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Abstract

We consider conducting inference on the output of the Classification and Regression Tree
(CART) (Breiman et al., 1984) algorithm. A naive approach to inference that does not
account for the fact that the tree was estimated from the data will not achieve standard
guarantees, such as Type 1 error rate control and nominal coverage. Thus, we propose a
selective inference framework for conducting inference on a fitted CART tree. In a nutshell,
we condition on the fact that the tree was estimated from the data. We propose a test
for the difference in the mean response between a pair of terminal nodes that controls
the selective Type 1 error rate, and a confidence interval for the mean response within
a single terminal node that attains the nominal selective coverage. Efficient algorithms
for computing the necessary conditioning sets are provided. We apply these methods in
simulation and to a dataset involving the association between portion control interventions
and caloric intake.

Keywords: Regression trees, CART, selective inference, post-selection inference, hypoth-
esis testing.

1. Introduction

Regression tree algorithms recursively partition covariate space using binary splits to obtain
regions that are maximally homogeneous with respect to a continuous response. The Classi-
fication and Regression Tree (CART; Breiman et al. 1984) proposal, which involves growing
a large tree and then pruning it back, is by far the most popular of these algorithms.

The regions defined by the splits in a fitted CART tree induce a piecewise constant
regression model where the predicted response within each region is the mean of the ob-
servations in that region. CART is popular in large part because it is highly interpretable;
someone without technical expertise can easily “read” the tree to make predictions, and to
understand why a certain prediction is made. However, its interpretability belies the fact
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that CART trees are highly unstable: a small change to the training dataset can drastically
change the structure of the fitted tree. In the absence of an established notion of statistical
significance associated with a given split in the tree, it is hard for a practitioner to know
whether they are interpreting signal or noise. In this paper, we use the framework of se-
lective inference to fill this gap by providing a toolkit to conduct inference on hypotheses
motivated by the output of the CART algorithm.

Given a CART tree, consider testing for a difference in the mean response of the regions
resulting from a binary split. A very naive approach, such as a two-sample Z-test, that does
not account for the fact that the regions were themselves estimated from the data will fail
to control the selective Type 1 error rate: the probability of rejecting a true null hypothesis,
given that we decided to test it (Fithian et al., 2014). Similarly, a naive Z-interval for the
mean response in a region will not attain nominal selective coverage: the probability that
the interval covers the parameter, given that we chose to construct it.

In fact, approaches for conducting inference on the output of a regression tree are quite
limited. Sample splitting involves fitting a CART tree using a subset of the observations,
which will naturally lead to an inferior tree to the one resulting from all of the observations,
and thus is unsatisfactory in many applied settings; see Athey and Imbens (2016). Wager
and Walther (2015) develop convergence guarantees for unpruned CART trees that can be
leveraged to build confidence intervals for the mean response within a region; however, they
do not provide finite-sample results and cannot accommodate pruning. Loh et al. (2016)
and Loh et al. (2019) develop bootstrap calibration procedures that attempt to provide
confidence intervals for the regions of a regression tree. In Appendix A, we show that this
bootstrap calibration approach fails to provide intervals that achieve nominal coverage for
the parameters of interest in this paper.

As an alternative to performing inference on a CART tree, one could turn to the con-
ditional inference tree (CTree) framework of Hothorn et al. (2006). This framework uses
a different tree-growing algorithm than CART, and at each split tests for linear associ-
ation between the split covariate and the response. As summarized in Loh (2014), the
CTree framework alleviates issues with instability and variable selection bias associated
with CART. Despite these advantages, CTree remains far less widely-used than CART.
Furthermore, while CTree attaches a notion of statistical significance to each split in a tree,
it does not directly allow for inference on the mean response within a region or the difference
in mean response between two regions. Finally, while the CTree framework requires few
assumptions, its inference is based on asymptotics.

In this paper, we introduce a finite-sample selective inference (Fithian et al., 2014)
framework for the difference between the mean responses in two regions, and for the mean
response in a single region, in a pruned or unpruned CART tree. We condition on the event
that CART yields a particular set of regions, and thereby achieve selective Type 1 error
rate control as well as nominal selective coverage.

The rest of this paper is organized as follows. In Section 2, we review the CART
algorithm, and briefly define some key ideas in selective inference. In Section 3, we present
our proposal for selective inference on the regions estimated via CART. We show that
the necessary conditioning sets can be efficiently computed in Section 4. In Section 5 we
compare our framework to sample splitting and CTree via simulation. In Section 6 we
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compare our framework to CTree on data from the Box Lunch Study. The discussion is in
Section 7. Technical details are relegated to the supplementary materials.

2. Background

2.1 Notation for Regression Trees

Given p covariates (X1, . . . , Xp) measured on each of n observations (x1, . . . , xn), let xj,(s)
denote the sth order statistic of the jth covariate, and define the half-spaces

χj,s,1 =
{
z ∈ Rp : zj ≤ xj,(s)

}
, χj,s,0 =

{
z ∈ Rp : zj > xj,(s)

}
. (1)

The following definitions are illustrated in Figure 1.

Definition 1 (Tree and Region) Consider a set S such that R ⊆ Rp for all R ∈ S.
Then S is a tree if and only if (i) Rp ∈ S; (ii) every element of S \ Rp equals R ∩ χj,s,e for
some R ∈ S, j ∈ {1, . . . , p}, s ∈ {1, . . . , n− 1}, e ∈ {0, 1}; (iii) R ∩ χj,s,e ∈ S implies that
R ∩ χj,s,1−e ∈ S for e ∈ {0, 1}; and (iv) for any R,R′ ∈ S, R ∩ R′ ∈ {∅, R,R′}. If R ∈ S
and S is a tree, then we refer to R as a region.

We use the notation tree to refer to a particular tree. Definition 1 implies that any region
R ∈ tree \{Rp} is of the form R = ∩Ll=1χjl,sl,el , where for each l = 1, . . . , L, we have that
jl ∈ {1, . . . , p}, sl ∈ {1, . . . , n − 1}, and el ∈ {0, 1}. We call L the level of the region, and
use the convention that the level of Rp is 0.

Definition 2 (Siblings and Children) Suppose that {R,R ∩ χj,s,1, R ∩ χj,s,0} ⊆ tree.
Then R ∩ χj,s,1 and R ∩ χj,s,0 are siblings. Furthermore, they are the children of R.

Definition 3 (Descendant and Ancestor) If R,R′ ∈ tree and R ⊆ R′, then R is a
descendant of R′, and R′ is an ancestor of R.

Definition 4 (Terminal Region) A region R ∈ tree without descendants is a terminal
region.

We let desc(R,tree) denote the set of descendants of region R in tree, and we let
term(R,tree) denote the subset of desc(R,tree) that are terminal regions.

Given a response vector y ∈ Rn, let ȳR =
(∑

i:xi∈R yi
)
/
{∑n

i=1 1(xi∈R)

}
, where 1(A) is

an indicator variable that equals 1 if the event A holds, and 0 otherwise. Then, a tree tree
induces the regression model µ̂(x) =

∑
R∈term(Rp,tree) ȳR1(x∈R). In other words, it predicts

the response within each terminal region to be the mean of the observations in that region.

2.2 A Review of the CART Algorithm (Breiman et al., 1984)

The CART algorithm (Breiman et al., 1984) greedily searches for a tree that minimizes the
sum of squared errors

∑
R∈term(Rp,tree)

∑
i:xi∈R(yi − ȳR)2. It first grows a very large tree

via recursive binary splits, starting with the full covariate space Rp. To split a region R, it
selects the covariate xj and the split point xj,(s) to maximize the gain, defined as

gainR (y, j, s) ≡
∑
i∈R

(yi − ȳR)
2 −

 ∑
i∈R∩χj,s,1

(
yi − ȳR∩χj,s,1

)2
+

∑
i∈R∩χj,s,0

(
yi − ȳR∩χj,s,0

)2 . (2)
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Figure 1: The regression tree takes the form tree = {Rp, χ1,s1,1, χ1,s1,0, χ1,s1,1 ∩
χ2,s2,1, χ1,s1,1∩χ2,s2,0}. The regions RA = χ1,s1,1∩χ2,s2,1 and RB = χ1,s1,1∩χ2,s2,0

are siblings, and are children, and therefore descendants, of the region χ1,s1,1. The
ancestors of RA and RB are Rp and χ1,s1,1. Furthermore, RA, RB, and χ1,s1,0 are
terminal regions.

Details are provided in Algorithm A1.
Once a very large tree has been grown, cost-complexity pruning is applied. We define

the average per-region gain in sum-of-squared errors provided by the descendants of a region
R,

g(R,tree, y) =

∑
i:xi∈R

(yi − ȳR)2 −
∑

r∈term(R,tree)

∑
i:xi∈r

(yi − ȳr)2

|term(R,tree)| − 1
. (3)

Given a complexity parameter λ ≥ 0, if g(R,tree, y) < λ for some R ∈ tree, then cost-
complexity pruning removes R’s descendants from tree, turning R into a terminal region.
Details are in Algorithm A2, which involves the notion of a bottom-up ordering.

Definition 5 (Bottom-up ordering) Let tree = {R1, . . . , RK}. Let π be a permutation
of the integers (1, . . . ,K). Then O =

(
Rπ(1), . . . , Rπ(K)

)
is a bottom-up ordering of the

regions in tree if, for all k = 1, . . . ,K, π(k) ≤ π(j) if Rk ∈ desc(Rj ,tree).

There are other equivalent formulations for cost-complexity pruning (see Proposition 7.2 in
Ripley (1996)); the formulation in Algorithm A2 is convenient for establishing the results
in this paper.

To summarize, the CART algorithm first applies Algorithm A1 to the initial region
Rp and the data y to obtain an unpruned tree, which we call tree0(y). It then applies
Algorithm A2 to tree0(y) to obtain an optimally-pruned tree using complexity parameter
λ, which we call treeλ(y).

Algorithm A1 (Growing a tree)
Grow(R, y)

1. If a stopping condition is met, return R.
2. Else return {R, Grow(R ∩ χj̃,s̃,1, y), Grow(R ∩ χj̃,s̃,0, y)}, where

(j̃, s̃) ∈ arg max(j,s):s∈{1,...,n−1},j∈{1,...,p} gainR (y, j, s) .
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Algorithm A2 (Cost-complexity pruning) Parameter O is a bottom-up ordering of the
K regions in tree.
Prune(tree, y, λ, O)

1. Let tree0 = tree. Let K be the number of regions in tree0.
2. For k = 1, . . . ,K:

(a) Let R be the kth region in O.
(b) Update treek as follows, where g(·) is defined in (3):

treek ←

{
treek−1 \desc(R,treek−1) if g(R,treek−1, y) < λ,

treek−1 otherwise.

3. Return treeK .

2.3 A Brief Overview of Selective Inference

Here, we provide a very brief overview of selective inference; see Fithian et al. (2014) or
Taylor and Tibshirani (2015) for a more detailed treatment.

Consider conducting inference on a parameter θ. Classical approaches assume that we
were already interested in conducting inference on θ before looking at our data. If, instead,
our interest in θ was sparked by looking at our data, then inference must be performed with
care: we must account for the fact that we “selected” θ based on the data (Fithian et al.,
2014). In this setting, interest focuses on a p-value p(Y ) such that the test for H0 : θ = θ0

based on p(Y ) controls the selective Type 1 error rate, in the sense that

prH0:θ=θ0 {p(Y ) ≤ α | θ selected} ≤ α, for all 0 ≤ α ≤ 1. (4)

Also of interest are confidence intervals [L(Y ), U(Y )] that achieve (1−α)-selective coverage
for the parameter θ, meaning that

pr {θ ∈ [L(Y ), U(Y )] | θ selected} ≥ 1− α. (5)

Roughly speaking, the inferential guarantees in (4) and (5) can be achieved by defining
p-values and confidence intervals that condition on the aspect of the data that led to the
selection of θ. In recent years, a number of papers have taken this approach to perform
selective inference on parameters selected from the data in the regression (Lee et al., 2016;
Liu et al., 2018; Tian and Taylor, 2018; Tibshirani et al., 2016), clustering (Gao et al.,
2020), and changepoint detection (Hyun et al., 2021; Jewell et al., 2022) settings.

In the next section, we propose p-values that satisfy (4) and confidence intervals that
satisfy (5) in the setting of CART, where the parameter of interest is either the mean
response within a region, or the difference between the mean responses of two sibling regions.

3. The Selective Inference Framework for CART

3.1 Inference on a Pair of Sibling Regions

Throughout this paper, we assume that Y ∼ Nn(µ, σ2In) with σ > 0 known.

We let X ∈ Rn×p denote a fixed covariate matrix. Suppose that we apply CART with
complexity parameter λ to a realization y = (y1, . . . , yn)T from Y to obtain treeλ(y). Given
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sibling regions RA and RB in treeλ(y), we define a contrast vector νsib ∈ Rn such that

(νsib)i =
1(xi∈RA)∑n
i′=1 1(xi′∈RA)

−
1(xi∈RB)∑n
i′=1 1(xi′∈RB)

, (6)

and νT
sibµ =

(∑
i:xi∈RA µi

)
/
{∑n

i=1 1(xi∈RA)

}
−
(∑

i:xi∈RB µi

)
/
{∑n

i=1 1(xi∈RB)

}
. Now,

consider testing the null hypothesis of no difference in means between RA and RB, i.e. H0 :
νT
sibµ = 0 versus H1 : νT

sibµ 6= 0. This null hypothesis is of interest because RA and RB ap-
peared as siblings in treeλ(y). A test based on a p-value of the form prH0 (|νT

sibY | ≥ |νT
siby|)

that does not account for this will not control the selective Type 1 error rate in (4).
To control the selective Type 1 error rate, we propose a p-value that conditions on the

aspect of the data that led us to select νT
sibµ,

prH0

{
|νT
sibY | ≥ |νT

siby| | RA, RB are siblings in treeλ(Y )
}
. (7)

But (7) depends on a nuisance parameter, the portion of µ that is orthogonal to νsib. To
remove the dependence on this nuisance parameter, we condition on its sufficient statistic
P⊥νsibY , where P⊥ν = I − ννT/‖ν‖22. The resulting p-value, or “tree-value”, is defined as

psib(y) = prH0

{
|νT
sibY | ≥ |νT

siby| | RA, RB are siblings in treeλ(Y ),P⊥νsibY = P⊥νsiby
}
.

(8)
Results similar to Theorem 6 can be found in Jewell et al. (2022); Lee et al. (2016); Liu

et al. (2018), and Tibshirani et al. (2016).

Theorem 6 The test based on the p-value psib(y) in (8) controls the selective Type 1 error
rate for H0 : νT

sibµ = 0, where νsib is defined in (6), in the sense that

prH0

{
psib(Y ) ≤ α | RA, RB are siblings in treeλ(Y )

}
= α, for all 0 ≤ α ≤ 1. (9)

Furthermore, psib(y) = pr
{
|φ| ≥ |νT

siby| | φ ∈ Sλsib(νsib)
}
, where φ ∼ N(0, ‖νsib‖22σ2), y′(φ, ν) =

P⊥ν y + φ(ν/‖ν‖22), and

Sλsib(νsib) = {φ : RA, RB are siblings in treeλ{y′(φ, νsib)}}. (10)

Proofs of all theoretical results are provided in the appendix. Theorem 6 says that given
the set Sλsib(νsib), we can compute the p-value in (8) using

psib(y) = 1−F
{
|νT
siby|; 0, ‖νsib‖22σ2, Sλsib(νsib)

}
+F

{
−|νT

siby|; 0, ‖νsib‖22σ2, Sλsib(νsib)
}
, (11)

where F
(
· ; 0, ‖ν‖2σ2, S

)
denotes the cumulative distribution function of the N(0, ‖ν‖22σ2)

distribution truncated to the set S. In Section 4, we provide an efficient approach for
analytically characterizing the truncation set Sλsib(νsib). To avoid numerical issues associated
with the truncated normal distribution, we compute (11) using methods described in the
supplement of Chen and Bien (2020). Note that the proof of Theorem 6, and consequently
the efficient computation of psib(y) discussed in Section 4, relies on the assumption that
Y ∼ Nn(µ, σ2In).
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We now consider inverting the test proposed in (8) to construct an equitailed confidence
interval for νT

sibµ that has (1− α)-selective coverage (5), in the sense that

pr
{
νT
sibµ ∈ [L(Y ), U(Y )] | RA, RB are siblings in treeλ(Y )

}
= 1− α. (12)

Proposition 7 For any 0 ≤ α ≤ 1 and any realization y ∈ Rn, the values L(y) and U(y)
that satisfy

F{νT

siby;L(y), σ2‖νsib‖22, Sλsib(νsib)} = 1− α/2, F{νT

siby;U(y), σ2‖νsib‖22, Sλsib(νsib)} = α/2, (13)

are unique, and [L(Y ), U(Y )] achieves (1− α)-selective coverage for νT
sibµ.

3.2 Inference on a Single Region

Given a single region RA in a CART tree, we define the contrast vector νreg such that

(νreg)i = 1(xi∈RA)/

{
n∑

i′=1

1(xi′∈RA)

}
. (14)

Then, νT
regµ =

(∑
i:xi∈RA µi

)
/
{∑n

i=1 1(xi∈RA)

}
. We now consider testing the null hypoth-

esis H0 : νT
regµ = c for some fixed c. Because our interest in this null hypothesis results

from the fact that RA ∈ treeλ(y), we must condition on this event in defining the p-value.
We define

preg(y) = prH0

{
|νT
regY − c| ≥ |νT

regy − c| | RA ∈ treeλ(Y ),P⊥νregY = P⊥νregy
}
, (15)

and introduce the following theorem.

Theorem 8 The test based on the p-value preg(y) in (15) controls the selective Type 1
error rate for H0 : νT

regµ = c, where νreg is defined in (14). Furthermore, preg(y) =
pr
{
|φ− c| ≥ |νT

regy − c| | φ ∈ Sreg(νreg)
}
, where φ ∼ N(c, ‖νreg‖22σ2) and, for y′(φ, ν) =

P⊥ν y + φ(ν/‖ν‖22),

Sλreg(νreg) = {φ : RA ∈ treeλ{y′(φ, νreg)}}. (16)

Theorem 2 and the resulting efficient computations in Section 4 rely on the assumption that
Y ∼ Nn(µ, σ2In).

We can also define a confidence interval for νT
regµ that attains nominal selective coverage.

Proposition 9 For any 0 ≤ α ≤ 1 and any realization y ∈ Rn, the values L(y) and U(y)
that satisfy

F{νT

regy;L(y), σ2‖νreg‖22, Sλreg(νreg)} = 1− α/2, F{νT

regy;U(y), σ2‖νreg‖22, Sλreg(νreg)} = α/2,
(17)

are unique, and [L(Y ), U(Y )] achieves (1− α)-selective coverage for νT
regµ.

In Section 4, we propose an approach to analytically characterize the set Sλreg(νreg) in (16).
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3.3 Intuition for the Conditioning Sets Sλsib(νsib) and Sλreg(νreg)

We first develop intuition for the set Sλsib(νsib) defined in (10). From Theorem 6,

{
y′(φ, νsib)

}
i

= yi+(φ−νT
siby)

{ ∑n
i′=1 1(xi′∈RB)∑n

i′=1 1(xi′∈RA∪RB)
1(xi∈RA) −

∑n
i′=1 1(xi′∈RA)∑n

i′=1 1(xi′∈RA∪RB)
1(xi∈RB)

}
.

Thus, y′(φ, νsib) is a perturbation of y that exaggerates the difference between the observed
sample mean responses of RA and RB if |φ| > |νT

siby|, and shrinks that difference if |φ| <
|νT
siby|. The set Sλsib(νsib) quantifies the amount that we can shift the difference in sample

mean responses between RA and RB while still producing a tree containing these sibling
regions. The top row of Figure 2 displays tree0{y′(φ, νsib)}, as a function of φ, in an
example where S0

sib(νsib) = (−19.8,−1.8) ∪ (0.9, 34.9).

Figure 2: Data with n = 100 and p = 2. Regions resulting from CART (λ = 0) are delin-
eated using solid lines. Here, RA = χ1,26,0 ∩ χ2,72,1 and RB = χ1,26,0 ∩ χ2,72,0.
Top: Output of CART applied to y′(φ, νsib), where νsib in (6) encodes the contrast
between RA and RB, for various values of φ. The left-most panel displays y =
y′(νT

siby, νsib). By inspection, we see that −14.9 ∈ S0
sib(νsib) and 5 ∈ S0

sib(νsib), but
0 6∈ S0

sib(νsib) and 40 6∈ S0
sib(νsib). In fact, S0

sib(νsib) = (−19.8,−1.8) ∪ (0.9, 34.9).
Bottom: Output of CART applied to y′(φ, νreg), where νreg in (14) encodes
membership in RA. The left-most panel displays y = y′(νT

regy, νreg). Here,
S0
reg(νreg) = (−∞, 3.1) ∪ (5.8, 8.8) ∪ (14.1,∞).

We next develop intuition for Sλreg(νreg), defined in (16). Note that {y′(φ, νreg)}i =
yi + (φ − νT

regy)1(xi∈RA), where y′(φ, νreg) is defined in Theorem 8. Thus, y′(φ, νreg) shifts
the responses of the observations in RA so that their sample mean equals φ, and leaves
the others unchanged. The set Sλreg(νreg) quantifies the amount that we can exaggerate or
shrink the sample mean response in region RA while still producing a tree that contains
RA. The bottom row of Figure 2 displays y′(φ, νreg) as φ is varied, in an example with
S0
reg(νreg) = (−∞, 3.1) ∪ (5.8, 8.8) ∪ (14.1,∞).
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4. Computing the conditioning sets Sλsib(νsib) and Sλreg(νreg)

4.1 Recharacterizing the conditioning sets in terms of branches

We begin by introducing the concept of a branch.

Definition 10 (Branch) A branch is an ordered sequence of triples B = ((j1, s1, e1), . . . , (jL, sL, eL))
such that jl ∈ {1, . . . , p}, sl ∈ {1, . . . , n− 1}, and el ∈ {0, 1} for l = 1, . . . , L. The branch B
induces a nested set of regions R(B) = {R(0), R(1), . . . , R(L)}, where R(l) =

⋂l
l′=1 χjl′ ,sl′ ,el′

for l = 1, . . . , L, and R(0) = Rp.

For a branch B and a vector ν, we define

Sλ(B, ν) =
{
φ : R(B) ⊆ treeλ{y′(φ, ν)}

}
. (18)

For R ∈ tree, we let branch(R,tree) denote the branch such that R{branch(R,tree)}
contains R and all of its ancestors in tree.

Lemma 11 Suppose that RA and RB are siblings in treeλ(y). Then RA and RB are sib-
lings in treeλ{y′(φ, νsib)} if and only if R[branch{RA,treeλ(y)}] ⊆ treeλ{y′(φ, νsib)}.
Therefore, Sλsib(νsib) = Sλ[branch{RA,treeλ(y)}, νsib], defined in (10) and (18).

Lemma 11 says that treeλ{y′(φ, νsib)} contains siblings RA and RB if and only if it
contains the entire branch associated with RA in treeλ(y). However, Lemma 11 does
not apply in the single region case: for νreg defined in (14) and some RA ∈ treeλ(y),
the fact that RA ∈ treeλ{y′(φ, νreg)} does not imply that R[branch{RA,treeλ(y)}] ⊆
treeλ{y′(φ, νreg)}. Instead, a result similar to Lemma 11 holds, involving permutations of
the branch.

Definition 12 (Permutation of a branch) Let Π denote the set of all L! permutations
of (1, 2, . . . , L). Given π ∈ Π and a branch B = ((j1, s1, e1), . . . , (jL, sL, eL)), we say that
π (B) =((jπ(1), sπ(1), eπ(1)), . . . , (jπ(L), sπ(L), eπ(L))) is a permutation of the branch B.

Branch B and its permutation π (B) induce the same region R(L), but R{π (B)} 6= R(B).

Lemma 13 Let RA ∈ treeλ(y). Then RA ∈ treeλ{y′(φ, νreg)} if and only if there exists
a π ∈ Π such that R[π {branchRA(y)}] ⊆ treeλ{y′(φ, νreg)}. Thus, for Sλreg(νreg) in (16),

Sλreg(νreg) =
⋃
π∈Π

Sλ
(
π
[
branch{RA,treeλ(y)}

]
, νreg

)
. (19)

Lemmas 11 and 13 reveal that computing Sλsib(νsib) and Sλreg(νreg) requires characterizing

sets of the form Sλ(B, ν), defined in (18). To compute Sλsib(νsib) we will only need to consider
Sλ(B, ν) where R(B) ⊆ treeλ(y). However, to compute Sλreg(νreg), we will need to consider

Sλ{π(B), ν} where R(B) ⊆ treeλ(y) but R{π(B)} * treeλ(y).

9



Neufeld, Gao, Witten

4.2 Computing Sλ(B, ν) in (18)

Throughout this section, we consider a vector ν ∈ Rn and a branch B = ((j1, s1, e1), . . . , (jL, sL, eL)),
where R(B) may or may not be in treeλ(y). Recall from Definition 10 that B induces the
nested regions R(l) =

⋂l
l′=1 χjl′ ,sl′ ,el′ for l = 1, . . . , L, and R(0) = Rp. Throughout this

section, our only requirement on B and ν is the following condition.

Condition 1 For y′(φ, ν) defined in Theorem 6, B and ν satisfy {y′(φ, ν)}i = yi+c11{xi∈R(L)}+
c21[xi∈{R(L−1)∩χjL,sL,1−eL}] for i = 1, . . . , n and for some constants c1 and c2.

To characterize Sλ(B, ν) in (18), recall that the CART algorithm in Section 2.2 involves
growing a very large tree tree0(y), and then pruning it. We first characterize the set

Sgrow(B, ν) = {φ : R(B) ⊆ tree0{y′(φ, ν)}}. (20)

Proposition 14 Recall the definition of gainR(l){y′(φ, ν), j, s} in (2), and let Sl,j,s = {φ :

gainR(l−1){y′(φ, ν), j, s} ≤ gainR(l−1){y′(φ, ν), jl, sl}}. Then, Sgrow(B, ν) =
⋂L
l=1

⋂p
j=1

⋂n−1
s=1 Sl,j,s.

Proposition 15 says that we can compute Sgrow(B, ν) efficiently.

Proposition 15 The set Sl,j,s is defined by a quadratic inequality in φ. Furthermore,
we can evaluate all of the sets Sl,j,s, for l = 1, . . . , L, j = 1, . . . , p, s = 1, . . . , n − 1,
in O {npL+ np log(n)} operations. Intersecting these sets to obtain Sgrow(B, ν) requires at
most O {npL× log(npL)} operations, and only O(npL) operations if B = branch{RA,treeλ(y)}
and ν is of the form νsib in (6).

Noting that Sλ(B, ν) =
{
φ ∈ Sgrow(B, ν) : R(L) ∈ treeλ{y′(φ, ν)}

}
, it remains to char-

acterize the set of φ ∈ Sgrow(B, ν) such that R(L) is not removed during pruning. Recall
that g(·) was defined in (3).

Proposition 16 There exists a tree tree(B, ν, λ) such that

Sλ(B, ν) = Sgrow(B, ν) ∩

(
L−1⋂
l=0

{
φ : g

{
R(l),tree(B, ν, λ), y′(φ, ν)

}
≥ λ

})
. (21)

If R(B) ∈ treeλ(y), then tree(B, ν, λ) = treeλ(y) satisfies (21). Otherwise, given the set
Sgrow(B, ν), computing a tree(B, ν, λ) that satisfies (21) has a worst-case computational
cost of O(n2p).

We explain how to compute a tree(B, ν, λ) satisfying (21) when R(B) 6∈ treeλ(y) in the
supplementary materials.

Proposition 17 The set
⋂L−1
l=0

{
φ : g

{
R(l),tree(B, ν, λ), y′(φ, ν)

}
≥ λ

}
in (21) is the in-

tersection of the solution sets of L quadratic inequalities in φ. Given tree(B, ν, λ), the
coefficients of these quadratics can be obtained in O(nL) operations. After Sgrow(B, ν) has
been computed, intersecting it with these quadratic sets to obtain Sλ(B, ν) from (21) requires
O{npL×log(npL)} operations in general, and only O(L) operations if B = branch{RA,treeλ(y)}
and ν = νsib from (6).

10
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The results in this section have relied upon Condition 1. Indeed, this condition holds
for branches B and vectors ν that arise in characterizing the sets Sλsib(νsib) and Sλreg(νreg).

Proposition 18 If either (i) B = branch{RA,treeλ(y)} and ν = νsib (6), where RA and
RB are siblings in treeλ(y), or (ii) B is a permutation of branch{RA,treeλ(y)} and
ν = νreg (14), where RA ∈ treeλ(y), then Condition 1 holds.

Combining Lemma 11 with Propositions 14–18, we see that Sλsib(νsib) can be computed
in O{npL+ np log(n)} operations. However, computing Sλreg(νreg) is much more computa-
tionally intensive: by Lemma 13 and Propositions 14–18, it requires computing
Sλ(π

[
branch{RA,treeλ(y)}

]
, νreg) for all L! permutations π ∈ Π, for a total ofO

[
L!
{
n2pLlog(pL)

}]
operations. In Section 4.3, we discuss ways to avoid these calculations.

4.3 A Computationally-Efficient Alternative to Sλreg(νreg)

Lemma 13 suggests that carrying out inference on a single region requires computing
Sλ(π

[
branch{RA,treeλ(y)}

]
, νreg) for every π ∈ Π. We now present a less computation-

ally demanding alternative.

Proposition 19 Let Q be a subset of the L! permutations in Π, i.e. Q ⊆ Π. Define

pQreg(y) = prH0

{
|νT
regY − c| ≥ |νT

regy − c| |
⋃
π∈Q

(
R(π[branch{RA,treeλ(y)}]) ⊆ treeλ(Y )

)
,P⊥νregY = P⊥νregy

}
.

The test based on pQreg(y) controls the selective Type 1 error rate (4) for H0 : νT
regµ = c. Fur-

thermore, pQreg(y) = pr
{
|φ− c| ≥ |νT

regy − c| | φ ∈
⋃
π∈Q S

λ
(
π[branch{RA,treeλ(y)}], νreg

)}
, where

φ ∼ N(c, ‖νreg‖22σ2).

Using the notation in Proposition 19, preg(y) introduced in (15) equals pΠ
reg(y). If we

take Q = {I}, where I is the identity permutation, then we arrive at

pIreg(y) = P
(
|φ− c| ≥ |νT

regy − c| | φ ∈ Sλ[branch{RA,treeλ(y)}, νreg]
)
, (22)

where φ ∼ N(c, ‖νreg‖22σ2). The set Sλ[branch{RA,treeλ(y)}, νreg] can be easily com-
puted by Proposition 16.

Compared to (15), (22) conditions on an extra piece of information: the ancestors of
RA. Thus, while (22) controls the selective Type 1 error rate, it may have lower power
than (15) (Fithian et al., 2014). Similarly, inverting (22) to form a confidence interval
provides correct selective coverage, but may yield intervals that are wider than those in
Proposition 9. Proposition 19 is motivated by a proposal by Lee et al. (2016) to condition
on both the selected model (necessary information) and the signs of the selected variables
(extra information) in the lasso setting, to gain computational efficiency at the possible
expense of precision and power.

In Appendix F, we show through simulation that the loss in power associated with
using (22) rather than (15) is negligible. Thus, in practice, we suggest using (22) for its
computational efficiency. We use (22) for the remainder of this paper.
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Figure 3: The true mean model in Section 5, for a = 0.5 (left), a = 1 (center), and a = 2
(right). The difference in means between the sibling nodes at level two in the tree
is ab, while the difference in means between the sibling nodes at level three is b.

Furthermore, we can consider computing confidence intervals of the form [LSIreg(y), USIreg(y)]

rather than (17), where LSIreg(y) and USIreg(y) satisfy

F
(
νT
regy;LSIreg(y), σ2‖νreg‖22, Sλ

[
branch{RA,treeλ(y)}, νreg

])
= 1− α

2
,

F
(
νT
regy;USIreg(y), σ2‖νreg‖22, Sλ

[
branch{RA,treeλ(y)}, νreg

])
=
α

2
. (23)

In Appendix F, we show that the confidence intervals resulting from (23) are not much
wider than those resulting from (17). We therefore make use of confidence intervals of the
form (23) in the remainder of this paper.

5. Simulation Study

5.1 Data Generating Mechanism

We simulate X ∈ Rn×p with n = 200, p = 10, Xij
i.i.d.∼ N(0, 1), and y ∼ Nn(µ, σ2In) with

σ = 5 and µi = b ×
[
1(xi,1≤0) × {1 + a1(xi,2>0) + 1(xi,3×xi,2>0)}

]
. This µ vector defines a

three-level tree, shown in Figure 3 for three values of a ∈ R.

5.2 Methods for Comparison

All CART trees are fit using the R package rpart (Therneau and Atkinson, 2019) with
λ = 200, a maximum level of three, and a minimum node size of one. We compare three
approaches for conducting inference. (i) Selective Z-methods: Fit a CART tree to the data.
For each split, test for a difference in means between the two sibling regions using (8), and
compute the corresponding confidence interval in (13). Compute the confidence interval for
the mean of each region using (23). (ii) Naive Z-methods: Fit a CART tree to the data.
For each split, conduct a naive Z-test for the difference in means between the two sibling
regions, and compute the corresponding naive Z-interval. Compute a naive Z-interval for
each region’s mean. (iii) Sample splitting: Split the data into equally-sized training and test
sets. Fit a CART tree to the training set. On the test set, conduct a naive Z-test for each
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split and compute a naive Z-interval for each split and each region. If a region has no test
set observations, then we fail to reject the null hypothesis and fail to cover the parameter.

The conditional inference tree (CTree) framework of Hothorn et al. (2006) uses a different
criterion than CART to perform binary splits. Within a region, it tests for linear association
between each covariate and the response. The covariate with the smallest p-value for this
linear association is selected as the split variable, and a Bonferroni corrected p-value that
accounts for the number of covariates is reported in the final tree. Then, the split point
is selected. If, after accounting for multiple testing, no variable has a p-value below a pre-
specified significance level α, then the recursion stops. While CTree’s p-values assess linear
association and thus are not directly comparable to the p-values in (i)–(iii) above, it is
the most popular framework currently available for determining if a regression tree split is
statistically significant. Thus, we also evaluate the performance of (iv) CTree: Fit a CTree
to all of the data using the R package partykit (Hothorn and Zeileis, 2015) with α = 0.05.
For each split, record the p-value reported by partykit.

In Sections 5.3–5.6, we assume that σ is known. We consider the case of unknown σ in
Section 5.7.

5.3 Uniform p-values under a Global Null

We generate 5, 000 datasets with a = b = 0, so that H0 : νT
sibµ = 0 holds for all splits in

all trees. Figure 4 displays the distributions of p-values across all splits in all fitted trees
for the naive Z-test, sample splitting, and the selective Z-test. The selective Z-test and
sample splitting achieve uniform p-values under the null, while the naive Z-test (which
does not account for the fact that νsib was obtained by applying CART to the same data
used for testing) does not. CTree is omitted from the comparison: it creates a split only
if the p-value is less than α = 0.05, and thus its p-values over the splits do not follow a
Uniform(0,1) distribution.

Figure 4: Quantile-quantile plots of the p-values for testing H0 : νT
sibµ = 0, as described in

Section 5.3. A naive Z-test (green), sample splitting (blue), and selective Z-test
(pink) were performed; see Section 5.2. The p-values are stratified by the level of
the regions in the fitted tree.
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Table 1: A 3× 3 contingency table indicating an observation’s involvement in a given true
split and estimated split. The adjusted Rand index is computed using only the
shaded cells

Estimated Split
In left region In right region In neither

True Split
In left region t1 t2 t3
In right region u1 u2 u3

In neither v1 v2 v3

5.4 Power

We generate 500 datasets for each (a, b) ∈ {0.5, 1, 2} × {1, . . . , 10}, and evaluate the power
of selective Z-tests, sample splitting, and CTree to reject the null hypothesis H0 : νT

sibµ = 0.
As naive Z-tests do not control the Type 1 error rate (Figure 4), we do not evaluate their
power. We consider two aspects of power: the probability that we detect a true split, and
the probability that we reject the null hypothesis corresponding to a true split.

Given a true split in Figure 3 and an estimated split, we construct the 3×3 contingency
table in Table 1, which indicates whether an observation is on the left-hand side, right-hand
side, or not involved in the true split (rows) and the estimated split (columns). To quantify
the agreement between the true and estimated splits, we compute the adjusted Rand index
(Hubert and Arabie, 1985) associated with the 2 × 3 contingency table corresponding to
the shaded region in Table 1. For each true split, we identify the estimated split for which
the adjusted Rand index is largest; if this index exceeds 0.75 then this true split is “de-
tected”. Given that a true split is detected, the associated null hypothesis is rejected if the
corresponding p-value is below 0.05. Figure 5 displays the proportion of true splits that are
detected and rejected by each method.

As sample splitting fits a tree using only half of the data, it detects fewer true splits,
and thus rejects the null hypothesis for fewer true splits, than the selective Z-test.

When a is small, the difference in means between sibling regions at level two is small.
Because CTree makes a split only if there is strong evidence of association at that level,
it tends to build one-level trees, and thus fails to detect many true splits; by contrast, the
selective Z-test (based on CART) successfully builds more three-level trees. Thus, when a
is small, the selective Z-test detects (and rejects) more true differences than CTree between
regions at levels two and three.

5.5 Coverage of Confidence Intervals for νT
sibµ and νT

regµ

We generate 500 datasets for each (a, b) ∈ {0.5, 1, 2} × {0, . . . , 10} to evaluate the coverage
of 95% confidence intervals constructed using naive Z-methods, selective Z-methods, and
sample splitting. CTree is omitted from these comparisons because it does not provide
confidence intervals. We say that the interval covers the truth if it contains νTµ, where ν
is defined as in (6) (for a particular split) or (14) (for a particular region). Table 2 shows
the proportion of each type of interval that covers the truth, aggregated across values of a
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Figure 5: Proportion of true splits detected (solid lines) and rejected (dotted lines) for
CART with selective Z-tests (pink), CTree (black), and CART with sample split-
ting (blue) across different settings of the data generating mechanism, stratified
by level in tree. As CTree only makes a split if the p-value is less than 0.05, the
proportion of detections equals the proportion of rejections.

and b. The selective Z-intervals attain correct coverage of 95%, while the naive Z-intervals
do not.

It may come as a surprise that sample splitting does not attain correct coverage. Recall
that ν from (6) or (14) is an n-vector that contains entries for all observations in both
the training set and the test set. Thus, νTµ involves the true mean among both training
and test set observations in a given region or pair of regions. By contrast, sample splitting
attains correct coverage for a different parameter involving the true means of only the test
observations that fall within a given region or pair of regions.

5.6 Width of Confidence Intervals

Figure 6(a) illustrates that our selective Z-intervals for νT
regµ can be extremely wide when

b is small, particularly for regions located at deeper levels in the tree. For each tree that we
build and for levels 1, 2, and 3, we compute the adjusted Rand Index (Hubert and Arabie,
1985) between the true tree (truncated at the appropriate level) and the estimated tree
(truncated at the same level). Figure 6(b) shows that our selective confidence intervals can
be extremely wide when this adjusted Rand Index is small, particularly at deeper levels of
the tree.

When b is small and the adjusted Rand Index is small, the trees built by CART tend to
be unstable, in the sense that small perturbations to the data affect the fitted tree. In this
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Table 2: Proportion of 95% confidence intervals containing the true parameter, aggregated
over all trees fit to the 5,500 datasets generated with (a, b) ∈ {0.5, 1, 2}×{1, . . . , 10}

Parameter νT
regµ Parameter νT

sibµ

Level Selective Z Naive Z Sample Splitting Selective Z Naive Z Sample Splitting

1 0.951 0.889 0.918 0.948 0.834 0.915
2 0.950 0.645 0.921 0.951 0.410 0.917
3 0.951 0.711 0.921 0.950 0.550 0.921

setting, the sample statistics νT
regy fall very close to the boundary of the truncation set. See

Kivaranovic and Leeb (2021) for a discussion of why wide confidence intervals can arise in
these settings. The great width of our confidence intervals reflects the uncertainty about
the mean response within each region due to the instability of the tree-fitting procedure.

(a) (b)

Figure 6: The median width of the selective Z-intervals for parameter νT
regµ for regions at

levels one (solid), two (dashed), and three (dotted) of the tree. Similar results
hold for parameter νT

sibµ. Panel (a) breaks results down by the parameters a and
b, whereas panel (b) aggregates results across values of parameters a and b, and
displays them as a function of the adjusted Rand Index between the true and
estimated trees.

5.7 Results with Unknown σ

Thus far, we have assumed that σ is known. In this section, we compare the following three
versions of the selective Z-methods that plug different values of σ into the truncated normal
CDF when computing p-values and confidence intervals:

1. σ: We plug in the true value of σ, as in Sections 5.3–5.6.

2. σ̂cons: We plug in σ̂cons =

√
(n− 1)−1

n∑
i=1

(yi − ȳ)2, where ȳ = n−1
∑n

i=1 yi.

16



Selective Inference for Regression Trees

Figure 7: QQ plots of the p-values from testing H0 : νTsibµ = 0 when µ = 0n using the
selective Z-test with three different values plugged in to the truncated normal
CDF for σ. The p-values are stratified by the level of the regions in the fitted
tree.

3. σ̂SSE : Let T =
∣∣term (Rp,treeλ(y)

)∣∣ be the number of terminal regions in treeλ(y).

We plug in σ̂SSE =
√

(n− T )−1∑n
i=1(yi − ŷi)2, where ŷi is the predicted value for

the ith observation given by Treeλ(y).

It is straightforward to show that E[σ̂2
cons] ≥ σ2, for any value of E[y] = µ. Thus, we expect

this estimate to lead to conservative inference. On the other hand, σ̂2
SSE can be made

arbitrarily small by making the fitted tree arbitrarily deep, and so we expect inference
based on this estimate to be anti-conservative if the fitted CART tree is large.

Figure 7 shows the distribution of p-values from testing H0 : νTsibµ = 0 with the three
versions of the selective Z-test under the data generating mechanism described in Section
5.1, with a = b = 0. In this setting, νTsibµ = 0 holds for all splits in all trees. We see almost
no difference between the three versions of the selective Z-test. In this global null setting,
E[σ̂2

cons] = σ2. Furthermore, the empirical bias of σ̂2
SSE is small because the trees we grow

are not particularly large; as in the rest of Section 5, we build trees to a maximum depth
of 3 and prune with λ = 200.

Figure 8 displays the proportion of true splits detected and the proportion of true splits
detected and rejected, as defined in Section 5.4, for the three versions of the selective Z-test
when data is generated as in Section 5.4. For simplicity, we only show the setting where
a = 1. All three methods detect the same proportion of true splits, because they all perform
inference on the same CART trees. The proportion of splits detected and rejected is very
similar for σ and σ̂SSE because σ̂SSE is a very good estimator for σ in this setting. While
σ̂cons performs reasonably when b is small, it severely overestimates σ and thus has low
power when b is large.
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Figure 8: Proportion of true splits detected (solid lines) and rejected (dotted lines) for
CART with the three versions of the selective Z-test. The results are stratified
by level in tree.

Table 3 displays confidence intervals for νT
sibµ and νT

regµ for the three versions of the
selective Z-intervals, where data is generated as in Section 5.5. As expected, σ̂cons leads to
slight over-coverage and σ̂SSE leads to slight under-coverage.

Parameter νT
regµ Parameter νT

sibµ

Level σ σ̂cons σ̂SSE σ σ̂cons σ̂SSE

1 0.95 0.98 0.95 0.95 0.98 0.94
2 0.95 0.97 0.94 0.95 0.97 0.94
3 0.95 0.96 0.94 0.95 0.96 0.94

Table 3: Proportion of 95% confidence intervals containing the true parameter, aggregated
over all trees fit to the 5,500 datasets generated with (a, b) ∈ {0.5, 1, 2}×{1, . . . , 10}

In this section, we have seen that when trees are not grown overly large, plugging in
σ̂SSE leads to approximate selective Type 1 error control, approximately correct selective
coverage, and good power. Unfortunately, providing theoretical guarantees for our proce-
dures when using σ̂SSE would be quite difficult, as the estimator is anti-conservative and
depends on the output of CART. Providing theoretical guarantees for our procedures under
σ̂cons is more straightforward, using ideas from Gao et al. (2020), Chen and Witten (2022),
and Tibshirani et al. (2018). However, as shown in Figure 8, selective Z-tests based on
σ̂cons can have very low power. One promising avenue of future work involves providing
theoretical guarantees in the regression tree setting for estimators that are less conservative
than σ̂cons.
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Figure 9: Left: A CART tree fit to the Box Lunch Study data. Each split has been labeled
with a p-value (8), and each region has been labeled with a confidence interval
(23). The shading of the nodes indicates the average response values (white
indicates a very small value and dark blue a very large value). Top right: A
CTree fit to the Box Lunch Study data. Bottom right: A scatterplot showing the
relationship between the covariate hunger and the response.

6. An Application to the Box Lunch Study

Venkatasubramaniam et al. (2017) compare CART and CTree (Hothorn et al., 2006) within
the context of epidemiological studies. They conclude that CTree is preferable to CART
because it provides p-values for each split, even though CART has higher predictive accu-
racy. Since our framework provides p-values for each split in a CART tree, we revisit their
analysis of the Box Lunch Study, a clinical trial studying the impact of portion control
interventions on 24-hour caloric intake. We consider identifying subgroups of study par-
ticipants with baseline differences in 24-hour caloric intake on the basis of scores from an
assessment that quantifies constructs such as hunger, liking, the relative reinforcement of
food (rrvfood), and restraint (resteating).

We exactly reproduce the trees presented in Figures 1 and 2 of Venkatasubramaniam
et al. (2017) by building a CTree using partykit and a CART tree using rpart on the Box
Lunch Study data provided in the R package visTree (Venkatasubramaniam and Wolfson,
2018). We apply our selective inference framework to compute p-values (8) for each split in
CART, and confidence intervals (23) for each region. In this section, we use σ̂SSE, defined
in Section 5.7, to estimate the error variance. The results are shown in Figure 9.
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Both CART and CTree choose hunger<1.8 as the first split. For this split, our selective
Z-test reports a large p-value of 0.44, while CTree reports a p-value less than 0.001. The
conflicting p-values are explained by the difference in null hypotheses. CTree finds strong
evidence against the null of no linear association between hunger and caloric intake. By
contrast, our selective framework for CART does not find strong evidence for a difference
between mean caloric intake of participants with hunger<1.8 and those with hunger≥1.8.
We see from the bottom right of Figure 9 that while there is evidence of a linear relationship
between hunger and caloric intake, there is less evidence of a difference in means across
the particular split hunger=1.8. Given that the goal of Venkatasubramaniam et al. (2017)
is to “identify population subgroups that are relatively homogeneous with respect to an
outcome”, the p-value resulting from our selective framework is more natural than the p-
value output by CTree, since the former relates directly to the subgroups formed by the
split, whereas the latter does not take into account the location of the split point. In
general, the left-hand panel of Figure 9 shows that the subgroups of patients identified by
CART are not significantly different from one another. This is an important finding that
would be missed without our selective inference framework. Furthermore, unlike CTree, our
framework provides confidence intervals for the mean response in each subgroup.

An alternative analysis using σ̂cons, defined in Section 5.7, is provided in Appendix H,
and leads to similar findings.

7. Discussion

Our framework relies on the assumption that Y ∼ Nn(µ, σ2I), with σ2 known. In Sec-
tion 5.7, we showed strong empirical performance when the variance is unknown and σ2 is
estimated. In this section, we briefly comment on the assumptions of spherical variance and
normally distributed data.

It natural to wonder whether the assumption that Y ∼ Nn(µ, σ2I) can be relaxed to
the assumption that Y ∼ Nn(µ,Σ), with Σ known. Following the work of Lee et al. (2016),
the results in Section 3 extend to the setting where Y ∼ Nn(µ,Σ) if we:

1. Modify (8) and (15) to condition on the event
{(
In − ΣννT

νTΣν

)
Y =

(
In − ΣννT

νTΣν

)
y
}

rather than the event {P⊥ν Y = P⊥ν y}, where ν = νsib in the case of (8) and ν = νreg
in the case of (15).

2. Replace all instances of the perturbation y′(φ, ν), defined in Theorem 6, with the

perturbation y′′(φ, ν) =
(
In − ΣννT

νTΣν

)
y + Σν

νTΣν
φ.

Unfortunately, the modified perturbation y′′(φ, ν) does not satisfy Condition 1 in Section 4.2
when Σ 6= σ2In, and so many of the results of Section 4 do not extend to this non-spherical
setting. Future work could explore how to efficiently compute the conditioning set in this
non-spherical setting.

Furthermore, our framework assumes a normally-distributed response variable. CART
is commonly used for classification, survival (Segal, 1988), and treatment effect estimation
in causal inference (Athey and Imbens, 2016). While the idea of conditioning on a selection
event to control the selective Type 1 error rate applies regardless of the distribution of the
response, our Theorem 6 and Theorem 8, and the resulting computational results, relied on
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normality of Y . In the absence of this assumption, exactly characterizing the conditioning
set and the distribution of the test statistic requires further investigation.

We show in Appendix G that our selective Z-tests approximately control the selective
Type 1 error when the normality assumption is violated. Tian and Taylor (2017) and Tib-
shirani et al. (2018) establish conditions under which selective p-values for linear regression
(derived under the assumption of normality) will be asymptotically uniformly distributed
under non-normality. Thus suggests the possibility of developing asymptotic theory for our
proposed selective Z-tests under violations of normality.

A reviewer pointed out similarities between the problem of testing significance of the
first split in the tree and significance testing for a single changepoint, as in Bhattacharya
(1994). Building on this connection may provide an avenue for future work.

A software implementation of the methods in this paper is available in the R package
treevalues, at https://github.com/anna-neufeld/treevalues.
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Appendix A. Comparison to Loh et al. (2019)

Loh et al. (2016) and Loh et al. (2019) use regression trees to find subgroups of patients with
similar treatment effects in clinical trials. They grow trees based on patient characteristics
using a different algorithm than CART. Furthermore, they are interested in the mean
treatment effect (which is a linear regression coefficient) within each terminal region of the
tree, rather than the mean response within each region.

One of the goals of Loh et al. (2019) is to construct valid post-selection confidence
intervals for the treatment effect within each terminal node. In this appendix, we show
that their approach, when adapted to the setting of this paper, does not yield confidence
intervals with nominal coverage.

The basic idea of Loh et al. (2019), instantiated to our setting, is as follows. Suppose that
RA ∈ Treeλ(y), and define the vector νreg such that (νreg)i = 1(xi∈RA)/

{∑n
i′=1 1(xi′∈RA)

}
,

as in (14). We know that the “naive” Z-interval does not achieve nominal coverage, meaning
that

Pr

ν>regµ ∈
ν>regy − zα/2 σ√∑n

i=1 1(xi∈RA)

, ν>regy + zα/2
σ√∑n

i=1 1(xi∈RA)

 < 1−α. (24)

This is because the “multiplier” for the naive confidence interval, zα/2, is derived under the
assumption that the region RA (or, equivalently, the vector νreg), is fixed, rather than a
function of the data.
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Loh et al. (2019) observe that there exists some α′ < α such that

Pr

(
ν>regµ ∈

[
ν>regy − zα′/2

σ∑n
i=1 1(xi∈RA)

, ν>regy + zα′/2
σ∑n

i=1 1(xi∈RA)

])
= 1− α. (25)

The value for α′ for a given tree will depend on the number of split covariates p, the number
of data points n, the depth of the tree, and the value of λ used for tree pruning, among
other considerations. If we know how the data was generated, then we can check whether
some value α′ satisfies (25) as follows:

1. Draw B different simulated datasets {(Xb, yb)}Bb=1 from the same distribution (call
this F ) as the original data. For b = 1, . . . , B:

(a) Build a tree using the simulated data (Xb, yb), using the same procedure and the
same settings as in Step 1, and denote it treeλ(yb).

(b) For each terminal region R ∈ term
(
treeλ(yb),Rp

)
in the tree:

i. Construct a (1 − α′) naive Z-interval for the mean response in the region
using (Xb, yb).

ii. Check if each interval contains µ̄R, the true mean for this region R.

2. Compute the fraction of intervals in 1(b) that contain µ̄R.

3. If this value is 1− α, then we have found the correct value of α′. If not, then we try
a larger or smaller value of α′.

We test this procedure in a very simple simulation study. We generate data Xij ∼
N(0, 1) and yi ∼ N(0, 1) for i = 1, . . . , 100 and j = 1, . . . , p. In this simple setting, the
true mean response for every region in every fitted tree is 0. We carry out the procedure
outlined above with α = 0.1. For two values of p and for CART trees with 1, 2, and 3 levels,
we create 1000 datasets and 1000 trees and report the empirical coverage of the intervals
obtained using this ideal method, averaged over all nodes in all trees. The results, shown
in Table 4, show that this ideal procedure procedure leads to intervals that achieve nominal
coverage.

Unfortunately, this ideal procedure is practically infeasible, as it requires the user to
know the true distribution of the data F . Thus, in practice, Loh et al. (2019) propose
replacing F by F̂ , the empirical distribution of the original data. This amounts to replacing
the simulated datasets in Step 2 with bootstrapped datasets, and checking whether the
naive Z-intervals in Step 1(b) contain ȳR rather than µ̄R.

We can see why this is problematic in a very simple setting where we fit a tree with
depth 1. If all observations have mean 0, then a CART tree fit to a bootstrap sample of
the data will nevertheless find regions RL and RR such that the sample mean value of yb
within RL is negative and the sample mean value of yb within RR is positive. As yb and y
contain many overlapping observations, it is likely that the sample mean value of y within
RL is also negative and the sample mean value of y within RR is also positive. In other
words, because of the overlap between y and yb, the within-region sample means of yb are
closer to the within-region sample means of y than they are to the within-region population
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means. Thus, when we calibrate α′ to cover the mean values of y within various regions,
we end up with under-coverage of the true population mean, as shown in Table 4.

We see in Table 4 that our selective inference framework approach enables valid inference
in this setting, whereas a bootstrap procedure modeled after Loh et al. (2019) does not.

Loh (ideal) Loh (bootstrap) Selective CIs
p Tree depth Coverage Average α′ Coverage Average α′ Coverage

1 0.902 0.008 0.749 0.037 0.890
2 2 0.905 0.004 0.695 0.038 0.904

3 0.900 0.005 0.660 0.047 0.895

1 0.883 0.001 0.601 0.016 0.908
20 2 0.900 0.00025 0.549 0.016 0.901

3 0.904 0.00015 0.543 0.022 0.905

Table 4: Coverage of 90% confidence intervals computed using three methods for the simple
setting where yi ∼ N(0, 1) andXij ∼ N(0, 1) for for i = 1, . . . , 100 and j = 1, . . . , p.
Note that the “Loh (ideal)” method can never be used in practice, as it requires
knowledge of the true parameter.

Appendix B. Proofs for Section 3

B.1 Proof of Theorem 6

Let 0 ≤ α ≤ 1. We start by proving the first statement in Theorem 6:

prH0

{
psib(Y ) ≤ α | RA, RB are siblings in treeλ(Y )

}
= α.

This is a special case of Proposition 3 from Fithian et al. (2014). It follows from the
definition of psib(Y ) in (8) that

prH0

{
psib(Y ) ≤ α | RA, RB are siblings in treeλ(Y ),P⊥νsibY = P⊥νsiby

}
= α.

Therefore, applying the law of total expectation yields

prH0

{
psib(Y ) ≤ α | RA, RB siblings in treeλ(Y )

}
= EH0

[
1{psib(Y )<α} | RA, RB are siblings in treeλ(Y )

]
= EH0

(
EH0

[
1{psib(Y )<α} | RA, RB are siblings in treeλ(Y ),P⊥νsibY = P⊥νsiby

]
| RA, RB are siblings in treeλ(Y )

)
= EH0

{
α | RA, RB are siblings in treeλ(Y )

}
= α.

The second statement of Theorem 6 follows directly from the following result.
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Lemma 20 If Y ∼ Nn

(
µ, σ2In

)
, then the random variable νT

sibY has the following condi-
tional distribution:

νT
sibY | {RA, RB are siblings in treeλ(Y ),P⊥νsibY = P⊥νsiby} ∼ T N

{
νT
sibµ, σ

2‖νsib‖22;Sλsib(νsib)
}
, (26)

where Sλsib(νsib) is defined in (10) and T N (µ, σ, S) denotes the N(µ, σ2) distribution trun-
cated to the set S.

Proof
The following holds for any ν ∈ Rn.

pr
{
νTY > c | RA, RB are siblings in treeλ (Y ) ,P⊥ν Y = P⊥ν y

}
= pr

{
νTY > c | RA, RB are siblings in treeλ

(
P⊥ν Y +

ννT

‖ν‖22
Y

)
,P⊥ν Y = P⊥ν y

}
= pr

{
νTY > c | RA, RB are siblings in treeλ

(
P⊥ν y +

ν

‖ν‖22
νTY

)
,P⊥ν Y = P⊥ν y

}
= pr

{
νTY > c | RA, RB are siblings in treeλ

(
P⊥ν y +

ν

‖ν‖22
νTY

)}
= pr

{
φ > c | φ ∈ Sλsib (ν)

}
,

where φ = νTY. In the fourth line, the condition P⊥ν Y = P⊥ν y can be dropped because when
Y ∼ Nn

(
µ, σ2In

)
, P⊥ν Y is independent of ν>Y . Finally, since φ ∼ N

(
νTµ, σ2‖ν‖22

)
, (26)

holds.

B.2 Proof of Proposition 7

Theorem 6.1 from Lee et al. (2016) says that the truncated normal distribution has mono-
tone likelihood ratio in the mean parameter. This guarantees that L(y) and U(y) in (13)
are unique. Then, for L(·) and U(·) in (13), (26) in Lemma 20 guarantees that

pr
{
νTµ ∈ [L(Y ), U(Y )] | RA, RB are siblings in treeλ(Y ),P⊥ν Y = P⊥ν y

}
= 1− α. (27)

Finally, we need to prove that (27) implies (1 − α)–selective coverage as defined in (12).
Following Proposition 3 from Fithian et al. (2014), let η be the random variable P⊥ν Y and
let f(·) be its density. Then,

pr
{
νTµ ∈ [L(Y ), U(Y )] | RA, RB are siblings in treeλ(Y )

}
=

∫
pr
{
νTµ ∈ [L(Y ), U(Y )] | RA, RB are siblings in treeλ(Y ),P⊥ν Y = P⊥ν y

}
f(η)dη

=

∫
(1− α)f(η)dη = 1− α.

B.3 Proof of Theorem 8

We omit the proof of the first statement of Theorem 8, as it is similar to the proof of the
first statement of Theorem 6 in Appendix B.1.

The second statement in Theorem 8 follows directly from the following result.
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Lemma 21 The random variable νT
regY has the conditional distribution

νT
regY | {RA ∈ treeλ(Y ),P⊥νregY = P⊥νregy} ∼ T N

{
νT
regµ, σ

2‖νreg‖22;Sλreg(νreg)
}
, (28)

where Sλreg(νreg) was defined in (16).

We omit the proof of Lemma 21, as it is similar to the proof of Lemma 20.

B.4 Proof of Proposition 9

The proof largely follows the proof of Proposition 7. The fact that the truncated normal
distribution has monotone likelihood ratio (Theorem 6.1 of Lee et al. 2016) ensures that
L(y) and U(y) defined in (17) are unique, and (28) in Lemma 21 implies that

pr
{
νT
regµ ∈ [L(Y ), U(Y )] | RA ∈ treeλ(Y ),P⊥νregY = P⊥νregy

}
= 1− α.

The rest of the argument is as in the proof of Proposition 7.

Appendix C. Proofs for Section 4.1

C.1 Proof of Lemma 11

We first state and prove the following lemma.

Lemma 22 Let RA and RB be the regions in the definition of νsib in (6). For an arbitrary
region R and for any j ∈ {1, . . . , p} and s ∈ {1, . . . , n− 1}, recall that the potential children
of R (the ones that CART will consider adding to the tree when applying Algorithm A1
to region R) are given by R ∩ χj,s,0 and R ∩ χj,s,1, where χj,s,0 and χj,s,l were defined in
(1). If (RA ∪ RB) ⊆ R ∩ χj,s,0 or (RA ∪ RB) ⊆ R ∩ χj,s,1, then GainR{y′(φ, νsib), j, s} =
GainR{y, j, s} for all φ.

Proof It follows from algebra that for GainR(y, j, s) defined in (2),

GainR(y, j, s) = −
{

n∑
i=1

1(xi∈R)

}
(yR)2 +

{
n∑
i=1

1(xi∈R∩χj,s,0)

}(
yR∩χj,s,0

)2
+

{
n∑
i=1

1(xi∈R∩χj,s,1)

}(
yR∩χj,s,1

)2
,

(29)

where ȳR =
(∑

i∈R yi
)
/
{∑n

i=1 1(xi∈R)

}
. It follows from (29) that to prove Lemma 22,

it suffices to show that yT = y′(φ, νsib)T for T ∈ {R,R ∩ χj,s,0, R ∩ χj,s,1}. Recall from
Section 3.3 that {y′(φ, νsib)}i = yi + ∆i, where

∆i =


(φ− νT

siby)

∑n
i′=1 1(x′

i
∈RB)∑n

i′=1 1(x′
i
∈RA∪RB)

if i ∈ RA

−(φ− νT
siby)

∑n
i′=1 1(x′

i
∈RA)∑n

i′=1 1(x′
i
∈RA∪RB)

if i ∈ RB

0 otherwise.
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Without loss of generality, assume that (RA∪RB) ⊆ R∩χj,s,0. For any T ∈ {R,R∩χj,s,0},
RA ∪RB ⊆ T . Thus,

y′(φ, νsib)T =
1∑n

i=1 1(xi∈T )

 ∑
i∈T\(RA∪RB)

yi +
∑
i∈RA

(yi + ∆i) +
∑
i∈RB

(yi + ∆i)


= ȳT +

∑
i∈RA

∆i +
∑
i∈RB

∆i∑n
i=1 1(xi∈T )

= ȳT +

{∑n
i=1 1(xi∈RA)

}
(φ− νT

siby)
∑n

i=1 1(xi∈RB)∑n
i=1 1(xi∈RA∪RB)

−
{∑n

i=1 1(xi∈RB)

}
(φ− νT

siby)
∑n

i=1 1(xi∈RA)∑n
i=1 1(xi∈RA∪RB)∑n

i=1 1(xi∈T )

= ȳT + 0 = ȳT .

Furthermore,

y′(φ, νsib)R∩χj,s,1
=

1∑n
i=1 1(xi∈R∩χj,s,1)

∑
i∈R∩χj,s,1

(yi+∆i) =
1∑n

i=1 1(xi∈R∩χj,s,1)

∑
i∈R∩χj,s,1

(yi+0) = yR∩χj,s,1
.

We will now prove Lemma 11.
It follows from Definition 10 that if R

[
branch{R,treeλ(y)}

]
⊆ treeλ{y′(φ, νsib)},

then RA and RB are siblings in treeλ{y′(φ, νsib)}. This establishes the (⇐) direction.
We will prove the (⇒) direction by contradiction. Suppose that RA and RB are siblings

in treeλ{y′(φ, νsib)}. Define branch{RA,treeλ(y)} = ((j1, s1, e1), . . . , (jL, sL, eL)), and

define R(l′) =
l′⋂
l=1

χjl,sl,el for l′ = 1, . . . , L. Assume that there exists l ∈ {0, . . . , L − 2}

such that R(l) ∈ treeλ{y′(φ, νsib)} and R(l+1) 6∈ treeλ{y′(φ, νsib)}. We assume that any
ties between splits that occur at Step 2 of Algorithm A1 are broken in the same way
for y and y′(φ, νsib), and so this implies that there exists (j̃, s̃) 6= (jl+1, sl+1) such that
(j̃, s̃) ∈ arg maxj,sGainR(l){y′(φ, νsib), j, s} and

GainR(l){y′(φ, νsib), jl+1, sl+1} < GainR(l){y′(φ, νsib), j̃, s̃}. (30)

Since RA and RB are siblings in treeλ{y′(φ, νsib)}, it follows from Lemma 22 that
GainR(l){y′(φ, νsib), j̃, s̃} = GainR(l)(y, j̃, s̃). Also, sinceRA andRB are siblings in treeλ(y),
it follows from Lemma 22 that GainR(l){y′(φ, νsib), jl+1, sl+1} = GainR(l)(y, jl+1, sl+1). Ap-
plying these facts to (30) yields

GainR(l)(y, jl+1, sl+1) < GainR(l)(y, j̃, s̃). (31)

But since R(l) and R(l+1) both appeared in treeλ(y),

(jl+1, sl+1) ∈ arg max
j,s

GainR(l)(y, j, s).

This contradicts (31). Therefore, for any l ∈ {0, . . . , L − 2}, if R(l) ∈ treeλ{y′(φ, νsib)},
then R(l+1) ∈ treeλ{y′(φ, νsib)}. Since R(0) ∈ treeλ{y′(φ, νsib)}, the proof follows by
induction.
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C.2 Proof of Lemma 13

Let RA ∈ treeλ(y) with branch{RA,treeλ(y)} = ((j1, s1, e1), . . . , (jL, sL, eL)) such that
RA =

⋂L
l=1 χjl,sl,el . Since Algorithm A1 creates regions by intersecting halfspaces and set

intersections are invariant to the order of intersection, it follows that RA =
⋂L
l=1 χjl,sl,el ∈

treeλ{y′(φ, νreg)} if and only if there exists π ∈ Π such that{
l′⋂
l=1

χjπ(l),sπ(l),eπ(l)

}L
l′=1

⊆ treeλ{y′(φ, νreg)}.

By Definitions 10 and 12,

R(π[branch{RA,treeλ(y)}]) =

{
l′⋂
l=1

χjπ(l),sπ(l),eπ(l)

}L
l′=1

.

Thus,

Sλreg =
{
φ : RA ∈ treeλ{y′(φ, νreg)}

}
=
⋃
π∈Π

{
φ : R(π[branch{RA,treeλ(y)}]) ⊆ treeλ

{
y′ (φ, νreg)

}}
=
⋃
π∈Π

Sλ
(
π
[
branch{RA,treeλ(y)}

]
, νreg

)
,

where the third equality follows from the definition of Sλ(B, ν) in (18).

Appendix D. Proofs for Section 4.2

D.1 Proof of Proposition 14

Recall that B = ((j1, s1, e1), . . . , (jL, sL, eL)) and R(B) = {R(0), . . . , R(L)}. Recall from
(20) that Sgrow(B, ν) = {φ : R(B) ⊆ tree0{y′(φ, ν)}}, and that we define Sl,j,s =

{
φ :

gainR(l−1){y′(φ, ν), j, s} ≤ gainR(l−1){y′(φ, ν), jl, sl}
}

.
For l = 1, . . . , L,

R(l−1) ∈ tree0{y′(φ, ν)} and φ ∈ ∩n−1s=1 ∩
p
j=1 Sl,j,s ⇐⇒ {R(l−1), R(l)} ⊆ tree0{y′(φ, ν)}, (32)

because, given that R(l−1) ∈ tree0{y′(φ, ν)}, R(l) ∈ tree0{y′(φ, ν)} if and only if
(jl, sl) ∈ arg max(j,s):s∈{1,...,n−1},j∈{1,...,p} gainR(l−1) (y′(φ, ν), j, s) . Combining (32) with the

fact that {φ : R(0) ∈ tree0{y′(φ, ν)}} = R yields

L⋂
l=1

p⋂
j=1

n−1⋂
s=1

Sl,j,s =

L⋂
l=1

{
φ : {R(l−1), R(l)} ⊆ tree0{y′(φ, ν)}

}
= {φ : R(B) ⊆ tree0{y′(φ, ν)}}.

D.2 Proof of Proposition 15

Given a region R, let 1(R) denote the vector in Rn such that the ith element is 1(xi∈R).

Let P1(R) = 1(R)
{

1(R)T1(R)
}−1

1(R)T denote the orthogonal projection matrix onto the
vector 1(R).
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Lemma 23 For any region R, gainR(y, j, s) = yTMR,j,sy, where

MR,j,s = P1(R∩χj,s,1) + P1(R∩χj,s,0) − P1(R). (33)

Furthermore, the matrix MR,j,s is positive semidefinite.

Proof For any region R,
∑

i∈R(yi − ȳR)2 =
∑

i∈R y
2
i − yTP1(R)

y. Thus, from (2),

gainR(y, j, s) =
∑
i∈R

(yi − ȳR)2 −
∑

i∈R∩χj,s,1

(yi − ȳR∩χj,s,1)2 −
∑

i∈R∩χj,s,0

(yi − ȳR∩χj,s,0)2

=
∑
i∈R

y2i − yTP1(R)
y −

∑
i∈R∩χj,s,1

y2i + yTP1(R∩χj,s,1)y −
∑

i∈R∩χj,s,0

y2i + yTP1(R∩χj,s,0)y

= yT
{
P1(R∩χj,s,1) + P1(R∩χj,s,0) − P1(R)

}
y = yTMR,j,sy.

To see that MR,j,s is positive semidefinite, observe that, for any vector v,

vTMR,j,sv = gainR(v, j, s) =
∑
i∈R

(vi − v̄R)2 − min
a1,a2

 ∑
i∈R∩χj,s,1

(vi − a1)2 +
∑

i∈R∩χj,s,0

(vi − a2)2


≥
∑
i∈R

(vi − v̄R)2 −

 ∑
i∈R∩χj,s,1

(vi − v̄R)2 +
∑

i∈R∩χj,s,0

(vi − v̄R)2

 = 0.

It follows from Lemma 23 that we can express each set Sl,j,s from Proposition 14 as

Sl,j,s =
{
φ : gainR(l−1){y′(φ, ν), j, s} ≤ gainR(l−1){y′(φ, ν), jl, sl}

}
=
{
φ : y′(φ, ν)TMR(l−1),j,sy

′(φ, ν) ≤ y′(φ, ν)TMR(l−1),jl,sl
y′(φ, ν)

}
. (34)

We now use (34) to prove the first statement of Proposition 15.

Lemma 24 Each set Sl,j,s is defined by a quadratic inequality in φ.

Proof The definition of y′(φ, ν) in (10) implies that

y′(φ, ν)TMR,j,sy
′(φ, ν) =

(
P⊥ν y +

νφ

‖ν‖22

)T

MR,j,s

(
P⊥ν y +

νφ

‖ν‖22

)
=
νTMR,j,sν

‖ν‖42
φ2 +

2νTMR,j,sP⊥ν y
‖ν‖22

φ+ yTP⊥ν MR,j,sP
⊥
ν y

≡ a(R, j, s)φ2 + b(R, j, s)φ+ c(R, j, s). (35)

Therefore, by (34),

Sl,j,s =

{
φ :
[
a
{
R(l−1), j, s

}
− a

{
R(l−1), jl, sl

}]
φ2 +

[
b
{
R(l−1), j, s

}
− b

{
R(l−1), jl, sl

}]
φ

+
[
c
{
R(l−1), j, s

}
− c

{
R(l−1), jl, sl

}]
≤ 0

}
. (36)
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Proposition 14 indicates that to compute Sgrow(B, ν) from (20), we need to compute
the coefficients of the quadratic for each Sl,j,s, where l = 1, . . . , L, j = 1, . . . , p, and s =
1, . . . , n− 1.

Lemma 25 We can compute the coefficients a
{
R(l−1), j, s

}
, b
{
R(l−1), j, s

}
and c

{
R(l−1), j, s

}
,

defined in Lemma 24, for l = 1, . . . , L, j = 1, . . . , p, and s = 1, . . . , n−1, in O {nplog(n) + npL}
operations.

Proof
Using the definitions in Lemmas 23 and 24 and algebra, we have that

‖ν‖42a{R(l−1), j, s} =

[
νT1{R(l−1) ∩ χj,s,1}

]2∑n
i=1 1{i∈R(l−1)∩χj,s,1}

+

[
νT1{R(l−1) ∩ χj,s,0}

]2∑n
i=1 1{i∈R(l−1)∩χj,s,0}

−

[
νT1{R(l−1)}

]2∑n
i=1 1{i∈R(l−1)}

, (37)

1

2
‖ν‖22b{R(l−1), j, s} =

νT1{R(l−1) ∩ χj,s,1}
(
P⊥ν y

)T
1{R(l−1) ∩ χj,s,1}∑n

i=1 1{i∈R(l−1)∩χj,s,1}
+ (38)

νT1{R(l−1) ∩ χj,s,0}
(
P⊥ν y

)T
1{R(l−1) ∩ χj,s,0}∑n

i=1 1{i∈R(l−1)∩χj,s,0}
−
νT1{R(l−1)}

(
P⊥ν y

)T
1{R(l−1)}∑n

i=1 1{i∈R(l−1)}
,

c{R(l−1), j, s} =

[
(P⊥ν y)T1{R(l−1) ∩ χj,s,1}

]2∑n
i=1 1{i∈R(l−1)∩χj,s,1}

+

[
(P⊥ν y)T1{R(l−1) ∩ χj,s,0}

]2∑n
i=1 1{i∈R(l−1)∩χj,s,0}

−

[
(P⊥ν y)T1{R(l−1)}

]2∑n
i=1 1{i∈R(l−1)}

. (39)

We compute the scalar ‖ν‖22 and the vector P⊥ν y in O(n) operations once at the start
of the algorithm. We also sort each feature in O [nlog(n)] operations per feature. We
will now show that for the lth level and the jth feature, we can compute a{R(l−1), j, s},
b{R(l−1), j, s}, and c{R(l−1), j, s} for all n− 1 values of s in O(n) operations.

The index s appears in (37)–(39) only through
∑n

i=1 1{i∈R(l−1)∩χj,s,1},
∑n

i=1 1{i∈R(l−1)∩χj,s,0},

and through inner products of vectors ν and P⊥ν y with indicator vectors 1
{
R(l−1) ∩ χj,s,1

}
and 1

{
R(l−1) ∩ χj,s,0

}
. For simplicity, we assume that covariate xj is continuous, and thus

the order statistics are unique.

Letm1 be the index corresponding to the smallest value of xj . Then νT1
{
R(l−1) ∩ χj,1,1

}
=

νm1 if observation m1 is in R(l−1), and is 0 otherwise. Similarly,
∑n

i=1 1{i∈R(l−1)∩χj,1,1} = 1

if observation m1 is in R(l−1), and is 0 otherwise. Next, let m2 be the index corresponding
to the second smallest value of xj . Then νT1

{
R(l−1) ∩ χj,2,1

}
= 1

{
R(l−1) ∩ χj,1,1

}
+ νm2

if observation m2 is in R(l−1), and is equal to 1
{
R(l−1) ∩ χj,1,1

}
otherwise. We compute∑n

i=1 1{i∈R(l−1)∩χj,2,1} in the same manner. Each update is done in constant time. Con-

tinuing in this manner, computing the full set of n − 1 quantities νT1
{
R(l−1) ∩ χj,s,1

}
and

∑n
i=1 1{i∈R(l−1)∩χj,s,1} for s = 1, . . . , n − 1 requires a single forward pass through the

sorted values of xj , which takes O(n) operations. The same ideas can be applied to

compute
(
P⊥ν y

)T
1
{
R(l−1) ∩ χj,1,1

}
, νT1

{
R(l−1) ∩ χj,s,0

}
,
(
P⊥ν y

)T
1
{
R(l−1) ∩ χj,s,0

}
, and∑n

i=1 1{i∈R(l−1)∩χj,s,0} using constant time updates for each value of s.
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Thus, we can obtain all components of coefficients a{R(l−1), j, s}, b{R(l−1), j, s}, and
c{R(l−1), j, s} for a fixed j and l, and for all s = 1, . . . , n − 1, in O(n) operations. These
scalar components can be combined to obtain the coefficients in O(n) operations. There-
fore, given the sorted features, we compute the (n−1)pL coefficients inO(npL) operations.

Once the coefficients on the right hand side of (36) have been computed, we can compute
Sl,j,s in constant time via the quadratic equation: it is either a single interval or the union of
two intervals. Finally, in general we can intersect (n−1)pL intervals in O {npL× log(npL)}
operations (Bourgon, 2009). The final claim of Proposition 15 involves the special case where
ν = νsib and B = branch{RA,treeλ(y)}.
Lemma 26 Suppose that ν = νsib from (6) and B = branch{RA,treeλ(y)}. (i) If l < L,
then for all j and s, there exist a, b ∈ [−∞,∞] such that a ≤ νTy ≤ b and Sl,j,s = (a, b).
(ii) If l = L, then for all j and s, there exist c, d ∈ R such that c ≤ 0 ≤ d and Sl,j,s =
(−∞, c] ∪ [d,∞). (iii) We can intersect all (n − 1)pL sets of the form Sl,j,s in O(npL)
operations.

Proof This proof relies on the form of Sl,j,s given in (36). To prove (i), note that when
l < L,

‖νsib‖42
[
a
{
R(l−1), j, s

}
− a

{
R(l−1), jl, sl

}]
= νT

sibMR(l−1),j,sνsib − ν
T
sibMR(l−1),jl,sl

νsib

= νT
sibMR(l−1),j,sνsib ≥ 0.

The first equality follows directly from the definition of a(R, j, s) in (35). To see why the

second equality holds, observe that RA∪RB ⊆ R(l−1), and without loss of generality assume
that RA ∪RB ⊆ R(l−1) ∩ χjl,sl,1. Recall that the ith element of νsib is non-zero if and only

if i ∈ RA ∪RB, and that the non-zero elements of νsib sum to 0. Thus, 1
{
R(l−1)

}T
νsib = 0

and 1
{
R(l−1) ∩ χjl,sl,1

}T
νsib = 0. Furthermore, the supports of R(l−1) ∩χjl,sl,0 and νsib are

non-overlapping, and so 1
{
R(l−1) ∩ χjl,sl,0

}T
νsib = 0. Thus,

MR(l−1),jl,slνsib =
[
P1{R(l−1)∩χjl,sl,1} + P1{R(l−1)∩χjl,sl,0} − P1{R(l−1)}

]
νsib = 0.

The final inequality follows because MR(l−1),j,s is positive semidefinite (Lemma 23).
Thus, when l < L, Sl,j,s is defined in (36) by a quadratic inequality with a non-negative

quadratic coefficient. Thus, Sl,j,s must be a single interval of the form (a, b). Furthermore,
since B = branch{RA,treeλ(y)}, we know that R(B) ⊆ tree0(y) = tree0{y′(νTy, ν)}.
Therefore, νTy ∈ Sgrow (B, νsib) = ∩Ll=1 ∩

p
j=1 ∩

n−1
s=1Sl,j,s, and so we conclude a ≤ νTy ≤ b.

This completes the proof of (i).
To prove (ii), we first prove that when l = L the quadratic equation in φ defined in (36)

has a non-positive quadratic coefficient. To see this, note that

‖νsib‖42
[
a
{
R(L−1), j, s

}
− a

{
R(L−1), jL, sL

}]
= νT

sibMR(L−1),j,sνsib − ν
T
sibMR(L−1),jL,sL

νsib

= νT
sib

[
P1{R(L−1)∩χj,s,1} + P1{R(L−1)∩χj,s,0}

]
νsib − νT

sib

[
P1{R(L−1)∩χjL,sL,1}

+ P1{R(L−1)∩χjL,sL,0}

]
νsib

= νT
sib

[
P1{R(L−1)∩χj,s,1} + P1{R(L−1)∩χj,s,0}

]
νsib − νT

sibνsib

=
∥∥∥[P1{R(L−1)∩χj,s,1} + P1{R(L−1)∩χj,s,0}

]
νsib

∥∥∥2

2
− ‖νsib‖22 ≤ 0. (40)
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The first equality follows from (35). The second follows from the definition of MR,j,s given

in (33) and from the fact that P1{R(L−1)}νsib = 0 because 1{R(L−1)}Tνsib sums up all of
the non-zero elements of νsib, which sum to 0. The third equality follows because νsib lies
in span

[
1
{
R(L−1) ∩ χjL,sL,1

}
, 1
{
R(L−1) ∩ χjL,sL,0

}]
; projecting it onto this span yields

itself. Noting that
[
P1{R(L−1)∩χj,s,1} + P1{R(L−1)∩χj,s,0}

]
is itself a projection matrix, the

fourth equality follows from the idempotence of projection matrices, and the inequality
follows from the fact that ‖νsib‖2 ≥ ‖Qνsib‖2 for any projection matrix Q. Thus, when
l = L, the quadratic that defines Sl,j,s has a non-positive quadratic coefficient.

Equality is attained in (40) if and only if νsib ∈ span
[
1{R(L−1) ∩ χj,s,1},1{R(L−1) ∩ χj,s,0}

]
.

This can only happen if splitting R(L−1) on j, s yields an identical partition of the data to
splitting on jL, sL. If this is the case, then SL,j,s = (−∞, 0] ∪ [0,∞) from the definition of
Sl,j,s in Proposition 14, and so (ii) is satisfied with c = d = 0.

We now proceed to the setting where the inequality in (40) is strict. In this case, (36)
implies that SL,j,s = (−∞, c] ∪ [d,∞) for c ≤ d and c, d ∈ R. To complete the proof of
(ii), we must argue that c ≤ 0 and d ≥ 0. Recall that the quadratic in (34) has the form
gainR(L−1){y′(φ, ν), j, s}−gainR(L−1){y′(φ, ν), jL, sL}. When φ = 0, gainR(L−1){y′(φ, ν), jL, sL} =
0, because φ = 0 eliminates the contrast between RA and RB, so that the split on jL, sL
provides zero gain. So, when φ = 0, the quadratic evaluates to gainR(L−1){y′(φ, ν), j, s},
which is non-negative by Lemma 23. Thus, Sl,j,s is defined by a downward facing quadratic
that is non-negative when φ = 0, and so the set Sl,j,s has the form (−∞, c] ∪ [d,∞) for
c ≤ 0 ≤ d.

To prove (iii), observe that (i) implies that ∩L−1
l=1 ∩

p
j=1 ∩

n−1
s=1Sl,j,s = (amax, bmin), where

amax is the maximum over all of the a’s, and bmin is the minimum over all of the b’s. This
can be computed in np(L − 1) steps. Furthermore, (ii) implies that ∩pj=1 ∩

n−1
s=1 SL,j,s =

(−∞, cmin] ∩ [dmax,∞), where cmin and dmax are the minimum over all of the c’s and the
maximum over all the d’s, respectively. This can be computed in np steps. Thus, we can
compute ∩Ll=1 ∩

p
j=1 ∩

n−1
s=1Sl,j,s in O(npL) operations.

D.3 Proof of Proposition 16

To prove Proposition 16, we first propose a particular method of constructing an example of
tree(B, ν, λ). We then show that (21) holds for this particular choice for tree(B, ν, λ). We
conclude by evaluating the computational cost of computing such an example of tree(B, ν, λ),
and by arguing that in the special case where R(B) ∈ treeλ(y), our example is equal to
treeλ(y).

When Algorithm A2 is called with parameters tree, y, λ,O, where O is a bottom-up or-
dering of theK nodes in tree, it computes a sequence of intermediate trees, tree0, . . . ,treeK .
We use the notation treek(tree, y, λ,O), for k = 0, . . . ,K, to denote the kth of these inter-
mediate trees. The following lemma helps build up to our proposed example of tree(B, ν, λ).

Lemma 27 Let φ1 ∈ Sgrow(B, ν) and φ2 ∈ Sgrow(B, ν). Then tree0{y′(φ1, ν)} = tree0{y′(φ2, ν)}.
Let O be a bottom-up ordering of the K regions in tree0{y′(φ1, ν)} such that the last L re-
gions in the ordering are R(L−1), . . . , R(0). Then treeK−L[tree0{y′(φ1, ν)}, y′(φ1, ν), λ,O] =
treeK−L[tree0{y′(φ2, ν)}, y′(φ2, ν), λ,O].
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Proof We first prove that tree0{y′(φ1, ν)} ⊆ tree0{y′(φ2, ν)}, where φ1, φ2 ∈ Sgrow(B, ν).
The fact that φ1 ∈ Sgrow(B, ν) and φ2 ∈ Sgrow(B, ν) implies two properties:

Property 1: R(l) ∈ tree0{y′(φ1, ν)} and R(l) ∈ tree0{y′(φ2, ν)} for l ∈ {0, . . . , L} by
the definition of Sgrow(B, ν).

Property 2: R
(l)
sib ∈ tree0{y′(φ1, ν)} and R

(l)
sib ∈ tree0{y′(φ2, ν)} for l ∈ {1, . . . , L},

where R
(l)
sib ≡ R

(l−1) ∩ χjl,sl,1−el . This follows from Property 1 and Definition 1.

Suppose that R ∈ tree0{y′(φ1, ν)}. Then R must belong to one of these three cases,
illustrated in Figure 10(a):

Case 1: ∃ l ∈ {0, . . . L} such that R = R(l). By Property 1, R ∈ tree0{y′(φ2, ν)}.

Case 2: ∃ l ∈ {1, . . . , L} such that R = R
(l)
sib. By Property 2, R ∈ tree0{y′(φ2, ν)}.

Case 3: R ∈ desc[R′,tree0{y′(φ1, ν)}], where either R′ = R
(l)
sib for some l ∈ {1, . . . , L},

or else R′ = R(L). By Properties 1 and 2, R′ ∈ tree0{y′(φ2, ν)}. Condition 1 ensures
that, for all i ∈ R′ and for some constants c and d,

{y′(φ2, ν)}i =


{y′(φ1, ν)}i if R′ = R

(l)
sib for some l ∈ {1, . . . , L− 1},

{y′(φ1, ν)}i + c if R′ = R
(L)
sib ,

{y′(φ1, ν)}i + d if R′ = R(L).

As constant shifts preserve within-node sums of squared errors, in each of these
three scenarios, desc[R′,tree0{y′(φ1, ν)}] = desc[R′,tree0{y′(φ2, ν)}]. Thus, R ∈
tree0{y′(φ2, ν)}.

Thus, if R ∈ tree0{y′(φ1, ν)}, then R ∈ tree0{y′(φ2, ν)}. This completes the argu-
ment that tree0{y′(φ1, ν)} ⊆ tree0{y′(φ2, ν)}. Swapping the roles of φ1 and φ2 in this
argument, we see that tree0{y′(φ2, ν)} ⊆ tree0{y′(φ1, ν)}. This concludes the proof that
tree0{y′(φ1, ν)} = tree0{y′(φ2, ν)}.

Because tree0{y′(φ1, ν)} = tree0{y′(φ2, ν)}, it follows that any bottom-up order-
ing of the regions in tree0{y′(φ1, ν)} is also a bottom-up ordering for the regions in
tree0{y′(φ2, ν)}. We next prove by induction that, if we choose a bottom-up ordering
O that places the regions in R(B) at the end of the ordering, then

treek[tree0{y′(φ1, ν)}, y′(φ1, ν), λ,O] = treek[tree0{y′(φ2, ν)}, y′(φ2, ν), λ,O], (41)

for k = 0, . . . ,K − L. It follows immediately from Algorithm A2 and the argument above
that tree0[tree0{y′(φ1, ν)}, y′(φ1, ν), λ,O] = tree0[tree0{y′(φ2, ν)}, y′(φ2, ν), λ,O]. Next,
suppose that for some k ∈ {1, . . . ,K − L},

treek−1[tree0{y′(φ1, ν)}, y′(φ1, ν), λ,O] = treek−1[tree0{y′(φ2, ν)}, y′(φ2, ν), λ,O], (42)

and denote this tree with treek−1 for brevity. We must prove that (41) holds. Let R be the
kth region inO and recall the assumption that the last L regions inO are {R(L−1), . . . , R(0)}.
Since k ≤ K − L, this implies that R 6∈ {R(L−1), . . . , R(0)}. This means that either
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R ∈ desc
[
R

(l)
sib,tree

0{y′(φ1, ν)}
]

for l ∈ {1, . . . , L} or R ∈ desc
[
R(L),tree0{y′(φ1, ν)}

]
,

meaning that R is a black region in Figure 10(b). From Condition 1,

{y′(φ2, ν)}i =


{y′(φ1, ν)}i if R ∈ desc

[
R

(l)
sib,tree

0{y′(φ1, ν)}
]

for l ∈ {1, . . . , L− 1},

{y′(φ1, ν)}i + c if R ∈ desc
[
R

(L)
sib ,tree

0{y′(φ1, ν)}
]
,

{y′(φ1, ν)}i + d if R ∈ desc
[
R(L),tree0{y′(φ1, ν)}

]
.

In any of the three cases illustrated in Figure 10, for g(·) defined in (3), g{R,treek−1, y
′(φ1, ν)} =

g{R,treek−1, y
′(φ2, ν)}. Combining this with (42) and Step 2(b) of Algorithm A2 yields

(41). This completes the proof by induction.

(a) (b)

Figure 10: (a). An illustration of Case 1 (red), Case 2 (blue), and Case 3 (black) for a
region R ∈ tree0{y′(φ1, ν)} in the base case of the proof of Lemma 27, where
R(B) = {R(0), . . . , R(3)}. (b.) The black regions show the possible cases for
R ∈ treek−1 in the inductive step of the proof of Lemma 27.

Since Lemma 27 guarantees that each φ ∈ Sgrow(B, ν) leads to the same tree0{y′(φ, ν)},
we will refer to this tree as tree0, will let K be the number of regions in this tree, and
will let O be a bottom-up ordering of these regions that places R(L−1), . . . , R(0) in the last
L spots. We will further denote treeK−L{tree0, y′(φ, ν), λ,O} for any φ ∈ Sgrow(B, ν)
as treeK−L, since Lemma 27 further tells us that this is the same for all φ ∈ Sgrow(B, ν).
In what follows, we argue that if we let tree(B, ν, λ) = treeK−L, where tree(B, ν, λ)
appears in the statement of Proposition 16, then (21) holds. In other words, we prove that
treeK−L, which always exists and is well-defined, is a valid example of tree(B, ν, λ).

Recall from (18) that Sλ (B, ν) =
{
φ ∈ Sgrow(B, ν) : R(L) ∈ treeλ{y′(φ, ν)}

}
. Lemma 27

says that for φ ∈ Sgrow(B, ν), we can rewrite treeλ{y′(φ, ν)} as treeK{tree0, y′(φ, ν), λ,O}.
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So we can rewrite Sλ (B, ν) as

Sλ (B, ν) =
{
φ ∈ Sgrow(B, ν) : R(L) ∈ treeK

{
tree0, y′(φ, ν), λ,O

}}
. (43)

Furthermore, since R(L−1), . . . , R(0) (all of which are ancestors of R(L)) are the last L nodes

in the ordering O, we see that R(L) ∈ treeK{tree0, y′(φ, ν), λ,O} if and only if no pruning
occurs during the last L iterations of Step 2 in Algorithm A2. This means that we can
characterize (43) as{

φ ∈ Sgrow(B, ν) : treeK−L{tree0, y′(φ, ν), λ,O} = treeK
{
tree0, y′(φ, ν), λ,O

}}
. (44)

Recall that for k = K − L+ 1, . . . ,K, R(K−k) is the kth region in O, and is an ancestor of
R(L). We next argue that we can rewrite (44) as

K⋂
k=K−L+1

{
φ ∈ Sgrow(B, ν) : g

{
R(K−k),treeK−L, y

′(φ, ν)
}
≥ λ

}
. (45)

To begin, suppose that φ ∈ (45). As we are talking about a particular φ, for k = 0, . . . ,K
we will suppress the dependence of treek

{
tree0, y′(φ, ν), λ,O

}
on its arguments and de-

note it with treek. The fact that φ ∈ (45) means that g
{
R(L−1),treeK−L, y

′(φ, ν)
}
≥ λ,

which ensures that no pruning occurs at step K − L + 1, which in turn ensures that
treeK−L+1 = treeK−L. Combined with (45), this implies that g

{
R(L−2),treeK−L, y

′(φ, ν)
}

=

g
{
R(L−2),treeK−L+1, y

′(φ, ν)
}
≥ λ, which ensures that no pruning occurs at stepK−L+2,

which in turn ensures that treeK−L+2 = treeK−L+1 = treeK−L. Proceeding in this
manner, by tracing through the last L iterations of Step 2 of Algorithm A2, we see that φ
satisfies treeK = treeK−L, and so φ ∈ (44).

Next suppose that φ 6∈ (45). Let

k′ = min
k∈{K−L+1,...,K}

{k : g
{
R(K−k),treeK−L, y

′(φ, ν)
}
< λ}.

As k′ is a minimum, we know that no pruning occurred during steps K −L+ 1, . . . , k′ − 1,
and so treek′−1

{
tree0(y′(φ, ν)), y′(φ, ν), λ,O

}
= treeK−L. This implies that

g
{
R(K−k′),treeK−L, y

′(φ, ν)
}
< λ can be rewritten as

g
(
R(K−k′),treek′−1

[
tree0{y′(φ, ν)}, y′(φ, ν), λ,O

]
, y′(φ, ν)

)
< λ. It then follows from

Algorithm A2 that pruning occurs at step k′, which means that treeK cannot possibly
equal treeK−L. Thus, φ 6∈ (44).

Thus, φ ∈ (45) if and only if φ ∈ (44).
Finally, Proposition 16 rewrites (45) with the indexing over k changed to an indexing

over l, and plugging in tree(B, ν, λ) = treeK−L. Therefore, treeK−L is a valid example
of tree(B, ν, λ).

To compute tree(B, ν, λ), we first select an arbitrary φ ∈ Sgrow(B, ν). We then apply
Algorithm A1 to grow tree0{y′(φ, ν)}. We create a bottom-up orderingO of the K nodes in
tree0{y′(φ, ν)} such that R(L−1), . . . , R(0) are at the end. Finally, we apply the first K−L
iterations of Algorithm A2 with arguments tree0{y′(φ, ν)}, y′(φ, ν), λ, and O to obtain
tree(B, ν, λ). The worst case computational cost of CART (the combined Algorithm A1
and Algorithm A2) is O(n2p).
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In the special case that R(B) ⊆ treeλ(y), we have that νT y ∈ Sgrow(B, ν) because
y = y′(νT y, ν) and R(B) ⊆ treeλ(y) ⊆ tree0(y). In this case, suppose that we carry out
the process described in the previous paragraph by selecting φ = νT y. AsR(B) ⊆ treeλ(y),
it is clear from Algorithm A2 that no pruning occurs during the last L iterations of Step 2 in
Algorithm A2 applied to arguments tree0(y), y, λ, and O. Therefore, the process from the
previous paragraph returns the optimally pruned treeλ(y). Thus, when R(B) ⊆ treeλ(y),
we can simply plug in treeλ(y), which has already been built, for tree(B, ν, λ) in (21).

D.4 Proof of Proposition 17

We first show that we can express{
φ : g

{
R(l),tree(B, ν, λ), y′(φ, ν)

}
≥ λ

}
(46)

as the solution set of a quadratic inequality in φ for l = 0, . . . , L− 1, where g(·) was defined
in (3). Because only the numerator of g{R(l),tree(B, ν, λ), y′(φ, ν)} depends on φ, it will
be useful to introduce the following concise notation:

h(R,tree, y) ≡
∑
i∈R

(yi − ȳR)2 −
∑

r∈term(R,tree)

∑
i∈r

(yi − ȳr)2. (47)

We begin with the following lemma.

Lemma 28 Suppose that region R in tree has children R ∩ χj,s,0 and R ∩ χj,s,1. Then,
h(R,tree, y) = gainR(y, j, s)+h(R∩χj,s,1,tree, y)+h(R∩χj,s,0,tree, y), where gainR(y, j, s)
is defined in (2).

Proof The result follows from adding and subtracting
∑

i∈R∩χj,s,1(yi − ȳR∩χj,s,1)2 and∑
i∈R∩χj,s,0(yi−ȳR∩χj,s,0)2 in (47) and noting that term(R,tree) = term(R∩χj,s,1,tree)∪

term(R ∩ χj,s,0).

Recall that B = ((j1, s1, e1), . . . , (jL, sL, eL)) and that R(B) = {R(0), R(1), . . . , R(L)}.
Lemma 29 follows from Lemma 28 and the fact that, due to the form of the vector ν, there
are many regions R for which h {R,tree(B, ν, λ), y′(φ, ν)} does not depend on φ.

Lemma 29 For any φ̃ ∈ Sgrow(B, ν), we can decompose h{R(l),tree(B, ν, λ), y′(φ, ν)} as

h
{
R(l),tree(B, ν, λ), y′(φ, ν)

}
=

L∑
l′=l+1

h
{
R

(l′)
sib ,tree(B, ν, λ), y′(φ̃, ν)

}
+ h

{
R(L),tree(B, ν, λ), y′(φ̃, ν)

}
+

L−1∑
l′=l

gainR(l′){y′(φ, ν), jl′+1, sl′+1},

where R
(l)
sib is the sibling of R(l) in tree(B, ν, λ).
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Proof Repeatedly applying Lemma 28 yields

h
{
R(l),tree(B, ν, λ), y′(φ, ν)

}
=

L∑
l′=l+1

h
{
R

(l′)
sib ,tree(B, ν, λ), y′(φ, ν)

}
+ h

{
R(L),tree(B, ν, λ), y′(φ, ν)

}
+
L−1∑
l′=l

gainR(l′){y′(φ, ν), jl′+1, sl′+1}. (48)

For l′ = l + 1, . . . , L − 1, h
{
R

(l′)
sib ,tree(B, ν, λ), y′(φ, ν)

}
= h

{
R

(l′)
sib ,tree(B, ν, λ), y′(φ̃, ν)

}
be-

cause R
(l′)
sib only contains observations where [y′(φ, ν)]i = [y′(φ̃, ν)]i. Similarly,

h
{
R(L),tree(B, ν, λ), y′(φ, ν)

}
= h

{
R(L),tree(B, ν, λ), y′(φ̃, ν)

}
and h

{
R

(L)
sib ,tree(B, ν, λ), y′(φ, ν)

}
=

h
{
R

(L)
sib ,tree(B, ν, λ), y′(φ̃, ν)

}
because for i ∈ R(L) and i ∈ R(L)

sib , {y′(φ, ν)}i and {y′(φ̃, ν)}i
only differ by a constant shift. Plugging these two facts into (48) completes the proof.

We can now write (46) as{
φ : g

{
R(l),tree(B, ν, λ), y′(φ, ν)

}
≥ λ

}
=
{
φ : h

{
R(l),tree(B, ν, λ), y′(φ, ν)

}
≥ λ

[
|term{R(l),tree(B, ν, λ)}| − 1

]}
=

{
φ :

L−1∑
l′=l

gain
R(l′){y′(φ, ν), jl′+1, sl′+1} ≥ λ

[
|term{R(l),tree(B, ν, λ)}| − 1

]
−

L∑
l′=l+1

h
{
R

(l′)
sib ,tree(B, ν, λ), y

′(φ̃, ν)
}
− h

{
R(L),tree(B, ν, λ), y′(φ̃, ν)

}}

=

{
φ :

L−1∑
l′=l

[
a
{
R(l′), jl′+1, sl′+1

}
φ2 + b

{
R(l′), jl′+1, sl′+1

}
φ+ c

{
R(l′), jl′+1, sl′+1

}]
≥ γl

}
, (49)

where the functions a(·), b(·), and c(·) were defined in (35) in Appendix D.2, and where

γl ≡ λ
[
|term{R(l),tree(B, ν, λ)}| − 1

]
−

L∑
l′=l+1

h
{
R

(l′)
sib ,tree(B, ν, λ), y

′(φ̃, ν)
}
− h

{
R(L),tree(B, ν, λ), y′(φ̃, ν)

}
is a constant that does not depend on φ. The first equality simply applies the definitions of
h(·) and g(·). The second equality follows from Lemma 29 and moving terms that do not
depend on φ to the right-hand-side. The third equality follows from plugging in notation
from Appendix D.2 and defining the constant γl for convenience. Thus, (46) is quadratic
inequality in φ. We now just need to argue that its coefficients can be obtained efficiently.

We need to compute the coefficients in (49) for l = 0, . . . , L − 1. The quantities
a{R(l′), jl′ , sl′+1}, b{R(l′), jl′+1, sl′+1}, and c{R(l′), jl′+1, sl′+1} for l′ = 0, . . . , L − 1 were al-
ready computed while computing Sgrow(B, ν). To get the coefficients for the left hand side of
(49) for each l = 0, . . . , L−1, we simply need to compute L partial sums of these quantities,
which takes O(L) operations. As we are assuming that we have access to tree(B, ν, λ),
computing h{R,tree(B, ν, λ), y′(φ̃, ν)} requires O(n) operations. Therefore, computing γ0
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takes O(nL) operations. By storing partial sums during the computation of γ0, we can
subsequently obtain γl for l = 1, . . . , L− 1 in constant time.

We have now seen that we can obtain the coefficients needed to express (46) as a
quadratic function of φ for l = 0, . . . , L − 1 in O(nL) total operations. Once we have
these quantities, we can compute each set of the form (46) in constant time using the
quadratic equation.

It remains to compute

Sλ(B, ν) = Sgrow(B, ν)
⋂[

L−1⋂
l=0

{
φ : g

{
R(l),tree(B, ν, λ), y′(φ, ν)

}
≥ λ

}]
. (50)

Recall from Proposition 14 that Sgrow(B, ν) is the intersection of O(npL) quadratic sets.
Thus, in the worst case, Sgrow(B, ν) has O(npL) disjoint components, and so this final
intersection involves O(npL) components. Thus, we can compute Sλ(B, ν) in O{npL ×
log(npL)} operations (Bourgon, 2009).

The following lemma explains why, similar to Proposition 15, computation time can be
reduced in the special case where ν = νsib and B = branch{RA,treeλ(y)}.

Lemma 30 When B = branch{RA,treeλ(y)}, the set
{φ : g{R(l),tree(B, ν, λ), y′(φ, νsib)} ≥ λ} has the form (−∞, al) ∪ (bl,∞), where al ≤ 0 ≤
bl. Therefore, we can compute

⋂L−1
l=0

{
φ : g

{
R(l),tree(B, ν, λ), y′(φ, ν)

}
≥ λ

}
as

L−1⋂
l=0

(−∞, al) ∪ (bl,∞) = (−∞, min
0≤l≤L−1

al) ∪ ( max
0≤l≤L−1

bl,∞)

in O(L) operations. Furthermore, we can compute (50) in constant time.

Proof
As R(B) ⊆ treeλ(y), we can let φ̃ ∈ Sgrow(B, ν) from Lemma 29 be νT y such that

y′(φ̃, ν) = y. We can then apply Lemma 22 to note that

L−1∑
l′=l

gainR(l′){y′(φ, νsib), jl′+1, sl′+1} =

[
L−2∑
l′=l

gainR(l′){y, jl′+1, sl′+1}

]
+gainR(L−1){y′(φ, νsib), jL, sL}.

Thus, when ν = νsib and B = branch{RA,treeλ(y)}, we can rewrite (49) with
all of the terms corresponding to gainR(l′){y′(φ, νsib), jl′+1, sl′+1} for l′ = l + 1, . . . , L −
2 moved into the constant on the right-hand-side. This lets us rewrite (49) as {φ :
GainR(L−1){y′(φ, νsib), jL, sL} ≥ γ̃l}, where γ̃l is an updated constant that does not de-
pend on φ.

To prove that {φ : GainR(L−1){jL, sL, y′(φ, νsib)} ≥ γ̃l} has the form (−∞, al) ∪ (bl,∞)
for al ≤ 0 ≤ bl, first recall from Lemma 23 that GainR(L−1){jL, sL, y′(φ, νsib)} is a quadratic
function of φ. It then suffices to show that this quadratic has a non-negative second deriva-
tive and achieves its minimum when φ = 0. The second derivative of this quadratic is
a
{
R(L−1), jL, sL

}
= ||νsib||−4

2 νTsibMR(L−1),jL,sL
νsib, which is non-negative by Lemma 23.

From Lemma 23, GainR(L−1) {jL, sL, y′(φ, νsib)} is non-negative. It equals 0 when φ = 0,
because when φ = 0 then ȳR(L−1)∩χjL,sL,1

= ȳR(L−1)∩χjL,sL,0
.
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Intersecting L sets of the form (−∞, al) ∪ (bl,∞) for al ≤ 0 ≤ bl only takes O(L) op-
erations, because we simply need to identify the minimum al and maximum bl. Finally,
Lemma 26 ensures that Sgrow(B, νsib) has at most two disjoint intervals, and so the final
intersection with Sgrow(B, νsib) takes only O(1) operations.

D.5 Proof of Proposition 18

Let B = branch{RA,treeλ(y)}, let R(B) = {R(0), . . . , R(L)}, and let ν = νsib (6). Ap-
plying the expression given for {y′(φ, νsib)}i in Section 3.3 (which follows from algebra), we
immediately see that Condition 1 holds with RA = R(L) and RB = R(L−1) ∩ χjL,sL,1−eL .

Let B = π
[
branch{RA,treeλ(y)}

]
and let ν = νreg (14). Note that π

[
branch{RA,treeλ(y)}

]
induces the same region R(L) as the unpermuted branch{RA,treeλ(y)}. Regardless of
the permutation, the induced R(L) is equal to RA. Applying the expression for {y′(φ, νreg)}i
given in Section 3.3, Condition 1 holds with constant c2 = 0.

Appendix E. Proofs for Section 4.3

E.1 Proof of Proposition 19

As stated in Proposition 19, let

pQreg(y) = prH0

{
|νT
regY − c| ≥ |νT

regy − c| |
⋃
π∈Q

R(π[branch{RA,treeλ(y)}]) ⊆ treeλ(Y ),P⊥νregY = P⊥νregy

}
.

First, we will show that the test based on pQreg(y) controls the selective Type 1 error rate,
defined in (4); this is a special case of Proposition 3 from Fithian et al. (2014).

Define E1 = {Y : RA ∈ treeλ(Y )}, E2 = {Y : P⊥νregY = P⊥νregy}, and

E3 =
{
Y :

⋃
π∈QR

(
π
[
branch

{
RA,tree

λ(y)
}])
⊆ treeλ(Y )

}
. Recall that the test of

H0 : νT
regµ = c based on pQreg(y) controls the selective Type 1 error rate if, for all α ∈ [0, 1],

prH0{p
Q
reg(Y ) ≤ α | E1} ≤ α. By construction,

prH0

{
pQreg(Y ) ≤ α | E2 ∩ E3

}
= E

[
1{prH0(|νTregY−c|≥|νTregy−c||E2∩E3)≤α}

| E2 ∩ E3

]
= α.

Let ψQRA = 1{prH0(|νTregY−c|≥|νTregy−c||E2∩E3)≤α}
. An argument similar to that of Lemma 13

indicates that E3 ⊆ E1. The law of total expectation then yields

E(ψQRA
| E1) = E

{
E(ψQRA

| E1 ∩ E2 ∩ E3) | E1
}

= E
{
E(ψQRA

| E2 ∩ E3) | E1
}

= E(α | E1) = α.

Thus, the test based on pQreg(y) controls the selective Type 1 error rate. We omit the proof

that pQreg(y) can be computed as

pQreg(y) = prH0

|φ− c| ≥ |νT
regy − c| | φ ∈

⋃
π∈Q

Sλ
(
π[branch{RA,treeλ(y)}], νreg

)
for φ ∼ N(c, ‖νreg‖22σ2), as the proof is similar to the proof of Theorem 6.
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Appendix F. Effect of Using the Computationally Efficient Alternative in
Section 4.3

In this section, we investigate the effect of using pIreg(y) from (22) rather than preg(y) from
(15) on power. We also investigate the effect of using (23) rather than (17) on the width of
confidence intervals for νT

regµ.

We generate data as described in Section 5.1, but for simplicity we restrict our attention
to the case where a = 1 (corresponding to the center panel of Figure 3).

For each tree that we build, we consider (a) testing H0 : νT
regµ = 0 and (b) constructing

a confidence interval for νT
regµ, for each region appearing at the third level of the tree. For

each test, we compare the test that uses the full conditioning set (i.e. that uses preg(y) from
(15)) to the test that uses the identity permutation only (i.e. that uses pIreg(y) from (22)).
For each interval, we compare the method that uses the full conditioning set (i.e. (17)) to
the method that uses the identity permutation only (i.e. (23)). The results are displayed
in Figure 11.

The left panel of Figure 11 shows that the power loss resulting from using (22) instead
of (15) is negligible. In fact, we need to zoom in on the left panel, as shown in the center
panel, to see any separation between the power curves. We see in the center panel that
power is lower when (22) is used, though we emphasize that the differences in power are
extremely small.

We see in the right panel of Figure 11 that the computationally efficient conditioning
set has a more noticeable impact on the median width of our confidence intervals. As
expected, the confidence intervals are narrower when we use the full conditioning set (i.e.
(17)). However, this difference is most noticeable when b is small. When b is small, in which
case the confidence intervals are wide even when the full conditioning set is used. Thus,
the amount of precision lost overall by constructing confidence intervals using the identity
permutation only (i.e. (23)) is not of practical importance.

Based on these results, we recommend using the identity permutation in practice, be-
cause it is the most computationally efficient choice and does not meaningfully reduce power
or precision compared to the full conditioning set.

Appendix G. Robustness to Non-Normality

In this section, we explore the performance of the selective Z-test under a global null when
the normality assumption on Y is violated. For four choices of cumulative distribution

function F , we generate Yi
i.i.d.∼ F such that all observations have the same expected value.

We set n = 200, p = 10, and we grow trees to a maximum depth of 3. We plug in (n −
1)−1

∑n
i=1(yi− ȳ)2 as an estimate of σ2, as it does not make sense to assume known variance

for distributions with a mean-variance relationship. Figure 12 displays quantile-quantile
plots of the p-values for testing H0 : νT

sibµ = 0, using the test in (8).

Figure 12 shows that despite the fact that our proposed selective inference framework
was derived under a normality assumption, it yields approximately uniformly distributed
p-values for Poisson(10), Bernoulli(0.5), and Gamma(1,10) data. We suspect that this is
because P⊥ν Y is approximately independent of νTY for these distributions (see the proof
of Theorem 6 in Appendix B). In the case of Bernoulli(0.1) data, which represents a par-
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Figure 11: Simulation results comparing inference based on the full conditioning set to
inference based on the identity permutation only (see Section 4.3). The left
panel shows power curves. The center panel zooms in on one section of the left
panel. The right panel shows median widths of confidence intervals.

Figure 12: Quantile-quantile plots of the p-values for testing H0 : νT
sibµ = 0 under a global

null. A naive Z-test (green), sample splitting (blue), and selective Z-test (pink)
were performed; see Section 5.2.
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Figure 13: A CART tree fit to the Box Lunch Study data. Each split has been labeled with
a p-value (8), and each region has been labeled with a confidence interval (23).
Inference is carried out by plugging in σ̂cons, from Section 5.7, as an estimate of
σ.

ticularly extreme violation of the normality assumption, the p-values from our selective
Z-test are not uniformly distributed. As mentioned in Section 7, future work could involve
characterizing conditions for F under which our selective Z-tests will approximately control
the selective Type 1 error.

Appendix H. Alternate Box Lunch Study Analysis

Figure 13 is the same as the left panel of Figure 9, but the selective Z-inference is carried
out with σ̂cons, from Section 5.7, rather than σ̂SSE. The takeaways presented in Section 6
do not change.
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