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Abstract

Ounline Tensor Factorization (OTF) is a fundamental tool in learning low-dimensional in-
terpretable features from streaming multi-modal data. While various algorithmic and the-
oretical aspects of OTF have been investigated recently, a general convergence guarantee to
stationary points of the objective function without any incoherence or sparsity assumptions
is still lacking even for the i.i.d. case. In this work, we introduce a novel algorithm that
learns a CANDECOMP /PARAFAC (CP) basis from a given stream of tensor-valued data
under general constraints, including nonnegativity constraints that induce interpretability
of the learned CP basis. We prove that our algorithm converges almost surely to the set of
stationary points of the objective function under the hypothesis that the sequence of data
tensors is generated by an underlying Markov chain. Our setting covers the classical i.i.d.
case as well as a wide range of application contexts including data streams generated by
independent or MCMC sampling. Our result closes a gap between OTF and Online Matrix
Factorization in global convergence analysis for CP-decompositions. Experimentally, we
show that our algorithm converges much faster than standard algorithms for nonnegative
tensor factorization tasks on both synthetic and real-world data. Also, we demonstrate the
utility of our algorithm on a diverse set of examples from image, video, and time-series
data, illustrating how one may learn qualitatively different CP-dictionaries from the same
tensor data by exploiting the tensor structure in multiple ways.

Keywords: Online tensor factorization, CP-decomposition, dictionary learning, Marko-
vian data, convergence analysis

1. Introduction

In modern signal processing applications, there is often a critical need to analyze and un-
derstand data that is high-dimensional (many variables), large-scale (many samples), and
multi-modal (many attributes). For unimodal (vector-valued) data, matriz factorization
provides a powerful tool for one to describe data in terms of a linear combination of factors
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or atoms. In this setting, we have a data matrix X € R¥" and we seek a factorization

of X into the product WH for W € R¥™E and H € RF¥*", Including two classical matrix
factorization algorithms of Principal Component Analysis (PCA) Wold et al. (1987) and
Nonnegative Matrix Factorization (NMF) Lee and Seung (1999), this problem has gone by
many names over the decades, each with different constraints: dictionary learning, factor
analysis, topic modeling, component analysis. It has applications in text analysis, image
reconstruction, medical imaging, bioinformatics, and many other scientific fields more gen-
erally Sitek et al. (2002); Berry and Browne (2005); Berry et al. (2007); Chen et al. (2011);
Taslaman and Nilsson (2012); Boutchko et al. (2015); Ren et al. (2018).

A tensor is a multi-way array that e sample size o
is a natural generalization of a matrix %ﬂﬂ[ [ ~ III X2 %é
(which is itself a 2-mode tensor) and is = U _
suitable for representing multi-modal data. sample size = eo - rank
As matrix factorization is for unimodal 0&% sample size
data, tensor factorization (TF) provides a < 5 5 %—é
powerful and versatile tool that can ex- 3 - ’ h
tract useful latent information out of multi- &

sample size — oo rank

modal data tensors. As a result, tensor
factorization methods have witnessed in- Figure 1: Illustration of online MF (top) and online
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ern data science One of the standard sequentially and past data are not stored. One seeks n
. . . loading matrices that give approximate decomposition
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of all past data.

DECOMP/PARAFAC (CP) decomposition

Tucker (1966); Harshman et al. (1970); Carroll and Chang (1970). In this setting, given a
n-mode data tensor X, one seeks n loading matrices U® .., U™ each with R columns,
such that X is approximated by the sum of the outer products of the respective columns of
U;’s. In other words, regarding the n-mode tensor X as the joint probability distribution of n
random variables, the CP-decomposition approximates such a joint distribution as the sum
of R product distributions, where the columns of the loading matrices give one-dimensional
marginal distributions used to form the product distributions. A particular instance of CP-
decomposition is when the data tensor and all of its loading matrices are required to have
nonnegative entries. As pointed out in the seminal work of Lee and Seung Lee and Se-
ung (1999) (in the matrix case), imposing a nonnegativity constraint in the decomposition
problem helps one to learn interpretable features from multi-modal data.

Besides being multi-modal, another unavoidable characteristic of modern data is its enor-
mous volume and the rate at which new data are generated. Online learning algorithms
permit incremental processing that overcomes the sample complexity bottleneck inherent
to batch processing, which is especially important when storing the entire data set is cum-
bersome. Not only do online algorithms address capacity and accessibility, but they also
have the ability to learn qualitatively different information than offline algorithms for data
that admit such a “sequential" structure (see e.g. Lyu et al. (2020a)). In the literature,
many “online" variants of more classical “offline" algorithms have been extensively studied
— NMF Mairal et al. (2010); Guan et al. (2012); Lyu et al. (2020b), TF Zhou et al. (2016);
Huang et al. (2015); Zhou et al. (2018); Du et al. (2018); Smith et al. (2018), and dictionary
learning Rambhatla et al. (2019); Arora et al. (2015, 2014); Koppel et al. (2017). Online
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Tensor Factorization (OTF) algorithms with suitable constraints (e.g., nonnegativity) can
serve as valuable tools that can extract interpretable features from multi-modal data.

1.1 Contribution

In this work, we develop a novel algorithm and theory for the problem of online CP-
dictionary learning, where the goal is to progressively learn a dictionary of rank-1 tensors
(CP-dictionary) from a stream of tensor data. Namely, given n-mode nonnegative tensors
(X:)e>0, we seek to find an adaptively changing sequence of nonnegative CP-dictionaries
such that the current CP-dictionary can approximate all tensor-valued signals in the past
as a suitable nonnegative linear combination of its CP-dictionary atoms (see Figure 1 in
Section 1). Our framework is flexible enough to handle general situations of an arbitrary
number of modes in the tensor data, arbitrary convex constraints in place of the nonnega-
tivity constraint, and a sparse representation of the data using the learned rank-1 tensors.
In particular, our problem setting includes online nonnegative CP-decomposition.

Furthermore, we rigorously establish that under mild conditions, our online algorithm
produces a sequence of loading matrices that converge almost surely to the set of stationary
points of the objective function. In particular, our convergence results hold not only when
the sequence of input tensors (X;);>o are independent and identically distributed (i.i.d.),
but also when they form a Markov chain or functions of some underlying Markov chain.
Such a theoretical convergence guarantee for online NTF algorithms has not been available
even under the i.i.d. assumption on the data sequences. The relaxation to the Markovian
setting is particularly useful in practice since often the signals have to be sampled from
some complicated or unknown distribution, and obtaining even approximately independent
samples is difficult. In this case, the Markov Chain Monte Carlo (MCMC) approach pro-
vides a powerful sampling technique (e.g., sampling from the posterior in Bayesian methods
Van Ravenzwaaij et al. (2018) or from the Gibbs measure for Cellular Potts models Voss-
Bohme (2012), or motif sampling from sparse graphs Lyu et al. (2019)), where consecutive
signals can be highly correlated.

1.2 Approach

Our algorithm combines the Stochastic Majorization-Minimization (SMM) framework Mairal
(2013b), which has been used for online NMF algorithms Mairal et al. (2010); Guan et al.
(2012); Zhao et al. (2017); Lyu et al. (2020b), and a recent work on block coordinate de-
scent with diminishing radius (BCD-DR) Lyu (2020). In SMM, one iteratively minimizes
a recursively defined surrogate loss function ft that majorizes the empirical loss function
ft- A premise of SMM is that ft is convex so that it is easy to minimize, which is the
case for online matrix factorization problems in the aforementioned references. However, in
the setting of factorizing n-mode tensors, ft is only convex in each of the n loading matri-
ces and nonconvex jointly in all loading matrices. Our main algorithm (Algorithm 1) only
approximately minimizes ft by a single round of cyclic block coordinate descent (BCD) in
the n loading matrices. This additional layer of relaxation causes a number of technical
difficulties in convergence analysis. One of our crucial innovations to handle them is to use
a search radius restriction during this process Lyu (2020), which is reminiscent of restricting
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step sizes in stochastic gradient descent algorithms and is in some sense ‘dual’ to proximal
modifications of BCD Grippo and Sciandrone (2000); Xu and Yin (2013).

Our convergence analysis on dependent data sequences uses the technique of “condition-
ing on a distant past", which leverages the fact that while the one-step conditional distri-
bution of a Markov chain may be a constant distance away from the stationary distribution
7, the N-step conditional distribution is exponentially close to 7w in N. This technique has
been developed in Lyu et al. (2020b) recently to handle dependence in data streams for
online NMF algorithms.

1.3 Related work

We roughly divide the literature on TF into two classes depending on structured or unstruc-
tured TF problems. The structured TF problem concerns recovering exact loading matrices
of a tensor, where a structured tensor decomposition with loading matrices satisfying some
incoherence or sparsity conditions is assumed. A number of works address this problem in
the offline setting Tang and Shah (2015); Anandkumar et al. (2015); Sharan and Valiant
(2017); Sun et al. (2017); Barak et al. (2015); Ma et al. (2016); Schramm and Steurer (2017).
Recently, Rambhatla et al. (2020) addresses an online structured TF problem by reducing
it to an online MF problem using sparsity constraints on all but one loading matrices.

On the other hand, in the unstructured TF problem, one does not make any modeling
assumption on the tensor subject to a decomposition so there are no true factors to be discov-
ered. Instead, given an arbitrary tensor, one tries to find a set of factors (matrices or tensors)
that gives the best fit of a chosen tensor decomposition model. In this case, convergence to
a globally optimal solution cannot be expected, and global convergence to stationary points
of the objective function is desired. For offline problems, global convergence to stationary
points of the block coordinate descent method is known to hold under some regularity as-
sumptions on the objective function Grippo and Sciandrone (2000); Grippof and Sciandrone
(1999); Bertsekas (1999). The recent works Zhou et al. (2016); Huang et al. (2015); Zhou
et al. (2018); Du et al. (2018); Smith et al. (2018) on online TF focus on computational
considerations and do not provide a convergence guarantee. For online NMF, almost sure
convergence to stationary points of a stochastic majorization-minimization (SMM) algorithm
under i.i.d. data assumption is well-known Mairal et al. (2010), which has been recently
extended to the Markovian case in Lyu et al. (2020b). Similar global convergence for online
TF is not known even under the i.i.d. assumption. The main difficulty of extending a sim-
ilar approach to online TF is that the recursively constructed surrogate loss functions are
nonconvex and cannot be jointly minimized in all n loading matrices when n > 2.

There are several recent works improving standard CP-decomposition algorithms such
as the alternating least squares (ALS) (see, e.g., Kolda and Bader (2009)). Battaglino
et al. (2018) proposes a randomized ALS algorithm, that subsamples rows from each factor
matrix update, which is an overdetermined least squares problem. A similar technique of row
subsampling was used in the context of high-dimensional online matrix factorization Mensch
et al. (2017). Ma et al. (2018) proposed a randomized algorithm for online CP-decomposition
but no theoretical analysis was provided. Also, CP-decomposition with structured factor
matrices has been investigated in Goulart et al. (2015). On the other hand, Vannieuwenhoven
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et al. (2015) considers a more efficient version of gradient descent type algorithms for CP-
decomposition.

In the context of dictionary learning, there is an interesting body of work considering
tensor-dictionary learning based on the Tucker-decomposition Shakeri et al. (2016); Ghas-
semi et al. (2017); Shakeri et al. (2018); Ghassemi et al. (2019); Shakeri et al. (2019). When
learning a reconstructive tensor dictionary for tensor-valued data, one can impose additional
structural assumptions on the tensor dictionary in order to better exploit the tensor struc-
ture of the data and to gain reduced computational complexity. While in this work we
consider the CP-decomposition model for the tensor-dictionary (also in an online setting),
the aforementioned works consider the Tucker-decomposition instead and obtain various
results on sample complexity, identifiability of a Tucker dictionary, and local convergence.

While our approach largely belongs to the SMM framework, there are related works
using stochastic gradient descent (SGD). In Zhao et al. (2017), an online NMF algorithm
based on projected SGD with general divergence in place of the squared #s-loss is proposed,
and convergence to stationary points to the expected loss function for i.i.d. data samples is
shown. In Sun et al. (2018), a similar convergence result for stochastic gradient descent al-
gorithms for unconstrained nonconvex optimization problems with Markovian data samples
is shown. While none of these results can be directly applied to our setting of online NTF
for Markovian data, it may be possible to develop an SGD based approach for our setting,
and it will be interesting to compare the performance of the algorithms based on SMM and

SGD.

1.4 Organization

In Section 2 we first give a background discussion on NTF and CP-decomposition and then
state the main optimization problem we address in this paper (see (13)). In Section 3, we
provide the main algorithm (Algorithm 1) and give an overview of the main idea. Section 4
states the main convergence result in this paper, Theorem 1, together with a discussion on
necessary assumptions and key lemmas used for the proof. In Section 5 we give the proof of
the main result, Theorem 1. In Section 6, we compare the performance of our main algorithm
on the offline nonnegative CP-decomposition problem against other baseline algorithms —
Alternating Least Squares and Multiplicative Update. We then illustrate our approach
on a diverse set of applications in Section 7; these applications are chosen to showcase the
advantage of being able to flexibly reshape multi-modal tensor data and learn CP-dictionary
atoms for any desired group of modes jointly.

In Appendix A, we provide some additional background on Markov chains and Markov
chain Monter Carlo sampling. Appendix B contains some auxiliary lemmas. In Appendix
C, we provide a memory-efficient implementation (Algorithm 2) of Algorithm 1 that uses
bounded memory regardless of the length of the data stream.

1.5 Notation

For each integer k > 1, denote [k] = {1,2,...,k}. Fix integers n, I1,...,I, > 1. An n-mode
tensor X of shape It x---x I, isamap (i1, ...,i,) — X(i1,...,4,) € R from the multi-index
set [I1] X --- x [[,] into the real line R. We identify 2-mode tensors with matrices and 1-
mode tensors with vectors, respectively. We do not distinguish between vectors and columns
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of matrices. For two real matrices A and B, we denote their Frobenius inner product as
(A, B) := tr(BT A) whenever the sizes match. If we have N n-mode tensors Xy, ..., Xy of
the same shape I; X - -+ x I,, we identify the tuple [Xy,...,Xy] as the (n + 1)-mode tensor
X of shape I x --- x I, x N, whose the i slice along the (n + 1)** mode equals X;. For
given n-mode tensors A and B, denote by A ® B and A ®j, B their Hadamard (pointwise)
product and Katri-Rao product, respectively. When B is a matrix, for each 1 < j < n, we
also denote their mode-j product by A x; B. (See Kolda and Bader (2009) for an excellent
survey of tensor algorithms, albeit with notation that differs from our own).

2. Background and problem formulation

2.1 CP-dictionary learning and nonnegative tensor factorization

Assume that we are given N observed vector-valued signals x1,...,xn5 € R%o Fix an integer
R > 1 and consider the following approximate factorization problem (see (2) for a precise
statement)

[ml,...,xN]%[ul,...,uR] X9 H <~ X~UH, (1)
where x5 denotes the mode-2 product, X = [x1,...,zN] € R?E]N, U=luy,...,ug| € ]R%BR,

and H € R};gN . The right hand side (1) is the well-known nonnegative matriz factoriza-
tion (NMF) problem, where the use of nonnegativity constraint is crucial in obtaining a
“parts-based" representation of the input signals Lee and Seung (1999). Such an approxi-
mate factorization learns R dictionary atoms uq,...,ug that together can approximate each
observed signal x; by using the nonnegative linear coefficients in the 4 column of H. The
factors U and H in (1) above are called the dictionary and code of the data matrix X,

respectively. They can be learned by solving the following optimization problem

argmin  (I|X — U'H'|3 + A H'|l1) | (2)

dxXR RXN
U'eRLSE H'eRE;

where A > 0 is a regularization parameter that encourages a sparse representation of the
columns of X over the columns of U. Note that (2) is also known as a dictionary learning
problem Olshausen and Field (1997); Engan et al. (1999); Lewicki and Sejnowski (2000);
Elad and Aharon (2006); Lee et al. (2005), especially when R > d.

Next, suppose we have N observed n-mode tensor-valued signals X1,..., Xy € RQOX xn,
A direct tensor analogue of the NMF problem (1) would be the following: -

[Xlw"aXN]%[Dla"'vDR} Xn+1H <~ X%DXH+1H3 (3)

where X = [Xy,...,Xy] € ROF N D = [Dy,...,Dg] € RIS E and H € REXN.
As before, we call D and H above the dictionary and code of the data tensor X, respectively.
Note that this problem is equivalent to (1) since

1X = D xpi1 H|F = [MAT(X) — MAT(D) x2 H||%, (4)

where MAT(-) is the matricization operator that vectorizes (using lexicographic ordering
of entries) each slice with respect to the last mode. For instance, MAT([Xy,...,Xxy]) is a
(Iy ---I,,) x N matrix whose i*" column is the vectorization of X;.
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Now, consider imposing an additional structural constraint on the dictionary atoms
Di,...,Dy in (3). Specifically, suppose we want each D; to be the sum of R rank 1 tensors.
Equivalently, we assume that there exist loading matrices [UM, ... UM] € RI;OXR X oo X

RI > such that

[D17""DR] = Dut(U(l)”U(n)) (5)
= |@UPE1, QUP(2), ..., QUWER)| e R IE ()
k=1 k=1 el

where U®)(:, j) denotes the i column of the I;, x R matrix U*) and ® denotes the outer
product. Note that we are also defining the operator Out(-) here, which will be used through-
out this paper. In this case, the tensor factorization problem in (3) becomes (a more precise
statement is given in (13))

[X1,...,.Xy] ~0ut(UW, ... . UM™) %, H. (7)

When N =1 and XA = 0, then H € Rgél, so by absorbing the it" entry of H into the D,
we see that the above problem (7) reduces to

R n
X~y oUW, UM) =" QUW(,0), (8)

1=1 k=1

which is the nonnegative CANDECOMP /PARAFAC (CP) decomposition problem Tucker
(1966); Harshman et al. (1970); Carroll and Chang (1970). On the other hand, if n = 1
so that X; are vector-valued signals, then (7) reduces to the classical dictionary learning
problem (2). For these reasons, we refer to (7) as the CP-dictionary learning (CPDL) prob-
lem. We call the (n + 1)-mode tensor Out(U™M), ..., UM) = [Dy,...,Dg] in RU1x->xInxR)
a CP-dictionary and the matrix H € RIESN the code of the dataset X = [Xy,...,Xn],
respectively. Here we call the rank-1 tensors D; the atoms of the CP-dictionary.

2.2 Online CP-dictionary learning

Next, we consider an online version of the CPDL problem we considered in (7). Given a
continuously arriving sequence of data tensors (X;);>0, can we find an adaptively changing
sequence of CP-dictionaries such that the current CP-dictionary can approximate all tensor-
valued signals in the past as a suitable nonnegative linear combination of its CP-dictionary
atoms (see Figure 1 in Section 1)? This online problem can be explicitly formulated as
an empirical loss minimization framework, and we will also state an equivalent stochastic
program (under some modeling assumption) that we rigorously address.

Fix constraint sets for code and loading matrices ceode ¢ RExb gnd c(@ C RIxR,
i = 1,...,n, respectively (generalizing the nonnegativity constraints in Subsection 2.1).
Write Cdict .= ¢(1) x ... x €("). For each X € RL;>Inxb p.— [yM) .  Uh)]c RhXA x
s x RIVE D ¢ REXb define

U(X, D, H) := || X — 0ut(D) xnr1 H|F + | H]|1, 9)
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UX,D) = Helgcfode (X,D,H), (10)
where A > 0 is a regularization parameter. Fix a sequence of non-increasing weights (w;)¢>0
in (0,1]. Here X denotes a minibatch of b tensors in R/1*"*In 5o minimizing £(X, D) with
respect to D amounts to fitting the CP-dictionary D to the minibatch of b tensors in X.

The online CP-dictionary learning (online CPDL) problem is the following empirical loss
minimization problem:

Upon arrival of X;: Dy € argmin (f¢(D) := (1 — wy) fr—1(D) + wy £(X;, D)), (11)
'Decdict

where f; is the empirical loss function recursively defined by the weighted average in (11)
with fo = 0. One can solve the recursion in (11) and obtain the more explicit formula for
the empirical loss:

t

t
fiD) =) X, D)wp,  whi=wy [ (10— w)). (12)

k=1 i=k+1

The weight w; in (11) controls how much we want our new loading matrices in Dy to
deviate from minimizing the previous empirical loss f;_1 to adapting to the newly observed
tensor data X;. In one extreme case of w; = 1, Dy is a minimizer of the time-t loss ¢(X%, -)
and ignores the past fi_1. If wy = a € (0, 1) then the history is forgotten exponentially fast,
that is, f;(-) = S4_, a(1—a)"* £(Xs, ). On the other hand, the ‘balanced weight’ w; = 1/t
makes the empirical loss to be the arithmetic mean: fi(-) = %Zizl 0(Xs, ), which is the
choice made for the online NMF problem in Mairal et al. (2010). Therefore, one can choose
the sequence of weights (w;);>1 in Algorithm 1 in a desired way to control the sensitivity of
the algorithm to the newly observed data. That is, make the weights decay fast for learning
average features and decay slow (or keep it constant) for learning trending features. We
mention that our theoretical convergence analysis covers only the former case.

We note that the online CPDL problem (11) involves solving a constrained optimization
problem for each ¢, which is practically infeasible. Hence we may compute a sub-optimal
sequence (Dy)¢>o of tuples of loading matrices (see Algorithm 1) and assess its asymptotic
fitness to the original problem (11). We seek to perform some rigorous theoretical analysis
at the expense of some suitable but non-restrictive assumption on the data sequence X; as
well as the weight sequence (w;);>1. A standard modeling assumption in the literature is to
assume the data sequence X; are independent and identically distributed (i.i.d.) according
to some distribution 7 Mairal et al. (2010); Mairal (2013b); Mensch et al. (2017); Zhao
et al. (2017). We consider a more relaxed setting where X; is given as a function of some
underlying Markov chain (see (Al)) and 7 is the stationary distribution of (X}):>1 viewed
as a stochastic process. Under this assumption, consider the following stochastic program

arg min (f(D) =Exox [E(X,D)]), (13)
DeCdict
where the random tensor X is sampled from the distribution 7, and we call the function
f defined in (13) the expected loss function. The connection between the online (11) and
the stochastic (13) formulation of the CPDL problem is that, if the parameter space C4 is
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compact and the weights w; satisfy some condition, then supp |f:(D) — f(D)| — 0 almost
surely as ¢ — oco. (see Lemma 19 in Appendix B). Hence, under this setting, we seek to
find a sequence (D;)¢>1 that converges to a solution to (13). In other words, fitness to the
single expected loss function f is enough to deduce the asymptotic fitness to all empirical
loss functions f;.

Once we find an optimal CP-dictionary D* = Out(U(l), ce U(”)) for (13), then we can
obtain an optimal code matrix H = H(X) € RF*? for each realization of the random tensor
X by solving the convex problem in (10). Demanding optimality of the CP-dictionary D*
and leaving the code matrix H = H (X)) adjustable in this way is a more flexible framework
for CP-decomposition of a random (as well as online) tensor than seeking a pair of jointly
optimal CP-dictionary D* and code matrix H*, especially when the variation of the random
tensor is large. However, if we have a single deterministic tensor X to be factorized, then
these two formulations are equivalent since minp 3 ¢(X, D, H) = minp ming (X, D, H).

3. The Online CP-Dictionary Learning algorithm

In this section, we state our main algorithm (Algorithm 1). For simplicity, we first give a
preliminary version for the case of n = 2 modes, minibatch size b = 1, with nonnegativity
) )

constraints. Suppose we have learned n = 2 loading matrices Dy 1 := [Ut(il, Ut(zl] from
the sequence X7,...,X;_1 of data tensors, X; € RI1*2X1 Then we compute the updated

loading matrices Dy = [U, t(l)’ U t(Q)] by

H,; — argminl(X;, Dy—1, H)

Rx1
HeRES

fi(D) <« (1 —wy) fi—1(D) + wil(Xy, D, Hy)

Ut(l) — arg min ft(U, Ut(f)l) (14)
verLy ", |U-U) |lp <,
U(2) — ar . ~ (1)
t g min ft(Ut ,U),
I; xR

2
\ UGRZO s HUfUt(f)lanclwt

where A > 0 is an absolute constant and (w¢)¢>; is a non-increasing sequence of weights
in (0,1]. The recursively defined function f; : D = [UM, ..., UM™] s [0,00) is called the
surrogate loss function, which is quadratic in each factor U® but is not jointly convex.
Namely, when the new tensor data A} arrives, one computes the code H; € ]Ri“gl for X;
with respect to the previous loading matrices in D;_1, updates the surrogate loss function
ft, and then sequentially minimizes it to find updated loading matrices within diminishing
search radius cwy.

Note that the surrogate loss function ft in (16) is defined by the same recursion that
defines the empirical loss function in (11). However, notice that the loss term £(X;, D) in the
definition of the empirical loss function f; in (13) involves optimizing over the code matrices
H in (10), which should be done for every X5, 1 < s < ¢, in order to evaluate f;. On the
contrary, in the definition of the surrogate loss function ft in (16), this term is replaced with
the sub-optimal loss ¢(X}, D, Hy), which is sub-optimal since H; was found by decomposing
X; using the previous CP-dictionary Out(D;—1). From this, it is clear that fi > £, for all
t > 0. In other words, ft is a majorizing surrogate of f;.
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Now we state our algorithm in the general mode case in Algorithm 1.

Algorithm 1 Online CP-Dictionary Learning (online CPDL)

1: Input: (&;)1<;< (minibatches of data tensors in RI1*-xInxby, [Uo(l),...,Uén)] €
RIXE ... RIW*E (initial loading matrices); ¢ > 0 (search radius constant);

2. Constraints: () C RI*E 1 <4 < p, ceode C REXD (e.g., nonnegativity constraints)

3: Parameters: R € N (# of dictionary atoms); A > 0 (¢;-regularization parameter);
(we)e>1 (weights in (0, 1]);

:  Initialize surrogate loss fo = 0;

5 Fort=1,...,T do:

6: Coding: Compute the optimal code matrix

H; < argmin  ((AX, Ut(i)l, cee Ut(f)l, H); (using Algorithm 4) (15)
HeccodegRRXb

7 Update surrogate loss function:

AUV, UMY — (1 —w) f— 1 (UD, ., UMY +w (X, UD, ..., U™ H,) (16)

8: Update loading matrices by restricted cyclic block coordinate descent:
9: Fori=1,...,n do:
10:

Ct(i) — {U ecl

U — Ut@lﬂF < c’wt} ; (> Restrict the search radius by c'wy)  (17)

Ut(i) + argmin f, <Ut(1), R Ut(ifl), U, Ut(il), ce Ut(f)l) ; (18)
(%)
vUec, (> Update the it™ loading matriz)
11: End for
12:  End for

13: Return: [Uj(}), ceey U;n)] eCM x ... xch;

Algorithm 1 combines two key elements: stochastic majorization-minimization (SMM)
Mairal (2013b) and block coordinate descent with diminishing radius (BCD-DR) Lyu (2020).
SMM amounts to iterating the following steps: sampling new data points, constructing
a strongly convex surrogate loss, and then minimizing the surrogate loss to update the
current estimate. This framework has been successfully applied to online matrix factorization
problems Mairal et al. (2010); Mensch et al. (2017). However, the biggest bottleneck in using
a similar approach in the tensor case is that the surrogate loss function ft in (16) is only
block multi-convex, meaning that it is convex in each block of coordinates but nonconvex
jointly. Hence we cannot find an exact minimizer for ft to update all n loading matrices at
the same time.

In order to circumvent this issue, one could try to perform a few rounds of block coor-
dinate descent (BCD) on the surrogate loss function ft, which can be easily done since ft is
convex in each loading matrix. However, this results in sub-optimal loading matrices in each

10
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iteration, causing a number of difficulties in convergence analysis. Moreover, global conver-
gence of BCD to stationary points is not guaranteed in general even for the deterministic
tensor CP-decomposition problems without constraints Kolda and Bader (2009), and such
a guarantee is known only with some additional regularity conditions Grippof and Scian-
drone (1999); Grippo and Sciandrone (2000); Bertsekas (1999). There are other popular
strategies of using proximal Grippo and Sciandrone (2000) or prox-linear Xu and Yin (2013)
modifications of BCD to improve convergence properties. While these methods only ensure
square-summability > 72 [ Dy — Di—1]|% < oo of changes (see, e.g., (Xu and Yin, 2013, Lem
2.2)), we find it crucial for our stochastic analysis that we are able to control the individual
changes | Dy — D;—_1]|r of the loading matrices in each iteration. This motivates to use BCD
with diminishing radius in Lyu (2020). More discussions on technical points in convergence
analysis are given in Subsection 4.2.

The coding step in (15) is a convex problem and can be easily solved by a number of
known algorithms (e.g., LARS Efron et al. (2004), LASSO Tibshirani (1996), and feature-
sign search Lee et al. (2007)). As we have noted before, the surrogate loss function ft in
(16) is quadratic in each block coordinate, so each of the subproblems in the factor matrix
update step in (18) is a constrained quadratic problem and can be solved by projected
gradient descent (see Mairal et al. (2010); Lyu et al. (2020b)).

Notice that implementing Algorithm 1 may seem to require unbounded memory as one
needs to store all past data AX7,..., X to compute the surrogate loss function ft in (16).
However, it turns out that there are certain bounded-sized statistics that aggregates the past
information that are sufficient to parameterize ft and also to update the loading matrices.
This bounded memory implementation of Algorithm 1 is given in Algorithm 2, and a detailed
discussion on the memory efficiency is relegated to Appendix C.

4. Convergence results

In this section, we state our main convergence result of Algorithm 1. Note that all results
that we state here also apply to Algorithm 2, which is a bounded-memory implementation
of Algorithm 1.

4.1 Statement of main results

We first layout all technical assumptions required for our convergence results to hold.

(A1) The observed minibatch of data tensors Xy = Xy, ..., Xyp| are given by Xy = ¢(Yy),
where Yy is an irreducible and aperiodic Markov chain defined on a finite state space Q0 and
@ Q = RI<xInxb s g bounded function. Denote the transition matriz and the unique
stationary distribution of Y by P and 7, respectively.

(A2) For each 1 < i < n, the it loading matriz is constrained to a compact and convex
subset CW C REXE that contains at least two points. Furthermore, the code matrices Hy
belong to a compact and convex subset C°d° C REX,

(A3) The sequence of non-increasing weights wy € (0,1] in Algorithm 1 Y 12, wy = o0,
and Y 2y w?\/t < oo. Furthermore, w;rll — wt_l < 1 for all sufficiently large t.

11
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(A4) The expected loss function f defined in (13) is continuously differentiable and has
Lipschitz gradient.

It is standard to assume that the sequence of signals is drawn from a data distribution
of compact support in an independent fashion Mairal et al. (2010); Mairal (2013a), which
enables the processing of large data by using i.i.d. subsampling of minibatches. However,
when the signals have to be sampled from some complicated or unknown distribution, ob-
taining even approximately independent samples is difficult. In this case, Markov Chain
Monte Carlo (MCMC) provides a powerful sampling technique (e.g., sampling from the pos-
terior in Bayesian methods Van Ravenzwaaij et al. (2018) or from the Gibbs measure for
Cellular Potts models Voss-Bohme (2012), or motif sampling from sparse graphs Lyu et al.
(2019)), where consecutive signals could be highly correlated. (See Appendix A for more
background on Markov chains and MCMC.)

An important notion in MCMC sampling is “exponential mixing” of the Markov chain!.
For a simplified discussion, suppose in (Al) that our data tensors X; themselves form a
Markov chain with unique stationary distribution 7. Under the assumption of finite state
space, irreducibility, and aperiodicity in (A1), the Markov chain &} “mixes” to the stationary
distribution 7 at an exponential rate. Namely, for any € > 0, one can find a constant
7 =1(¢) = O(loge™!), called the “mixing time” of &}, such that the conditional distribution
of Xyr given A; is within total variation distance € from 7 regardless of the distribution of
X; (see (87) for the definition of total variation distance). This mixing property of Markov
chains is crucial both for practical applications of MCMC sampling as well as our theoretical
analysis. For instance, a common practice of using MCMC sampling to obtain approximate
i.i.d. samples is to first obtaining a long Markov chain trajectory (X;);>1 and then thinning
it to the subsequence (X )r>1 (Brooks et al., 2011, Sec. 1.11). Due to the choice of mixing
time 7, this forms an e-approximate i.i.d. samples from 7.

However, thinning a Markov chain trajectory does not necessarily produce truly indepen-
dent samples, so classical stochastic analysis that relies crucially on independence between
data samples is not directly applicable. For instance, if A} is a reversible Markov chain then
the correlation within the subsequence is nonzero and at least of order ¢ (see Appendix A.2
for the definition of reversibility and detailed discussion). In order to obtain truly inde-
pendent samples, one may independently re-initialize a Markov chain trajectory, run it for
T iterations, and keep the last samples in each run (e.g., see the discussion in Sun et al.
(2018)). However, in both approaches, only one out of 7 Markov chain samples are used
for optimization, which could be extremely wasteful if the Markov chain converges to the
stationary distribution slowly so that the implied constant in 7(¢) = O(loge™!) is huge.

Instead, our assumption on input signals in (Al) allows us to use every single sample
in the same MCMC trajectory without having to "burn" lots of samples. Such Markovian
extension of the classical OMF algorithm in Mairal et al. (2010) has recently been achieved
in Lyu et al. (2020b), which has applications in dictionary learning, denoising, and edge
inference problems for network data Lyu et al. (2021).

Assumption (A2) is also standard in the literature of dictionary learning (see Mairal et al.
(2010); Mairal (2013b)). A particular instance of interest is when they are confined to having

1. For our analysis, it is in fact sufficient to have a sufficiently fast polynomial mixing of the Markov chain.
See (A1)’ in Appendix A for a relaxed assumption using countable state-space.

12



ONLINE NONNEGATIVE CP-DICTIONARY LEARNING FOR MARKOVIAN DATA

nonnegative entries, in which case the learned dictionary components give a “parts-based”
representation of the input signals Lee and Seung (1999).

Assumption (A3) states that the sequence of weights w; € (0, 1] we use to recursively
define the empirical loss (11) and surrogate loss (16) does not decay too fast so that
Yo, wy = oo but decay fast enough so that > 72, w?v/t < oo. This is analogous to re-
quirements for stepsizes in stochastic gradient descent algorithms, where the stepsizes are
usually required to be non-summable but square-summable (see, e.g., Sun et al. (2018)).
The additioan] factor v/t is used in our analysis to deduce the uniform convergence of the
empirical loss f; to the expected loss f (see Lemma 19 in Appendix B), which was also the
case in the literature Mairal et al. (2010); Mairal (2013b); Mensch et al. (2017); Lyu et al.
(2020b). Also, the condition w; - wt__l1 < 1 for all suficiently large ¢ is equivalent to saying
the recursively defined weights wz in (12) are non-decreasing in k for all sufficiently large k,
which is required to use Lemma 19 in Appendix B. We also remark that (A3) is implied by
the following simpler condition:

(A3’) The sequence of non-increasing weights wy € (0,1] in Algorithm 1 satisfy either
wy =t fort > 1 or wy = O(t B (logt) %) for some § > 1 and f € [3/4,1).

For Assumption (A4), we remark that it follows from the uniqueness of the solution of
(15) (see (Mairal et al., 2010, Prop. 1)). This can be enforced for example by the elastic net
penalization Zou and Hastie (2005). Namely, we may add a quadratic regularizer \'||H ||%
to the loss function £ in (9) for some A’ > 0. Then the resulting quadratic function is strictly
convex and hence it has a unique minimizer in the convex constraint set C°°%. (See (Mairal
et al., 2010, Sec. 4.1) and (Lyu et al., 2020b, Sec. 4.1) for more detailed discussion on this
assumption).

The main result in this paper, which is stated below in Theorem 1, states that the
sequence D; of CP-dictionaries produced by Algorithm 1 converges to the set of stationary
points of the expected loss function f defined in (13). To the best of our knowledge, Theorem
1 is the first convergence guarantee for any online constrained dictionary learning algorithm
for tensor-valued signals or as an online unconstrained CP-factorization algorithm, which
have not been available even under the classical i.i.d. assumption on input signals. Recall
that f; and f; denote the empirical and surrogate loss function defined in (11) and (16),
respectively.

Theorem 1 Suppose (A1)-(A3) hold. Let (Dy)i>1 be an output of Algorithm 1. Then the
following hold.

(i) lim¢oo B[f¢(D1)] = limy—so0 E[f¢(Dy)] < oo
(ii) fi(D:) — fi(Dy) = 0 and f(Dy) — fi(D;) = 0 as t — oo almost surely.

(iii) Further assume (A4). Then the distance (measured by block-wise Frobenius distance)
between D; and the set of all stationary points of f in CH converges to zero almost
surely.

We acknowledge that a similar asymptotic convergence result under Markovian depen-
dency in data samples has been recently obtained in (Sun et al., 2018, Thm. 2) in the
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context of stochastic gradient descent for nonconvex optimization problems. The results
are not directly comparable since (Sun et al., 2018, Thm. 2) only handles unconstrained
problems.

4.2 Key lemmas and overview of the proof of Theorem 1.

In this subsection, we state the key lemmas we use to prove Theorem 1 and illustrate our
contribution to techniques for convergence analysis.

As we mentioned in Section 3, there is a major difficulty in convergence analysis in the
multi-modal case n > 2 as the surrogate loss function f; (see (16)) to be minimized for
updating the loading matrices is only multi-convex in n blocks. Note that we can view our
algorithm (Algorithm 1) as a multi-modal extension of stochastic majorization-minimization
(SMM) in the sense that it reduces to standard SMM in the case of vector-valued signals
(n =1). We first list the properties of SMM that have been critically used in convergence
analysis in related works Mairal et al. (2010); Mairal (2013b); Mensch et al. (2017); Lyu
et al. (2020Db):

1 Cdict.

(Surrogate Optimality) Dy is a minimizer of f; over
2 (Forward Monotonicity)  fy(Di—1) > fi(Dy).

3 (Backward Monotonicity) ft,l(Dt,l) < ft,l(Dt).
4 (Second-Order Growth Property)  f;(Di_1)— fi(D:) > ¢||Dy—D;_1||% for some constant
c>0.

5 (Stability of Estimates) ||D; — Di—1]|lr = O(wy).
6 (Stability of Errors)  For hy := f; — fi > 0, |he(Ds) — hi—1(Ds_1)| = O(wy).

For n = 1, it is crucial that ft is convex so that D; is a minimizer of ft in the convex
constraint set C4°, as stated in 1. From this the monotonicity properties 2 and 3 follow
immediately. The second-order growth property 4 requires additional assumption that the
surrogates ft are strongly convex uniformly in ¢. Then 3 and 4 imply 5, which then implies
6. Lastly, 1 is also crucially used to conclude that every limit point of (D;)¢>1 is a stationary
point of f over C4°. Now in the multi-modal case n > 2, we do not have 1 so all of the
implications mentioned above are not guaranteed. Hence the analysis in the multi-modal
case requires a significant amount of technical innovation.

Now we state our key lemma that handles the nonconvexity of the surrogate loss ft in
the general multi-modal case n > 1.

Lemma 2 (Key Lemma) Assume (A1)-(A3). Let (Di)i>1 be an output of Algorithm 1.
For all t > 1, the following hold:

(i) (Forward Monotonicity) — fi(Di—1) > fi(Dy);
(ii) (Stability of Estimates) ||Dy — Di—1||r = O(wy);

(iii) (Stabzlzty Of ETT’OTS) |ht(Dt) — ht—l(Dt—1)| = O(wt), where ht = ft - ft-
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(iv) (zjlsymptotic Surrogate Stationarity) — Let (tx)g>1 be any sequence such that Dy, and
ft converges almost surA’ely. Then Dy := limy_yo0 Dy, is almost surely a stationary
point of feo = limy_so0 fr, over CHt.

We show Lemma 2 (i) using a monotonicity property of block coordinate descent. One of
our key observations is that we can directly ensure the stability properties 5 and 6 (Lemma
2 (ii) and (iii)) by using a search radius restriction (see (17) in Algorithm 1). In turn, we do
not need the properties 3 and 4. In particular, our analysis does not require strong convexity
of the surrogate loss ft in each loading matrices as opposed to the existing analysis (see, e.g.,
(Mairal et al., 2010, Assumption B) and (Mairal, 2013b, Def. 2.1)). Lastly, our analysis
requires that estimates D; are only asymptotically stationary to the limiting surrogate loss
function along convergent subsequences, as stated in Lemma 2 (iv). The proof of this
statement is nontrivial and requires a substantial work. On a high level, the argument
consists of demonstrating that the effect of search radius restriction by O(w;) vanishes in
the limit, and the negative gradient —V fOO(DOO) is in the normal cone of CU at D..

The second technical challenge is to handle dependence on input signals, as stated in
(A1). The theory of quasi-martingales Fisk (1965); Rao (1969) is a key ingredient in con-
vergence analysis under i.i.d input in Mairal et al. (2010); Mairal (2013b); Agarwal et al.
(2019). However, dependent signals do not induce quasi-martingale since conditional on the
information F; at time ¢, the following signal X1 could be heavily biased. We use the re-
cently developed technique in Lyu et al. (2020b) to overcome this issue of data dependence.
The essential fact is that for irreducible and aperiodic Markov chains on finite state space,
the N-step conditional distribution converges exponentially in N to the unique stationary
distribution regardless of the initial distribution (exponential mixing). The key insight in
Lyu et al. (2020b) was that in the analysis, one can condition on “distant past” F,_ Vi ot
on the present J;, in order to allow the underlying Markov chain to mix close enough to
the stationary distribution 7 for /¢ iterations. This is opposed to a common practice of
thinning Markov chain samples in order to reduce the dependence between sample points
we mentioned earlier in Subsection 4.1. We provide the estimate based on this technique in
Lemma 3.

For the statement of Lemma 3, recall that under (A1), the data tensor at time ¢ is given
by X = ¢(Y;), where Y} is an irreducible and aperiodic Markov chain on a finite state space
Q with transition matrix P. For y,y/ € Q and k € N, P*(y,y) equals the k-step transition
probability of Y; from y to 3/, and P¥(y,-) equals the distribution of Y} conditional on
Yy = y. We also use the notation a™ = max(0, a) for a € R.

Lemma 3 (Convergence of Positive Variation) Let (D;);>1 be an output of Algorithm
1. Suppose (A1)’, (A2), and (AS3) hold.

(1) Let (at)t>0 be a sequence of non-decreasing non-negative integers such that a; = o(t).
Then there exists absolute constants C, Ca, C3 > 0 such that for all sufficiently large

t>0,
+
E|E [thrl(g(XtJrlaDt) — fi(Dy)) ‘ftat] (19)
< Crwi_,, vVt + Cowiay + Cywy sup|| P (y, ) — 7|7y (20)
yeEQ
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(ii) i (E [ft+1(Dt+1) fi(Dr) D iwt—i-l (£(Xe41, Dr) — fo(De))]) " < 0.
=0

We give some remarks on the statement of Lemma 3. According to Proposition 5 in
Section 5, one of the main quantities we would like to bound is E[{(X;41,D;) — fi(D)]*
which is the expected positive variation of the one-step difference between the one-point error
0(X 41, Dy) of factorizing the new data Xy using the current dictionary D, and the empirical
error ft(Dt). According to the recursive update of the empirical and surrogate losses in (11)
and (16), we want the weighted sum of such expected positive variations in Lemma 3 (ii) is
finite. This follows from the bound in Lemma 3 (i), as long as Y52, wv/t < o0, a; = O(V/1),
and the Markov chain Y; modulating the data tensor &; mixes fast enough (see (Al)). Such
conditions are satisfied from the assumptions (A1) and (A3).

5. Proof of the main result

In this section, we prove our main convergence result, Theorem 1. Throughout this section,
we assume the code matrices H; and loading matrices Ut(z) belong to convex and compact
constraint sets H; € C%d C RE*P, Ut(l) e ) C RE*F a5 in (A2) and denote Cdict =
c) x ... xcm C RIOXR o ... RInXR,

5.1 Deterministic analysis

In this subsection, we provide some deterministic analysis of our online algorithm (Algorithm
1), which will be used in the forthcoming stochastic analysis.

First, we derive a parameterized form of Algorithm 1, where the surrogate loss function
ft is replaced with g;, which is a block-wise quadradtic function with recursively updating
parameters. This will be critical in our proof of Lemma 2 (iv) as well as deriving the
bounded-memory implementation of Algorithm 1 stated in Algorithm 2 in Appendix C.
Consider the following block optimization problem

Ht = arg minHeCcodegRRxb E(Xt, Dt—l; H)
At = (1 — wt)At—l + "lUthH?
Upon arrival of X;: B; = (1 — wi)Bi1 + wi(&X; Xpp1 H]) , (21)
D, = arg min 9(D)
D=[UD ... Um)]ecdict
||U(i)fUt(i)1HF§c’wt Vi
where for each D = [Uy,...,U,] € CY (here we use subscripts to denote modes for taking
their transpose) and §; in (21) is defined as
§(D) == tr(A, (UTU, & ... 0 ULTY)) — 2tr ( B"V(U, @ ... S Ul)T) : (22)

where B("H) € RIInxR denotes the mode-(n + 1) unfolding of By € RI1X*InxR and
A € RRXR and By € RIV<xInxE are tensors of all zero entries. The following proposition
shows that minimizing ft in (16) is equivalent to minimizing gy in (21). This shows that ft,
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which requires the storage of all past tensors X1, ..., A; for its definition, can in fact be pa-
rameterized by an aggregate matrix A; € RF*% and an aggregate tensor By € Rl xIn xR
whose dimensions are independent of ¢t. This implies that Algorithm 1 can be implemented
using a bounded memory, without needing to store a growing number of full-dimensional
data tensors A7, ..., X;. See Appendix C for more details.

Proposition 4 The following hold:

(i) Let f, be as in (16) and §; be in (22). Then

fe(D) = (D) + > tr (MAT(X,) MAT(X,)T) + A || Hyl1, (23)
s=1

s=1

(ii) Foreach1 <j<nandt>1,let Ay; € RE*E B, € RIXE be the output of Algorithm
3 with input Ay, By, Uy, ..., Uy, and j. Then can rewrite g1(D) = §;(Un,...,Uy,) in (22)
as

a0, ..., Uy) = tr (UA,UT) = 2tr (Ui§2j> . (24)

Proof Let MAT(X;) = [vec(Xs1), . . ., vec(Xyp)] € RUL-In)Xb denote the matrix whose
column is the vectorization vec(Xs,;) of the tensor X ; € RIV*In The first assertion
follows easily from observing that, for each [Uy,...,U,] € CHt and H € REX?,

HXS - Out(U17 sty UTL) X’Vl+1 HH%
= IMAT(X,) — (Up @pr - .. @ Un) H

=tr ((Un Ry - - - Qpr Ul)HHT(Un Ry« + - Qkpr Ul)T)
— 2tr (MAT(X)H" (U, @pr - .. ®pp Up)T) + tr (MAT(X,) MAT (X)),

and also note that

tr (Un ®@kr - - @k U1)HHT (U, @y - .. @k Ur)T)
= tI‘(HHT(Un Rk« + - Qper Ul)T(Un Ry - - - SQper Ul))
=tr(HHT (UI'U, ©...0 ULUY)).

Then the linearity of trace show

F(UL, .. Uy) = tr(A (UTU, © ... @ UTUY)) — 2tr (f&t(Un ke + - - Do Ul)T) (25)
t

t
+ ) tr (MAT(X) MAT(X)T) + A || Hally,
s=1 s=1

where A; is recursively defined in (21) and B, € RU1XxIn)xb ig defined recursively by

B, = (1 — w)Bs_1 +w; MAT(X,)H! .
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By a simple induction argument, one can show that Et equals the mode-(n + 1) unfolding

BE"H) of By defined recursively in (21), as desired.
For (ii), first note that

tr(A (ULU, ©...0 UL U))
=tr(AoU{U10... UL Ui 0 UL Ui @ ... 0 UL U,) Ul U;)
—tr(U; (Ao Ut o... .U U 1@UZHUH1@ QU U, U]
== tI‘(Uj Zt;j Uj )

Also, recall that Bgnﬂ) and Uy, ®py ... Qkr Ur are ([, I;) X R matrices. Let By(,r) €
RIvxIn denote the 7" mode-(n + 1) slice of B;. We note that

tr (B(nﬂ)(Un Qkr - - - Qkr UI)T)

—Ztr Bt Xl Ul( ) e X1 Ui_l(i,”f’) X Ui(i,’f‘> Xi4+1 Ui_;,_l(i,’f‘) Xit2 X Un(l,’l’))

R
=tr <Z [Bt( ) X1 Ul(:,r) X+ X1 Ui_l(Z,T‘) Xi+1 Ui+1(Z,T) Xi42 " Xp Un(tﬂ")] UZ‘(I,’I“)T>

r=

=t (UBL),

=T . . . .
where B,.; is as in the assertion. Then the assertion follows. |

Proof of Lemma 2 (i)-(iii). First, we show (i). Write D,y = [Uj,...,U,] and D; =

[U1,...,U]] (here we use subscripts to denote modes). Using Proposition 4 (i), we write
fi(Di1) = fu(Dy) (26)
= (U, Ua]) = fu[UF, ..., UL)) (27)
:Z (U, ... U U, Usr, .. Un)) = fo([UY, .. UL UL Ui, ., Un)). (28)

Recall that U] is a minimizer of the function U — (UL, ..., Ul_1,U,Ui1,...,U,]) (which
is convex by Proposition 4) over the convex set C; defined in Algorithm 1. Also, U/ belongs to
C;. Hence each summand in the last expression above is nonnegative. This shows ft(Dt,l) —
ft(Dt) > 0, as desired. Also note that (ii) is trivial by the search radius restriction in
Algorithm 1.

Lastly, we show (iii). Both ft and f; are uniformly bounded and Lipschitz by Lemma 16
in Appendix B. Hence h; = ft — f; is also Lipschitz with some constant C' > 0 independent
of t. Then by the recursive definitions of f; and f; (see (16) and (11)) and noting that
g(.)(‘t, Dt—l; Ht) = K(Xt, Dt—l), we have

|h(Dt) — hi—1(Di-1)| (29)
< [he(Dr) — hi(Di—1)| + |he(De—1) — hi—1(De—1)| (30)
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< C| Dy = Di-1llr + ‘(ft(thl) - ftfl(Dt71)> — ([t(Di-1) — fi-1(Di-1)) (31)
= C||Ds = De-rllr + wil fi1(Di1) = fr1 (D). (32)
Hence this and (ii) show |h(D;) — hi—1(Di—1)| = O(wy), as desired. [ |

Next, we establish two elementary yet important inequalities connecting the empirical
and surrogate loss functions. This is trivial in the case of vector-valued signals, in which
case we can directly minimize ft over a convex constraint set C1t to find D; so we have the
‘forward monotonicity’ ft(Dt) < ft(Dt_l) immediately from the algorithm design. In the
tensor case, this still holds since we use block coordinate descent to progressively minimize
ft in each loading matrix.

Proposition 5 Let (D;)i>1 be an output of Algorithm 1. Then for eacht > 0, the following
hold:

(1) fir1(De1) — fi(Dr) < wipr (U(Xeg1, Dr) — fi(Dy)).
(ii) 0 <wip (ft(Dt) - ft(Dt)) < wig1 (((Xig1,Dy) = fu(Dy)) + fo(Dy) = froa(Desa).
Proof We begin by observing that

fer1 (D) = (1 = wis1) fo(Dr) + w1 b1 (Xegr, Dy, Hepr) (33)
= (1 — wys1) fi(Dr) + wis1 i1 (X1, Dy) (34)

for all t > 0. The first equality above uses the definition of f; in (16) and the second equality
uses the fact that H;yq is a minimizer of (X1, Dy, H) over ccode Hence

fer1(Depr) — fo(Dy) (35)
= frr1(De1) = fir(Dr) + frra(Dy) — fu(Dy)
= fir1(Des1) = frr1(De) + (1 — weg1) fo(Dr) + wis 1 £(Xey1, D) — fo(Dy)
= fer1(Diy1) = fra1(Dy) + w1 (U(Xeg1, De) — f1(Dr)) + wegr (fi(Dr) — fi(Dy)).

Now note that f; < f; by definition. Furthermore, ft+1(Dt+1) — ft+1(Dt) < 0 by Lemma 2
(1), so the inequalities in both (i) and (ii) follow. [ |

5.2 Stochastic analysis

In this subsection, we develop stochastic analysis on our online algorithm, a major portion of
which is devoted to handling Markovian dependence in signals as stated in assumption (A1l).
The analysis here is verbatim as the one developed in Lyu et al. (2020b) for the vector-valued
signal (or matrix factorization) case, which we present some of the important arguments in
detail here for the sake of completeness. However, the results in this subsection crucially rely
on the deterministic analysis in the previous section that was necessary to handle difficulties
arising in the tensor-valued signal case.
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Recall that under our assumption (A1), the signals (X;):>0 are given as X = p(Y;) for
a fixed function ¢ and a Markov chain (Y;);>0. Note that Proposition 5 gives a bound on
the change in surrogate loss fi (Dy) in one iteration, which allows us to control its positive
variation in terms of difference ¢(Xy11,Dy) — fi(Dt). The core of the stochastic analysis in
this subsection is to show that w1 E[¢(Xi1, D) — fi(Dy)]T is summable. In the classical
setting when Y;’s are i.i.d., our signals X; = (Y}) are also i.i.d., so we can condition on the
information F; up to time ¢ so that

E [£(Xiy1,Dt) — fi(Dy)

]:t:| = f(Dt) — fi(Dy). (36)

Note that for each fixed D € C4, f,(D) — f(D) almost surely as t — oo by the strong
law of large numbers. To handle time dependence of the evolving dictionaries D;, one can
instead look that the convergence of the supremum ||f; — f||oo over the compact set C4ict,
which is provided by the classical Glivenko-Cantelli theorem. This is the approach taken in
Mairal et al. (2010); Mairal (2013b) for i.i.d. input.

However, the same approach is not applicable for dependent signals, for instance, when
(Y2)e>0 is a Markov chain. This is because, in this case, conditional on F3, the distribution of
Yi41 is not necessarily the stationary distribution 7. In fact, when Y;’s form a Markov chain
with transition matrix P, Y; given Y;_; has distribution P(Y;_1,-), and this conditional
distribution is a constant distance away from the stationary distribution 7. (For instance,
consider the case when Y; takes two values and it differs from Y;_; with probability 1 —
e. Then m = [1/2,1/2] and the distribution of Y; converges exponentially fast to 7, but
P(Y;_1,-) is either [1 —g,¢] or [e,1 —¢] for all ¢ > 1.)

To handle dependence in data samples, we adopt the strategy developed in Lyu et al.
(2020b) in order to handle a similar issue for vector-valued signals (or matrix factorization).
The key insight in Lyu et al. (2020b) is that, while the 1-step conditional distribution
P(X;_1,-) may be far from the stationary distribution 7, the N-step conditional distribution
PN (X;_n,-) is exponentially close to 7 under mild conditions. Hence we can condition much
early on — at time ¢t — NV for some suitable N = N (¢). Then the Markov chain runs N +1 steps
up to time t+ 1, so if IV is large enough for the chain to mix to its stationary distribution ,
then the distribution of Y;;1 conditional on F;_p is close to . The error of approximating
the stationary distribution by the N + 1 step distribution can be controlled using total
variation distance and Markov chain mixing bound. This is stated more precisely in the
proposition below.

Proposition 6 Suppose (A1) hold. Fix a CP-dictionary D. Then for each t > 0 and
0 < N < t, conditional on the information Fi_n up to timet — N,

+
(B |632.2) ~ 4D | Fion| ) <15D) = fn(D)] + Nurfion (D) (37)
+2[€(, D) loo sup| PY* (y, ) = v, (38)
yeQ
Proof The proof is identical to that of (Lyu et al., 2020b, Prop. 7.5). [ ]
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Proof of Lemma 3. Part (i) can be derived from Proposition 6 and Lemma 19 in Ap-
pendix B. See the proof of (Lyu et al., 2020b, Prop. 7.8 (i)) for details. Next, part (ii) can
be derived from part (i) with Proposition 5 (i). See the proof of (Lyu et al., 2020b, Prop.
7.8 (ii)) for details. [ |

Lemma 7 Let (Dy)i>1 be the output of Algorithm 1. Suppose (A1)-(A3) hold. Then the
following hold.

(1) > Elwir (((Xis1, Di) — fi D)) < oo;
(ii) E[f.(D,)] converges as t — co;

(iii) E

iwtﬂ <ft(Dt) fi(Dy) )] Zthrl ( /(D)) — [ft(Dt)]) < 00;
=0

(iv) Zwt_l’_l (ft(Dt) — ft(Dt)) < 0o almost surely.

Proof Part (i) can be derived from Proposition 6 and Jensen’s inequality. See the proof
of (Lyu et al., 2020b, Lem. 12 (ii)) for details. Parts (ii)-(iv) can be shown by using
Propositions 5, 6, and part (i). See the proof of (Lyu et al., 2020b, Lem. 13) for details. B

5.3 Asymptotic surrogate stationarity

In this subsection, we prove Lemma 2 (iv), which requires one of the most nontrivial ar-
guments we give in this work. Throughout this subsection, we will denote by (D;)¢>1 the
output of Algorithm 1 and A := {D;|t > 1} C C%i*, Note that by Proposition 4, f;,
converges almost surely if and only if A, ,By,, &}, , Hy, converge a.s. as k — oco. In what
follows, we say Do € CY a stationary point of A if it is a limit point Do of A and there
exists a sequence t;, — oo such that D;, — Dy, and fOo = limg_, o ftk exists almost surely
and Dy is a stationary point of fOo over C4i¢t. Our goal is to show that every limit point of
A is stationary.
The following observation is key to our argument.

Proposition 8 Assume (A1)-(A3) hold. Let (Di)¢>1 be an output of Algorithm 1. Then
almost surely,

i ‘(vf’”rl DtH) (Dr — Dt+1)>‘ < 0.
t=1

Proof Since CY¥ is compact by (A2) and the aggregate tensors A, By are uniformly
bounded by Lemma 15 in Appendix B, we can see from Proposition 4 that V f;; over Cdict
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is Lipschitz with some uniform constant L > 0. Hence by Lemma 14 in Appendix B, for all
t>1,

A N N L
Fe1(P) = (i) =t (Via (D) (De = Dis) )| < S D1 = D
Also note that ftH(Dt) > ft+1(Dt+1) by Lemma 2 (i). Hence it follows that

) I X X
tr (Vft+1(Dt+1)T(Dt - Dt+1)) ’ < §HDt — Dey1ll% + fra1(Dr) = fra1(Diyr) (39)

On the other hand, (35) and fi > f; yields

0 < fis1(Dy) = fra1(Des1) < fio( D) = frr1(Disr) + w1 (((Xes1, D) — fu(Dy)).

Hence using Lemma 7, we have

ZE [ftJrl(Dt) - ft+1(Dt+1) < 00.

t=1

Then from (39) and noting that || Dy — D15 = O(w ;) and Y 52, wi < oo (see (A3)), it
follows that

2|

tr (Vft+1(Dt+1)T(Dt - Dt+1)) H = g ;E (1Dt — Dy |7

+ ZE [ftJrl(Dt) - ft+1(Dt+1)] < o0.
t=1

Then the assertion follows by Fubini’s theorem and the fact that E[|X]|] < oo implies
|X| < oo almost surely for any random variable X, where | - | denotes the largest abso-
lute value among the entries of X. |

Next, we show that the block coordinate descent we use to obtain D;;; should always
give the optimal first-order descent up to a small additive error.

Proposition 9 (Asymptotic first-order optimality) Assume (A1)-(A8) andw; = o(1).
Then there exists a constant c¢; > 0 such that for allt > 1,

5 Diy1 — Dy) : ; (D - D)
. po o Pe1 =Dy \ L o D) 4
(VP R ) < i (VAP0 )
+ 1| Dig1 — D% (41)

Proof Fix a sequence (b;);>1 such that 0 < b < dwy for all t > 1. Write D; =
[Ut(l), e Ut(")] for t > 1 and denote

frori U fimn @D, 080 0,089, o) (42)
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for U € RE and i = 1,...,n. Recall that Ut(i)l is a minimizer of ft+1;i over the convex set
Ct(i)l defined in (17). Fix arbitrary D = [UWD), ... UM] € ¢¥ such that | D — Dy||p < bey1.
Then ||[U® — Ut(i)HF < byyq for all 1 < i < n. By convexity of C), note that for each
U@ ecl, Ut(i) +a(U® — Ut(i)) € CW for all a € [0,1]. Then by the definition of Ct(_?l and
the choice of Ut(j-)p we have that for all t > 1,

ft+1;z‘(Ut(Ql) - ft—l—l;i(Ut(i)) < ferra (Ut(i) +a(UW — Ut(i))) — ft-i-l;i(Ut(i))' (43)

Recall that Vf = [VftJrl;l, . ,Vft+1;n] is Lipschitz with uniform Lipschitz constant L > 0.
Hence by Lemma 14 in Appendix B, there exists a constant ¢; > 0 such that for all t > 1,

2 i i i L i
tr (ViU (O - Uf)) = S0 - v (44)
. i NS La?|U® —
<atr (VfHM(Ut( N -y ))) L T I (45)
Adding up these inequalities for i = 1,...,n, we get
Viira WD), .. Vit U] (Dt =D 46
tr | |V1(U ), Ve (U )| (Dega — D) (46)
; (1) ; ©ONE
<atr ([Vira @), .. V@™ (D - D)) (47)
L La?
+§HDH-1+Dt|’%+7||D_Dt“%' (48)
Since V ft+1 is L-Lipschitz, using Cauchy-Schwarz inequality,
3 T
tr (Vs (Do) (Dt = D)) (49)
<atr (Vi (D)T(D = D)) +a| Do = Dl | D = Dyl (50)
3L La?
+7\|Dt+1 —DtH%‘i‘THD—Dt”% (51)
< atr (Vi1 (D)T(D = D)) + | Doy = Dl D = Dyl (52)
3L
+ 5 [ Pe — Di||% + ca®||D = Dy[3 (53)

for some constant ¢ > 0 for all ¢ > 1. Recall that the above holds for all a € [0,1]. Note
that since |V f;|| is uniformly bounded and DY€t is compact (see (A2)), the last expression
above, viewed as a quadratic function in a, is strictly increasing in a for all £ > 1 when
¢ > 0 is sufficiently large. We make such choice for c3. Hence, the above holds for all a > 0.
Now we may choose a = biy1/||D — D¢/ and bound the last expression by its first term
plus ¢1(||Dis1 — Di|lF + bes1)? for some constant ¢; > 0. Finally, by the radius restriction
|Dt 1 — Dt||p < dwir1, we may choose bry1 = ||Di+1 — De|| . Then the assertion follows by
dividing both sides of the resulting inequality by ||Di+1 — Dyl [ |
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Proposition 10 Assume (A1)-(A3). Suppose there exists a subsequence (Dy, )i>1 such that
either

oo
ZHDtk —Dy41llr =00 or liminf
1 k—o0

p Dy, — Dy, 41
tr <vftk+1(Dtk+1)T ||Dttk_ Dtt:_—: ‘F) ' =0. (54>
k k

There exists a further subsequence (si)g>1 of (tk)g>1 such that Doo = limy_,oo D, exists
and is a stationary point of A.

Proof By Proposition 8, we have

o0
ZHDtk —Dyt1llr
k=1

R Dy, —D
tr (vftk-i-l(ptk-i-l)T ||Dttk— DttiIHF) ’ < 00. (55)
k k

Hence the former condition implies the latter condition in (54). Thus it suffices to show
that this latter condition implies the assertion. Assume this condition, and let (s;)r>1 be
a subsequence of (f)g>1 for which the liminf in (54) is achieved. By taking a subsequence,
we may assume that D, = limj_,o D5, and foo = limy oo fsk exist.

Now suppose for contradiction that Do, is not a stationary point of foo over CH¢. Then
there exists D* € C4°t and § > 0 such that

tr (vfm(pw)T(D* _ Doo)) <-5<0. (56)

By triangle inequality, write

IV forr1(Ds ) (D* = Ds,) = V foo (Do) (D* = Do) |1 (57)
< IV fse41(Ds) = Voo (Peo)llr - D = Dyl 7 + IV foo (Do) | - 1D — DskIIF(- |
58

Noting that ||D; — Di_1||r = O(w:) = o(1), we see that the right hand side goes to zero as
k — oo. Hence for all sufficiently large & > 1, we have

tr (stkﬂ(psk)T(D* . Dsk)> < 5/2. (59)

Then by Proposition 9, denoting [|CY*||p := supp precaict [D — D' || p < oo,

2 Ds, — D 1 015
liminf tr ( V Dy, ) ok skt <-—— <0, 60
it (Vo ot 5 ) < i o)
which contradicts the choice of the subsequence (Ds, )i>1. This shows the assertion. |

Recall that during the update D;_1 — Dy in (18) each factor matrix of D;_1 changes by
at most w; in Frobenius norm. For each t > 1, we say Dy is a long point if none of the factor
matrices of D;_1 change by w; in Frobenius norm and short point otherwise. Observe that
if Dy is a long point, then imposing the search radius restriction in 17 has no effect and D,
is obtained from D;_; by a single cycle of block coordinate descent on ft over Cdict,
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Proposition 11 Assume (A1)-(A3) hold. If (D, )r>1 is a convergent subsequence of (Dy)e>1

consisting of long points, then the Do, = limy_o Dy, is stationary.

Proof For each A € REXE B e RIv<xInxb p— () UM] e RIXE x ... x RInXE,
define

§(A,B,D) = tr(A (U™ TU™ o . ..o @wW)TUuW)) (61)
~9tr (B(”“)(U(”) Dkr - - - Ok U(l))T) : (62)

where B("*1) denotes the mode-(n 4 1) unfolding of B (see also (22)). By taking a subse-
quence of (tg)k>1, we may assume that Ao := limg_,oo Ay, and Boo 1= limy_ oo By, exist.
Hence the function oo = limg 00 1, = §(Aoc, Boo, ) is well-defined. Noting that since
\% ft = Vg, for all t > 1 by Proposition 4, it suffices to show that D, is a stationary point
of §uo over CH almost surely.

The argument is similar to that of (Bertsekas, 1997, Prop. 2.7.1). However, here we do
not need to assume uniqueness of solutions to minimization problems of ft in each block

coordinate due to the added search radius restriction. Namely, write Do, = [U(%), ey Uég )].
Then for each k > 1,

N 1 2 n o 2 n
gtk+1(Ut(k—)|—l’ Ut(k)> R Ut(k )) < gtk-l-l(U(l)a Ut(k)a SRR t(k )) (63)

for all UM € ¢ n{U: |U — Ut(kl)HF < dwy, 41} In fact, since Dy, is a long point by
the assumption, (63) holds for all U) e ¢, Taking k — oo and using the fact that
1
Uik = Ul < dwnr = o(1),
G (UL UD UMY < g (UMW, UD, ..., UMY forall Uy eV, (64)

b o0 ) oo

Since € is convex, it follows that
- T _ g7(00) (1)
Vlgoo(Doo) (Ul Ul ) >0 forall Uy € C , (65)
where V; denotes the partial gradient with respect to the first block U()). By using a simi-

lar argument for other coordinates of Do, it follows that Vs (Do)t (D — Do) > 0 for all
D € ¢diet, This shows the assertion. |

Proposition 12 Assume (A1)-(A3) hold. Suppose there exists a non-stationary limit point
Do of A. Then there exists € > 0 such that the e-neighborhood B:(Dwo) := {D € CH| | D —
DoollF < €} with the following properties:

(a) B:(Dw) does not contain any stationary points of A.

(b) There exists infinitely many Dy’s outside of Be(Dwo)-
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Proof We will first show that there exists an e-neighborhood B (D) of Dy that does not
contain any long points of A. Suppose for contradiction that for each ¢ > 0, there exists a
long point A in B.(Dy ). Then one can construct a sequence of long points converging to
Doo. But then by Proposition 11, D, is a stationary point, a contradiction.

Next, we show that there exists € > 0 such that B.(Ds) satisfies (a). Suppose for
contradiction that there exists no such e > 0. Then we have a sequence (Dooi)r>1 of
stationary points of A that converges to Ds,. Denote the limiting surrogate loss function
associated with Dy by foo;k- Recall that each foo;k is parameterized by elements in a
compact set (see (A1), Proposition 4, and Lemma 16) in Appendix B. Hence by choosing
a subsequence, we may assume that foo = limy oo foo;k is well-defined. Fix D € Cdit and
note that by Cauchy-Schwarz inequality,

VfOO(Dw)T(D - DOO> > _vaOO(DOO) - Vfoo;k(DOO;k)HF : HD - DOOHF (66)
- vaoo;k(DOO;k>HF ) HDOO - DOO;kHF (67)
+ V fooit (Dooit) " (D = Docir)- (68)

Note that Vfoo;k(Doo;k)T(D — Dooii) > 0 since Dy, is a stationary point of foo;k over Cdict,
Hence by taking k — oo, this shows V foo(Deo) (D — D) > 0. Since D € DIt wag
arbitrary, this shows that D, is a stationary point of foo over CHi¢t a contradiction.
Lastly, from the earlier results, we can choose € > 0 such that B.(D) has no long points
of A and also satisfies (b). We will show that B, /»(Ds) satisfies (c). Then B, /5(Dso) satis-
fies (a)-(b), as desired. Suppose for contradiction there are only finitely many D;’s outside
of B, /3(Dxo). Then there exists an integer M > 1 such that D; € B, 3(Doo) for all t > M.
Then each D, for t > M is a short point of A. By definition, it follows that ||D; — Dy||p> wy
for all t > M, so Y ;21 ||Dy — D¢||p> >_52, wy = oo. Then by Proposition 10, there exists
a subsequence (sg)r>1 such that D, := limy_,o Dy, exists and is stationary. But since
Dl € B.(D), this contradicts (a) for B.(D). This shows the assertion. [ |

We are now ready to give a proof of Lemma 2 (iv).

Proof of Lemma 2 (iv). Assume (A1)-(A3) hold. Suppose there exists a non-stationary
limit point Dy of A. By Proposition 12, we may choose £ > 0 such that B.(Dy,) satisfies
the conditions (a)-(b) of Proposition 12. Choose M > 1 large enough so that dw; < /4
whenever ¢t > M. We call an integer interval I := [(,{) a crossing if Dy € B./3(Dwo),
Dy ¢ By./3(Dwo), and no proper subset of I satisfies both of these conditions. By definition,
two distinct crossings have empty intersection. Fix a crossing I = [(,£'). Then it follows
that by triangle inequality,

-1

Y D1 = Dillr = | D = Dellr = ¢/3. (69)
t=¢

Note that since Dy, is a limit point of A, D; visits B, /3(Dwo) infinitely often. Moreover, by
condition (a) of Proposition 12, D; also exits B:(Ds) infinitely often. It follows that there
are infinitely many crossings. Let ¢, denote the k'™ smallest integer that appears in some
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crossing. By definition, Dy, € By./3(Deo) for k > 1. Then t; — 0o as k — oo, and by (69),

0 . c
S IDtys1 = Dyl > (# of crossings) 5 = ox. (70)
k=1

Then by Proposition 10, there is a further subsequence (si)r>1 of (tx)r>1 such that D :=
limy,_, oo Ds,, exists and is stationary. However, since Dy, € By, 3(Dxo) for k > 1, we have
D, € B:(Dw). This contradicts the condition (b) of Proposition 12 for B.(Ds) that it
cannot contain any stationary point of A. This shows the assertion. |

5.4 Proof of the main result
Now we prove the main result in this paper, Theorem 1.

Proof of Theorem 1. Suppose (Al1)-(A3) hold. We first show (i). Recall that E[f,(D;)]
converges by Lemma 7. Jensen’s inequality and Lemma 2 (iv) imply

[E[hi+1(Deg1)] — E[he(Dy)]] < E[|hi41(Deg1) — he(Dy)|] = O(weg1). (71)

Since E[f;(D;)] > E[f:(D;)], Lemma 7 (ii)-(iii) and Lemma 17 in Appendix B give

Jim E[f,(D,)] = Jim E[/,(D,)] + lim (E[f:(Dy)] - E/i(D)]) (72)
= lim E[f(D,)] € (1,00). (73)

This shows (i).
Next, we show (ii). Triangle inequality gives

[f(De) = fu(Dy)| < < sup [f(D) — ft(D)|> — he(Dy). (74)

DeCdict

Note that |hiy1(Diy1) — he(Dy)| = O(wyy1) by Lemma 2 (iii). Hence Lemma 7 (iv) and
Lemma 17 in Appendix B show that hi(D;) — 0 almost surely. Furthermore, (74) and
Lemma 19 in Appendix B show that | f(D;) — f;(D;)] — 0 almost surely. This completes the
proof of (ii).

Lastly, we show (iii). Further assume (A4). Let Dy € CY be an arbitrary limit point
of the sequence (D;)¢>1. Recall that ¥; := (Dy, A¢, By, r¢)t>0 is bounded by Lemma 15(in
Appendix B) and (A1) and (A2). Hence we may choose a random subsequence (t;)r>1 S0
that D;, — Ds. By taking a further subsequence, we may also assume that >, converges
to some random element (Doo, Ao, Boos Too) a.8. as k — co. Then foo i= limg o0 ftk exists
almost surely. It is important to note that D, is a stationary point of fOO over CI¢t by
Lemma 2 (iv).

Recall that f;(D;)— f,(D;) — 0 as t — oo almost surely by part (ii). By using continuity
of ft, ft, f in parameters (see (A4)), it follows that

foo(Doc) = F(Doc)| = lim |3, (Dy,) = £ (D) (75)
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< lim ( sup |f_ ftk(D)| - htk(Dtk)> =0, (76)

where the last equality also uses Lemma 19 in Appendix B.
Fix e > 0 and D € RIXE x ... x RI"*E_ Hence, almost surely,

foo(Doo + D) = klgrolo fs.(Ds, +D) > klin;o fs.(Ds, + D) = f(Dss + D), (77)

where the last equality follows from Lemma 19. Since V f and V f are both Lipschitz (see
(A4) for the latter), by Lemma 14 in Appendix B, we have

| fooDa + £D) = foc(Doc) = tr (Vfoe(Do) T (eD) )| < 12?3, (78)
[f(Dos +€D) = f(Doc) = tr (V (Do) " (eD))| < 2| DI, (79)

for some constant ¢; > 0 for all € > 0. Recall that foo(Duo) = f(Dso) a.s. by (75). Hence it
follows that there exists some constant co > 0 such that almost surely

tr (VDo) = V(D)) D)) 2 ~ca? - (50)

After canceling out € > 0 and letting € N\, 0 in (80),
~ T
tr ((woo(poo) —Vf(Doo)> D> >0  as (81)

Since this holds for all D € RI*E... x RInXE it follows that V fs (Do) = Vf(Dso) almost
surely. But since D, is a stationary point of foo over CY by Lemma 2 (iv), it follows that
V foo(Dso) is in the normal cone of CU¢t at Dy, (see., e.g., Boyd et al. (2004)). The same
holds for V f(Ds,). This means that Dy is a stationary point of f over CU. Since Dy is
an arbitrary limit point of Dy, the desired conclusion follows. |

6. Experimental validation

In this section, we compare the performance of our proposed online CPDL algorithm (Al-
gorithm 1) for the standard (offline) NCPD problem (8) against the two most popular
algorithms of Alternating Least Squares (ALS), which is a special instance of Block Coor-
dinate Descent, and Multiplicative Update (MU) (see Shashua and Hazan (2005)) for this
task. See Algorithms 6 and 7 for implementations of ALS and MU.

We give a more precise statement of the NCPD problem we consider here. Given a
3-mode data tensor X € RZIOXdQXd‘“’ and an integer R > 1, we want to find three nonnegative

factor matrices UK e Ri’“OXR, k = 1,2,3, that minimize the following CP-reconstruction
€rror:

: (82)

min
[0, U@ U®)]ecdict
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where C3i¢t is the subset of R@OXR X RiQOXR X Rig’OXR consisting of factor matrices of Frobenius

norm bounded by a fixed constant M > \/RHXH};/B Note that the constraint set CJit is
convex and compact, as required in (A2) for Theorem 1 to apply. We claim that the
additional bounded norm constraint on the factor matrices does not lose any generality, in
the sense that an optimal solution of (82) with M > \/RHXH}/?’ has the same objective
value as the optimal solution of (82) with M = oc:

(optimal value of (82) for M > \/EHXH},B) = (optimal value of (82) for M = c0). (83)

In order to maintain the flow, we justify this claim at the end of this section.

We consider one synthetic and three real-world tensor data derived from text data and
that were used for dynamic topic modeling experiments in Kassab et al. (2021). Each
document is encoded as a 5000 or 7000 dimensional word frequency vector using tf-idf
vectorizer Rajaraman and Ullman (2011).

1. Xgynth € ]Rlzoé) x 100100 3¢ senerated by Xsynth = 0.01x0ut(V7, V5, V3), where the loading

matrices V1, Vo, V3 € ]R1>000 x50 are generated by sampling each of their entries uniformly
and independently from the unit interval [0, 1].

2. XooNews € R‘;OOXE’OOOX% (41.6MB) is a tensor representing semi-synthetic text data
based on 20 Newsgroups dataset Rennie (2008) synthesized in Kassab et al. (2021)
for dynamic topic modeling, consisting of 40 stacks of 26 documents encoded in 5000
dimensional word space.

3. Xwitter € R%OOXE’OOO“OOO (3.6GB) is an anonymized Twitter text data related to the
COVID-19 pandemic from Feb. 1 to May 1 of 2020. The three modes correspond to
days, words, and tweets, in order. Each day, the top 1000 most retweeted English
tweets are collected. The original data was collected in Kassab et al. (2021).2

4. XHeadlines € R2>003X7000X700 (8.0GB) is a tensor derived in Kassab et al. (2021) from
news headlines published over a period of 17 years sourced from the Australian news
source ABC Kulkarni (2018). The three modes correspond to months, words, and
headlines, in order. In each month, 700 headlines are chosen uniformly at random.

For all datasets, we used all algorithms to learn the loading matrices UM, U@ UG
with R = 5 columns, that evolve in time as the algorithm proceeds. The choice of R =5 is
arbitrary and is not ideal especially for the real data tensors, but it suffices for the purpose
of this experiment as a benchmark of our online CPDL against ALS and MU. We plot
the reconstruction error || X — 0ut(UM, UR) U®))|p against elapsed time in both cases
in Figure 2. Since these benchmark algorithms are also iterative (see Algorithms 6 and
7), we can measure how reconstruction error drops as the three algorithms proceed. In
order to make a fair comparison, we compare the reconstruction error against CPU times
with the same machine, not against iteration counts, since a single iteration may have
different computational costs across different algorithms. For ALS and MU, we disregarded

2. For code repository, see https://github.com/lara-kassab/dynamic-tensor-topic-modeling
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Figure 2: Comparison of performance of online CPDL for the nonnegative tensor factorization problem
against Alternating Least Squares (ALS) and Multiplicative Update (MU). For each data tensor, we apply
each algorithm to find nonnegative loading matrices UM, U@ U® of R = 5 columns. We repeat this mul-
tiple times (50 for synthetic, 20 for 20Newsgroups, and 10 for the other two) and the average reconstruction
error with 1 standard deviation are shown by the solid lines and shaded regions of respective colors.

the bounded norm constraint in (82), which makes it only favorable to those benchmark
methods so it is still a fair comparison of our method.

We give some implementation details of online CPDL (Algorithm 1) for the offline NCPD
problem in (82). From the given data tensor X, we obtain a sequence of tensors Xy,..., Xp
obtained by subsampling 1/5 of the coordinates from the last mode. Hence while ALS and
MU require loading the entire tensors into memory, only 1/5 of the data needs to be loaded
to execute online CPDL. In Figure 2, OCPDL () for for 8 € {0.75, 1} denotes Algorithm 1
with weights wy = ¢/t =?/logt (with wy = ¢’), where 0.75 and 1 for § correspond to the two
extreme values that satisfy the assumption (A3) (see also (A3’)) of Theorem 1; the case of
3 = None uses ¢ = oo and wy =t~ !/(logt) (with wy; = 1). In all cases, the weights satisfy
(A3) so the algorithm is guaranteed to converge to the stationary points of the objective
function almost surely by Theorem 1. The constant ¢’ is chosen from {1, 10, 100,1000} for
B € {0.75,1}. Initial loading matrices for Algorithm 1 are chosen with i.i.d. entries drawn
from the uniform distribution on [0, 1].

Note that since the last mode of the full tensors is subsampled, the loading matrices we
learn from online CPDL have sizes (d; x R), (d2 x R), and (dj x R), where d < d3 equals
the size of the last mode of the subsampled tensors. In order to compute the reconstruction
error for the full d; x do X d3 tensor, we recompute the last factor matrix of size d3 x R
by using the first two factor matrices with the sparse coding algorithm (Algorithm 4). This
last step of computing a single loading matrix while fixing all the others is equivalent to a
single step of ALS in Algorithm 6.
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In Figure 2, each algorithm is used multiple times (50 for Synthetic, 20 for 20Newsgroups,
and 10 for Twitter and Headlines) for the same data, and the plot shows the average re-
construction errors together with their standard deviation (shading). In all cases except the
smallest initial radius ¢’ = 1 on the densest tensor Xognews, online CPDL is able to obtain
significantly lower reconstruction error much more rapidly than the other two algorithms
and maintains low average reconstruction accuracy.

For XsoNews wWith ¢ = 1 (Figure 2 (e)), we observe some noticible difference in the
performance of online CPDL depending on 3, where larger values of 5 (faster decaying
radii) give slower convergence. This seems to be due to the fact that Xognews is the densest
among the four tensors by orders of magnitude and ¢/ = 1 gives too small of an initial radius.
Namely, the average Frobeinus norm, ||X||r/(d1da2ds) equals 6.26 x 1072 for Xgynthetic, 1.10 X
1073 for XogNews, 6.65 x 1077 for Xrwitter, and 3.78 x 1077 and XHeadlines- However, we did
not observe any significant difference in all other cases. In general, when ¢’ is large enough,
it appears that the radius restriction in Algorithm 1 enables the theoretical convergence
guarantee in Theorem 1 without any compromise in practical performance, which did not
depend significantly on the decay rate paramter 8. In our experiments, ¢ = || X||p was
sufficiently large, where ||Xsynthetic||F = 62.61, ||XooNews||Fr = 32.74, || Xtwitter || F = 299.37,
and HXSyntheticHF = 376.38.

Proof of claim (83). Suppose Dy := [UD U®R UG is an optimal solution of (82)
without norm restriction (i.e., M = o0). Fix a column index i € {1,..., R} and positive
scalars o, ag, a3 such that ajasas = 1. The objective in (82) is invariant under rescaling
the three respective columns: U®)(:,4) — a,U®)(:,4) for k € {1,2,3}. At the optimal factor
matrices, the objective in (82) should be at most || X||r. Since all factors are nonnegative,
it follows that

3
[TlexU® il e = < |1X] (84)
k=1

3
Q) UM ()
k=1

F

Then we can choose aj’s in a way that ||apU® (:,4)||F is constant in k3, in which case
|agUR (2, 4) || < HX||}U/3 This argument shows that we can rescale the ith columns of the
optimal factor matrices in Dy, in a way that the objective value does not change and the

columns have norms bounded by ||XH},/ ® This holds for all columns 7, so we can find a tuple
of factor matrices [V, V) V)] in ¢dict that has the same objective value as Dy, as long

as M > R||X||}/*. m

7. Applications

For all our applications in this section, we take the constraint sets C°°9¢ and C%it in Al-
gorithm 1 to consists of nonnegative matrices so that the learned CP-dictionary gives a
"parts-based representation” of the subject data as in classical NMF (see Lee and Seung

3. e.g., ax = aja;/a?, where ay, := U™ (:,i)||r and j,k,1 € {1,2,3} are distinct
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(1999, 2001); Lee et al. (2009)). In all our experiments in this section, we used the balanced
weight w; = 1/t, which satisfies the assumption (A3).

7.1 Reshaping tensors before CP-decomposition to preserve joint features

Before we discuss our real-world applications of the online CPDL method, we first give
some remarks on reshaping tensor data before factorization and why it would be useful in
applications.

One may initially think that concatenating some modes of a tensor into a single mode
before applying CP-decomposition loses joint features corresponding to the concatenated
modes. In fact, if we undo the unfolding after the decomposition, it actually preserves the
joint features. Hence in practice, one can exploit the tensor structure in multiple ways
before CP-decomposition to disentangle a select set of features in the desired way, which we
demonstrate through analyzing a diverse set of examples from image, video, and time-series
in Section 7.

To better illustrate our point, suppose we have three discrete random variables X1, Xs, X3,
where X; takes n; distinct values for 1 < ¢ < 3. Denote their 3-dimensional joint dis-
tribution as a 3-mode tensor X € R™*"2*X"3  Suppose we have its CP-decomposition
X = Out(U(l), U@, U(?’)). We can interpret this as the sum of R product distributions of
the marginal distributions given by the respective columns in the three factor matrices. In
an extreme case of a R = 1 CP-decomposition, any kind of joint features among multiple
random variables will be lost in the single product distribution.

On the other hand, consider combining the first two random variables (X1, X2) into a sin-
gle random variable, say, Y7, which takes nino distinct values. Then the joint distribution of
(Y1, X3) will be represented as a 2-dimensional tensor X(12) ¢ Rmm2%n3  which corresponds
to the tensor obtained by concatenating the first two modes of X. Suppose we have its
CP-decomposition X2 ~ out(V®, V3)), where V1) € RM72XE and V) € R**R, Then
we can reshape each column V() (:,4) to a 2-dimensional tensor VTEfLHQ(:,i) € R™mxm2 hy
using the ordering of entries in [n1] X [n2] we used to concatenate X; and X5 into Y;. In
this way, we have approximated the full joint distribution X as the sum of the product be-
tween two- and one-dimensional distributions Vn(ll)xm(:, i) ® V3 (:,4). In this factorization,
the joint features of X; and X5 can still be encoded in the 2-dimensional joint distributions
Vn(ll)xm(:, i), and only the joint features between (X7, X3) and X3 are disentangled.

For instance, the tensor for the mouse brain activity video in Subsection 7.3 has four
modes (time,horizontal,vertical,color). There is almost no change in the shape of
the brain in the video and only the color changes indicate neuronal activation in time.
Hence, we do not want to disentangle the horizontal, vertical, and color modes, but instead,
concatenate them to maintain the joint feature of the spatial activation pattern (see Figure
4). See also Figures 3 and 5 for the effect of various tensor reshaping before factorization in
the context of image and time-series data.

7.2 Image processing applications

We first apply our algorithm to patch-based image processing. A workflow for basic patch-
based image analysis is to extract small overlapping patches from some large images, vec-
torize these patches, apply some standard dictionary learning algorithm, and reshape back.
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Dictionaries obtained from this general procedure have a wide variety of uses, including
image compression, denoising, deblurring, and inpainting Elad (2010); Dong et al. (2011);
Papyan et al. (2017); Ma et al. (2013).

Figure 3: Color image reconstruction by online CPDL. The original image is shown in the top left of
(a). The top right reconstruction in (a) is derived from the dictionary learned from the unmodified tensor
decomposition of color image patches, which is exemplified in (b). The bottom left reconstruction in (a)
uses the dictionary in (c¢) learned by tensor decomposition of color image patches whose spatial modes are
vectorized. The bottom right reconstruction in (a) uses the dictionary learned by a tensor decomposition of
fully vectorized color image patches, which is shown in (d).

Although this procedure has produced countless state-of-the-art results, a major draw-
back to such methods is that vectorizing image patches can greatly slow down the learning
process by increasing the effective dimension of the dictionary learning problem. Moreover,
by respecting the natural tensor structure of the data, we find that our learned dictionary
atoms display a qualitative difference from those trained on reshaped color image patch data.
We illustrate this phenomenon in Figure 3. Our experiment is as follows. Figure 3 (a) top
left is a famous painting (Van Gogh’s Café Terrace at Night) from which we extracted 1000
color patches of shape (vertical X horizontal X color) = (20 x 20 x 3). We applied our
online CPDL algorithm (Algorithm 1 for 400 iterations with A = 1) to various reshapings of
such patches to learn three separate dictionaries, each consisting of 24 atoms.

The first dictionary, displayed in Figure 3 (b), is obtained by applying online CPDL
without reshaping the patches. Due to the rank-1 restriction on the atoms as a 3-mode
tensor, the spatial features are parallel to the vertical or horizontal axes, and also color
variation within each atom is only via scalar multiple (a.k.a. ‘saturation’). The second
dictionary, Figure 3 (c), was trained by vectorizing the color image patches along the spatial
axes, applying online CPDL to the resulting 2-mode data tensors of shape (space X color) =
(400 x 3) , and reshaping back. Here, the rank-1 restriction on the atoms as a 2-mode tensor
separates the spatial and color features, but now the spatial features in the atoms are more
‘generic’ as they do not have to be parallel to the vertical or horizontal axes. Note that the
color variation within each atom is still via a scalar multiple. Lastly, the third dictionary,
Figure 3 (d), is obtained by applying our online CPDL to the fully vectorized image patch
data. Here the features in the atoms do not have any rank-1 restriction along with any
mode so that they exhibit ‘fully entangled’ spatial and color features. Although dictionary
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(b) requires much less storage, the reconstructed images from all three dictionaries shown
in Figure 3 (a) show that it still performs adequately for the task of image reconstruction.

7.3 Learning spatial and temporal activation patterns in cortex

In this subsection, we demonstrate our method on video data of brain activity across a
mouse cortex, and how our online CPDL learns dictionaries for the spatial and temporal
activation patterns simultaneously. The original video is due to Barson et al. Barson et al.
(2020) by using genetically encoded calcium indicators to image brain activity transcranially.
Simultaneous cellular-resolution two-photon calcium imaging of a local microcircuit as well
as mesoscopic widefield calcium imaging of the entire cortical mantle in awake mice are used
to capture the video (see Barson et al. (2020) for more details.)

Spatial Activation Atom # 9 Spatial Activation Temporal activation
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Figure 4: Learning 20 CP-dictionary atoms from video frames on brain activity across the mouse cortex.

The original video frame is a tensor of shape ((1501, 360, 426, 3) corresponding to the four
modes (time, horizontal,vertical, color), where frames are 0.04 sec apart, which spans
total 60.04 seconds. We intend to learn weakly periodic patterns of spatial and temporal
activation patterns of duration at most 2 seconds. To this end, we sample 50-frame (2
sec. long) clips uniformly at random for 200 times. Each sampled tensor is reshaped into
(time, space * color) = (50, 360%426*3) matrix, and then sequentially fed into the online
CPDL algorithm with w; = ¢//t, A = 2, and ¢ = 10°. Note that we vectorize the horizontal,
vertical and color modes into a single mode before factorization in order to preserve the
spatial structure learned in the loading matrix. Namely, for spatial activation patterns, we
desire dictionary atoms of the form of Figure 3 (d) rather than (b) or (c).

Our algorithm learns a CP-dictionary in the space-color mode that shows spatial activa-
tion patterns and the corresponding time mode shows their temporal activation pattern, as
seen in Figure 4. Due to the nonnegativity constraint, spatial activation atoms representing
localized activation regions in the cortex are learned, while the darker ones represent the
background brain shape without activation. On the other hand, the activation frequency
is simultaneously learned by the temporal activation atoms shown in Figure 4 (right). For
instance, the spacial activation atom # 9 (numbered lexicographically) activates three times
in its corresponding temporal activation atom in the right, so such activation pattern has
an approximate period of 2/3 sec.
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7.4 Joint time series dictionary learning

A key advantage of online algorithms is that they are well-suited to applications in which
data are arriving in real-time. We apply our algorithm to a weather dataset obtained from
Beniaguev (2017). Beginning with a (36 x 2998 x 4) tensor where the first mode corresponds
to cities, the second mode to time in hours, and the third mode to weather data such
that the frontal slices correspond to temperature, humidity, pressure, and wind speed. We
regularized the data by taking a moving average over up to four hours (in part to impute
missing data values), and by applying a separate rescaling of each frontal slice to normalize
the magnitudes of the entries.

25 UU 5 10 715 20 25 0!J 5 10‘ 1;: 20 25 Dﬂ 5 YE; ;5/ EUN 25
(b) (©

Figure 5: Display of one atom from three different dictionaries of 25 atoms which were obtained from online
CPDL on weather data: (a) no reshaping, (b) data which was reshaped to 36 x (24 x 4), and (c) data
which was reshaped to (36 x 24) x 4. For each subplot, the four subplots represent the evolution of four
measurements (temperature (top left), humidity (bottom left), pressure (top right), and wind speed (bottom
right)) in time for 24 hours (horizontal axis) in 36 cities (in different colors).

From this large data tensor, we sequentially extracted smaller (36 x 24 x 4) = (cities X
time X measurements) tensors by dividing time into overlapping segments of length 24
hours, with overlap size 4 hours. Our experiment consisted of applying the online CPDL
(Algorithm 1) to this dataset to learn a single CP-dictionary atom (R = 1), say D €
R36x24x4 "wwith three different reshaping schemes to preprocess the input tensors of shape
(36 x 24 x 4): no reshaping (cities X time X measurements) (Figure 5 (a)); concatenating
time and measurements (cities X (timexmeasurements)) (Figure 5 (b)); and concatenating
cities and time ((cities * time) X measurements) (Figure 5 (c)). (See Subsection 7.1 for
a discussion on reshaping and CP-dictionary learning). Roughly speaking, the single CP-
dictionary atom we learn is a 3-mode tensor of shape (36 x 24 x 4) that best approximates the
evolution of four weather measurements during a randomly chosen 24-hour period from the
original 2998-hour-long data subject to different constraints on the three modes depending
how we reshape the input tensors.

In Figure 5, for each atom, the top left corner represents the first frontal slice (temper-
ature), the bottom left the second frontal slice (humidity), the top right the third frontal
slice (pressure), and the bottom right the fourth frontal slice (wind speed). The horizontal
axis corresponds to time (in hours), each individual time series to a “row" in the first mode,
and the vertical axis to the value of the corresponding entry in the CP-dictionary atom.
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We emphasize the qualitative difference in the corresponding learned dictionaries. In the
first example in Figure 5 (a), the CP-constraint is applied between all modes, so the single
CP-dictionary atom D € R36%24x4 is given by the outer product of three marginal vectors,
one for each of the three mode (analogous to Figure 3 (a)). Namely, let D = u; ® us ® us,
where u; € R30, uy € R?, and u3 € R*. Then uy represents a 24-hour long time series,
and for example, the humidity of the first city is approximated by (u1(1)us(2))ug. This
makes the variability of the time-series across different cities and measurements restrictive,
as shown in Figure 5 (a).

Next, in the second example in Figure 5 (b), the CP-constraint is applied only between
cities and the other two modes combined, so the single CP-dictionary atom D € R36%24x4
is given by D = u; ® Usz, where u; € R3% and U3 € R?***4. Thus, for each city, the
24-hour evolution of the four measurements need not be some scalar multiple of a single
time evolution vector as before, as we can use the full 24 x 4 entries in Usg to encode such
information. On the other hand, the variability of the joint 24-hour evolution of the four
measurements across the cities should only be given by a scalar multiple, as we can observe
in Figure 5 (b).

Lastly, in the third example in Figure 5 (c¢), the CP-constraint is applied only between the
measurements (last mode) and the other two modes combined, so the single CP-dictionary
atom D € R36%24x4 i5 given by D = Ujs ® ug, where Ujp € R36*24 and uz € R*. Thus, the
24-hour evolution of a latent measurement of the 36 cities can be encoded by the 36 x 24
matrix Us without rank restriction. For each of the four measurements, this joint evolution
pattern encoded in Ujs is multiplied by a scalar. For example, the temperature evolution
across 36 cities is modeled by ug(1)Ujs.
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Appendix A. Background on Markov chains and MCMC
A.1 Markov chains

Here we give a brief account on Markov chains on countable state space (see, e.g., Levin and Peres
(2017)). Fix a countable set Q. A function P : Q2 — [0,00) is called a Markov transition matriz
if every row of P sums to 1. A sequence of Q-valued random variables (X;);>¢ is called a Markov
chain with transition matrix P if for all xq, z1,...,z, € €,

]P)(Xn = In | anl = Tpn—1y--- 7)(() = .270) = P(Xn = Tn ‘Xn,1 = l’n,1) = P(.%‘n,l,l'n). (85)

We say a probability distribution 7 on Q a stationary distribution for the chain (X;);>¢ if 7 = 7P,
that is,

(z) =Y m(y)P(yx). (86)

yeN

We say the chain (X;);>¢ is irreducible if for any two states z,y € € there exists an integer ¢ > 0 such
that P!(z,y) > 0. For each state x € Q, let T(z) = {t > 1| P*(x,z) > 0} be the set of times when
it is possible for the chain to return to starting state x. We define the period of x by the greatest
common divisor of T (z). We say the chain X; is aperiodic if all states have period 1. Furthermore,
the chain is said to be positive recurrent if there exists a state x € € such that the expected return
time of the chain to x started from x is finite. Then an irreducible and aperiodic Markov chain has
a unique stationary distribution if and only if it is positive recurrent (Levin and Peres, 2017, Thm
21.21).
Given two probability distributions p and v on €2, we define their total variation distance by

| = vlTv = sup |u(A) —v(4)|. (87)
ACQ

If a Markov chain (X});>o with transition matrix P starts at z¢ € €2, then by (85), the distribution
of X; is given by P%(zg,-). If the chain is irreducible and aperiodic with stationary distribution
m, then the convergence theorem (see, e.g., (Levin and Peres, 2017, Thm 21.14)) asserts that the
distribution of X; converges to 7 in total variation distance: As t — oo,
sup ||P'(xg,-) — ||y — 0. (88)
ToEN
See (Meyn and Tweedie, 2012, Thm 13.3.3) for a similar convergence result for the general state

space chains. When  is finite, then the above convergence is exponential in ¢ (see., e.g., (Levin and
Peres, 2017, Thm 4.9))). Namely, there exists constants A € (0,1) and C' > 0 such that for all ¢ > 0,

max || P! (zo, ) — 7|7y < O (89)
xo€EN

Markov chain mizing refers to the fact that, when the above convergence theorems hold, then one
can approximate the distribution of X; by the stationary distribution 7.

Remark 13 Our main convergence result in Theorem 3.1 assumes that the underlying Markov
chain Y; is irreducible, aperiodic, and defined on a finite state space €, as stated in (A1). This can
be relaxed to countable state space Markov chains. Namely, Theorem 3.1 holds if we replace (A1)

by

(A1)’ The observed data tensors X; are given by Xy = p(Y3), where Yz is an irreducible, aperiodic,
and positive recurrent Markov on a countable and compact state space Q and ¢ : Q — R¥*" s q
bounded function. Furthermore, there exist constants € (3/4,1] and v > 2(1 — B) such that

w=0(),  swpllP(y.) ~ v = O(). (%0)
NAS

where P and 7 denote the transition matrix and unique stationary distribution of the chain Yy.
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Note that the polynomial mixing condition in (A1)’ is automatically satisfied when € is finite due
to (89). Polynomial mixing rate is available in most MCMC algorithms used in practice.

A.2 Markov chain Monte Carlo Sampling

Suppose we have a finite sample space (2 and probability distribution 7 on it. We would like to sample
a random element w €  according to the distribution 7. Markov chain Monte Carlo (MCMC) is a
sampling algorithm that leverages the properties of Markov chains we mentioned in Subsection A.1.
Namely, suppose that we have found a Markov chain (X;);>o on state space Q that is irreducible,
aperiodic?, and has 7 as its unique stationary distribution. Denote its transition matrix as P. Then
by (89), for any € > 0, one can find a constant 7 = 7(¢) = O(loge™!) such that the conditional
distribution of X, given X; is within total variation distance € from 7 regardless of the distribution
of X;. Recall such 7 = 7(¢) is called the mizing time of the Markov chain (X;);>;. Then if one
samples a long Markov chain trajectory (X;);>1, the subsequence (X, )r>1 gives approximate i.i.d.
samples from 7.

We can further compute how far the thinned sequence (X, )x>1 is away from being independent.
Namely, observe that for any two nonempty subsets A, B C 2,

|P(Xir € A, X7 € B) = P(Xyr € A)P(X; € B)| (91)
= [P(Xi, € A) — P(Xy, € A| X; € B)| [P(X, € B)| (92)
< [P(Xyr € A) = P(Xyr € A| X7 € B)) (93)
< [P(Xpr € A) — w(A)| + [7(A) = P(Xpr € A| X, € B)| < A7 4 A7, (94)

Hence the correlation between X, and X, is O(A(k*I)T).

For the lower bound, let us assume that X; is reversible with respect to =, that is, 7(z)P(x,y) =
7(y)P(y,z) for z,y € Q (e.g., random walk on graphs). Then 7(¢) = O(loge™!) (see (Levin and
Peres, 2017, Thm. 12.5)), which yields sup,cq||P!(z,) — 7||rv = ©O(X!). Also, P(X, € B) >4 > 0
for some & > 0 whenever T is large enough under the hypothesis. Hence

[P(Xkr € A, X; € B) —P(Xi, € A)P(X, € B)| (95)
> 6 P(Xy, € A) —P(Xy, € A| X, € B)| (96)
> | |P(Xir € A) = m(A)] = |7(A) = P(Xir € A| X, € B)| | 2 A7 (97)

for some constant ¢ > 0. Hence the correlation between X, and X, is @()\(k’l)f). In particular,
the correlation between two consecutive terms in (Xg;)g>1 is of O(A7) = O(e). Thus, we can make
the thinned sequence (Xj.)r>1 arbitrarily close to being i.i.d. for m, but if X; is reversible with
respect to 7w, the correlation within the thinned sequence is always nonzero.

In practice, one may not know how to estimate the mixing time 7 = 7(¢). In order to empirically
assess that the Markov chain has mixed to the stationary distribution, multiple chains are run for
diverse mode exploration, and their empirical distribution is compared to the stationary distribution
(a.k.a. multistart heuristic). See Brooks et al. (2011) for more details on MCMC sampling.

Appendix B. Auxiliary lemmas

4. Aperiodicity can be easily obtained by making a given Markov chain lazy, that is, adding a small
probability e of staying at the current state. Note that this is the same as replacing the transition
matrix P by P. := (1 — €)P + eI for some ¢ > 0. This ‘lazyfication’ does not change stationary
distributions, as 7P = 7 implies 7 P. = .
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Lemma 14 (Convex Surrogate for Functions with Lipschitz Gradient) Let f : R? — R be
differentiable and ¥V f be L-Lipschitz continuous. Then for each 0,6' € RP,

L
|£(6") = £(0) = V£(0)" (0" = 0)] < S 116 = 0[[%- (98)
Proof This is a classical Lemma. See (Nesterov, 1998, Lem 1.2.3). ||

For each X € Rl xInxb and D € RIVXE x  RInXE denote

H*(X,D) € argmin ¢{(X,D, H). (99)
H e(Ccode

Recall Assumption (Al)’. For each subset S of a Euclidean space, denote ||S||z = sup,cg|lz|/#. The
following boundedness results for the codes H; and aggregate tensors A;, B; are easy to derive.

Lemma 15 Assume (A1)’ and (A2). Then the following hold:
(i) For all X € RIv<:xInxb gng D g cdict,

(X, D)7 < A7 [lp(Q)]r < 0. (100)

(ii) For any sequences (X;)¢>1 in RIVX1nxb and (Dy)>1 in C, define A, and By recursively as in
Algorithm 1. Then for all t > 1, we have

[Aellr < A72le@E,  I1Bellr < A7 He(@)]E- (101)

Proof Omitted. See (Lyu et al., 2020b, Prop. 7.2). |

The following lemma shows Lipschitz continuity of the loss function £(¢(-),-) defined in (10).
Since © and C°°4¢ are both compact, this also implies that D + f;(D) and D + f;(D) are L-Lipschitz
for some L > 0 uniformly for all £ > 0.

Lemma 16 Suppose (A1) and (A2) hold, and let M = 2||o(Q)||r + 2||CYY | #|lo(Q)|Z/X. Then
for each Y1,Ys € Q and Dy, Dy € CI,

|€(p(Y1), D1) = £(p(Y2), D2)| < M (||Y1 = Yallp + A7 (@) P[Py — Dallr) - (102)

Proof Omitted. See (Lyu et al., 2020b, Prop. 7.3). |

The following deterministic statement on converging sequences is due to (Mairal et al., 2010).

Lemma 17 Let (ap)n>0 and (by)>0 be non-negative real sequences such that

Z a, = 00, Z Anby, < 00, |brt1 — bn] = O(an). (103)
n=0 n=0

Then lim,,_,s b, = 0.

Proof Omitted. See (Mairal, 2013b, Lem. A.5). |
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Lemma 18 Under the assumptions (A1) and (A2),

1<
E| sup Vit ‘

W eCdict

f(D) - < > X, D) | =0). (104)

s=1

Furthermore, supy, cc ‘f(’D) -1 St K(XS,D)’ — 0 almost surely as t — oo.

Proof Omitted. See (Lyu et al., 2020b, Lem. 7.8). [ |

In the following lemma, we generalize the uniform convergence results in Lemma 18 for general
weights w; € (0,1) (not only for the ‘balanced weights’ w; = 1/t). The original lemma is due
to Mairal (Mairal, 2013b, Lem B.7), which originally extended the uniform convergence result to
weighted empirical loss functions with respect to i.i.d. input signals. A similar argument gives the
corresponding result in our Markovian case (Al)’, which was also used in Lyu et al. (2020b). In
Lemma 18 below, we also generalize the statement for the weights w; satisfy the required mono-
tonicity property w,_ +11 —w; 1 <1 only asymptotically. See Remark 21 for more discussion.

Lemma 19 Suppose (A1)-(A2) hold, and assume that there exist an integer T > 1 such that
wt;ll —w; ' <1 forallt >T. Also assume that there are some constants ¢ > 0 and vy € (0,1] such
that wy > ct™" for all t > 1. Further assume that if T > 1 and v = 1, then ¢ > 1/2. Then there
exists a constant C = C(T) > 0 such that

E| sup [f(D)—£(D)|| < CurVE. (105)
Wecdict

Furthermore, if Y o, wy = 00, Y oq WiVt < 00, then suppecaict |f(D) — f:(D)| — 0 almost surely
as t — o0.

Proof Fix ¢t € N. Recall the weighted empirical loss f;(D) defined recursively using the weights
(ws)s>o0 in (11). For each 0 < s < ¢, denote w! = w; H;:S(l — wj) and set w§ = 0. Then for
each t € N, we can write f;(D) = S\_, #(X,,W)w!. Moreover, note that wt,...,w! > 0 and
wh + -+ w! =1. Define F;(D) = (t —i+1)"! Z;Zl 0(X;,W) for each 1 < i < t. By Lemma 18,

there exists a constant ¢; > 0 such that

E stu& F(D) - f(D)@ <4 (106)

for all ¢ > 1 and 1 < 4 < ¢t. Noting that [w],... , w!] is a probability distribution on {1,...,t}, a
simple calculation shows the following important identity

ft—f=Z(w$—wffl)(t—i+1)(Fi—f), (107)

with the convention of wé = 0. Also, suppose T' > 1 is such that wk_1 — w,;_ll <1 for k > T. Note
that for i > 2, w! | < w! if and only if w;_1(1 — w;) < w; if and only if w; ' —w; Y, < 1. Hence for
each n > T and k > T, we have w}, < w},,; < --- < w} = w;. Then observe that

E| sup ft(D)—w(DN]SE[lef—wﬁ1(t—i+1) sup [H(D)=J(D)I| (108

DeCdict W eCdict
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=Z|wf—w;?1|<t—i+1>1a[ sup |fi<z>>—f<z>>|} (109)

dic
i—1 Decdict

t
<Y |wf —wlJerVE—i+ 1 (110)

i=1

T ¢
<avt (Z |wi —wi_4| + Z(ﬁ’f - ﬁ’f—l)) (111)
i=1 i=T

T
Vit (wt + wa) . (112)

By using Lemma 20, we have Z?:l w! = O(1/n). Furthermore, since w,.; —w; ' <1 for all t > T,

we deduce wt_1 — w;l <t—Tforallt>T,sow; > ﬁ Thus for some constant ¢ > 0, we
- T

have w; > tJ%C for all t+ > T. Thus the last displayed expression above is of O(w;+/t). This shows
(105). We can show the part by using Lemma 17 in Appendix B, following the argument in the

proof of (Mairal, 2013b, Lem. B7). See the reference for more details. |

The following lemma was used in the proof of Lemma 19.

Lemma 20 Fiz a sequence (wn)n>1 of numbers in (0,1]. Denote wi = wy [[;—y 1 (1 — w;) for
1 <k <n. Suppose w, ! — w;il <1 for all sufficiently large n > 1. Fiz T > 1. Then for alln > T,

Z O(1/n). (113)

Proof Suppose w;l —ufil < 1foralln > N for some N > 1. It follows that wgl —wlf,l <n—N,so

n
1 1 _
Wy, > P Hence for some constant ¢ > 0, w,, > P for all n > N. Denote a Vb = max(a, b).

Then note that

Wy = Wy, exp < Z log(1 — wl)> < exp (— Z wi) (114)

i=k+1 i=k+1

< exp _/ 1 " :[N\/(k:Jrl)]Jrc7 (115)
NV(k+1) T+ ¢ n+c

where the second inequality uses wy, < 1 and the following inequality uses log(1 —a) < —a for a < 1.
Hence for each fixed 1 < T < n, we have

1
n+c

T
S wp <T((NV(T+1))+c) (116)
k=1

This shows the assertion. [ |

Remark 21 In the original statement of (Mairal, 2013b, Lem B.7), the assumption that w,, Jrll -
w; ' < 1 for sufficiently large ¢ was not used, and it seems that the argument in Mairal (2013b)
needs this assumption. To give more detail, the argument begins with writing the empirical loss

fi() = 05—y wh £( Xy, ), where w} := wy(1 —wg_1)--- (1 — w;), and proceeds with assuming the
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monotonicity w < --- < w!, which is equivalent to wy > wg_1(1 —wy) for 2 < k < ¢. In turn, this is

equivalent to w,:l — w,;ll <1 for 2 < k < t. Note that this condition implies w,:l <(k-1)+ wl_l,

or wy > m, where w; € [0, 1] is a fixed constant. This means that, asymptotically, wy cannot
- 1

decay faster than the balanced weight 1/k, which gives wl = 1/t for k € {1,...,t}. Note that we

proved Lemma 20 with requiring w,_ +11 —wy, ! <1 for all sufficiently large ¢.

Next, we will argue that (A3’) implies (A3). It is clear that if the sequence wy € (0, 1] satisfies
(A3%), then 7% wy = oo and Y52, w?v/t < oo. So it remains to verify w; ' — w; Y} < 1 for
sufficiently large ¢. Suppose w; = O(t~?(logt)~%) for some # € [0,1] and § > 0. Let ¢;,co > 0 be
constants such that w,t?(logt)? € [c1,co] for all ¢ > 1. Then by the mean value theorem,

wih —w;t < oo ((t+1)P(log(t + 1))° — t7 (log t)?) (117)
<cg sup (Bsﬁfl(log 5)° + 657 (log s)‘s*l) (118)

t<s<t+1
<cy sup 57 1(logs)’ ! ((logs) +4). (119)

t<s<t+1

Since ¢ > 1, the last expression is of o(1) if 3 < 1. Otherwise, w; = t~! for t > 1 by (A3’). Then
w ', —w; ' =1forall t > 1.

Appendix C. Bounded memory implementation of Algorithm 1

In this section, we introduce an alternative implementation of Algorithm 1 that uses bounded mem-
ory that is independent of the number T' of minibatches of data tensors being processed. This will be
done by replacing the step for computing the surrogate loss function ft with computing two ‘aggre-
gate tensors’ based on our deterministic analysis in Proposition 4. The total amount of information
fed in to the algorithm is O(T' [];-; I,) and T — oo, whereas Algorithm 2 stores only O(R[];_; I,,)
(recall that R is the number of dictionary atoms to be learned and T is the number of minibatches of
data tensors that have arrived). This is an inherent memory efficiency of online algorithms against
non-online algorithms (see, e.g., Mairal et al. (2010)).

We describe how Algorithm 2 is derived and why it is equivalent to Algorithm 1. By the
time that the new data tensor X} arrives, the algorithm have computed previous loading matrices
Ut(i)l,...,Ut(fl and two aggregate tensors A,_; € RF*E and B,_; € RIX>InxR  Then one
computes the code matrix H; € C®d¢ C R¥*? by solving the convex optimization problem in (120),
and then updates the aggregate tensors A; < A;_1 and By + B;_1. In order to perform the block
coordinate descent to update the loading matrices Ui(t) in eq. (18) of Algorithm 1, we appropriately
recompute intermediate aggregate matrices A; and B; using Algorithm 3 so that we are correctly
minimizing the surrogate loss function ft in (21) marginally according to Proposition 4 (ii).

Appendix D. Auxiliary Algorithms

In this section, we give auxiliary algorithms that are used to solve convex sub-problems in coding
and loading matrix updates for the main algorithm (Algorithm 1 for online CPDL). We denote by
IIg the projection operator onto the given subset S defined on the respective ambient space. For
each matrix A, denote by [A]e; (resp., [A]:e) the ith column (resp., row) of A.
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Algorithm 2 Online CP-Dictionary Learning (Bounded Memory Implementation)

1: Input: (&X})1<¢t<7 (minibatches of data tensors in R[;OX“'XI"XI)); [Uél),...,Uén)} €
RIS x - x REF (initial loading matrices); ¢/ > 0 (search radius constant);
2: Constraints: CV C REXE 1 < < n, ¢®°de C REXP (e.g., nonnegativity constraints)

3: Parameters: R € N (# of dictionary atoms); A > 0 (¢;-regularizer); (w)s>1 (weights
in (0,1]);

4:  Initialize aggregate tensors Ay € RFE*E B, ¢ R xIn xR,
5: Fort=1,...,T do:
6: Coding: Compute the optimal code matrix
Hy« argmin X, U%Y, ... U™ H):; (using Algorithm 4) (120)
HECcodeg]RRXb

7 Update aggregate tensors:

Ay (1 —wp)Apy + wHHE € REXE, (121)

Bt — (1 — ’wt)Bt_l + wt(Xt Xn+1 HtT) S RIIXMXI”XR; (122)
8: Update dictionary:
9: For i=1,...,n do:
10: Ay € REXE B, € REXR
11: + Algorithm 3 with input A, By, Ut(l)7 e Ut(l_l), Ut(z), Ut(il), e Ut(:l)l, i
12: Ct(i) — {U €CO|||U - Ut(i)1||F < C’wt}; (Restrict the search radius by

wt)
i . — T . .

13: Ut(z)  argming . [tr(UAt;iUT) —2tr(U Bt;i)} ; (Using Algorithm 5)
14: End for
15:  End for
16: Return: [U}l), . .,U:(Fn)] eCW x ... xC;

Algorithm 6 Alternating Least Squares for NCPD

1: Input: X € RQOX”'XI"‘ (data tensor); R € N (rank parameter); Dy = (Uél),--~ ,Uém)) €

RI;OXR X e X RIZ’BXR (initial loading matrices); N (number of iterations);

2. forn=1,...,N do:

3: Update loading matrices D,, = | ,Sl), e 7U7(,,m)] by

4: Fori=1,--- ,mdo:
A o Dut(U,,(Ll_)l, o Ur(bi:ll)’ Uv(fjll)v . UT(L”_T;U)(m) € RUnxxTiixIipaxxIn) xR (129)
B + unfold(A,m) € RU1Limtlixrlm) xR (130)
U € argmin |[unfold(X, i) — B(U™)T|? (131)

UeRY,

> (unfold(-, %) denotes the mode-i tensor unfolding (see Kolda and Bader (2009))) (132)

5: end for

6: end for 48
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Algorithm 3 Intermediate Aggregation

1: Input: A € REXE B ¢ RIvexInxR gy U] e REXE x  x RIWXE 1 <j<n
2: Do:

A;=A0U{U16...0U L Uis1 UL Uit ©...0 ULU, € REXE (123)

33 Forr=1,...,R do:

B(,r) := mode-(n + 1) slice of B at coordinate r (124)
biw = B(,m) x1 Ur(5,7) Xg -+ X1 U1 (5, 7) X1 Uig1 () Xz -+ X Un(s,7) € RE
(125)
By, = I; x R matrix whose rth column is b; (126)
4:  End for
5: Return:

Zi :ZZ(A,U]_, . .7Ui—]_,Ui+17 .. ,Un)
EZ’ = Ez(B’U:l, . .,Ui-l)Ui+17 .. ,Un)

Algorithm 4 Coding

1: Input: X € RM*b: data matrix, W € RM*E: dictionary matrix

2: A > 0: sparsity regularizer
3: ceode € REXD. congtraint set of codes
4: Repeat until convergence:
5: Do
H + Hecode | H— ——moee (WIWH - WX +0J) |, 127
e (H = iy =) (127)

where J C REX? ig all ones matrix.
6: Return H € C«de C RExD

Algorithm 5 Loading matrix update

1: Variables:
2: Ue g(i) C RI*E: previous jth loading matrix
3: (A, Byj) € REXE  REX(I1--In): intermediate loading matrices computed previously
4: Repeat until convergence:
5: For i =1 to R:
Ol = e (Wi = o O = (B (128
1) c (i) LX) [Zt}“ + 1 1]@% t;jl1et

6: Return U € c() C RIixR

49
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Algorithm 7 Multiplicative Update for NCPD

1: Input: X ¢ Rgox'"“m (data tensor); R € N (rank parameter); Dy = (Uél),~-~ ,Uém)) €

RIZlOXR X o X RIZ%XR (initial loading matrices); N (number of iterations);

2. forn=1,...,N do:

3: Update loading matrices D,, = | ,(Ll), e 7U,(Lm)] by

4: Fori=1,--- ,m do:
A out(U, ol ulith L plm ) g Ui xIn) xR (133)
B« unfold(A,m) € RU1Timaliziln)xR (134)
U « U% | © (unfold(X, )" B @ (UBTB) (135)
> (unfold(-,) denotes the mode-i tensor unfolding (see Kolda and Bader (2009))) (136)
> (® and @ denote entrywise product and division) (137)

5: end for

6: end for

7: output: Dy
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