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Abstract

We study high-dimensional bayesian linear regression with product priors. Using the
nascent theory of non-linear large deviations (Chatterjee and Dembo, 2016), we derive
sufficient conditions for the leading-order correctness of the naive mean-field approxima-
tion to the log-normalizing constant of the posterior distribution. Subsequently, assuming
a true linear model for the observed data, we derive a limiting infinite dimensional varia-
tional formula for the log normalizing constant for the posterior. Furthermore, we establish
that under an additional “separation” condition, the variational problem has a unique opti-
mizer, and this optimizer governs the probabilistic properties of the posterior distribution.
We provide intuitive sufficient conditions for the validity of this “separation” condition.
Finally, we illustrate our results on concrete examples with specific design matrices.
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1. Introduction

In this age of big-data, statisticians routinely analyze large, high-dimensional datasets aris-
ing from applications in genomics, finance, public policy etc., with the goal of discovering
relationships between the response variable, and the observed features. The linear regression
model

y = Xβ + ε

is arguably the most common framework for this task when the response is continuous.
Under a Bayesian formalism, the statistician posits a prior distribution π for the coefficient
vector β, and constructs the corresponding posterior. Subsequent inference is based solely
on this posterior distribution. Two questions are naturally relevant in this setting:

1. What are the statistical properties of Bayesian procedures, particularly in high-dimensions?

2. Are these procedures computationally tractable for large datasets with high-dimensional
features?
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The theoretical performance of high-dimensional Bayesian methods have been examined
extensively in recent times. In Bayesian asymptotic theory, given data (yi,xi)

n
i=1, xi ∈ Rp,

one assumes the correctness of a frequentist model yi = xT
i β0 + ε, and studies frequentist

inference of the coefficient vector β0 under Bayesian procedures. Ghosal (1999) established
a version of the traditional Bernstein-Von-Mises theorem as long as p4 log p/n→ 0. A lot of
recent attention has been focused on the high-dimensional regime p� n with an additional
assumption on the sparsity of β0. In this context, spike-and-slab based approaches (Mitchell
and Beauchamp, 1988; Ishwaran and Rao, 2005) have been established to exhibit optimal
frequentist properties (Castillo et al., 2015). In particular, these posterior distributions
“contract” to the underlying truth β0 at the minimax optimal estimation rate (we refer
the interested reader to Banerjee et al. (2021) for a formal definition of posterior contrac-
tion, and a survey of recent breakthroughs in this area). Despite the superior theoretical
properties of this approach, the sharp spike-and-slab based approaches suffer from a com-
putational bottleneck. In the special case of linear regression, continuous shrinkage priors
(see e.g. Carvalho et al. (2010)) provide a comparatively more tractable alternative from
the computational perspective (Bhattacharya et al., 2016). Contraction properties of the
corresponding posteriors were characterized in Song and Liang (2017). Unfortunately, this
strategy is specific to the linear model, and does not generalize beyond this setting.

In general, computationally tractable Bayesian inference for high-dimensional models
presents significant challenges. MCMC based strategies have been explored extensively
for this purpose. Despite rapid progress in MCMC methodology and supporting theory,
these methods are still slower than competing frequentist methodology e.g. those based
on convex optimization. Variational methods (Wainwright and Jordan, 2008) provide an
attractive general option to the Bayesian statistician. The simplest form of variational
inference approximates the true posterior distribution using a product distribution—this
version is often referred to as naive mean-field Variational Bayes (nVB). Computing the
best approximating product distribution is computationally fast, and thus these methods
provide a practical option for modern datasets. We refer the interested reader to Blei et al.
(2017) for an introduction to variational Bayes methods in statistics and machine learning.

Although variational methods provide a computationally feasible strategy, supporting
theoretical evidence has been relatively scarce. In Wang and Titterington (2006); Wang and
Blei (2019b), the authors established the correctness of this approach in parametric models
in the classical fixed p setting. Subsequently Wang and Blei (2019a) study variational Bayes
in misspecified models. In the context of the linear model, early work by Neville et al.
(2014); Ormerod et al. (2017) focused on variational inference in the low dimensional linear
model, while Carbonetto and Stephens (2012) provides an early variational approximation
for variable selection.

The past two years have witnessed rapid progress in the analysis of variational methods
for high-dimensional models (Alquier et al., 2016; Alquier and Ridgway, 2020; Han and
Yang, 2019; Ray and Szabó, 2021; Ray et al., 2020; Yang et al., 2020). These results focus
on high-dimensional models with a sparse underlying truth β0, and study the contraction
properties of the variational posterior. In particular, they derive sufficient conditions for the
variational posterior to contract at the minimax optimal rate. Correctness of variational
methods have also been established for community detection (Bickel et al., 2013; Zhang and
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Zhou, 2020), a poisson mixed model (Hall et al., 2011), frequentist models (Westling and
McCormick, 2019) and mixture models (Chérief-Abdellatif and Alquier, 2018).

In sharp contrast, nVB methods can fail in truly high-dimensional settings, e.g. in
versions of topic modeling (Ghorbani et al., 2019). In this specific situation, the correct
variational approximation is provided by the TAP approximation from spin-glass theory
(Mézard et al., 1987). Fan et al. (2018) establishes rigorous guarantees regarding the validity
of the TAP approach in the context of the simpler Z2 synchronization problem. Evidence
regarding the inadequacy of the nVB approximation also arises in the work of Fasano et al.
(2019). The authors analyze the nVB approximation for probit regression in the regime
n fixed and p → ∞. In this regime, the variational posterior exhibits an over-shrinking
phenomenon; to remedy this issue, the authors propose an alternative, locally factored
approximation, which resolves this over-shrinking problem in this setting.

There is thus an immediate need to understand general properties of statistical problems
which ensure the correctness of the nVB approximation. In this paper, we study the accu-
racy of this approximation in Bayesian linear regression with product priors. We provide
easily verifiable conditions which ensure the asymptotic accuracy of the nVB approxima-
tion. Further, we illustrate that the approximation can yield detailed information regarding
the statistical properties of this model, which might be unavailable using other techniques.
We elaborate on our specific contributions below.

1.1 Contributions

Our main contributions in this paper are as follows:

(i) In Theorem 7, we provide sufficient conditions for the asymptotic tightness of the nVB
approximation. The conditions are easily verifiable, and can be explicitly checked in
specific applications. This provides rigorous theoretical support for widely used mean-
field approximation based methodology.

(ii) Assuming a true frequentist linear model for the data, we derive a limiting varia-
tional formula for the log normalizing constant in Theorem 17. We emphasize that in
contrast to existing results, we do not assume any sparsity on the true regression coef-
ficients. We refer the interested reader to Lee et al. (2020) for a motivating discussion
on the importance of such scenarios in scientific applications.

(iii) Under an additional “separation” condition (11), we establish that the limiting vari-
ational problem has a unique optimizer (see Theorem 20 for a precise statement).
Under this separation condition, empirical averages of samples drawn from the pos-
terior distribution concentrate around explicit deterministic limits; in addition, these
limits are characterized by the optimizer (Corollary 22). We also provide interpretable
sufficient conditions which enforce this separation condition (Lemma 25).

We emphasize that in existing analyses of high-dimensional Bayesian linear regres-
sion, properties of the posterior are directly established (Castillo et al., 2015), and the
variational posterior is analyzed independently (Ray and Szabó, 2021). Our approach
is inherently different—we first establish the correctness of the mean-field approxima-
tion, and then study the posterior through the lens of the mean-field approximation
formula.
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(iv) We further illustrate our general results by applying them to three specific examples—
a two factor ANOVA model, a gaussian design setting with spiked covariance, and a
sparse bernoulli design. In each case, we identify the specific limiting functional which
determines the limiting log normalizing constant.

(v) From a theoretical perspective, our results crucially utilize recent advances in the
theory of non-linear large deviations. Initiated in the seminal paper Chatterjee and
Dembo (2016), the theory of non-linear large deviations was originally conceived to
answer some deep questions concerning large deviations of sub-graph counts in sparse
random graphs. In Basak and Mukherjee (2017), one of the authors successfully
utilized this framework to establish the tightness of the naive mean field approxima-
tion for the log-partition function in a family of Potts models. To the best of our
knowledge, these developments have not been utilized previously for other statistical
models. In this paper, we demonstrate the usefulness of these tools in the context of
high dimensional statistics; we hope that this spurs an in-depth study of their appli-
cability for other high dimensional problems. We consider this to be a key conceptual
contribution of this paper.

(vi) Our results are intimately related to local asymptotic scaling regimes from classical
statistics (Van der Vaart, 2000). In fact, for high-dimensional linear regression with
iid gaussian design, our results can be viewed as natural extensions of classical local-
asymptotic results under the iterated limit p → ∞ following n → ∞. We elaborate
on this connection in Section 3.

1.2 Non-linear large deviations and related results

In a breakthrough paper, Chatterjee and Dembo (Chatterjee and Dembo, 2016) introduced
the theory of non-linear large deviations with the goal of studying large deviations for non-
linear functions of bernoulli random variables. As an application of this general machinery,
they characterized sharp deviation probabilities for sub-graph counts in sparse Erdős-Rényi
random graphs. Subsequent extensions by Eldan (Eldan, 2018) and Augeri (Augeri, 2019)
allow one to track a wider regime of sparsity for the binary variables. In a different direction,
Yan (Yan, 2020) extended the Chatterjee-Dembo framework to general bounded Banach-
space valued variables. See also Austin (2019) for related decompositions of general Gibbs
measures using information theoretic ideas. These results have galvanized the study of large
deviations for sub-graph counts on sparse random graphs, and the past three years have
witnessed rapid progress in this direction. We refer the interested reader to Cook et al.
(2021) and references therein for a survey of recent progress in this area.

At the heart of the Chatterjee-Dembo framework lies a tight approximation bound for
the log-normalizing constant for general Gibbs type distributions in terms of the naive
mean-field approximation formula. This framework was utilized by one of the authors
(Basak and Mukherjee, 2017) to derive asymptotic limits for the log normalizing constant
of Potts models on several sequences of graphs. Similar results were independently derived
by (Jain et al., 2018, 2019) using different techniques.
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In this paper, we study Bayesian linear regression through the lens of non-linear large
deviations, and uncover precise statistical properties of these models by analyzing the mean-
field variational problem.

1.3 Setup

We observe {(yi, xi) : 1 ≤ i ≤ n}, yi ∈ R, xi ∈ Rp. We set y = (yi) ∈ Rn and XT =
[x1, · · · , xn]. Throughout, we work in an asymptotic setting where p and n = n(p) are both
going to ∞. A natural Bayesian model for such a dataset assumes

β1, · · · , βp ∼iid π, βT = (β1, · · · , βp), y = Xβ + ε, ε ∼ N (0, σ2In). (1)

In the display above, π is a probability distribution supported on [−1, 1], and we consider
an iid prior on the regression coefficients. For our subsequent discussion, the precise interval
[−1, 1] for the prior support is not crucial— our arguments go through unchanged, as long
as the prior has bounded support. Note that in the context of Bayesian inference for linear
regression, the regression parameters are often drawn from a parametric family, and the
parameters specifying the prior are, in turn, sampled from a hyper-prior. In our discussions,
we will restrict ourselves to the simpler setting where the prior π is fixed—however, we do
not make any assumptions on π apart from the bounded support assumption. Throughout,
we assume that the noise variance σ2 > 0 is fixed and known to the statistician.

Given the Bayesian model (1), one naturally constructs the posterior distribution

dµy,X
dπ⊗p

(β) ∝ exp
(
− 1

2σ2
‖y −Xβ‖22

)
∝ exp

(
− 1

2σ2

[
βTApβ + βTDpβ − 2zTβ

])
,

where z = XTy, and Dp, Ap are the diagonal and off-diagonal matrices obtained from XTX.
More precisely,

Ap(i, i) := 0, Dp(i, i) :=
(
XTX

)
ii
,

Ap(i, j) :=
(
XTX

)
ij
, Dp(i, j) := 0.

Since the term βTDβ is additive in the components of β, we can absorb the term βTDβ
in the base measure π⊗p, via the following definition:

Definition 1 (Exponential Family) For any γ := (γ1, γ2) ∈ R2 define a probability mea-
sure πγ on [−1, 1] as

dπγ
dπ

(z) := exp
(
γ1z −

γ2

2
z2 − c(γ)

)
, c(γ) := log

∫
[−1,1]

exp
(
γ1z −

γ2

2
z2
)

dπ(z).

Using this definition we can write the posterior distribution µ as

µy,X(dβ) ∝ exp
(
− 1

2σ2

[
βTAβ − 2zTβ

]) p∏
i=1

πi(dβi), where πi := π(0,di), di :=
Dii

σ2
.
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A central object in the theoretical study of these posterior distributions is the normaliz-
ing constant, also referred to as the “partition function” in statistical physics parlance.
Formally, we define

Zp(y,X) =

∫
[−1,1]p

exp
(
− 1

2σ2

[
βTAβ − 2zTβ

]) p∏
i=1

πi(dβi). (2)

The partition function is intractable for most priors, unless special conjugacy properties
are satisfied between the prior and the likelihood. Henceforth, we suppress the dependence
of µ, Zp on y, X whenever it is clear from the context. The classical Gibbs variational
principle characterizes the partition function as

logZp = sup
Q

(
EQ
[
− 1

2σ2

[
βTAβ − 2zTβ

]]
−DKL(Q‖

p∏
i=1

πi)
)
,

where the supremum ranges over probability distributionsQ on [−1, 1]p (see e.g. Wainwright
and Jordan (2008)). In fact, the supremum in the above variational problem is attained
by Q = µ. The naive mean-field approximation to Zp restricts the supremum to product
distributions, and thus obtains a universal lower bound. Formally, we have,

logZp ≥ sup
Q=

∏p
i=1Qi

(
EQ
[
− 1

2σ2

[
βTAβ − 2zTβ

]]
−DKL(Q‖

p∏
i=1

πi)
)
.

The optimizer in the display above provides the best approximation to µ among product
distributions under KL divergence. This paper focuses on the tightness of the naive mean-
field lower bound in the context of linear regression. For an in-depth survey of variational
inference, we refer the interested reader to Bishop (2006); Blei et al. (2017); Wainwright
and Jordan (2008).
Outline: The rest of the paper is structured as follows. We collect our results in Section 2.
We discuss some directions for future enquiry in Section 3. The main results are established
in Section 4. We defer some proofs to the Appendix.

2. Results

We collect our main results in this section. To this end, we first discuss some elementary
facts regarding exponential families. The next result collects some analytic properties of
the cumulant generating function c(·), which will be relevant for our subsequent discussion.
For the sake of completeness, we provide a proof in the Appendix.

Lemma 2 Let c(·) : R2 7→ R be as in Definition 1. Assume that both {−1, 1} belong to the
support of π. Then the following conclusions hold.

(i) ċ(γ1, γ2) := ∂c(γ1,γ2)
∂γ1

is strictly increasing in γ1, with limγ1→±∞ ċ(γ1, γ2) = ±1 for
every γ2 ∈ R.

(ii) For any t ∈ (−1, 1), there exists a unique h(t, γ2) such that ċ(h(t, γ2), γ2) = t. Further,
limt→±1 h(t, γ2) = ±∞ for every γ2 ∈ R.
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Armed with these basic facts, we can formally state the naive-mean field approximation to
the log-normalizing constant (2).

Definition 3 Define a possibly extended real valued function G on [−1, 1]× R by setting

G(u, d) :=uh(u, d)− c(h(u, d), d) + c(0, d) if u ∈ (−1, 1), d ∈ R,
:=DKL(π∞‖π(0,d)) if u = 1, d ∈ R,
:=DKL(π−∞‖π(0,d)) if u = −1, d ∈ R,

where π∞ and π−∞ are degenerate distributions which puts mass 1 at 1 and −1 respectively.

We will need the following facts about the derivatives of G. We defer the proof of Lemma
4 to the Appendix.

Lemma 4 We have, for u ∈ (−1, 1) and d ∈ R,

∂G

∂u
(u, d) = h(u, d),

∂G

∂d
=

1

2

∫ 1

−1
z2dπ(h(u,d),d)(z)−

1

2

∫ 1

−1
z2dπ(0,d)(z).

∂2G

∂2u
(u, d) =

1

c̈(h(u, d), d)
> 0.

Consequently, we have, supu∈(−1,1),d∈R |∂G∂d (u, d)| ≤ 1
2 .

Definition 5 Define Mp : [−1, 1]p → R as

Mp(u) :=
{
− 1

2σ2

[
uTAu− 2zTu

]
−

p∑
i=1

G(ui, di)
}
. (3)

Lemma 6 With Mp(·) as in (3), we have,

sup
Q=

∏p
i=1Qi

(
EQ
[
− 1

2σ2

[
βTAβ − 2zTβ

]]
−DKL(Q‖

p∏
i=1

πi)
)

= sup
u∈[−1,1]p

Mp(u). (4)

This result follows immediately from elementary facts about exponential families. We refer
the interested reader to (Wainwright and Jordan, 2008, Section 5.3).

2.1 Validity of the naive mean-field approximation

Throughout the paper, we use the usual Landau notation O(·) and o(·) for deterministic
sequences dependent on p.

Theorem 7 Assume that the matrix Ap satisfies the two conditions

tr(A2
p) = o(p), (5)

sup
u∈[−1,1]p

p∑
i=1

∣∣∣ p∑
j=1

Ap(i, j)uj

∣∣∣ = O(p). (6)
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(i) We have, setting Rp := supu∈[−1,1]pMp(u), as p→∞,

logZp −Rp = o(p). (7)

(ii) If bi := Eµ(βi|βk, k 6= i), then the vector b := (b1, . . . , bp) satisfies

Mp(b)−Rp = o(p).

(iii) Suppose there exists û ∈ [−1, 1]p which satisfies that for every η > 0 we have

lim sup
p→∞

1

p

[
sup

u∈[−1,1]p:‖u−û‖22≥pη
Mp(u)−Rp

]
< 0. (8)

Assume further that the empirical measure 1
p

∑
i δDp(i,i) is uniformly integrable. Then,

for any ε > 0 and for any continuous function ζ : [−1, 1]× [0, 1]→ R we have

µy,X

(∣∣∣1
p

p∑
i=1

ζ
(
βi,

i

p

)
− 1

p

p∑
i=1

∫
[−1,1]

ζ
(
z,
i

p

)
π(h(ûi,di),di)(dz)

∣∣∣ > ε
)
→ 0.

Remark 8 The careful reader would have already noticed that Theorem 7 is stated for
deterministic data (y,X). In practical applications, it is often more natural to assume that
the data (y,X) is, in turn, sampled from some underlying distribution P. The conclusions
of Theorem 7 continue to hold as long as the sufficient conditions hold asymptotically with
high probability under P.

The condition (6) is extremely mild, and specifies that the log normalizing constant is
asymptotically of order p. This condition is satisfied, for example, whenever the matrix
Ap = XTX−Dp has spectral norm O(1). The assumption (5) is the non-trivial assumption
in the statement above, and effectively guarantees the accuracy of the naive mean field ap-
proximation to leading exponential order. Note that if λ1 ≥ · · · ≥ λp denote the eigenvalues
of Ap, then tr(A2

p) =
∑p

i=1 λ
2
i . Thus the requirement tr(A2

p) = o(p) can be qualitatively
interpreted to mean that the eigenstructure of A is “dominated” by a few top eigenval-
ues. Similar results were derived in the context of naive mean-field approximation for Potts
models by one of the authors in Basak and Mukherjee (2017). Covariance matrices with
an approximately low rank are ubiquitous in modern datasets, and we believe these condi-
tions are satisfied in diverse applications of practical interest. Our result provides formal
evidence to the correctness of widely used mean-field approximations in these settings. We
prove Theorem 7 in Section 4.1.

The third part of our theorem provides further insights into the posterior distribution,
assuming that the naive mean field approximation is “dominated” by a unique factorized
distribution. In the language of Statistical Physics, these distributions are referred to be in
a “pure phase”.

We now demonstrate a few applications of Theorem 7 to concrete examples, which cover
both deterministic and random design matrices. We defer the proofs of these corollaries to
Appendix C.
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Corollary 9 Let X be any sequence of deterministic design matrices with XTX = Ap+Dp,
where Ap and Dp represent the off diagonal and diagonal parts of XTX as before. Suppose
Ap satisfies (5) and (6), and the empirical measure 1

p

∑p
i=1Dp(i, i) is uniformly integrable.

Then the conclusion of Theorem 7 holds.

Corollary 10 Suppose that the ith row of the design matrix X equals n−1/2xi, where

{xi}1≤i≤n
i.i.d.∼ N(0,Γp). Assume that p = o(n), and the following conditions hold:

(a) The off diagonal part Γp,off of the covariance matrix Γp satisfies tr(Γ2
p,off) = o(p).

(b) ‖Γp‖2 = O(1).

Then the conclusion of Theorem 7 holds.

Sparse design matrices arise routinely in coding theory (Gallager, 1962; MacKay, 1999)
and genomics (Wu et al., 2011; Tang et al., 2014). Our next corollary discusses the ac-
curacy of the nVB approximation in the context of a linear regression problem with a
sparse bernoulli design. We assume that the entries of the design are independent, but not
necessarily identical.

Corollary 11 Suppose that the (i, j)th entry of the design matrix X equals
√

p
nB(i, j),

where {B(i, j)}1≤i≤n,1≤j≤p are mutually independent Bernoullis with P(B(i, j) = 1) ≤ λ
p ,

for some λ > 0 free of p. If p = o(n), the conclusion of Theorem 7 applies.

2.2 Scaling limit for the log-normalizing constant

Under the asymptotic validity of the naive mean-field approximation, we derive an asymp-
totic scaling limit for the log-normalizing constant. The limiting description for the log-
normalizing constant is in terms of an infinite dimensional variational problem. We will
subsequently illustrate that under an additional separation condition, the NMF variational
problem at finite n, p has a unique near optimizer, which can be approximated in terms of
the optimizer of the associated infinite dimensional limiting problem. As a concrete take-
away, the optimizer of the limiting problem characterizes the typical behavior of empirical
averages under the posterior. To this end, we will require some notation.

The theory of dense graph limits was developed in Borgs et al. (2008, 2012); Lovász and
Szegedy (2007), and has received tremendous attention over the last decade in Probability,
Combinatorics, Computer Science and Statistics. We refer the interested reader to Lovász
(2012) for an in-depth survey of this area. Follow up work of Borgs et. al. (Borgs et al.,
2019, 2018) has extended this theory significantly beyond the regime of dense graphs—the
resulting Lp-convergence theory can handle sparse graphs and weighted matrices. Utilizing
this set up, our next result will show that under the assumption that the off diagonal
matrix Ap obtained from XTX converges in cut norm to a suitable graphon (need not
be bounded), the corresponding log normalizing constant converges in probability to a
deterministic optimization problem. We note that the use of cut-norms on matrices precedes
the development of graph limit theory (see e.g. Frieze and Kannan (1999) and references
therein).
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Definition 12 A function W : [0, 1]2 7→ R is called symmetric if W (x, y) = W (y, x)
for all x, y ∈ [0, 1]. Any symmetric function W : [0, 1]2 7→ R which is L1 integrable,
i.e. ‖W‖1 :=

∫
[0,1]2 |W (x, y)|dxdy < ∞ is called a graphon. Let W denote the space of all

graphons.

The cut norm of a graphon W is given by

‖W‖� =
∣∣∣ sup
S,T⊂[0,1]

∫
S×T

W (x, y)dxdy
∣∣∣.

The cut norm is equivalent to the L∞ 7→ L1 operator norm defined by

‖W‖∞7→1 := sup
f,g:‖f‖∞,‖g‖∞≤1

∣∣∣ ∫
[0,1]2

W (x, y)f(x)g(x)dxdy
∣∣∣. (9)

More precisely, we have ‖W‖� ≤ ‖W‖∞7→1 ≤ 4‖W‖�. It also follows from (9) that the cut
norm is weaker than the L1 norm, i.e. convergence in L1 implies convergence in cut norm.

Definition 13 Given a symmetric p × p matrix B with real entries, define a piecewise
constant function on [0, 1]2 by dividing [0, 1]2 into p2 smaller squares each of length 1/p,
and set

WB(x, y) :=B(i, j) if dpxe = i, dpye = j with i 6= j,

=0 otherwise.

We will also need the following notion for embedding vectors into functions.

Definition 14 (Vector to function) Given t := (t1, · · · , tp) ∈ Rp, define the piecewise
constant function wt,p on [0, 1] by dividing [0, 1] into p intervals ∪pi=1

1
p(i − 1, i] of equal

length 1/p, and setting wt(x) := ti if x is in the ith interval, i.e. dpxe = i.

To derive the scaling limit, we will assume an underlying model y = Xβ0 + ε, where

ε ∼ N (0, σ2I). We say that a random variable f := f(y,X)
P |X−→ 0 if for any ε > 0,

P
[
|f | > ε|X

]
→ 0 as p → ∞. Thus this convergence is conditional on the sequence of

design matrices. In our subsequent analysis, the following representation lemma will be
crucial.

Lemma 15 Suppose we are in the setting of Theorem 7. Assume further that

p∑
i=1

Dp(i, i) = O(p).

Then there exists (ξ1, · · · ξp)
i.i.d.∼ N(0, 1) such that

1

p
sup

u∈[−1,1]p

∣∣∣Mp(u)− M̃p(u)
∣∣∣ P |X→ 0,

where

M̃p(u) := − 1

2σ2

[
u′Au− 2

p∑
i=1

ui

√
Dp(i, i)ξi − 2β′0X

′Xu
]
−

p∑
i=1

G(ui, di).
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We will derive a limiting formula for the log-normalizing constant (2) in terms of a
variational problem on a space of probability distributions. This requires the following
definition.

Definition 16 Let F denote the space of all bounded measurable functions from [0, 1]×R
to [−1, 1]. Fixing W ∈ W, g, ψ ∈ L1[0, 1], define a functional GW,g,ψ(·) : F → R by setting

GW,g,ψ(F ) :=− 1

2σ2
E[W (X,X ′)F (X,Z ′)F (X ′, Z ′)] +

1

σ2
E[g(X)F (X,Z)]

+
1

σ2
E[
√
ψ(X)F (X,Z)Z]− E

[
G
(
F (X,Z),

ψ(X)

σ2

)]
,

where (X,X ′)
i.i.d.∼ U [0, 1] and (Z,Z ′)

i.i.d.∼ N(0, 1) are mutually independent.

Theorem 17 Suppose y ∼ N
(
Xβ0, σ

2I
)

. Writing XTX = Ap + Dp, set D to denote the

vector in Rp containing the diagonal entries of Dp. Assume the following:

(i) d�(WpAp ,W )→ 0 for some W ∈ W.

(ii) wβ0

L1

→ φ(·), and wD
L1

→ ψ(·).

(iii) tr(A2
p) = o(p).

Define a function g ∈ L1[0, 1] by

g(x) =

∫
[0,1]

W (x, y)φ(y)dy + ψ(x)φ(x).

Then we have,

1

p
sup

u∈[−1,1]p
Mp(u)

P |X−→ sup
F∈F

GW,g,ψ(F ). (10)

Remark 18 For convenience of the reader, we point out the analogues between the dis-
crete objects (vectors, matrices) and their continuum versions (functions) used in the above
theorem, in the list below:

pAp ↔W, β0 ↔ φ, D↔ ψ

Lemma 15 and Theorem 17 are established in Section 4.2.
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2.3 Uniqueness of the optimizer

Theorem 7 identifies general conditions for the asymptotic tightness of the naive mean-field
lower bound to the log-normalizing constant. The Gibbs Variational Principle (Wainwright
and Jordan, 2008) establishes that under these settings, the distribution µ can be approx-
imated, to the leading order, by a product distribution. However, this does not specify
whether the “best” approximation is unique. Indeed, the ferromagnetic Ising model on
the complete graph, henceforth referred to as the Curie-Weiss model, provides a classical
example where the mean-field lower bound is tight, but without an external magnetization,
the model has two distinct optimizers at “low temperature”.

In this section, we identify some conditions which guarantee the uniqueness of the min-
imizers. From a statistical perspective, these conditions allow us to conclude that the
posterior distribution roughly behaves like a product distribution. To this end, our next
lemma identifies a set of sufficient conditions.

Definition 19 Let (ξ1, . . . , ξp)
i.i.d.∼ N(0, 1) be as constructed in Lemma 15. For any u ∈

[−1, 1]p, define a random empirical measure L
(u)
p on R3 by setting

L(u)
p :=

1

p

p∑
i=1

δ( i
p
,ξi,ui)

.

Theorem 20 Suppose all assumptions of Theorem 17 hold. Assume further that there
exists u∗p ∈ [−1, 1]p such that for all ε > 0 there exists δ′ > 0 such that

P
[

sup
u:‖u−u∗p‖22>pε

1

p
{Mp(u)−Mp(u

∗
p)} < −δ′|X

]
= 1− o(1). (11)

Then the following conclusions hold.

(i) The limiting variational problem (10) has a unique optimizer F ∗ ∈ F .

(ii) L
(u∗p)
p

P→ µ∗, where µ∗ is the law of (X,Z, F ∗(X,Z)) with X ∼ U [0, 1] and Z ∼ N(0, 1)
mutually independent.

(iii) F ∗ satisfies the fixed point equation:

F ∗(x, z)
a.s.
= ċ

( 1

σ2

(
− E[W (x,X)F ∗(X,Z)] + g(x) +

√
ψ(x)z

)
,
ψ(x)

σ2

)
, (12)

where X ∼ U [0, 1] and Z ∼ N(0, 1) are mutually independent.

Remark 21 Similar to remark 18, we point out the new discrete and continuum analogues
appearing in Theorem 20.

u∗p ↔ F ∗, Lp(u
∗
p)↔ µ∗.

Combining Theorem 7 and Theorem 20, we get the following corollary, which deduces a
Law of Large numbers under the posterior distribution.

12
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Corollary 22 Suppose (6), (11), and the three conditions (i), (ii), (iii) of Theorem 17
hold. Then the optimization in Theorem 17 has a unique solution F ∗ ∈ F that satisfies

F ∗(x, z)
a.s.
= ċ

( 1

σ2

(
− E[W (x,X)F ∗(X,Z)] + g(x) +

√
ψ(x)z

)
,
ψ(x)

σ2

)
,

Further, for any continuous function ζ : [−1, 1]2 7→ R we have

µy,X

(∣∣∣1
p

p∑
i=1

ζ(βi, β0,i)− E
[ ∫

[−1,1]
ζ(w, φ(X))dπ(

h(F ∗(X,Z),
ψ(X)

σ2
),
ψ(X)

σ2

)(w)
]∣∣∣ > ε

)
P |X→ 0,

where X ∼ U([0, 1]) and Z ∼ N(0, 1) are independent.

Corollary 22 illustrates how one can extract properties of the high-dimensional posterior
using the NMF approximation, and is one of the main takeaways of this paper. The result
has two parts, and should be interpreted as follows: first, assume a non-trivial scaling of
the problem (6), and that the finite dimensional NMF variational problem has a unique
approximate optimizer (11). In this setting, provided the problem parameters W , β0, D
have appropriate continuum limits and the problem is approximately NMF, the infinite
dimensional variational problem in Theorem 17 has a unique optimizer F ∗. In turn, this
optimizer F ∗ satisfies a functional fixed point equation. Note that in principle, this fixed
point equation can still have multiple solutions—we simply claim that the global optimizer
is one of the solutions to this fixed point relation. This optimizer governs the Law of Large
Numbers (LLN) behavior under the posterior distribution—this is the main takeaway from
the second part of the corollary above. Formally, if β is a sample from the posterior µy,X
and ζ is any continuous test function, the empirical average 1

p

∑p
i=1 ζ(βi, β0,i) concentrates

around an explicit, deterministic limit characterized in terms of the optimizer F ∗. Note
that there is an additional technical subtlety—due to the randomness in the distribution of
y given X, the posterior distribution µy,X(·) is actually random! Thus the aforementioned
behavior of the empirical averages (under the posterior) is only valid with high probability
under the distribution P |X. To further elucidate the usefulness of this corollary, we describe
two specific applications in the next remark.

Remark 23 We highlight two specific applications of Corollary 22. First, setting ζ(x, y) =
(x− y)2, we have,

1

p

p∑
i=1

(βi − β0,i)
2 P |X→ E

[ ∫
[−1,1]

(w − φ(X))2dπ(
h(F ∗(X,Z),

ψ(X)

σ2
),
ψ(X)

σ2

)(w)
]
.

Thus although we do not have posterior contraction in this regime, the normalized L2 dis-
tance between the true vector β0 and a sample β from the posterior µy,X converges to the
explicit value characterized above. In other words, the posterior is “concentrated” on a thin
shell of a fixed radius around the true vector β0.

As a second application, we consider a prior π such that zero is an isolated point in its
support. In this case, ζ(x, y) = 1(x = 0) is almost surely continuous under π, and thus

1

p

p∑
i=1

1(βi = 0)
P |X→ E

[
π(

h(F ∗(X,Z),
ψ(X)

σ2
),
ψ(X)

σ2

)({0})].
13
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In this case, the proportion of zero coordinates in a sample from the posterior distribution
can be tracked using our framework. These results are particularly useful for “spike and
slab” type priors π.

Remark 24 To use Corollary 22 in concrete examples, one needs to compute the functions
(W, g, ψ), and verify the conditions (5), (6) and (11). Of these, the separation condition
(11) is somewhat implicit, while the other two conditions are relatively easy to verify directly.
The following lemma provides two sufficient conditions to this end. In particular, it shows
that (11) holds in the so called high temperate regime, or if π has a density (with respect
to Lebesgue measure) which is log concave.

Lemma 25 (i) Suppose there exists λ > 0 and u∗p ∈ [−1, 1]p such that for all u ∈ [−1, 1]p

we have

P
[
Mp(u

∗)−Mp(u) ≥ λ‖u− u∗‖22
∣∣∣X] = 1− o(1), (13)

for some λ > 0, free of u and p. Then the condition (11) in Theorem 20 holds.

(ii) In particular (13) holds under either of the following conditions:

(a)

lim sup
p→∞

sup
1≤i≤p

∑
j 6=i
|Ap(i, j)| < σ2.

(b) Let the prior π have a density with respect to Lebesgue measure on [−1, 1],

dπ

dx
=

1

Z
exp(−V (x)),

where V is even, V : [0, 1]→ R is increasing, and V ′ is convex on [0, 1). Further,
we assume that lim infp→∞ λmin(XTX) > 0.

We collect the proofs of Theorem 20 and Lemma 25 in Section 4.3.

2.4 Applications

To illustrate the utility of Theorem 17 and Corollary 22, we apply our results to specific
examples in this section. The proofs are deferred to Appendix C.

Spiked Covariance Matrix: We consider linear regression with mean-zero gaussian fea-
tures. We assume a spike covariance structure (Johnstone and Lu, 2009) on the features.

Corollary 26 Suppose that the ith row of the design matrix X equals n−1/2xi, where

{xi}1≤i≤n
i.i.d.∼ N(0,Γp), where Γp = I + vv′, with vi := 1√

pG(i/p), and G : [0, 1] 7→ R
is continuous almost surely. Further assume that p� n, and the true regression coefficient

β0 satisfies wβ0

L1

→ φ, for some φ ∈ L1[0, 1].

14
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(a) Then for any ε > 0,
1

p
logZp(y,X)

P |X−→ sup
F∈F
GW,g,ψ(F ),

where

W (x, y) = G(x)G(y) ψ(x) = 1, g(x) = G(x)

∫
[0,1]

G(y)φ(y)dy + φ(x).

(b) Consider the following two cases: either

(i) λ := max1≤i≤n
∑

j 6=i Γp(i, j) < σ2, or

(ii) the conditions of Lemma 25 Part (b) (ii) hold.

Then the conclusions of Corollary 22 hold.

Remark 27 We now consider a very special case to illustrate our results. Suppose X has
IID entries distributed as N(0, 1

n), and σ = 1. In this case the assumptions of Corollary 26
are satisfied with

W ≡ 0, G ≡ 0, g = φ,

and so the optimizing F ∗(x, z) in Corollary 22 simplifies to

F ∗(x, z) = ċ(φ(x) + z, 1).

The next example re-visits the sparse bernoulli design setting introduced in Corollary 11.

Corollary 28 Suppose that the (i, j)th entry of the design matrix X equals
√

p
nB(i, j),

where {B(i, j)}1≤i≤n,1≤j≤p are mutually independent Bernoulli random variables, with

P(B(i, j) = 1) = 1
pG
(
i/n, j/p

)
, where G is a function on [0, 1]2 which is continuous almost

surely. Further assume that p�
√
n, and the true regression coefficient β0 satisfies wβ0

L1

→
φ, for some function φ ∈ L1[0, 1].

(a) Then
1

p
logZp(y,X)

P→ sup
F∈F
GW,g,ψ(F ),

where

W (x, y) =

∫
[0,1]

G(t, x)G(t, y)dt, ψ(x) =

∫
[0,1]

G(t, x)dt,

g(x) =

∫
[0,1]

W (x, y)φ(y)dy + φ(x)ψ(x).

(b) Consider the following two cases:

(i) Set

S(x) :=

∫
[0,1]

W (x, y)dy =

∫
[0,12]

G(t, x)G(t, y)dtdy.

Suppose σ2 > ess supS(X), where X ∼ U [0, 1];

15
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(ii) the conditions of Lemma 25 Part (b) (ii) hold.

Then the conclusions of Corollary 22 hold.

As our last example, we consider a sequence of design matrices arising in the study of
two-way ANOVA designs.

Corollary 29 Suppose that we have a two factor ANOVA model of the form

yij =
1
√
p

(τi + γj) + ξij , 1 ≤ i, j ≤ p̃

Here (τ1, . . . , τp̃) ∈ [−1, 1]p̃ are the levels of the first factor, and (γ1, . . . , γp̃) ∈ [−1, 1]p̃ are

the levels of the second factor, and ξij
i.i.d.∼ N(0, σ2). Setting n = p̃2 and p = 2p̃, let y ∈ Rn

denote the vector obtained by linearizing the matrix ((yij)) row-wise, and X denote the
corresponding n×p design matrix, and let β := (τ, γ) ∈ [−1, 1]p be the unknown parameter.

Assume that the true regression coefficient β0 ∈ [−1, 1]p satisfies wβ0

L1

→ φ, for some
function φ ∈ L1[0, 1].

(a) Then
1

p
logZp(y,X)

P→ sup
F∈F
GW,g,ψ(F ),

where ψ = 1
2 ,

W (x, y) :=0 if (x, y) ∈ [0, .5)2 ∪ (.5, 1]2,

=1 if (x, y) ∈ [0, .5)× (.5, 1] ∪ (.5, 1]× [0, .5).

and g(x) =
∫

[0,1]W (x, y)φ(y)dy + 1
2φ(x).

(b) Consider the following two cases:

(i) σ2 > 1
2 .

(ii) the conditions of Lemma 25 Part (b) (ii) hold.

Then the conclusions of Corollary 22 hold.

3. Discussions

We discuss some limitations of our current results, and collect some questions for future
enquiry.

(i) The bounded support assumption on the prior—A vital technical assumption
in our analysis concerns the bounded support assumption on the prior. We note that
for a general prior with unbounded support, the posterior µy,X might not even be a
proper probability distribution. One intuitively expects that under appropriate “tail-
decay” conditions on the prior, the results in this paper should generalize. Going
beyond the bounded support assumption requires extending the theory of non-linear
large deviations to probability measures on unbounded spaces, and is thus beyond the
scope of this paper.
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(ii) Connection with classical asymptotics—The curious reader might wonder about
the connections between the results in this paper, and classical low-dimensional bayesian
asymptotic theory. To explicate this connection, recall the model (1) with the covari-
ates being drawn iid from a N(0, Ip) distribution. Consider the classical asymptotic
regime with fixed dimension p and n → ∞. Let β0/

√
n ∈ Rp be a sequence of

coefficients on the local scale. Using the theory of equivalence of statistical exper-
iments (Van der Vaart, 2000), the likelihood is equivalent to an observation β̃ ∼
N(β0, (

XTX
n )−1). Further, the Fisher information matrix (XTX/n)−1 is concen-

trated around the identity matrix, and thus the data is asymptotically equivalent
to β̃ ∼ N(β0, Ip). In turn, the posterior, constructed from an iid product prior, is
equivalent to

dµ(β|β̃) ∝
p∏
i=1

exp
(
− 1

2
(βi − β0,i)

2
)

dπ(βi).

Finally, consider an additional limit p→∞. Assuming wβ0

L1

→ φ, by the weak law of
large numbers, for any continuous function ζ : [−1, 1]2 → R,

1

p

p∑
i=1

ζ(βi, β0,i)
P→ E

[ ∫
[−1,1]

ζ(w, φ(X))dπ(φ(X)+Z,1)(w)
]
,

where X ∼ U([0, 1]) and Z ∼ N(0, 1) are independent. We emphasize that this is an
iterated limit, and p is not a function of n in this discussion.

Note that this behavior is consistent with Corollary 22 upon setting W = 0 and
ψ = 1. Thus our results are naturally compatible with the local asymptotics regime—
in fact, for gaussian designs, our results establish the validity of this behavior as
long as p = o(n). Of course, our framework is significantly more general, and can
handle situations where the design distribution changes with n, p, e.g. sparse Bernoulli
designs.

(iii) Extensions to Gibbs posteriors and fractional posteriors—A careful study of
our proof reveals that our main results do not depend strongly on the correct model
specification. As a result, we expect similar techniques to be broadly useful in the
study of Gibbs and fractional posteriors (Alquier et al., 2016; Yang et al., 2020).

(iv) Extensions to other GLMs—Another natural question of interest concerns the ap-
plicability of these ideas to more general models, e.g. logistic regression. We consider
this to be an extremely interesting question, and plan to explore this in the future.

(v) Extensions to models with latent characteristics—Variational methods are
ubiquitous in applications with latent characteristics e.g. topic modeling, commu-
nity detection etc. In contrast, the relevant variables are all observed in the linear
model framework. It will be interesting to explore the applicability of our techniques
to models with latent features.
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(vi) Connections with benign overfitting—A recent series of papers have explored
the benign overfitting phenomenon in the context of high-dimensional linear regres-
sion (Bartlett et al., 2020; Hastie et al., 2022; Tsigler and Bartlett, 2020). The main
takeaway from this line of research is that if the population covariance matrix has
a long and fat tail, the min-norm interpolant continues to have excellent prediction
performance in high dimensions. There are some high-level conceptual similarities
between this phenomenon, and the results reported in this paper. Indeed, both phe-
nomena are driven by the eigenvalues of the covariates—in our case, the condition
Tr(A2) = o(p) essentially demands that the matrix A ∈ Rp×p has only o(p) many
eigenvalues which are O(1). Broadly, this highlights the importance of covariate ge-
ometry in governing the practical performance of ML methods in high-dimensions.

(vii) Connections with Bayesian deep learning—Some recent papers in Bayesian deep
learning (Farquhar et al., 2020; Foong et al., 2020) experimentally establish that the
nVB approximation might not be accurate in Bayesian neural networks, and that
increasing the depth might help ameliorate some of the issues. Our results, on the
other hand, derive sufficient conditions for the accuracy of the nVB approximation
under the simple case of the linear model with product priors. While one should
definitely not expect the nVB approximation to be uniformly accurate (especially
in high-dimensions), it would be interesting to identify conditions on the covariates
which guarantee its accuracy in Bayesian Neural Networks.

4. Proofs

We prove the main results in this section. Theorem 7 is established in Section 4.1, Theorem
17 is established in Section 4.2, while Theorem 20 is proved in Section 4.3.

4.1 Proof of Theorem 7

Our first lemma collects some basic facts about the exponential family πγ . The proof is
deferred to the Appendix.

Lemma 30 In the setting of Lemma 2, we have the following conclusions.

(i) Set γ = (γ1, γ2) ∈ R2. The derivatives of c(γ1, γ2) with respect to γ1 are given by

ċ(γ) :=
∂c(γ1, γ2)

∂γ1
=

∫
[−1,1]

zdπγ(z), c̈(γ) :=
∂2c(γ1, γ2)

∂γ2
1

=

∫
[−1,1]

(z − ċ(γ))2dπγ(z).

(ii) We have, for γ = (γ1, γ2) ∈ R2,

DKL(πγ‖π(0,γ2)) = γ1ċ(γ)− c(γ) + c(0, γ2).

(iii) Consider a sequence γk = (γ1,k, γ2,k) ∈ R2 such that γ1,k → ±∞ and lim sup |γ2,k| <
∞. Then πγk

w→ π±∞, where π±∞ is the degenerate distribution which puts mass 1 at
±1.
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(iv) For any d > 0, the function G(·, d) : [−1, 1]→ R+ is lower semicontinuous.

(v) For x ∈ [−1, 1], y ∈ R and r ∈ N, define

H(x, y) =

∫
[−1,1]

zrdπ(h(x,y),y)(z) (14)

Then we have,

sup
x∈(−1,1),y∈R

∣∣∣∂H(x, y)

∂y

∣∣∣ ≤ 2. (15)

We now turn to the proof of Theorem 7. To this end, set

mi(β) :=

p∑
j=1

Aijβj , θi :=
zi −mi(β)

σ2
, (16)

where we recall that σ2 denotes the noise variance in our linear regression model (1), and
z = XTy. Observe that Aii = 0 for all 1 ≤ i ≤ p implies that µ(·|(βj)j 6=i) = π(θi,di), and
thus Eµ[βi|(βj)j 6=i] = ċ(θi, di). We define

b = (ċ(θi, di))1≤i≤p. (17)

We will prove that certain statistics under the posterior distribution µ can be “well-
approximated” by the vector of conditional means. To this end, we establish the following
results.

Lemma 31 Under the conditions of Theorem 7, setting f(β) = − 1
2σ2β

TAβ + 1
σ2 zTβ, we

have,

logZp = log
[ ∫

[−1,1]p
ef(β)

p∏
i=1

πi(dβi)
]

= sup
u∈[−1,1]p

Mp(u) + o(p), (18)

Eµ
[
βTAβ − bTAb

]2
= o(p2), (19)

Eµ
[ p∑
i=1

mi(β)(βi − bi)
]2

= o(p2), (20)

Eµ
[
f(β)− f(b)−

p∑
i=1

θi(βi − bi)
]2

= o(p2). (21)

In the above displays, the random vectors θ := (θ1, · · · , θp)T and b are as defined in (16)
and (17) respectively.

Lemma 32 Suppose φ : [−1, 1] 7→ R is a bounded measurable function, and Ap satisfies (5)
and (6). Then for any c ∈ [−1, 1]p we have

lim sup
p→∞

1

p
Eµ

[
p∑
i=1

ci

{
φ(βi)− Eµ[φ(βi)|βk, k 6= i]

}]2

<∞.
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We defer the proofs of these lemmas to the end of this section, and establish Theorem 7,
given these lemmas.
Proof of Theorem 7

Proof of Part (i). This is exactly (18) of Lemma 31.

Proof of Part (ii). With f(β) = − 1
2σ2β

TAβ + 1
σ2 zTβ as in Lemma 31, define

Cp(ε) =
{

u ∈ [−1, 1]p : f(u)−
p∑
i=1

(
uih(ui, di)− c(h(ui, di), di)

)
< sup

u∈[−1,1]p
Mp(u)− pε

}
.

Note that it suffices to establish that for all ε > 0, µ(b ∈ Cp(ε)) → 0 as p → ∞. To this
end, define the event

Ep(ε/2) =
{
β ∈ [−1, 1]p : |f(β)− f(b)−

p∑
i=1

θi(βi − bi)| ≤
pε

2

}
.

Note that (21), in combination with Chebychev inequality, implies that µ(Ep(ε/2)c) → 0
as p→∞. Therefore,

µ(Cp(ε)) ≤ µ(Cp(ε) ∩ Ep(ε/2)) + µ(Ep(ε/2)c) = µ(Cp(ε) ∩ Ep(ε/2)) + o(1). (22)

Now, we have,

µ(Cp(ε) ∩ Ep(ε/2)) =
1

Zp

∫
Cp(ε)∩Ep(ε/2)

exp(f(β))

p∏
i=1

πi(dβi)

≤ exp(pε/2)

Zp

∫
Cp(ε)∩Ep(ε/2)

exp
[
f(b) +

p∑
i=1

θi(βi − bi)
] p∏
i=1

πi(dβi)

≤
exp(−pε/2 + supu∈[−1,1]pMp(u))

Zp

∫
Cp(ε)∩Ep(ε/2)

exp
[ p∑
i=1

(θiβi − c(θi, di))
] p∏
i=1

πi(dβi),

where the first inequality follows using the definition of Ep(ε/2), while the last inequality
follows from the definition of Cp(ε). Using the display above in combination with (7), it
suffices to establish that

log

∫
Cp(ε)∩Ep(ε/2)

exp
[ p∑
i=1

(θiβi − c(θi, di))
] p∏
i=1

πi(dβi) = o(p).

This argument would be relatively straight-forward if the θi were fixed constants indepen-
dent of β, as ∫

Cp(ε)∩Ep(ε/2)
exp

[ p∑
i=1

(θiβi − c(θi, di))
] p∏
i=1

πi(dβi)

≤
∫

[−1,1]p
exp

[ p∑
i=1

(θiβi − c(θi, di))
] p∏
i=1

πi(dβi) = 1.
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We caution the reader that this is not the case, and the θi are themselves functions of β,
as specified in (16).

To overcome this issue, we proceed as follows. Fix δ > 0, and let Dp(δ) be a
√
pδ net

of the set {Aβ,β ∈ [−1, 1]p} in the euclidean metric, satisfying limp→∞
1
p log |Dp(δ)| = 0.

Under the assumption tr(A2) = o(p), such a net was constructed in (Basak and Mukherjee,
2017, Lemma 3.4). Thus for every β ∈ [−1, 1]p, there exists p ∈ Dp(δ) such that ‖Aβ−p‖2 ≤
δ
√
p. For any p ∈ Dp(δ), we set

P(p) = {β ∈ [−1, 1]p : ‖Aβ − p‖2 ≤ δ
√
p}.

For β ∈ P(p), setting θpi = zi−pi
σ2 , we have,

p∑
i=1

(θi − θpi )2 =
1

σ4

p∑
i=1

(mi(β)− pi)2 =
1

σ4
‖Aβ − p‖22 ≤

pδ

σ4
,

where the last inequality uses the definition of P(p). This gives,

∣∣∣ p∑
i=1

(θi − θpi )βi

∣∣∣ ≤ p
√
δ

σ2
,
∣∣∣ p∑
i=1

(
c(θi, di)− c(θpi , di)

)∣∣∣ ≤ p∑
i=1

|θi − θpi | ≤
p
√
δ

σ2
.

where the first inequality follows from Cauchy-Schwarz, and the second inequality follows
from the smoothness of c(·, ·). Thus we have,∫

Cp(ε)∩Ep(ε/2)
exp

[ p∑
i=1

(θiβi − c(θi, di))
] p∏
i=1

πi(dβi)

≤
∑

p∈Dp(δ)

∫
P(p)

exp
[ p∑
i=1

(θiβi − c(θi, di))
] p∏
i=1

πi(dβi).

≤ exp
(2p
√
δ

σ2

) ∑
p∈Dp(δ)

∫
[−1,1]p

exp
[ p∑
i=1

(θpi βi − c(θ
p
i , di))

] p∏
i=1

πi(dβi) = exp
(2p
√
δ

σ2

)
.

This concludes the proof, as δ > 0 is arbitrary.

Proof of Part (iii). First, note that it suffices to show the result with ζ(x, y) = xrys for any
r, s ∈ N. Thus we fix r, s ∈ N in the rest of the proof. Using Lemma 32 with φ(x) = xr and
ci = ( ip)s it follows that for any ε > 0,

µ
(∣∣∣1
p

p∑
i=1

βri

( i
p

)s
− 1

p

p∑
i=1

H(bi, di)
( i
p

)s∣∣∣ > ε
)
→ 0,

where H is defined as in (14).To complete the proof, it thus suffices to show that

µ
(∣∣∣1
p

p∑
i=1

H(bi, di)
( i
p

)s
− 1

p

p∑
i=1

H(ûi, di)
( i
p

)s∣∣∣ > ε
)
→ 0. (23)
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Fixing K <∞ and setting dK(i) := di1{|di| ≤ K}, using Lemma 30 Part (v) we have

1

p

∣∣∣∣∣
p∑
i=1

H(ûi, di)
( i
p

)s
−

p∑
i=1

H(ûi, dK(i))
( i
p

)s∣∣∣∣∣ ≤ 2

p

p∑
i=1

di1{|di| > K}. (24)

which goes to 0 as p→∞ followed by K →∞, using the uniform integrability assumption
on 1

p

∑p
i=1 δdi . Also, with δ > 0 and setting

ûδ(i) :=ûi if |ûi| ≤ 1− δ,
:=1− δ if ûi > 1− δ,
:=− 1 + δ if ûi < −1 + δ,

we have

1

p

∣∣∣∣∣
p∑
i=1

H(ûi, dK(i))
( i
p

)s
−

p∑
i=1

H(ûδ(i), dK(i))
( i
p

)s∣∣∣∣∣
≤ sup
x∈[1−δ,1],|y|≤K

|H(x, y)−H(1− δ, y)|+ sup
x∈[−1,1+δ],|y|≤K

|H(x, y)−H(−1 + δ, y)|. (25)

Fixing K > 0, we now claim that the RHS of (25) converges to 0 as δ → 0. Given this
claim, it follows from (24) and (25) that

lim sup
K→∞

lim sup
δ→0

lim sup
p→∞

∣∣∣1
p

p∑
i=1

H(ûi, di)
( i
p

)s
− 1

p

p∑
i=1

H(ûδ(i), dK(i))
( i
p

)s∣∣∣ = 0.

A similar argument with ûi replaced by bi gives

lim sup
K→∞

lim sup
δ→0

lim sup
p→∞

∣∣∣1
p

p∑
i=1

H(bi, di)
( i
p

)s
− 1

p

p∑
i=1

H(bδ(i), dK(i))
( i
p

)s∣∣∣ = 0,

where bδ(i) := bi1{|bi| ≤ 1− δ}.
It suffices to show that for every δ,K fixed we have

µ
(∣∣∣1
p

p∑
i=1

H(ûδ(i), dK(i))
( i
p

)s
− 1

p

p∑
i=1

H(bδ(i), dK(i))
( i
p

)s∣∣∣ > ε
)
→ 0.

But this follows on noting that

sup
|x|≤1−δ,|y|≤K

∣∣∣∂H(x, y)

∂x

∣∣∣ =: M <∞,

and so

1

p

∣∣∣∣∣
p∑
i=1

H(ûδ(i), dK(i))
( i
p

)s
−

p∑
i=1

H(bδ(i), dK(i))
( i
p

)s∣∣∣∣∣
≤ M

p

p∑
i=1

|ûδ(i)− bδ(i)| ≤M

√√√√1

p

p∑
i=1

[
ûi − bi

]2
,
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which converges to zero in probability under the posterior distribution µy,X(·). Here the
last estimate uses part (ii) of this Theorem.

To complete the argument, it thus remains to verify the claim involving (25), for which
it suffices to verify continuity of the function (x, y) 7→ H(x, y) at x = ±1, uniformly for
y ∈ [−K,K]. By symmetry, it suffices to show that

lim
δ→0

sup
x∈[1−δ,1],|y|≤K

|H(x, y)− 1| → 0.

Suppose this is not true. Then there exists sequences {xk}k≥1, {yk}k≥1 with limk→∞ xk =
1, and |yk| ≤ K, such that |H(xk, yk) − 1| > ε for all k, for some ε > 0. Without loss of
generality, by passing to a subsequence, we can assume that yk converges to y ∈ [−K,K].
Using Lemma 30 Part (iii) we have that π(h(xk,yk),yk) converges weakly to δ1, the point mass
at 1. Consequently, using DCT we have

H(xk, yk) =

∫
[−1,1]

xrdπ(h(xk,yk),yk)(z)→ 1,

a contradiction. This verifies the claim, and hence completes the proof of part (iii).

Next we turn to the proof of Lemmas 31 and 32.
Proof of Lemma 31 Recall the notation

f(β) = − 1

2σ2
βTAβ +

1

σ2
zTβ = − 1

2σ2

p∑
i,j=1

Ap(i, j)βiβj +
1

σ2

p∑
i=1

ziβi

from the proof of Theorem 7 part (ii). Set

f̃(β) := − 1

2σ2
βTAβ = − 1

2σ2

p∑
i,j=1

Ap(i, j)βiβj ,

and note that we are in the setting of proof of (Yan, 2020, Thm 4), via the following
connections:

X ↔ β, X̂ ↔ b, N ↔ 1, JN×N ↔ −
1

2σ2
, n↔ p, An ↔ Ap, f̃i(x)↔ mi(β), h↔ z.

The only disparity in the above connection is that Yan (2020) works with h which is free
of i, whereas in our setup we have hi = zi which varies with i. However, the proof of (Yan,
2020, Theorem 4) goes through verbatim under this more general choice of the linear term,
as long as we have the mean field assumption tr(A2) = o(p). Thus, (Yan, 2020, Theorem
4) gives

logZp − sup
Q=

∏p
i=1Qi

[
− 1

2σ2
(EQ[X])TA(EQ[X]) +

1

σ2
zTEQ[X]−

p∑
i=1

D(Qi‖πi)
]

= o(p),
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where EQ[X] is the mean vector of X ∼ Q =
∏p
i=1Qi. The first conclusion (18) then follows

upon using Lemma 6.
Also (19) and (20) follow from (Yan, 2020, (4.40)) and (Yan, 2020, (4.41)) respectively, by
using the connections mentioned above.
It thus suffices to prove (21). But this follows upon observing that∣∣∣f(β)− f(b)−

p∑
i=1

θi(βi − bi)
∣∣∣ ≤ 1

σ2

∣∣∣ p∑
i=1

mi(β)(βi − bi)
∣∣∣+

1

2σ2
|βTAβ − bTAb|,

and using (19) and (20).

Proof of Lemma 32
For any i, j ∈ [p] with i 6= j, setting

ti := E[φ(βi)|βk, k 6= i] =

∫
[−1,1]

φ(z)dπ(θi,di)(z), θi :=
zi −

∑p
k=1Aikβk
σ2

we have

Eµ
[
φ(βi)− ti

][
φ(βj)− tj

]
= Eµ

[
φ(βi)− ti

][
φ(βj)− t(i)j

]
+ Eµ

[
φ(βi)− ti

][
tij − tj

]
(26)

where

t
(i)
j :=

∫
[−1,1]

φ(z)dπ(θij ,dj)
(z), θ

(i)
j :=

zj −
∑

k 6=iAjkβk

σ2
.

Since t
(i)
j does not depend on βi, we have

Eµ
[
φ(βi)− ti

][
φ(βj)− t(i)j

]
= Eµ

([
φ(βj)− t(i)j

]
Eµ
[
φ(βi)− ti

∣∣∣βk, k 6= i
])

= 0.

For estimating the second term in the RHS of (26), setting

`(x) :=

∫
[−1,1]

φ(z)dπ(x,di)(z)

a Taylor’s series expansion gives

t
(i)
j − tj = `(θ

(i)
j )− `(θj) = −Aij

σ2
βi`
′(θj) +

A2
ij

2σ4
β2
i `
′′(ξ

(i)
j ).

Using the last two displays and summing over i, j give∣∣∣∣∣∣
∑
i 6=j

cicjEµ
[
φ(βi)− ti

][
φ(βj)− tj

]∣∣∣∣∣∣
≤Eµ

∣∣∣∣∣∣
∑
i 6=j

cicj
Aij
σ2

βi`
′(θj)

[
φ(βi)− ti

]∣∣∣∣∣∣
+ Eµ

∣∣∣∣∣∣
p∑

i,j=1

cicj
A2
ij

2σ4
β2
i `
′′(ξ

(i)
j )

∣∣∣∣∣∣


≤2‖φ‖∞
σ2

sup
u∈[−1,1]p

p∑
i=1

∣∣∣ p∑
j=1

Aijuj

∣∣∣+
1

2σ4

p∑
i,j=1

A2
ij ,
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where the last estimate uses the fact that ‖`(r)‖∞ ≤ 1 for r = 1, 2. The desired conclusion
follows upon using the given hypothesis on Ap.

4.2 Proof of Theorem 17

We start with a proof of Lemma 15.

Proof of Lemma 15 Without loss of generality assume that the samples (Z1, · · · , Zp)
are arranged in increasing order of variance, i.e. increasing order of {Dp(i, i)}pi=1. Let
{δp : p ≥ 1} be a positive sequence converging to 0, such that

1

δ4
p

p∑
i,j=1

Ap(i, j)
2 = o(p).

The existence of such a sequence follows from the assumption (5). Let

q := arg min{i ∈ [p] : Dp(i, i) ≥ δp}, r := arg max{i ∈ [p] : Dp(i, i) ≤
1

δp
}.

Recall that if Z ∼ N (0, 1), E|Z| =
√

2
π . This implies

E sup
u∈[−1,1]p

|
q−1∑
i=1

Ziui| ≤ E
q−1∑
i=1

|Zi| =
√

2

π

q−1∑
i=1

√
Dp(i, i) ≤

√
2δp
π
p = o(p),

E sup
u∈[−1,1]p

|
p∑

i=r+1

Ziui| ≤ E
p∑

i=r+1

|Zi| ≤
√

2

π

p∑
i=1

√
Dp(i, i)1

(
Dp(i, i) ≥

1

δp

)
≤
√

2δp
π

p∑
i=1

Dp(i, i) = o(p),

(27)

where we use
∑p

i=1Dp(i, i) = O(p). For q ≤ i ≤ r, setting Yi := Zi√
Dp(i,i)

, let Γp denote

the (r− q + 1× r− q + 1) dimensional covariance matrix of the vector Y := (Yq, · · · , Yr)>.

Define E = (ξq, · · · , ξr)> := Γ
−1/2
p Y, and note that (ξq, · · · , ξr)

i.i.d.∼ N (0, 1). Setting vi :=
ui
√
Dp(i, i) and v := (vq, · · · , vr), we have

r∑
i=q

uiZi =

r∑
i=q

viYi = v>Γ1/2E = v>E + v>BE =

r∑
i=q

ξi

√
Dp(i, i)ui + v>BE , (28)

where B := Γ
1/2
p − Ir−q+1. We now claim that

1

p
sup

v∈ 1
δp

[−1,1]r−q+1

v>BE P→ 0. (29)
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Given (29), it follows from (28) that

1

p
sup

u∈[−1,1]r−q+1

∣∣∣ r∑
i=q

uiZi −
r∑
i=q

ui

√
Dp(i, i)ξi

∣∣∣ P→ 0. (30)

Finally with {ξi}[p]\[q,r]
i.i.d.∼ N (0, 1) independent of {ξi}ri=q, using arguments similar to the

derivation of (27) we get

E sup
u∈[−1,1]p

∣∣∣ q−1∑
i=1

ui
√
D(i, i)ξi

∣∣∣ ≤√2δp
π
p = o(p)

E sup
u∈[−1,1]p

∣∣∣ p∑
i=r+1

ui
√
D(i, i)ξi

∣∣∣ ≤√2δp
π

p∑
i=1

Dp(i, i) = o(p).

(31)

Combining (27), (30) and (31) the desired conclusion follows.

It thus remains to verify (29). To this effect, note that Γp(i, i) = 1, and Γp(i, j) =
Ap(i,j)√

Dp(i,i)Dp(j,j)
. Setting Cδ(i, j) := Γp(i, j)1{i 6= j}, and using Spectral Theorem, we have,

Cδ =
r∑
`=q

λ`ψ`ψ
>
` = ΨΛΨ>.

Observe that Γp is positive semidefinite, and has eigenvalues 1 +λ` with λ` ≥ −1. Then we
have

r∑
`=q

λ2
` =

p∑
i,j=1

Cδ(i, j)
2 ≤ 1

δ2
p

p∑
i,j=1

Ap(i, j)
2. (32)

Finally, the matrix B can expressed as

B = (Ir−q+1 + Cδ)
1/2 − Ir−q+1 =

r∑
`=q

µ`ψ`ψ
>
` =: ΨΛ̃Ψ>,

where µ` :=
√

1 + λ` − 1, and Λ̃ is a diagonal matrix with entries {µ`}r`=q. Consequently,

E sup
v∈ 1

δp
[−1,1]r−q+1

|v>BE| = 1

δp
E‖BE‖1 ≤

√
p

δp
E‖BE‖2 =

√
p

δp
E‖ΨΛ̃F‖2 =

√
p

δp
E

√√√√ r∑
`=q

µ2
`F2

` ,

where F` := ψ>` E are i.i.d. N (0, 1) for q ≤ ` ≤ r. By Jensen’s inequality, the last expression
is bounded by

√
p

δp

√√√√ r∑
`=q

µ2
` ≤ C

√
p

δp

√√√√ r∑
`=q

λ2
` = C

√
p

δp

√√√√ p∑
i,j=1

Cδ(i, j)2 ≤ C
√
p

δ2
p

√√√√ p∑
i,j=1

Ap(i, j)2
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where C := supx≥−1

∣∣∣√1+x−1
x

∣∣∣ < ∞, and the last bound uses (32). The last term above

is o(p) by the choice of δp, and so we have verified (29). This completes the proof of the
Lemma.

To establish Theorem 17, we need the following definitions.

Definition 33 Let ξ1, · · · , ξp ∼ N (0, 1) be iid random variables obtained from Lemma 15.
Let X ∼ U([0, 1]) be independent of the ξi variables. Given u ∈ [−1, 1]p set Z = ξi and

U = ui if X ∈ [ (i−1)
p , ip ]. Define L̃

(u)
p to be the joint distribution of (X,Z,U).

Fix W ∈ W, and φ, ψ are L1 functions on [0, 1]. Let F̃2,4 denote the space of all joint
distributions (X,Z,U) ∼ ν such that X ∼ U([0, 1]), Eν [Z2] ≤ 4, |U | ≤ 1. Define the

functional G̃W,φ,ψ : F̃2,4 → R ∪ {−∞} such that

G̃W,φ,ψ(ν) =
1

σ2

[
− 1

2
E[W (X1, X2)U1U2] + E[φ(X)U ] + E[

√
ψ(X)UZ]

]
− E

[
G
(
U,
ψ(X)

σ2

)]
, (33)

where (X1, Z1, U1), (X2, Z2, U2) are iid copies from ν. Finally, let F̃ denote the space of
all probability measures ν on R3, such that if (X,Z,U) ∼ ν, then we have

X ∼ U([0, 1]), Z ∼ N (0, 1), X ⊥⊥ Z, |U | ≤ 1 a.s. (34)

We note that F̃ ⊂ F̃2,4, an observation that will be helpful in our subsequent analysis.
The following stability estimates will be crucial in our proof of Theorem 17. The proof is
deferred to the Appendix.

Lemma 34 (i) We have, for W,W ′ ∈ W, φ, ψ, φ′, ψ′ ∈ L1([0, 1]),

sup
ν∈F̃2,4

|G̃W,φ,ψ(ν)− G̃W ′,φ′,ψ′(ν)| . ‖W −W ′‖� + ‖φ− φ′‖1 + ‖ψ − ψ′‖1.

(ii) Suppose the following assumptions hold:

(a) Wk,W ∈ W is such that d�(Wk,W )→ 0.

(b) φk, φ ∈ L is such that
∫

[0,1] |φk(x)− φ(x)|dx→ 0.

(c) ψk, ψ ∈ L1[0, 1] is such that
∫

[0,1] |ψk(x)− ψ(x)|dx→ 0.

Then we have

sup
ν∈F̃2,4

|G̃Wk,Wk·φk+φkψk,ψk(ν)− G̃W,W ·φ+φψ,ψ(ν)| → 0 (35)

as k →∞.

Lemma 35 We have, for any W ∈ W, g, ψ ∈ L1([0, 1]),

sup
ν∈F̃

G̃W,g,ψ(ν) = sup
F∈F

GW,g,ψ(F ).

Further, both the suprema are attained.
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Remark 36 Depending on whether DKL(π∞‖π) and DKL(π−∞‖π) are infinity or not, there
are four possible cases. In our subsequent proofs, we consider the case DKL(π∞‖π) < ∞
and DKL(π−∞‖π) =∞, noting that other cases follow by natural modifications.

Lemma 37 Let d(·, ·) be the 2-Wasserstein distance on Pr([0, 1] × R × [−1, 1]). For any
δ > 0, set

Bd(F̃ , δ) = {ν ∈ Pr([0, 1]× R× [−1, 1]) : inf
ν′∈F̃

d(ν, ν ′) < δ}.

Then there exists a sequence δp → 0 as p→∞ such that setting

Fp = {∀u ∈ [−1, 1]p, L̃(u)
p ∈ Bd(F̃ , δp)}

we have, P(Fp|X) = 1− o(1).

The proof of Lemma 37 is straightforward, and is thus omitted.

Lemma 38 Let {up : p ≥ 1} ∈ [−1, 1]p be such that L̃
(up)
p converges weakly to ν0 ∈ F̃ .

Then for any W ∈ W, g, ψ ∈ L1,

lim sup
p→∞

G̃W,g,ψ(L̃
(up)
p ) ≤ G̃W,g,ψ(ν0).

Lemma 39 Suppose we are in the setting of Theorem 17. Fix F ∈ F and δ,K > 0
and p ≥ 1. Let Vi ∼ U([(i − 1)/p, i/p]) be independent of ξi arising in Lemma 15. Set
dKi = di1(|di| ≤ K) and define

ũi =

{
F (Vi, ξi) if F (Vi, ξi) ≥ −1 + δ,

ċ(0, dKi ) o.w.
(36)

Then we have, setting u = (ũi), for any ε > 0

lim sup
K→∞

lim sup
δ→0

lim sup
p→∞

P
[∣∣∣1
p
M̃p(u)− GW,g,ψ(F )

∣∣∣ > ε|X
]

= 0.

We prove Theorem 17 assuming Lemma 35, 38 and 39. The corresponding proofs are
deferred to the end of the section.
Proof of Theorem 17 Using Lemma 15, it suffices to prove that

1

p
sup

u∈[−1,1]p
M̃p(u)

P |X→ sup
F∈F

GW,g,ψ(F ).

Upper bound: Note that

1

p
M̃p(u)

(b)
=G̃WpAp ,WpAp ·wβ0

+wβ0
wD,wσ2d

(L̃(u)
p )

(c)
=G̃W,g,ψ(L̃(u)

p ) + E(2)
p (u),
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where supu∈[−1,1]p |E
(2)
p (u)| P |X→ 0 as p→∞. Here, (b) uses the definition (33), and (c) uses

Lemma 34 part (ii). To invoke Lemma 34, we use the fact that

P[∀u ∈ [−1, 1]p, L̃(u)
p ∈ F̃2,4] = P

[ p∑
i=1

ξ2
i ≤ 4p

]
→ 1 (37)

as p→∞.
To complete the upper bound, invoking Lemma 35, it suffices to establish that for all

ε > 0

P
[

sup
u∈[−1,1]p

G̃W,g,ψ(L̃(u)
p ) < sup

ν∈F̃

G̃W,g,ψ(ν) + ε|X
]

= 1− o(1). (38)

We first turn to the proof of (38) by contradiction. Suppose there exists ε > 0, such that
setting

Ep =
{

sup
u∈[−1,1]p

G̃W,g,ψ(L̃(u)
p ) > sup

ν∈F̃

G̃W,g,ψ(ν) + ε
}
.

we have lim sup P[Ep|X] > 0. Using Lemma 37, we have, lim supP[Fp∩Ep] > 0. Therefore,
there exists a subsequence pk →∞ along which Epk ∩ Fpk 6= ∅.

Consequently, there exists ξpk := (ξ1,pk , · · · , ξpk,pk) ∈ Rpk , ξpk ∈ Epk ∩ Fpk and upk ∈
[−1, 1]pk such that

G̃W,g,ψ(L̃
(upk )
p ) > sup

ν∈F̃

G̃W,g,ψ(ν) + ε, L̃
(upk )
pk ∈ Bd(F̃ , δp).

This in turn implies that the sequence {L̃(upk )
pk : k ≥ 1} is tight, and hence has a subse-

quence converging weakly to ν0 ∈ F̃ . Assuming without loss of generality that L̃
(upk )
pk

d→ ν0,
the desired contradiction follows once we show that

lim sup
k→∞

G̃W,g,ψ(L̃
(upk )
p ) ≤ G̃W,g,ψ(ν0). (39)

But this follows from Lemma 38.

Lower Bound: It suffices to show that for all ε > 0,

P
[1

p
sup

u∈[−1,1]p
M̃p(u) > sup

F∈F
GW,g,ψ(F )− ε|X

]
= 1− o(1).

To this end, let F ∈ F satisfy

GW,g,ψ(F ) > sup
F∈F

GW,g,ψ(F )− ε

2
.

Note that if E[G(F (X,Z), ψ(X)] = ∞, then the lower bound is trivial. Thus we assume,
without loss of generality, that E[G(F (X,Z), ψ(X)] <∞. Next, fixing K > 0, we have,

GW,g,ψK (F ) = GW,g,ψ(F ) + oK(1), (40)
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where ψK(x) := ψ(x)1(ψ(x) ≤ K), and we have used Lemma 34 Part (i). Further, setting
dKi = min{di,K}, a similar argument gives

G̃WpAp ,WpAp ·wβ0
+wβ0

wD,wσ2d
(L̃(u)

p )

= G̃WpAp ,WpAp ·wβ0
+wβ0

wD,wσ2dK
(L̃(u)

p ) + oK(1). (41)

For any p ≥ 1, let ξ1, · · · , ξp denote the iid N (0, 1) random variables arising in the opti-
mization problem Mp. For each i ∈ [p], generate Vi ∼ U([(i − 1)/p, i/p]) independent of
each other, and of the ξi variables. Fixing δ > 0, we set

ũi =

{
F (Vi, ξi) if F (Vi, ξi) ≥ −1 + δ,

ċ(0, dKi ) o.w.
(42)

Using Lemma 39, for any ε > 0, there exists δ,K > 0 (depending on ε), such that with
probability at least 1− ε,

1

p
sup

u∈[−1,1]p
M̃p(u) ≥ 1

p
M̃p(ũ) ≥ GW,g,ψ(F )− ε ≥ sup

F∈F
GW,g,ψ(F )− 2ε.

As ε > 0 is arbitrary, this completes the proof of the lower bound.

It remains to prove Lemma 35, 38 and 39. We establish each result in turn.

Proof of Lemma 35 To begin, note that for F ∈ F , (X,Z, F (X,Z)) ∼ ν ∈ F̃ . Therefore,

sup
ν∈F̃

G̃W,g,ψ(ν) ≥ sup
F∈F

GW,g,ψ(F ).

We now turn to the reverse inequality. Fix (X,Z,U) ∼ ν ∈ F̃ . Setting V := Φ(Z) note
that X,V are U([0, 1]) iid. Define F (X,V ) = E[U |X,V ]. Note that

E[W (X,X ′)UU ′] = E[W (X,X ′)F (X,V )F (X ′, V ′)]

E[g(X)U ] = E[g(X)F (X,V )],

E
[
G
(
U,
ψ(X)

σ2

)]
≥ E

[
G
(
F (X,V ),

ψ(X)

σ2

)]
,

where the final step follows from Jensen’s inequality and the observation that ∂2

∂u2
G(u, d) ≥ 0

from Lemma 4. This implies

G̃W,g,ψ(ν) ≤− 1

2σ2
E[W (X,X ′)F (X,V )F (X,V ′)] +

1

σ2
E[g(X)F (X,V )]

+
1

σ2
E[
√
ψ(X)F (X,V )Φ−1(V )]

]
− E

[
G
(
F (X,V ),

ψ(X)

σ2

)]
.

Finally, noting that Φ−1 is strictly increasing, we have,

E[
√
ψ(X)F (X,V )Φ−1(V )] ≤ E[

√
ψ(X)F ∗(X,V )Φ−1(V )],
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where for each x ∈ [0, 1], F ∗(x, ·) is the monotone rearrangment of F (x, ·). This last
step follows from Hardy-Littlewood inequality. Observe that as the Uniform distribution
is invariant under measure preserving transformations, the other terms in the functional
above are unchanged by this rearrangement. Thus

G̃W,g,ψ(ν) ≤ GW,g,ψ(F ∗).

Since F ∗ ∈ F , the proof is complete.

Finally, we show that both suprema are attained. To this end, observe that by Lemma
30 Part (iv), G̃W,g,ψ(·) is upper semi-continuous. Moreover, F̃ is compact under weak

topology—this follows as the collection F̃ is tight, and thus pre-compact by Prokhorov’s
theorem. Thus a maximum exists. To see that GW,φ,ψ(·) attains it’s maximum, start with
a maximizer ν0 of G̃W,φ,ψ(·), and take F ∗0 as obtained in the proof above.

Proof of Lemma 38 Observe that we can approximate W in L1 by a continuous function
W (`). This implies

E
L̃
(u)
p

[W (X1, X2)U1U2] = E
L̃
(u)
p

[W (`)(X1, X2)U1U2] + o`(1)

p→∞→ Eν0 [W (`)(X1, X2)U1U2] + o`(1) = Eν0 [W (X1, X2)U1U2] + o`(1).

Upon sending `→∞, we conclude that E
L̃
(u)
p

[W (X1, X2)U1U2]→ Eν0 [W (X1, X2)U1U2]. A

similar argument shows that

E
L̃
(u)
p

[g(X)U ]
p→∞→ Eν0 [g(X)U ].

Next, we note that we can approximate ψ in L1 by a sequence of continuous functions
{ψ(`) : ` ≥ 1}, and thus, by Cauchy-Schwarz

|E
L̃
(u)
p

[
√
ψ(X)UZ]− E

L̃
(u)
p

[
√
ψ(`)(X)UZ]| ≤ E

L̃
(u)
p

[|
√
ψ

(`)
(X)−

√
ψ(X)| · |Z|]

≤
√
E
L̃
(u)
p

[(
√
ψ(`)(X)−

√
ψ(X))2]E

L̃
(u)
p

[Z2]

≤

√
2

∫ 1

0
|ψ(`)(x)− ψ(x)|dx = o`(1).

The last inequality uses that L̃
(up)
p ∈ F̃2,4. This implies

E
L̃
(u)
p

[
√
ψ(X)UZ] = E

L̃
(u)
p

[
√
ψ(`)(X)UZ] + o`(1)

p→∞→ Eν0 [
√
ψ(`)(X)UZ] + o`(1)

= Eν0 [
√
ψ(X)UZ] + o`(1).

Sending `→∞, we have E
L̃
(u)
p

[
√
ψ(X)UZ]→ Eν0 [

√
ψ(X)UZ] as p→∞.
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The desired conclusion follows once we establish that

lim inf
p→∞

E
L̃
(u)
p

[
G
(
U,
ψ(X)

σ2

)]
≥ Eν0

[
G
(
U,
ψ(X)

σ2

)]
.

But this follows on using Fatou’s lemma and the lower semicontinuity of G
(
·, ψ(X)

σ2

)
(Lemma

30 part (iv)).

Proof of Lemma 39 The definition of u in (36) implies

G(ui, d
K
i ) =

{
G(F (Vi, ξi), d

K
i ) if F (Vi, ξi) ≥ −1 + δ,

0 o.w.

Observe that

1

p

p∑
i=1

G(ui, d
K
i ) =

1

p

p∑
i=1

G(F (Vi, ξi), d
K
i )1(F (Vi, ξi) ≥ −1 + δ) (43)

Now, the function G : [−1 + δ, 1] × [0,K] → R+ is bounded, and thus by Chebychev
inequality,

1

p

p∑
i=1

G(F (Vi, ξi), d
K
i )1(F (Vi, ξi) ≥ −1 + δ)

−1

p

p∑
i=1

E
[
G(F (Vi, ξi), d

K
i )1(F (Vi, ξi) ≥ −1 + δ)

]
P |X→ 0. (44)

Also, note that

1

p

p∑
i=1

E
[
G(F (Vi, ξi), d

K
i )1(F (Vi, ξi) ≥ −1 + δ)

]
= E[G(F (X,Z), wdK ,p(X))1(F (X,Z) ≥ −1 + δ)],

= E
[
G
(
F (X,Z),

ψK(X)

σ2

)
1(F (X,Z) ≥ −1 + δ)

]
+ o(1) (45)

where X ∼ U([0, 1]) and Z ∼ N (0, 1) are independent. The last display uses Lemma 4 along
with the fact that wdK ,p → ψK/σ

2 in L1 for almost every K > 0. Now, the assumptions
E[G(F (X,Z), ψ(X)/σ2)] <∞ andDKL(π−∞‖π) =∞ together imply P[F (X,Z) = −1] = 0.
In combination with Dominated Convergence Theorem, this implies

lim
δ→0

E
[
G
(
F (X,Z),

ψK(X)

σ2

)
1(F (X,Z) ≥ −1 + δ)

]
= E

[
G
(
F (X,Z),

ψK(X)

σ2

)]
. (46)

Combining (43), (44), (45) and (46), for any ε > 0, we have,

lim sup
δ→0

lim sup
p→∞

P
[∣∣∣1
p

p∑
i=1

G(ui, d
K
i )− E

[
G
(
F (X,Z),

ψK(X)

σ2

)]∣∣∣ > ε|X
]

= 0. (47)
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We now claim that for any ε > 0,

lim sup
δ→0

lim sup
p→∞

P
[∣∣∣1
p

p∑
i,j=1

Ap(i, j)uiuj − E[W (X1, X2)F (X1, Z1)F (X2, Z2)]
∣∣∣ > ε|X

]
= 0.

lim sup
δ→0

lim sup
p→∞

P
[∣∣∣uTApβ0 + uTDpβ0 − E[g(X)F (X,Z)]

∣∣∣ > ε|X
]

= 0.

lim sup
δ→0

lim sup
p→∞

P
[∣∣∣ p∑
i=1

ui

√
Dp(i, i)ξi − E[

√
ψ(X)UZ]

∣∣∣ > ε|X
]

= 0.

(48)

We first turn to the quadratic form. We have,

1

p

p∑
ij=1

Ap(i, j)uiuj = E
L̃
(u)
p

[WpAp(X1, X2)U1U2]

(a)
= E

L̃
(u)
p

[W (X1, X2)U1U2] + o(1)

(b)
= E

L̃
(u)
p

[W (K)(X1, X2)U1U2] + oK(1). (49)

Here, the step (a) uses Assumption (a), and step (b) uses W (K) := W1(|W | ≤ K)
L1

→ W .
We have, setting Mp(i, j) :=

∫
[(i−1)/p,i/p]

∫
[(j−1)/p,j/p]W

(K)(x, y)dxdy,

E
L̃
(u)
p

[W (K)(X1, X2)U1U2] =

p∑
i,j=1

Mp(i, j)uiuj =

p∑
i,j=1

Mp(i, j)E[ui]E[uj ] + oP (1) (50)

by the weak law of large numbers, and the observation |Mp(i, j)| ≤ K/p2. Here, the oP (1)
term converges to zero in probability under the joint distribution of {(Vi, ξi) : 1 ≤ i ≤ p}.
Further, we have,∣∣∣ p∑

i,j=1

Mp(i, j)E[ui]E[uj ]−
p∑

i,j=1

Mp(i, j)E[F (Vi, Z)]E[F (Vj , Z)]
∣∣∣

≤ 2KP[F (X,Z) ≤ −1 + δ], (51)

where X ∼ U([0, 1]) and Z ∼ N (0, 1) are independent. Finally,

p∑
i,j=1

Mp(i, j)E[F (Vi, Z)]E[F (Vj , Z)] = E[WMp(X,X
′)F (X,Z)F (X ′, Z ′)]

(a)
= E[W (K)(X,X ′)F (X,Z)F (X ′, Z ′)] + o(1)

(b)
= E[W (X,X ′)F (X,Z)F (X ′, Z ′)] + oK(1) (52)

where (a) uses ‖WMp −W (K)‖1 → 0 as p→∞ and (b) uses ‖W −W (K)‖1 → 0 as K →∞.
Combining (49), (50), (51), (52), the first conclusion of (48) follows upon sending p→∞,
δ → 0 and K →∞.

The other conclusions of (48) follow using analogous arguments, and are thus omitted.
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4.3 Proof of Theorem 20 and related results

The following continuity statement will be critical for the proof of Theorem 20. The proof
is deferred to the Appendix.

Lemma 40 Define a map m : Pr
(

[0, 1] × R × [−1, 1]
)
× W × [0, 1] → R, (µ,W, x) 7→

E(X,Z,U)∼µ[W (x,X ′)U ′].

(i) Fix x ∈ [0, 1], µ ∈ Pr
(

[0, 1] × R × [−1, 1]
)

, and W,W ′ ∈ W. For any ε > 0, set

S(ε) = {x : |m(µ,W, x)−m(µ,W ′, x)| > ε}. For X ∼ U([0, 1]), we have,

P[X ∈ S(ε)] ≤ 2

ε
‖W −W ′‖�.

(ii) For any W ∈ W, if νp
w→ ν, then

sup
x∈[0,1]

∣∣∣m(νp,W, x)−m(ν,W, x)
∣∣∣→ 0

as p→∞.

Proof of Theorem 20 We break the proof into several steps. Note that using Lemma 35,
both variational problems attain their suprema.

(i) We establish uniqueness of the maximizer assuming (11). If possible, let F1 and F2

be two distinct optimizers of GW,g,ψ in F . Therefore, using Theorem 17,

1

p
sup

u∈[−1,1]p
Mp(u)

P |X−→ sup
F∈F

GW,g,ψ(F ) = GW,g,ψ(F1) = GW,g,ψ(F2).

Let ξ1, · · · , ξp be iid N (0, 1) random variables arising in the functional M̃p(·). Further,
let Vi ∼ U([(i− 1)/p, i/p]) be independent of the ξi variables. Fixing δ > 0, following

the recipe in (36), we define two sequences u
(1)
p,δ,K , u

(2)
p,δ,K in [−1, 1]p corresponding to

F1, F2 respectively. Using Lemma 39, for i = 1, 2, for δ,K > 0 we have

P
[1

p
Mp(u

(i)
p,δ,K) > GW,g,ψ(Fi)−

δ′

4

∣∣∣X] ≥ 1− E(δ,K),

where lim supK→∞ lim supδ→0 E(δ,K) = 0.

Moreover, using Theorem 17 and the assumption that F1 and F2 are optimizers of the
limiting variational problem, we have, for i = 1, 2,

P
[1

p
Mp(u

∗
p) < GW,g,ψ(Fi) +

δ′

4

∣∣∣X] = 1− o(1).

34



Variational Inference in linear regression

On the event {‖u(i)
p,δ,K−u∗p‖22 > pε, i = 1, 2}∩{1

pMp(u
∗
p) < GW,g,ψ(Fi)+ δ′

4 }, for i = 1, 2
we have,

1

p
Mp(u

(i)
p,δ,K) ≤ 1

p
Mp(u

∗
p)− δ′ ≤ GW,g,ψ(Fi) +

δ′

4
− δ′ < GW,g,ψ(Fi)−

δ′

4
.

Using (11), this implies, for all p sufficiently large, P[‖u(i)
p,δ,K−u∗p‖22 > pε, i = 1, 2|X] ≤

3E(δ,K). By triangle inequality, P[‖u(1)
p,δ,K − u

(2)
p,δ,K‖

2
2 > 2pε|X] ≤ 3E(δ,K). As

u
(i)
p,δ,K ∈ [−1, 1]p, we have,

1

p
E[‖u(1)

p,δ,K − u
(2)
p,δ,K‖

2
2] ≤ 2ε+ 12E(δ,K).

Thus, with X ∼ U([0, 1]), Z ∼ N (0, 1) independent, we have,

E[(F1(X,Z)− F2(X,Z))2]

=
1

p

p∑
i=1

E[(F1(Vi, ξi)− F2(Vi, ξi))
2]

≤1

p
E[‖u(1)

p,δ,K − u
(2)
p,δ,K‖

2
2] +

∑
a=1,2

P[Fa(X,Z) ≤ −1 + δ]

≤2ε+ 12E(δ,K) +
∑
a=1,2

P[Fa(X,Z) ≤ −1 + δ].

Setting δ → 0 followed by K → ∞, we obtain that E[(F1(X,Z) − F2(X,Z))2] ≤ 2ε.
Here we use that F1, F2 are optimizers; thus without loss of generality we can assume
E[G(Fa(X,Z), ψ(X)] < ∞ for a = 1, 2, which along with Remark 36 implies that
P[Fa(X,Z) = −1] = 0.

Finally, note that ε > 0 is arbitrary, and thus F1 = F2 a.s.. This establishes the
desired uniqueness.

(ii) As L
(u∗p)
p and L̃

(u∗p)
p are close in weak topology, it suffices to work with L̃

(u∗p)
p . With

ũp,δ,K as in (36), for any ε > 0, Lemma 39 and (11) imply

lim sup
K→∞

lim sup
δ→0

lim sup
p→∞

P[‖ũp,δ,K − u∗p‖22 > pε|X] = 0.

Recalling the 2-Wasserstein distance d(·, ·) from Lemma 37, we have,

d(L̃
(u∗p)
p , L̃

(up,δ,K)
p ) ≤ 1

p
‖ũp,δ,K − u∗p‖22,

and so it suffices to look at L̃
(up,δ,K)
p . Let η : R3 → R be bounded continuous. Then

E
L̃
(up,δ,K )
p

[η(X,Z,U)] =
1

p

p∑
i=1

η(Vi, ξi, ũp,δ,K(i)) =
1

p

p∑
i=1

E[η(Vi, ξi, ũp,δ,K(i))] + oP (1),
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where the last equality follows from the law of large numbers and the boundedness of
η. Here, the oP (1) term converges to zero in probability under the joint distribution
of {(Vi, ξi) : 1 ≤ i ≤ p}. Finally,

∣∣∣1
p

p∑
i=1

E[η(Vi, ξi, ũp,δ,K(i))]− E[η(X,Z, F (X,Z)1(F (X,Z) > −1 + δ))]
∣∣∣

≤ P[F (X,Z) ≤ −1 + δ].

This gives, for any ε > 0,

lim sup
K→∞

lim sup
δ→0

lim sup
p→∞

P
[∣∣∣E

L̃
(up,δ,K )
p

[η(X,Z,U)]− E[η(X,Z, F (X,Z))]
∣∣∣ > ε|X

]
= 0,

where we again use that P[F (X,Z) = −1] = 0. This completes the proof of Part (ii).

(iii) For any p ≥ 1, the function M̃p(·) is upper semicontinuous on [−1, 1]p, and thus attains

its maximum. Let {ûp : p ≥ 1} denote any sequence of global maximizers of M̃p(·).
Lemma 15 and the separation condition (11) together imply that 1

p‖u
∗
p − ûp‖22

P |X→ 0.
In turn, this implies

d(L̃
(u∗p)
p , L̃

(ûp)
p )

P |X→ 0, (53)

where d(·, ·) denotes the 2-Wasserstein distance. Thus L̃
(ûp)
p converges weakly in

probability to ν∗ := (X,Z, F ∗(X,Z)).

Next, differentiating M̃p(·) at u ∈ (−1, 1)p, we obtain

∇M̃p(u) =
[ 1

σ2

(
−Apu +Apβ0 +Dpβ0 + diag(

√
Dp(i, i))ξ

)
− h(u,d)

]
,

where ξ = (ξ1, · · · , ξp)T, and h(·, ·) is the vector obtained upon applying h coordinate-
wise to the two vectors. Note that if ui → +1, then h(ui, di) → ∞, and thus
∂
∂ui
M̃p(u,d) → −∞. Consequently, ûi < 1. A similar argument implies ûi > −1,

and thus ûp ∈ (−1, 1)p. This immediately implies that ûp is a critical point of M̃p,
and satisfies the fixed point equation

ûp = ċ
( 1

σ2

(
−Apûp +Apβ0 +Dpβ0 + diag(

√
Dp(i, i))ξ

)
,d
)
. (54)

Let f1 : [0, 1] → R and f2 : R → R be bounded continuous functions. Recalling the
function m from Lemma 40 and setting gp = WpAp · wβ0 + wβ0wD, we have,

E
L̃

(ûp)
p

[f1(X)f2(Z)U ]

=E
L̃

(ûp)
p

[
f1(X)f2(Z)ċ

( 1

σ2

(
−m(L̃(ûp)

p ,WpAp , X) + gp(X) +
√
wD(X)Z

)
, wd(X)

)]
=E

L̃
(ûp)
p

[
f1(X)f2(Z)ċ

( 1

σ2

(
−m(L̃(ûp)

p ,WpAp
, X) + g(X) +

√
ψ(X)Z

)
, wd(X)

)]
+ Ep, (55)

36



Variational Inference in linear regression

where we use c̈(θ, d) ≤ 1, and observe that

|Ep| . E
L̃

(ûp)
p

[|(
√
wD(X)−

√
ψ(X))Z|] + ‖gp − g‖1 . ‖wD − ψ‖1 + ‖gp − g‖1 = o(1). (56)

Define the good event

E (ε) = {|m(L̃
(ûp)
p ,WpAp , X)−m(L̃

(ûp)
p ,W,X)| ≤ ε} ∩ {|wD(X)− ψ(X)| ≤ ε}.

Then, upon observing that supγ1,γ2 |
∂2

∂γ1∂γ2
c(γ1, γ2)| . 1 and supγ1,γ2 |

∂2

∂γ21
c(γ1, γ2)| . 1,

we have, on the event E (ε),∣∣∣ċ( 1

σ2

(
−m(L̃

(ûp)
p ,WpAp , X) + g(X) + E[

√
ψ(X)Z]

)
, wd(X)

)
−

−ċ
( 1

σ2

(
−m(L̃

(ûp)
p ,W,X) + g(X) + E[

√
ψ(X)Z]

)
,
ψ(X)

σ2

)∣∣∣ . ε.
Thus we have,∣∣∣E

L̃
(ûp)
p

[
f1(X)f2(Z)ċ

( 1

σ2

(
−m(L̃(ûp)

p ,WpAp
, X) + g(X) +

√
ψ(X)Z

)
, wd(X)

)]
− E

L̃
(ûp)
p

[
f1(X)f2(Z)ċ

( 1

σ2

(
−m(L̃(ûp)

p ,W,X) + g(X) +
√
ψ(X)Z

)
,
ψ(X)

σ2

)]∣∣∣
. ε+ P[E (ε)c]

. ε+
2

ε
‖W −WpAp‖� + P

[
|wd(X)− ψ(X)

σ2
| > ε

]
= O(ε) + o(1),

(57)

where the last inequality uses Lemma 40 part (i).

Finally, Lemma 40 part (ii) implies that

E
L̃

(ûp)
p

[
f1(X)f2(Z)ċ

( 1

σ2

(
−m(L̃(ûp)

p ,W,X) + g(X) +
√
ψ(X)Z

)
,
ψ(X)

σ2

)]
=E

L̃
(ûp)
p

[
f1(X)f2(Z)ċ

( 1

σ2

(
−m(ν∗,W,X) + g(X) +

√
ψ(X)Z

)
,
ψ(X)

σ2

)]
+ o(1). (58)

Combining (55), (56), (57), (58), we have,

E
L̃
(ûp)
p

[f1(X)f2(Z)U ]

=E
L̃
(ûp)
p

[
f1(X)f2(Z)ċ

( 1

σ2

(
−m(ν∗,W,X) + g(X) +

√
ψ(X)Z

)
,
ψ(X)

σ2

)]
+ o(1) +O(ε).

Sending p→∞, and then ε→ 0, we obtain

Eν∗ [f1(X)f2(Z)U ]

=Eν∗
[
f1(X)f2(Z)ċ

( 1

σ2

(
−m(ν∗,W,X) + g(X) +

√
ψ(X)Z

)
,
ψ(X)

σ2

)]
.

The desired conclusion follows upon recalling that (X,Z, F ∗(X,Z)) ∼ ν∗.
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We next turn to the proof of Lemma 25. To this end, we require the following auxiliary
lemma. The proof is deferred to the Appendix.

Lemma 41 Suppose rp : [−1, 1]p → R∪ {−∞} is upper semi-continuous on [−1, 1]p, finite
and differentiable on (−1, 1)p, and

sup
u∈(−1,1)p

λmin(Hp(x)) ≤ −η,

where Hp(·) is the Hessian of rp(·). Then there exists a unique global maximizer x0 ∈
[−1, 1]p, and further for any x ∈ [−1, 1]p we have

rp(x0)− rp(x) ≥ η

2
‖x− x0‖22.

Proof of Lemma 25

Proof of (i) The equation (13) implies that the event

sup
u∈[−1,1]p:‖u−u∗p‖22>pε

1

p
{Mp(u)−Mp(u

∗
p)} < −ελ

occurs with probability 1− o(1).

Proof of (ii)(a) Differentiating Mp(·), twice, the Hessian is given by

Hp = − 1

σ2
Ap −∆p, ∆p(i, i) =

1

c̈(h(ui, di), di)
. (59)

Note that c̈(h(u, d), d) is the variance of a random variable supported on [−1, 1], and thus
c̈(h(u, d), d) ≤ 1. Under the assumption of (i), there exists δ > 0 such that for all p large
enough and all x ∈ (−1, 1)p,

xTHp(u)x = − 1

σ2
xTApx− x∆px ≤ −δ‖x‖22. (60)

It then follows from Lemma 41 that there exists u∗ ∈ [−1, 1]p which is a unique optimizer
of Mp(·), and further, for any u ∈ [−1, 1]p we have

Mp(u
∗)−Mp(u) ≥ δ

2
‖u− u∗‖22.

This verifies (13).

Proof of (ii)(b) To begin, note that the prior is absolutely continuous with respect to the
Lebesgue measure on [−1, 1] and thusDKL(π∞‖π) = DKL(π−∞‖π) =∞. Thus to maximize
Mp(·), it suffices to restrict to (−1, 1)p. As in (60), it suffices to bound the lower eigenvalue
of the Hessian, uniformly in (−1, 1)p, for which using (59) and the fact that λmin(XTX) is
bounded away from 0 it suffices to show that ∆p(i, i) ≥ di. By GHS inequality (Ellis et al.,
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1976), c̈(h(u, di), di) ≤ c̈(0, di), and thus the desired inequality follows, once we establish
that

sup
d≥0

dc̈(0, d) ≤ 1. (61)

Consider now a scale family of parametric distributions {Pθ : θ ≥ 0} with

dPθ
dx
∝ exp(−θV (x)) exp(−dx2/2).

Since V (·) is even, it follows that the first moment under Pθ is 0 for all θ. Also, since V (·) is
an increasing, this family has monotone likelihood ratio in T (x) = |x|, and thus the second
moment under the law Pθ is decreasing in θ for θ > 0, and so

c̈(0, d) = Varθ=1(Z) ≤ Varθ=0(Z).

Proceeding to bound the RHS of the above display, for d > 0 we have

dVarθ=0(Z) =

∫ 1
−1 dz

2 exp(−dz2/2) dz∫ 1
−1 exp(−dz2/2) dz

.

We substitute
√
dz = t, so that

dVarθ=0(Z) =

∫ √d
−
√
d
t2 exp(−t2/2) dt∫ √d

−
√
d

exp(−t2/2) dt
.

This is exactly the variance of a truncated standard Gaussian distribution, truncated to the

interval [−
√
d,
√
d]. Indeed, the truncated variance is 1− 2

√
dφ(
√
d)

2Φ(
√
d)−1

< 1 (Johnson and Kotz,

1971), where φ(·) and Φ(·) represent the pdf and cdf of the standard Gaussian distribution.
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Appendix A. Some technical lemmas

We collect some basic results about exponential families in the first subsection. We prove
Lemma 41 in the next subsection.
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A.1 Results on exponential families

We prove Lemmas 2, 4 and 30 in this section.
Proof of Lemma 30

(i) This follows by direct computation (see e.g. Lehmann and Casella (2006)).

(ii) This follows by direct calculation.

(iii) Recall from Definition 1 that

dπγ
dπ

(z) = exp
(
γ1z −

γ2

2
z2 − c(γ)

)
.

Without loss of generality, we consider the case γ1,k →∞. The case γ1,k → −∞ follows
using the same argument, with obvious modifications. Observe that as γ1,k →∞ and
lim supk |γ2,k| <∞, for k sufficiently large, the function γ1,kz−

γ2,k
2 z2 is increasing on

[−1, 1]. This implies, for any ε > 0,∫ 1−ε

−1
exp

(
γ1,kz −

γ2,k

2
z2
)

dπ(z) ≤ exp
(
γ1,k(1− ε)−

γ2,k

2
(1− ε)2

)
π([−1, 1− ε]).

On the other hand, exp(c(γk)) can be lower bounded by∫ 1

1− ε
2

exp
(
γ1,kz −

γ2,k

2
z2
)

dπ(z) ≥ exp
(
γ1,k(1−

ε

2
)−

γ2,k

2
(1− ε

2
)2
)
π([1− ε

2
, 1]).

On taking ratios of the above two displays we get

πγk([−1, 1− ε]) ≤ exp
(
− ε

2
γ1,k +

1

2
γ2

2,k

)π([−1, 1− ε])
π([1− ε

2 , 1])

Also note that the ratio of probabilities under π in the RHS is positive, as ±1 is in the
support of π. The desired conclusion now follows upon letting k → ∞, upon noting
that γ1,k →∞, and γ2,k stays bounded.

(iv) The proof follows directly from the lower semicontinuity of KL divergence under weak
convergence (Posner, 1975, Theorem 1).

(v) By definition,

H(x, y) =

∫
[−1,1]

zr exp
(
h(x, y)z − y

2
z2 − c(h(x, y), y)

)
dπ(z).

For x ∈ {−1, 1}, H(x, ·) is independent of y, and thus ∂H(x,y)
∂y = 0. We assume

henceforth that x ∈ (−1, 1). Differentiating, we obtain,

∂H(x, y)

∂y
=

∫
[−1,1]

zr
[
z
∂h(x, y)

∂y
− z2

2
−
(
ċ(h(x, y), y)

∂h(x, y)

∂y
+

∂c

∂γ2

∣∣∣
(h(x,y),y)

)]
dπ(h(x,y),y)(z)

=

∫
[−1,1]

zr
[
(z − x)

∂h(x, y)

∂y
− z2

2
− ∂c

∂γ2

∣∣∣
(h(x,y),y)

]
dπ(h(x,y),y)(z),
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where the last equality uses ċ(h(x, y), y)) = x. Therefore,

∣∣∣∂H(x, y)

∂y

∣∣∣ ≤ ∣∣∣∂h(x, y)

∂y

∣∣∣Eπ(h(x,y),y) [|Z − x|] +
1

2
+

1

2
≤
∣∣∣∂h(x, y)

∂y

∣∣∣+ 1, (62)

where we use Eπ(h(x,y),y) [|Z|r] ≤ 1 for all r ≥ 1. Now, differentiating ċ(h(x, y), y) = x
in y, we have,

∂h(x, y)

∂y
=−

∂2c
∂γ1∂γ2

(h(x, y), y)

c̈(h(x, y), y)

=
1

2

Covπ(h(x,y),y)(Z,Z
2)

Varπ(h(x,y),y)(Z)

=
1

2

E(h(x,y),y)[(Z − x)(Z2 − x2)]

E(h(x,y),y)[(Z − x)2]

=
1

2

E(h(x,y),y)[(Z − x)2(Z + x)]

E(h(x,y),y)[(Z − x)2]
.

This implies supx∈(−1,1),y∈R

∣∣∣∂h(x,y)
∂y

∣∣∣ ≤ 1, where we use the trivial bound |Z + x| ≤ 2.

The desired conclusion follows by plugging this back into (62).

Proof of Lemma 2

(a) Lemma 30 Part (a) implies that c̈(γ1, γ2) = Varπγ (Z) > 0 for all γ1, γ2. Thus ċ(γ1, γ2)

is strictly increasing in γ1. For every γ2 ∈ R, as γ1 → ±∞, πγ
w→ π±∞ using Lemma

30 Part (c). The desired conclusion follows on noting that

ċ(γ1, γ2) = Eπγ [Z]
γ1→±∞→ ±1

by the Dominated Convergence Theorem.

(b) Using Part (a), we know that ċ(γ1, γ2) is strictly increasing in γ1, and continuous.
Further, if γ1 → ±∞, ċ(γ1, γ2) → ±1. Thus for any t ∈ (−1, 1), the existence of
h(t, γ2) follows by the Intermediate Value Theorem. Finally, we argue that for any
fixed γ2 ∈ R, as t→ 1, h(t, γ2)→∞. The case t→ −1 is similar, and thus omitted.

We complete the proof by contradiction. Suppose, if possible, that

M := lim
t→1

h(t, γ2) <∞.
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In this case, as −1 is in the support of π, π([−1, 0]) > 0. This implies that

t = ċ(h(t, γ2), γ2) =

∫
[−1,1]

z exp
(
h(t, γ2)z − γ2

2
z2 − c(h(t, γ2), γ2)

)
dπ(z)

=

∫
[−1,0]

z exp
(
h(t, γ2)z − γ2

2
z2 − c(h(t, γ2), γ2)

)
dπ(z)+∫

(0,1]
z exp

(
h(t, γ2)z − γ2

2
z2 − c(h(t, γ2), γ2)

)
dπ(z)

≤ π(h(t,γ2),γ2)((0, 1]).

To complete the argument, it suffices to show that lim inft→1 π(h(t,γ2),γ2)([−1, 0]) > 0.
But this follows on noting that the function t → c(h(t, γ2), γ2) is non-decreasing on
[0, 1], and thus

π(h(t,γ2),γ2)([−1, 0]) ≥ exp(−M − γ2

2
− c(M,γ2))π([−1, 0]).

Proof of Lemma 4 The lemma follows by direct computation. First, note that

∂G(u, d)

∂u
= h(u, d) + u

∂h

∂u
(u, d)− ċ(h(u, d), d)

∂h

∂u
(u, d) = h(u, d),

where the last equality follows upon noting that ċ(h(u, d), d) = u. For the second derivative,
note that

∂G(u, d)

∂d
=u

∂h(u, d)

∂d
− ċ(h(u, d), d)

∂h(u, d)

∂d
− ∂

∂γ2
c(γ1, γ2)

∣∣∣
(h(u,d),d)

+
∂

∂γ2
c(γ1, γ2)

∣∣∣
(0,d)

=− ∂

∂γ2
c(γ1, γ2)

∣∣∣
(h(u,d),d)

+
∂

∂γ2
c(γ1, γ2)

∣∣∣
(0,d)

=
1

2

∫
[−1,1]

z2dπ(h(u,d),d)(z)dz −
1

2

∫
[−1,1]

z2dπ(0,d)(z)dz.

Finally, note that

∂2G(u, d)

∂2u
=
∂h(u, d)

∂u
=

1

c̈(h(u, d), d)
> 0

where the last equality follows from differentiating the equation ċ(h(u, d), d) = u.

A.2 Proof of Lemma 41

Proof Since rp(·) is upper semi-continuous there exists a global maximizer in [−1, 1]p, say
x̃0. Fixing any x in (−1, 1)p, consider the function f(t) := rp((1 − t)x̃0 + tx). Then f is
twice differentiable on (0, 1), and

f ′′(t) = (x̃0 − x)THp((1− t)x̃0 + tx)(x̃0 − x) ≤ −η‖x̃0 − x‖22.
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Consequently, for any ε ∈ (0, 1) Taylor’s expansion implies

f(1) ≤ f(ε) + (1− ε)f ′(ε)− 1

2
η(1− ε)2‖x̃0 − x‖22.

Taking limits as ε→ 0 we get

f(1) ≤ f(0) + f ′(0+)− 1

2
η‖x̃0 − x‖22 ≤ f(0)− 1

2
η‖x̃0 − x‖22,

where the last inequality uses the fact that f ′(0+) ≤ 0, as t = 0 is a global maximizer of f .
The last display is equivalent to

rp(x) ≤ rp(x̃0)− 1

2
η‖x̃0 − x‖22.

This inequality then extends to x ∈ [−1, 1]p by upper semi-continuity of rp.

Appendix B. Stability Estimates for functionals

We prove Lemma 34 and 40 in this section.

B.1 Proof of Lemma 34

We start with the proof of Part (i). Define the functional TW,φ : F̃2,4 → R

TW,φ,ψ(ν) := −1

2
E[W (X1, X2)U1U2] + E[U1φ(X1)] + E[

√
ψ(X1)U1Z1].

where (X1, Z1, U1), (X2, Z2, U2) ∼ ν are iid. Similarly define Iψ : F̃2,4 → R ∪ {∞}

Iψ(ν) = E
[
G
(
U,
ψ(X)

σ2

)]
.

We observe that G̃W,φ,ψ(ν) = 1
σ2TW,φ,ψ(ν)− Iψ(ν). Further,

sup
ν∈F̃2,4

|TW,φ,ψ(ν)− TW̃ ,φ̃,ψ(ν)| ≤ 1

2
‖W − W̃‖� + ‖φ− φ̃‖1, (63)

sup
ν∈F̃2,4

|TW,φ,ψ(ν)− TW,φ,ψ̃(ν)| ≤ 2‖ψ − ψ̃‖1, (64)

sup
ν∈F̃2,4

|Iψ(ν)− Iψ̃(ν)| ≤ 1

2σ2
‖ψ − ψ̃‖1. (65)

Indeed, (63) is immediate from the definition of TW,φ,ψ(·), and (65) follows from Lemma
4 on noting that supu∈(−1,1),d∈R |∂G∂d (u, d)| ≤ 1

2 . Finally, (64) follows on noting that by
Cauchy-Schwarz inequality,

Eν
[
|
√
ψ(X)Z −

√
ψ̃(X)Z|

]
≤
√
Eν
[
Z2
]
Eν
[(√

ψ(X)−
√
ψ̃(X)

)2]
≤ 2‖ψ − ψ̃‖1,
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where the last inequality uses (
√
a −
√
b)2 ≤ |a − b| and Eν [Z2] ≤ 4. This completes the

proof of Part (i).
Next, we turn to the proof of Part (ii). Using the definition of cut norm (as in Definition

12) and Part (i), we have,

sup
ν∈F̃2,4

|G̃Wk,Wk.φk+φkψk,ψk(ν)− G̃W,W.φk+φkψ,ψ(ν)| . ‖Wk −W‖� + ‖ψk − ψ‖1 → 0.

Using Part (i) again, it suffices to show that

W.φk + φkψ
L1

→W.φ+ φψ.

To this end, note that |W.φk +φk(x)ψ(x)−W.φ−φ(x)ψ(x)| converges to 0 in measure,
and

|W.φk(x) + φk(x)ψ(x)−W.φ(x)− φ(x)ψ(x)| ≤ 2

∫
[0,1]
|W (x, y)|dy + 2ψ,

which is an integrable function. This completes the argument using DCT.

B.2 Proof of Lemma 40

Proof of Lemma 40

(i) For any ε > 0, let S+(ε) = {x : m(µ,W, x)−m(µ,W ′, x) > ε}. For X ∼ U([0, 1]), we
have,

P(X ∈ S+(ε)) ≤ 1

ε
E
[
(m(µ,W,X)−m(µ,W ′, X))1S+(ε)(X)

]
=

1

ε
EX,X′

[
(W (X,X ′)−W ′(X,X ′))1S+(ε)(X)E[U ′|X ′]

]
≤ 1

ε
‖W −W ′‖�.

Setting S−(ε) = {x : m(µ,W, x)−m(µ,W ′, x) < −ε}, the same argument now yields
that

P[X ∈ S−(ε)] ≤ 1

ε
‖W −W ′‖�.

(ii) Let (Xp, Zp, Up) ∼ νp and (X,Z,U) ∼ ν. Using Skorokhod Embedding Theorem, we
assume that (Xp, Zp, Up)→ (X,Z,U) a.s. as p→∞. Since

∫
|W (x, y)|dxdy <∞, for

any ε > 0 there exists W ′ continuous such that ‖W −W ′‖1 ≤ ε. Then we have,

E[|m(µ,W,X)−m(µ,W ′, X)|] ≤ ‖W −W ′‖1 ≤ ε.

Also,

|m(νp,W
′, x)−m(ν,W ′, x)|

=
∣∣∣E[W ′(x,Xp)Up]− E[W ′(x,X)U ]

∣∣∣
≤
∣∣∣E[W ′(x,Xp)Up]− E[W ′(x,Xp)U ]

∣∣∣+
∣∣∣E[W ′(x,Xp)U ]− E[W ′(x,X)U ]

∣∣∣
≤ ‖W ′‖∞E[|Up − U |] + sup

x,y,z∈[0,1],|y−z|≤|X−Xp|

∣∣∣W ′(x, y)−W ′(x, z)
∣∣∣ = o(1)
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using the uniform continuity of W ′. The desired conclusion follows upon combining
the two displays above.

Appendix C. Proofs of Examples

We establish Corollaries 9-11 and 26-29 in this section. Throughout this section oP (1) terms
converge to zero in probability under the marginal distribution of the design matrix X.

C.1 Accuracy of mean-field approximation

Proof of Corollary 9 This is immediate from Theorem 7.

Proof of Corollary 10
With Ap and Dp denoting the off-diagonal and diagonal parts of the matrix XTX, to

invoke Theorem 7 we need to verify that Ap satisfies (5) and (6), and the empirical measure
1
p

∑p
i=1 δDp(i,i) is uniformly integrable. We verify these conditions below:

Since {xi}1≤i≤n
i.i.d.∼ N(0,Γp), and

XTX =
1

n

n∑
i=1

xix
T
i ,

invoking (Vershynin, 2012, Proposition 2.1) gives∥∥∥XTX− Γp

∥∥∥
2

= OP

(√ p

n

)
= oP (1), (66)

where the last equality uses p = o(n). Noting that

‖Dp − Γp,diag‖2 ≤ ‖XTX− Γp‖2

gives

‖Ap − Γp,off‖2 = oP (1). (67)

Consequently, Ap satisfies (5) with high probability, as tr(Γ2
p,off) = o(p). Further, since

‖Γp‖2 = O(1), it follows from (66) gives that ‖Ap‖2 = OP (1). Finally, noting that

max
1≤i≤p

|Dp(i, i)| ≤ ‖XTX‖2 = ‖Γp‖2 + oP (1)

we have 1
p

∑p
i=1 δDp(i,i) is uniformly integrable with high probability. This completes the

proof of the corollary.
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Proof of Corollary 11
It suffices to verify the same conditions on the matrices (Ap, Dp) as in Corollary 10.
To this end, note that for any i 6= j we have

Ap(i, j) =
p

n

n∑
k=1

B(k, i)B(k, j), (68)

and so

E
∑
i 6=j

Ap(i, j)
2 =

p2

n2

∑
i 6=j

n∑
k,`=1

E[B(k, i)B(k, j)B(`, i)B(`, j)]

=
p2

n2

∑
i 6=j

∑
k 6=`

E[B(k, i)B(k, j)B(`, i)B(`, j)] +
p2

n2

∑
i 6=j

n∑
k=1

E[B(k, i)B(k, j)]

≤ p
2

n2
× n2p2λ4

p4
+
p2

n2
× np2λ2

p2
= λ4 +

λ2p2

n
,

which is o(p) as p = o(n). This verifies (5).
Also, (68) gives

1

p
E

p∑
i,j=1

|Ap(i, j)| =
1

n

n∑
k=1

∑
i 6=j

E[B(k, i)B(k, j)] ≤ λ2,

and so (6) holds with high probability. Finally we have

E
1

p

p∑
i=1

|Dp(i, i)|2 =
1

p

p∑
i=1

E
( p
n

n∑
k=1

B(k, i)
)2
≤ p2

n2

[n2λ2

p2
+
nλ

p

]
= λ2 + o(1),

and so 1
p

∑p
i=1Dp(i, i) is uniformly integrable.

C.2 Limiting variational formula

Proof of Corollary 26

(a) The desired conclusion follows from Theorem 17, once we can verify

dL1(wD, 1) = oP (1), d�(WpAp ,W ) = oP (1).

Here D = (Dp(1, 1), · · · , Dp(p, p)) denotes the diagonal entries of XTX, and Ap de-
notes the off diagonal part of XTX. Proceeding to verify the above display, invok-

ing (66) we have Dp(i, i) = 1 + 1
pG(i/p)2 + oP (1), and so wD

L1→ 1. Also, since

Γp(i, j) = 1
pG(i/p)G(j/p) for all i 6= j, it follows that d�(WpΓp ,W ) → 0, where we

use the almost sure continuity of G(., .). Since (67) gives d�(WpAp ,WpΓp) = oP (1),
combining we get

d�(WpAp ,W ) ≤ d�(WpAp ,WpΓp) + d�(WpΓp ,W ) = oP (1),

This completes the proof of part (a).
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(b) We begin by verifying condition (11). To this effect, set

Mp(u) := − 1

2σ2

[
uTΓpu− 2zTu

]
−

p∑
i=1

G(ui, di),

and use the fact that maxi∈[p]

∑
j 6=i Γp(i, j) ≤ λ < σ2 along with part (a) of Lemma

25 to get the existence of u∗p such that

Mp(u
∗
p)−Mp(u) ≥ λ‖u∗p − u‖22.

This in turn shows that for any ε > 0 we have

lim sup
p→∞

sup
u:‖u−u∗p‖22>pδ

1

p

{
Mp(u

∗
p)−Mp(u)

}
< 0. (69)

Using (66) gives

1

p
sup

u∈[−1,1]p

1

p

[
Mp(u)− M̃p(u)

]
= oP (1). (70)

Given (69), and (70), it follows that

lim sup
p→∞

sup
u:‖u−u∗p‖22>pδ

1

p

{
Mp(u

∗
p)−Mp(u)

}
< 0.

Thus we have verified (11). The desired conclusion then follows from Corollary 22.

Part (b)(ii) follows from part (b)(ii) of Lemma 25 and Corollary 22.

Proof of Corollary 28

(a) The desired conclusion follows from Theorem 17, once we can verify

dL1(wD, ψ) = oP (1), d�(WpAp ,W ) = oP (1).

Proceeding to verify the above display, note that

Dp(i, i) := (XTX)ii =
p

nσ2

n∑
k=1

Bki.

Thus, setting D̃i := 1
n

∑n
k=1G(k/n, i/p), Using Chernoff bounds it follows that

P
(

max
1≤i≤p

|Dp(i, i)− D̃i| > δ

)
≤ pe−cδ

2 n
p ≤ pe−cδ2

√
p → 0,

and so it follows that

dL1(wD, ψ) ≤ dL1(wD, wD̃,p) + dL1(w
D̃,p

, ψ) = oP (1)
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where the last equality uses the almost sure continuity of G(., .).

It thus suffices to show that

d�(WpAp ,W )→ 0.

To this end, note that for any i 6= j we have

Ap(i, j) =
p

n

n∑
k=1

B(k, i)B(k, j).

Using Lemma 42, setting Ãp(i, j) := E[Ap(i, j)] = 1
np

∑n
k=1G( kn ,

i
p)G( kn ,

j
p),

P
(

max
S,T⊆[p]

∣∣∣∑i∈S,j∈T pAp(i, j)

p2
−
∑

i∈S,j∈T pÃp(i, j)

p2

∣∣∣ > δ
)
≤ 2pe−C

√
nδ.

From this, using the condition p = o(
√
n) gives

d�(WpAp ,WpÃp
) = oP (1),

which in turn gives

d�(WpAp ,W ) ≤ d�(WpAp ,WpÃp
) + d�(W

pÃp
,W ) = oP (1),

where the last equality again uses the almost sure continuity of G(,̇)̇.

(b) (i) Once again, the desired conclusion of part (b) follows from Corollary 22, once we
verify condition (11).

To this effect, fixing δ > 0 and setting ϑi :=
∑p

j 6=iAp(i, j), define a p× p matrix Bp,δ
by setting

Bp,δ(i, j) := Ap(i, j)1{ϑi ≤ σ2(1− δ), ϑj ≤ σ2(1− δ)},

and note that

sup
u∈[−1,1]p

∣∣∣u′Apup − u′Bp,δu
∣∣∣ ≤ 2

p

p∑
i=1

ϑi1{ϑi > σ2(1− δ)}.

We now claim that there exists δ > 0 such that

lim sup
p→∞

1

p

p∑
i=1

ϑi1{ϑi > σ2(1− δ)} = 0. (71)

Given (71), it suffices to show that (11) holds for Mp : [−1, 1]p 7→ R defined by

Mp(u) := − 1

2σ2

[
uTBp,δu− 2zTu

]
−

p∑
i=1

G(ui, di).
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But this is immediate from Lemma 25 part (a), on noting that

max
i∈[p]

∑
j 6=i

Bp,δ(i, j) ≤ σ2(1− δ).

It thus remains to verify (71). To this effect, recall from part (a) that WpAp converges
to W in the cut metric, which in turn implies 1

p

∑p
i=1 δϑi converges weakly in proba-

bility to the law of S(X), where X ∼ U [0, 1] (Borgs et al., 2015, Theorem 2.16). This
gives

lim sup
p→∞

1

p

p∑
i=1

ϑi1{ϑi > σ2(1− δ)} ≤ ES(X)1{S(X) ≥ σ2(1− δ)}.

It thus suffices to show that there exists δ > 0 such that the RHS above is 0. But this
follows on noting that esssup(S(X)) < σ2. This completes the proof of part (i).

Part (b)(ii) follows from part (b)(ii) of Lemma 25 and Corollary 22, as before.

Proof of Corollary 29

(a) A direct calculation gives XTX = 1
2I +Ap, where

Ap(i, j) =
1

p
if i ≤ p

2
, j >

p

2
or i >

p

2
, j ≤ p

2
,

=0 otherwise .

It then follows that d�(WpAp ,W )→W , and dL1(wD, ψ)→ 0. The desired conclusion
then follows from Theorem 17 as before.

(b) Since lim sup
p→∞

maxi∈[p]

∑
j 6=i |Ap(i, j)| = 1

2 , the result is immediate from Corollary 22

and Lemma 25.

Appendix D. Relevant concentration inequalities

Lemma 42 Let Bik ∼ Ber(G(i/n, j/p)/p) are independent random variables with G(x, y) ≤
λ. For any δ > 0, there exists C > 0 (depending on δ) such that

P
(

max
S,T⊂[p]

∣∣∣ ∑
k∈S,l∈T

(Ap(k, l)− E[Ap(k, l)])
∣∣∣ > pδ

)
≤ 2p exp

(
− C
√
n
)
.

To prove Lemma 42, we first obsere that if X is sub-exponential, then X2 is sub-Weibull
Kuchibhotla and Chakrabortty (2018).
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Lemma 43 Let Y1, · · · , Yn be independent sub-exponential random variables with common
sub-exponential parameter c > 0. For any δ > 0, there exists C := C(δ) > 0 such that

P
[∣∣∣ n∑

i=1

(Y 2
i − E[Y 2

i ])
∣∣∣ > nδ

]
≤ exp

(
− C
√
n
)
.

Proof We first claim that Y 2
i are sub-Weibull, i.e., there exists a constant C ′ > 0 (depend-

ing only on c) such that

P[|Y 2
i − E[Y 2

i ]| > t] ≤ 2 exp(−C ′
√
t). (72)

We establish the upper tail deviation bound. A similar argument works for the lower
tail, and is thus omitted. As the variables Yi have a common sub-exponential constant,
maxi≤n E[Y 2

i ] is uniformly bounded in n. For any t > 0 with
√
t ≥ (

√
2− 1)2 maxi≤n E2[Yi],

P[Y 2
i > E[Y 2

i ] + t] = P[Yi − E[Yi] >
√
t+ E[Y 2

i ]− E[Yi]]

≤ P[Yi − E[Yi] >
√
t+ E2[Yi]− E[Yi]].

We now claim that √
t+ E2[Yi]− E[Yi] >

√
t− (
√

2− 1)E[Yi]√
2

. (73)

Using (73), along with the deviation bound above, we have,

P[Y 2
i > E[Y 2

i ] + t] ≤ P
[
Yi − E[Yi] >

√
t− (
√

2− 1)E[Yi]√
2

]
≤ exp(−C ′

√
t),

for some constant C ′ > 0. The last inequality uses that Yi is sub-exponential. (73) can be
verified by direct computation.

Using (72) and (Kuchibhotla and Chakrabortty, 2018, Proposition A.3), maxi≤n ‖Y 2
i ‖ψ1/2

is uniformly bounded in n. Consequently, using (Kuchibhotla and Chakrabortty, 2018, The-
orem 3.1), for any t > 0, we have,

P
[∣∣∣ n∑

i=1

(Y 2
i − E[Y 2

i ])
∣∣∣ > C1‖b‖2(

√
t+ Lnt

2)
]
≤ exp(−t),

where C1 is a constant free of n, and Ln = C2‖b‖∞/‖b‖2 for some constant C2 > 0 indepen-
dent of n. Here, b = (‖Y 2

1 ‖ψ1/2
, · · · , ‖Y 2

n ‖ψ1/2
). We set C1‖b‖2(

√
t + Lnt

2) = nδ for some

ε > 0. Direct calculation yields that t(δ) =
√

nδ
C1C2‖b‖∞ (1 + o(1)), so that

P
[∣∣∣ n∑

i=1

(Y 2
i − E[Y 2

i ])
∣∣∣ > nδ

]
≤ exp

(
− C3

√
n
)
,

where C3 > 0 depends on δ. This concludes the proof.
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Proof of Lemma 42 Recall that Bik ∼ Ber(G(i/n, j/p)/p) are independent random
variables. For S ⊆ [p], define Yi(S) =

∑
k∈S Bik. By Chernoff bound, the collection

{Yi(S) : 1 ≤ i ≤ n, S ⊆ p} are sub-exponential with a common sub-exponential parameter
(depending only on λ).

By Chernoff bounds, for any fixed S ⊆ [p], Yi =
∑

k∈S Bik is a sub-exponential random
variable. Using Lemma 43,

P
(∣∣∣ ∑

k,l∈S
(Ap(k, l)− E[Ap(k, l)])

∣∣∣ > pδ
)

= P
(∣∣∣ n∑

i=1

(Yi(S)2 − E[Yi(S)2])
∣∣∣ > nδ

)
≤ exp

(
− C
√
n
)
.

A union bound then concludes

P
(

max
S⊆[p]

∣∣∣ ∑
k,l∈S

(Ap(k, l)− E[Ap(k, l)])
∣∣∣ > pδ

)
≤ 2p exp

(
− C
√
n
)
. (74)

We set εkl := Ap(k, l)− E[Ap(k, l)] and claim that

max
S,T⊆[p]

|
∑

k∈S,l∈T
εkl| ≤

5

2
max
S⊆[p]

|
∑
k,l∈S

εkl| (75)

The required conclusion follows from (75) and the deviation bound (74). It thus remains
to prove (75). To this effect, note that

∑
k∈S,l∈T

εkl =
∑

k∈S\T,l∈T\S

εkl +
∑

k∈S\T,l∈S∩T

εkl +
∑

k∈S∩T,l∈T\S

εkl +
∑

k∈S∩T,l∈S∩T
εkl.∑

k,l∈S∪T
εkl =

∑
k,l∈S\T

εkl +
∑

k,l∈T\S

εkl +
∑

k,l∈S∩T
εkl

+ 2
( ∑
k∈S\T,l∈T\S

εkl +
∑

k∈S\T,l∈S∩T

εkl +
∑

k∈S∩T,l∈T\S

εkl

)
.

Thus∑
k∈S,l∈T

εkl =
1

2

[ ∑
k,l∈S∪T

εkl −
( ∑
k,l∈S\T

εkl +
∑

k,l∈T\S

εkl +
∑

k,l∈S∩T
εkl

)]
+

∑
k∈S∩T,l∈S∩T

εkl

which on using triangle inequality gives (75).
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László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012.
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