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Abstract

Approximate Policy Iteration (API) algorithms alternate between (approximate) policy
evaluation and (approximate) greedification. Many different approaches have been explored
for approximate policy evaluation, but less is understood about approximate greedification
and what choices guarantee policy improvement. In this work, we investigate approximate
greedification when reducing the KL divergence between the parameterized policy and
the Boltzmann distribution over action values. In particular, we investigate the differ-
ence between the forward and reverse KL divergences, with varying degrees of entropy
regularization; these are chosen because they underlie many existing policy optimization
approaches, as we highlight in this work. We show that the reverse KL has stronger
policy improvement guarantees, and that reducing the forward KL can result in a worse
policy. We also demonstrate, however, that a large enough reduction of the forward KL
can induce improvement under additional assumptions. Empirically, we show on simple
continuous-action environments that the forward KL can induce more exploration, but
at the cost of a more suboptimal policy. No significant differences were observed in the
discrete-action setting or on a suite of benchmark problems. This work provides novel
theoretical and empirical insights about the forward KL and reverse KL for greedification,
and clear next steps for understanding and improving our policy optimization algorithms.
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1. Introduction

A canonical approach to learn policies in reinforcement learning (RL) is Policy Iteration
(PI). PI interleaves policy evaluation—understanding how a policy is currently performing
by computing a value function—and policy improvement—making the current policy better
based on the value function. The policy improvement step is sometimes called the greedi-
fication step, because typically the policy is set to a greedy policy. That is, the policy is
set to take the action that maximizes the current action-value function, in each state. In
the tabular setting, this procedure is guaranteed to result in iteratively better policies and
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converge to the optimal policy (Bertsekas, 2019). The greedification step can also be soft, in
that some some probability is placed on all other actions. In certain such cases, like with
entropy regularization, PI converges to the optimal soft policy (Geist et al., 2019).

Practically, however, it is not always feasible to perform each step to completion. Approx-
imate PI (API) (Bertsekas, 2011; Scherrer, 2014) allows for each step to be done incompletely,
and still maintain convergence guarantees. The agent can perform an approximate policy
evaluation step, where it obtains an improved estimate of the values without achieving
the true values. The agent can also only perform approximate greedification by updating
the policy to be closer to the (soft) greedy policy under the current values. The first
approximation underlies algorithms like Sarsa, where the action-value estimates are updated
with one new sample, upon which the new policy is immediately set to the soft greedy policy
(approximate evaluation, exact greedification).

It is not as common to consider approximate greedification. One of the reasons is that
obtaining the (soft) greedy policy is straightforward for discrete actions.1 For continuous
actions, however, obtaining the greedy action for given action-values is non-trivial, requiring
the computation of the maximum value (or supremum) over the continuous domain. Some
methods have considered optimization approaches to compute it, to get continuous-action
Q-learning methods (Amos et al., 2017; Gu et al., 2016; Kalashnikov et al., 2018; Ryu et al.,
2020; Gu, 2019). It is more common, though, to instead turn to policy gradient methods
and learn a parameterized policy.

This switch to parameterized policies, however, does not evade the question of how to
perform approximate greedification. Indeed, many policy gradient (PG) methods—those
approximating a gradient of the policy objective—can actually be seen as instances of API.
The connection between PG and API arises because efficient implementation of PG methods
requires the estimation of a value function. Actor-critic methods estimate value functions
through temporal-difference methods (Sutton and Barto, 2018). We explicitly show in this
work that the basic actor-critic method can be seen as API with a particular approximate
greedification step. In general, numerous papers have already linked PG methods to policy
iteration (Sutton et al., 1999; Kakade and Langford, 2002; Perkins and Pendrith, 2002;
Perkins and Precup, 2003; Wagner, 2011, 2013; Scherrer and Geist, 2014; Bhandari and
Russo, 2019; Ghosh et al., 2020; Vieillard et al., 2020a), including recent work connecting
maximum-entropy PG and value-based methods (O’Donoghue et al., 2017; Nachum et al.,
2017b; Schulman et al., 2017a; Nachum et al., 2019).

Moreover, most so-called PG methods used in practice are better thought of as API
methods, rather than as PG methods. Many PG methods use a biased estimate of the policy
gradient. The correct state weighting is not used in either the on-policy setting (Thomas,
2014; Nota and Thomas, 2020) or the off-policy setting (Imani et al., 2018). Additionally, the
use of function approximators to estimate action-values generally results in biased gradient
estimates without any further guarantees, such as a compatibility condition (Sutton et al.,

1. Even under discrete actions, there is a reasonable argument that approximate greedification may be
preferable, even if exact greedification is possible. We typically only have estimates of the value function,
and exact greedification on the estimates can potentially harm the agent’s performance (Kakade and
Langford, 2002). Further, having an explicit parameterized policy, even under discrete actions, can be
beneficial to avoid an effect known as delusional bias (Lu et al., 2018), where directly computing the
greedy value in action-value updates can result in inconsistent action choices.
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1999). This bias can be reduced by using n-step return estimates for the policy update, but
is not completely removed. Understanding approximate greedification within API, therefore,
is one direction for better understanding the PG methods actually used in practice.

The question is what approximate greedification approach should be used. One answer
is to define a target policy, that would provide policy improvement if we could represent it,
and learn a policy to approximate that target. The classical policy improvement theorem
(Sutton and Barto, 2018) guarantees that if a new policy is greedy with respect to the
action-value function of an old policy, then the new policy is at least as good as the old
policy. For parameterized policies (e.g., neural-network policies), exact greedification in each
state is rarely possible as not all policies will be representable by a given function class.
Instead of the greedy policy, we can use the Boltzmann distribution over the action values
as the target policy, which is known to provide policy improvement (Haarnoja et al., 2018).
Of particular importance for us and as we show in this work, stepping towards this target
policy—approximate greedification—on average across the state space—rather than for each
state—is also guaranteed to provide policy improvement. As such, it is a reasonable target
policy to explore for approximate greedification under function approximation.

We explore minimizing the Kullback-Leibler (KL) divergence to this target policy.2

Other options are possible, such as total variation or Wasserstein distance. We focus on the
KL because it underlies many existing methods—as has been previously shown Vieillard
et al. (2020a) and as we more comprehensively summarize in Section 3.2. Further, the KL
divergence is a convenient choice because stochastic estimation of this objective only requires
the ability to sample from the distributions and evaluate them at single points.

Even though the KL has been used, it is as yet unclear whether to use the reverse or the
forward KL divergence, here also called RKL and FKL respectively. That is, should the first
argument of the KL divergence be policy π, or should it be the Boltzmann distribution over
the action values? Neumann (2011) argues in favour of the reverse KL divergence to obtain
a most cost-average policy, whereas Norouzi et al. (2016) uses the forward KL divergence to
induce a more exploratory policy (i.e., more diverse state visitation distribution).

The typical default is the reverse KL. The reverse KL without entropy regularization
corresponds to a standard Actor-Critic update and is easy to compute, as we show in
Section 3.2. More recently, it was shown that the reverse KL guarantees policy improvement
when the KL can be minimized separately for each state (Haarnoja et al., 2018, p. 4); this
finding motivated the development of Soft-Actor Critic. Regret analyses involving Bregman
divergences, like for mirror descent (Orabona, 2019; Shani et al., 2020), also tend to imply
results for the reverse KL, but not for the forward KL.

Some work, though, has used the forward KL (Norouzi et al., 2016; Nachum et al., 2017a;
Agarwal et al., 2019; Vieillard et al., 2020b), including implicitly some work in classification
for RL (Lagoudakis and Parr, 2003; Lazaric et al., 2010; Farahmand et al., 2015). For
contextual bandits, Chen et al. (2019) showed improved performance when using a surrogate,

2. We use the KL divergence to project the target policy to the space of parameterized policies. This differs
from using the KL (or Bregman) divergence to regularize policy updates to force a new policy be close to
a previous one (Peters et al., 2010; Schulman et al., 2015; Abdolmaleki et al., 2018; Geist et al., 2019;
Vieillard et al., 2020a). While such regularization changes the target policy and may confer benefits to
algorithms (Schulman et al., 2015; Vieillard et al., 2020a), there still remains a question of how to project
the target policy, which is the main focus of the present paper.
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forward KL objective for the smoothed risk. Others used the forward KL to prevent mode
collapse, given that the forward KL is mode-covering (Agarwal et al., 2019; Mei et al., 2019).

Though both have been used and advocated for, there is no comprehensive investigation
into their differences for approximate greedification. The closest work is Neumann (2011),
but they do KL divergence reduction in the context of EM-based policy search using the
variational inference framework, whereas we frame the problem as approximate policy
iteration, which leads to different optimization processes and cost functions. Their reverse
KL target, for example, is a reward weighted trajectory distribution, which is different from
the Boltzmann distribution we use here and they minimize the KL divergence with respect
to the variational distribution, while we minimize it directly with respect to the policy. Their
work does not provide any theoretical results and their experimental settings are limited to
single step decision making, whereas we experiment on sequential decision making.

The goal of this work is to investigate the differences between using a forward or reverse
KL divergence, under entropy regularization, for approximate greedification. We ask, given
that we optimize a policy to reduce either the forward or the reverse KL divergence to a
Boltzmann distribution over the action values, what is the quality of the resulting policy?
We provide some clarity on this question with the following contributions.

1. We highlight four choices for greedification: forward KL (FKL) or reverse KL (RKL) to a
Boltzmann distribution on the action-values, with or without entropy regularization. We
show that many existing methods can be categorized into one of these four quadrants, and
particularly show that the standard Actor-Critic update corresponds to using the RKL.

2. We extend the policy improvement result for the RKL (Haarnoja et al., 2018) in two
ways. (a) Instead of reducing the RKL for all states, we only need to reduce it on average
under a certain state-weighting. (b) We characterize improvement under approximate
action-values, rather than only exact action-values.

3. We further extend our theoretical results under a condition where the policy does not
change too much; these results provide an extension of the seminal improvement results for
conservative policy iteration (Kakade and Langford, 2002, Theorem 4.1), to parameterized
policies using gradient descent on the RKL for greedification.

4. We show via a counterexample that merely reducing the FKL is not sufficient to guarantee
improvement and discuss additional sufficient conditions to guarantee improvement.

5. We investigate optimization differences in small MDPs, and find that, particularly under
continuous actions, (a) the RKL can converge faster, but sometimes to suboptimal
local minima solutions, but (b) the optimal solution of the FKL can be worse than the
corresponding RKL, particularly under higher entropy regularization.

6. In a maze environment, with neural network function approximation, we show that
the FKL promotes more exploration under continuous actions, by maintaining a higher
variance in the learned policy, but for discrete actions, exploration is very similar for both.

In addition to these carefully controlled experiments, we tested the approaches in
benchmark environments. We found that performance between the two was similar. We
hypothesize that the reason for this outcome is that the action-values and the corresponding
Boltzmann policy are largely unimodal for the benchmark problems; bigger differences
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should arise for the multi-modal setting. We conclude the work with a discussion about
open questions and key next steps, including how to leverage these insights about FKL and
RKL to potentially obtain improved policy optimization algorithms and theory.

2. Problem Formulation

We formalize the reinforcement learning problem (Sutton and Barto, 2018) as a Markov
Decision Process (MDP): a tuple (S,A, γ, r, p) where S is the state space; A is the action
space; γ ∈ [0, 1] is the discount factor; r : S ×A → R is the reward function; and, for every
(s, a) ∈ S ×A, p(· | s, a) gives the conditional transition probabilities over S. A policy is a
mapping π : S → ∆A, where ∆A is the space of probability distributions over A. At every
discrete time step t, an agent observes a state St, from which it draws an action from its
policy: At ∼ π(· | St). The agent sends the action At to the environment, from which it
receives the reward signal r(St, At) and the next state St+1.

In this work we focus on the episodic problem setting, where the goal of the RL agent is
to maximize the expected return—the expectation of a discounted sum of rewards—from the
set of start states. To formalize this goal, we define the value function V π for policy π as

V π(s) := Eπ

[ ∞∑
k=0

γkr(Sk, Ak) | S0 = s

]
.

The expectation above is over the trajectory (S0, A0, S1, A1, · · · ) induced by π and the
transition kernel p. For simplicity, we omit p in the subscript, because the expectation is
always according to p. We similarly define the action-value function:

Qπ(s, a) := Eπ

[ ∞∑
k=0

γkr(Sk, Ak) | S0 = s,A0 = a

]
= r(s, a) + γ E[V π(S′)|S = a,A = a].

A common objective in policy optimization is the value of the policy πθ averaged over
the start state distribution ρ0:

η(πθ) :=

∫
S
ρ0(s)

∫
A
πθ(a|s)Qπθ(s, a) da ds. (1)

The policy gradient theorem gives us the gradient of J(θ) (Sutton et al., 1999),

∇θη(πθ) =
1

1− γ

∫
S
dπθ(s)

∫
A
Qπθ(s, a)∇θπθ(a | s) da ds, (2)

where dπθ(s) := (1 − γ)
∑∞

t=0 γ
tp(St = s | S0 ∼ ρ0) is the normalized discounted state

visitation distribution.
Because we do not have access to Qπθ , we instead approximate. For example, in

REINFORCE (Williams, 1992), a sampled return from (s, a) is used as an unbiased estimate
of Qπθ(s, a). This method, however, assumes on-policy returns and tends to be sample
inefficient. Commonly, a biased but lower-variance choice is to use a learned estimate Q of
Qπθ , obtained through policy evaluation algorithms like SARSA (Sutton and Barto, 2018).
In these Actor-Critic algorithms, the actor—the policy—updates with a (biased) estimate of
the above gradient, given by this Q—the critic.
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Figure 1: Contrasting Policy Iteration (PI) and Approximation PI (API), left and
right respectively. [Left-hand Side] In PI, the policy evaluation step and the
greedification step are done exactly. In the policy evaluation step, the action values
for the current policy π are computed. In the greedification step—also called the
policy improvement step—the policy π′ is set to the (soft) greedy policy. Then
this π′ is handed to the policy evaluation step, as the new π, the new action values
are computed, and this process repeats. In this work, the soft greedy policy that
we consider is the Boltzmann policy, BτQπ, defined in Equation (3). We discuss
why this choice for greedification provides policy improvement in Section 3.1.
[Right-hand Side] In API, we use the same target policy for greedification—
namely the Boltzmann policy—but we only approximate this target policy. We
investigate minimizing—or at least reducing—a KL divergence between a parame-
terized πθ to the target policy for this approximate greedification. This learned πθ
corresponds to the new policy π′ that is handed back to the approximate policy
evaluation step. The approximate greedification step can fully minimize the KL or
only reduce it. There is a similar choice for the approximate policy evaluation step:
we can either obtain the best approximate action-values with a batch algorithm
like least-squares TD, or simply improve the estimate from the existing estimate
using multiple stochastic updates to the action-values under the new policy.

This Actor-Critic procedure with learned Q can be interpreted as Approximate Policy
Iteration (API). API methods alternate between approximate policy evaluation to obtain a
new Q and approximate greedification to get a policy π that is more greedy with respect
to Q. We depict this approach in Figure 1, and contrast it to PI. As we show in the next
section, the gradient in Equation (2) can be recast as the gradient of a KL divergence to
a policy peaked at maximal actions under Q; reducing this KL divergence updates the
policy to increase the probability of these maximal actions, and so become more greedy
with respect to Q. Under this API view, we obtain a clear separation between estimating Q
and greedifying π. We can be agnostic to the strategy for updating Q—we can even use
soft action values (Ziebart, 2010) or Q-learning (Watkins and Dayan, 1992)—and focus on
answering: for a given Q, how can we perform an approximate greedification step?

This work focuses on understanding the differences between using the forward and
reverse KL divergences towards the Boltzmann policy for approximate greedification. We
explicitly define each of these approaches in the next section. Other choices for approximate
greedification are possible—other target policies and other divergences or metrics—but we
constrain our investigation to a feasible scope. In the next section, we further motivate why
we investigate these approaches for approximate greedification, and later summarize how
these variants underlie a variety of policy optimization methods.
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3. Approximate Greedification

In this section, we formalize how to do approximate greedification. First, we discuss an
appropriate choice for the (soft) greedy policy πtarget. Given access to such a policy πtarget,
we can update our existing policy π to be closer to πtarget, using the KL divergence. The
KL divergence, however, is not symmetric and has an entropy parameter τ , resulting in four
variants. We present these four variants that we use throughout the paper, and derive the
updates under each choice. Finally, we discuss the importance of the state weighting in the
final objective, which weights the divergence to the target policy in each state.

3.1 Defining a Target Policy

A reasonable choice for the target policy is the Boltzmann distribution, as we motivate in
this section. The Boltzmann distribution we use here is also common in pseudo-likelihood
methods (Kober and Peters, 2008; Neumann, 2011; Levine, 2018), ensuring that one has a
target distribution based on the action-values.

Let Q be an action-value function estimate. For a given τ > 0, the Boltzmann distribution
BτQ(s, ·) for a state s is defined as

BτQ(s, a) :=
exp
(
Q(s, a)τ−1

)
Z(s)

for Z(s) :=

∫
A

exp
(
Q(s, b)τ−1

)
db (3)

where Z(s) is known as the partition function. The definition in Equation (3) does not
depend upon a particular policy: we can input any Q that is a function of states and actions.
For larger τ , the Boltzmann distribution is more stochastic: it has higher entropy.

This distribution can be derived by solving for the entropy-regularized greedy policy on
Q. To see why, recall the definition of the entropy of a distribution, which captures how
spread out the distribution is:

H(π(· | s)) := −
∫
A
π(a | s) log π(a | s) da.

The higher the entropy, the less the probability mass of π(· | s) is concentrated in any
particular area. Let F be the set of all nonnegative functions on A that integrate to 1. At a
given state, the entropy-regularized greedy policy is given by

πtarget(· | s) := arg max
p∈F

∫
p(a)(Q(s, a)− τ log p(a)) da. (4)

The integrand can be rewritten as follows:

p(a) (Q(s, a)− τ log p(a)) = τp(a) log
exp(Q(s, a)/τ)

p(a)

= τp(a) log
BτQ(s, a)

p(a)
+ τp(a) log

∫
exp

(
Q(s, a)

τ

)
da .

The right summand becomes a constant when integrated, so πtarget(· | s) can be rewritten as

πtarget(· | s) = arg min
p∈F

∫
p(a) log

p(a)

BτQ(s, a)
da = BτQ(s, ·).
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where the first term is actually the KL divergence between p and BτQ(s, a), which is
minimized by setting p to BτQ(s, a).

The use of entropy-regularization avoids obtaining deterministic, greedy policies that
can be problematic in policy gradient methods. Instead, this approach allows for soft
greedification, giving the most greedy policy under the constraint that the entropy of the
policy remains non-negligible. This policy can be shown to provide guaranteed policy
improvement, but under a different criteria: according to soft value functions (Ziebart, 2010).

Soft value functions are value functions where an entropy term is added to the reward.

V π
τ (s) := Eπ

[ ∞∑
k=0

γk [r(Sk, Ak) + τH(π(·|Sk))] | S0 = s

]

We can define the soft action-value function in terms of the soft value function.

Qπτ (s, a) := r(s, a) + γE[V π
τ (S′)|S = s,A = a]

We can also write the state-value function in terms of the action-value function.

V π
τ (s) = Eπ[Qπτ (s,A)− τ log π(A | s)].

These soft value functions corresponds to a slightly different RL problem described as
entropy-regularized MDPs (Geist et al., 2019).

For these soft value functions, we can guarantee policy improvement under greedification
with the Boltzmann distribution. If we set π′(·|s) = BτQπ(s, ·) for all s ∈ S, then Qπ

′
τ (s, a) ≥

Qπτ (s, a) for all (s, a) (Haarnoja et al., 2017, Theorem 4). This parallels the classical policy
improvement result in policy iteration (Sutton and Barto, 2018). This guaranteed policy
improvement is a motivation for using BτQ as a target policy for greedification. We extend
this policy improvement result to hold under weaker conditions in Section 5.

3.2 Approximate Greedification with the KL

In this section we discuss how to use a KL divergence to bring πθ closer to BτQ. One might
wonder why we do not just set π(·|s) = BτQ(s, ·). Indeed, for discrete action spaces, we can
draw actions from BτQ(s, ·) easily at each time step. However, for continuous actions, even
calculating BτQ(s, ·) requires approximating a generally intractable integral. Furthermore,
even in the discrete-action regime, using BτQ might not be desirable as Q is usually just
an action-value estimate. Greedifying with respect to an action-value estimate does not
guarantee greedification with respect to the action-value.

In this work we focus on the KL divergence to measure the difference between π and
πtarget. Given two probability distributions p, q on A, the KL divergence between p and q is

KLpq :=

∫
A
p(a) log

p(a)

q(a)
da, (5)

where p is assumed to be absolutely continuous (Billingsley, 2008) with respect to q (i.e. p is
never nonzero where q is zero), to ensure that the KL divergence exists. The KL divergence
is zero iff p = q almost everywhere, and is always non-negative. Stochastic estimation of
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the KL divergence has the advantage of requiring just the ability to sample from p and to
calculate p and q. This feature is in contrast to the Wasserstein metric for example, which
generally requires solving an optimization problem just to compute it.

The KL divergence is not symmetric. For example, KLpq may be defined while KLqp may
not even exist if q is not absolutely continuous with respect to p. This asymmetry leads
to the two possible choices for measuring differences between distributions: the reverse KL
and the forward KL. Assume that q is a true distribution that we would like to match with
our learned distribution pθ, where pθ is smooth with respect to θ ∈ Rk. The forward KL
divergence is KLqpθ and the reverse KL divergence is KLpθq .

We define the Reverse KL (RKL) for greedification on Q at a given state s as

RKLπθBτQ(s) := KLπθBτQ(s),

where we additionally define for any two policies π1, π2,

KLπ1π2(s) :=

∫
A
π1(a | s) log

π1(a | s)
π2(a | s) da.

This Q is any action-value on which we perform approximate greedification; it can be a soft
action value or not. We can rewrite the RKL as follows:

RKLπθBτQ(s) =

∫
A
πθ(a | s) log

πθ(a | s)
BτQ(s, a)

da

=

∫
A
πθ(a | s)

(
log πθ(a | s)−

Q(s, a)

τ
+ logZ(s)

)
da

= −H(πθ(· | s))−
∫
A
πθ(a | s)

Q(s, a)

τ
da+ logZ(s),

with gradient

∇θRKLπθBτQ(s) = −∇θH(πθ(· | s))−
∫
A
∇θπθ(a | s)

Q(s, a)

τ
da.

If we scale by τ to get τRKL(θ; s,Q), we can see that τ plays the role of an entropy
regularization parameter:3 a larger τ results in more entropy regularization on πθ(· | s).

For a finite action space, we can take the limit to get the Hard Reverse KL.4

lim
τ→0

τRKLπθBτQ(s) = lim
τ→0

τ
∑
a

πθ(a | s) log πθ(a | s)− τ
∑
A
πθ(a | s) logBτQ(s, a)

= 0− lim
τ→0

∑
a

πθ(a | s)
(
Q(s, a)− τ log

∑
b

exp
(
Q(s, b)τ−1

))

=

(
−
∑
a

πθ(a | s)Q(s, a)

)
+ lim
τ→0

τ log
∑
b

exp
(
Q(s, b)τ−1

)
=

(
−
∑
a

πθ(a | s)Q(s, a)

)
+ (ns) max

a
Q(s, a),

3. For a fixed BτQ, the policy that minimizes the RKL is the same regardless of the scaling by a constant
in front, so we use the more standard unscaled KL to define the RKL.

4. When investigating τ → 0, it is not straightforward to extend the calculations we do here to integrals, so
we derive them for the discrete case and extrapolate to the continuous case.
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where ns is the number of maximizing actions in s. Since the last term of the RHS does not
depend on πθ, we are motivated to define the Hard Reverse KL as follows, for both finite
and infinite action spaces.

Hard RKLπθBτQ(s) := −
∫
A
πθ(a | s)Q(s, a) da,

with gradient

∇θHard RKLπθBτQ(s) = −
∫
A
∇θπθ(a | s)Q(s, a) da.

If Q is equal to Qπθ , then this gradient is exactly the negative of the inner term of the policy
gradient in Equation (2).5 This similarity in form means that the typical policy gradient
update in actor-critic can be thought of as a greedification step with the Hard RKL.

Similarly, we can define the Forward KL (FKL) for greedification:

FKLπθBτQ(s) := KLBτQπθ
(s).

We can rewrite the FKL as

FKLπθBτQ(s) =

∫
A
BτQ(s, a) log

BτQ(s, a)

πθ(a | s)
da

=

∫
A
BτQ(s, a) logBτQ(s, a) da−

∫
A
BτQ(s, a) log πθ(a | s) da

= −H(BτQ(s, ·))−
∫
A
BτQ(s, a) log πθ(a | s) da

with gradient

∇θFKLπθBτQ(s) = −
∫
A
BτQ(s, a)∇θ log πθ(a | s) da.

We can again consider the limit τ → 0 in the case of a finite action space (in this case
there is no need to multiply the KL divergence by τ). Assume that there are ns maximizing
actions of Q(s, ·), indexed by a∗i .

lim
τ→0

FKLπθBτQ(s) = − lim
τ→0
H(BτQ(s, ·))− lim

τ→0

∑
a

exp
(
Q(s, a)τ−1

)∑
b exp(Q(s, b)τ−1)

log πθ(a | s)

= − lim
τ→0
H(BτQ(s, ·))−

∑
a

lim
τ→0

exp
(
Q(s, a)τ−1

)∑
b exp(Q(s, b)τ−1)

log πθ(a | s)

= − lim
τ→0
H(BτQ(s, ·))− 1

ns

ns∑
i=1

log πθ(a
∗
i | s).

5. We are unaware of a previous statement of this result in the literature, though similar results have been
reported. For example, Kober and Peters (2008) derive the policy gradient update from a pseudo-likelihood
method. Belousov and Peters (2019) also derive it as a special case of f-divergence constrained relative
entropy policy search (Peters et al., 2010). Some references to a connection between value-based methods
with entropy regularization and policy gradient can be found in (Nachum et al., 2017b).
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KL Formula Gradient Comment

RKL KLπθBτQ(s)
−
∫
A∇θπθ(a | s)τ−1Q(s, a) da−

∇θH(πθ(· | s))
A likelihood-based
Soft Actor-Critic.6

Hard
RKL

−
∫
A πθ(a | s)Q(s, a) da −

∫
A∇θπθ(a | s)Q(s, a) da

Equivalent to
vanilla actor-critic
if action value is
unregularized.

FKL KLBτQπθ
(s) −

∫
A BτQ(s, a)∇θ log πθ(a | s) da

Like classification
with cross-entropy
loss and BτQ the
distribution over
the correct label.

Hard
FKL

− 1
ns

∑ns
i=1 log πθ(a

∗
i | s) − 1

ns

∑ns
i=1∇θ log πθ(a

∗
i | s)

Like classification
with cross-entropy
loss and a∗i the cor-
rect labels.

Table 1: This table summarizes the four KL variants for greedification, including the
objective, gradient, and a descriptive comment. We fix a state s and define
a∗i ∈ arg maxaQ(s, a) with ns maximal actions. To reduce clutter, we have as-
sumed that there can only be finitely many maximizing actions for the Hard
FKL.

As the first term does not depend upon the policy parameters, we ignore it to define the
Hard Forward KL as

Hard FKLπθBτQ(s) := − 1

ns

ns∑
i=1

log πθ(a
∗
i | s)

For continuous actions, if we have a compact action space, then the arg max exists over a
and provides valid actions. We can use a similar definition to the discrete case, assuming
there are a finite number of maximal actions. If there are flat regions, with intervals of
maximal actions, then the sum is replaced with an integral; for simplicity we assume a finite
set and provide the definition under this assumption. The gradient for the Hard FKL is

∇θHard FKLπθBτQ(s) = − 1

ns

ns∑
i=1

∇θ log πθ(a
∗
i | s)

The Hard FKL expression looks quite similar to the cross-entropy loss in supervised classifi-
cation, if one views the maximum action of Q(s, ·) as the correct class of state s. We are
unaware of any literature that analyzes the Hard FKL for approximate greedification.

We summarize the main expressions, gradients and results in Table 1. Interestingly,
many existing policy gradient methods have policy updates that fit into one of these four
quadrants. We also summarize this categorization in Table 2, with more justification for
the categorization in Appendix A. For example, TRPO uses the Hard RKL, but with an
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Reverse KL Forward KL

Hard
No
entropy

Actor-Critic (Sutton and Barto, 2018); Trust
Region Policy Optimization (TRPO) (Schulman
et al., 2015) and variants including MPO (Ab-
dolmaleki et al., 2018), Mirror descent policy
iteration (Geist et al., 2019), REPS (Peters et al.,
2010); PPO (Schulman et al., 2017b); Deep De-
terministic Policy Gradient (DDPG) (Silver et al.,
2014; Lillicrap et al., 2016); Politex (Abbasi-
Yadkori et al., 2019)

Deep Conservative Policy It-
eration (DCPI) (Vieillard
et al., 2020b) ; Policy Greed-
ification as Classification
(Lagoudakis and Parr, 2003;
Lazaric et al., 2010; Farah-
mand et al., 2015)

Soft
With
entropy

Soft Q-learning (SQL) (Haarnoja et al., 2017);
Soft Actor-Critic (SAC) (Haarnoja et al., 2018);
A3C (Mnih et al., 2016); Conservative value iter-
ation (Kozuno et al., 2019)

UREX (Nachum et al.,
2017a; Agarwal et al., 2019);
Exploratory Conserva-
tive Policy Optimization
(ECPO) (Mei et al., 2019)

Table 2: A categorization of existing policy optimization methods, in terms of which un-
derlying approach is used to update towards the Boltzmann policy. This list is
not exhaustive, because (a) we have likely missed a few methods, given so many
variants are based on an Actor-Critic update and (b) some policy optimization
methods cannot be seen as updating with a KL divergence to the Boltzmann policy.
See Appendix A for justification for this categorization.

additional constraint that the policy should not change too much after an update. This
is encoded as a KL divergence to the previous policy, which is a difference use of the KL
than described above. The algorithms in this summary table have many properties beyond
the underlying update to the Boltzmann target policy; we do not intend to imply they
are solely defined by the use of the RKL or FKL, with or without entropy regularization.
Nonetheless, it provides another lens on understanding similarities and differences between
these algorithms, due to the choice of this underlying update.

3.3 Differences between the FKL and RKL

Although switching πθ and BτQ might seem like a small change, there are several differences
in terms of the optimization and the solution itself. In terms of the optimization, it can be
simpler to sample the gradient of the RKL, because actions do not have to be samplied
according to BτQ. The FKL, on the other hand, requires actions to be sampled from the
BτQ, which can be expensive. But, favourably for the FKL, if πθ(a | s) ∝ exp(θa), then
the FKL is convex with respect to θ because log

∑
i exp(θi) is convex.7 The RKL, on the

other hand, is generally not convex with respect to θ, even if πθ is parameterized with a
Boltzmann distribution.

The other critical difference is in terms of the solution itself. If BτQ is representable by
πθ for some θ, then the FKL and RKL both have the same solution: BτQ. Otherwise, they

7. This fact can be seen by showing that the Hessian is positive semi-definite.
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(a) FKL (b) RKL (global maximum) (c) RKL (subopt. local max)

Figure 2: Mean-seeking (FKL) and mode-seeking (RKL) behavior.

make different trade-offs. Of particular note is the well-known fact that the forward KL
causes mean-seeking behavior and the reverse KL causes mode-seeking behavior (Bishop,
2006). To understand the reason, we look at the expressions for each divergence. For a target

distribution q, the forward KL is
∫
x q(x) log

(
q(x)
p(x)

)
dx. If there is an x where q(x) >> 0 (i.e.

q(x) is significantly greater than zero) and p(x) is very close to zero, then q(x) log
(
q(x)
p(x)

)
is large. In fact, as p(x) → 0, we have that q(x) log

(
q(x)
p(x)

)
→ ∞. Therefore, to keep the

forward KL small, whenever q(x) >> 0 then we also need p(x) >> 0.

This can result in p that is quite different from q, if the parameterized p cannot represent
q. Particularly, if q is multimodal and p is unimodal, then the p∗ that minimizes the forward
KL will try to cover all of the modes simultaneously, even if the cost for that is placing high
mass in regions where q(x) ≈ 0. For us, this corresponds to regions where the action-values
are low. This forward KL solution, which is also called the M-projection (the M stands for
moment), is known to be moment-matching. In the case that the family of distributions
parameterizing p is exponential and has some element whose moments match those of q,
then the moments of p∗ and q will match (Koller and Friedman, 2009).

The reverse KL, on the other hand, has the expression
∫
x p(x) log

(
p(x)
q(x)

)
dx. Even if

q(x) >> 0, we can choose p(x) = 0 without causing p(x) log
(
p(x)
q(x)

)
to get big. This means

that p can select one mode, if q is multi-modal. This can be desirable in RL, because it
can concentrate the action probability on the region with highest value, even if there is
another region with somewhat high action values. This distinction provides another helpful
mnemonic: the forward KL cares about the full support of the target distribution q and
the reverse KL can restrict the support.

However, the reverse KL can get stuck in sub-optimal solutions. If q(x) is near zero for

some x, and we pick p(x) >> 0, then p(x) log
(
p(x)
q(x)

)
can be large. As q(x) gets closer to

zero, this number goes to infinity. Therefore, reducing the reverse KL will lead to p such
that when q(x) ≈ 0 then p(x) ≈ 0. Because of this, the reverse KL is sometimes called
zero-forcing or cost-averse. Similarly to the forward KL, this has certain consequences if p
is parameterized in a way that cannot represent q. In the multimodal target example we
used for the forward KL, p∗ that minimizes the reverse KL, often called the I-projection
(the I stands for information), will try to avoid placing mass in regions where q(x) ≈ 0. This
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means that p may end up in a sub-optimal mode when reducing the reverse KL via gradient
descent. Both behaviors are illustrated in Figure 2.

When approximating some distributions, reducing the FKL can cause overestimation
of the tail of the target because of the mean-seeking behavior, whereas reducing the RKL
underestimates it because of the mode-seeking behavior. In variational inference, the
posterior distribution is approximated using a variational distribution. Importance sampling
(IS) can be used to debias estimates obtained from some Bayesian inference procedures. The
IS proposal distribution is commonly obtained by minimizing the RKL. However, because
of this underestimation of the tail of the target, the quality of the IS estimates sometimes
suffer, and a proposal distribution that overestimates the tail of the target is more desirable.
Recent work (Jerfel et al., 2021) has shown that the FKL can be superior in this case. Better
understanding the implications of reducing the FKL in the context of approximate policy
improvement will facilitate incorporate such advantages into future RL algorithms.

3.4 The Weighting over States

The above greedification objectives, and corresponding gradients, are defined per state. To
specify the full greedification objective across states, we need a weighting d : S → R+.
Under function approximation, the agent requires this distribution to trade-off accuracy of
greedification across states. For example, the full objective for the RKL is∫

S
d(s)RKLπθBτQ(s) ds.

The other objectives are specified similarly.
The state weighting specifies how function approximation resources should be allocated

for greedification. If there are no trade-offs, such as if the Boltzmann policy can be perfectly
represented in each state, then the state weighting plays almost no role. It simply needs to
be positive in a state to ensure the KL is minimized for that state. Otherwise, it may be
that to make the policy closer to the Boltzmann policy in one state, it has to make it further
in another state. The state weighting specifies which states to prioritize in this trade-off.

Algorithms in practice use a replay buffer, where, without reweighting, d implicitly
corresponds to the state frequency in the replay buffer. We might expect early on that the
implicit weighting is similar to the state visitation distribution under a random policy, and
later more similar to the state visitation under a near-optimal policy—if learning is effective.
The ramifications of allowing d to be chosen implicitly by the replay buffer are as yet not well
understood. In practice, algorithms seem to perform reasonably well, even without carefully
controlling this weighting, possibly in part due to the fact that large neural networks are
used to parameterize the policy that are capable of representing the target policy.

There is, however, some evidence that the weighting can matter, particularly from
theoretical work on policy gradient methods. This role of the weighting might seem
quite different from the typical role in the policy gradient, but there are some clear con-
nections. When averaging the gradient of the Hard RKL with weighting d, we have
−
∫
S d(s)

∫
AQ(s, a)∇πθ(a | s) da ds. If d = dπθ and Q = Qπθ , then we have the true policy

gradient; otherwise, for different weightings d, it may not correspond to the gradient of any
function (Nota and Thomas, 2020). A similar issue has been highlighted for the off-policy
policy gradient setting (Imani et al., 2018), where using the wrong weighting results in
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convergence to a poor stationary point. These counterexamples have implications for API, as
they suggest that with accurate policy evaluation steps, the iteration between evaluation and
greedification—the policy gradient step—may converge to poor solutions, without carefully
selecting the state weighting.

At the same time, this does not mean that the weighting must correspond to the policy
state visitation distribution. Outside these counterexamples, many other choices could result
in good policies. In fact, the work on CPI indicates that the weighting with dπ can require a
large number of samples to get accurate gradient estimates, and moving to a more uniform
weighting over states can be significantly better (Kakade and Langford, 2002). The choice
of weighting remains an important open question. For this work, we do not investigate this
question, and simply opt for the typical choice in practice—using replay.

4. An API Algorithm with FKL or RKL

In this section, we provide a concrete algorithm that uses either the FKL or RKL for
greedification within an API framework. The algorithm resembles Soft Actor-Critic (SAC)
(Haarnoja et al., 2018), which was originally described as a policy iteration algorithm. The
key choices in the algorithm include (1) how to learn the (soft) action-values, (2) how to
obtain an estimate of the RKL or FKL for a given state, and (3) how to sample states.

To sample states, we use the standard strategy of maintaining a buffer of the most
recent experience. We sample states uniformly from this buffer. To obtain an estimate of
the FKL or RKL for a given state, we need to estimate the gradient that has a sum or
integral over actions. For the discrete action setting, we can simply sum over all actions.
The All-Actions updates from a state s correspond to

RKL : ∇θ
∑
a∈A

πθ(a | s) log πθ(a | s)−
∑
a∈A
∇θπθ(a | s) logBτQ(a | s)

= −
∑
a∈A
∇θπθ(a | s)

[
Q(s, a)

τ
− log πθ(a | s)

]
(6)

FKL : −
∑
a∈A
BτQ(a | s)∇θ log πθ(a | s) (7)

Hard RKL : −
∑
a∈A
∇θπθ(a | s)Q(s, a) (8)

Hard FKL : −∇θ log πθ

(
arg max

b
Q(s, b) | s

)
. (9)

For the Hard FKL, when there is more than one maximal action, we assume that ties are
broken randomly. For the continuous action setting, we can try to estimate the All-Actions
update with numerical integration. More practically, we can simply sample actions.

Sampling actions is more straightforward for the RKL than the FKL. For the RKL and
Hard RKL, we simply need to sample actions from the policy. In this case, we assume
we sample n actions a1, . . . , an from πθ(· | s) and, using ∇θπθ(a|s) = πθ(a|s)∇θ log πθ(a|s)
and

∑
a∈A πθ(a|s)∇θ log πθ(a|s) ≈

∑n
i=1

∇θ log πθ(ai|s)
n , compute a Sampled-Action update,
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where we also change Q to Q− V

RKL : − 1

n

n∑
i=1

∇θ log πθ(ai | s)
(
Q(s, ai)− V (s)

τ
− log πθ(ai | s)

)
(10)

Hard RKL : − 1

n

n∑
i=1

∇θ log πθ(ai | s)(Q(s, ai)− V (s)) (11)

The inclusion of a baseline V reduces variance due to sampling actions and does not
introduce bias. Alternatively, for certain distributions, we can use the reparametrization
trick and compute alternative sampled-action updates. For the case where the policy is
parametrized as a multivariate normal, with πθ(·|s) ∼ N (µθ(s),Diag(σθ(s))), where Diag(·)
converts a vector to a diagonal matrix, an action sampled a ∼ πθ(·|s) can be written as
a = aθ(s, a

′) = µθ(s) + Diag(σθ(s))a
′ for a′ ∼ N (0, I). This reparameterization allows

gradients to flow through sampled actions by using the chain rule. We can write:

∇θEπθ [f(πθ(·|s))] = ∇θ
∫
a
πθ(a|s)f(πθ(a|s)) da = ∇θ

∫
a′
p(a′)f(πθ(aθ(s, a

′)|s)) da′

=

∫
a′
p(a′)∇θf(πθ(aθ(s, a

′)|s)) da′ ≈ 1

N

N∑
i=1

∇θf(πθ(aθ(s, a
′
i)|s))

Applying this to the formulas in Table 1, the updates are

RKL :
1

n

n∑
i=1

∇θ log
(
πθ(aθ(s, a

′
i)|s)

)
−
(∇θQ(s, aθ(s, a

′
i))

τ

)
(12)

Hard RKL : − 1

n

n∑
i=1

∇θQ(s, aθ(s, a
′
i)) (13)

For the FKL, we need to sample according to BτQ(· | s), which can be expensive. Instead,
we will use weighted importance sampling, similarly to a previous method that minimizes
FKL (Nachum et al., 2017a). We can sample actions from πθ, and compute importance

sampling rations ρi := BτQ(ai|s)
πθ(ai|s) ∝

exp(Q(s,ai)τ
−1)

π(ai|s) . To reduce variance, we use weighted

importance sampling with ρ̃i := ρi∑n
j=1 ρj

, to get the update

FKL : −
n∑
i=1

ρ̃i∇θ log πθ(ai | s) (14)

The Hard FKL update is the same as in the discrete action setting, with the additional
complication that computing the argmax action is more difficult for continuous actions.
The simplest strategy is to do gradient ascent on Q(s, ·), to find a maximal action. There
are, however, smarter strategies that have been explored for continuous action Q-learning
(Amos et al., 2017; Gu et al., 2016; Kalashnikov et al., 2018; Ryu et al., 2020; Gu, 2019).
For example, input convex neural networks (ICNNs) ensure the learned neural network is
convex in the input action, so that a gradient descent search to find the minimal action of
the negative of the action-values is guaranteed to find a maximal action. We could use these
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approaches to find maximal actions, and then also learn an explicit policy with the hard
FKL update that increases the likelihood of these maximizing actions.

Finally, we use a standard bootstrapping approach to learn the soft action-values. We
perform bootstrapping as per the recommendations in Pardo et al. (2018). For a non-
terminal transition (s, a, r, s′), the action values Q(s, a) are updated with the bootstrap
target r + γV (s′). For a terminal transition, the target is simply r. Note that an episode
cut-off— where the agent is teleported to a start state if it reaches a maximum number of
steps in the episode—is not a terminal transition and is updated with the usual r + γV (s′).

To compute this bootstrap target, we learn a separate V . It is possible to instead simply
use Q(s′, a′)− τ log(π(a′|s′)) for the bootstrap target, but this has higher variance. Instead,
a lower variance approach is to use the idea behind Expected Sarsa, which is to compute
the expected value for the given policy in the next state. V (s′) is a direct estimate of this
expected value, rather than computing it from Q(s′, ·). To update V , we can use the same
bootstrap target for Q, but need to incorporate an importance sampling ratio to correct
the distribution over actions. To avoid using importance sampling, another option is to use
the approach in SAC, where the target for V (s) is Q(s, a)− τ log(π(a | s)). The complete
algorithm, putting this all together, is in Algorithm 1.

Algorithm 1 Approximate Policy Iteration (API) with KL Greedification

Input: choice of KL divergence; temperature τ ≥ 0; learning rates αθ, αv, αw
Initialize: policy πθ (parameters θ); action-value estimate Qβ (parameters β); state-value
estimate Vw (parameters w); experience replay buffer B
Get initial state s0

for t = 0, . . . do
Apply action at ∼ πθ(· | st) and observe r, st+1,done
B = B ∪ (st, at, st+1, r, done)
if |B| ≥ batch size then

Draw minibatch D ∼ B
Calculate gθ ≈ ED[∇θKL] using one of Equations 6 - 14
Calculate gw, gv using Algorithm 2
θ = θ − αθgθ
w = w − αwgw
v = v − αvgv

Algorithm 2 GetValueUpdates

Given: policy πθ; Qβ; Vw; τ ≥ 0; batch of data D
gw ← 0, gv ← 0
for (s, a, r, s′) in D do

Draw ã ∼ πθ(· | s).
gw ← gw − (Qβ(s, ã)− τ log πθ(ã | s)− Vw(s))∇wVw(s)
gv ← gv − (r + γ · (1− done) · Vw(s′)−Qβ(s, a))∇vQβ(s, a)

gw ← gw
|D| , gv ←

gv
|D|
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5. Theoretical Results on Policy Improvement Guarantees

We study the theoretical policy improvement guarantees under the RKL and FKL. We
start with definitions and by motivating the choice of the entropy regularized setting. We
then consider the guarantees, or lack thereof, for the RKL and FKL. We first provide an
extension of Lemma 2 in (Haarnoja et al., 2018) to rely only upon RKL minimization on
average across states, and then further extend the result to approximate action values. We
then show we can obtain a more practical result, under an additional condition that the
policy update does not take too big of a step away from the current policy.

Geist et al. (2019) performed error propagation analysis of entropy-regularized approx-
imate dynamic programming algorithms, but they did not provide a monotonic policy
improvement guarantee in the non-tabular setting, we do. Shani et al. (2020) analyzed
TRPO and provide monotonic policy improvement guarantee (Lemma 15). However, their
result relies on the tabular representation of the policy, and it does not necessarily apply to
RKL reduction for general, non-tabular policies. Lemma 2 of Lan (2021) is the same result
as our Theorem 6. Zhu and Matsubara (2020) provided monotonic policy improvement
guarantee similar to Theorem 6. Compared to their result, we take a further step to show
that RKL reduction on average across states suffices for monotonic policy improvement.
Moreover, we provide additional results that do not depend on having the true action values
or improbable state distributions.

Then we investigate the FKL, for which there are currently no existing policy improve-
ments results. We show that the FKL does not have as strong of policy improvement
guarantees as the RKL. We provide a counterexample where optimizing the FKL does not
induce policy improvement. But, this counterexample does not imply that FKL reduction
cannot provide policy improvement. We discuss further assumptions that can be made to
ensure that FKL does induce policy improvement. All proofs are contained in Appendix B.

5.1 Definitions and Assumptions

We characterize performance of the policy in the entropy regularized setting. First, it
will be useful to introduce some concepts for unregularized MDPs and then present their
counterparts for entropy regularized MDPs. Throughout, we assume that the class of policies
Π consists of policies whose entropies are finite. This assumption is not restrictive for finite
action-spaces, as entropy is always finite in that setting; for continuous action-spaces, for
most distributions used in practice like Gaussians with finite variance, the entropy will
also be finite. The assumption of finite entropies is necessary to ensure that the soft value
functions are well-defined.

For some of the theoretical results for the FKL, we will restrict our attention further to
finite action-spaces, to ensure we have non-negative entropies and to use the total variation
distance for discrete sets. We use sums instead of integrals throughout our proofs to enhance
clarity; unless we explicitly assume a finite action space, all of our results hold as well for
general action spaces given standard measure-theoretic assumptions.

Assumption 1. Every π ∈ Π has finite entropy: H(π(·|s)) <∞ for all s ∈ S.
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Definition 1 (Unregularized Performance Criterion). For a start state distribution ρ0, the
performance criterion is defined as

η(π) := Eρ0 [V π(S)].

Definition 2 (Unregularized Advantage). For any policy π, the advantage is

Aπ(s, a) := Qπ(s, a)− V π(s).

The advantage asks: what is the average benefit if I take action a in state s, as opposed
to drawing an action from π? The soft extensions of these quantities are as follows.

Definition 3 (Soft Performance Criterion). For a start state distribution ρ0 and temperature
τ > 0,the soft performance criterion is defined as

ητ (π) := Eρ0 [V π
τ (S)].

It will also be helpful to have a soft version of the advantage. An intuition for the
advantage in the non-soft setting is that it should be zero when averaged over π. To enforce
this requirement in the soft setting, we require a small modification.

Definition 4 (Soft Advantage). For a policy π and temperature τ > 0, the soft advantage is

Aπτ (s, a) := Qπτ (s, a)− τ log π(a | s)− V π
τ (s).

If τ = 0, we recover the usual definition of the advantage function. Like unregularized
advantage functions, this definition also ensures Eπ[Aπτ (s,A)] = 0.

5.2 Why Use the Entropy Regularized Framework?

Since the actual goal of RL is to optimize the unregularized objective, it might sound
unnatural to instead study guarantees in its regularized counterpart. We can view the entropy
regularized setting as a surrogate for the unregularized setting, or simply of alternative
interest. In the first case, it may be too difficult to optimize η(π); entropy regularization can
improve the optimization landscape and potentially promote exploration. Optimizing ητ (π)
is more feasible and can still get us close enough to a good solution of η(π). In the second
case, we may in fact want to reason about optimal stochastic policies, obtained through
entropy regularization. In either setting, it is sensible to understand if we can obtain policy
improvement guarantees under entropy regularization.

There have been several recent papers highlighting that entropy regularization can
improve the optimization behavior of policy gradient algorithms. Mei et al. (2020b) studied
how entropy regularization affects convergence rates in the tabular case, considering policies
parametrized by a softmax. By using a proof technique based on  Lojasiewicz inequalities,
they were able to show that policy gradients without entropy regularization converge to the
optimal policy at a O(1/t) rate. Furthermore, they also showed a Ω(1/t) bound for this
same method, concluding that the bound is unimprovable for vanilla policy gradients. By
adding entropy regularization, the convergence rate can be improved to O(e−t).

Ahmed et al. (2019) empirically studied how adding entropy regularization changes the
optimization landscape for policy gradient methods. By sampling multiple directions in
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parameter space for some suboptimal policy and visualizing scatter plots of curvature and
gradient values around that policy, combined with visualization techniques that linearly
interpolate policies, they concluded that adding entropy regularization likely connects local
optima. The optimization landscape can be made smoother, while also allowing the use of
higher learning rates.

Finally, Ghosh et al. (2020) provided theoretical justification that (nearly) deterministic
policies can stall learning progress. They first provide an operator view of policy gradient
methods, particularly showing that REINFORCE can be seen as a repeated application
of an improvement operator and a projection operator (Ghosh et al., 2020, Proposition
1). They then showed (Ghosh et al., 2020, Proposition 5) that the performance of the
(non-projected) improved policy π′, η(π′), is equal to η(πold) times a term including the
variance: η(π′) = η(πold)(1 + Variance of Return under πold

Expected Return under πold
) ≥ η(πold). This means that if the

variance under πold is near zero, then η(π′) ≈ η(πold). In that sense, having higher variance
can help the algorithm make consistent progress. A common way of achieving higher variance
is by adding entropy regularization.

Finally, there is some theoretical work relating the solutions under the unregularized
and regularized objectives. From (Geist et al., 2019, Proposition 3), if the entropy is
bounded for all policies with constants Lτ , Uτ giving Lτ ≤ −τH(π) ≤ Uτ , then we know
that V π(s)− Uτ

1−γ ≤ V π
τ (s) ≤ V π(s)− Lτ

1−γ . Using this result, we can take expectations across
the state space with respect to the starting state distribution, to get

η(π)− Uτ
1− γ ≤ ητ (π) ≤ η(π)− Lτ

1− γ .

Hence, if the upper bound is tight, increasing ητ (π) will increase η(π). A similar result exists
for single-step decision making with discrete actions (Chen et al., 2019, Proposition 2).

5.3 Policy Improvement with the RKL

First, we note a strengthening of the original result for policy improvement under RKL
reduction (Haarnoja et al., 2018). Particularly, they take πnew to be the policy that minimizes
the RKL to BτQπoldτ (s, ·) at every state. Examining their proof reveals that their new policy
πnew does not have to be the minimizer; rather, it suffices that πnew is smaller in RKL than
πold at every state s. We therefore restate their lemma with this slight modification.

Lemma 5 (Restatement of Lemma 2 (Haarnoja et al., 2018)).For πold,πnew ∈Π, if for all s

RKLπnewBτQ
πold
τ

(s) ≤ RKLπoldBτQ
πold
τ

(s),

then Qπnewτ (s, a) ≥ Qπoldτ (s, a) for all (s, a) and τ > 0.

Proof Same proof as in Haarnoja et al. (2018).

We extend this result by considering an RKL reduction in average across states, rather than
requiring RKL reduction in every state. To prove our result, it will be useful to prove a soft
counterpart to the classical performance difference lemma (Kakade and Langford, 2002).

Lemma 6. [Soft Performance Difference] For any policies πold, πnew, any τ ≥ 0, we have

ητ (πnew)− ητ (πold) =
1

1− γEdπnew
[
Eπnew [Aπoldτ (S,A)]− τKLπnewπold

(S)

]
.
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If we set τ = 0, we recover the classical performance difference lemma. Now, we can
show that reducing the RKL on average is sufficient and necessary for policy improvement.

Proposition 7. [Improvement Under Average RKL Reduction] For πold, πnew ∈ Π, define

∆RKLπoldπnew(S) :=RKLπoldBτQ
πold
τ

(S)− RKLπnewBτQ
πold
τ

(S).

For τ > 0 : ητ (πnew)− ητ (πold) =
τ

1− γEdπnew
[
∆RKLπoldπnew(S)

]
. (15)

Furthermore, ητ (πnew) ≥ ητ (πold) if and only if Edπnew [∆RKLπoldπnew(S)] ≥ 0.

This result shows that reducing the RKL on average, under weighting dπnew , guarantees
improvement. Notice that the more stringent condition of RKL reduction in every state
from Theorem 5 ensures reduction under the weighting dπnew ; this new result is therefore
more general. Ensuring reduction under dπnew , however, may be difficult in practice, as we
do not have access to data under πnew; rather, we have data from πold. We extend this result
in Section 5.3.2, to a weighting under πold, by adding a condition on how far πnew moves
from πold. This more practical result relies on the above result, and so we present the above
result first as a standalone to highlight the key reason for the policy improvement.

This result provides some theoretical support for using stochastic gradient descent for
the RKL, as is done in practice. It is unlikely that we will completely minimize the RKL
on every step, nor reduce it in every state. With sufficient reduction of the average RKL
on each step, this iterative procedure between approximate greedification and exact policy
evaluation should converge to an optimal policy. In fact, by inspecting Equation (15), we
can see that any optimal policy satisfies, for any fixed π0,

π∗ ∈ arg max
π∈Π

ητ (π) = arg max
π∈Π

ητ (π)− ητ (π0) = arg max
π∈Π

τ

1− γEdπ [∆RKLπ0π (S)]

Note, however, that we cannot generally guarantee that this procedure will converge to the
optimal policy. This is because the average RKL reduction may decrease to zero prematurely,
in the sense that limi→∞ ητ (πi) may be less than supπ∈Π ητ (π).

5.3.1 Extension to Action-value Estimates

In the previous section we focused on approximate greedification with exact action-values.
The theoretical results allowed for improvements on average across the state space, better
reflecting what is done in practice. However, algorithms in practice are also not likely to
have exact action-values. In this section, we further extend the theoretical results to allow
for both approximate greedification and approximation policy evaluation.

First, we prove an analogue of the soft performance difference lemma for approximate
action-values.

Lemma 8. [Approximate Soft Performance Difference] Let πold, πnew be any policies and
let τ ≥ 0. Let Q̂ : S × A → R represent an action-value estimate and let ε(s, a) :=
Q̂(s, a)−Qπoldτ (s, a) be the per-state approximation error. As well, define

∆̂RKLπoldπnew(S) := RKLπold
Bτ Q̂

(S)− RKLπnew
Bτ Q̂

(S),

ε̄ := Edπnew [Eπnew [ε(S,A)]− Eπold [ε(S,A)]].
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We have: ητ (πnew)− ητ (πold) + ε̄ =
τ

1− γEdπnew [∆̂RKLπoldπnew(S)]. (16)

As a corollary, we have a corresponding policy improvement result.

Corollary 9. [Approximate RKL Reduction] Under the assumptions of Theorem 8, ητ (πnew) ≥
ητ (πold) iff τ

1−γEdπnew ∆RKLπoldπnew(S) ≥ ε̄.

If we only have access to an estimate Q̂ of Qπoldτ , reducing the RKL is not enough to
guarantee policy improvement. When one reduces the RKL, one must also take care that ε̄
not be larger than the RKL amount reduced. The quantity ε̄ represents the difference in
average approximation error over the action distributions of πnew and πold. For ε̄ to be small,
the approximation error averaged over the πnew distribution should not be much larger than
the approximation error averaged over the πold distribution. For example, ε̄ could be small
if πnew is similar to πold, or if Q̂ already approximates Qπoldτ well under the state-action
distribution induced by πnew.

5.3.2 Extensions to Weighting Under dπold

CPI (Kakade and Langford, 2002) derives a lower bound of the performance difference under
which one is able to guarantee policy improvement using dπold , assuming πnew is sufficiently
close to πold. Similar considerations allow us to derive a corresponding bound in our setting.

Proposition 10. If KLπnewπold
(s) ≤ α for all s ∈ S,

ητ (πnew)− ητ (πold) ≥ 1

1− γEd
πold

[∑
a

πnew(a|S)Aπoldτ (S, a)− τKLπnewπold
(S)− 4

√
2Vτ,max

√
α

]
=

1

1− γEd
πold

[
∆RKLπoldπnew − 4

√
2Vτ,max

√
α

]
(17)

With knowledge of Vτ,max and the exact value functions, one could optimize the lower
bound in Theorem 10 as a function of both α and πnew, without knowledge of dπold . If Vτ,max
is large, then α must be rather small to ensure that the RHS of Theorem 10 is non-negative.
Intuitively, the larger the maximum return, the greater the possible error in using dπold

rather than dπnew .

We can also combine Theorem 10 and Theorem 8.

Proposition 11. If KLπnewπold
(s) ≤ α for all s ∈ S,

ητ (πnew)− ητ (πold) ≥ 1

1− γEd
πold

[
τ∆̂RKLπoldπnew(S)

+
∑
a

ε(s, a)(πold(a)− πnew(a))− 4Vτ,max
√

2α

]
. (18)

5.4 Policy Improvement with the FKL

In this section, we study the policy improvement properties of reducing the FKL. First,
in Section 5.4.1 we provide a counterexample showing that reducing the FKL leads to a
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strictly worse policy. Second, in Section 5.4.2 we provide a sufficient condition on the FKL
reduction to ensure policy improvement. The plots in that section show that this bound is
non-trivial, but that unfortunately the required reduction is close to the maximum possible
reduction. Third, in Section 5.4.3, we discuss when reducing the FKL may be used as a
surrogate for reducing the RKL, in particular by providing an upper bound for the RKL in
terms of the FKL. It will turn out that reducing the FKL alone is insufficient for reducing
the RKL because this bound involves not only the FKL, but another term that depends
upon πnew. We conclude with a discussion about the implications for the use of FKL for
approximate greedification.

5.4.1 Counterexample for Policy Improvement under FKL Reduction

Unfortunately, the FKL does not enjoy the same policy improvement guarantees as the
RKL. In the next proposition, we provide a counterexample where reducing the FKL makes
the policy worse. The intuition behind this example is that πold almost always chooses the
good action, but is made close to deterministic and thus arbitrarily large in FKL to BτQπoldτ ,
while πnew, by being less deterministic, reduces the FKL to BτQπoldτ but it almost always
chooses the bad action, thus being worse in the soft-objective.

Again we use the notation

∆FKLπoldπnew(s) := FKLπoldBτQ
πold
τ

(s)− FKLπnewBτQ
πold
τ

(s)

where ∆FKLπoldπnew(s) > 0 means we obtained FKL reduction: the new policy has lower FKL
than the old policy.

Proposition 12. [FKL Counterexample] There exists an MDP such that, for any τ ≥ 0,
there exists a pair of policies (πold, πnew) where ∆FKLπoldπnew(s) > 0 at every state but the new
policy has lower value: Qπnewτ (s, a) < Qπoldτ (s, a) at every state-action pair (s, a) ∈ S × A,
V πnew
τ (s) < V πold

τ (s) at every state s ∈ S, and ητ (πnew) < ητ (πold).

5.4.2 Policy Improvement under Sufficient FKL Reduction

We know that completely reducing the FKL, under the assumption that we can represent all
policies, will guarantee improvement, since then we would have πnew = BτQπoldτ . One might
hope that additional conditions, that ensure sufficient reduction in the FKL, might imply
policy improvement. Because policy improvement is obtained if and only if the RKL is
reduced, as per Theorem 7, we can equivalently ask what conditions on the FKL ensure we
obtain RKL reduction. In this section, we provide a lower bound on the FKL reduction, that
guarantees the RKL is reduced and so the policy is improved. We numerically investigate
the magnitude of required reduction under this condition, to see how much lower it is than
completely reducing the FKL.

As before, we could first prove this result under reduction per-state; this is a more
restricted setting that implies reduction in average across the states. We therefore provide
only the more general result, which averages across states, as the connection between per-
state and across state has already been clearly shown above and is not useful to repeat.
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Proposition 13 (Improvement Under Average Sufficient FKL Reduction). Assume the
action set is finite. If

Edπnew
[
RKLπoldBτQ

πold
τ

(S) + EBτQπoldτ
[log πold(·|S)]

]
≥ 0, (19)

Edπnew [∆FKLπoldπnew(S)] ≥ Edπnew [FKLπoldBτQ
πold
τ

(S)]− 1

2

(
τ

‖Qπoldτ ‖∞

(
Edπnew

[
RKLπoldBτQ

πold
τ

(S)
]

+ Edπnew
[
EBτQπoldτ

[log(πold(·|S))]
]))2

, (20)

and ∀s ∈ S, ∆FKLπoldπnew(S) ≥ 0, (21)

then ητ (πnew) ≥ ητ (πold).

Equation (19) essentially says that Edπnew
[
RKLπoldBτQ

πold
τ

(S)
]

is greater than or equal to

Edπnew
[
FKLπoldBτQ

πold
τ

(S) +H(BτQπoldτ (S, ·))
]
. When might the RKL be larger than the FKL

and the entropy? If BτQπoldτ has low entropy across states, then BτQπoldτ will have low
probability mass placed on certain actions. If πold places probability mass on these actions,
the RKL will likely be high because the RKL incentivizes mode-matching. Unfortunately,
this result also assumes that FKL reduction is non-negative in all states.

Just as with the RKL, we can extend these results to use an action-value estimate Q̂.
We provide these extensions and their proofs in Appendix B.2.1.

We know that fully reducing the FKL, so that πnew equals BτQπoldτ , guarantees improve-
ment, which is a strong requirement; we can ask how much less strict the above condition is
in comparison. We can check this numerically, in a simple bandit setting with |A| = 5. We
test different πold calculated as:

πold = (1− λ)πrand + (λ)BτQ

for λ ∈ {0, 1/3, 2/3, 0.99}, πrand the random policy and each of these policies corresponding
to probability vectors over the 5 actions. Varying λ allows us to see the impact on the
bound for policies far from the target BτQ (λ = 0) to very close to the target (λ = 0.99).
Additionally, the temperature plays an important role in the bound. We therefore measure
the bound for a variety of τ , for each λ. We include the results for 30 seeds in Figure 3.

We can see that the bound is very conservative and a near-maximum FKL reduction
is necessary for many temperatures. These plots suggest that additional conditions are
needed for FKL reduction to guarantee improvement, as we discuss further at the end of
this section.

5.4.3 Upper Bounding the RKL in Terms of the FKL

The primary goal for this section is to highlight a potential direction towards connecting
minimizing FKL to the RKL. We show that the FKL times a term that depends on the new
and old policies gives an upper bound on the RKL. We discuss how this connection provides
insight into why FKL reduction may not result in improvement. We omit dependence on
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Figure 3: The Relative Gap between the maximal ∆FKL and our bound. We measure the
ratio between our bound on the required level of reduction in Equation (20) and
the maximum possible FKL reduction (i.e. ∆FKL = FKLπoldBτQ). The Relative Gap
is 1-ratio, where values close to zero indicate near-maximal reduction is necessary
for improvement in the soft objective. We show the result for policies far from the
target (leftmost) to policies very close to the target (rightmost). The solid line is
the median over 30 runs, with the shaded region showing the 25% percentile and
the 75% percentile.

the state in the following result, but it holds per state. This result is a straightforward
application of a result from Sason and Verdú (2016). The result uses the Rényi divergence
of order ∞:

D∞(P ‖ Q) := log

(
max
i

pi
qi

)
where P and Q are two discrete probability distributions, with elements pi and qi respectively,
that are absolutely continuous with respect to each other (i.e. one is never nonzero where
the other one is zero).

Lemma 14 (An Upper Bound on RKL in Terms of the FKL). Assume the action set is
finite. For κ(t) := t log t+1−t

t−1−log t where κ is defined on (0, 1) ∪ (1,∞) and all s ∈ S,

RKLπnewBτQ
πold
τ

(s) ≤ κ (exp(D∞(πnew ‖ BτQπoldτ ))) FKLπnewBτQ
πold
τ

(s) (22)

Proof To obtain this result, we bound the difference between the two choices of KL
divergence. Define

β1 := exp(−D∞(P ‖ Q)) and β2 := exp(−D∞(Q ‖ P )),

Then, from Equation (161) in Sason and Verdú (2016), as long as P 6= Q, we have

κ(β2) ≤
KLPQ

KLQP
≤ κ(β−1

1 ).

Setting P = πnew and Q = BτQπoldτ at a particular state s, where we omit the dependence
on s, we have

RKLπnewBτQ
πold
τ

(s) ≤ κ(β−1
1 )FKLπnewBτQ

πold
τ

(s) (23)

= κ (exp(D∞(πnew ‖ BτQπoldτ ))) FKLπnewBτQ
πold
τ

(s)
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To reduce the RKL as a function of πnew, it thus suffices to reduce the right-hand side of
the inequality. There are, however, problems with this approach. First, the bound itself
may not be tight; even if we could reduce FKL and the multiplicand κ(β−1

1 ), we still may
not obtain a reduction in RKL. Second, we have only developed a mechanism to reduce the
FKL, rather than the FKL and the multiplicand. A simple proxy could be to just focus on
reducing the FKL.

The bound given above includes κ(β−1
1 ), which also depends on πnew. It is possible that

in reducing the FKL, we actually also increase κ(β−1
1 ), possibly offsetting our reduction of

the FKL. For example, because of limited function approximation capacity, reducing the
FKL might result in πnew covering a low-probability region of BτQπoldτ in order to place
some mass at multiple high-probability regions of BτQπoldτ . While such a πnew might have
a moderate value of FKL, the resulting D∞(πnew ‖ BτQπoldτ ) would be large, making β−1

1

large. Correspondingly, because κ is a monotone increasing function (Sason and Verdú,
2016), κ(β−1

1 ) would also be large. Consequently, κ(β−1
1 )FKLπnewBτQ

πold
τ

may not be be small

enough to enforce a reduction in RKL.
On a more positive note, however, we know that the κ term in Equation (23),

κ(β−1
1 ) = κ (exp(D∞(πnew ‖ BτQπoldτ ))) = κ

(
max
i

(πnew)i
(BτQπoldτ )i

)
,

only grows logarithmically with maxi
(πnew)i

(BτQ
πold
τ )i

. Particularly,

lim
x→∞

κ (x)

log(x)
= 1 and so κ (x) = Θ(log(x)).

Therefore, β−1
1 has to increase by orders of magnitude to significantly increase κ(β−1

1 ).
A modification to the FKL reduction strategy could be to use κ(β−1

1 )FKLπnewBτQ
πold
τ

as an

objective. The main difficulty with this approach is that β1 is not differentiable because of the
max operation in the calculation of D∞(πnew ‖ BτQ). It might be possible to approximate
this maximum with smooth operations like LogSumExp, but we leave exploration of this
avenue for future work.

5.5 Summary and Discussion

There are two key takeaways from the above results. First, the RKL has a stronger policy
improvement result than the FKL as it requires only that the RKL of πnew be no greater than
the RKL of πold. In fact, RKL reduction under a certain state-distribution is a necessary
and sufficient condition for improvement to occur. Second, the FKL can fail to induce policy
improvement, but sufficient reduction guarantees such improvement. The current bounds,
although sufficient, are not a necessary condition for improvement to occur.

The theoretical results suggest that the FKL is inferior to the RKL for improving the
policy, and that the FKL requires additional conditions. We hypothesize that the nature of
these conditions has to do with the mean-seeking and mode-seeking behavior. Approximating
a target distribution via RKL reduction is very sensitive to placing non-negligible probabilities
in regions where the target distribution is close to zero. The FKL, on the other hand, focuses
on placing high probabilities in the regions where the target probability is high. It is not
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hard to see that reducing FKL can increase RKL, if for example we approximate a bimodal
distribution with a unimodal one, or if we use a Gaussian parameterization and the target
distribution is highly skewed. As we discussed, to obtain improvement, we need a sufficient
reduction in the FKL to ensure RKL reduction. Our bound provided one such condition,
but as we found with numerical experiments, this bound was relatively loose. It remains an
open question to understand the conditions that guarantee improvement, and when FKL
reduction does not give RKL reduction.

The settings where the RKL and FKL are significantly different—meaning that FKL
reduction can actually cause the RKL to increase—may not be as prevalent in practice. For
example, if the target distributions are unimodal and symmetric, we may find that RKL
and FKL have similar empirical performance. We will see in our experiments that the FKL
is often able to induce policy improvement in practice, suggesting a gap between the theory
developed and the practical performance.

An important next step is to leverage these policy improvement results to prove conver-
gence to an optimal policy under approximate greedification. When completely reducing
the RKL per state, it is known that the iterative procedure between policy evaluation and
greedification with RKL minimization converges to the optimal policy in the policy set
(Haarnoja et al., 2018, Theorem 1). This result should similarly hold, under only RKL
reduction, as long as that reduction is sufficient on each step. A next step is to understand
the conditions on how much reduction is needed per step, for both the RKL and FKL, to
obtain this result.

6. Empirical Results Comparing the FKL and RKL

In this section, we complement the theoretical results with an investigation of the other
practical properties of the FKL and RKL. The theory focused on their differences in terms
of inducing policy improvement. We also care about (1) the optimization behavior of these
greedification operators, when using (stochastic) gradient descent and (2) the nature of the
policies induced during learning, in particular whether stochasticity collapses quickly and
differences in encourage exploratory behavior. We may also want to understand generally
how these two approaches perform in the wild, on a suite of problems. We investigate these
three questions empirically in this section.

6.1 Optimization Behavior in Microworlds

The goal in this section is to understand differences between FKL and RKL in terms of (1)
the loss surface and (2) the behavior of iterates optimized under the losses. By behavior, we
mean whether the iterates reach multiple local optima, how stable iterates under that loss
are, and how often iterates reach the global optimum (or optima). Given the fine-grained
nature of our questions, we focus upon small-scale environments, which we call microworlds.
Doing so allows us to avoid any possible confounding factors associated with larger, more
complicated environments, and furthermore allows us to more fully separate any issues to
do with stochasticity.

We use two continuous action low-dimensional microworlds to allow us to visualize and
thoroughly investigate behavior. Our first microworld is a Bimodal Bandit in Figure 4a.
For continuous actions, we designed a continuous bandit with action space [−1, 1] and
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reward function Q(a) := exp
(
−1

2(2a+1
0.2 )2

)
+ 3

2 exp
(
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2(2a−1
0.2 )2

)
. The two unequal modes

at -0.5 and 0.5 enable us to test the mean-seeking and mode-seeking behavior as well as
simulate a realistic scenario where the agent’s policy parameterization (here, unimodal)
cannot represent the true distribution (bimodal).

Our second microworld is the Switch-Stay domain in Figure 4b. From s0, action 0
(stay) gives a reward of 1 and transitions to state 0. From s1, action 0 gives a reward of 2
and transitions to s1. From s0, action 1 (switch) gives a reward of -1 and transitions to s1,
while action 1 from s1 gives a reward of 0 and transitions to s0. To adapt this environment
to the continuous action setting, we treat actions > 0 as switch and actions ≤ 0 as stay.8

We set γ = 0.9 to ensure that the optimal action from s0 is to switch, which ensures the
existence of a short-term/long-term trade-off inherent to realistic RL environments.

(a) Continuous-action Bimodal Bandit

s0 s1

-1

1

0

2

(b) Switch-Stay environment

Figure 4: The Microworld environments used to investigate and visualize the optimization
behavior of FKL and RKL.

6.1.1 Implementation Details

All policies are tabular in the state. To calculate the FKL and RKL under continuous
actions, we use the Clenshaw-Curtis (Clenshaw and Curtis, 1960) numerical integration
scheme with 1024 points from the package quadpy,9 excluding the first and the last points at
-1 and 1 because of numerical stability. We use the true action-values when calculating the
KL losses. In the Bimodal Bandit, the action-value is given by the reward function, while
in Switch-Stay it is calculated (i.e., not learned). To calculate the Hard FKL, we use the
true maximum action as determined by the environment. For Switch-Stay, we calculate and
optimize the mean KL across the two states.

For policy parameterizations, in continuous action settings we use a Gaussian policy
with mean and standard deviation learned as (µ̂, log(1 + exp(σ̂)) The action sampled from
the learned Gaussian is passed through tanh to ensure that the action is in the feasible
range [−1, 1] and to avoid the bias induced in the policy gradient when action ranges are
not enforced (Chou et al., 2017).

8. Note that we also compared the RKL and FKL for the discrete action variant of Switch-Stay. Under a
softmax parameterization, we found no significant differences between the RKL and FKL.

9. https://pypi.org/project/quadpy/
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Finally, we use the RMSprop optimizer (Tieleman and Hinton, 2012). Overall trends for
Adam (Kingma and Ba, 2015) were similar to those for RMSprop, while results for SGD
resulted in slower learning for both FKL and RKL and a wider range of limit points, most
likely due to oscillation from the constant step-size. We focus on RMSprop here to avoid
any confounding factors associated with momentum.

Figure 5: KL loss over mean and standard deviation across temperature. The heatmaps
depict the loss for each mean and standard deviation pair. The last row depicts
the target distribution over which the KL loss is optimized. Note that the actual
action taken applies tanh to the samples of the resulting distribution (i.e., the
optimal mean is at tanh−1(0.5) ≈ 0.55). FKL loss has been upper-bounded for
better visualization of minima. Arrows indicate the global minimum.

6.1.2 Loss Surface in the Bimodal Bandit

We might expect the FKL to have a smoother loss surface. Given that policies often are part
of an exponential family (e.g., softmax policy), having the policy π be the second argument
of KLpq removes the exponential of π, resulting in an objective that is an affine function of
the features. For example, if π(a | s) ∝ exp(φ(s, a)) for features (s, a), the resulting FKL
becomes a sum of a term than is linear in φ(s, a) and a term involving LogSumExp(φ),
which is convex.

We visualize the KL loss surfaces in Figure 5 with five different temperatures. The
surfaces suggest the following.

1) The FKL surface has a single valley, while the RKL surface has two valleys that are
separated from one another. In this sense, the FKL surface seems much smoother than
the RKL surface, suggesting that iterates under the FKL will more likely reach the global
optimum than iterates under the RKL, which seem likely to fall into either of the valleys.
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2) The smoothness of the RKL landscape increases with temperature as the gap between
the peaks becomes less steep. A higher temperature also causes the valley in the FKL map
to become less sharply peaked, and for the optimal µ to move closer to 0.

3) The optimal µ for the FKL seems to move more quickly to zero, as τ increases, than
the optimal µ for the RKL, although both eventually reach 0. It is possible that the FKL may
become suboptimal sooner than the RKL as τ increases, likely because it is mean-seeking.
Interestingly, even the RKL appears to be mean-seeking for high τ , because selecting one
mode would have lower entropy.

As a note, it may seem strange that two valleys exist for the RKL at τ = 0 given that
the target distribution is unimodal. When τ = 0, however, the loss function is no longer a
distributional loss; that is, we are no longer minimizing any pseudo-distance between the
policy and a distribution.

6.1.3 Solution Quality in Switch-Stay

In this section, we investigate the properties of the solutions under the FKL and RKL for
an environment with more than one state. Given our previous results, we might expect the
FKL to result in better solutions, because FKL iterates can reach the global optimum more
easily. But this depends on the quality of this solution. The global minimum of the FKL
objective may not correspond well with the optimal solution of the original, unregularized
objective, as we investigate below.

Th Switch-Stay environment is appropriate to investigate the quality of the stationary
points of the RKL and FKL for two reasons. First, it is a simple instantiation of the full
RL problem, we are interested in understanding any possible differences between FKL and
RKL in the presence of short-term/long-term trade-offs. On Switch-Stay, the agent incur
a short-term penalty by switching from state 0 to state 1, but longer term this maximizes
return. Second, the Switch-Stay environment facilitates visualization. Since the MDP has
only two states, we can plot any value function as a point on a 2-dimensional plane. In
particular, one can view the entire space of value functions, shown recently to be a polytope
in the discrete-action setting (Dadashi et al., 2019).

We can similarly visualize the value function polytope for continuous actions in Switch-
Stay. Recall that we treat any action ≤ 0 as stay, and any action > 0 as switch. To
calculate the value function corresponding to a continuous policy π, we convert π to an
equivalent discrete policy πdiscrete of the underlying discrete MDP. The conversion requires
the calculation of the probability that π outputs an action ≤ 0 in each state, which we do
with numerical integration of the policy PDF. We then calculate the value function of π as
(I − γPπdiscrete)−1rπdiscrete , where Pπ and rπ are respectively the transition matrix and the
reward function induced by π.

For the hard FKL, we require access to the greedy action of the action-value function.
In the continuous-action setting, this greedy action is usually infeasible to obtain. For the
purposes of this experiment, if the greedy action is stay, we represent it in [−1, 1] by drawing
a uniform random number from [−1, 0]. If the greedy action is switch, we represent it as a
uniform random number in [0, 1]. This design choice is meant to simulate noisy access to
the greedy action in practice.
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Figure 6: We plot the final value functions on the continuous-action version of Switch-Stay
after 500 gradient steps for 1000 iterates, for a variety of temperatures. For clarity,
we plot in black the boundary of the value function polytope. All points on the
boundary, and all points in the interior of this shape, correspond to value functions
of some policy. The optimal and pessimal value functions are fixed for all τ , as we
plot the value functions corresponding to the unregularized MDP. Each iterate is
represented by a translucent dot. RMSprop with an initial learning rate of 0.01
was used.

For all of these experiments, we initialized means in the range (−0.95, 0.95). All
experiments are run for 500 gradient steps and each experiment has 1000 iterates. We
plot the value function of the final policy for each iterate and experiment in Figure 6 by
visualizing the value function polytope (Dadashi et al., 2019). That is, for finite state and
action spaces, the set of all value functions is a polytope (a union of of convex polytopes).
By plotting the value functions of our policies on the value function polytope, we are able to
concisely gauge the performance of an algorithm relative to other algorithms.

1) FKL with τ = 0 converged noticeably slower than the other temperatures, which
seems to be an artifact of our encoding of continuous actions to the underlying discrete
dynamics of Switch-Stay, and the fact that we used random tie-breaking when computing
the arg max for hard FKL.

2) RKL iterates converge slightly faster than FKL iterates across all temperature settings.
RKL iterates with τ = 0 sometimes converged to non-optimal value functions on the corners.

3) The limiting value functions of the FKL iterates seem more suboptimal than the
limiting value functions of the RKL iterates. The latter are closer to the optimal value
function of the original MDP. This result is consistent with our observations in the continuous
bandit. Although the FKL optimum may be more easily reached, that optimal point may
be suboptimal with respect to the unregularized objective.

6.1.4 The Impact of Stochasticity in the Update

Although with discrete actions it is practical to sum across all actions when calculating the
KL losses, difficulty emerges with high-dimensional continuous action spaces. Quadrature
methods scale exponentially with the dimension of the action-space, leaving methods like
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Clenshaw-Curtis impractical. Monte-Carlo integration—in this case sampling actions from
the current policy to estimate the update—seems the only feasible answer in this setting.
An important distinction between FKL and RKL, therefore, is how they perform when using
a noisier estimate of their updates.

We repeated the experiment in Switch-Stay, now using Monte-Carlo integration instead of
Clenshaw-Curtis quadrature to estimate the update for a state, averaged across the sampled
actions. As discussed in Section 4, we can estimate the gradients of the RKL and FKL
using sampled actions rather than full integration. The hard and soft RKL gradient updates
are estimated using sampled actions from the current policy π, and the soft FKL gradient
update is estimated using weighted importance sampling. Note that since Hard FKL only
depends upon the maximum action, we do not modify the algorithm in this experiment.

(a) 10 sample points.

(b) 500 sample points.

Figure 7: The final value functions in Switch-Stay with stochastic estimation of the gradient
using sampled actions, and otherwise the same settings as in Figure 6.

We can see in Figure 7 that the RKL is much more variable than the FKL with a smaller
number of sampled actions (10 vs 500). RKL iterates converged to minima to which they
did not converge in the Clenshaw-Curtis regime, even for 500 sampled actions. In Figure 7b,
there is an interesting trend across temperatures. Temperatures below 0.4 induced many
suboptima far from the optimal value function, while temperatures 0.4 and 1 seemed better
at clustering RKL iterates near the optimal value function. On the other hand, FKL seemed
relatively insensitive both to the temperature and the number of sample points. This relative
insensitivity could be due to having a smoother loss landscape to begin with, which tends to
direct iterates to a single global optimum. As noted before, though, this global optimum is
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quite suboptimal with respect to the unregularized MDP; nonetheless, the FKL can reach
its optimum more robustly under noise.

6.2 Exploration Differences between the FKL and RKL

The focus of this section is to study whether there are any significant differences in exploration
when using the FKL and RKL. To obtain sufficient exploration, the approach should induce
a state visitation distribution whose support is larger, namely that covers more of the state
space. Accumulating more transitions from more diverse parts of the state space presumably
allows for more accurate estimates of the action value function, and hence more reliable
policy improvement. Entropy-regularized RL, as it is currently formulated, only benefits
exploration by proxy, through penalizing the negative entropy of the policy. In the context
of reward maximization, entropy is only a means to an end; at times, the means may
conflict with the end. A policy with higher entropy may have a more diverse state visitation
distribution, but it may be prevented from exploiting that information to the fullest capacity
because of the penalty to negative entropy.

There has been some work discussing the potential differences between the FKL and
RKL for exploration. Neumann (2011) argues in favour of the reverse KL divergence as such
a resulting policy would be cost-averse, but also mentions that the forward KL averages over
all modes of the target distribution, which may cause it to include regions of low reward in
its policy. While in principle it may seem like a bad idea to include those, we note that the
value function estimates can be highly inaccurate (Ilyas et al., 2020), causing this inclusion
to possibly be beneficial for exploration. Indeed, Norouzi et al. (2016) use the forward KL
divergence to induce a policy that is more exploratory.

We hypothesize that the FKL benefits exploration by causing the agent’s policy to
commit more slowly to actions that apparently have high value under the current value
function estimate. This could benefit exploration both because it causes the agent to explore
more and avoids incorrectly committing too quickly to value function estimates that are
inaccurate. This non-committal behavior may help the policy avoid converging quickly to a
suboptimal policy. Conversely, we hypothesize that the RKL will more quickly reduce the
probability of actions that seem low-valued under our current (potentially inaccurate) value
estimates. We investigate the differences first in continuous-action Switch-Stay, and then
in a Maze environment with a misleading, suboptimal goal. Once again, we observed few
differences for the discrete action experiments, even in the Maze environment; we include
these results in Appendix D.1.

6.2.1 Exploration under Continuous Actions in Switch-Stay

We first revisit the Switch-Stay environment, and examine if the FKL and RKL exhibited
differences in the variance of their policies. Recall that we examined the value functions for
the final policies under the FKL and RKL, in Figure 6. We noted that the FKL converged
to more suboptimal policies than the RKL with the same τ , when evaluated under the
unregularized objective. A natural hypothesis is that the FKL policy is a more stochastic
policy, which is further from the optimal deterministic policy.

To see if this is the case, we plot the final standard deviations of the learned policies
for the learning rate of 0.01. In Figure 8, we see that the final FKL iterates have higher
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standard deviation for each τ , meaning that the final policies are further from the optimal
deterministic policy of the unregularized MDP. Put informally, the FKL tends to commit
less than the RKL. This means that even when using a target Boltzmann policy with the
same level of entropy-regularization, that level of entropy induces a more stochastic policy
under the FKL.

(a) After 10 updates. (b) After 500 updates.

Figure 8: We plot the standard deviation (y-axis) on the continuous-action version of Switch-
Stay, with the temperature varied on the x-axis. RMSprop is used with learning
rate 0.01. Each dot is the mean of 1000 iterates, with shaded areas corresponding
to the standard error. This plot is for state 0, and recall that every action ≤ 0
is treated as “stay” and every action > 0 is treated as “switch”. The large final
standard deviation for τ = 0 with the FKL is an artifact of our encoding of the
maximum action as a uniform random point in either [0, 1] or [-1, 0], depending
on if the maximum action is respectively stay or switch.

6.2.2 Exploration under Continuous Actions in Misleading Maze

We next investigate exploration behavior in a more difficult exploration problem: a maze
with a misleading goal. We also include an experiment in a maze with discrete actions, but
find behavior between the FKL and RKL is very similar (see Appendix D.1).

Figure 9a illustrates the maze we use in this section. The agent starts in the center of
the green block and has to get close to the center of the blue block. The red blocks are
the obstacles and the yellow block corresponds to the misleading exit, which terminates the
episode but gives a reward much lower than the real exit. Since the misleading exit is closer
to the starting point than the actual exit, the agent can only find out about the higher
reward after exploring the maze. The coordinates the agent sees are normalized to the range
[−1, 1], but its actions are given as a tuple (dx,dy), with dx,dy ∈ [−1, 1] corresponding to
the direction it will try to move (for the actions, 1 corresponds to the length of one block, as
opposed to one unit in state-space). The reward is −1 if the agent lands in a normal block,
−10 if it hits an obstacle or a wall, 1000 if it lands close to the center of the misleading
exit and 100, 000 if it lands close to the center of the actual exit. In case the agent hits a
wall or obstacle, any attempt to move in a direction that does not point to the opposite
direction will result in no movement and a reward of −10. Additionally, there is a timeout of
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(a) Misleading Maze
(b) RKL (c) FKL

Figure 9: (a) The optimal policy is to go to the blue goal. The yellow goal is misleading, in
that it has a positive reward and is easier to get to. Plots in (b) and (c) show the
cumulative number of times the correct exit is reached throughout training for
multiple temperatures, averaged over 30 runs with the standard errors reported
as the shaded regions.

10, 000 timesteps, after which the agent has its position reset to the starting position without
episode termination. To implement this Misleading Maze, we adapt code from GridMap.10

The FKL and RKL agents are the same as those used in the following benchmark
problems in Section 6.3, with pseudocode in Section 4. The FKL is used with weighted
importance sampling and RKL is used with the reparametrization trick. The actor and critic
are both parametrized as two-layer neural networks of size 128 with ReLU activations, with
the actor corresponding to an unimodal Gaussian. The critic learning rate is set to 1e− 4
and the actor learning rate is set to 1e− 5, the optimizer is RMSProp, the batch size is 32
and we sample 128 actions to estimate the gradients. Experiments were done using 30 seeds.

In Figure 9 we show the mean and standard error of the cumulative number of times the
correct exit is reached throughout training for multiple temperatures, where FKL and RKL
are plotted separately. Appendix D.2 gives more detailed plots of these experiments, where
we also show the cumulative number of times the misleading exit is reached and plots for
2M timesteps, instead of the 500k steps we show here.

We conclude that (1) the FKL seems to be more exploratory than the RKL in this
environment and (2) the performance when using FKL seems to be a little more robust
to the temperature hyperparameter. We also note that this is the only experiment in the
paper where the higher temperatures such as 10 and 100 performed better than the lower
ones. Figure 9a shows a sampled trajectory from one of the resulting FKL policies with
temperature 100, trained for 2M timesteps. Although these policies often reach the goal,
they are still highly stochastic. A natural next step is to make them more deterministic over
time, by using temperature annealing.

10. https://github.com/huyaoyu/GridMap
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6.3 Performance in Benchmark Environments

Finally, we compared the FKL and RKL on benchmark continuous and discrete-action envi-
ronments, using non-linear function approximation. For continuous actions, we experimented
on Pendulum, Reacher, Swimmer and HalfCheetah (Todorov et al., 2012). For discrete
actions, we experimented on three OpenAI Gym environments (Brockman et al., 2016) and
five MinAtar environments (Young and Tian, 2019). We selected policy parameterizations
(unimodal Gaussians) and other hyperparameters as is typically done for these problems, as
a first investigation into differences under typical conditions.

We found almost no difference between the FKL and RKL for discrete actions and only
minimal differences for continuous actions. For completeness and posterity, we still include
these systematic results in Appendix C. This contrasts the several differences we found above,
in both theory and in more controlled experiments. It is possible that in these environments,
the action-values are largely unimodal and so the resulting Boltzmann policy representable
by our parameterized policies. The differences between the FKL and RKL are less likely to
be pronounced in such settings. A natural next step is to investigate the differences between
the two in benchmark problems where it is common to use or need multimodal policies.

7. Discussion and Conclusion

In this work, we investigated the forward KL (FKL) and reverse KL (RKL) divergences to the
Boltzmann policy for approximate greedification. To the best of our knowledge, this is the
first systematic study into these two natural alternatives, in terms of understanding 1) their
theoretical policy improvement properties, 2) their differences in optimization behavior and
3) differences in terms of promoting exploration. Our goal was to highlight that this choice
for approximate greedification can have important theoretical and empirical ramifications;
we did not advocate for either the FKL or RKL, and found each had useful properties that
suit different situations.

We motivated the importance of understanding this question by explaining that many
policy optimization algorithms can actually be well-thought of as approximate policy iteration
algorithms, with alternating approximate policy evaluation and greedification steps. We
categorized many existing algorithms based on whether they (implicitly) use the FKL and
RKL, providing another lens to understand these algorithms. Given this approximate policy
iteration perspective, understanding improvements to either step can help us improve our
policy optimization algorithms. This work focused on understanding the greedification step,
which has been much less investigated than policy evaluation.

Based on our theoretical and empirical results, we can summarize our findings as follows.

Theoretically, we found reduction in the RKL is both sufficient and necessary to obtain
policy improvement (Proposition 7). The FKL, on the other hand, is not guaranteed to
induce policy improvement as reliably as the RKL, with a counterexample is a simple
one-state MDP (Proposition 5.4.1). Policy improvement can still occur if a sufficiently high
reduction in FKL occurs (Proposition 13). We further found that we could upper bound
the RKL with the FKL times another term based on the Renyi divergence (Lemma 14),
both suggesting that reducing the FKL on its own may be insufficient without additional
conditions that control this term as well.
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Empirically, on the microworld and maze experiments, there were more dif-
ferences between FKL and RKL in the continuous-action setting, whereas no significant
differences were observed in the discrete-action setting. In the continuous-action setting, the
FKL tended to have a smoother loss landscape that directed iterates to a global optimum
of the entropy-regularized objective. This global optimum, however, was sometimes less
optimal with respect to the unregularized objective, especially with higher temperatures,
than the optima of the RKL. Moreover, the greater suboptimality of the FKL limit points
was correlated with the final FKL policies having higher action variance than the corre-
sponding final policies for the RKL. Further experiments supported the claim that the FKL
induces more stochastic policies than the RKL, which is consistent with previously described
mean-seeking behaviour of the FKL. The fact that significant differences were only observed
in the continuous-action regime suggests the important role of policy parameterization.

Finally, on our benchmark experiments, there did not seem to be much difference
between choosing one divergence or the other for most of the environments, with performance
being more heavily dictated by the choice of temperature and learning rate. In fact, plots of
both performance and sensitivity to learning rates were highly similar. The algorithms had
some sensitivity to hyperparameters and the best learning rate-temperature combination
was also highly environment dependent.

This work highlights a variety of potential next steps. One conclusion from this work is
that, though it has been rarely used, the FKL is a promising direction for policy greedification
and warrants further investigation. For τ 6= 0, weighted importance sampling allows us to
estimate the forward KL objective stochastically, making it practically feasible. Although
the FKL performed similarly to the RKL in the benchmark problems, it has properties which
can be useful, such as committing less quickly to actions, being more robust to stochastic
samples of the gradient of the FKL for a state—which is pertinent as mini-batch estimates
will be stochastic—and having a smoother loss surface.

A natural question from this study is why the differences were the largest for continuous
actions. One potential reason is the policy parameterization: the Gaussian policy is likely
more restrictive than the softmax as it cannot capture multimodal structure. Learning the
standard deviation of a Gaussian policy may be another source of instability. In contrast, a
softmax policy can represent multiple modes, and does not separate the parameterization of
the measure of central tendency (e.g., mean) and variation (e.g., standard deviation).

A promising next step is to compare the FKL and RKL with different policy parame-
terizations for continuous actions. Recent work into alternative policy paramaterizations
has explored the Beta distribution (Chou et al., 2017), quantile regression (Richter and
Wattenhofer, 2019), and normalizing flows (Ward et al., 2019). While the latter two works in
particular have focused on the motivation of multimodality for domains that have multiple
goals, we believe that the relevance of multimodality for optimization is as important.

The choice of target distribution in the greedification objective is another interesting
question. The Boltzmann distribution over action values is a natural choice for entropy-
regularized RL, but one might not want to be tied this framework, especially given sensitivity
to the temperature parameter and exploration that is undirected. As yet, there are not too
many alternatives. The escort transform has been defined for discrete actions (Mei et al.,
2020a), to avoid the overcommital behavior of the softmax (Boltzmann) policy. For settings
where action-values are guaranteed to be positive, the normalized action-values have been
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used to create a target distribution (Ghosh et al., 2020). An interesting question is what
other alternatives there are to the Boltzmann distribution, especially for continuous actions.

In addition to the choice of target distribution, there are many other possible choices for
a greedification objective. Besides the KL divergences, one may consider the Wasserstein
distance, Cramér distance, the JS divergence, and many more. Some of our analysis for the
KL could actually be used to obtain some of these extensions. Our derivations for the FKL
were based on inequalities connecting f-divergences. Sason and Verdú (2016) compiled a list
of inequalities connecting f-divergences, so it is possible to follow similar steps to the ones
we followed here to derive bounds for other divergences as well. Since each divergence has
situations where it works best, having theoretical guarantees for all of them will make it
easier to design algorithms that work in each case.

Though we focused on episodic problems in this work, some of the approaches could
be used for the continuing setting with average reward. Recent work has analyzed the
regret in continuing RL problems for a policy iteration algorithm, called Politex (Abbasi-
Yadkori et al., 2019). The policy is a Boltzmann distribution over the sum of all previous
action-value function estimates. For continuous actions, a natural alternative is to consider
approximating this distribution with a parameterized policy. Work using differential action-
values for the average reward setting could benefit from explicit policy parameterizations
that use approximate greedification with respect to those differential action-values.

Finally, the connection between policy gradients approaches and API could provide new
directions to theoretically analyze policy gradient algorithms. A recent global convergence
result for policy gradient methods relies on a connection to policy iteration and showing
guaranteed policy improvement (Bhandari and Russo, 2019). These results are similar to
earlier results in Scherrer and Geist (2014), and in particular, both works rely on convex
policy classes and a closure of the policy class under greedification.

Many other works have exploited linear action-value parameterizations. Perkins and
Precup (2003) proved that API converges with linear function approximation for the action-
values and soft policy improvement. This work, though, requires the best linear action-value
approximation in the function class. Other works have assumed instead exact greedification,
with approximate action-values, such as Politex (Abbasi-Yadkori et al., 2019) which bounded
regret for an API algorithm, with linear action-values learned online. Scherrer (2014) provides
error propagation analyses of many variants of API; these analyses could be extended to
finite-sample guarantees by following (Scherrer et al., 2015). Finite-sample analyses for LSPI
(Lazaric et al., 2012) and classification-based PI (Lazaric et al., 2016) also exist, but again
were designed for approximate policy evaluation, and exact greedification.

It is clear there is a rich theoretical literature for API from which to draw, to fill in
gaps understanding existing policy optimization algorithms. An important next step is to
investigate if this theory can be extended to approximate greedification, and so make steps
towards better characterizing many existing policy optimization algorithms.
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Jan Peters, Katharina Mülling, and Yasemin Altün. Relative entropy policy search. In
AAAI Conference on Artificial Intelligence, 2010.

Mark S Pinsker. Information and information stability of random variables and processes.
Holden-Day, 1964.

Oliver Richter and Roger Wattenhofer. Learning policies through quantile regression.
arXiv:1906.11941, 2019.

Moonkyung Ryu, Yinlam Chow, Ross Anderson, Christian Tjandraatmadja, and Craig
Boutilier. Caql: Continuous action q-learning. In International Conference on Learning
Representations, 2020.
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Appendix A. Categorizing Existing Algorithms by their Greedification
Operators

There are many existing policy optimization algorithms. As we motivated in the introduction,
many of these can actually be seen as doing API, though they are typically described as
policy gradient methods. We categorize these methods based on which of these four KLs
underlie their policy update.

It is important to note that these methods are not only characterized by which KL
variant they use for updating towards the Boltzmann policy. In fact, in many cases other
properties are the critical novelties of the algorithms. For example, as noted below, the
Hard RKL underlies TRPO. However, a defining characteristic of TRPO is preventing the
policy from changing too much using a KL divergence to the previous policy. Therefore, in
addition to using a Hard RKL towards the Boltzmann policy, it also uses a KL divergence
to the old policy; these two KL divergences play different roles.

A.1 RKL without Entropy Regularization

Many actor-critic approaches that do not have entropy regularization are implicitly optimizing
a hard RKL when performing a policy update.

Vanilla Actor-Critic (Sutton and Barto, 2018) uses the gradient of the Hard RKL for
its policy update, in a given state. For the episodic objective η(πθ) given in Equation (1),
the policy gradient theorem shows that gradient is

∇θη(πθ) =

∫
S
dπθ(s)

∫
A
Qπθ(s, a)∇θπθ(a | s) da ds.

For each state, the inner update is exactly the Hard RKL. By selecting d = dπθ , the Hard
RKL averaged across all states exactly equals the policy gradient underlying actor-critic.
This weighting is obtained by simply acting on-policy and weighting the update by the
discount raised to the power of the step in the episode (Thomas, 2014). In practice, this
weighting by the discount is often omitted and the Hard RKL update performed in each
state visited under the policy.

Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) has the same
hard RKL objective as vanilla actor-critic, but with an additional constraint in the projection
step that the policy should not change too much after an update. This strategy builds on
the earlier Conservative Policy Iteration (CPI) algorithm (Kakade and Langford, 2002),
which motivates that the old policy and old action-values can be used in the objective. This
objective is sometimes called the linearized objective; with the addition of the constraint,
the objective corresponds to

J(θ) = ES∼dπθold ,A∼πθ [Qπθold (S,A)] = ES∼dπθold ,A∼πθold

[
πθ(A|S)

πθold(A|S)
Qπθold (S,A)

]
subject to δ ≥ ES∼dπθold [KL

πθold
πθ (S)]

For a given state sampled from dπθold , the inner optimization is precisely a hard RKL to the
action-values for the old policy. The objective can be written with actions sampled either
according to πθ or according to πθold with an importance sampling ratio.
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Note, though, that the actual TRPO algorithm uses an approximation that results in a
natural policy gradient update, rather than a gradient of the above objective. So, though
it is motivated by optimizing the above (Equation (14) in their work), it actually solves
(Schulman et al., 2015, Equation 17). This has further been re-interpreted as a mirror
descent update and used to provide convergence of TRPO (Neu et al., 2017; Liu et al., 2019;
Shani et al., 2020).

Proximal Policy Optimization (PPO) (Schulman et al., 2017b) the baseline they
compare against uses the same objective as TRPO, but uses a KL penalty instead of a
constraint. The policy objective with the KL penalty is

J(θ) = ES∼dπθold ,A∼πθold

[
πθ(A|S)

πθold(A|S)
Qπold(S,A)

]
− βEs∼dπθold

[
KL

πθold
πθ (S)

]
The greedification component of this objective—the first term—can again been seen as using
d = dπold with a Hard RKL to action-values Qπold . The second term simply modifies how the
Hard RKL is optimized, because the convergence point is unchanged: when θold is optimal,
setting θ = θ∗ maximizes the first term while keeping the second term 0.

The actual objective used in PPO clips hyperparameter ε ≥ 0 and is written as

J(θ) = Eπθold

[
min

(
πθ(a|s)
πθold(a|s)

Âπ(s, a), clip

(
πθ(a|s)
πθold(a|s)

, 1− ε, 1 + ε

)
Âπ(s, a)

)]
The clipped objective forces the probability ratio πθ(a|s)

πθold (a|s) to stay within [1− ε, 1 + ε].

Other trust region policy optimization methods can be also understood as min-
imizing the Hard RKL and a KL constraint, as noted in the beginning of the section.
Maximum a posteriori policy optimization (Abdolmaleki et al., 2018) resembles TRPO, but
uses a target policy obtained by replacing the entropy term in Equation (4) with an FKL
between p and an old policy. Politex (Abbasi-Yadkori et al., 2019) can be understood as
MPO without a KL constraint. Mirror descent policy iteration, which is mirror descent
modified policy iteration (Geist et al., 2019) with m = ∞, similarly uses a target policy
obtained by replacing the entropy term with a Bregman divergence from an old policy to p.
Another policy optimization algorithm based on the trust region method is relative entropy
policy search (Peters et al., 2010).

Deep Deterministic Policy Gradient (DDPG) (Silver et al., 2014; Lillicrap et al.,
2016) can be viewed as a “degenerate” Hard RKL with a deterministic policy, taking care to
differentiate through the action.

A.2 RKL with Entropy Regularization

The RKL has been used for an actor-critic algorithm and a continuous action Q-learning
algorithm.

Soft Actor-Critic (SAC) (Haarnoja et al., 2018) minimizes the RKL, but is written
slightly differently because it subsumes the temperature inside the reward and scales the
reward to control the temperature. The policy objective is

J(θ) = ES∼D
[
KL

(
πθ(·|S) ‖ exp(Qπold(S, ·))

Z(S)

)]
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where the states s are sampled from a dataset given by D. We note that A3C (Mnih et al.,
2016) updates the policy with the same objective, but does not learn the soft value functions.

Soft Q-learning (SQL) (Haarnoja et al., 2017) introduces a soft Bellman optimality
update, that iterates towards a soft optimal action-value Q∗ using a soft maximization.
To avoid sampling the Boltzmann policy, which is expensive, they proposed using Stein
variational gradient descent. This approach requires introducing an approximate sampling
network, which can be alternatively seen as a policy. The resulting objective corresponds
exactly to an RKL, with the Boltzmann policy defined on Q∗

J(θ) = ES∼D

[
KL

(
πθ(·|S)||exp

(
Q∗(S, ·)τ−1

)
Z(S)

)]

Two other approaches are similar to SQL, but for discrete actions. Asadi and Littman
(2017) propose generalized value iteration with the mellomax operator, where the maximum-
entropy mellowmax policy is a Boltzmann policy with state-dependent temperature. Conser-
vative value iteration (Kozuno et al., 2019) can be seen as a variant of SQL in which a trust
region method is used, formally proven in (Vieillard et al., 2020a).

A.3 FKL without Entropy Regularization

The FKL without entropy regularization and Boltzmann target policy has not previously
been explored. However, the FKL to other target distributions has been considered.

Deep Conservative Policy Iteration (DCPI) (Vieillard et al., 2020b) learns both
an action value function Q and a policy πθ, with target networks Q− and π− for each. To
update the policy, DCPI minimizes an FKL loss between πθ and a regularized greedification
of Q. In other words, DCPI uses a forward KL, but to different target distribution than the
Boltzmann distribution.

J(θ) := ES∼D[KL((1−α)π−+αG(Q)
πθ

(S)]

for α ∈ [0, 1] and G(Q(S, ·)) the greedy policy w.r.t. Q for a given state S.
Policy Greedification as Classification uses multi-class classification, where actions

that maximize Q(s, a) at each state are labeled positive, and the policy is updated to
predict that greedy action for every state (Lagoudakis and Parr, 2003; Lazaric et al., 2010;
Farahmand et al., 2015). This approach is related to using the Hard FKL, because the FKL
corresponds to the cross-entropy loss which can be used for classification. Other classification
methods, however, like SVMs, are not directly related.

A.4 FKL with Entropy Regularization

Under-appreciated Reward EXploration (UREX) (Nachum et al., 2017a) optimizes
a mixture of forward and reverse KLs. Their reverse KL is the usual vanilla actor-
critic objective, while the forward KL is given by KLπ

∗
πθ

, where they approximate π∗ ∝
exp
(
τ−1G− log πθ

)
with G being the return received at the end of the episode. Subsequent

work in Agarwal et al. (2019) also employs both a forward and reverse KL, where the forward
KL is initially used to collect diverse trajectories, and the reverse KL is used to learn a
robust policy, which performs well in sparse and under-specified reward settings.
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Exploratory Conservative Policy Optimization (ECPO) (Mei et al., 2019) splits
policy optimization into a project and a lift step. The project step minimizes the forward KL
divergence to a target policy πτ,τ ′ that is the optimal policy under the entropy-regularized
objective, with a KL penalty to the old policy.

Project : arg min
πθ

KL
πτ,τ ′
πθ

Lift : πτ,τ ′ = arg max
π

ES0 [V πold(S0)]− τKLππold + τ ′H(π)

There have also been relevant works in supervised learning using entropy regularization
and forward KL. In Reward Augmented Maximum Likelihood (RAML) (Norouzi
et al., 2016), instead of optimizing over the traditional maximum likelihood framework (Hard
FKL), a target reward distribution is defined, and the model distribution minimizes the
forward KL to that target distribution.

It is interesting to note that the FKL has been used in other area of reinforcement
learning. In Inverse Reinforcement Learning and Imitation Learning, Ghasemipour et al.
(2020) have shown that, under the cost regularized framework proposed by Ho and Ermon
(2016), most methods can be categorized as reducing some divergence. Notably among them
is behavior cloning, which corresponds to a FKL reduction between policies, whereas AIRL
(Fu et al., 2018), one of the state-of-the-art methods, reduces the RKL between occupancy
measures. The paper then proposes a variant of AIRL based on reducing the FKL, obtaining
competitive results.

Appendix B. Proofs

In this section we provide all the proofs. We give results organized according to the same
subsections as in the main body.

B.1 Proofs for Section 5.3: Policy Improvement with RKL

Lemma 15. [Soft Performance Difference] For any policies πold, πnew, any τ ≥ 0, we have

ητ (πnew)− ητ (πold) =
1

1− γEdπnew
[
Eπnew [Aπoldτ (S,A)]− τKLπnewπold

(S)

]
.

Proof When we write Eπnewρ0 , we mean the expectation over the trajectory distribution
induced by ρ0 and πnew.

1

1− γEdπnew ,πnew [Aπoldτ (S,A)] = Eπnewρ0

[ ∞∑
t=0

γtAπoldτ (St, At)

]

= Eπnewρ0

[ ∞∑
t=0

γt(Qπoldτ (St, At)− τ log πold(· | St)− V πold
τ (St))

]

where the first equality follows from the definition of the visitation distribution and the
second from the definition of the soft advantage. We can simplify the term inside the
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expectation as follows.

∞∑
t=0

γt(Qπoldτ (St, At)− τ log πold(· | St)− V πold
τ (St))

=

∞∑
t=0

γt(r(St, At) + γV πold
τ (St+1)− τ log πold(· | St)− V πold

τ (St))

=
( ∞∑
t=0

γt(r(St, At)− τ log πold(· | St))
)
− V πold

τ (S0),

where the second line follows from expanding Qπoldτ and the second from the telescop-
ing series γV πold

τ (St+1) − V πold
τ (St). Plugging this back into the expectation, and using

Eπnewρ0 [V πold
τ (S0)] = ητ (πold) we get

Eπnewρ0

[ ∞∑
t=0

γtAπoldτ (St, At)

]
= −ητ (πold) + Eπnewρ0

[ ∞∑
t=0

γt(r(St, At)− τ log πold(· | St))
]

= −ητ (πold) + ητ (πnew) + Eπnewρ0

[ ∞∑
t=0

γtτ(log πnew(· | St)− log πold(· | St))
]

= −ητ (πold) + ητ (πnew) +
τ

1− γEdπnew [KLπnewπold
(S)],

where the second equality is obtained by adding and subtracting τ log πnew(· | St).

Proposition 16. [Improvement Under Average RKL Reduction] For πold, πnew ∈ Π, define

∆RKLπoldπnew(S) :=RKLπoldBτQ
πold
τ

(S)− RKLπnewBτQ
πold
τ

(S).

For τ > 0 : ητ (πnew)− ητ (πold) =
τ

1− γEdπnew
[
∆RKLπoldπnew(S)

]
. (15)

Furthermore, ητ (πnew) ≥ ητ (πold) if and only if Edπnew [∆RKLπoldπnew(S)] ≥ 0.
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Proof We start by writing the RHS of Theorem 6.

1

1− γEdπnew ,πnew [Aπoldτ (S,A)]− τ

1− γEdπnew [KLπnewπold
(S)] =

τ

1− γEdπnew ,πnew

[
Qπoldτ (S,A)

τ
−(((((((

log(πold(A|S))− V πold
τ (S)

τ

]
− τ

1− γEdπnew ,πnew [log(πnew(A|S))−(((((((
log(πold(A|S))] =

τ

1− γ

(
Edπnew ,πnew

[
log

(
e
Q
πold
τ (S,A)

τ

)]
− Edπnew ,πold

[
Qπoldτ (S,A)

τ
− log(πold(A|S))

])
− τ

1− γEdπnew ,πnew [log(πnew(A|S))] =

τ

1− γEdπnew ,πnew

[
log

(
e
Q
πold
τ (S,A)

τ

)
− log(πnew(A|S))

]

− τ

1− γEdπnew ,πold

[
log

(
e
Q
πold
τ (S,A)

τ

)
− log(πold(A|S))

]
=

τ

1− γEdπnew
[
∆RKLπoldπnew(S)

]
.

The last equality follows by adding and subtracting Edπnew (log(Z(S))) and rearranging.
Plugging that in the equation from Theorem 6 we get:

ητ (πnew)− ητ (πold) =
τ

1− γEdπnew
[
∆RKLπoldπnew(S)

]
,

which can only be nonnegative if Edπnew
[
∆RKLπoldπnew(S)

]
≥ 0.

B.1.1 Proofs for Section 5.3.1: Extensions to Approximate Action-Values

Lemma 17. [Approximate Soft Performance Difference] Let πold, πnew be any policies and
let τ ≥ 0. Let Q̂ : S × A → R represent an action-value estimate and let ε(s, a) :=
Q̂(s, a)−Qπoldτ (s, a) be the per-state approximation error. As well, define

∆̂RKLπoldπnew(S) := RKLπold
Bτ Q̂

(S)− RKLπnew
Bτ Q̂

(S),

ε̄ := Edπnew [Eπnew [ε(S,A)]− Eπold [ε(S,A)]].

We have: ητ (πnew)− ητ (πold) + ε̄ =
τ

1− γEdπnew [∆̂RKLπoldπnew(S)]. (16)
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Proof We focus on a particular state s and omit function arguments when they are clear
from context.

τ(KLπold
Bτ Q̂
−KLπnew

Bτ Q̂
)

= τ [−H(πold) +H(πnew)−
∑
a

πold(a)(Q̂(s, a)/τ − logZ(s)) +
∑
a

πnew(a)(Q̂(s, a)/τ − logZ(s))]

= −τH(πold) + τH(πnew)−
∑
a

πold(a)Q̂(s, a) +
∑
a

πnew(a)Q̂(s, a)

. policies sum to one and Z(s) does not depend on a

= −τH(πold) + τH(πnew)−
∑
a

πold(a)(Qπoldτ (s, a) + ε(s, a))

+
∑
a

πnew(a)(Qπoldτ (s, a) + ε(s, a) + τ log πold(a)− τ log πold(a))

. expanding Q̂

= −τH(πold)− τKLπnewπold
−
∑
a

πold(a)(Qπoldτ (s, a) + ε(s, a))

+
∑
a

πnew(a)(Qπoldτ (s, a) + ε(s, a)− τ log πold(a))

. folding term into KL

= −τH(πold)− τKLπnewπold
− Vτ (s)−

∑
a

πold(a)(τ log πold(a) + ε(s, a))

+
∑
a

πnew(a)(Qπoldτ (s, a) + ε(s, a)− τ log πold(a))

. using average of action-value

= −τKLπnewπold
−
∑
a

πold(a)ε(s, a) +
∑
a

πnew(a)(Aπoldτ (s, a) + ε(s, a))

. cancelling entropy and using definition of soft advantage

Upon averaging both sides over dπnew , dividing by 1−γ, and using the performance difference
lemma, we obtain the result.

τ

1− γEπnew [KLπold
Bτ Q̂
−KLπnew

Bτ Q̂
]

= η(πnew)− η(πold) + Edπnew [Eπnewε(s, a)− Eπoldε(s, a)].

Corollary 18. [Approximate RKL Reduction] Under the assumptions of Theorem 8, ητ (πnew) ≥
ητ (πold) iff τ

1−γEdπnew ∆RKLπoldπnew(S) ≥ ε̄.
Proof The proof is simply rearrangement of Theorem 8.
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B.1.2 Proofs for Section 5.3.2: Extensions to Weighting under dπold

Proposition 19. If KLπnewπold
(s) ≤ α for all s ∈ S,

ητ (πnew)− ητ (πold) ≥ 1

1− γEd
πold

[∑
a

πnew(a|S)Aπoldτ (S, a)− τKLπnewπold
(S)− 4

√
2Vτ,max

√
α

]
=

1

1− γEd
πold

[
∆RKLπoldπnew − 4

√
2Vτ,max

√
α

]
(17)

Proof
Reversing the role of πnew and πold in Theorem 6,

ητ (πnew)− ητ (πold) =
1

1− γEd
πold ,πold

[
τKLπoldπnew(S)−Aπnewτ (S,A)

]
.

Let ∆ be Aπnewτ −Aπoldτ . Since
∑

a∈A π(a|s)Aπτ (s, a) = 0, we have that∑
a∈A

πold(a|s)Aπnewτ (s, a) =
∑
a∈A

πold(a|s)∆(s, a)

=
∑
a∈A

(πold(a|s)− πnew(a|s)) ∆(s, a) +
∑
a∈A

πnew(a|s)∆(s, a)

=
∑
a∈A

(πold(a|s)− πnew(a|s)) ∆(s, a)−
∑
a∈A

πnew(a|s)Aπoldτ (s, a).

Furthermore, note that

∆(s, a) = Qπnewτ (s, a)− V πnew
τ (s)−Qπoldτ (s, a) + V πold

τ (s)︸ ︷︷ ︸
:=∆′(s,a)

+τ log
πold(a|s)
πnew(a|s) .

Therefore, letting Vτ,max := rmax+τ logA
1−γ∑

a∈A
πold(a|s)Aπnewτ (s, a)

=
∑
a∈A

(πold(a|s)− πnew(a|s)) ∆′(s, a) + τ [KLπoldπnew(s) + KLπnewπold
(s)]−

∑
a∈A

πnew(a|s)Aπoldτ (s, a)

≤ 4Vτ,max
∑
a∈A
|πold(a|s)− πnew(a|s)|+ τ [KLπoldπnew(s) + KLπnewπold

(s)]−
∑
a∈A

πnew(a|s)Aπoldτ (s, a)

≤ 4Vτ,max

√
2KLπnewπold

(s) + τ [KLπoldπnew(s) + KLπnewπold
(s)]−

∑
a∈A

πnew(a|s)Aπoldτ (s, a).

Using this result,

ητ (πnew)− ητ (πold)

≥ 1

1− γEd
πold

[∑
a∈A

πnew(a|S)Aπoldτ (S, a)− τKLπnewπold
(S)− 4Vτ,max

√
2KLπnewπold

(S)

]
≥ 1

1− γEd
πold

[∑
a∈A

πnew(a|S)Aπoldτ (S, a)− τKLπnewπold
(S)− 4Vτ,max

√
2α

]
.
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The final result follows by noting that ∆RKLπoldπnew =
∑

a∈A πnew(a|S)Aπoldτ (S, a)−τKLπnewπold
(S),

as in the proof of Theorem 7.

Proposition 20. If KLπnewπold
(s) ≤ α for all s ∈ S,

ητ (πnew)− ητ (πold) ≥ 1

1− γEd
πold

[
τ∆̂RKLπoldπnew(S)

+
∑
a

ε(s, a)(πold(a)− πnew(a))− 4Vτ,max
√

2α

]
. (18)

Proof From the proof of Theorem 8, we have∑
a∈A

πnew(a|S)Aπoldτ (S, a)− τKLπnewπold
(S) = τ(KLπold

Bτ Q̂
−KLπnew

Bτ Q̂
) +

∑
a

ε(s, a)(πold(a)− πnew(a)).

Using this result in Theorem 10,

ητ (πnew)− ητ (πold)

≥ 1

1− γEd
πold

[∑
a∈A

πnew(a|S)Aπoldτ (S, a)− τKLπnewπold
(S)− 4Vτ,max

√
2α

]
=

1

1− γEd
πold

[
τ(KLπold

Bτ Q̂
−KLπnew

Bτ Q̂
) +

∑
a

ε(s, a)(πold(a)− πnew(a))− 4Vτ,max
√

2α

]
=

1

1− γEd
πold

[
τ∆̂RKLπoldπnew(S) +

∑
a

ε(s, a)(πold(a)− πnew(a))− 4Vτ,max
√

2α

]
.

B.2 Proofs for Section 5.4: Policy Improvement with FKL

Proposition 21. [FKL Counterexample] There exists an MDP such that, for any τ ≥ 0,
there exists a pair of policies (πold, πnew) where ∆FKLπoldπnew(s) > 0 at every state but the new
policy has lower value: Qπnewτ (s, a) < Qπoldτ (s, a) at every state-action pair (s, a) ∈ S × A,
V πnew
τ (s) < V πold

τ (s) at every state s ∈ S, and ητ (πnew) < ητ (πold).

Proof Consider the environment with a single state s and two actions: a1 and a2. Regardless
of the action chosen, the agent always transition to s. We will omit dependency on the state
in the following notation. The rewards are defined as

r(a1) = −1 , r(a2) = 1.

Take πold and πnew as follows.

πold(a1) = ε1 , πnew(a1) = 1− ε2,
πold(a2) = 1− ε1 , πnew(a2) = ε2.
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We will prove the result by making ε1 arbitrarily small, which we will show forces FKLπoldBτQ
πold
τ

to ∞ while keeping ε2 fixed, causing FKLπnewBτQ
πold
τ

to be finite. Note that

FKLπoldBτQ
πold
τ

=
2∑
i=1

BτQπoldτ (ai) log

(BτQπoldτ (ai)

πold(ai)

)

= −H(BτQπoldτ )−
2∑
i=1

BτQπoldτ (ai) log(πold(ai)),

lim
ε1→0

FKLπoldBτQ
πold
τ

= − lim
ε1→0

H(BτQπoldτ )︸ ︷︷ ︸
≥− log 2 and ≤0

− lim
ε1→0

BτQπoldτ (a1) log(ε1) + 0.

To calculate the limit of the middle summand, we note that if limε1→0 BτQπoldτ (a1) > 0, the
middle summand will go to infinity, since limε1→0− log(ε1) =∞. We can verify that this is
indeed the case.

lim
ε1→0

Qπoldτ (a1) = −1 +
γ

1− γ ; lim
ε1→0

Qπoldτ (a2) =
1

1− γ

lim
ε1→0

BτQπoldτ (a1) =
e

(
−1+ γ

1−γ

)
1
τ

Z
; lim

ε1→0
BτQπoldτ (a2) =

e

(
1

1−γ

)
1
τ

Z
, (24)

where Z := e

(
−1+ γ

1−γ

)
1
τ + e

(
1

1−γ

)
1
τ . Since, for fixed γ and τ , the quantities in Equation (24)

are fixed, we have that limε1→0−BτQπoldτ (a1) log(ε1) =∞, causing limε1→0 FKLπoldBτQ
πold
τ

=∞.

Moreover, FKLπnewBτQ
πold
τ

has a similar form of the above FKL, but, since ε2 is assumed to be

fixed, this quantity will be finite. The point is that for any ε2, we can find ε1 such that
FKLπoldBτQ

πold
τ

> FKLπnewBτQ
πold
τ

.

It remains to be seen that we can have ε2 that guarantees V πnew
τ < V πold

τ . We write

V πnew
τ = E

[ ∞∑
t=0

γt(R+ τH(πnew))

]
= E

[ ∞∑
t=0

γtR

]
+
τH(πnew)

1− γ

=

( ∞∑
t=0

γtE[R]

)
+
τH(πnew)

1− γ

=
2ε2 − 1

1− γ +
τH(πnew)

1− γ .

Additionally, we know that limε1→0 V
πold
τ = 1

1−γ . If we can find ε2 such that V πnew
τ < 1

1−γ ,

then we can find ε1 such that simultaneously V πnew
τ < V πold

τ and FKLπold
BτQ

πold
τ )>FKL

(
πnew ,BτQ

πold
τ

.

V πnew
τ < 1

1−γ will hold if

1

1− γ (2ε2 − 1 + τH(πnew)) <
1

1− γ
2ε2 − 1 + τ(−(1− ε2) log(1− ε2)− ε2 log(ε2)) < 1. (25)
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We use f(ε2) to denote the LHS of eq. (25). We have

lim
ε2→0

f(ε2) = −1,

which is less than the RHS of Equation (25). Formally, for any ε > 0, we can find δ > 0
such that if |ε2| < δ, |f(ε2)− 1| < ε. Any ε < 2 will suffice: we can conclude that, for any
fixed τ ≥ 0, there is some ε2 ∈ (0, 1) satisfying eq. (25).

It is possible to extend this to an MDP with multiple states. Consider a case where
S = {s1, s2, s3, . . . , sN}, and at each sn ∈ S except sN , a state transition to sn+1 occurs. At
state sN , the transition is back to itself. Setting the reward, πold, and πnew similarly to the
above environment, we can show the same result with multiple states.

B.2.1 Proofs for Section 5.4.2: Policy Improvement under Sufficient FKL
Reduction

Lemma 22. Let the action space A be finite. For any state s and any vector Q̂ : S×A → R,
if FKLπnew

Bτ Q̂
(s) ≤ FKLπold

Bτ Q̂
(s) then

RKLπnew
Bτ Q̂

(s) ≤

∥∥∥Q̂∥∥∥
∞

τ

√
2FKLπnew

Bτ Q̂
(s)− Bτ Q̂(s, ·)> log(πold(· | s))

Proof We will suppress the argument s. Start with the following.

0 ≤ FKLπnew
BτQ

≤ BτQ> log

( BτQ
πnew

)
= BτQ>

(q

τ
− log(πnew)

)
− log(Z)

. Expanding the inner BτQ
0 ≤ BτQ> (q− τ log(πnew))− τ log(Z)

.Multiplying both sides by τ

= π>new(q− τ logπnew) + q>(BτQ− πnew) +

τ logπ>new(πnew − BτQ)− τ log(Z)

.Adding and subtracting π>newq and τπ>new logπnew

= −τRKLπnew
BτQ + q>(BτQ− πnew) + (26)

τ(π>new log(πnew)− BτQ> log(πnew))

.Absorbing the partition function.

We analyze some of the summands from Equation (26) in turn. By Hölder’s inequality,

q>(BτQ− πnew) ≤ ‖q‖∞
∑
i

|(BτQi − πnewi)|.
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By Pinsker’s inequality (Pinsker, 1964),∑
i

|(BτQi − πnewi)| ≤
√

2FKLπnew
BτQ .

Therefore,

q>(BτQ− πnew) ≤ ‖q‖∞
√

2FKLπnew
BτQ .

The other summand from Equation (26) can be written as

τ(π>new log(πnew)− BτQ> log(πnew)) ≤ τ(0− BτQ> log(πold)),

where we used the fact that the negative entropy of πnew is less than or equal to zero and
that, since the underlying assumption is that we have non-negative FKL reduction, we also
have −BτQ> log(πnew) ≤ −BτQ> log(πold) (by the FKL definition).

We substitute these upper bounds into Equation (26).

0 ≤ −τRKLπnew
BτQ + q>(BτQ− πnew) +

τ(π>new log(πnew)− BτQ> log(πnew))

≤ −τRKLπnew
BτQ + ‖q‖∞

√
2FKLπnew

BτQ +

τ(−BτQ> log(πold)),

which then implies

RKLπnew
BτQ ≤

‖q‖∞
τ

√
2FKLπnew

BτQ −BQ
> log(πold). (27)

We start by showing this result in bandits, to make it simpler to show across states.

Definition 23 (Entropy-Regularized Bandits). We denote π as a vector in R|A| that satisfies
π ≥ 0 and π>1 = 1, with 1 and 0 being vectors containing respectively only entries equal
to 1 and 0. Further, we consider a single state and denote the corresponding action-values
as a vector q ∈ R|A|. The objective is then defined as ητ (π) = π>(q− τ log(π)). Moreover,

BτQ = Bτq =
exp(q

τ )
Z with Z = exp

(q
τ

)>
1 being the normalizing constant. We also have

FKLπ
BτQ = BτQ> log

(
BτQ
π

)
and RKLπ

BτQ = π> log
(

π
BτQ

)
.

The maximal possible FKL reduction is obtained by moving πnew all the way to BτQπoldτ ,
to give ∆FKL = FKLπoldBτQ

πold
τ

; for this πnew, we can guarantee RKL reduction. The question

is if we can still obtain RKL reduction, even without stepping all the way to this maximal
possible FKL reduction. We provide a condition on how much FKL reduction is sufficient to
ensure that we obtain policy improvement, first in the bandit setting and then generalized
to the MDP setting.
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Proposition 24 (Sufficient FKL Reduction in Bandits). For two policies πold,πnew ∈ R|A|
in the bandit setting, if

∆FKLπold
πnew

≥ max{0,FKLπold
BτQ −

1

2

(
τ

‖q‖∞

(
RKLπold

BτQ + BτQ> log(πold)
))2

} (28)

and

RKLπold
BτQ + BτQ> log(πold) ≥ 0,

then ∆RKLπold
πnew ≥ 0 and ητ (πnew) ≥ ητ (πold).

It is straightforward to extend this result to MDPs when we have reduction in every state.

Corollary 25 (All-state Sufficient FKL reduction). Assume the action set is finite. If the
assumptions in Theorem 24 are satisfied for all s ∈ S, then Qπnewτ (s, a) ≥ Qπoldτ (s, a) for all
states and actions and ητ (πnew) ≥ ητ (πold).

Proof We know that reducing the RKL in all states (i.e., the RKL of πnew to BτQπoldτ is
smaller than the RKL of πold to BτQπoldτ ) will lead to Qπnewτ (s, a) ≥ Qπoldτ (s, a) for all (s, a).
From our RKL results, we also know that it implies ητ (πnew) ≥ ητ (πold). Therefore, FKL
reduction following Equation (28) in all states will also lead to these improvements, since,
by the same argument as Theorem 24, it leads to RKL reduction in all states.

Proposition 26 (Sufficient FKL Reduction in Bandits). For two policies πold,πnew ∈ R|A|
in the bandit setting, if

∆FKLπold
πnew

≥ max{0,FKLπold
BτQ −

1

2

(
τ

‖q‖∞

(
RKLπold

BτQ + BτQ> log(πold)
))2

} (28)

and

RKLπold
BτQ + BτQ> log(πold) ≥ 0,

then ∆RKLπold
πnew ≥ 0 and ητ (πnew) ≥ ητ (πold).

Proof We start with the result of Theorem 22. If the RHS of Equation (27) is less than or
equal to RKLπold

BτQ, we will have RKLπnew
BτQ ≤ RKLπold

BτQ, which in turn implies improvement.

The assumption that the RHS of Equation (27) is ≤ RKLπold
BτQ can be written as

‖q‖∞
τ

√
2FKLπnew

BτQ − BτQ
> log(πold) ≤ RKLπold

BτQ.

With some algebraic manipulation, we get that this assumption is equivalent to

τ

‖q‖∞
(RKLπold

BτQ + BτQ> log(πold)) ≥
√

2FKLπnew
BτQ .
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Assuming that RKLπold
BτQ + BτQ> log(πold) ≥ 0, the above is equivalent to

(
τ

‖q‖∞
(RKLπold

BτQ + BτQ> log(πold))

)2

≥ 2FKLπnew
BτQ .

Dividing by 2, adding FKLπold
BτQ, and rearranging yields that the assumption is equivalent to

the following.

∆FKLπold
πnew ≥ FKLπold

BτQ −
1

2

(
τ

‖q‖∞

(
RKLπold

BτQ + BτQ> log(πold)
))2

. (29)

The claim follows.

Proposition 27 (Improvement Under Average Sufficient FKL Reduction). Assume the
action set is finite. If

Edπnew
[
RKLπoldBτQ

πold
τ

(S) + EBτQπoldτ
[log πold(·|S)]

]
≥ 0, (19)

Edπnew [∆FKLπoldπnew(S)] ≥ Edπnew [FKLπoldBτQ
πold
τ

(S)]− 1

2

(
τ

‖Qπoldτ ‖∞

(
Edπnew

[
RKLπoldBτQ

πold
τ

(S)
]

+ Edπnew
[
EBτQπoldτ

[log(πold(·|S))]
]))2

, (20)

and ∀s ∈ S, ∆FKLπoldπnew(S) ≥ 0, (21)

then ητ (πnew) ≥ ητ (πold).

Proof The strategy is the same as the one in Theorem 24. We know from Theorem 7 that
if we have

Edπnew [∆RKLπoldπnew(S)] ≥ 0,

then ητ (πnew) ≥ ητ (πold). Applying expectations to both sides of the result of Theorem 22,
we obtain

Edπnew

[
‖Qπoldτ (S, ·)‖∞

τ

√
2FKLπnewBτQ

πold
τ

(S)− EBτQπoldτ
[log(πold(·|S))]

]
≥ Edπnew

[
RKLπnewBτQ

πold
τ

(S)
]
.

If we can show that the LHS is smaller than

Edπnew
[
RKLπoldBτQ

πold
τ

(S)
]
,
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then, by Theorem 7, we will be guaranteed improvement. The condition can be written as

Edπnew
[
RKLπoldBτQ

πold
τ

(S)
]
≥ (30)

Edπnew

[
‖Qπoldτ (S, ·)‖∞

τ

√
2FKLπnewBτQ

πold
τ

(S) − EBτQπoldτ
[log(πold(·|S))]

]
.

Our goal is to derive the assumption on FKLπnewBτQ
πold
τ

(S) that must be made for Equation (30)

to hold.

From rearranging to have the FKL term on one side, the following condition is equivalent
to Equation (30).

τ

‖Qπoldτ ‖∞

(
Edπnew

[
RKLπoldBτQ

πold
τ

(S) + EBτQπoldτ
[log(πold(·|S))]

])

≥ Edπnew
[√

2FKLπnewBτQ
πold
τ

(S)

]
.

We now square both sides. The following is also equivalent to Equation (30) by assumption
in Equation (19).(

τ

‖Qπoldτ ‖∞

(
Edπnew

[
RKLπoldBτQ

πold
τ

(S) + EBτQπoldτ
[log(πold(·|S))]

] ))2

≥
(
Edπnew

[√
2FKLπnewBτQ

πold
τ

(S)

])2

.

Jensen’s inequality applied to the RHS shows that the following implies Equation (30).(
τ

‖Qπoldτ ‖∞

(
Edπnew

[
RKLπoldBτQ

πold
τ

(S) + EBτQπoldτ
[log(πold(·|S))]

] ))2

≥ Edπnew
[
2FKLπnewBτQ

πold
τ

(S)
]
.

Some straightforward rearrangement yields the assumption in the statement of the Proposi-
tion.

− 1

2

(
τ

‖Qπoldτ ‖∞

(
Edπnew

[
RKLπoldBτQ

πold
τ

(S) + EBτQπoldτ
[log(πold(·|S))]

] ))2

+ Edπnew
[
FKLπoldBτQ

πold
τ

(S)
]

≤ Edπnew [∆FKLπoldπnew(S)].
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B.2.2 Proofs for FKL with Approximate Action-values

We can also extend the above results to approximate action-values. We first state all the
results upfront, and then provide their proofs.

We first reformulate Theorem 24 with action-value estimates.

Proposition 28 (Sufficient Approximate FKL Reduction in Bandits). Let Q̂ be an action-
value estimate of Qπoldτ , let ε := Q̂−Q be the approximation error, and let ε̄ := Eπnew [ε(A)]−
Eπold [ε(A)]. As well, define

∆̂FKLπold
πnew := FKLπold

Bτ Q̂
− FKLπnew

Bτ Q̂
.

For two policies πold,πnew ∈ R|A| in the bandit setting, if

∆̂FKLπold
πnew

≥ max

0,FKLπold
Bτ Q̂
− 1

2

 τ∥∥∥Q̂∥∥∥
∞

(
RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)

)2 ,

RKLπold
Bτ Q̂
− ε̄+ Bτ Q̂> log(πold) ≥ 0,

and ε̄ ≤ ∆̂RKLπoldπnew(s), then ∆RKLπold
πnew ≥ 0 and ητ (πnew) ≥ ητ (πold).

An analogous result to Theorem 25 applies, with the same proof.

Corollary 29 (All-state Sufficient Approximate FKL reduction). Assume the action set
is finite. If the assumptions in Theorem 28 are satisfied for all s ∈ S, then Qπnewτ (s, a) ≥
Qπoldτ (s, a) for all states and actions and ητ (πnew) ≥ ητ (πold).

Finally, we note an analogous result to Theorem 13.

Proposition 30 (Approximate Average FKL Reduction). Let Q̂ be an action-value estimate
of Qπoldτ , let ε := Q̂ − Q be the approximation error, and let ε̄ := Edπnew [Eπnew [ε(S,A)] −
Eπold [ε(S,A)]].

For two policies πold,πnew ∈ R|A| in the bandit setting, if

Êdπnew [∆FKLπold
πnew ]

≥ Edπnew [FKLπold
Bτ Q̂

]− 1

2

 τ∥∥∥Q̂∥∥∥
∞

(
Edπnew [RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)]

)2

,

Edπnew
[
RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)

]
≥ ε̄,

and ε̄ ≤ Edπnew [∆̂RKLπoldπnew(s)], then ητ (πnew) ≥ ητ (πold).
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Proposition 31 (Sufficient Approximate FKL Reduction in Bandits). Let Q̂ be an action-
value estimate of Qπoldτ , let ε := Q̂−Q be the approximation error, and let ε̄ := Eπnew [ε(A)]−
Eπold [ε(A)]. As well, define

∆̂FKLπold
πnew := FKLπold

Bτ Q̂
− FKLπnew

Bτ Q̂
.

For two policies πold,πnew ∈ R|A| in the bandit setting, if

∆̂FKLπold
πnew

≥ max

0,FKLπold
Bτ Q̂
− 1

2

 τ∥∥∥Q̂∥∥∥
∞

(
RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)

)2 ,

RKLπold
Bτ Q̂
− ε̄+ Bτ Q̂> log(πold) ≥ 0,

and ε̄ ≤ ∆̂RKLπoldπnew(s), then ∆RKLπold
πnew ≥ 0 and ητ (πnew) ≥ ητ (πold).

Proof We will again use Theorem 22. To obtain improvement by Theorem 9, we need that
RKLπnew

Bτ Q̂
≤ RKLπold

Bτ Q̂
− ε̄. Using Theorem 22, we will require that∥∥∥Q̂∥∥∥
∞

τ

√
2FKLπnew

Bτ Q̂
− Bτ Q̂> log(πold) ≤ RKLπold

Bτ Q̂
− ε̄. (31)

With some algebraic manipulation and assuming that RKLπold
Bτ Q̂
− ε̄+ Bτ Q̂> log(πold) ≥ 0,

the above is equivalent to τ∥∥∥Q̂∥∥∥
∞

(RKLπold
Bτ Q̂
− ε̄+ Bτ Q̂> log(πold))

2

≥ 2FKLπnew
Bτ Q̂

.

Dividing by 2, adding FKLπold
Bτ Q̂

, and rearranging yields that the assumption is equivalent to

the following.

∆̂FKLπold
πnew ≥ FKLπold

Bτ Q̂
− 1

2

 τ∥∥∥Q̂∥∥∥
∞

(
RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)

)2

. (32)

Proposition 32 (Approximate Average FKL Reduction). Let Q̂ be an action-value estimate
of Qπoldτ , let ε := Q̂ − Q be the approximation error, and let ε̄ := Edπnew [Eπnew [ε(S,A)] −
Eπold [ε(S,A)]].
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For two policies πold,πnew ∈ R|A| in the bandit setting, if

Êdπnew [∆FKLπold
πnew ]

≥ Edπnew [FKLπold
Bτ Q̂

]− 1

2

 τ∥∥∥Q̂∥∥∥
∞

(
Edπnew [RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)]

)2

,

Edπnew
[
RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)

]
≥ ε̄,

and ε̄ ≤ Edπnew [∆̂RKLπoldπnew(s)], then ητ (πnew) ≥ ητ (πold).

Proof The proof closely follows that of Theorem 13. Applying expectations to both sides of
Equation (31), we obtain

Edπnew


∥∥∥Q̂∥∥∥

∞
τ

√
2FKLπnew

Bτ Q̂
(S)− Bτ Q̂(· | S)> log(πold(· | S))

 (33)

≤ Edπnew [RKLπold
Bτ Q̂

(s)]− ε̄.

As per the discussion in Theorem 28, satisfying this assumption will result in improvement.
We hence derive an assumption on the FKL that implies Equation (36).

From rearranging to have the FKL term on one side, the following condition is equivalent
to Equation (36).

τ∥∥∥Q̂∥∥∥
∞

(
Edπnew

[
RKLπold

Bτ Q̂
(S)− ε̄+ EBτ Q̂[log(πold(·|S))]

])

≥ Edπnew
[√

2FKLπnew
Bτ Q̂

(S)

]
.

We now square both sides. The following is also equivalent to Equation (36) by assumption

that Edπnew
[
RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)

]
≥ ε̄.(

τ∥∥∥Q̂∥∥∥
∞

(
Edπnew

[
RKLπold

Bτ Q̂
(S)− ε̄+ EBτQπoldτ

[log(πold(·|S))]
] ))2

≥
(
Edπnew

[√
2FKLπnew

Bτ Q̂
(S)

])2

.

Jensen’s inequality applied to the RHS shows that the following implies Equation (36).(
τ∥∥∥Q̂∥∥∥
∞

(
Edπnew

[
RKLπold

Bτ Q̂
(S)− ε̄+ EBτQπoldτ

[log(πold(·|S))]
] ))2

≥ Edπnew
[
2FKLπnew

Bτ Q̂
(S)
]
.
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Some straightforward rearrangement yields the assumption in the statement of the Proposi-
tion.

− 1

2

(
τ∥∥∥Q̂∥∥∥
∞

(
Edπnew

[
RKLπold

Bτ Q̂
(S)− ε̄+ EBτ Q̂[log(πold(·|S))]

] ))2

+ Edπnew
[
FKLπold

Bτ Q̂
(S)
]

≤ Edπnew [∆FKLπoldπnew(S)].

We now turn to proving the above results.

Proposition 33 (Sufficient Approximate FKL Reduction in Bandits). Let Q̂ be an action-
value estimate of Qπoldτ , let ε := Q̂−Q be the approximation error, and let ε̄ := Eπnew [ε(A)]−
Eπold [ε(A)]. As well, define

∆̂FKLπold
πnew := FKLπold

Bτ Q̂
− FKLπnew

Bτ Q̂
.

For two policies πold,πnew ∈ R|A| in the bandit setting, if

∆̂FKLπold
πnew

≥ max

0,FKLπold
Bτ Q̂
− 1

2

 τ∥∥∥Q̂∥∥∥
∞

(
RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)

)2 ,

RKLπold
Bτ Q̂
− ε̄+ Bτ Q̂> log(πold) ≥ 0,

and ε̄ ≤ ∆̂RKLπoldπnew(s), then ∆RKLπold
πnew ≥ 0 and ητ (πnew) ≥ ητ (πold).

Proof We will again use Theorem 22. To obtain improvement by Theorem 9, we need that
RKLπnew

Bτ Q̂
≤ RKLπold

Bτ Q̂
− ε̄. Using Theorem 22, we will require that∥∥∥Q̂∥∥∥
∞

τ

√
2FKLπnew

Bτ Q̂
− Bτ Q̂> log(πold) ≤ RKLπold

Bτ Q̂
− ε̄. (34)

With some algebraic manipulation and assuming that RKLπold
Bτ Q̂
− ε̄+ Bτ Q̂> log(πold) ≥ 0,

the above is equivalent to τ∥∥∥Q̂∥∥∥
∞

(RKLπold
Bτ Q̂
− ε̄+ Bτ Q̂> log(πold))

2

≥ 2FKLπnew
Bτ Q̂

.
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Dividing by 2, adding FKLπold
Bτ Q̂

, and rearranging yields that the assumption is equivalent to

the following.

∆̂FKLπold
πnew ≥ FKLπold

Bτ Q̂
− 1

2

 τ∥∥∥Q̂∥∥∥
∞

(
RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)

)2

. (35)

Proposition 34 (Approximate Average FKL Reduction). Let Q̂ be an action-value estimate
of Qπoldτ , let ε := Q̂ − Q be the approximation error, and let ε̄ := Edπnew [Eπnew [ε(S,A)] −
Eπold [ε(S,A)]].

For two policies πold,πnew ∈ R|A| in the bandit setting, if

Êdπnew [∆FKLπold
πnew ]

≥ Edπnew [FKLπold
Bτ Q̂

]− 1

2

 τ∥∥∥Q̂∥∥∥
∞

(
Edπnew [RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)]

)2

,

Edπnew
[
RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)

]
≥ ε̄,

and ε̄ ≤ Edπnew [∆̂RKLπoldπnew(s)], then ητ (πnew) ≥ ητ (πold).

Proof The proof closely follows that of Theorem 13. Applying expectations to both sides of
Equation (31), we obtain

Edπnew


∥∥∥Q̂∥∥∥

∞
τ

√
2FKLπnew

Bτ Q̂
(S)− Bτ Q̂(· | S)> log(πold(· | S))

 (36)

≤ Edπnew [RKLπold
Bτ Q̂

(S)]− ε̄.

As per the discussion in Theorem 28, satisfying this assumption will result in improvement.
We hence derive an assumption on the FKL that implies Equation (36).

From rearranging to have the FKL term on one side, the following condition is equivalent
to Equation (36).

τ∥∥∥Q̂∥∥∥
∞

(
Edπnew

[
RKLπold

Bτ Q̂
(S)− ε̄+ EBτ Q̂[log(πold(·|S))]

])

≥ Edπnew
[√

2FKLπnew
Bτ Q̂

(S)

]
.
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We now square both sides. The following is also equivalent to Equation (36) by assumption

that Edπnew
[
RKLπold

Bτ Q̂
+ Bτ Q̂> log(πold)

]
≥ ε̄.

(
τ∥∥∥Q̂∥∥∥
∞

(
Edπnew

[
RKLπold

Bτ Q̂
(S)− ε̄+ EBτQπoldτ

[log(πold(·|S))]
] ))2

≥
(
Edπnew

[√
2FKLπnew

Bτ Q̂
(S)

])2

.

Jensen’s inequality applied to the RHS shows that the following implies Equation (36).(
τ∥∥∥Q̂∥∥∥
∞

(
Edπnew

[
RKLπold

Bτ Q̂
(S)− ε̄+ EBτQπoldτ

[log(πold(·|S))]
] ))2

≥ Edπnew
[
2FKLπnew

Bτ Q̂
(S)
]
.

Some straightforward rearrangement yields the assumption in the statement of the Proposi-
tion.

− 1

2

(
τ∥∥∥Q̂∥∥∥
∞

(
Edπnew

[
RKLπold

Bτ Q̂
(S)− ε̄+ EBτ Q̂[log(πold(·|S))]

] ))2

+ Edπnew
[
FKLπold

Bτ Q̂
(S)
]

≤ Edπnew [∆FKLπoldπnew(S)].

Appendix C. Complete Results for Performance in Benchmark
Environments

In this section, we compare the KL methods on benchmark continuous and discrete-action
environments, using non-linear function approximation. Here, we wish to understand (1) if our
observations from the microworld experiments apply to more complicated environments, (2) if
there are any new differences as a result of function approximation or increased environment
complexity and (3) if any of the KL divergences is more robust to hyperparameter choices
than the other.

C.1 Implementation Details

The agents use the API Algorithm with KL Greedification, in Algorithm 1. For the
discrete action environments, we use the All-Actions updates, and for the continuous action
environments we use the Sampled-Actions update, for both RKL and FKL, with 128 sampled
actions. When evaluating the integral of the gradient for the RKL, we tested using the
log-likelihood trick as well as the reparametrization trick. Since the last outperformed the
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first, we report results using reparametrization. All agents use experience replay with a
buffer size of 106 and use batch sizes of 32.

Hyperparameter sweeps are performed separately for each domain. We use RMSprop for
both the actor and critic. In the continuous action-setting, we sweep over the actor learning
rates {10−5, 10−4, 10−3, 10−2} and critic learning rates {10−5, 10−4, 10−3, 10−2, 10−1}. In
the discrete-action setting we have a shared learning rate because of a shared architecture
and the sweep is done over the learning rates {10−5, 10−4, 10−3, 10−2, 10−1}. We sweep
temperatures in {10−3, 5× 10−3, 10−2, 5× 10−2, 10−1, 5× 10−1, 1} for the soft action-value
methods and additionally include runs with the hard action-value methods. The temperature
in BτQ and the temperature in the soft action-value function are set to be the same value.
For example, if τ = 0.01, then we learn a soft action-value function with τ = 0.01 and use a
KL target distribution proportional to exp

(
Q(s, a)τ−1

)
.

On our continuous-action domains, all policy and value function networks are implemented
as two-layer neural networks of size 128, with ReLU activations. On our discrete-action
domains, we employ the following architectures. In the OpenAI Gym environments, the
architecture is a two-layer neural network of size 128 with ReLU activations, with the
policy and value functions as separate heads off of the main two-layer body. In MinAtar,
the architecture is a convolutional network into one fully-connected layer for each of the
policy, action value function, and state value function. The convolutional layer has 16
3x3 convolutions with stride 1, the same as in Young and Tian (2019). The size of the
fully-connected layer is 128, with ReLU activations used between layers.

C.2 Performance

For continuous actions, we experiment on Pendulum, Reacher, Swimmer and HalfCheetah
(Todorov et al., 2012). For discrete actions, we experiment on OpenAI Gym environments
(Brockman et al., 2016) and MinAtar environments (Young and Tian, 2019). In this section,
we plot only a summary of the performance, detailed plots showing how it varies throughout
training can be found in Appendix D.3. Temperatures [1.0, 0.5, 0.1] were grouped together
and labeled as “High RKL/FK”, whereas [0.05, 0.01, 0.005, 0.001, 0.0]11 were grouped together
and named “Low RKL/FKL”. For each temperature, 30 seeds were run per hyperparameter
setting and the best performing 20% settings were selected, which were then grouped together
based on the temperature as “High/Low”. Figures 10 and 11 report the average of the last
half of the area under the curve for each group, as well as standard errors between all runs
in the group. Returns are normalized between 0 and 1, with 0 corresponding to the lower
limit of the returns from the curves in Appendix D.3 and 1 to the highest. There was no
striking pattern regarding which temperature is best overall, the choice seems to be highly
environment dependent. Furthermore, FKL and RKL seem to perform comparably overall,
with no clear dominance of one over the other, although the FKL performed slightly better
in the few cases they were different.

11. Zero was excluded for FKL with continuous actions, see Appendix D.3
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(a) Pendulum (b) Reacher (c) Swimmer (d) HalfCheetah

Figure 10: Average return on the continuous-action environments. The reported
performance is the average return over the last half of learning, normalized
between 0 and 1 and averaged over 30 runs with standard errors shown.

(a) Acrobot (b) CartPole (c) LunarLander (d) Asterix

(e) Breakout (f) Freeway (g) Seaquest (h) Space invaders

Figure 11: Average return on the discrete-action environments. The reported per-
formance is the average return over the last half of learning, normalized between
0 and 1 and averaged over 30 runs with standard errors shown.

C.3 Hyperparameter sensitivity

We wrap up the experiments on benchmark problems by investigating the sensitivity of each
divergence to hyperparameters. We focus on studying the sensitivity to the ones that seem
to influence performance the most: learning rate and temperature. Particularly, we vary
learning rates for each different temperature. For the continuous environments, where the
actor and critic were separate networks, we have both the actor learning rate and the critic
learning rate, whereas for the discrete environments we only have one learning rate.
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(a) Pendulum

(b) Reacher

(c) Swimmer

(d) HalfCheetah

Figure 12: Sensitivity plots for continuous-action environments. The x axis represent the
hyperparameter values and the y axis represent the averaged area under the last
half of the learning curve. Each point corresponds to the average of the top 20%
performing settings that had the corresponding learning rate and temperature

From looking at Figures 12 and 13, we see that both methods are sensitive to the
hyperparameters, with the best parameters being highly environment dependent. For a
given temperature and environment, RKL and FKL have very similar behavior: if the
performance goes up for a certain learning rate for RKL, it also goes up for FKL and the
same applies to decreases in performance, with very few exceptions and, even in those cases,
the overall tendency is still the same for the two divergences. On Pendulum, represented
in Figure 12a, for example, the worst learning rates perform better on FKL than in RKL,
but the overall tendency is still for performance to go up as actor learning rates increase to
0.01 and as critic learning rates increase to 0.01, followed by a decrease when critic learning
rate further increases to 0.1. The main takeaway is that, for a given choice of environment
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(a) Gym:CartPole (b) Gym:LunarLander

(c) Gym:Acrobot (d) MinAtar:Asterix

(e) MinAtar:Breakout (f) MinAtar:Freeway

(g) MinAtar:Seaquest (h) MinAtar:Space Invaders

Figure 13: Sensitivity plots for discrete-action environments. Plot settings are identical to
Figure 12

and temperature, learning rate sensitivity is not significantly influenced by the choice of
divergence.

Appendix D. Additional Experimental Results

D.1 Exploration in a Discrete Maze

For these experiments, we use Gym-maze12, choosing their fixed 10× 10 maze to plot the
changes in state-visitation distribution throughout training. This way, some of the differences
we may be able to inspect are: if any one of the divergences becomes deterministic quicker
than the other; if any of the divergences get stuck in local optima while the other succeeds
in finding the optimal policy; how spread-out the state-visitation distribution is in the

12. https://github.com/MattChanTK/Gym-maze
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early phases of training, when the agent is more likely to be exploring; if there are different
priorities between regions of the maze when the agents are exploring.

For the Gym-maze, the dynamics Pr(st+1 | st, at) are deterministic and the actions are
the four directions. The agent remains in place if it tries to move to a position where there
is a wall. The reward is -0.1 divided by the total number of cells if st+1 is not the goal state
and is 1.0 for the goal state. There is a timeout if the agent does not reach the goal after
10,000 steps. The agent is given a tabular representation: a one-hot encoding of the (x,y)
position. This means that the agent has to create some sort of mental map of the maze from
the positions it visited, causing the environment to be a harder exploratory problem than it
might seem at first glance. We use the same agent that will be used in Section 6.3, based on
Algorithm 1, which was introduced in Section 4.

On each iteration, one gradient descent step is performed to update the policy, for a
given value function.

D.1.1 Exploration with True Values

We want to understand differences in exploration when minimizing the KL divergences with
respect to the estimated value functions. Even so, it is important to also study how the
state-visitation distribution changes when using accurate value functions, which we will
henceforth refer to as true values, noting that they are still only approximations of the
actual values that are calculated more precisely. In this setting, the agent does not need
to explore or even interact with the environment directly; the dynamics are given. These
studies make clear not only how entropy affects the convergence of policies but also make it
easier to disentangle which behaviors and results are due to the use of estimated values and
which happen even with true values.

By hand annotating the dynamics, we can use dynamic programming to compute more
accurate estimates of the value function, as opposed to the common approach of using
gradient descent methods based on the Bellman equation and least squares. The gradient
for the greedification step is computed over all states, as opposed to using a buffer, and the
learning rate is set to 0.1 with RMSprop. The total number of iterations is 100.

The stopping condition for dynamic programming is when the relative difference between
successive Q’s is less than 0.01% for 10 consecutive iterations. The policy update, for either
FKL or RKL, requires both Q and V. We compute V directly from Q, by summing over all
four actions weighted by the current policy. The most representative timesteps are illustrated
in Figure 14.

D.1.2 Exploration with Estimated Values

In this section, we use the more practical approach of updating value function estimates via
expected semi-gradient updates. The optimizer used was RMSprop with learning rate 0.001
and the total number of iterations is 20000. We use a mini-batch of 32 states sampled from
a buffer. The buffer size is 10000.

Results are illustrated in Figure 15, where we show only the subset of timesteps most
representative of changes and only the plots corresponding to τ = 0. The start state is
in the top left position and the goal state is in the bottom right. To obtain these images,
30 seeds were used for each temperature-divergence combination and trained for the full
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number of iterations. The image at timestep t corresponds to 100 trajectories generated
from each of the 30 policies at that timestep. Particularly, we take the visitation counts
of each of these 30 × 100 trajectories, normalize them and average them, producing an
image representative of the overall exploratory behavior of that divergence-temperature
combination. The figure shows that, given a certain temperature, both RKL and FKL have
state-visitation distributions that evolve very similarly, as can be seen by comparing the
pairwise green and blue images for each timestep.

Figure 16 makes it clear that, for this setting, entropy regularization seems to do more
harm than good: the agents converge to policies that tend to go to the correct trajectory,
but waste time exploring when they already have all information they need. This is one
example where the maximization of entropy conflicts with the true objective, ideally, one
would prefer to have a deterministic policy for this environment at the end of training.

D.2 Exploration in a Continuous Maze

This section gives a more in-depth view of the experiments from Section 6.2.2. Figure 17
plots the cumulative number of times both the misleading and the correct exits are reached
throughout training using 30 seeds and 2M steps, instead of 500k. For τ = 1000, RKL and
FKL have very similar curves; for τ = 100 and τ = 10 the RKL visits the misleading exit
more and the correct exit less. For the remaining temperatures, FKL visits both exits more
than the RKL. For lower temperatures, the misleading exit is visited orders of magnitude
more than the regular one. These all corroborate with the conclusion that the FKL is more
exploratory in this setting.

D.3 Performance

Implementation details are the same as in Section 6.3. We perform 30 runs for all hyperpa-
rameter settings and plot the mean return averaged over the past 20 episodes. Shaded areas
represent standard errors.

D.3.1 Continuous-Actions Results

We compare agents on Pendulum (Brockman et al., 2016), Reacher, Swimmer and HalfChee-
tah (Todorov et al., 2012), with results shown in Figure 18. We exclude Hard FKL in
our comparison since it requires access to maxaQ(s, a), which is difficult to obtain with
continuous actions. The leftmost plot shows all temperatures from RKL, the middle plot
shows all temperatures for FKL and the rightmost plot averages all high temperatures and
all low temperatures for each divergence. Temperatures [1.0, 0.5, 0.1] were considered high
and [0.05, 0.01, 0.005, 0.001, 0.0] were considered low.

Except for Pendulum, which is the simplest environment and where FKL seems to
perform more consistently across temperatures, the overall behavior of both divergences is
very similar, with performance being much more dependent on the choice of temperature
than on the choice of divergence. On Reacher, Swimmer and Pendulum, FKL and RKL
with high temperatures have the worst performance, but on HalfCheetah this pattern is
reversed, meaning the benefits of entropy regularization are environment dependent.

It is difficult to comment on the importance of the policy parameterization for these
experiments relative to our microworld experiments. Any influence from the Gaussian policy
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parameterization is conflated with function approximation. Moreover, as we will see below,
no stark pattern seems to divide continuous and discrete action settings, as one did in our
microworld experiments.

D.3.2 Discrete-Actions Results

We report results for environments from the OpenAI Gym (Brockman et al., 2016) and
MinAtar (Young and Tian, 2019). Analogously to the continuous action setting, the OpenAI
Gym results reported in Figure 19 show that both FKL and RKL behave similarly for any
given choice of temperature, with the left and middle plots being similar to one another.
The main difference is that, for some of the non-optimal temperatures for each problem,
FKL seemed to learn faster than RKL, this becomes specially clear on Acrobot. The
higher temperatures performed better on CartPole and LunarLander, but worse on Acrobot,
confirming that the influence of this hyperparameter is highly environment dependent.

Finally, for the MinAtar results represented in Figure 20, there is once more no consistent
dominance of either KL over the other: the plots of both FKL and RKL are again highly
similar to each other. The slight superiority of FKL for non-optimal temperatures is present
only on Breakout and Seaquest. On Asterix, Freeway, Seaquest and Space Invaders highest
temperatures performed the worse, but they performed the best on Breakout, showing a
pattern opposite of the one seen in the continuous environments of Figure 18 and confirming
that the optimal temperature is going to vary according to the environment.
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t = 0 t = 10 t = 50 t = 99

(a) τ = 0.0

t = 0 t = 4 t = 10 t = 99

(b) τ = 0.01

t = 0 t = 10 t = 75 t = 99

(c) τ = 0.1

Figure 14: Evolution of state-visitation distributions throughout training for each tempera-
ture with true values.
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t=0 t=8399 t=19999

Figure 15: Evolution of state-visitation distributions throughout training for τ = 0
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t=0 t=1099 t=6499 t=8399 t=19999

(a) τ = 0.0

t=0 t=1099 t=6499 t=11699 t=19999

(b) τ = 0.0001

t=0 t=1099 t=6499 t=11999 t=19999

(c) τ = 0.0007

Figure 16: Evolution of state-visitation distributions throughout training for each tempera-
ture with estimated values.
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(a) τ = 1000 (b) τ = 100

(c) τ = 10 (d) τ = 1

(e) τ = 0.1

Figure 17: Cumulative number of times the each exit is reached throughout training for
multiple temperatures plotted separately. RKL corresponds to green curves and
FKL to blue curves.
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(a) Pendulum

(b) Reacher

(c) Swimmer

(d) HalfCheetah

Figure 18: Continuous-action environments. Shown are the averaged top 20% performing
hyperparameter settings for each algorithm, which are selected by largest area
under the last half of the learning curve. In the left we have RKL, in the middle
we have FKL and in the right we grouped the high and low temperatures for
both FKL and RKL. Temperatures for the curves in the left and middle plots
correspond to the respective colormaps and in the rightmost plot the curves
correspond to the legend
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(a) CartPole

(b) LunarLander

(c) Acrobot

Figure 19: OpenAI Gym discrete-action environments. Plot settings are identical to Figure
18.
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(a) Asterix.

(b) Breakout.

(c) Freeway.

(d) Seaquest.

(e) Space Invaders

Figure 20: MinAtar discrete-action environments. Plot settings are identical to those in
Figure 18.
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