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Abstract

Active learning prioritizes the labeling of the most informative data samples. However,
the performance of active learning heuristics depends on both the structure of the underlying
model architecture and the data. We propose IALE1, an imitation learning scheme that
imitates the selection of the best-performing expert heuristic at each stage of the learning
cycle in a batch-mode pool-based setting. We use DAgger to train a transferable policy
on a dataset and later apply it to different datasets and deep classifier architectures. The
policy reflects on the best choices from multiple expert heuristics given the current state
of the active learning process, and learns to select samples in a complementary way that
unifies the expert strategies. Our experiments on well-known image datasets show that we
outperform state of the art imitation learners and heuristics.

Keywords: active learning, deep neural networks, imitation learning, dataset aggregation,
transferable policy

1. Introduction

The high performance of deep learning on various tasks from computer vision (Voulodimos
et al., 2018) to natural language processing (NLP) (Barrault et al., 2019) also comes with
a few disadvantages. One of the major drawbacks is the large amount of labeled training
data they require. Obtaining such data is expensive and time-consuming and often requires
domain expertise (Löffler et al., 2020).

Active Learning (AL) is an iterative process where during every iteration an oracle (e.g.,
a human) is asked to label the most informative unlabeled data sample(s). In pool-based AL
all data samples are available (while most of them are unlabeled). In batch-mode pool-based
AL, we select unlabeled data samples from the pool in acquisition batches greater than
1. Batch-mode AL decreases the number of AL iterations required and makes it easier
for an oracle to label the data samples (Settles, 2009). As a selection criteria we usually
need to quantify how informative a label for a particular sample is. Well-known criteria
include heuristics such as model uncertainty (Gal et al., 2017; Roth and Small, 2006; Wang
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and Shang, 2014; Ash et al., 2020), data diversity (Sener and Savarese, 2018), query-by-
committee (Beluch et al., 2018), and expected model change (Settles et al., 2008). As ideally
we label the most informative data samples at each iteration, the performance of a machine
learning model trained on a labeled subset of the available data selected by an AL strategy
is better than that of a model that is trained on a randomly sampled subset of the data.

Besides the above mentioned, in the recent past several other data-driven AL approaches
emerged. Some are modelling the data distributions (Mahapatra et al., 2018; Sinha et al.,
2019; Tonnaer, 2017; Hossain et al., 2018) as a pre-processing step, or similarly use metric-
based meta-learning (Ravi and Larochelle, 2018; Contardo et al., 2017) as a clustering
algorithm. Others focus on the heuristics and predict the best suitable one using a multi-
armed bandits approach (Hsu and Lin, 2015). Recent approaches that use reinforcement
learning (RL) directly learn strategies from data (Woodward and Finn, 2016; Bachman
et al., 2017; Fang et al., 2017). Instead of pre-processing data or dealing with the selection
of a suitable heuristic they aim to learn an optimal selection sequence on a given task.

However, the RL approaches not only require a huge amount of samples they also do not
resort to existing knowledge, such as potentially available AL heuristics. Moreover, training
the RL agents is usually time-consuming as they are trained from scratch. Hence, when only
few labeled training data and a potent algorithmic expert are available imitation learning
(IL) helps. IL trains, i.e., clones, a policy to transfer the expert to the related few data
problem. While IL mitigates some of the aforementioned issues, previous approaches are still
limited (including that of Liu et al. (2018)), e.g., by their limited expressiveness of the state
representations, their computational efficiencies, their non-arbitrary acquisition sizes, and
their lack of complementary experts. They were also so far only evaluated on NLP tasks.

We propose IALE, that is based on imitation learning and that makes use of a diverse set
of experts from different heuristic families, i.e., uncertainty, diversity, expected model-change,
and query-by-committee, in a batch-mode AL setting with arbitrary acquisition sizes. Our
policy extends previous work (see Section 2) by learning at which stage of the AL cycle
which of the available strategies performs best, based on a more expressive state, that allows
a powerful introspective view into the classifier model to better assess its confidence. We
use Dataset Aggregation (DAgger) to train a robust and transferable policy and apply it
to other problems from similar domains (see Section 3). We show that we can (1) train a
policy on image datasets such as MNIST, Fashion-MNIST, Kuzushiji-MNIST, Extended
MNIST, CIFAR and SVHN, (2) transfer the policy between them, and (3) even transfer the
policy between different classifier architectures (see Section 4).

2. Related Work

Next to the AL approaches for traditional ML models (Settles, 2009) also ones applicable to
deep learning have been proposed (Gal et al., 2017; Sener and Savarese, 2018; Beluch et al.,
2018; Settles et al., 2008; Ash et al., 2020). Below we discuss AL strategies that are trained
on data.

Generative Models. Explicitly modeled data distributions capture the informativeness
that can be used to select samples based on diversity. VAAL (Sinha et al., 2019) is a pool-
based semi-supervised AL method, where a discriminator discriminates between labeled
and unlabeled samples using the latent representations of a variational autoencoder. The

2



Imitating Active Learner Ensembles

(a) Data distribution (b) Entropy (c) CoreSet (d) Our method

Figure 1: Active learning on two normal distributions in a 2D feature space. Fig. (1a)
shows data and histograms. The remaining plots show labelled and unlabelled data, and
histograms of labelled samples for different acquisition strategies. We show the state after
training an MLP (two layers with 16 units and ReLU activation) via AL (20 initially labelled
samples, acquiring 10 labels per iteration, 10 times). We present (b) Entropy sampling, (c)
CoreSet sampling, and (d) IALE, that imitates the other two, see Section. 3 for details.

representations are used to pick the most diverse and representative data points (Tonnaer,
2017). Mirza and Osindero (2014) use a conditional generative adversarial network to
generate samples with different characteristics from which the most informative are selected
using the uncertainty measured by a Bayesian neural network (Kendall and Gal, 2017;
Mahapatra et al., 2018). Such approaches are similar to ours (as they capture dataset
properties) but instead we model the dataset implicitly and infer a selection heuristic via
imitation.

Metric Learning. Metric learners such as the one proposed by Ravi and Larochelle
(2018) use a set of statistics calculated from the clusters of un-/labeled samples in a
Prototypical Network’s (Snell et al., 2017) embedding space, or learn to rank (Li et al.,
2020) large batches. Such statistics use distances (e.g., Euclidean distance) or are otherwise
converted into class probabilities. Two MLPs predict either a quality or diversity query
selection using backpropagation and the REINFORCE gradient (Mnih and Rezende, 2016).
While they rely on statistics over the classifier’s embedding and explicitly learn two strategies
(quality and diversity) we use a richer state and are not constrained to specific strategies.

Meta learning. A similar field is learning-to-learn. Especially optimization-based
meta learning, that aims to improve or discover learning algorithms (Hochreiter et al., 2001),
potentially leads to alternative and fast converging learning algorithms for deep learning
in few data (or few-shot) settings. Methods such as the LSTM Meta Learner (Ravi and
Larochelle, 2017), which uses an LSTM to predict a network’s parameter updates, the
recurrent neural network-based approach by Chen et al. (2017), which learns to optimize
black-box functions within a fixed horizon, and model-agnostic meta-learning (MAML) (Finn
et al., 2017), which produces a well performing parameter initialization for the (task-specific)
differentiating fine-tuning stage, are exemplary approaches. However, not only are these
methods often computationally expensive to train, e.g., due to MAML’s meta-gradient
updates (Nichol et al., 2018). They also to tend to overfit on hard tasks (Jamal and Qi,
2019) or even fail to converge for ambiguous small tasks (Finn et al., 2018). Moreover, we
do not require back-propagation through time (as Ravi and Larochelle (2017) do) with its
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limiting time horizon (Mishra et al., 2018; Chen et al., 2017), but instead rely on gradient
descent in combination with a high capacity state for our learned policy. This allows us to
generalize to nearly arbitrary horizons including larger ones than seen during policy training.

Reinforcement Learning (RL). The AL cycle can be modeled as a sequential decision
making problem. Woodward and Finn (2016) propose a stream-based AL agent based on
memory-augmented neural networks where an LSTM-based agent learns to decide whether
to predict a class label or to query the oracle. Matching Networks (Bachman et al., 2017)
extensions allow for pool-based AL. Fang et al. (2017) use Deep Q-Learning in a stream-based
AL scenario for sentence segmentation. In contrast to them we consider batch-mode AL
with acquisition sizes ≥ 1 and work on a pool-setting instead of a stream-setting. While
Bachman et al. (2017) propose a strategy to extend the RL-based approaches to a pool
setting, they still do not work on batches. Instead, we allow batches of arbitrary acquisition
sizes. Konyushkova et al. (2017) formulate AL as a regression task for a greedy label
acquisition, that predicts the expected reduction of the classification error for each sample,
and that is trained on either synthetic or real data. They use a Random Forest classifier,
with features like predicted probability and forest variance, for binary classification and
batch-sizes of one. Follow-up work (Konyushkova et al., 2018) replaces the greedy approach
with a Q-Learning-based RL agent. Casanova et al. (2020) propose a DQN-based extension
of Konyushkova et al. (2018)’s method, that learns to sample image regions for a semantic
image segmentation task, focusing on classes that are underrepresented in the training
dataset. Their work is specifically aimed at selecting relevant regions in images to optimize
the classes’ mean intersection of union. Our work focuses on different problems for learning
AL, as we investigate useful sample relevance features for AL especially from deep neural
networks, learn a unified AL heuristic from existing experts, and investigate the transfer of
the policy between real datasets of multi-class problems with larger batch-sizes, on more
complex datasets and transfers between classifier architectures. Fan et al. (2018) propose a
meta-learning approach that trains a student-teacher pair via RL. The teacher optimizes
data teaching by selecting labeled samples that let the student learn faster. In contrast, our
method learns to selects samples from an unlabeled pool, i.e., in a missing target scenario.
The teacher-student analogy is similar to our approach, however, the objective, method and
available (meta-)data to learn a good teacher (policy) are considerably different.

Multi-armed Bandit (MAB). Baram et al. (2004) treat the online selection of AL
heuristics from an ensemble as the choice in a multi-armed bandit problem. COMB uses the
known EXP4 algorithm to solve it, and ranks AL heuristics according to a semi-supervised
maximum entropy criterion (Classification Entropy Maximization) over the samples in the
pool. Building on this, Hsu and Lin (2015) learn to select an AL strategy for an SVM-
classifier and use importance-weighted accuracy extension to EXP4 that better estimates the
performance of each AL heuristic improvement as an unbiased estimator for the test accuracy.
Furthermore, they reformulate the MAB setting so that the heuristics are treated as the
bandits where the algorithm selects the one with the largest performance improvement (in
contrast to COMB’s formulation where the unlabeled samples are treated as bandits). Chu
and Lin (2016) extend Hsu and Lin (2015) to a setting where the selection of AL heuristics is
based on a linear weighting, aggregating experience over multiple datasets. They adapt the
semi-supervised reward scheme from Hsu and Lin (2015) to work with their deterministic
queries. Instead of selecting from a set of available heuristics, we propose the learning of a
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unified AL policy. This allows our policy model to learn an interpolation between batches of
samples proposed by single heuristics also exploiting the deep network classifier’s internal
state.

Imitation Learning (IL). Imitation learning methods such as DAgger (Ross et al.,
2011) can also be used to train an AL policy. For instance, Liu et al. (2018) propose a
follow-the-leader approach that selects samples that improve classifier accuracy. During
policy training they roll out a few possible acquisitions (using a small random pool subset)
and retrain the classifier on each sample independently to infer preference scores. However,
this not only leads to sub-optimal selections, it also requires an expensive re-training per
sample in the roll-out. In contrast to them, we explore an alternative way for using IL,
as IALE imitates an ensemble of a wide variety of AL heuristics to learn a unified AL
strategy. Our state consists of novel features for introspection, such as gradients inferred
from proxy-labels, as similarily proposed by Ash et al. (2020). Hence, IALE is well suited for
deep learning (efficient inference, fast convergence), even compared to classical AL baselines.

3. IALE: Imitating Active Learner Ensembles

IALE learns an AL sampling strategy from multiple experts in a pool-based setting by imitating
their behavior. We train a policy with data consisting of states (that encode, e.g., labeled and
unlabeled sample distributions, uncertainty, and gradient signals) and best expert actions
(i.e., samples selected for labeling) collected over the AL cycles. Hence, our policy learns
with options, where each expert’s (potentially sub-optimal) selection is an option it may
choose to learn, according to their rank. Analogously, our approach is similar to a distillation
of the experts. The policy is then applied on a different task. To discover states that are
unlikely to be produced by the experts, DAgger (Ross et al., 2011) balances exploration
(via the current policy) and exploitation (via the AL experts) to collect a large set of states
and actions. We train the policy network on all the previous states and actions after each
AL iteration.

3.1 Background

In pool-based AL we train a model M on a dataset D by iteratively labeling data samples.
Initially, M is trained on a small amount of labeled data Dlab randomly sampled from
the dataset. The rest of the data is considered as the unlabeled data pool Dpool, i.e.,
D = Dlab ∪ Dpool. From that point onwards during the AL iterations a subset of Dsel is
selected from Dpool by using an acquisition function a(M,Dpool). The data is labeled and
then removed from Dpool and added to Dlab. The size of Dsel is based on the acquisition size
acq (>1 for batch-mode AL). The AL cycle continues until a labeling budget of B is reached.
M is retrained after each acquisition to evaluate the performance boost with respect to the
increased labeled dataset only (and not the additional training time).

The acquisition function a uses heuristics on the trained model M to select the most
informative data samples from Dpool. For deep AL those include uncertainty-based MC-
Dropout (Gal et al., 2017), query-by-committee-based Ensembles (Beluch et al., 2018), data
diversity-based CoreSet (Sener and Savarese, 2018), gradient-based BADGE (Ash et al.,
2020), and soft-max-based Confidence- or Entropy-sampling (Wang and Shang, 2014).
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Figure 2: Training π to imitate experts E : (1) we pass samples from Dsub and Dlab through
the current classifier M ; (2) the embeddings and the predictions are input to π, whose output
vector is compared with the target vector predicted by the best expert; (3) we calculate a
loss and back-propagate the error through π; (4) we extend the labeled pool data Dlab by
Dsel and retrain M .

MC-Dropout uses a Monte-Carlo inference scheme based on a dropout layer to approximate
the model’s predictive uncertainty (Gal and Ghahramani, 2016) and then uses these values
to select the most uncertain samples (Gal et al., 2017). Ensembles (Beluch et al., 2018)
model predictive uncertainty using a committee of N classifiers, initialized with different
random seeds. However, while at inference time we need to run only N forward-passes per
sample (compared to MC-Dropout performing two dozens or more Monte-Carlo passes), the
training of N -1 additional deep models can become prohibitively expensive in many use-cases.
CoreSet (Sener and Savarese, 2018) aims to select diverse samples by solving the k-centers
problem on the classifier’s embeddings. This involves minimizing the distance between
each of the unlabeled data samples to its nearest labeled samples. BADGE determines
the magnitudes of the gradients in a batch using proxy-labels and selects samples by
uncertainty and diversity. Soft-max-based heuristics (Confidence- and Entropy-sampling)
use predictive uncertainty and are computationally lightweight at lower AL performance (Gal
and Ghahramani, 2016; Ash et al., 2020). Confidence selects the samples with the lowest
class probability and Entropy the ones with largest entropy of their probability distribution.

3.2 Learning Multiple Experts

Instead of using specific heuristics we propose to learn the acquisition function using a policy
network. Once the policy is trained on a source dataset, it has learned a unified active
learning heuristic, and can be applied to different target datasets.

Figure 1 illustrates the approach with two-dimensional Gaussian distributions. After
ten acquisitions of ten new samples each strategy has sampled a distinct set of labeled data.
While uncertainty-based Entropy mostly samples from only one class, the diversity-based
CoreSet covers a more representative set over the data and selects data from the whole
distribution. Our approach was trained to imitate both methods. Figure 1d shows that it
acquired diverse samples (in this example at a ratio of 60 to 40), and samples especially
along the decision boundary, reaching higher accuracy than any of the single baselines alone.
The learned strategy hence combines the advantages of both imitated methods.

Figure 2 sketches the imitation learning framework. The policy network π is a Multi-
Layer Perceptron (MLP) trained to predict the usefulness of labeling samples from the
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unlabeled data pool Dpool for training the model M , similar to an AL acquisition function.
As input the policy network takes the current state, that encodes, e.g., M ’s information on
learned representations Me(x) and Me(Dlab), as well as its predictive uncertainty derived
from M(x), M(Dlab), and label information from Dlab. We use the predictions M(x) to
enrich the state with pseudo-label gradient signals to guide the policy’s decisions later
on2. Our state representation significantly extends previous work (Contardo et al., 2017;
Konyushkova et al., 2017; Liu et al., 2018; Casanova et al., 2020) and adds novel features
that allow for model introspection. The policy π then outputs the action to be taken at
each step. Action here refers to an AL acquisition, i.e., which of the unlabeled data samples
should be labeled and added to the training data. π learns the best actions from a set
of experts E which predict the best actions for a given AL state, and thus learns its own
complementary strategy. A subset of the pool dataset Dsub with size n is used instead of the
whole pool dataset at each active learning iteration for training the policy.

States. As π uses the state information to make decisions, a state s should be maximally
compact but still unique, i.e., different situations should have a different state encoding, and
they have to allow to predict M ’s expected improvement. Our state encoding uses three
types of information: (1) M ’s learned representations, (2) M ’s predictive uncertainty, and
(3) M ’s gradient signals for unlabeled samples. We distinguish the state’s parameters as
either derived from the labeled or from the unlabeled pool. Together, these parameters form
a minimal but comprehensive description of a model’s state at each step of the AL-cycle.

For labeled samples the following parameters encode M ’s learned representations and
predictive uncertainty :

• The embedded samples’ mean µ
(
Me(Dlab)

)
: the embedding Me of a sample by M

is the output of the final layer (i.e., the layer before the soft-max layer in case of
classification), see Figure 2. The size of this representation is independent of the
(growing) size of Dlab and thus will not become a computational bottle-neck.

• The ground-truth empirical distribution of class labels

~eDlab
= (

∑
y∈Dlab

1[y==0]

|Dlab|
, ..,

∑
y∈Dlab

1[y==i]

|Dlab|
),

which is a normalized vector of length i, i.e., the number of classes, with percentage of
occurrence per class using the labels of the already acquired data samples.

• M ’s predicted distribution of class labels for the labeled data ~eM(Dlab), i.e., a normalized
vector as before but with predicted class labels instead of ground-truth.

We encode the predictive uncertainty by including both the ground truth and the predicted
empirical distribution. The policy can base its decisions on the model M ’s prediction errors,
e.g., by detecting wrong predictions of already labeled samples and decide to acquire more
similar samples.

For unlabeled samples (n data samples in Dsub), we encode the information that is
necessary to help π acquire more relevant samples. First, we calculate M ’s representation
for each data sample xi ∈ Dsub, i.e., its embedding Me(xi) in the same embedding space as

2. see Eq. 1 for an exact definition of the state.
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the already labeled samples. Second, we also predict each sample’s label M(xi). Finally, we
encode gradient signals as the gradients of unlabeled data provide a powerful view due to
its effect on the classifier model (as they encode M ’s expected change directed towards the
steepest learning steps). Although their calculation usually requires labeled samples we can
still approximate them using proxy-labels (Ash et al., 2020). We define a proxy-label ŷ (i.e.,
the one that has the highest class probability for M(xi)). Then, the gradient’s magnitude
and direction at the embedding layer describes the model’s uncertainty and its expected
change. We thus capture gradient information at the embedding layer as g(Me(xi)) and
encode it as part of the state.

In summary, the state enables the policy to learn to select samples (1) where the model
is uncertain (i.e., where it predicts the wrong labels), (2) where the model might gain most
information (i.e., the gradient’s magnitude is large), and (3) to learn to select samples that
increase the labeled pool’s diversity (i.e., to acquire less well-represented samples, using the
label statistics and the learned representations). Hence, we describe a state s as follows:

s :=
[
µ(Me(Dlab)), ~eDlab

, ~eM(Dlab),

Me(x0)
...

Me(xn)

 ,
M(x0)

...
M(xn)

 ,
g(Me(x0))

...
g(Me(xn))

] (1)

Actions. In our approach, actions are essentially the resulting selections from acquisition
functions, that π learns to imitate. The ground truth actions (selections) provided by the
experts are binary vectors of length k, where a 1 at index i means that xi should be
selected for labeling. We may think of the experts are policies themselves that only have a
fixed acquisition function. IALE’s acquisition function, on the other hand, uses its neural
network’s prediction to select samples. The output of the MLP is analogously a vector with
a desirability score ρi for each unlabeled sample from Dsub, i.e., ρi := π(si), from which we
choose the highest ranked samples. This results in a binary selection vector ~v = (ρ0, · · · , ρn)
with

∑n
i=0 ~vi = acq. We use a binary cross entropy loss to update π’s weights:

L(ρ,~t) = −
n∑

i=0

~ti log (ρi)− (1− ~ti) log (1− ρi), (2)

where ~t is the target vector provided by the best expert (similar to a greedy multi-armed
bandit approach (Hsu and Lin, 2015)), guiding π towards the best expert’s suggestion.

Our IL-based approach uses the experts to turn AL into a supervised learning problem,
i.e., the action of the best expert becomes the label for the current state s. From all the
experts E we determine the best one by letting all of them select samples for labeling,
and then rank their performance using temporary models trained for each expert. Our
choice of AL heuristics for the set of experts E includes particular types but is arbitrarily
extendable. Using MC-Dropout, Ensemble, CoreSet, BADGE, Confidence or Entropy allows
us to only minimally modify the classifier model M , e.g., we add dropout at inference to use
MC-Dropout. π aims to learn certain derived properties from s, such as model uncertainty.

Our hypothesis is that π imitates the best suitable heuristic for each phase of the AL
cycle, i.e., starting with relying on one type of heuristics for selections of samples in the
beginning and later using a different one for fine-tuning M . (see also Section 4.3). This is in
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Algorithm 1 Imitating Active Learner Ensembles

1: data D, labeled validation data Dval, classifier M , budget B, experts E , acquisition
size acq, subset size n, probability p, states S, actions A, random policy π (acq ≥ 1,
n = 100).

2: for e = 1 . . . episodesmax do
3: Dlab,Dpool ← split(D)
4: repeat
5: M ← initAndTrain(M,Dlab)
6: Dsub ← sample(Dpool, n)
7: e∗ ← bestExpert(E ,M,Dsub,Dval)
8: Dsel ← e∗.SelectQuery(M,Dsub, acq)
9: S,A ← toState(M,Dsub,Dlab), toAction(Dsel)

10: if Rnd(0, 1) ≥ p then
11: // We may choose π’s selection
12: Dsel ← π.SelectQuery(M,Dsub, acq)
13: end if
14: Dlab ← Dlab ∪ Dsel

15: Dpool ← Dpool \ Dsel

16: Update policy using {S,A}
17: until |Dlab| > B
18: end for

line with previous research that combines uncertainty- and density-based heuristics and that
learns an adaptive combination framework that weights them over the training course (Li
and Guo, 2013). π learns a more suitable selection for the classifier’s learning stage through
introspection into the classifier’s state. Note that this is more adaptive to new problems
than e.g. encoding time directly (for instance as a function of the number of acquisitions).

3.3 Policy Training

Our policy training builds on the intuition behind DAgger, which is a well-known algorithm
for IL that aims to train a policy by iteratively growing a dataset for supervised learning.
The key idea is that the dataset includes the states that are likely to be visited over the
course of solving a problem (in other words, those state and action encodings that would
have been visited if we would follow a hard-coded AL strategy). To this end, it is common
when using DAgger to determine a policy’s next state by either following the current policy
or an available expert (Ross et al., 2011). We thus grow a list of state and action pairs, and
randomly either choose expert or policy selections as the action.

Each episode of the IL cycle lasts until the AL labeling budget is reached for episodesmax

iterations. We aggregate the states and actions over all episodes, and continually train the
policy on the pairs. We use DAgger to further randomize the exploration of D. Instead of
always following the best expert’s advice, we randomly follow the policy’s prediction, and
thus enrich the possible states.

Our IL approach for training π is given in Algorithm 1. At each AL cycle, we randomly
sample a subset Dsub of n samples from the unlabeled pool Dpool (line 3). We find the best
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expert e∗ from a set of experts E (line 7) by extending the training dataset by the expert
selections (from Dsub) and train a classifier each. This means that each expert constructs one
batch according to its heuristic, e.g., a batch composition could maximize model-change, and
queries the oracle for labels. We choose the best expert by comparing the resulting classifiers’
accuracies on the labeled validation dataset. We next set its acquisition as this iteration’s
chosen target and store state and action for the policy training (line 9). Depending on the
probability p (line 10) we then either use the policy or the best expert to increase Dlab for
the next iteration (line 14). After each episode we retrain π on the state and action pairs
(line 16).

4. Experiments

We first describe our experimental setup (Section 4.1). Next, we describe how we trained
our policy on MNIST (Section 4.2) and evaluate our approach by transferring it to test
datasets, i.e., to FMNIST and KMNIST (Section 4.3), and Extended MNIST, SVHN
and CIFAR-10/-100 (Section 4.4). We end with a discussion of ablation studies and
the limitations of our approach (Section 4.5). The source code is available at https:

//github.com/crispchris/IALE and can be used to reproduce our experimental results.

4.1 Experimental Setup

Datasets. We use the image classification datasets MNIST (LeCun et al., 1998), Fashion-
MNIST (FMNIST) (Xiao et al., 2017), Kuzushiji-MNIST (KMNIST) (Clanuwat et al.,
2018), Extended MNIST (Cohen et al., 2017), CIFAR-10/-100 (Krizhevsky, 2009), and
SVHN (Netzer et al., 2011) for our evaluation. The MNIST-variants consist of 70, 000
grey-scale images (28×28px) in total for 10 classes. MNIST contains the handwritten
digits 0 − 9, FMNIST contains images of clothing (i.e., bags, shoes, etc.), and KMNIST
consists of Hiragana characters. Extended MNIST contains, among others, a 26-class split of
handwritten letters (28×28px) with 145,600 samples. SVHN, CIFAR-10 and CIFAR-100 are
higher dimensional image classification datasets (32× 32 pixels, 3 color channels) with 10,
or 100 classes. The CIFAR-variants contain 60.000 images of objects and animals. SVHN
contains 600.000 images of house numbers.

To evaluate IALE we train a policy π, run it on unseen datasets along with the baselines,
and average the results (over 3 iterations). We denote the number of labeled samples in
the experiments as labeling effort until a budget is reached, to be able to compare different
acquisition sizes for the same total budget. The similarity between FMNIST and MNIST
(that has previously been shown (Nalisnick et al., 2019)) and the difficulty of FMNIST
(it has been shown to be a demanding dataset for AL methods (Hahn et al., 2019)) make
these datasets a perfect combination to evaluate IALE. We show broader generalization on
Extended MNIST and the higher dimensional SVHN and CIFAR datasets (5 repetitions).
Appendix A.3.2 presents additional results for transferring π.

Architectures of classifier M . We use the same CNN architecture that has been
employed in previous research (Gal and Ghahramani, 2016). Our model has two convolutional
layers, followed by a max pooling and dense layer. We add dropout layers after the convolution
and dense layers and use ReLU activations. A soft-max layer allows for classification. We
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(b) CNN/Fashion-MNIST
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(c) CNN/Kuzushiji-MNIST

Figure 3: Active learning performance of the trained policy (trained on MNIST), compared
to the baseline approaches including ALIL (Liu et al., 2018), validated on MNIST and
evaluated on FMNIST and KMNIST.

also provide results for using π on a simple MLP and on a more complex ResNet-18 (He
et al., 2016), and supplemental results in Appendix A.3.1.

Architecture of policy π. Our policy model π uses an MLP with three dense layers
with 128 neurons each. The first two dense layers are followed by a ReLU activation layer,
whereas the final layer has only one neuron and the output of this layer is passed onto a
sigmoid function to constrain the outputs to the range [0, 1]. and to further process it into
an aggregating top-k operation.

Baselines. We compare our method with different well-known AL approaches from
literature: ALIL (which we adapted from Liu et al. (2018) to work with image classification
tasks), MC-Dropout, Ensemble, CoreSet, BADGE, Confidence-sampling, Entropy-sampling
and a random sampling. Appendix A.1.1 provides a more details on the baselines.

Notation. We denote the unlabeled dataset as Dpool, the already labeled data as Dlab

and a labeled validation data Dval. We randomly sub-sample Dsub of size n from Dpool. We
use a budget B and acquisition size acq to select Dsel from Dsub. We derive the state S
from a classifier M , e.g., a CNN or ResNet, to train IALE’s policy network π, i.e., an MLP
with two hidden layers. In policy training, experts E propose actions A. DAgger’s hyper
parameter p is the probability for following either the best expert or the policy π itself.

4.2 Policy Training and Validation

We use the MNIST dataset as our source dataset on which we train our policy for 100
episodes, with each episode containing data from an AL cycle. The initial amount of labeled
training data is 20 samples (class-balanced). At each step of the active learning process, 10
samples are labeled and added to the training data until a labeling budget B of 1, 000 is
reached. We use the AL heuristics MC-Dropout, Ensemble, CoreSet, BADGE, Confidence
and Entropy as experts, and use Dval with 100 labeled samples to score the acquisitions of
the experts. The pool dataset is sampled with n = 100 at each AL iteration. We choose
p = 0.5 for means of comparison with the baselines (based on preliminary experiments, see
Appendix A.2.1 on Exploration-Exploitation). We train the policy’s MLP on the growing
list of state and action pairs using the binary cross entropy loss from Equation 2 and use
the Adam optimizer (Kingma and Ba, 2015) for 30 epochs with a learning rate of 10−3,
β1 = 0.9, β2 = 0.999, ε=10−8, without any weight decay.
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Figure 3a shows the results of our method in comparison to all the baseline approaches
on MNIST, on which the policy was trained on. Our method consistently outperforms or is
at least en par (towards the end, when enough representatives samples are labeled) with all
the other methods. This finding on the policy-training dataset is not surprising, however,
IALE performs better acquisitions than, e.g., Ensemble and MC-Dropout, for the important
first half of the labeling budget, where it matters the most. In this experimental setting,
Confidence-sampling performs similarly to the two more complex methods, even though it
uses only the simple soft-max probabilities. While Entropy beats random sampling, it is still
not competitive. BADGE performs similar to random sampling, which is due to the small
acquisition size of 10 (the better performance of BADGE was reported with much larger
acquisition sizes of 100 to 10,000 in Ash et al. (2020) as its mix of uncertainty and diversity
heuristic benefits from these). The same applies to CoreSet, however, here it performs worst
on average over all experiments. This finding is in line with previous research (Sinha et al.,
2019; Hahn et al., 2019) and can be attributed to a weakness of the used p-norm distance
metric regarding high-dimensional data, called the distance concentration phenomenon. The
accuracy of ALIL on MNIST is similarly low as CoreSet. Moreover, ALIL is designed to add
only one sample to the training data at a time (no batch-mode).

A general finding regarding computational efficiency in active learning is that IALE is
faster than most baselines. While MC-Dropout requires 20 forward passes to decide which
samples it acquires, and Ensembles N = 5 forward passes, one for each model, our approach
requires only 2 inferences (for Dsub and Dlab). The support for batch-mode (instead of
selecting single samples) and using expert heuristics’ batch acquisitions (instead of rolling out
training of random samples from a small subset), accelerates the training of IALE compared
to ALIL by several orders of magnitude (6 minutes versus 215 minutes per epoch on one
NVidia Tesla V100 GPU). In a quantitative evaluation (with a labeling budget of 10.000
samples, an acquisition size of 10, training a ResNet-18 for 100 epochs, same GPU as before)
the run time for IALE is 10:17:31 (hh:mm:ss) vs. 9:45:12 for random sampling. Compared to
49:15:23 for Ensembles, 14:23:18 for MC-Dropout and 11:58:47 for BADGE, this shows that
IALE is faster. Only two baselines Conf (10:12:01) and Entropy (10:05:21) run faster, but
they perform worse than IALE and even worse than random sampling.

4.3 Policy Transfer and Testing

To evaluate π’s performance, we have to run it on a different dataset than the one that
it has been trained on. Hence, we train π on the source dataset MNIST as in Section 4.2
and use it for the AL problem on FMNIST and KMNIST. We use an initial class-balanced
labeled training dataset of 20 samples and add 10 samples per AL acquisition cycle until we
reach a labeling budget of 1,000 samples. All the baselines are evaluated along with our
method for comparison.

Figures 3b and 3c show the performance of IALE along with the baselines on FMNIST
and KMNIST. Still, IALE consistently outperforms the baselines on both datasets. We
can see that it learns a combined and improved policy that outperforms the individual
experts consistently and (sometimes) even with large margins. On FMNIST IALE is the
only method that actually beats a random sampling (similar findings have previously been
reported by Hahn et al. (2019)). IALE is consistently 1− 3% better than random sampling
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Figure 4: Complementary acquisition.

on FMNIST, on the harder KMNIST dataset IALE is even 7− 9% ahead. The baselines give
a mixed picture. ALIL’s performance is not competitive on any task and actually never
beats a random sampling strategy. We also see unstable performance for MC-Dropout and
Ensemble, that generally perform similarly well. The simple soft-max heuristics Entropy
and Confidence fail on FMNIST. CoreSet lags far behind, especially on KMNIST. BADGE
always performs like random sampling, due to the aforementioned problematic acquisition
size.

Sample composition of acquisition batches. We compare IALE’s chosen samples
with the ones chosen by the experts, to gain insights on what IALE imitates and how the
composition changes over the AL cycles. We evaluate all baseline experts and our method 5
times for 100 AL cycles on FMNIST (|Dsub| = 100 and acq-size= 10), and report the results
as well as fitted polynomials to highlight trends. In addition, we report the intersection
of two i.i.d. randomly selected sets as the Random baseline with 1% overlap. For an
acquisition size of 50, such a random overlap increases to 25%. Since the acquisitions
between imitated baselines overlap, we are especially interested in their complementary
acquisitions, e.g., samples that were only selected by a specific heuristic. Hence, we first
separate AL into the families of uncertainty- and diversity-based methods. We group
ensemble model combinations (EMCs) (Lakshminarayanan et al., 2017) (Ensemble, MC-
Dropout) with single model soft-max methods (Confidence, Entropy), and compare with
methods with diversity (BADGE and CoreSet). The results in Figure 4a show that the
policy predominantly overlaps with uncertainty-based baselines. As Figure 4b shows, the
exclusively by EMCs selected samples form the larger set. IALE may outperform any single
heuristic due to its complementary strategy. The overlap between π and any other heuristic
(intersection), decreases from about 80% to 60% over time. π selects samples that none of the
experts choose, see Appendix A.2.2, where we also show π’s overlap with single heuristics.

4.4 Policy Generalization

IALE learns a transferable AL policy. It unifies heuristics and generalizes over tasks and
model architectures, because the state retains its formulation between tasks and architectures.
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(a) MLP/Fashion-MNIST.
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Figure 5: (a) π (trained on CNN and MNIST) applied to MLP on FMNIST (b) π (trained
on ResNet-18 and MNIST) applied to CNN on FMNIST.

In this section, we evaluate the extend and limitations of the policy for transfers between
MLP, CNN and ResNet classifiers, and on increasingly complex image datasets.3

Architecture transfer. Here, we explore the transfer of our approach to different
architectures. We apply a policy, trained on CNN and MNIST, to an MLP (two hidden
layers, 128 units, ReLU activation) on FMNIST and show the results in Figure 5a. Even
with 5 random seeds and an increase batch size of 20 IALE, BADGE and Ensemble train
classifiers stably, with IALE being on top. Next, we train a second policy on ResNet-18 and
MNIST (IALE ResNet). We apply it to a CNN model on the FMNIST dataset and compare
also with the previous policy (IALE CNN on MNIST). The results in Figure 5b show that
both variants perform similarly despite their different policy training contexts. A potential
explanation is that the policy learned similar decision strategies for both types (and sizes)
of convolutional networks. This also shows that the state s and policy π are well-matched.
First, the state s is rich enough for the policy π to learn and decode relevant information
for generalizing the AL task. Second, the policy has a high enough capacity for transferring
the policy to different networks and tasks, even though the embedding size itself is fixed.4

Both transfer experiments show IALE’s general ability to learn a model-agnostic AL
strategy, of course within this experiment’s scope. Experiments with deeper networks or an
explanatory analysis of the policy’s decision rules and state remain as future work.

Higher-dimensional data. Next, we evaluate IALE on the higher-dimensional CIFAR-
10 and SVHN. For the latter, we increase the batch- or acquisition size to 1, 000 so that
training converges. We re-use the two policies (CNN/MNIST and ResNet/MNIST) from the
previous experiment, but train exclusively ResNet-18 classifiers, because the simpler classifier
models (MLP, CNN) did not yield satisfying results for any AL strategy. In summary, we use
2, 000 initial labels, an acq-size of 10 and B = 10, 000 for CIFAR-10 and 1, 000 initial labels,
an acq-size of 1, 000 and B = 16, 000 for SVHN. Figure 6a shows all results on CIFAR-10

3. The transfer of the two different π’s works because the shape of the classifier’s embedding is invariant to
architecture and data.

4. While the size of the embedding of the training and test architectures need to match exactly, it is only
one aspect of the proposed approach besides the full state and the policy’s network. Specifically, given
an embedding of sufficient size we can construct an adequate state for good generalization from that
embedding and other information, i.e., predictive uncertainty and gradient information. Our approach
does not only rely on the embedding and the constructed state. Instead, the policy network itself has a
large capacity and decodes the state.
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Figure 6: (a) π (trained on CNN (IALE CNN) or ResNet-18 (IALE ResNet) on MNIST)
applied to ResNet-18 on CIFAR-10 (filtered). (b) π (trained on CNN and MNIST) applied
to ResNet-18 on SVHN (filtered).
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(a) CNN/Extended MNIST (let-
ters).
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Figure 7: (a) π (trained on CNN and MNIST) applied to CNN on Extended MNIST (letters).
(b) similarly on CIFAR-100 (filtered).

with different policies: IALE is at least on par or better than a random sampling while the
other experts are on par or worse than random sampling, some of them considerably. On
SVHN, the performance gap opens wider with a larger batch-size (Figure 6b). Here, IALE
performs best and is the only AL method that consistently beats a random sampling, with a
relatively large margin. Furthermore, we want to emphasize that IALE generalizes beyond
its budget of 1, 000 during policy training to longer time horizons of budgets like 10, 000
or even 16, 000. This is a benefit of our policy’s introspective, state-based learning over
alternatives like optimization-based meta-learning (Ravi and Larochelle, 2017; Chen et al.,
2017), that struggles with longer time horizons as shown by Mishra et al. (2018) and Chen
et al. (2017). Finally, these results show, that our framework learns a task-agnostic AL
strategy for the presented image datasets. See Appendix A.3.2 for raw results.

Arbitrary class count. We perform experiments on Extended MNIST (26 classes;
letters) and CIFAR-100 (100 classes) to increase the complexity of the classification task. To
do this we must remove the fixed-length vectors prediction and empirical class distribution
from the policy’s state. Even though this may lead to a slightly poorer performance (see
Appendix A.4.3) this allows transfers to tasks with an arbitrary numbers of classes. To start,
we train two new policies with the reduced state, one with CNN on MNIST and another
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Figure 8: Ablation studies on IALE for (a) different expert sets (on KMNIST), (b) acq-sizes
and (c) n=|Dsub| (on MNIST).

with a ResNet-18 on CIFAR-10. Then, we apply IALE to a CNN on the Extended MNIST
dataset.

Figure 7a shows the results from which we can draw two important observations: (1)
IALE can be applied to problems with arbitrary class count, and (2) IALE still performs well
compared to baselines. Next, we explore the limits by applying both policies to ResNet-18 on
CIFAR-100 (1, 000 initial labels, an acq-size of 1, 000 and B = 19, 000). Figure 7b shows that
while IALE is still on par or better than the baselines, random sampling works surprisingly
well, and shows the limitations of current AL heuristics, leaving space for future research.

4.5 Ablation Studies

Varying experts. To investigate the influence of experts, we leave out some types of
experts: We categorize them into 4 simple groups, i.e., EMCs (McdropEns), soft-max
uncertainty (EntrConf ), diversity (Coreset) and hybrid (Badge), and leave one subset out.
We fully train each method on MNIST with B = 1, 000 and an acquisition size of 10, and
present the results of the evaluation on KMNIST in Figure 8a (more results including the
ablation of state elements can be found in Appendixes A.4.2 and A.4.3). We see that most
combinations perform well compared to the baselines. However, leaving out uncertainty-based
heuristics can decrease performance, as they contribute the largest fraction to IALE’s selection
composition (see Section 4.3). Even though training time is longer with MC-Dropout, the
gains in performance can be worth it. In contrast, the soft-max uncertainty-based heuristics
are computationally cheap and yield well-performing policies.

Hyperparameters. Two important parameters are the acquisition size acq and the
size of Dsub. Machine learning engineers may specifically be interested in modifying the
acquisition size according to practical constraints. Hence, we show that arbitrary values
are possible when applying π. Figures 8b and 8c show results for applying the policy for
acq of 1 to 40 and size of Dsub between n=10 and n=10, 000. During policy training we
fixed acq= 10 and size of Dsub to n=100. This section also addresses the question of how
IALE learns to sample diverse sets of points. Our empirical study shows that it does not
sample non-diverse sets, which could be a failure state. Varying the acquisition size and
Dsub produces the following insights. As expected, IALE performs best at acq= 1 and worst
at acq= 40, if n is unchanged (because n limits the available choices), e.g., bad samples
are chosen. Increasing n to 1, 000 alleviates this. However, there is an upper limit to the
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size of Dsub after which performance deteriorates again, see Figure 8c. We believe that
random sub-sampling simplifies the selection of diverse, uncertain samples. The performance
decrease for small and large n supports this hypothesis. An optimal size of the sub-sampled
data could be determined for different active learners, similarly to how some acquisition sizes
are more suitable than others (see diversity vs. uncertainty in Appendix A.4). However,
this additional interesting finding is not investigated further within this paper. The lower
limit becomes apparent again when n is smaller than 10 times acq, with n =acq essentially
being a random sampling. From our observations, n should be 10− 100 times acq (for 10
classes). From the small differences within this value range, it is suggested that our method
is suitable for larger acquisition sizes for batch-mode AL, as its performance is not affected
much.

5. Conclusion

We proposed a novel imitation learning approach for active learning. Our method learns
to imitate the behavior of different active learners, such as uncertainty-, diversity-, model
change- and query-by-committee-based heuristics, on one initial dataset and model, and
transfers the obtained knowledge to work on other datasets and models (that share an
embedding space). Our policy π is a simple MLP that learns a unified strategy from the
experts based on a state with high capacity that contains gradient signals, embeddings and
statistics of the data. Our experiments on different image datasets (four MNIST variants,
CIFAR-10/100, SVHN) and model architectures (MLP, CNN, ResNet) show that IALE

outperforms the state of the art and learned a complementary strategy. An ablation study
and analysis of the influence of certain hyper-parameters also shows the limitations of our
approach.

Future work investigates alternatives to the sampling step, as it may lead to sub-optimal
choices from very large or imbalanced datasets. This would require a different loss than
cross-entropy, in order to retain the ordering information, and could lead to a reformulation
as a learning-to-rank problem of (compatible) experts’ choices instead. Finally, an analysis of
how π’s state enables a transfer of its active learning strategy between classifier architectures
and datasets may lead to some level of explanation of the principles of deep active learning.
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Appendix A.

In this section we provide an extension of the experiments section (Section 4) and feature
additional results that support a more complete evaluation of IALE. We adhere to the same
section structure.

A.1 Experimental Setup

A.1.1 Baselines

In the following is a short explanation of the baselines and experts that we used in our
experiments:

1. Random Sampling randomly samples data points from the unlabeled pool.

2. MC-Dropout (Gal et al., 2017) approximates the sample uncertainty of the model by
repeatedly computing inferences of the sample, i.e., 20 times, with dropout enabled in
the classification model.

3. Ensemble (Beluch et al., 2018) trains an ensemble of 5 classifiers with different weight
initializations. The uncertainty of the samples is quantified by the disagreement
between the model predictions.

4. CoreSet (Sener and Savarese, 2018) solves the k-center problem using the pool-
embeddings of the last dense layer (128 neurons) before the soft-max output to
pick samples for labeling.

5. BADGE (Ash et al., 2020) uses the gradient of the loss (given pseudo labels), both its
magnitude and direction, for k-means++ clustering, to select uncertain and diverse
samples from a batch.

6. Confidence-sampling (Wang and Shang, 2014) selects samples with the lowest class
probability of the soft-max predictions.

7. Entropy-sampling (Wang and Shang, 2014) calculates the soft-max class probabilities’
entropy and then selects samples with the largest entropy, i.e., where the model is
least certain.

8. ALIL (Liu et al., 2018): we modify ALIL’s implementation (that is initially intended
for NLP tasks) to work on image classification task. Due to the high runtime costs of
running ALIL (as the acquisition size is 1), we perform the training of ALIL for 20
episodes. We trained the ALIL policy network with a labeling budget B of 1, 000 and
an up-scaled policy network comparable to that of our method along with a similar M
as we use to evaluate the other AL approaches. We left the coin-toss parameter p at
0.5, and the k parameter for sequential selections from a random subset of Dpool at 10.

We use the variation ratio metric (Gal et al., 2017) to quantify and select the data samples
for labeling from the uncertainty obtained from MC-Dropout and Ensemble heuristics. The
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variation ratio metric is given by its Bayesian definition (Gal et al., 2017) for a data sample
x ∈ Dpool in Equation 3 and for an ensemble expert (Beluch et al., 2018) in Equation 4:

variation-ratio(x) = 1−maxyp(y|x,D) (3)

= 1− m

N
, (4)

where m is number of occurrences of the mode and N is the number of forward passes or
number of models in the ensemble.

A.1.2 Datasets

We show samples of the three datasets MNIST, Fashion-MNIST and Kuzushiji-MNIST in
Figure 9 to illustrate their similarity. Extended MNIST consists of handwritten letters, while
the other image datasets used in the evaluation (CIFAR and SVHN) differ greatly and have
color information.

Class: 5 Class: 0 Class: 4 Class: 1 bag bag sneaker coat yu na ya ha

Figure 9: Examples for the three datasets MNIST, Fashion-MNIST, and Kuzushiji-MNIST.
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(b) Fashion-MNIST
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Figure 10: The overlap plots for all datasets MNIST, FMNIST and KMNIST datasets.

A.2 Policy Training

A.2.1 Exploration-Exploitation in DAgger

DAgger uses a hyper-parameter p that determines how likely π predicts the next action, and
thereby setting the next state, instead of using the best expert from E . In this preliminary
study we compare the influence it has to either fix p to 0.5 or to use an exponential decay
parameterized by the number of the current episode epi: 1 − 0.9epi. We train the policy
on MNIST for 100 episodes with a labeling budget of 1, 000 and an acquisition size of 10
(as before). Our result is that the fixed policy outperforms the exponential one by a small
margin for the transfer of the policy to another dataset than the trained one, which is in
line with previous findings (Liu et al., 2018).
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A balanced (i.e., fixed) ratio does not emphasize one over the other, whereas an expo-
nentially decay quickly relies on the policy for selecting new states of the dataset, and thus
it trains on too few optimal states over the AL cycle.

A.2.2 Overlap ratios
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Figure 11: Overlap with any expert on Fashion-MNIST.

In addition to analyzing complementary compositions IALE’s acquisitions, we show
overlaps with each baselines independently. This detailed view shows which heuristic π
imitates the most. The overlap is given in percent in relation to the baselines (see Figure 10)
for different datasets. We plot second-order polynomials, fit to the percentages (given as
dots) over 100 acquisitions of size 10. Interestingly, the overall overlap is lower on FMNIST,
where our method is the only one that beats a random sampling. We confirm again that π
mostly imitates uncertainty-based heuristics, i.e., soft-max heuristics and MC-Dropout, and
the uncertainty-/diversity-heuristic BADGE (close behind). Ensemble is overlapping mostly
at the beginning. CoreSet has the lowest overlap. Interestingly, the policy chooses about
half of the samples differently from any single baseline. On the other hand, the overlap with
any expert is relatively high but decreases over the AL cycle (see Figure 11). In other words,
the policy selects a portion of samples that none of the experts selected. Note that IALE’s
acquisitions are build from combinations of the heuristics (instead of single votes), as we
show in Section 4.3. Here, the percentages do not sum up to 1 as the overlap ratios between
baseline and IALE are independent and may also overlap with each other.

A.3 Policy Transfer

In this section we provide additional results on our studies on how our method performs
in regard to applying it to unseen scenarios. These include that we use different datasets
and classifier models in training and application of the policy. We show that π learns a
task-agnostic AL strategy, that outperforms the baselines.

A.3.1 Classifier Architecture

In the evaluation Section 4, we show that our method is not bound to a specific classifier
architecture. Here, we add results for the MLP architecture and give raw curves for a
ResNet-18 classifier. To train IALE, we train policies on MNIST and apply them to all
MNIST variants. All results for the experiments are given in Figure 12. We see the robustness
of π over fundamentally different classifier architectures (2 to 18 layers). The deviations
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for ResNet-18 are very large due to the very deep architecture and the modest amount of
training data. We use median filtering in Figures 12g, 12h, and 12i.

These experiments show that π can learn AL strategies for both very small and very
deep architectures and still outperform baselines. Even though the strongest baselines, i.e.,
CoreSet and MC-Dropout, come close to our method in accuracy, they are less versatile and
require more computational resources, that is especially noticeable on deeper architectures.
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(a) MLP on MNIST
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(b) MLP on FMNIST
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(c) MLP on KMNIST
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(d) ResNet-18 on MNIST
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(e) ResNet-18 on FMNIST
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(f) ResNet-18 on KMNIST
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(g) ResNet-18 on MNIST
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(h) ResNet-18 on FMNIST
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(i) ResNet-18 on KMNIST

Figure 12: MLP and ResNet-18 classifiers, data averaged or median filtered. Active learning
performance of the trained policy in comparison with the baseline approaches on MNIST,
FMNIST and KMNIST datasets.

A.3.2 Classifier Architecture and Dataset

In Section 4.4, we show that π learns active learning independent from dataset and classifier.
Here, we show additional results that mix both the source datasets and the classifiers.

We report the results for applying π (trained on ResNet-18 and MNIST) to a CNN and
all MNIST variants in Figure 13. IALE is always performing at the top, showing that it
learns a model- and task-agnostic active learning strategy that transfers well.

CIFAR-10. We show additional results for applying π to a ResNet-18 classifier on
CIFAR-10. To reiterate, we use two different π: π1 was trained using ResNet-18 and MNIST
(IALE ResNet) and π2 was trained using CNN and MNIST (IALE CNN). The complete results
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(a) MNIST
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(b) Fashion-MNIST
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(c) Kuzushiji-MNIST

Figure 13: Applying a policy trained using a ResNet-18 classifier (trained on MNIST) to a
CNN-based classifier (on MNIST, FMNIST and KMNIST).
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(a) full (raw)
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(b) full (filtered)
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Figure 14: Full and enlarged segments of learning curve: Applying π trained on a CNN
(IALE CNN) or ResNet-18 (IALE ResNet), trained on MNIST, to a ResNet-18 classifier on
CIFAR10.

in Figure 14 are noisy due to the acquisition size of 10, and we report the raw learning curves
(Figure 14a) and median filtered learning curves (Figure 14b). The most interesting segment
of the learning curve is in Figures 14c in more detail and filtered. The results generally
show the feasibility of transferring π to both different classifiers and datasets. IALE is on
par or better than random sampling, and the other baselines are either on par or worse than
random sampling (some of them considerably).

SVHN. We show the averaged learning curves for SVHN in Fig. 15a besides the smoothed
averages for improved visibility in Fig. 15b. While the results exhibit some variance, we can
clearly see that IALE performs best (and is the only AL methods that is consistently able to
beat a random sampling.

While more experiments are certainly required to further emphasize these initial claims
of generalizability to more diverse tasks, these findings are already very promising.

A.4 Ablation Studies

A.4.1 Hyperparameters.

We report fine-granular steps of acquisition sizes (see Figure 16a) with values between 1
and 10, plus 20 and 40, for |Dsub| of 100. Overall, a clear difference is not visible below 10
samples. For enhanced readability, we show a magnified section of the varied acquisition
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(a) SVHN.
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(b) SVHN.

Figure 15: The more complex dataset SVHN requiress more samples than MNIST variants.
Learning curves as (a) averages and (b) smoothed plots).

sizes and |Dsub| in Figure 16b, that clearly shows the benefits of tuning |Dsub| to a suitable
value for the acquisition size.

Acquisition sizes including baselines: We additionally compare the baseline active
learning methods with our approach, as these exhibit different performance at different
acquisition sizes, see Figure 16. We have included comparisons with acquisition sizes of
either 1 or 100 (1 or 3 repetitions). For our method, for an acquisition size of 1 we chose
|Dsub| = 100 and for acquisition size of 100 we chose |Dsub| = 2, 000. While the results show
that IALE outperforms the baselines they also highlight the large effect that the acquisition
size has on some of the baseline methods. For instance, CoreSet constructs better set covers
with larger batches, and BADGE increases its accuracy by constructing a representative
sampling as well. At the same time the uncertainty-based methods, apart from Entropy,
remain unaffected.
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(a) Varying acq-sizes.
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(b) Varying acq-sizes
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(c) acq-size 1.
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(d) acq-size 100.

Figure 16: (a) Evaluating the acquisition sizes from 1 to 10 on FMNIST, and (b) varying
different sub-pool sizes on MNIST. Diversity vs. uncertainty: Some experts are more suitable
to other acquisition sizes, see (c) and (d), both evaluated on MNIST.

A.4.2 Varying Experts

We present more results for variations of sets of experts in Figure 17, and train the policies
with the unchanged hyper-parameters and the CNN classifier on MNIST. The results for all
three datasets show that the generally high performance of IALE holds for the leave-one-out
sets of experts, with the full set of experts being consistently among the best performing
policies.
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(a) full state, MNIST.
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(b) full state, FMNIST.
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(c) full state, KMNIST.
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(d) No predictions, MNIST.
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(e) No predictions, FMNIST.
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(f) No predictions, KMNIST.
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(g) No gradients, MNIST.
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(h) No gradients, FMNIST.
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(i) No gradients, KMNIST.

Figure 17: The active learning performance for each (leave-one-out) set of experts. For
partial state (without predictions, without gradients), we plot active learning performance
for each (leave-one-out) set of experts.

A.4.3 Varying State Elements

Next, we study the state more closely. For unlabeled samples, the state contains two types
of representations for predictive uncertainty: the statistics on predicted labels M(xn) and
the gradient representations g(Me(xn)). In this study, we focus on leaving out one or the
other. To get the full picture, we again train sets of experts for reduced states.

In Figure 17 we see that dropping gradients generally decreases performance (bottom
row), while dropping predicted labels M(xn) affects performance very little (top row).
However, the influence of different sets of experts is more important. We cannot see that
a particular set of states and experts generally outperforms others consistently (while the
negative effect of leaving out g(Me(xn)) is consistently visible). Overall, we find that using
as many experts as available, combined with a full state both performs well and works
reliably. Even though training a policy this way does not guarantee the best performance, it
always performs among with the group of best policies.
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