ = θ0 + (5/6) · [1 , 1]′,

Vθ∗ = Vθ0 = 0.25 · [1 , 1/2; 1/2 , 1]. These are the same as in Section 5.5.
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we can conclude that the optimized α-posterior will be more robust than the optimized
variational approximation when the magnitude of misspecification is small.

When ε · ‖θ0− θ∗‖2 is large, the difference between Equations (30) and (31) asymptotes
to

p log(∆)− p log(∆̃)− log

(
|Vθ0 |
|Ṽθ0 |

)
,

which can be shown to be positive whenever Equation (34) holds. Thus, because the dif-
ference between Equations (30) and (31) is continuous in ε · ‖θ0 − θ∗‖2, there must be a
magnitude of misspecification large enough for which the optimized variational approxima-
tion is more robust.

We still need to show that there is a threshold t∗ that identifies the regions in which
Equation (30) is strictly larger than Equation (31). This follows because under Equation
(34), the difference between the two equations is strictly increasing in ε · ‖θ0 − θ∗‖2. As we
have discussed before, Equation (34) is also the condition under which standard variational
inference becomes more robust than the usual posterior inference.

4.5 Additional Remarks on our Results

Lq-Likelihood: Ferrari and Yang (2010) consider a generalization of the ML estimator that
downweights the likelihood, but their proposal is different from α-posteriors. Indeed, the
MLq estimator of Ferrari and Yang (2010) can be interpreted as a weighted likelihood
estimator where each individual contribution to the likelihood in the estimating equations,
i.e., ∇θ log f(xi, θ), is multiplied by f(xi, θ)

1−q for q < 1. Hence, observations that are
associated with low probabilities of the model are downweighted. One can therefore expect
this proposal to give some robustness toward outliers. This is very different from the
downweighting of α-posteriors because in this case, the whole likelihood is downweighted and
there is no observation-specific downweighting. We also note that the Bayesian estimators of
(Wang et al., 2017b; Wang and Blei, 2018) can be viewed as a generalization of α-posteriors
where the ith contribution of the likelihood gets an observation-specific weight αi and is in
that sense more similar to the MLq estimator. In fact, one of the proposals in Wang et al.
(2017b) leads to an individual-specific downweighting scheme where observations with small
values of f(xi, θ) get downweighted; see section 2.2 and eq. (8).

“Sandwich” Covariance Matrix: It is a well-known result that the asymptotic variance
of Bayesian posteriors under misspecified models does not coincide with the asymptotic
“sandwich” covariance matrix of the ML estimator under misspecification. This suggests
that instead of targeting the true (perhaps infeasible) posterior, it makes more sense to
target the artificial posterior suggested by Müller (2013), which is a normal centered at the
ML estimator but with sandwich covariance matrix. This choice of target distribution does
not change our results. The reason is that under our assumptions, the part of the expected
KL under misspecification only depends on the difference between true and pseudo-true
parameters and the covariance matrix of the reported posterior.
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5. Illustrative Example

To illustrate our main results, this section studies an example of model misspecification in
the form of a linear regression model with omitted variables. Our objective is twofold. First,
we present a simple environment where the high-level assumptions of our main theorems
can be easily verified and discussed. Second, an appropriate choice of priors in this model
yields closed-form solutions for the α-posteriors and their (Gaussian mean-field) variational
approximations. Thus, it is possible to provide additional details about the nature of the
BvM theorems that we have established, as well as the optimal choice of α.

5.1 Fn and Gn

Consider a random sample of an outcome variable Yi with control variables Wi ∈ Rp and
Zi ∈ Rd. Suppose that Gn is a homoskedastic Gaussian linear regression model

Yi = θ>Wi + γ>Zi + εi ,

where εi ∼ N (0, σ2
ε ) independently of Wi and Zi. The joint distribution of Wi and Zi is

assumed to have a density h(wi, zi) with respect to the Lebesgue measure on Rp+d.

The statistician faces an omitted variables problem, in that she would like to estimate
θ but only observes (Yi,Wi). The statistician’s misspecified model, Fn, posits that

Yi = θ>Wi + ui ,

where ui is assumed to be a univariate normal with mean zero and a presumably known vari-
ance σ2

u independently of Wi. For simplicity, we assume that the statistician’s specification
for marginal distribution of Wi is given by the marginal of h(wi, zi).

5.2 Pseudo-true Parameter and LAN Assumption

If we denote the data as Xn ≡ {(Yi,Wi)}ni=1, the likelihood is

f(Xn | θ) =
1

(2πσ2
u)n/2

exp

(
− 1

2σ2
u

n∑
i=1

(Yi − θ>Wi)
2

)
n∏
i=1

h(Wi) ,

and the ML estimator is simply the least-squares estimator of θ:

θ̂ML−Fn =

(
1

n

n∑
i=1

WiW
>
i

)−1
1

n

n∑
i=1

WiYi . (35)

It is straightforward to show that under mild assumptions on the joint distribution of
(Wi, Zi) and provided the data is generated by (θ0, γ0), the ML estimator in (35) is

√
n-

asymptotically normal around the pseudo-true parameter:

θ∗ ≡ θ0 +
(
E[WiW

>
i ]−1 E[Wi Z

>
i ]
)
γ0 , (36)
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which equals the true parameter, θ0, plus the usual omitted variable bias formula. Algebra
shows that as long as the sample second moments of Wi converge in probability (under the
true model) to the positive definite matrix E[WiW

>
i ], the stochastic LAN assumption is

satisfied with
Vθ∗ ≡ E[WiW

>
i ]/σ2

u .

This indicates that in this example, the curvature of the likelihood around the pseudo-true
parameter does not depend on θ∗. In particular, the positive definite matrix Vθ0 defined in
Section 4 is equal to Vθ∗ .

5.3 α-posteriors and Their Variational Approximations

Consider now the setting where we assume a Gaussian prior, denoted as π, for θ. In
particular, suppose

θ ∼ N (µπ, σ
2
u Σ−1

π ) .

The computation of the α-posterior in this setup is straightforward as the α-power of the
Gaussian likelihood is itself Gaussian with the new scale divided by α. Thus, algebra shows
that the α-posterior for the linear regression model is also a multivariate normal with mean
parameter

µn,α ≡

(
1

n

n∑
i=1

WiW
>
i +

1

αn
Σπ

)−1(
1

αn
Σπµπ +

1

n

n∑
i=1

WiYi

)
, (37)

and covariance matrix

Σn,α ≡
σ2
u

αn

(
1

n

n∑
i=1

WiW
>
i +

1

αn
Σπ

)−1

. (38)

Because we have closed-form solutions for the α-posteriors, one can readily show that they
concentrate at rate

√
n around θ∗ for any fixed (α, µπ,Σπ). This is shown in Appendix C.1.

Because the assumptions of Theorem 1 are met, the total variation distance between
the α-posterior and the multivariate normal

N
(
θ̂ML−Fn ,

σ2
u

αn
E[WiW

>
i ]−1

)
, (39)

must converge in probability to zero. In fact, in this example, it is possible to establish
a stronger result: the KL distance between πn,α and the distribution in (39) converges in
probability to zero (see Appendix C.2). This example thus raises the question of whether
entropic BvM theorems are more generally available for α-posteriors in misspecified models.5

This simple linear regression example also shows that the BvM theorem is not likely to
hold if α is chosen in a way that approaches zero very quickly. In particular, consider a

5. Clarke (1999) showed that—in a smooth parametric model with a well-behaved prior—the relative en-
tropy between a posterior density and an appropriate normal tends to zero in probability and in mean. If
an analogous result were available for standard posterior distributions in misspecified parametric models,
it might be possible to extend it to cover α-posteriors.
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sequence αn for which αnn converges to a strictly positive constant. Then, in this simple
example the total variation distance between the αn-posterior and the distribution in (39)
will be bounded away from zero. This is shown in Appendix C.3.

Finally, in this example the mean-field Gaussian variational approximation of the α-
posterior also has a closed-form expression. Algebra shows that the variational approxima-
tion has exactly the same mean as the α-posterior but has variance equal to

Σ̃n,α ≡
σ2
u

αn

(
diag

(
1

n

n∑
i=1

WiW
>
i +

1

αn
Σπ

))−1

. (40)

In this example, it is possible to show that the BvM theorem holds for the variational
approximation to the α-posterior (not only in total variation distance but also in KL diver-
gence). The assumptions of Theorem 2 are verified in Appendix C.4.

5.4 Expected KL and Optimal α

Finally, we discuss the expected KL criterion and the choice of α in the context of our
example. In Section 4, we defined rn(α) as the expected KL divergence between the true
posterior of θ and the α-posterior. As we therein explained, this expected KL measure is
typically difficult to compute because—with the exception of some stylized examples such
as our linear regression model with omitted variables—the α-posteriors and their variational
approximations are not available in closed form.

For this reason, we chose to work instead with a surrogate measure r∗n(α), which, moti-
vated by the BvM theorem, replaces the true posterior and α-posterior with their asymptotic
approximations. In our linear regression example, it is possible to formalize the relation-
ship between rn(α) and r∗n(α). Algebra shows that for any fixed α and any Gaussian prior,
rn(α)− r∗n(α)→ 0 as n→∞, as one would have expected (see Appendix C.6). One of the
challenges in generalizing this result is that the BvM theorems we have established are in
total variation; thus, we cannot use them directly to analyze the behavior of the expected
KL divergence.

Regarding the choice of α, we have shown in Theorem 3 that the limit of the optimal
choice is

α∗ =
p

p+ ε(θ0 − θ∗)>Vθ∗(θ0 − θ∗)
.

If θ0 is different from the pseudo-true parameter θ∗ then α∗ < 1. In our example, from (36),
we see that θ0 − θ∗ =

(
E[WiW

>
i ]−1 E[Wi Z

>
i ]
)
γ0, and hence equals zero whenever γ0 = 0

(i.e., there are indeed no omitted variables) or when the omitted variables are uncorrelated
with the observed controls (i.e., when the omitted variable bias is exactly zero).

Because it is possible to compute rn(α) explicitly in the linear regression example, it is
also possible to choose α to minimize this expression. Algebra shows that for any α′ 6= α∗,
we have rn(α∗) < rn(α′) for sufficiently large n.
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5.5 Numerical Experiments

In our simulations, we let p = 2 and d = 1; thus, gn(·|θ0, γ0) is given by the model

Yi = θ0,1Wi,1 + θ0,2Wi,2 + γ0Zi + εi .

We select γ0 = 5 and set θ0 = (−0.626, 0.184).6 We use σε = 2 and the vector (Wi,1,Wi,2, Zi) ∼
N (0,Σ) where

Σ =

 1 ρ ρ/2
ρ 1 ρ/2
ρ/2 ρ/2 1

 , with ρ = 1/2 . (41)

The model fn(·|θ0) omits Zi:

Yi = θ0,1Wi,1 + θ0,2Wi,2 + ui ,

where ui ∼ N (0, σε).

We mention that under this model, α-optimized variational inference provides additional
robustness beyond that given by optimized α-posteriors alone when εn is large, as described
in Section 4. Indeed, in Appendix C.7, we prove that the condition in (34) is satisfied. This
is also demonstrated empirically in Figure 3.

The ML estimator with respect to Fn is
√
n-asymptotically normal around the pseudo-

true parameter when the data is generated by g(·|θ0, γ0). In this example, the pseudo-true
parameter is given by

θ∗ ≡ θ0 +
(
E[WiW

>
i ]−1 E[Wi Zi]

)
γ0 = θ0 +

([
1 1/2

1/2 1

]−1 [
1/4
1/4

])
5 = θ0 +

5

6

[
1
1

]
,

and the stochastic LAN assumption is satisfied with the covariance matrix

Vθ∗ ≡ E[WiW
>
i ]/σ2

u =
1

4

[
1 1/2

1/2 1

]
.

Now we assume a Gaussian prior for (θ, γ), denoted as π∗. In particular, suppose
(θ, γ) ∼ N (0, σ2

u Σ−1), where the covariance structure is chosen randomly from the Wishart
ensemble. We assume the prior π over θ used by the statistician is the marginal distribution
of the joint prior π∗ specified above. Using π, we can calculate the α-posterior using (37)
and (38), and we prove in Appendix C.1 that the α-posterior concentrates at rate

√
n around

θ∗ for any fixed α.

Recall from Section 4 that rn(α) denotes the expected KL divergence between the true
posterior of θ and the α-posterior and r∗n(α) denotes the expected KL divergence when one
replaces the true posterior and the α-posterior by their asymptotic approximations. As
discussed in Section 5.4, for any fixed α and any Gaussian prior, rn(α) − r∗n(α) → 0 as
n → ∞. Further, r̃n(α) denotes the expected KL divergence between the true posterior of

6. These are a single draw from independent, standard Gaussians using R, with set.seed(1).
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θ and the variational approximation to the α-posterior with r̃∗n(α), similarly replacing finite
n quantities with their Gaussian asymptotic approximations.

Finally, in Figure 3, for n ∈ {1000, 100000,∞} and α ∈ (0, 1), we plot rn(α) in blue and
r∗n(α) in black on the left and r̃n(α) in blue and r̃∗n(α) in black on the right, where denoting
Ṽθ∗ := diag(Vθ∗), we have that

r∗n(α) =
1

2
(αAn(Vθ∗)− p log(α) +Bn(Vθ∗)) ,

r̃∗n(α) =
1

2

(
αAn(Ṽθ∗)− p log(α) +Bn(Ṽθ∗)

)
,

(42)

with

An(V ) ≡ εntr(V Ω−1) + (1− εn)tr(V V −1
θ∗ ) + nεn(θ̂ML -Fn − θ̂ML)>V (θ̂ML -Fn − θ̂ML) ,

Bn(V ) ≡ −p+ εn log(|Ω||V |−1) + (1− εn) log(|Vθ∗ ||V |−1) .
(43)

In (43), Ω−1 is the p× p upper submatrix of σ2
uΣ−1 for Σ in (41), θ̂ML−Fn is given in (35),

and θ̂ML is the vector of the first p elements of(
1

n

n∑
i=1

(Wi, Zi)
>(Wi, Zi)

)−1
1

n

n∑
i=1

(Wi, Zi)
>Yi .

We mention that the curves in (42) are minimized with α∗ values described by Lemma 1 in
Section 4.

The red curves in both plots of Figure 3 are the limiting curves, r∗∞(α) and r̃∗∞(α) given
by

r∗∞(α) =
1

2

(
αp+ αε(θ∗ − θ0)>Vθ∗(θ∗ − θ0)− p log(α)− p

)
,

r̃∗∞(α) =
1

2

(
αtr(Ṽθ∗V

−1
θ∗ ) + αε(θ∗ − θ0)>Ṽθ∗(θ∗ − θ0)− p log(α)− p+ log(|Vθ∗ ||Ṽθ∗ |−1)

)
.

(44)

In these plots, we have again selected εn = 10/n so that nεn → ε = 10. The points
emphasized on the curves are their minimum values.

We see from Figure 3 that the r̃n(α) and r̃∗n(α) curves are generally below the rn(α)
and r∗n(α) curves, and r̃∗∞(α∗) is smaller than r∗∞(α∗), indicating that this is an example
where the variational approximation to the posterior is more robust than the α-posterior
itself. We also see from this plot that rn(α) and r∗n(α) as well as r̃n(α) and r̃∗n(α) are close
to each other for all values of α already at n = 1000. Moreover, the finite n curves are quite
close to the n =∞ curves when n = 100000. However, even at n = 1000, the minimizing α
values indicated by the points at the bottom of the curve are close to their limiting values
(the points in red), suggesting that the limiting values of α may be used to indicate the
appropriate levels of tempering even in finite samples.
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Figure 3: Plots of rn(α) (blue, left), r∗n(α) (black, left) and r̃n(α) (blue, right), r̃∗n(α) (black,
right) for n ∈ {1000, 100000,∞} with α ∈ (0, 1) on the x-axis and points indicat-
ing minimum values on the curves. Red curves are r∗∞(α) (left) and r̃∗∞(α) (right)
given in (44). Plotted with εn = 10/n so that nεn → ε = 10.

6. Concluding Remarks and Discussion

In this work, we have studied the robustness to model misspecification of α-posteriors
and their variational approximations with a focus on parametric, low-dimensional models.
To formalize the notion of robustness, we built on the seminal work of Gustafson (2001)
and his suggested measure of sensitivity to parametric model misspecification. To state it
simply, if two different procedures lead to incorrect posterior inference (either due to model
misspecification or computational considerations), one procedure is more robust (or less
sensitive) than the other if it is closer—in terms of KL divergence—to the true posterior.
Thus, we analyzed the KL divergence between true posteriors and the distributions reported
by either the α-posterior approach or their variational approximations.

Obtaining general results about the properties of the KL divergence between true and
reported posteriors is quite challenging as this will typically depend on the priors, data,
statistical model, and form of misspecification. We were able to make progress by relying
on asymptotic approximations to α-posteriors and their variational approximations.

In particular, we established a BvM theorem in total variation distance for α-posteriors
(Theorem 1) and for their (Gaussian mean-field) variational approximations (Theorem 2).
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Our results provided a generalization of the results in Wang and Blei (2019a,b), who focused
on the case in which α = 1. We also extend the results of Li et al. (2019), who established
the BvM theorem for α-posteriors under a weaker norm (weak convergence) but under more
primitive conditions.

We think these asymptotic approximations have value per se. For example, we learned
that relative to the BvM theorem for the standard posterior or its variational approximation,
the choice of α only rescales the limiting variance. The new scaling acts as if the observed
sample size were α·n instead of n, but the location for the Gaussian approximation continues
to be the ML estimator. As choosing α < 1 inflates the α-posterior’s variance relative to
the usual posterior, the tempering parameter corrects some of the variance understatement
of standard variational approximations to the posterior. Further, there is some recent work
considering variational approximations using the α-Rényi divergence instead of the KL
divergence (Jaiswal et al., 2020). It might be interesting to explore whether it is possible to
derive a result analogous to Theorem 2, where we approximate the limiting distribution of α-
Rényi approximate posteriors by projecting the limiting distribution obtained in Theorem 1.

The main use of the asymptotic approximations in our paper, however, was simply to
facilitate the computation of the suggested measure of robustness. This required elementary
calculations once we have multivariate Gaussians with parameters that depend on the data,
sample size, and “curvature” of the likelihood.

An important caveat of our results is that we focused on analyzing the KL divergence
between the limiting distributions, as opposed to the limit of KL divergence between reported
and true posteriors. Although the two are equivalent in some simple models (for example,
a linear regression model with omitted variables and Gaussian priors), the general result
requires further exploration. Unfortunately, we do not yet have a good solution. It is easy
to show that the function (P,Q) 7→ K(P ||Q) is lower semicontinuous in total variation
distance, so it is possible to get a bound on the KL divergence we want to study with the
KL divergence of the Gaussian limits. However, the interesting part is not the divergences
themselves but rather the values of α that minimize them. We think that perhaps the use of
the Theorem of the Maximum Berge (1963) and its generalizations could be useful for this
analysis. It is possible that the continuity results can be strengthened in our case because
we are dealing with Gaussians in the limit but we do not yet have answers. Additionally, a
formal analysis might require the derivation of entropic BvM theorems, where the distance
is measured using KL divergence, as in Clarke (1999).

Finally, although our paper has a theoretical prescription for choosing the tempering
parameter α, further research is needed to translate this into a practical recommenda-
tion. As discussed in detail, our calculations suggest that α∗n tends to be smaller as both
the probability of misspecification εn and the difference between the true and pseudo-true
parameters increase. It is possible to hypothesize some value for the probability of misspec-
ification. However, the true parameter is unknown (and cannot be estimated consistently
under misspecification). We leave the question of how to optimally choose the tempering
parameter for α-posterior and their approximations for future research. One promising line
of work is to do a full Bayesian treatment of the problem as in Wang et al. (2017a).
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Appendix A. Proofs of Main Results

A.1 Proof of Theorem 1

This proof follows Theorem 2.1 in Kleijn and Van der Vaart (2012), which shows that the
posterior under misspecification is asymptotically normal, but our proof is adapted and
simplified for the α-posterior framework. In what follows, we let ∆n,θ∗ ≡

√
n (θ̂ML -Fn − θ∗)

as in Assumption 1, where θ∗ is assumed to be an element of the interior of Θ ⊂ Rp.

As θ∗ is in the interior of Θ ⊂ Rp, there exists a sufficiently small δ > 0 such that the
open ball Bθ∗(δ) ≡ {θ : ||θ − θ∗|| < δ} is a neighborhood of the (pseudo-)true parameter
θ∗ in Θ. In particular, we choose δ such that Bθ∗(δ) belongs to the neighborhood of θ∗

in which it is assumed that π is continuous and positive. Note that for any compact set
K0 ⊂ Rp, including the origin, we can find an integer N0 ≡ N0(K0, Bθ∗(δ)) sufficiently large
such that for any vector h ∈ K0, we have that the perturbation of θ∗ in the direction h/

√
n;

that is, θ∗ + h/
√
n belongs to Bθ∗(δ) whenever n ≥ N0.

The goal is to show that the total variation distance between the α-posterior of θ,
denoted as πn,α(· |Xn), and a multivariate Normal distribution with mean θ̂ML−Fn and
variance V −1

θ∗ /(nα) goes to zero in f0,n-probability. Because the total variation distance
is invariant to the simultaneous re-centering and scaling of both measures being compared
(Van der Vaart (2000)), it is more convenient to work with the α-posterior of the trans-
formation

√
n (θ − θ∗) and compare it to the similarly re-centered and scaled multivariate

Normal distribution, i.e., one with mean ∆n,θ∗ and variance V −1
θ∗ /α.

For vectors g, h ∈ K0, the following random variable will be used to bound the average
total variation distance between the α-posterior and the alleged multivariate normal limit:

fn(g, h) ≡
{

1− φn(h)

πLANn,α (h |Xn)

πLANn,α (g |Xn)

φn(g)

}+
, (45)

where φn(h) ≡ n−1/2φ(h |∆n,θ∗ , V
−1
θ∗ /α) and πLANn,α (h|Xn) ≡ n−1/2πn,α(θ∗+h/

√
n|Xn), are

scaled versions of the densities that we want to compare using the total variation distance,
and {x}+ = max{0, x} denotes the positive part of x. Define also πn(h) ≡ n−1/2 π(θ∗ +
h/
√
n) to be the density of the prior distribution of the transformation

√
n (θ−θ∗). It follows

that fn in (45) is well defined on K0 ×K0 for all n > N0 as in this regime, πLANn,α (h |Xn) is
guaranteed to be positive since θ∗ + h/

√
n belongs to Bθ∗(δ) as discussed above.
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Let B0(rn) denote a closed ball of radius rn around 0. Because dTV ≤ 1 and the
expectation is linear, for any sequence rn and for any η > 0

Ef0,n
[
dTV

(
πLANn,α (· |Xn), φn(·)

)]
≤ Ef0,n

[
dTV(πLANn,α (· |Xn), φn(·))1

{
sup

g,h∈B0(rn)

fn(g, h) ≤ η

}]
+ Pf0,n

(
sup

g,h∈B0(rn)

fn(g, h) > η

)
.

(46)

The proof is completed by bounding the two terms on the right side of (46).

First, we bound the expectation on the right side of (46). Lemma 4 in Appendix B
implies

dTV(πLANn,α (· |Xn), φn) ≤ sup
g,h∈B0(rn)

fn(g, h) +

∫
||h||>rn

πLANn,α (· |Xn) dh+

∫
||h||>rn

φn(h) dh ,

(47)

therefore

Ef0,n

[
dTV(πLANn,α (· |Xn), φn(·))1

{
sup

g,h∈B0(rn)

fn(g, h) ≤ η

}]

≤ η + Ef0,n

[∫
||h||>rn

πLANn,α (h |Xn) dh

]
+ Ef0,n

[∫
||h||>rn

φn(h) dh

]
.

(48)

The bound in (48) uses the inequality

Ef0,n

[∫
||h||>rn

φn(h) dh 1

{
sup

g,h∈B0(rn)

fn(g, h) ≤ η

}]
≤ Ef0,n

[∫
||h||>rn

φn(h) dh

]
,

which is an implication of the non-negativity of φn(·) and a similar upper bound for the
third term on the right side of (48).

In addition, by the concentration assumption of the theorem defined in equation (10),
there exists an integer N1(η, ε) such that for all n > N1(η, ε),

Ef0,n

[∫
||h||>rn

πLANn,α (h |Xn) dh

]
< ε. (49)

Further, by Lemma 5.2 in Kleijn and Van der Vaart (2012), which exploits properties
of the multivariate normal distribution, there exists an integer N2(η, ε) such that for all
n > N2(η, ε),

Ef0,n

[∫
||h||>rn

φn(h) dh

]
< ε . (50)

Now plugging (49) and (50) into (48), defining Ñ(η, ε) = max{N1(η, ε), N2(η, ε)}, we find
that for all n > Ñ(η, ε),

Ef0,n

[
dTV

(
πLANn,α (· |Xn), φn(·)

)
1

{
sup

g,h∈B0(rn)

fn(g, h) ≤ η

}]
≤ η + 2ε. (51)
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Lemma 5 in Appendix B shows that for a given η, ε > 0, there exists a sequence rn →
+∞ and N(η, ε) such that the second term on the right side of equation (46) is small for
n > N(η, ε); that is, for all n > N(η, ε),

Pf0,n

(
sup

g,h∈B0(rn)

fn(g, h) > η

)
≤ ε . (52)

We mention that it is in the proof of Lemma 5 that we use the stochastic LAN condition
in Assumption 1.

Finally, we conclude from (46), using the bounds in (51) and (52), that for all n >
max{N(η, ε), Ñ(η, ε)},

Ef0,n
[
dTV

(
πLANn,α (· |Xn), φn(·)

) ]
≤ η + 2ε+ ε = η + 3ε .

A standard application of Markov’s inequality gives the desired result.

A.2 Proof of Theorem 2

Let π̃n,α(· |Xn) = q(· | µ̃n, Σ̃n) be the Gaussian mean-field approximation to the α-posterior
defined in (14).

We will prove that

K (π̃n,α (· |Xn) || q(· |µ∗n,Σ∗n)) = K
(
φ(· | µ̃n, Σ̃n) || φ(· | θ̂ML -Fn , diag(αnVθ∗)−1)

)
→ 0 ,

(53)
in f0,n-probability where the equality follow because q(· |µ∗n,Σ∗n) is Gaussian with mean
and covariance defined in (16). The statement in (19) follows by Pinsker’s inequality as it
ensures that convergence in KL divergence implies convergence in total variation distance.

Note that the KL divergence between two p-dimensional Gaussian distributions can be
computed explicitly as

K (φ(· |µ1, Σ1) || φ(· |µ2, Σ2)) =
1

2

[
log

(
|Σ2|
|Σ1|

)
+ tr

(
Σ−1

2 Σ1

)
+ (µ2 − µ1)>Σ−1

2 (µ2 − µ1)− p
]
.

(54)

Applying the identity (54), we see that

K
(
φ(· | µ̃n, Σ̃n) || φ(· | θ̂ML -Fn , diag(αnVθ∗)−1)

)
= T1 + T2 ,

where

T1 =
1

2
(θ̂ML -Fn − µ̃n)>diag(αnVθ∗)(θ̂ML -Fn − µ̃n) , (55)

T2 =
1

2
tr(diag(αnVθ∗)Σ̃n)− p

2
+

1

2
log

(
|Σ̃n|−1

|diag(αnVθ∗)|

)
. (56)
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To prove (53), we will prove that both T1 = of0,n(1) and T2 = of0,n(1). The key step to
establishing these results is the asymptotic representation result of Lemma 6. It shows
that under Assumptions 1 and 2, for any sequence (µn,Σn)—possibly dependent on the
data—that is bounded in f0,n-probability, we have:

K(q(· |µn, Σn) || πn,α(· |Xn)) = K
(
q(· |µn, Σn) || φ(· | θ̂ML -Fn , V

−1
θ∗ /(αn))

)
+ of0,n(1) .

This means that the KL divergence between any normal density q(·|µn,Σn) and the
α-posterior πn,α(·|Xn) is eventually close to the KL divergence between the same density
and the α-posterior’s total variation limit (which we have characterized in Theorem 1).

We use two intermediate steps to relate (µ̃n, Σ̃n) to (θ̂ML−Fn , diag(Vθ∗)−1/(αn)).

Claim 1. We start by showing that T1 = of0,n(1). Because µ̃n and Σ̃n are the parameters
that solve the variational approximation in (14), they are thus the parameters that minimize
the KL divergence between the Gaussian mean-field family and the α-posterior. It follows
that for every n,

K(q(· | µ̃n, Σ̃n) || πn,α(· |Xn)) ≤ K(q(· | θ̂ML -Fn , Σ̃n) || πn,α(· |Xn)) . (57)

Using Lemma 6, we can evaluate each of the KL divergences above up to an of0,n(1)
term using the asymptotic Gaussian limit of πn,α(· |Xn) given in Thm 1. Indeed, as both

(
√
n(µ̃n − θ∗), nΣ̃n) and (

√
n(θ̂ML -Fn − θ∗), nΣ̃n) are bounded in f0,n-probability, we can

apply Lemma 6 to find

K(q(· | µ̃n, Σ̃n) || πn,α(· |Xn)) = K(q(· | µ̃n, Σ̃n) || φ(· | θ̂ML -Fn , V
−1
θ∗ /(αn))) + of0,n(1) ,

K(q(· | θ̂ML -Fn , Σ̃n) || πn,α(· |Xn)) = K(q(· | θ̂ML -Fn , Σ̃n) || φ(· | θ̂ML -Fn , V
−1
θ∗ /(αn))) + of0,n(1) ,

and plugging the above into (57) gives

K
(
q(· | µ̃n, Σ̃n) || φ(· | θ̂ML -Fn , V

−1
θ∗ /(αn))

)
≤ K

(
q(· | θ̂ML -Fn , Σ̃n) || φ(· | θ̂ML -Fn , V

−1
θ∗ /(αn))

)
+ of0,n(1).

(58)

Therefore, the result follows from (54) and (58) that

T1 =
1

2
(θ̂ML -Fn − µ̃n)>(αnVθ∗)(θ̂ML -Fn − µ̃n)

= K
(
q(· | µ̃n, Σ̃n) || φ(· | θ̂ML -Fn , V

−1
θ∗ /(αn))

)
−K

(
q(· | θ̂ML -Fn , Σ̃n) || φ(· | θ̂ML -Fn , V

−1
θ∗ /(αn))

)
≤ of0,n(1) . (59)

Claim 2. We now show that T2 = of0,n(1) by relating Σ̃n to diag(Vθ∗)−1/(αn).

The optimality of µ̃n and Σ̃n defined by (14) once again implies that for every n:

K(q(· | µ̃n, Σ̃n) || πn,α(· |Xn)) ≤ K(q(· | θ̂ML -Fn ,diag(Vθ∗)−1/(αn)) || πn,α(· |Xn)). (60)
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Robustness of α-posteriors and their variational approximations

As in the work of Claim 1, this inequality and Lemma 6 imply that

K(q(· | µ̃n, Σ̃n) || φ(· | θ̂ML -Fn , V
−1
θ∗ /(αn)))

≤ K(q(· | θ̂ML -Fn ,diag(Vθ∗)−1/(αn)) || φ(· | θ̂ML -Fn , V
−1
θ∗ /(αn))) + of0,n(1).

(61)

Next, using the inequality in (61), applying (54) to each term, and noting that (59) implies
1
2(θ̂ML -Fn − µ̃n)>(αnVθ∗)(θ̂ML -Fn − µ̃n) ≤ of0,n(1), we obtain

1

2

[
tr(αnVθ∗Σ̃n)− p+ log

(
|V −1
θ∗ /(αn)|
|Σ̃n|

)]

≤ 1

2

[
tr(αnVθ∗diag(Vθ∗)−1/(αn))− p+ log

(
|V −1
θ∗ /(αn)|

|diag(Vθ∗)−1/(αn)|

)]
+ of0,n(1) .

Further noting that tr(Vθ∗diag(Vθ∗)−1) = p, we see that the above inequality is equivalent
to

1

2

[
tr(αnVθ∗Σ̃n)− p+ log

(
|V −1
θ∗ /(αn)|
|Σ̃n|

)
− log

(
|V −1
θ∗ /(αn)|

|diag(Vθ∗)−1/(αn)|

)]
≤ of0,n(1) . (62)

Since Σ̃n is diagonal,
tr(αnVθ∗Σ̃n) = tr(diag(αnVθ∗)Σ̃n),

and consequently, the left-hand side of (62) equals T2, which has been defined in (56).
Moreover, because the term T2 is nonnegative, as it equals the KL divergence between
two normals with the same mean but variances Σ̃n and diag(Vθ∗)−1/αn, we conclude that
T2 = of0,n(1).

A.3 Proof of Lemma 1

We note that r∗n and r̃∗n defined in (24) and (25), respectively, are both expectations involving
KL divergences of two multivariate Gaussian distributions; hence, (54) allows us to compute
r∗n(α) and r̃∗(α) explicitly as

r∗n(α) =
1

2

(
αAn(Vθ∗ , Vθ0)− p log(α) +Bn(Vθ∗ , Vθ0)

)
,

r̃∗n(α) =
1

2

(
αAn(Ṽθ∗ , Ṽθ0)− p log(α) +Bn(Ṽθ∗ , Ṽθ0)

)
,

where

An(Σ,Ψ) ≡ εntr(ΣΩ−1
0 ) + (1− εn)tr(ΨV −1

θ0
) + nεn(θ̂ML -Fn − θ̂ML)>Σ(θ̂ML -Fn − θ̂ML) ,

Bn(Σ,Ψ) ≡ −p+ εn log(|Ω0||Σ−1|) + (1− εn) log(|Ψ−1||Vθ0 |) .

Using this notation, we see that r∗n and r̃∗n are convex functions on α. This implies that
first-order conditions pin-down the optimal α∗n and α̃∗n defined in (23). These are equal to

α∗n =
p

An(Vθ∗ , Vθ0)
and α̃∗n =

p

An(Ṽθ∗ , Ṽθ0)
. (63)

31



Avella Medina and Montiel Olea and Rush and Velez

A.4 Proof of Theorem 3

Denote by f0,n the probability density relative to the data-generating process described in

Section 4.1. By assumption, we have θ̂ML → θ0 in f0,n-probability and nεn → ε ∈ (0,∞).

In addition, we know that θ̂ML -Fn → θ∗; therefore, it follows that An(Σ,Ψ)→ tr(ΨV −1
θ0

) +

ε(θ∗ − θ0)>Σ(θ∗ − θ0) , both in f0,n-probability (where An is defined as in the proof of
Lemma 1, Section A.3). Denote α∗ and α̃∗ the limits in f0,n-probability of α∗n and α̃∗n.
These limits can be computed by replacing (Σ,Ψ) in the expressions above with (Vθ∗ , Vθ0)
or (Ṽθ∗ , Ṽθ0) and taking limit of (63). This implies, in f0,n-probability, that

α∗n → α∗ ≡ p

p+ ε(θ0 − θ∗)>Vθ∗(θ0 − θ∗)
, α̃∗n → α̃∗ ≡ p

tr(Ṽθ0V
−1
θ0

) + ε(θ0 − θ∗)>Ṽθ∗(θ0 − θ∗)
.

To conclude α̃∗ ≤ 1 is sufficient to prove that tr(Ṽθ0V
−1
θ0

) ≥ p.

Recall that the trace of a matrix is the sum of the eigenvalues and the determinant is
the product. Applying the Arithmetic Mean-Geometric Mean inequality, we have

1

p
tr
(
Ṽθ0V

−1
θ0

)
≥
(
|Ṽθ0V

−1
θ0
|
)1/p

. (64)

Then, since |Ṽθ0V
−1
θ0
| = |Ṽθ0 ||V

−1
θ0
| = |Ṽθ0 ||Vθ0 |−1, it will be sufficient to prove that |Ṽθ0 | ≥

|Vθ0 |, where Ṽθ0 = diag(Vθ0). Because Vθ0 is a positive definite matrix, this is exactly
Hadamard’s inequality; see Theorem 7.8.1 in Horn and Johnson (2012).

Finally, if θ0 6= θ∗, it follows that ε(θ0−θ∗)>Vθ∗(θ0−θ∗) > 0, which implies that α∗ < 1.
To conclude α̃∗ < 1, note that all the diagonal terms of Ṽθ∗ are strictly positive since
Ṽθ∗ = diag(Vθ∗) and Vθ∗ is a positive definite matrix. Otherwise, by Hadamard’s inequality
we will have |Vθ∗ | = 0, which is not possible. This implies that ε(θ0− θ∗)>Ṽθ∗(θ0− θ∗) > 0.

Appendix B. Technical Lemmas

Lemma 4 Consider sequences of densities φn and ψn. For a given compact set K ⊂ Rp,
suppose that the densities ψn and φn are positive on K. Then,

dTV (ψn, φn) ≤ sup
g,h∈K

fn(g, h) +

∫
Rp\K

ψn(h) dh +

∫
Rp\K

φn(h) dh ,

where we have defined the function

fn(g, h) =
{

1− φn(h)

ψn(h)

ψn(g)

φn(g)

}+
. (65)

Proof. First, denote an =
{∫

K ψn(g) dg
}−1

and bn =
{∫

K φn(g) dg
}−1

. Notice that both
are well defined since φ and ψ are assumed positive on K. We will assume throughout that
an ≥ bn, without loss of generality.
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First, by definition, dTV (ψn, φn) = 1
2

∫
|ψn(h)−φn(h)| dh. Then, since |x| = 2{x}+−x,

it follows that the total variation is equal to

dTV (ψn, φn) =
1

2

∫
|ψn(h)− φn(h)| dh

=

∫
Rp

{
ψn(h)− φn(h)

}+
dh+

1

2

∫
Rp

(ψn(h)− φn(h)) dh

=

∫
Rp

{
ψn(h)− φn(h)

}+
dh

=

∫
K

{
ψn(h)− φn(h)

}+
dh+

∫
Rp\K

{
ψn(h)− φn(h)

}+
dh .

(66)

Now, since ψn, φn are nonnegative on all of Rp, it follows that {ψn(h) − φn(h)}+ ≤
ψn(h) + φn(h). This provides a bound for the second term on the right side of (66):∫

Rp\K

{
ψn(h)− φn(h)

}+
dh ≤

∫
Rp\K

ψn(h) dh +

∫
Rp\K

φn(h) dh . (67)

To complete the proof, we show that the first term on the right side of (66) is upper bounded
by supg,h∈K fn(g, h). For all h ∈ K, we have the following identity,

φn(h)

ψn(h)
=
an
bn

∫
K

φn(h)

ψn(h)

ψn(g)

φn(g)
bnφn(g) dg .

Thus, we can rewrite the first term on the right side of (66) as follows,∫
K

{
ψn(h)− φn(h)

}+
dh =

∫
K

{
1− φn(h)

ψn(h)

}+

ψn(h) dh

=

∫
K

{
1− an

bn

∫
K

φn(h)

ψn(h)

ψn(g)

φn(g)
bnφn(g) dg

}+
ψn(h) dh .

(68)

Now, by applying Jensen’s inequality on the convex function f(x) = {1 − x}+, we have
{1− E[X]}+ ≤ E

[
{1−X}+

]
. Applying this to the final expression above and recalling the

definition of fn(g, h) in (65), we find∫
K

({
1− an

bn

∫
K

φn(h)

ψn(h)

ψn(g)

φn(g)
bnφn(g) dg

}+
)
ψn(h) dh

≤
∫
K

(∫
K

{
1− an

bn

φn(h)

ψn(h)

ψn(g)

φn(g)

}+
bnφn(g) dg

)
ψn(h) dh ≤

∫
K

∫
K
fn(g, h) bnφn(g)ψn(h) dg dh ,

(69)

where the final step uses that when an/bn ≥ 1, we have {1 − (an/bn)x}+ ≤ {1 − x}+ for
x ≥ 0. We finally note that,∫
K

∫
K
fn(g, h) bnφn(g)ψn(h) dg dh ≤

(
sup

g,h∈K
fn(g, h)

)(∫
K

∫
K
bnφn(g)ψn(h) dg dh

)

=

(∫
K
ψn(h) dh

)(
sup

g,h∈K
fn(g, h)

)
≤ sup

g,h∈K
fn(g, h) ,

The final equality uses that a−1
n =

∫
K ψn(g) dg ≤ 1.

33



Avella Medina and Montiel Olea and Rush and Velez

Lemma 5 Assume there exists a δ > 0 such that the prior density π is continuous and
positive on Bθ∗(δ), the closed ball of radius δ around θ∗ and that Assumption 1 holds. For
any η, ε > 0, there exists a sequence rn → +∞ and an integer N(η, ε) > 0 such that for all
n > N(η, ε), with fn(g, h) defined in (45),

Pf0,n
(

sup
g,h∈B0(rn)

fn(g, h) > η
)
≤ ε ,

where B0(rn) denotes a closed ball of radius rn around 0.

Proof: The proof has two steps. In Step 1, we prove the claim for any fixed r > 0 instead
of a sequence rn. In Step 2, we construct a sequence of rn using equation (75).

Step 1: First notice that for any r > 0, there exists an integer N0(r) := d4r2/δ2e > 0 such
that θ∗ + h/

√
n ∈ Bθ∗(δ) whenever h ∈ B0(r) and n ≥ N0(r). To see that this is true,

notice that if ||h|| ≤ r and n ≥ 4r2/δ2, then ||h||/
√
n ≤ δ/2 < δ. This will ensure that the

function fn(g, h) is well defined whenever g, h ∈ B0(r).

Recall the definition of the α-posterior πn,α in (7), as well as that of the scaled densities
πLANn,α (h |Xn) = n−1/2πn,α(θ∗ + h/

√
n |Xn) and πn(h) = n−1/2π(θ∗ + h/

√
n) introduced in

the proof of Theorem 1. Then, we see that for any two sequences {hn}, {gn} in B0(r) and
n > N0(r),

πLANn,α (gn |Xn)

πLANn,α (hn |Xn)
=
πn,α

(
θ∗ + gn√

n

∣∣∣Xn
)

πn,α

(
θ∗ + hn√

n

∣∣∣Xn
) =

[
fn

(
Xn

∣∣∣ θ∗ + gn√
n

)]α
π
(
θ∗ + gn√

n

)
[
fn

(
Xn

∣∣∣ θ∗ + hn√
n

)]α
π
(
θ∗ + hn√

n

)
=

[
fn

(
Xn

∣∣∣ θ∗ + gn√
n

)]α
πn (gn)[

fn

(
Xn

∣∣∣ θ∗ + hn√
n

)]α
πn (hn)

. (70)

Thus, by the definition in (45), with the notation sn(hn) = [fn(Xn | θ∗+hn/
√
n)/fn(Xn | θ∗)]α,

fn(gn, hn) =
{

1− φn(hn)

πLANn,α (hn |Xn)

πLANn,α (gn |Xn)

φn(gn)

}+
=
{

1− φn(hn)sn(gn)πn(gn)

φn(gn)sn(hn)πn(hn)

}+
.

Recall that φn(hn) = φ(hn |∆n,θ∗ , V
−1
θ∗ /α) and notice that since ||hn||/

√
n < δ as discussed

at the beginning of the Step 1 proof, the above is well defined (i.e., πLANn,α (hn | Xn) is
positive).

Next, for any sequence hn ∈ B0(r), Assumption 1 implies

log(sn(hn)) = α log

(
fn(Xn | θ∗ + hn√

n
)

fn(Xn | θ∗)

)
= h>nαVθ∗∆n,θ∗ −

1

2
h>nαVθ∗hn + of0,n(1) , (71)

and algebra shows that the log-likelihood of the normal density φn can be written as

log φn(hn) = −p
2

log(2π) +
1

2
log(det(αVθ∗))− 1

2
(hn −∆n,θ∗)>αVθ∗(hn −∆n,θ∗) ,
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hence

log
( sn(hn)

φn(hn)

)
= of0,n(1) +

p

2
log(2π)− 1

2
log(det(αVθ∗)) +

1

2
∆>n,θ∗αVθ∗∆n,θ∗

Now, for any sequence gn ∈ B0(r), define

bn(gn, hn) ≡ φn(hn)sn(gn)πn(gn)

φn(gn)sn(hn)πn(hn)
. (72)

Then, we conclude

log(bn(gn, hn)) = log
(φn(hn)sn(gn)πn(gn)

φn(gn)sn(hn)πn(hn)

)
= of0,n(1) , (73)

where we have used that πn(gn), πn(hn)→ π(θ∗) as n→∞.

Since hn, gn are arbitrary sequences in B0(r), the result in (73) is equivalent to saying
that for any fixed r, there exists an integer Ñ0(r, ε, η) such that for n > max{Ñ0(r, ε, η), N0(r)}:

Pf0,n

(
sup

gn,hn ∈B0(r)

|log (bn (gn, hn))| > η

)
≤ ε . (74)

Next, notice that

| log(bn(gn, hn))| ≥ | log(min{1, bn(gn, hn)})| = | log(1− fn(gn, hn))| ≥ fn(gn, hn) ,

where the equality follows since fn(g, h) = 1−min{bn(g, h), 1} by definition, and the final
inequality follows by noting that the function f(x) = | log(1 − x)| − x is increasing for
x ∈ [0, 1] and f(0) = 0. Thus, by (74), for all n > max{Ñ0(r, η, ε), N0(r)},

Pf0,n

(
sup

g,h∈B0(r)

fn(g, h) > η

)
≤ Pf0,n

(
sup

gn,hn ∈B0(r)

fn(g, h) > η

)

≤ Pf0,n

(
sup

gn,hn ∈B0(r)

| log(bn(gn, hn))| > η

)
≤ ε .

(75)

Step 2: Let N∗(ε, η) = max{Ñ0(1, ε, η), 4/δ2} for Ñ0(r, ε, η) defined just above (74) and
for all n > N∗(ε, η), let

rn = max{ r ∈ R | r ≤ δ
√
n/2 and n > Ñ0(r, ε, η) } .

Notice that this is well defined since for any n > N∗(ε, η), the choice r = 1 is valid as
δ
2(
√
n) > 1 and n > Ñ0(1, ε, η) by the definition of N∗(ε, η). For n ≤ N∗(ε, η), we can define

rn arbitrarily, e.g., rn = 1. First, notice rn →∞. Indeed,

rn = max{ r ∈ R | r ≤ δ
√
n/2 and n > Ñ0(r, ε, η) } ≤ min{δ

√
n/2, max{r ∈ R |n > Ñ0(r, ε, η)}} .
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Clearly, δ
√
n/2 → ∞, so rn → ∞ if max{r ∈ R | n > Ñ0(r, ε, η)} → ∞. This is true,

because if it were not, there must be some rmax such that Ñ0(r, ε, η) = ∞ for r > rmax.
However, Assumption 1 holds for any compact set K ∈ Rp, meaning for any ball B0(r) with
r <∞; hence, Ñ0(r, ε, η) <∞ for any r <∞.

Finally, following the proof in Step 1, we show that for all n > N∗(ε, η),

Pf0,n
(

sup
g,h∈B0(rn)

fn(g, h) > η
)
≤ ε . (76)

First, θ∗ + hn/
√
n ∈ Bθ∗(δ) whenever hn ∈ B0(rn) since ||hn||/

√
n ≤ rn/

√
n ≤ δ/2. This

guarantees that fn(gn, hn) is well defined, as discussed in Step 1. Then, for all n > N∗(ε, η),
by the rn definition, n > Ñ0(rn, ε, η); hence, by the work in (74)–(75), the bound in (76)
holds.

Lemma 6 Suppose Assumptions 1 and 2 hold. Let (µn,Σn) be a sequence such that (
√
n(µn−

θ∗), nΣn) is bounded in f0,n-probability. Then,

K(φ(· |µn, Σn) || πn,α(· |Xn)) = K
(
φ(· |µn, Σn) || φ(· | θ̂ML -Fn , V

−1
θ∗ /(αn))

)
+ of0,n(1) .

Proof: Using the change of variables h ≡
√
n(θ−θ∗) and reparametrizing µn ≡

√
n(µn−θ∗),

we have that

K (φ(· |µn, Σn) || πn,α(· |Xn)) =

∫
φ(θ |µn, Σn) log

(
φ(θ |µn, Σn)

πn,α(θ |Xn)

)
dθ

=

∫
φ(h |µn, nΣn) log

(
np/2φ(h |µn, nΣn)

πn,α(θ∗ + h/
√
n |Xn)

)
dh

= I1 + I2 + I3 , (77)

where

I1 ≡
∫
φ(h |µn, nΣn) log φ(h |µn, nΣn)dh ,

I2 ≡−
∫
φ(h |µn, nΣn) log

(
πn,α(θ∗ + h/

√
n |Xn)

πn,α(θ∗ |Xn)

)
dh ,

I3 ≡−

[
log

(
πn,α(θ∗ |Xn)

φ(θ∗ | θ̂ML -Fn , V
−1
θ∗ /(αn))

)
+ log

(
φ(θ∗ | θ̂ML -Fn , V

−1
θ∗ /(αn))

np/2

)]
.

We will compute the three terms separately and show that their sum gives the desired
result. The first term I1 is the negative of the entropy of a Gaussian distribution with mean
µn and covariance matrix nΣn. A direct computation of this quantity gives

I1 = −p
2
− p

2
log(2π)− 1

2
log |nΣn| . (78)

To compute the second term I2, notice that

πn,α(θ∗ + h/
√
n |Xn)

πn,α(θ∗ |Xn)
=
fn(Xn | θ∗ + h/

√
n)α π(θ∗ + h/

√
n)

fn(Xn | θ∗)α π(θ∗)
,
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hence

I2 = −α
∫
φ(h |µn, nΣn) log

(
fn(Xn | θ∗ + h/

√
n)

fn(Xn | θ∗)

)
dh

−
∫
φ(h |µn, nΣn) log

(
π(θ∗ + h/

√
n)

π(θ∗)

)
dh ,

(79)

and we consider the two terms on the right side of (79) separately. First, notice that by
Assumption 2, the second term is of0,n(1). For the first term, consider Assumption 1, and
we find

− α
∫
φ(h |µn, nΣn) log

(
fn(Xn | θ∗ + h/

√
n)

fn(Xn | θ∗)

)
dh

= −α
∫
φ(h |µn, nΣn)

(
h> Vθ∗ ∆n,θ∗ −

1

2
h> Vθ∗ h+Rn(h)

)
dh

= −α
∫
φ(h |µn, nΣn)

(
h> Vθ∗ ∆n,θ∗ −

1

2
h> Vθ∗ h

)
dh+ of0,n(1) .

(80)

Plugging this into (79) and solving the integral, we find

I2 = −α
∫
φ(h |µn, nΣn)

(
h> Vθ∗ ∆n,θ∗ −

1

2
h> Vθ∗ h

)
dh+ of0,n(1)

= −αµ>n Vθ∗ ∆n,θ∗ +
α

2

(
µ>n Vθ∗ µn + tr(nΣnVθ∗)

)
+ of0,n(1)

=
α

2

(
(∆n,θ∗ − µn)> Vθ∗ (∆n,θ∗ − µn)−∆>n,θ∗ Vθ∗ ∆n,θ∗ + tr(nΣnVθ∗)

)
+ of0,n(1) .

(81)

Next, replacing ∆n,θ∗ =
√
n(θ̂ML -Fn − θ∗) and µn =

√
n(µn − θ∗) in (81) yields

I2 =
1

2
(θ̂ML -Fn − µn)>(αnVθ∗)(θ̂ML -Fn − µn) +

1

2
tr(ΣnαnVθ∗)

− 1

2
(θ̂ML -Fn − θ∗)>(αnVθ∗)(θ̂ML -Fn − θ∗) + of0,n(1) . (82)

Let us now turn to the term I3. We first claim that

log

(
πn,α(θ∗ |Xn)

φ(θ∗ | θ̂ML -Fn , V
−1
θ∗ /(αn))

)
= of0,n(1) , (83)

and we will prove this in what follows. Result (83) implies that

I3 = − log
(
n−p/2φ(θ∗ | θ̂ML -Fn , V

−1
θ∗ /(αn))

)
+ of0,n(1)

=
p

2
log(2π)− 1

2
log |αV |+ 1

2
(θ̂ML -Fn − θ∗)>(αnVθ∗)(θ̂ML -Fn − θ∗) + of0,n(1) . (84)

Finally, combining (77), (82), and (84), we conclude that

K(φ(· |µn, Σn) || πn,α(· |Xn))

= −1

2

[
log |αnVθ∗ |+ log |Σn| − tr(ΣnαnVθ∗)− (θ̂ML -Fn − µn)>(αnVθ∗)(θ̂ML -Fn − µn) + p

]
+ of0,n(1)

= K
(
φ(· |µn, Σn) || φ(· | θ̂ML -Fn , V

−1
θ∗ /(αn))

)
+ of0,n(1) ,
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where the last equality follows from (54).

It therefore remains to verify (83) to complete the proof. We first notice that the change
of variables h ≡

√
n(θ − θ∗) leads to

πn,α(θ∗ |Xn)

φ(θ∗ | θ̂ML -Fn , V
−1
θ∗ /(αn))

=
πLANn,α (0 |Xn)

φn(0)
, (85)

where φn(h) ≡ n−p/2φ(h |∆n,θ∗ , V
−1
θ∗ /α) and πLANn,α (h |Xn) ≡ n−p/2πn,α(θ∗ + h/

√
n |Xn)

are scaled versions of the densities φ and πn,α, respectively. Consider the function bn(g, h)
defined as

bn(g, h) ≡

(
πLANn,α (h |Xn)

φn(h)

)(
φn(g)

πLANn,α (g |Xn)

)
,

and note that it is the same as (72). Therefore, from using (74), we can guarantee the
existence of rn such that for any η > 0,

limPf0,n

(
sup

g,h∈B0(rn)

| log(bn(g, h))| > η
)

= 0 .

This implies that supg,h∈B0(rn) bn(g, h) = 1+of0,n(1). Define cn = (
∫
B0(rn) π

LAN
n,α (h |Xn)dh)−1

and dn = (
∫
B0(rn) φn(h)dh)−1. Using this notation, we have that (85) is equal to

dn
cn

∫
B0(rn)

(
πLANn,α (0 |Xn)

φn(0)

)(
φn(g)

πLANn,α (g |Xn)

)
cn π

LAN
n,α (g |Xn) dg ,

which is lower—by definition of bn—than

dn
cn

sup
g,h∈B0(rn)

bn(g, h) =
dn
cn

(
1 + of0,n(1)

)
.

By the concentration assumption of the α-posterior (10), we have that cn → 1 in f0,n-
probability. Furthermore, from Lemma 5.2 in Kleijn and Van der Vaart (2012), it follows
that dn → 1 in f0,n-probability. This implies that

πLANn,α (0 |Xn)

φn(0 |∆n,θ∗ , V
−1
θ∗ /α)

≤ 1 + of0,n(1) .

Similarly, we can conclude

φn(0 |∆n,θ∗ , V
−1
θ∗ /α)

πLANn,α (0 |Xn)
≤ 1 + of0,n(1) .

Using (85) and the two inequalities above, we can conclude (83).

Lemma 7 Suppose the following condition holds

∆ ≡ (θ0 − θ∗)>Vθ∗(θ0 − θ∗)/‖θ0 − θ∗‖2 > ∆̃ ≡ (θ0 − θ∗)>Ṽθ∗(θ0 − θ∗)/‖θ0 − θ∗‖2 . (86)

Then, there exists a threshold t∗ = t∗(θ0, θ
∗, Vθ∗ , Ṽθ∗ , Vθ0 , Ṽθ0) such that Equation (30) is

strictly larger than Equation (31) if and only if ε‖θ0 − θ∗‖2 > t∗.
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Proof For each t = ε‖θ0 − θ∗‖2 ≥ 0, denote the difference of equations (30) and (31) by

Ψ(t) ≡ p log (p+ t∆)− p log
(

tr
(
Ṽθ0V

−1
θ0

)
+ t∆̃

)
− log

(
|Vθ0 |
|Ṽθ0 |

)
,

where ∆ and ∆̃ are defined in (86). Since |Ṽθ0V
−1
θ0
| = |Ṽθ0 ||V

−1
θ0
| = |Ṽθ0 ||Vθ0 |−1, the Arith-

metic Mean-Geometric Mean inequality (64) implies

1

p
tr
(
Ṽθ0V

−1
θ0

)
≥
(
|Ṽθ0V

−1
θ0
|
)1/p

,

Therefore

Ψ(0) = p log (p)− p log
(

tr
(
Ṽθ0V

−1
θ0

))
− log

(
|Vθ0 |
|Ṽθ0 |

)
≤ 0 .

Further, note that

∂

∂t
Ψ(t) =

p∆

p+ t∆
− p∆̃

tr
(
Ṽθ0V

−1
θ0

)
+ t∆̃

.

Since tr
(
Ṽθ0V

−1
θ0

)
≥ p, as shown at the end of the proof of Theorem 3 in Section A.4, and

∆ > ∆̃ by assumption (86), we can conclude that Ψ(·) is an increasing function on t since
∂
∂tΨ(t) > 0.

Finally, using again the assumption ∆ > ∆̃, we have for large t

p log (p+ t∆)− p log
(

tr
(
Ṽθ0V

−1
θ0

)
+ t∆̃

)
> 0 .

Since Vθ0 is a semidefinite matrix, Hadamard’s inequality (see Theorem 7.8.1 in Horn and

Johnson (2012)) implies log
(
|Vθ0 ||Ṽθ0 |−1

)
≤ 0. This implies that for large t, Ψ(t) > 0. Be-

cause Ψ(·) is an increasing function, there must exist a threshold t∗ = t∗(θ0, θ
∗, Vθ∗ , Ṽθ∗ , Vθ0 , Ṽθ0)

such that Ψ(t) > 0 for any t > t∗.

Appendix C. Supplementary Material for the Illustrative Example

C.1 Verification of α-posterior Concentration

We first want to prove that the α-posterior concentrates at the rate
√
n around θ∗ as defined

in (10). In other words, we need to show that for every sequence rn →∞

Ef0,n
[
Pπn,α(· |Xn)

(
‖
√
n (θ − θ∗)‖ > rn

)]
→ 0 . (87)

Step 1: Compute an upper bound for the probability inside the brackets using Markov’s
inequality.
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Note that in our illustrative example, we have πn,α(θ |Xn) ∼ N (µn,α, Σn,α), where µn,α
and Σn,α were defined in (37) and (38), respectively. Therefore, by Markov’s inequality and
the normal distribution of the α-posterior, we have

Pπn,α(· |Xn)

(
‖θ − θ∗‖2 > r2

n/n
)
≤ n

r2
n

Eπn,α(· |Xn)

[
‖θ − θ∗‖2

]
=

n

r2
n

[
‖µn,α − θ∗‖2 + tr(Σn,α)

]
,

(88)

which defines the upper bound for the probability inside the brackets.

Step 2: Conclude that the expected value of the probability goes to zero.

Lemma 8 below implies that the sequence (
√
n(µn,α − θ∗), nΣn,α) is bounded in f0,n-

probability. It follows that both ‖
√
n(µn,α − θ∗)‖2 and tr(nΣn,α) are bounded in f0,n-

probability. This means that for every ε > 0, there exists an Mε > 0 such that

Pf0,n (Aε) ≤ ε , (89)

where Aε = {‖
√
n(µn,α− θ∗)‖2 + tr(nΣn,α) > Mε}. By linearity of the expectation, we have

that for any sequence rn and for any ε > 0

Ef0,n
[
Pπn,α(· |Xn)

(
‖
√
n (θ − θ∗)‖ > rn

)]
≤ Ef0,n

[
Pπn,α(· |Xn)

(
‖
√
n (θ − θ∗)‖ > rn

)
1{Acε}

]
+ Ef0,n [1{Aε}] , (90)

where 1{Aε} is the indicator function of the event Aε. The first term in (90) can be bounded
using (88) and the definition of Aε, leading to

Ef0,n
[
Pπn,α(· |Xn)

(
‖
√
n (θ − θ∗)‖ > rn

)
1{Acε}

]
≤ Ef0,n

[
1

r2
n

[
‖
√
n(µn,α − θ∗)‖2 + tr(nΣn,α)

]
1{Acε}

]
≤ Mε

r2
n

.

Using (89), we see that the second term in (90) is smaller than ε. Hence, we conclude that

Ef0,n [Pπn,α(· |Xn)

(
‖
√
n (θ − θ∗)‖ > rn

)
] ≤ Mε

r2
n

+ ε ,

which is sufficiently small since ε > 0 was arbitrary, Mε is constant, and rn → ∞. This
verifies (87).

Lemma 8 Let (µn,α,Σn,α) be the sequence defined in (37) and (38). Denote by θ∗ the
(pseudo-) true parameter of the illustrative example in Section 5. Then, the sequence
(
√
n(µn,α − θ∗), nΣn,α) is bounded in f0,n-probability. Moreover, if θ̂ML is the ML esti-

mator of θ∗, we have that n(µn,α − θ̂ML) is bounded in f0,n-probability.

Proof: Using (37), we have that
√
n(µn,α − θ∗) is equal to(

1

n

n∑
i=1

WiW
>
i +

1

αn
Σπ

)−1(
1

α
√
n

Σπ(µπ − θ∗) +
1

n

n∑
i=1

WiW
>
i

√
n(θ̂ML − θ∗)

)
,
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where

θ̂ML =

(
1

n

n∑
i=1

WiW
>
i

)−1
1

n

n∑
i=1

WiYi .

Since θ∗ is the (pseudo-) true parameter and θ̂ML is the ML estimator, we have that√
n(θ̂ML−θ∗) converges in distribution to a multivariate normal distribution, and n−1

∑n
i=1WiW

>
i

converges to E[WiW
>
i ] in f0,n-probability. By Slutsky’s theorem, we conclude that

√
n(µn,α−

θ∗) converges in distribution, which implies that
√
n(µn,α−θ∗) is bounded in f0,n-probability.

Using (38), we have that nΣn,α is equal to

nΣn,α ≡
σ2
u

α

(
1

n

n∑
i=1

WiW
>
i +

1

αn
Σπ

)−1

,

and this converges in f0,n-probability to σ2
u
α (E[WiW

>
i ])−1 = 1

αV
−1
θ∗ . Then, it follows that

nΣn,α is bounded in f0,n-probability.

Finally, algebra shows that n(µn,α − θ̂ML) is equal to(
1

n

n∑
i=1

WiW
>
i +

1

αn
Σπ

)−1(
1

α
Σπ(µπ − θ̂ML)

)
,

which converge in f0,n-probability to (E[WiW
>
i ])−1( 1

αΣπ(µπ − θ̂ML)). This implies that

n(µn,α − θ̂ML) is bounded in f0,n-probability.

C.2 KL Distance for Theorem 1

In our illustrative example, we can compute the KL distance between the α-posterior distri-
bution πn,α and the distribution defined in (39) because both distributions are multivariate
normal. Using (54), we find the KL divergence to equal

1

2

(
−p+ log

(
|Vθ∗αn|−1

|Σn,α|

)
+ tr(Vθ∗αnΣn,α) + (µn,α − θ̂ML)>Vθ∗αn(µn,α − θ̂ML)

)
.

Lemma 8 implies that the previous expression converges to 0 in f0,n-probability. This
means that the KL distance between πn,α and the distribution in (39) goes to zero in
f0,n-probability.

C.3 BvM Theorem does not Hold if α goes to Zero Very Quickly

Suppose that the sequence of αn satisfies nαn → α0 > 0. This implies that, in f0,n-
probability,

µn,αn →
[
E[WiW

>
i ] +

Σπ

α0

]−1 [Σπµπ
α0

+ E[WiW
>
i ]θ∗

]
, Σn,αn →

σ2
u

α0

[
E[WiW

>
i ] +

Σπ

α0

]−1

.
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Using these different limits, we show that the total variation distance between the αn-
posterior distribution πn,αn and the distribution in (39) is bounded away from zero. We
show this using the fact that the square of the Hellinger distance is a lower bound for the
total variation distance.

In our illustrative example, the αn-posterior distribution πn,αn and the distribution in
(39) are both multivariate normal distributions. Then, we can compute the square of the
Hellinger distance between these distributions. Using Lemma B.1 part ii) of Ghosal and
Van der Vaart (2017), we obtain

1− |Σn,αn |1/4|(Vθ∗αnn)−1|1/4

|(Σn,αn + (Vθ∗αnn)−1)/2|1/2
exp

(
−1

8
(µn,αn − θ̂ML)>

Σn,αn + (Vθ∗αnn)−1

2
(µn,αn − θ̂ML)

)
,

which converge in f0,n-probability to a positive number. To verify this, notice that Σn,αn

and (Vθ∗αnn)−1 converge to different limits, which guarantees

lim
n→∞

|Σn,αn |1/4|(Vθ∗αnn)−1|1/4

|(Σn,αn + (Vθ∗αnn)−1)/2|1/2
< 1 ,

where the limit is taken in f0,n-probability and the inequality follows by applying the Arith-
metic Mean-Geometric Mean inequality.

C.4 Verification of Assumption 2

In our illustrative example:

π(θ) ∼ N (µπ, σ
2
uΣ−1

π ), and Rn(h) = h>Qn∆n,θ∗ −
1

2
h>Qnh ,

where ∆n,θ∗ =
√
n(θ̂ML − θ∗) and

Qn ≡
∑n

i=1WiW
>
i

nσ2
u

− Vθ∗ .

Qn converges to zero in f0,n-probability since Vθ∗ = E[WiW
>
i ]/σ2

u.

Let us take a sequence (µn,Σn) such that (
√
n(µn − θ∗), nΣn) is bounded in f0,n-

probability. Then, equation (17) in Assumption 2 becomes∫
φ(h |

√
n(µn − θ∗), nΣn)

(
−1

2

h>√
n

Σπ

σ2
u

h√
n

+
h>√
n

Σπ

σ2
u

(µπ − θ∗)
)
dh

= − 1

2n
µ>n

Σπ

σ2
u

µn −
1

2n
tr

(
nΣn

Σπ

σ2
u

)
+

1√
n
µ>n

Σπ

σ2
u

(µπ − θ∗) ,

(91)

where µn =
√
n(µn − θ∗). By assumption, the sequence (µn, nΣn) is bounded in f0,n-

probability. This implies that (91) goes to zero in f0,n-probability.

Equation (18) in Assumption 2 can be computed explicitly as

∈ φ(h|
√
n(µn−θ∗), nΣn)

(
h>Qn∆n,θ∗−

1

2
h>Qnh

)
dh = µ>nQn∆n,θ∗−

1

2
µ>nQnµn−

1

2
tr(QnnΣn) .

By assumption, the sequence (µn, nΣn) is bounded in f0,n-probability. Since Qn converge
to zero in f0,n-probability, the expression above goes to zero in f0,n-probability.
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C.5 KL Distance for Theorem 2

Lemma 8 shows that in our illustrative example, the sequence (µn,α,Σn,α) verifies that
(
√
n(µn,α−θ∗), nΣn,α) is bounded in f0,n-probability. Then, we can apply Theorem 2. The

proof presented in Section A.2 shows that

K(π̃n,α(· |Xn) || φ(· | θ̂ML -Fn , diag(Vθ∗)−1/(αn)))→ 0 ,

in f0,n-probability. This means that the BvM Theorem holds for the variational approxi-
mation to the α-posterior in KL divergence.

C.6 Optimal α in the Illustrative Example

Let us recall the definition of rn(α) presented in Section 4 in equation (21):

rn(α) = εnK (φ(· | ν∗n, Ω∗n) || φ(· |µn,α, Σn,α)) + (1− εn)K (φ(· |µn,1, Σn,1) || φ(· |µn,α, Σn,α)) ,

where ν∗n is the true posterior mean and Ω∗n is the true posterior covariance matrix. The
expression above is equal to

rn(α) =
1

2

{
εntr(Σ−1

n,αΩ∗n) + α(1− εn)tr((αnΣn,α)−1nΣn,1)

+ αnεn(µn,α − ν∗n)>(αnΣn,α)−1(µn,α − ν∗n)

+ αn(1− εn)(µn,1 − µn,α)>(αnΣn,α)−1(µn,1 − µn,α)

− p log(α)− p+ εn log

(
|αΣn,α|
|Ω∗n|

)
+ (1− εn) log

(
|αΣn,α|
|Σn,1|

)}
.

Notice that Σ−1
n,αΩ∗n → αVθ∗Ω in f0,n-probability since it can be proved that nΩ∗n → Ω

in the well-specified model for some positive definite matrix Ω. Lemma 8 implies that
(αnΣn,α)−1nΣn,1 → Ip in f0,n-probability. Moreover, we have that n(µn,1−µn,α) is bounded
in f0,n-probability, which implies that (µn,1−µn,α)>Σ−1

n,α(µn,1−µn,α)→ 0 in f0,n-probability.

Since nεn → ε, we conclude that in f0,n-probability, rn(α)→ r∞(α) where r∞(α) ≡ 1
2(αp+

αε(θ∗ − θ0)>Vθ∗(θ∗ − θ0)− p log(α)− p).

Using the notation introduced in the proof of Theorem 3 in Section A.4, we have

r∗n(α) =
1

2

(
α An(Vθ∗)− p log(α) +Bn(Vθ∗)

)
,

where

An(Σ) ≡εntr(ΣΩ) + (1− εn)tr(ΣV −1
θ∗ ) + nεn(θ̂ML -Fn − θ̂ML)>Σ(θ̂ML -Fn − θ̂ML) ,

Bn(Σ) ≡− p+ εn log(|Ω−1||Σ|−1) + (1− εn) log(|Vθ∗ ||Σ|−1) .

Notice that An(Vθ∗) → p + ε(θ∗ − θ0)>Vθ∗(θ∗ − θ0) and Bn(Vθ∗) → −p in f0,n-probability.
This implies that

r∗n(α)→ r∞(α) =
1

2

(
αp+ αε(θ∗ − θ0)>Vθ∗(θ∗ − θ0)− p log(α)− p

)
.
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Then, we can conclude that rn(α)− r∗n(α)→ 0 in f0,n-probability. In particular, for α = α∗

defined in Theorem 3 and any α′ 6= α∗, we have that rn(α∗) is close to r∞(α∗) and rn(α′)
is close to r∞(α′). Since r∞(α∗) < r∞(α′) by definition of α∗, it follows that for large n,
rn(α∗) < rn(α′).

C.7 Additional Robustness of Variational Inference in the Illustrative Example

We prove that the misspecified model described in Section 5.5 satisfies the condition in (34);
hence, in this scenario, α-optimized variational inference provides additional robustness
beyond that given by optimized α-posteriors alone when εn is large.

In what follows, we drop the i subscript to save space. In particular, we denote ρ :=
E[W1iW2i] = E[W1W2] and assume that γ0 > 0, so there is indeed misspecification. Our
proof uses general ρ and γ0 and provides conditions on the terms under which (34) is
satisfied. Then, we will see that our model satisfies those conditions. Then, from Section
5.2, we have that

θ∗ − θ0 =
(
E[WW T ]−1E[WZ]

)
γ0, and Vθ∗ =

1

σ2
u

E[WW T ].

Therefore, to demonstrate that the condition from Equation (34) is true in some settings,
we aim to characterize when the following is strictly positive.

(θ∗ − θ0)T (Vθ∗ − diag(Vθ∗)) (θ∗ − θ0)

=
γ2

0

σ2
u

E[ZW T ]E[WW T ]−1
(
E[WW T ]− diag(E[WW T ])

)
E[WW T ]−1E[WZ]

(a)
=

γ2
0ρ

σ2
u(E[W 2

1 ]E[W 2
2 ]− ρ2)2

× E[ZW T ]

[
−2ρE[W 2

2 ] ρ2 + E[W 2
1 ]E[W 2

2 ]
ρ2 + E[W 2

1 ]E[W 2
2 ] −2ρE[W 2

1 ]

]
E[WZ]

=
2γ2

0ρE[ZW1]E[ZW2]

σ2
u(E[W 2

1 ]E[W 2
2 ]− ρ2)2

×
(
ρ2 + E[W 2

1 ]E[W 2
2 ]− ρE[ZW1]

E[ZW2]
E[W 2

2 ]− ρE[ZW2]

E[ZW1]
E[W 2

1 ]

)
.

(92)

In Step (a), we have used that

E[WW T ]−1
(
E[WW T ]− diag(E[WW T ])

)
E[WW T ]−1

=
ρ

(E[W 2
1 ]E[W 2

2 ]− ρ2)2

[
−2ρE[W 2

2 ] ρ2 + E[W 2
1 ]E[W 2

2 ]
ρ2 + E[W 2

1 ]E[W 2
2 ] −2ρE[W 2

1 ],

]
,

which can be seen by noting that for a generic, symmetric 2× 2 matrix, we have that

[
a b
b c

]−1([
a b
b c

]
−
[
a 0
0 c

])[
a b
b c

]−1

=
b

(ac− b2)2

[
c −b
−b a

] [
0 1
1 0

] [
c −b
−b a

]
=

b

(ac− b2)2

[
−2bc b2 + ac
b2 + ac −2ab

]
.

(93)
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Finally, assuming that ρ 6= 0, (92) is strictly positive whenever the following is true:

ρE[ZW1]E[ZW2]×
(
ρ2 + E[W 2

1 ]E[W 2
2 ]− ρE[ZW1]

E[ZW2]
E[W 2

2 ]− ρE[ZW2]

E[ZW1]
E[W 2

1 ]

)
> 0. (94)

A sufficient condition for the above is true, for example, when ρ = 1/2 and both E[ZW1]
and E[ZW2] take the same sign as long as the variance of the observed features is large
enough:

E[W 2
1 ] >

E[ZW1]

E[ZW2]
and E[W 2

2 ] >
E[ZW2]

E[ZW1]
.

In our model, we have that E[W 2
1 ] = E[W 2

2 ] = 1 and E[ZW1] = E[ZW2] = ρ/2. Hence, if
we plug these values into (94) using ρ = 1/2, we find

ρE[ZW1]E[ZW2]

[
ρ2 + E[W 2

1 ]E[W 2
2 ]− ρE[ZW1]

E[ZW2]
E[W 2

2 ]− ρE[ZW2]

E[ZW1]
E[W 2

1 ]

]
=
ρ3

4
(ρ2 + 1− 2ρ)

=
1

27
> 0.

C.8 Additional Empirical Results for the Illustrative Example

As discussed in Section 5.5, we assume a Gaussian prior for (θ, γ), denoted as π, i.e. (θ, γ) ∼
N (µπ, σ

2
u Σ−1

π ), where µπ is the all-zeros vector and the covariance structure is chosen
randomly from the Wishart ensemble. Using this prior, we can calculate the α-posterior
using (37) and (38), and we prove in Appendix C.1 that the α-posterior concentrates at rate√
n around θ∗ for any fixed α. This result is empirically verified in Figure 4. The top row

of Figure 4 shows contour plots based on 1000 samples from the α-posterior when α = 0.5
and the sample size n grows. The red point is θ∗. As discussed in Section 5.3, the total
variation distance between the α-posterior and the multivariate normal,

N
(
θ̂ML,

σ2
u

αn
E[WiW

>
i ]−1

)
, (95)

converges in probability to zero, and the limiting distribution in (95) also concentrates
around θ∗. This can be seen from Figure 4 as well, where the top row plots sample contours
of the α-posterior and the bottom row plots sample contours of the multivariate normal in
(39). Both converge to θ∗, the red dot in the plots, as n grows.

In Figure 5, we empirically verify that rn(α)−r∗n(α)→ 0 (top row) and r̃n(α)−r̃∗n(α)→ 0
(bottom row) as n→∞ for α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. In the plots, the x-axis is n, whereas
the y-axis is the difference and the α grows from α = 0.1 in the leftmost column to α = 0.9 in
the rightmost column. The gray line plots the average difference of fifty problem realizations,
and the red lines show one standard deviation above and below the average. We see that as
α grows, the difference approaches 0 less quickly. Here, we have chosen εn = 10/n so that
nεn → ε = 10.
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Figure 4: Sample contour plots based on 1000 draws from the α-posterior (top row) and
its limiting Gaussian distribution given in (95) (bottom row) when α = 0.5 for
growing sample size n. The red point is θ∗.
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Figure 5: Differences rn(α) − r∗n(α) (top row) and r̃n(α) − r̃∗n(α) plotted against n on the
x-axis. From left to right, α grows with α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The gray
line plots the average difference of fifty problem realizations, and the red lines
show one standard deviation above and below the average with εn = 10/n so that
nεn → ε = 10.
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