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Abstract

Modelling functions of sets, or equivalently, permutation-invariant functions, is a long-
standing challenge in machine learning. Deep Sets is a popular method which is known to
be a universal approximator for continuous set functions. We provide a theoretical analysis
of Deep Sets which shows that this universal approximation property is only guaranteed
if the model’s latent space is sufficiently high-dimensional. If the latent space is even one
dimension lower than necessary, there exist piecewise-affine functions for which Deep Sets
performs no better than a näıve constant baseline, as judged by worst-case error. Deep
Sets may be viewed as the most efficient incarnation of the Janossy pooling paradigm. We
identify this paradigm as encompassing most currently popular set-learning methods. Based
on this connection, we discuss the implications of our results for set learning more broadly,
and identify some open questions on the universality of Janossy pooling in general.

Keywords: Deep learning, sets, permutation invariance, equivariance, universal function
approximation, Janossy pooling, self-attention

1. Introduction

Many applications of machine learning work with collections of inputs or features which
are best modelled as sets. Crucially, these collections have no intrinsic ordering, which
distinguishes them from other commonly-encountered types of data such as images or audio.
Examples are plentiful: a point cloud obtained from a LIDAR sensor; a group of atoms
which together form a molecule; or a collection of objects appearing in an image. Although
the data for these problems is not ordered, standard machine learning techniques usually
impose an ordering on the data, either by representing it as a vector or matrix and applying
order-sensitive operations, or by iterating over data points in a stateful fashion. Any function
with set-valued inputs is insensitive to this imposed ordering, in the sense that the output
does not change when the input is reordered. This property is known as permutation
invariance.

Tasked with learning a permutation-invariant target function, we may build this invariance
into our model—we can regard this as giving the model an inductive bias. A family of
techniques have been proposed in recent years to build and train deep permutation-invariant
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machine learning models. Most notably, the seminal work by Zaheer et al. (2017) introduces
Deep Sets. The central idea of Deep Sets is to process the individual elements of a set
in parallel using a shared encoding function before aggregating these encodings using a
symmetric function—for example summation, averaging, or max-pooling. We refer to the
vector space in which this aggregation happens as the model’s latent space. This design
ensures that the model is exactly permutation invariant. Similar models are also explored
in Qi et al. (2017a) and Yarotsky (2022).

While processing each input individually and pooling globally is easy to implement
and parallelise, it hinders relational reasoning (Santoro et al., 2017; Battaglia et al., 2018).
Arguably the most popular alternatives are self-attention mechanisms, which perform
weighted summation to aggregate information via input-dependent attention weights. Self-
attention explicitly performs relational reasoning by processing elements in pairs, rather than
individually—working with relationships between pairs of elements is therefore an inbuilt
feature of the model. This stands in contrast to Deep Sets, where no facility for relational
reasoning is built into the model (though such reasoning can still be learned). While self-
attention has famously been widely applied in natural language processing (Vaswani et al.,
2017), it has also been applied to sets (Lee et al., 2019), and is popular in the literature on
graph learning (Veličković et al., 2018).

Although Deep Sets and self-attention may not immediately appear to be closely related,
both can be viewed as special cases of k-ary Janossy pooling (Murphy et al., 2019). Deep
Sets is the most restricted instance of Janossy pooling, which makes it a good starting point
for fuller theoretical characterisation of these methods. In this work, we contribute to this
theoretical understanding by considering how the dimension of a Deep Sets model’s latent
space affects its expressive capacity. This extends the partial characterisation provided in
Zaheer et al. (2017).

First, we follow Zaheer et al. (2017) in considering the conditions under which Deep
Sets is capable of exactly representing any continuous target function (that is, we consider
universal representation). We show that the sufficient condition on the model’s latent space
dimension given in Zaheer et al. (2017) is essentially the best possible—it can be lowered, but
only by 1, and this weakened sufficient condition is in fact also a necessary condition. Second,
we consider universal approximation, a weaker and more practically important property. We
demonstrate that this is subject to the same necessary and sufficient conditions as universal
representation. In fact, we show that if the latent dimension is even 1 lower than necessary,
there exist piecewise-affine functions for which the model’s worst-case error is no better than
the worst-case error of a model which simply outputs 0. Finally, we consider the implications
of our findings for related architectures such as self-attention, and discuss the universality
properties of other set-learning methods.

In summary, this work makes the following contributions:

• Section 2 provides an overview of the most popular deep learning architectures for
learning functions on sets, including Deep Sets, and discusses their unification as
instances of the k-ary Janossy pooling paradigm;

• Section 3 proves a necessary and sufficient condition for representing arbitrary con-
tinuous functions on sets with the Deep Sets architecture;

2



Universal Approximation of Functions on Sets

• Section 4 furthers our analysis of the Deep Sets architecture by proving a necessary
and sufficient condition for approximating arbitrary continuous functions on sets;

• Section 5 discusses other models for deep learning on sets;

• Section 6 discusses universal approximation criteria for architectures beyond Deep
Sets, and identifies some open questions of interest.

Section 3 of this paper is a revised and abridged version of work previously presented in
Wagstaff et al. (2019). This paper provides a more extensive and comprehensive discussion
of the subject, and extends the work in Wagstaff et al. (2019) by providing additional results
for architectures other than Deep Sets and a theoretical characterisation of universal function
approximation.

2. Models for Learning on Sets

In this section, we examine deep learning architectures for data that consists of unordered
sets of elements. We are centrally concerned with the property of permutation invariance
as introduced above, but we briefly note that functions operating on set-valued data may
also be permutation equivariant. In the simplest case, equivariance appears in the context
of mapping sets to sets. Although the ordering of elements is arbitrary, we may still want
the ordering of the input set to be consistent with the ordering of the output set—that is,
any permutation of the input results in a corresponding permutation of the output. This
consistency of ordering is permutation equivariance. Romero and Cordonnier (2021) provide
a full mathematical definition of permutation equivariance, along with a detailed analysis of
the equivariance properties of self-attention. We do not consider permutation-equivariant
set functions in detail in this paper.

Returning to permutation invariance, a core consideration for the design of permutation-
invariant models is maintaining maximum expressivity (in the sense of being able to model
a broad class of functions) while also ensuring permutation invariance. Murphy et al. (2019)
introduce Janossy pooling as a unifying framework of methods that learn either strictly
permutation-invariant functions or suitable approximations. Janossy pooling is known to
be highly expressive, and in fact it is trivially shown to be universal in the sense that any
permutation-invariant function may be represented within the Janossy pooling framework.

In its most general form, Janossy pooling considers all possible permutations π of
the input elements xi. Each permutation π(x) is separately passed through the same
permutation-sensitive function φ. The outputs for the different permutations are then
aggregated by computing the average (or by another global pooling operation). If two inputs
x and y are permutations of one another, this process will give the same output for both
inputs. As noted above, we refer to the space in which the aggregation takes place as the
model’s latent space.

Mathematically, the procedure outlined above can be written as

f̂(x) =
1

|SM |
∑
π∈SM

φ
(
π (x)

)
, (1)

where x has M elements, and SM is the group of all permutations π of M elements. A
permutation-invariant function f̂ is thereby constructed from a permutation-sensitive function
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Figure 1: The Janossy pooling paradigm applies the same permutation-sensitive network to
each possible permutation of the input set. When using a permutation-invariant
pooling operation, such as averaging or summation, information about the ordering
is eliminated. A second neural network may be used to predict the final output.
This paradigm guarantees permutation invariance of the output without imposing
restrictions on any of the neural network components.

φ. This permutation-sensitive function is typically implemented as a neural network, but
other function approximators, such as Gaussian processes, may also be used. The architecture
is illustrated in Figure 1. This figure also illustrates that a second function may optionally
be used to post-process the output of the aggregation operation:

f(x) = ρ
(
f̂ (x)

)
. (2)

This second function ρ does not need to follow any constraints to guarantee invariance
because its input, f̂(x), is already permutation invariant. In other words, the ordering
information is already lost before ρ is reached in Figure 1.

One drawback of this scheme is that it can become prohibitively expensive for large set
sizes M , because of the large number of terms in the sum in Equation (1). The computational
complexity scales at least linearly in the cardinality of SM , which is M !. To remedy this,
Murphy et al. (2019) discuss several options for reducing the computational complexity:
(i) sorting; (ii) sampling; (iii) restricting permutation to k-tuples.

Rather than considering all permutations, sorting considers only a single canonical
permutation, which is obtained by sorting the input. The sorting operation may be hand-
specified, or it may be learned. Sampling, by contrast, aggregates over a randomly-sampled
subset of permutations (so that the sum in Equation 1 is over a randomly chosen subset of
SM ). While the output in this case is only approximately, rather than strictly, permutation
invariant, Murphy et al. (2019) show that this works reasonably well empirically. Nevertheless,
most models that are used in practice (e.g., Zaheer et al., 2017; Qi et al., 2017b; Lee et al.,
2019) fall into the third category of restricting permutation to k-tuples. The theoretical
analysis conducted in our work focuses on this third category, which we describe in more
detail in the remainder of this section.
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(a) Janossy pooling with k = 1 (Deep Sets)
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Figure 2: Different versions and variations of Janossy pooling. Permutation invariance is
guaranteed by processing all combinations of k elements and then aggregating via
a sum (or a softmax, in the case of attention). Self-attention, a variant of Janossy
pooling with k = 2, focuses on one node at a time, computing an output for this
specific node—in Figure 2c, this is represented by the darkest node. It is often
employed for all nodes in parallel in a permutation-equivariant manner, mapping
sets of points to sets of points (Lee et al., 2019).

2.1 Limiting the Number of Elements in Permutations

Equation (1) considers all possible M -tuples from an M -element set. To save computation,
one can instead consider all k-tuples1 with k < M . The models obtained by setting k = 1
and k = 2 are visualised in Figure 2. Mathematically, letting x{k} denote the set of all
k-tuples from x, we have

f̂(x) =
1

P (M,k)

∑
t∈x{k}

φ(t) , where P (M,k) =
M !

(M − k)!
. (3)

For clarity, we provide an example for M = 4 and k = 2. If the input set is {w, x, y, z}, the
sum will be over all 2-tuples from the set, namely:

(w, x), (x,w), (w, y), (y, w), (w, z), (z, w),

(x, y), (y, x), (x, z), (z, x), (y, z), (z, y).

1. We require that the tuples we discuss here consist of distinct elements from our input set. So in this case,
(2, 2) is not a valid 2-tuple from the set {1, 2, 3}. This restriction is not always observed—for instance,
self-attention does allow such 2-tuples—but for brevity we restrict ourselves to discussing the case of
distinct elements.
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For sufficiently small k, this gives a sum with far fewer than M ! terms, leading to a
computationally tractable method in many practical cases. For fixed k and varying M , the
number of terms in the sum is O(Mk). Setting k = 1 therefore provides a model whose
cost is linear in the size of the input set. Increasing k comes at the cost of additional
computational complexity, but also allows for more explicit relational reasoning—we will
discuss this point in more detail in the following subsection.

2.1.1 Expressivity and Interactions

The terms relational reasoning and interactions are often encountered in the deep learning
literature (Battaglia et al., 2016; Santoro et al., 2017; Fuchs et al., 2019). We use the
expression interactions between elements in a set to refer to the fact that the output may
depend not only on the individual contribution of each element, but may also depend on the
appearance of some combination of elements together in the same set. Relational reasoning
describes the act of modelling and using these interactions. To illustrate this with a simple
example, consider the task of assessing how well a set of ingredients go together for cooking a
meal. If we set k = 1, the function φ can take into account relevant individual attributes, but
will be unable to spot any clashes between ingredients (like garlic and vanilla). Increasing k
allows φ to see multiple elements at once, and therefore perform relational reasoning about
pairs of ingredients, enabling a more expressive model of what tastes good. If we view φ as
an “encoder” and ρ as a “decoder”, φ is capable of encoding information about interactions,
which ρ can then make use of during decoding.

If we set k = 1, this is no longer the case. Zaheer et al. (2017) show that the encoder φ
can encode the entire set when k = 1, and therefore the decoder ρ can in principle recover
all the input information and perform relational reasoning from there. However, any such
relational reasoning is not built into the model, and must be entirely learned. Murphy et al.
(2019) speculate that this additional burden on what must be learned by ρ can contribute
to difficulties in training the k = 1 model on some tasks which depend heavily on relational
reasoning.

Many current neural network architectures on sets and graphs resemble Janossy pooling
with k = 2. This choice of k represents a tradeoff between computational complexity (lower
k is better) and ease of training for relational reasoning (higher k is better2). Most famously,
self-attention algorithms (schematically depicted in Figure 2c) compare two elements of the
set at a time, typically by performing a scalar product (Vaswani et al., 2017; Lee et al., 2019).
The results of the scalar products are used as attention weights for aggregating information
from different points via a weighted, permutation-invariant sum. While this mechanism
is very similar to Janossy pooling with k = 2, some additional architecture choices are
often made. For example, a softmax might be used to ensure that the attention weights are
normalised.

2. High k being “better” here is, at least theoretically speaking, a speculative statement. Nevertheless,
the fact that k = 2 is widely used in practice despite the increased computational complexity strongly
suggests that increasing k does indeed improve performance in some contexts.
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2.1.2 Deep Sets

The model obtained by setting k = 1 is in fact a popular and well-known special case of
Janossy pooling—Deep Sets (Zaheer et al., 2017). As discussed above, choosing k = 1 may
hinder relational reasoning, but Deep Sets is nevertheless a widely used architecture for
permutation-invariant models, for example forming the basis of two well-known point cloud
classification approaches, PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b). As
the computationally cheapest instance of Janossy pooling, its linear scaling in the number
of inputs makes it particularly well suited to problems with large input sets—a point cloud,
for example, may consist of thousands of points. Importantly, it is known to be universal,
guaranteeing (at least in principle) that it is capable of computing any permutation-invariant
target function. Bueno and Hylton (2021) provide a unified mathematical analysis of the
expressive power of both Deep Sets and PointNet. However, the conditions under which
universality holds are not fully characterised, either for Deep Sets specifically or for Janossy
pooling more broadly. Zaheer et al. (2017) and Han et al. (2019) provide sufficient conditions
for Deep Sets to be universal, but do not show whether universality fails if these conditions
are violated—that is, they do not give necessary conditions for universality, and leave open
the possibility that universality is preserved under weaker conditions. In the following two
sections, we provide proofs of necessary conditions for the universality of Deep Sets.

3. Universal Function Representation With Deep Sets

This first section of our theoretical investigation focuses on function representation, building
directly on the proofs and results from Zaheer et al. (2017). By function representation,
we mean the ability of a model to exactly represent a given target function. By universal
representation, we mean the ability of a model to represent all target functions from a
given function class (for instance, the class of all permutation-invariant functions). The
original analysis from Zaheer et al. (2017) demonstrates the universality of Deep Sets by
considering universal representation, and in this section we present a direct continuation
and refinement of this analysis. It must be noted that function representation is a stronger
property than is required in practice, and we will return to analyse the weaker property
of function approximation in Section 4. Proofs of all novel results from this section are
provided in Appendix B.

3.1 Preliminaries

We begin by introducing the necessary definitions and notation, before outlining our contri-
bution and its relationship to the original results from Zaheer et al. (2017). Importantly, we
will establish the concept of sum-decomposition, which is a concise mathematical description
of the Deep Sets architecture.

3.1.1 Definitions and Notation

Notation 1 We denote sets of inputs in boldface with subscript-indexed elements. For
example, the set x has elements x1, . . . , xM .
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Notation 2 Throughout, the variable M refers to the number of elements in the input sets
under consideration.

Notation 3 We denote the group of all permutations of M elements by SM . A permutation
π ∈ SM may be thought of as a bijection from the set {1, . . . ,M} to itself.

Definition 4 A function f(x) is permutation invariant if f(x1, . . . , xM ) = f
(
xπ(1), . . . , xπ(M)

)
for all π ∈ SM .

Definition 5 We say that a function f is sum-decomposable if there are functions ρ and
φ such that

f(x) = ρ
(∑

i

φ(xi)
)
. (4)

In this case, we say that (ρ, φ) is a sum-decomposition of f .

Note that sum-decomposition is equivalent to Janossy pooling with k = 1—that is, it
is equivalent to Deep Sets. Comparing Equation (4) with Equations (2) and (3), these
expressions differ only in dividing φ by an integer, and can be made equal simply by rescaling
φ.

Notation 6 Given a sum-decomposition (ρ, φ), we write Φ(x) :=
∑

i φ(xi). With this
notation, we can write Equation (4) as f(x) = ρ

(
Φ(x)

)
. We may also refer to the function

ρ ◦ Φ as a sum-decomposition.

Definition 7 Let (ρ, φ) be a sum-decomposition. Write Z for the domain of ρ (which is
also the codomain of φ, and the space in which the summation happens in Equation 4). We
refer to Z as the latent space of the sum-decomposition (ρ, φ).

Definition 8 Given a space Z, we say that f is sum-decomposable via Z if f has a
sum-decomposition whose latent space is Z.

Definition 9 We say that f is continuously sum-decomposable when there exists a sum-
decomposition (ρ, φ) of f such that both ρ and φ are continuous. (ρ, φ) is then a continuous
sum-decomposition of f .

Notation 10 Denote the set of all subsets of a space X, known as the power set of X, by
2X .

Notation 11 Denote the n-cube [91, 1]n by In.

3.1.2 Our Contribution

As noted above, the Deep Sets model uses sum-decomposition to represent permutation-
invariant functions. Our contribution is to show that the universality of sum-decomposition
is dependent on the dimension of the latent space Z. Specifically, we show that Z must be
at least M -dimensional, where M is the number of elements in the input sets. We refine the
analysis from Zaheer et al. (2017), relying on the observation that some of the mappings
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used for the proofs of universality in the original analysis are highly discontinuous, and
cannot be computed in practice. By considering continuous mappings,3 we provide a proof
of the above lower bound on the dimension of Z. Because this section directly builds on the
analysis given in Zaheer et al. (2017), we first give a brief reproduction of the statements
and proofs of two key theorems from that work.

3.1.3 Background Theorems

Zaheer et al. (2017) consider two cases. First, where x is a subset of, or is drawn from, a
countably infinite universe U. Second, the case where U is uncountably infinite.

Theorem 12 (Countable case) Let f : 2U → R where U is countable. Then f is sum-
decomposable via R.

Proof Since U is countable, each x ∈ U can be mapped to a unique element in N by a
bijective function c : U → N. If we can choose φ so that Φ is invertible, then we can set
ρ = f ◦ Φ−1, giving

f = ρ ◦ Φ ,

so f is sum-decomposable via R.
Now consider φ(x) = 4−c(x). Under this mapping, each set x ⊂ U corresponds to a

unique real number r := Φ(x). The number r can be decoded to the set x by looking at
the base-4 expansion of r. The element c−1(n) ∈ U belongs to x if and only if the n-th di-
git of r is 1. This decoding procedure shows that Φ is invertible, and the conclusion follows.

For the uncountable case, we consider M -element sets from the universe U = [0, 1].

Theorem 13 (Uncountable case) Let M ∈ N, and let f : [0, 1]M → R be a continuous
permutation-invariant function. Then f is continuously sum-decomposable via RM+1.

Another way of stating Theorem 13, which brings the terminology more in line with Deep
Sets, is as follows:

Theorem 13 (Deep Sets terminology) Deep Sets can represent any continuous permutation-
invariant function of M elements if the dimension of the model’s latent space is at least
M + 1.

Proof The proof by Zaheer et al. (2017) of Theorem 13 is more involved than that of
Theorem 12. We do not include it here in detail, but we summarise the main points as
follows.

1. Show that the mapping Φ : [0, 1]M → RM+1 defined by Φq(x) :=
∑M

i=1(xi)
q for

q = 0, . . . ,M is injective and continuous.4

2. Show that Φ has a continuous inverse.

3. This function class includes, for instance, all functions which can be computed by neural networks with
continuous activation functions, or by Gaussian processes with continuous kernels.

4. In the original proof, Φ is denoted E.
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3. Define ρ : RM+1 → R by ρ := f ◦ Φ−1 .

4. Define φ : R→ RM+1 by φq(x) := xq, q = 0, . . . ,M .

5. Note that, by definition of ρ and φ, (ρ, φ) is a continuous sum-decomposition of f via
RM+1 .

In light of these theorems, our key conclusions can be summarised as follows:

• In Section 3.2, we argue that the guarantee of sum-decomposability via R given by
Theorem 12 cannot hold in practice. This is because the necessary mappings are highly
discontinuous and cannot be computed.

• In Section 3.3, we prove that the guarantee of sum-decomposability via RM+1 given
by Theorem 13 is essentially the best possible. The dimension of the latent space must
be at least M , or universality is lost.

Additionally, we contribute some results on universal representation with discontinuous
sum-decompositions. These results are not relevant for practice5 but are included for
mathematical interest, and can be found in Appendix B.

3.2 The Importance of Continuity

Theorem 12 appears to give a strong guarantee on the universality of sum-decomposition
via R. The theorem applies even when the domain is allowed to be infinite, and so any task
implemented on real hardware, where inputs belong to large but finite domains, satisfies the
conditions of the theorem. Nevertheless, an insurmountable problem arises when trying to
apply the construction from the proof of Theorem 12, with the consequence that Theorem 12
cannot be applied on real hardware. That is, sum-decomposition via R does not provide
a guarantee of universal function representation in practice. We illustrate the problem by
considering an example with the domain of all 256 × 256 pixel images in 8-bit greyscale,
which we denote I.

Suppose, as required by the construction used in the proof, that we have a counting
function c which assigns an integer to each element of I. There are 2219 elements in I, so
even if c counts all “interesting” images6 first, there must be “interesting” images mapping
to very large numbers under c. Consider for instance the 2216th image ι := c−1(2216), and
suppose that, given a set of images x, our target function f needs to compute whether
ι ∈ x. Under the encoding/decoding procedure from the proof of Theorem 12, the decoder
function ρ is given as input the real number r := Φ(x). Recalling that the construction has
φ(x) := 4−c(x), the presence or absence of the image ι in the set x will affect the value of r

by one part in 422
16

. Any decoder ρ implemented on real hardware will therefore be unable
to distinguish between sets containing ι and sets without ι.

The essential problem here is an extreme degree of discontinuity. Intuitively speaking,
a function is continuous if, at every point in the domain, the variation of the output is

5. One of our proofs depends on the axiom of choice, bringing us firmly beyond the realm of computability!
6. That is, images which are not just random noise, but have meaningful visual content.
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insensitive to small variations in the input. In the example above, a successful decoder ρ
must be sensitive to vanishingly small perturbations in the input across its entire input space,
and this property renders it impossible to compute in practice. We can avoid this problem
by requiring that the functions under consideration are all continuous. This requirement is
ubiquitous in work on the function approximation properties of machine learning models,
including the universal approximation theorem for neural networks (Cybenko, 1989), the
universality of Gaussian processes with certain kernels (Rasmussen and Williams, 2006),
the literature on approximating functions on sets (Han et al., 2019; Segol and Lipman,
2020), and indeed in function approximation results outside machine learning (such as the
well-known Stone-Weierstrass theorem, Stone, 1948). In practice, neural networks with
continuous activation functions7 can only compute continuous functions, and the same is
true of Gaussian processes with continuous kernels.

To continue our analysis of sum-decomposition, we therefore adopt the assumption
that the target functions and sum-decompositions under consideration are all continuous.
This aligns with the conditions of Theorem 13, and in the next section we show that the
conclusion of Theorem 13 is essentially the strongest result that can be achieved under these
assumptions.

3.3 Function Representation With Continuous Mappings

The following theorem is our central result on the function representation properties of
continuous sum-decomposition.

Theorem 14 Let M,N ∈ N, with M > N . Then there exist continuous permutation-
invariant functions f : RM → R which are not continuously sum-decomposable via RN .

Restated in more practical terms, this implies that for Deep Sets to be capable of
representing arbitrary continuous functions on sets of size M , the dimension of the model’s
latent space (denoted N in the theorem statement above) must be at least M . A similar
statement is also true for models based on the similar concept of max-decomposition, as
considered by Qi et al. (2017a)—details are provided in Appendix B.6.

In terms of concrete recommendations for practitioners, Theorem 14 suggests that when
deploying a model based on Deep Sets, the choice of latent space should depend on the
number of elements in the input sets under consideration. Referring back to our depiction of
Deep Sets in Figure 2a, this means that the cardinality of the input sets should be taken into
account when choosing the length of the vectors output by the φ blocks. Choosing a latent
space which is not sufficiently high-dimensional may mean that the target function cannot
be successfully modelled. It must be noted, however, that Theorem 14 places restrictions on
function representation, but not on function approximation. Function approximation comes
closer to describing what is needed in practice, and we will return to address this point
in Section 4, where we prove that this requirement on the latent space dimension is also
present for function approximation with Deep Sets. We discuss the practical implications of
Theorem 14 in more detail in Section 3.3.2.

In addition to showing that an M -dimensional latent space is necessary, we adapt the
proof of Theorem 13 to strengthen the result in two ways. Proofs of these two results can be

7. Essentially all popular activation functions are continuous, including ReLU, ELU, sigmoid, and tanh.
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found in Appendix B. Firstly, we lower the bound on the sufficient latent space dimension by
1, concluding that an M -dimensional latent space is necessary and sufficient for universal
representation.

Theorem 15 Let M ∈ N, and let f : RM → R be a continuous permutation-invariant
function. Then f is continuously sum-decomposable via RM .

Secondly, we show that the model can deal with variable set sizes ≤M . That is, the model
is not only capable of modelling functions on sets of size exactly M , but also on sets of size
up to M . At least in principle, the model is therefore applicable in settings where the input
sets may contain variable numbers of points.

Theorem 16 (Variable set size) Denote the set of subsets of [0, 1] containing at most
M elements by [0, 1]≤M . Let f : [0, 1]≤M → R be continuous8 and permutation invariant.
Then f is continuously sum-decomposable via RM .

3.3.1 Proof of Theorem 14

Our proof of Theorem 14 relies on showing that the permutation-invariant function max,
applied to M -element sets of real numbers, is not sum-decomposable via RM−1. To show
this, we need the following lemma.

Lemma 17 Let M,N ∈ N, and suppose φM : [91, 1] → RN , ρM : RN → R are functions
such that

max(x) = ρM

( M∑
i=1

φM (xi)
)

(5)

for all x ∈ IM (where IM := [91, 1]M). That is, suppose (φM , ρM ) is a sum-decomposition
of max via RN . Then ΦM (x) :=

∑M
i=1 φM (xi) is injective up to permutation.

Proof Although we consider only injectivity up to permutation, for brevity we will simply
refer to “injectivity” in this proof. Similarly, we may say that x,y ∈ IM are “equal” when
they are equal up to permutation.

We proceed by induction on M . The base case M = 1 is trivial, since max is injective
when M = 1. Now let M ∈ N, with φM and ρM satisfying Equation (5). Consider the subset
of IM defined by holding the minimum element fixed to 91. We denote this subset X∗. We
first claim that ΦM is injective on X∗.

To see this, set

φM−1 := φM , ρM−1(x) := ρM
(
x + φM (91)

)
.

This gives a sum-decomposition (ρM−1, φM−1) of max on IM−1, so by induction, ΦM−1 is
injective. But on X∗, ΦM is just ΦM−1 plus the constant φM (91), so ΦM is injective on X∗.

Now let a ∈ [91, 1], and consider the set Xa formed by holding the maximum element
of x fixed to a. We will show that ΦM is injective on Xa. Suppose x,y ∈ Xa with

8. Note that we must take some care with the notion of continuity here—see Appendix A.2.
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ΦM (x) = ΦM (y). Now consider the sets x′,y′ obtained by replacing a with 91. Then
x′,y′ ∈ X∗, and

ΦM (x′) = ΦM (x)− φM (a) + φM (91)

= ΦM (y)− φM (a) + φM (91)

= ΦM (y′) .

Since ΦM is injective on X∗, we therefore have x′ = y′, and therefore x = y. That is, ΦM is
injective on Xa.

Now note that any x ∈ IM belongs to Xa for some a. Specifically, x ∈ Xmax(x). So
suppose x,y ∈ IM with x 6= y. There are two cases to consider. First, we may have
x,y ∈ Xa for some a, in which case ΦM (x) 6= ΦM (y) by injectivity of ΦM on Xa. Second,
we may have x ∈ Xa, y ∈ Xb for some a 6= b, in which case max(x) 6= max(y). Then
ΦM (x) 6= ΦM (y) by Equation (5). In either case, ΦM (x) 6= ΦM (y), so ΦM is injective.

Equipped with this lemma, we can now prove Theorem 14.
Proof Let M,N ∈ N, with M > N , and let φM : [91, 1]→ RN be continuous. Denote by
∆M the set of all x ∈ IM such that x1 ≥ x2 ≥ · · · ≥ xM .

ΦM : IM → RN is continuous, because it is a sum of continuous functions. Because
M > N , it therefore cannot be injective on ∆M—since ∆M has non-empty interior, it cannot
be continuously injected into a lower-dimensional Euclidean space. But by Lemma 17, any
sum-decomposition of max has ΦM injective up to permutation, which in particular means
that any such ΦM is injective on ∆M . Since our ΦM is not injective here, φM therefore
cannot be used to sum-decompose max. The only condition on φM was that it is continuous,
so max therefore has no continuous sum-decomposition via RN .

3.3.2 Implications and Limitations

In light of Theorems 14 and 15, we now have a necessary and sufficient condition for universal
function representation with Deep Sets: a Deep Sets–based model is capable of representing
all continuous permutation-invariant functions on sets of size at most M if and only if the
model’s latent space is at least M -dimensional. We now provide a brief discussion of the
implications of this result, and the limitations which must be taken into account when
considering how the result applies in practice.

We can concisely summarise the practical implications of Theorems 14 and 15 as follows.
When deploying a Deep Sets–based model, the choice of latent space should depend on
the cardinality of the sets being processed. Larger input sets demand a larger latent
space. We emphasise that, although our results give a precise figure for the necessary and
sufficient latent dimension M , this should not be interpreted as meaning that exactly M
dimensions should always be used in practice, for the following reasons.

First note that Theorem 14 does not imply that all functions require an M -dimensional
latent space. Some functions can be represented in a lower-dimensional space—take for
instance the sum of all elements, which is trivially represented by setting both φ and ρ
to be the identity function. The statement rather says that some functions require an M -
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dimensional latent space. It is still possible that, in a given application, the target function
does not require M dimensions. While we do not characterise exactly which functions require
an M -dimensional sum-decomposition, we do note that such functions need not be “badly
behaved” or difficult to specify. Our proof specifically demonstrates that even max, which is
trivial to specify, is not continuously sum-decomposable with a latent space dimension less
than M .

Second, although Theorem 15 shows that an M -dimensional latent space suffices to
model any target function, we also know from Theorem 14 that M dimensions is the bare
minimum needed to guarantee this property. In practice, a model using only this minimum
capacity of M dimensions is not guaranteed to provide good results. One reason for this
is that, while the necessary functions φ and ρ certainly exist, we have no guarantee that
they can be successfully learned. It is entirely possible, even in light of our results, that
increasing the latent dimension above M leads to more efficient training and superior results
in practice.

A final, major weakness of Theorem 14 is that, in following the mathematical framework
developed in Zaheer et al. (2017), it addresses function representation rather than function
approximation. This leaves open the possibility that, while an M -dimensional latent space
is needed for exact representation, we can achieve arbitrarily good approximation of any
target function using only a 1-dimensional latent space. Addressing this weakness requires
significantly more complicated mathematics, and we devote the next section to proving that
an analogue of Theorem 14 does indeed hold for universal approximation, and M dimensions
are still required.

4. Universal Function Approximation With Deep Sets

In the previous section, we considered the problem of function representation—showing that
there exists an instance of a given model which exactly computes a target function. But
exactly representing target functions is generally not our goal—typically, we are concerned
with approximating a target function. In this section, we extend our analysis of the Deep
Sets architecture to assess its ability to perform approximation.

To see concretely why function approximation requires a separate analysis, we return to
the max function on a set of M elements. As proved above, for an exact sum-decomposition,
the latent space must be at least M -dimensional. But, as noted by Zaheer et al. (2017) in an
appendix to their work, max can be approximated arbitrarily well with only a 2-dimensional
latent space. In fact, one dimension will suffice. Let a ∈ R and set φ and ρ as follows:

φ(x) := eax , ρ(x) :=
log x

a
. (6)

Thus, our sum-decomposition approximation for max is

f̂a(x) =
1

a
log

(∑
x∈x

eax

)
. (7)

For an input set x of size M , it is easily shown that

max(x) ≤ f̂a(x) ≤ max(x) +
logM

a
.
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That is, the worst-case error in this approximation is logM
a . For fixed set size M , we can

therefore achieve arbitrarily good approximation by increasing the value of a, even though
we have only used a 1-dimensional latent space.

In the specific case of max, this demonstrates that there is a wide gap between what
is necessary for representation and what is necessary for approximation. max is in some
sense “as hard as possible” to represent, requiring M latent dimensions, but “as easy as
possible” to approximate, requiring only 1 latent dimension. This naturally raises the
question of whether the approximation problem is somehow fundamentally easier. We
state a more precise form of this question as follows: is it the case that every permutation-
invariant function of M elements has an approximate sum-decomposition via fewer than
M dimensions? Our analysis answers this question in the negative—there exist functions
which cannot be closely approximated with a lower-dimensional latent space. Moreover,
low-dimensional sum-decomposition is guaranteed to fail very badly for these functions—in
terms of worst-case error, approximation with sum-decomposition performs as badly as
approximation with a constant function.

4.1 A Necessary Condition for Function Approximation by
Sum-Decomposition

The question above mentions approximate sum-decomposition—in order to state and prove
our result, we must define precisely what we mean by this. In the following definitions, let
M be a positive integer, U ⊂ RM be compact,9 and f : U → R. We maintain the convention
that Φ(x) =

∑M
i=1 φ(xi).

Definition 18 Let ε > 0. (φ, ρ) is a within-ε sum-decomposition of f if
∣∣f(u)−ρ

(
Φ(u)

)∣∣ < ε
for every u ∈ U .

For example, if we let a = logM
ε , then the sum-decomposition defined by Equation (6) is

a within-ε continuous sum-decomposition of max via R.

Definition 19 A sequence (φ, ρ)k :=
{

(φk, ρk) : k ∈ N
}

is an approximate sum-decomposition
of f if, for any ε > 0, there is some K ∈ N such that (φK , ρK) is a within-ε sum-decomposition
of f . We also require that (φk, ρk) is a within-ε sum-decomposition of f for every k ≥ K.
Put more loosely, (φk, ρk) is a sequence of ever-closer approximations to f . The existence of
an approximate sum-decomposition of f guarantees that f can be approximated arbitrarily
closely by sum-decomposition.

Given a set Y , we say that the approximate sum-decomposition (φ, ρ)k is via Y if (φk, ρk)
is via Y for every k.

For example, letting a = 1, 2, . . ., the sequence (φ, ρ)a as defined by Equation (6) is a
continuous approximate sum-decomposition of max via R.

With these definitions in hand, we now state our main result on approximation.

9. This compactness requirement is necessary when discussing universal function approximation. Of
particular relevance here is the fact that the universal approximation theorem for neural networks also
requires a compact domain (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989). This compactness
requirement is a fundamental constraint which is also necessary for other function approximation results,
for example the Stone-Weierstrass theorem (Stone, 1948).
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Theorem 20 Let M,N ∈ N with M > N , and recall that IM = [−1, 1]M ⊂ RM . Then there
exists a continuous permutation-invariant function f : IM → R which has no continuous
approximate sum-decomposition via RN .

Our proof of this theorem actually provides stronger conclusions than stated above. The
following paragraphs explain these additional conclusions in detail, and a theorem statement
incorporating these conclusions is included in Appendix C.

Since the target function f is continuous on a compact domain, we know that its output
is bounded, say by ymin ≤ f(u) ≤ ymax. A worst-case error10 of E := ymax−ymin

2 can trivially

be achieved by approximating f with the constant function f̂(u) = ymax+ymin
2 . We show that

there exist permutation-invariant functions f∗ on RM which have no within-E continuous
sum-decomposition via RN . In other words, any attempt to sum-decompose f∗ via RN is
doomed to have the same worst-case error as simply approximating f∗ by a constant value.

In addition, we explicitly construct a permutation-invariant function f∗ for which sum-
decomposition via RN must have worst-case error E as defined above. Letting U = IM , this
f∗ has a simple form:11

f∗(u) := wᵀsort(u) + b ,

wi := (91)i+1 ,

b :=

{
91 M even ,

0 M odd .

(8)

Here, sort sorts the elements of u in descending order. This definition may look a little
arbitrary, but we will justify it in Section 4.2 and provide some intuition for why it is hard
to approximate in Section 4.3. The function f∗ is trivial to represent using the sorting
framework12 mentioned in Section 2, but impossible to approximate using a continuous
sum-decomposition via RN . This gives mathematical support to the proposition that there is
no true “one size fits all” approach—for a given task, performance may vary greatly between
different methods of achieving permutation invariance.

Finally, we note that poor approximation behaviour is not confined to a single point.
This follows from the fact that both f∗ and the sum-decomposition are continuous, and so
the approximation error also varies continuously—if the error is high at one point, it must
also be high in some region around that point.

Having stated the key conclusions, we now present the proof of Theorem 20. We
omit some details, particularly in the proof of Lemma 24. Full details are included in
Appendix C.2.

4.2 Proving Necessity for Universal Approximation

The overall proof strategy is best understood by thinking topologically—that is, by consid-
ering how the encoding map Φ and the target function f deform the input space, squashing

10. By the worst-case error of a function f̂ approximating a function f , we mean maxu∈U |f̂(u)− f(u)|.
11. The extra 91 for even M is to ensure that f∗ is bounded between 91 and 1. This isn’t necessary, indeed

the bias term could be removed from Equation (8) without affecting our result, but reasoning about f∗ is
simpler if its range is fixed.

12. We discuss sorting in more detail in Section 5.1.
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(a) The boundary of ∆3.

−1 1

(b) The image of ∆3 under f∗.

−0.33 0.33
x̃

0.0

0.5

ỹ

(c) The image of [91, 1] under φ.

−1 1
x̃

0.0

1.5
ỹ

(d) The image of ∆3 under Φ.

Figure 3: A visualisation of sum-decomposition when the input sets are of size 3 and the
latent space is 2-dimensional. For the purposes of this illustration, we pick φ
to send the interval [91, 1] to a semicircle. With this choice of φ, we see that
two disjoint regions of the surface of ∆3—highlighted here with solid red lines—
intersect under the application of Φ. By contrast, f∗ separates these highlighted
regions, sending them to opposite ends of the interval [91, 1]. Since these regions
are already “mixed together” by Φ, there is no function ρ which can separate
them out again to approximate f∗, so sum-decomposition of f∗ fails. Our proof
demonstrates that, as long as the dimension of the latent space is less than the
number of inputs, a similar problem occurs in any number of dimensions. That
is, there is always a collision under Φ which renders sum-decomposition of f∗
impossible.
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it onto lower-dimensional output spaces. To understand this perspective we will consider
an example with M = 3 and N = 2, since this is high-dimensional enough to illustrate the
key points and low-dimensional enough to visualise. For this example, we choose φ to send
[91, 1] to a semicircle. This choice is made purely for easy visualisation of φ and Φ.

Any continuous target function f : I3 → R may be thought of as deforming a cube into
a line segment. We actually do not need to consider the whole cube—since f is permutation
invariant, it is fully determined by its behaviour on the set of points with descending-ordered
coordinates. In general we will denote this set ∆n,

∆n := {x ∈ In : x1 ≥ x2 ≥ . . . ≥ xn} . (9)

Considering ∆3 instead of the whole cube allows us to think more freely about f , without
worrying about permutation invariance—as long as f is continuous on ∆3, it can be extended
in a continuous and permutation-invariant way to I3. In general, if we want to define a
function f by its behaviour on ∆n and implicitly extend it to the rest of the space, we
can simply write it as a function of sort(x). This accounts for the appearance of sort
in Equation (8), which can be thought of as saying “f∗(x) = wᵀx + b on ∆M , and f∗ is
permutation invariant”.

In general ∆n is an n-simplex, so ∆3 is a tetrahedron. From our topological perspective,
sum-decomposition via R2 attempts to break down the tetrahedron-to-line deformation f
by first sending ∆3 onto the plane under Φ, then sending the plane onto a line under ρ.
Figures 3a, 3c and 3d visualise the action of Φ, showing how the boundaries of ∆3 are mapped
to the plane for our example choice of φ. Crucially, note that some of these boundaries
intersect under Φ. Once two regions have been brought together by Φ, they cannot be
separated again—ρ cannot send the point of intersection to two places at once. Therefore
if f does separate these regions, sending them to opposite ends of [91, 1] as illustrated in
Figure 3b, then the sum-decomposition ρ ◦ Φ must fail with worst-case error at least 1.

Figure 3 only shows that this intersection problem occurs for our example choice of φ and
M , but we prove below that the general case also holds: for every M , there are two disjoint
regions of the surface of ∆M such that, for any continuous φ which maps into RM−1, these
regions intersect under Φ. We denote the two regions X+1

M and X91
M—the solid red regions in

Figure 3a are X+1
3 and X91

3 . Our f∗ from Equation (8) is defined so that it separates X+1
M

and X91
M , and it is just one among many continuous functions which have this property. In

some sense it is the simplest, since it is affine on ∆M . Our proof that Φ(X+1
M ) and Φ(X91

M )
always intersect relies on the structure of Φ as a sum over inputs.

We define X+1
M and X91

M as follows:13

X+1
M := {x ∈ ∆M : 1 = x1 ≥ x2 = x3 ≥ . . . =⁄≥ xM ≥⁄= 9 1} , (10)

X91
M := {x ∈ ∆M : 1 ≥ x1 = x2 ≥ x3 = . . . ≥⁄= xM =⁄≥ 9 1} . (11)

The rightmost equality xM = 91 applies to X+1
M when M is even, and X91

M when M is odd.
We can view these equations as modifying the definition of ∆M (Equation 9) by changing
either the odd- or the even-numbered ≥ signs into = signs. It follows directly from the
definition of f∗ (Equation 8) that f∗(X

+1
M ) = 1 and f∗(X

91
M ) = 91.

The above discussion can be summarised by the following claim:

13. The symbols ≥⁄= and =⁄≥ should be interpreted as representing the top sign when M is odd, and the
bottom sign when M is even.
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Claim 21 Let N = M − 1. There exist two subsets X+1
M and X91

M of ∆M such that:

1. f∗ separates X+1
M from X91

M : f∗(X
+1
M ) = 1 and f∗(X

91
M ) = 91.

2. Φ cannot separate X+1
M from X91

M : For any continuous function
φ : [91, 1]→ RN , the set Φ(X+1

M ) ∩ Φ(X91
M ) is non-empty.

Theorem 20 follows immediately, since the above points imply that f∗ has no within-1
continuous sum-decomposition via RN .

As noted, point 1 is true by definition, so we only need to prove point 2 to complete the
proof of Theorem 20. The proof of point 2 has two parts:

1. Lemma 22: Construct a function ΓN which has a zero only if the set
Φ(X+1

M ) ∩ Φ(X91
M ) is non-empty.

2. Lemma 24: Show that ΓN has a zero.

The subscript on Γ is N , rather than M , because there are a total of N = M − 1 degrees
of freedom in X+1

M ×X91
M—consider for example M = 2, which gives a total of one degree

of freedom.14 The main idea in constructing ΓN is to subtract Φ(X91
M ) from Φ(X+1

M ). This
clearly evaluates to zero only where the two sets intersect. This subtraction idea is slightly
obscured in the formal statement and proof of the following lemma, but it is the key idea on
which the lemma is based.

Straightforwardly using this idea results in a function whose input space is X+1
M ×X91

M ,
but we will instead define ΓN to have input space ∆N . As shown below, any point z ∈ ∆N

may be used to construct a pair of points (x+,x−) ∈ X+1
M ×X91

M , and the subtraction idea
can then be applied to this pair of points. We define ΓN in this way because ∆N turns out
to have useful structure which we can exploit for the proof of Lemma 24.

Importantly, the following statement of Lemma 22 requires that φ(91) = 0. From now
on we will assume this without loss of generality, since otherwise we can reason identically
about φ̃(x) := φ(x)− φ(91), which does satisfy φ̃(91) = 0.

Lemma 22 Let φ : [91, 1]→ RN , with φ(91) = 0. Define ΓN : ∆N → RN by

ΓN (x) :=
N∑
i=1

(91)iφ(xi) +
φ(1)

2
. (12)

Suppose ΓN has a zero in ∆N . Then there exist x+ ∈ X+1
M , x− ∈ X91

M with

Φ(x+) = Φ(x−) .

Proof Let z ∈ ∆N with ΓN (z) = 0. Define x+ ∈ X+1
M and x− ∈ X91

M by

x+
i := zi for even i ,

x−i := zi for odd i .
(13)

14. Equations (10) and (11) imply that X+1
2 consists of the single point (1, 91), contributing zero degrees of

freedom, and X91
2 consists of the line {(x, x) : x ∈ [91, 1]}, contributing one degree of freedom.
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The remaining coordinates of x+ and x− are fixed by the equalities in Equations (10) and (11).
Note in particular that Equation (10) implies that x+

1 = 1. Taking these constraints together
with the condition that φ(91) = 0, we obtain

Φ(x+) = φ(1) + 2
∑
i even

φ(x+
i ) ,

Φ(x−) = 2
∑
i odd

φ(x−i ) .
(14)

Plugging z into Equation (12) and pulling the odd terms of the sum to the left hand
side (and recalling that ΓN (z) = 0), we obtain∑

i odd

φ(zi) =
∑
i even

φ(zi) +
φ(1)

2
. (15)

Now we apply Equation (13) to obtain∑
i odd

φ(x−i ) =
∑
i even

φ(x+
i ) +

φ(1)

2
.

This equates the right hand sides of the two lines of Equation (14), so the left hand sides
must also be equal, i.e., Φ(x+) = Φ(x−).

All that remains is to show that ΓN has a zero. To understand ΓN , we exploit the
alternating-sum form of Equation (12), and in particular we will see how this constrains
the behaviour of ΓN on the surface of ∆N . Each face of the surface is itself a simplex15 of
dimension N−1, defined by changing one of the inequalities in Equation (9) into an equality—
that is, by applying the constraint xi = xi+1 for some i. We denote the corresponding face
∆

(i)
N . For 1 ≤ i < N , this constraint leads to the cancellation of two consecutive terms of

the sum in Equation (12). Each of these faces therefore has the same image under ΓN—for
example, the following points belong to different faces of ∆4, but because equal pairs cancel
out they all go to the same point under Γ4.(

2
3 ,

2
3 ,

1
2 , 0
)
∈ ∆

(1)
4

(
1
2 ,

1
3 ,

1
3 , 0
)
∈ ∆

(2)
4

(
1
2 , 0, 9

1
2 , 9

1
2

)
∈ ∆

(3)
4

There are two more faces to consider—∆
(0)
N and ∆

(N)
N , corresponding to the constraints

x1 = 1 and xN = 91 respectively. We can observe an interesting behaviour of ΓN here, which

is in fact a symmetry: if we apply a “coordinate left shift” to a point in ∆
(0)
N , the output of

ΓN is multiplied by 91. By “coordinate left shift”, we mean the bijection α : ∆
(0)
N → ∆

(N)
N

defined as follows:

α(x)i :=

{
xi+1 i < N ,

91 i = N .

15. At this stage of the argument, it is helpful to have a way of visualising high-dimensional simplices and
their faces. We discuss such a visualisation in Appendix A.4.
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Applying α moves each coordinate one place to the left, deleting the 1 in the leftmost
place and padding with a 91 in the rightmost place. For example, consider the point

(1, 2
3 , 0, 9

1
2) ∈ ∆

(0)
4 :

α
(

(1, 2
3 , 0, 9

1
2)
)

= (2
3 , 0, 9

1
2 , 91) ∈ ∆

(4)
4 .

Now apply Γ4 to (1, 2
3 , 0, 9

1
2) and (2

3 , 0, 9
1
2 , 91):

Γ4

(
(1, 2

3 , 0, 9
1
2)
)

= −φ(1) + φ(2
3)− φ(0) + φ(91

2) +
φ(1)

2
,

Γ4

(
(2

3 , 0, 9
1
2 , 91)

)
= −φ(2

3) + φ(0)− φ(91
2) + φ(91) +

φ(1)

2
.

Simplifying the φ(1) terms, and recalling that φ(91) = 0, we obtain

Γ4

(
(2

3 , 0, 9
1
2 , 91)

)
= −Γ4

(
(1, 2

3 , 0, 9
1
2)
)
.

It is easily seen that this generalises to any x ∈ ∆
(0)
N :

ΓN
(
α(x)

)
= −ΓN

(
x
)
. (16)

We can exploit this symmetry to show that ΓN has a zero. To do this, we will need
the Borsuk-Ulam theorem (Borsuk, 1933—see Lloyd, 1978 for a detailed English-language
treatment). One statement of the theorem is as follows.

Theorem 23 (Borsuk-Ulam) Let ∂In be the surface of In—written mathematically, let
∂In := {x ∈ In : xi = ±1 for some i}. Suppose f : In → Rn is continuous, and for every
x ∈ ∂In we have

f(9x) = −f(x) . (17)

Then there is some z ∈ In such that f(z) = 0.

There is a clear similarity between Equations (16) and (17), but we cannot directly apply
Borsuk-Ulam to ΓN . We need to bridge the two equations, relating the left shift α on the
left hand side of Equation (16) to the negation on the left hand side of Equation (17). We
can do this by finding a continuous function νN : IN → ∆N which turns negation on ∂IN
into a left shift on ∂∆N :16

νN (9x) = α(νN (x)) . (18)

That is, we want to be able to apply Borsuk-Ulam to ΓN ◦ νN :

f(9x) := ΓN
(
νN (9x)

)
= ΓN

(
α
(
νN (x)

))
= −ΓN

(
νN (x)

)
= −f(x) .

Showing that a suitable νN exists will complete the proof, since Theorem 23 then immediately
implies that ΓN has a zero.

16. Here, we are glossing over the fact that α is only defined on part of ∂∆N . We will come back to this
when proving Lemma 24.
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I2
ν2

∆2

I+3
∼= I2

x

I−3
∼= I2

9x

ν3

∆
(0)
3
∼= ∆2

∆
(3)
3
∼= ∆2

ν3(x)

ν3(9x)

α

Figure 4: For the first part of the construction of νn, we use νn−1 to define νn on the top
and bottom faces of In. The n = 3 case is illustrated here. νn uses νn−1 to send

the top face of In to ∆
(0)
n , and the bottom face to ∆

(n)
n . We construct νn so that

opposite points x and 9x on the top and bottom faces go to points in ∆n which
are related by the left-shift function α—that is, νn(9x) = α(νn(x)).

x+

x−

x

y+

y−

y=9x

In

x

y=9x

In−1

Figure 5: For the second part of the construction of νn, we note that any point x lies on a
“vertical” line, i.e., an n-th-axis-aligned line, meeting the top face at x+ and the
bottom face at x−. We complete the construction of νn by interpolating along
these lines. For a pair of opposite points y = 9x, we see that y− = 9x+. To
ensure that νn has the desired properties, we must pay particular attention to the
surface of In without the top and bottom faces, i.e., ∂In\(I+

n ∪ I−n ). If x lies on
this part of the surface (as in this figure), then the point x, which is the projection
of x along the vertical, lies on the surface ∂In−1.

Lemma 24 Let n ∈ N. Let Γn be defined as in Equation (12). Then there exists a
continuous function νn : In → ∆n such that, for x ∈ ∂In,

Γn
(
νn(9x)

)
= −Γn

(
νn(x)

)
. (19)

We present a partial proof of Lemma 24 here, with full details available in Appendix C.2.

Proof First, we must point out that the proof strategy is not quite as simple as suggested

above. Since α is only defined on ∆
(0)
n , and not on the rest of ∂∆n, we cannot in fact satisfy
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Equation (18) for every x on ∂In. Nevertheless, we can still satisfy Equation (19) for every
x on ∂In, and we reach this conclusion by showing that Equation (18) holds on part of ∂In.

We proceed by induction—the base case ν1(x) := x is trivial. Consider the “top” and
“bottom” faces of In,

I+
n := {x ∈ In : xn = 1} , the top face,

I−n := {x ∈ In : xn = 91} , the bottom face.

Note that I+
n and I−n are naturally equivalent to In−1—we can map bijectively from either face

to In−1 by dropping the last coordinate of x. For any point x, we denote the corresponding
point in In−1 by x—that is, x is x with the last coordinate removed.

Note also that ∆
(0)
n and ∆

(n)
n are naturally equivalent to ∆n−1—any point x ∈ ∆

(0)
n

can be written as (1,x′), where x′ ∈ ∆n−1. Similarly any point in ∆
(n)
n can be written as

(x′, 91). We can use these equivalences to the lower-dimensional case to come up with a
partial definition of νn in terms of νn−1.

The idea of how to begin constructing νn using these equivalences is illustrated in
Figure 4. In the following, we will choose the definition of νn on I+

n and I−n to satisfy what is
shown in this figure. That is, by viewing I+

n as a copy of In−1, and ∆
(0)
n as a copy of ∆n−1,

we can map from I+
n to ∆

(0)
n using νn−1 : In−1 → ∆n−1. Crucially, note that the truth of

Equation (18) for x ∈ I+
n depends on how νn behaves on I−n . There is only one way to define

νn on I−n so that Equation (18) is true on I+
n , and this is the definition that we choose.

Written mathematically, we define νn on I+
n and I−n as follows:

νn(x) :=

{(
1, νn−1(x)

)
for x ∈ I+

n ,

α
(
νn(9x)

)
=
(
νn−1(9x), 91

)
for x ∈ I−n .

So by definition, νn satisfies Equation (18) for x ∈ I+
n . This immediately implies Equation (19)

on I+
n and, by symmetry, on I−n .
We have established that Equation (19) holds on I+

n ∪ I−n for our partially defined νn.
We now need to extend νn to the rest of In. We will define this extension by interpolating
along the vertical lines joining I+

n and I−n , where by “vertical”, we mean parallel to the n-th
coordinate axis.

Consider a point x lying on the part of ∂In that we have not yet considered, i.e.,
∂In\(I+

n ∪ I−n ). Any such point lies on a vertical line which meets ∂I+
n and ∂I−n at points x+

and x−, as depicted in Figure 5. We refer to these vertical line segments on ∂In as surface
verticals. Crucially, ∂In\(I+

n ∪ I−n ) is entirely covered by surface verticals.
We want to ensure that Equation (19) holds on all of ∂In, and because we have already

shown this for I+
n ∪ I−n , it only remains to ensure that it holds on all of the surface verticals.

One way to achieve this is to make Γn ◦ νn constant on each surface vertical. To see that this
would imply Equation (19), consider a pair of antipodal17 points x and y on ∂In\(I+

n ∪ I−n ).
As illustrated in Figure 5, x+ and y− are also antipodal. Since x+ and y− belong to I+

n ∪I−n ,
we know that Equation (19) holds:

Γn
(
νn(x+)

)
= −Γn

(
νn(y−)

)
.

17. That is, such that y = 9x.
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If Γn ◦ νn is constant on surface verticals, it follows that Γn
(
νn(x+)

)
= Γn

(
νn(x)

)
and

Γn
(
νn(y−)

)
= Γn

(
νn(y)

)
, and therefore Equation (19) also holds for x and y:

Γn
(
νn(x)

)
= Γn

(
νn(x+)

)
= −Γn

(
νn(y−)

)
= −Γn

(
νn(y)

)
.

Because the ends of a surface vertical, x+ and x−, belong to I+
n and I−n , the behaviour

here is already fixed by our partial definition of νn. Therefore, to have any hope of holding
Γn ◦ νn constant on surface verticals, we must first show that Γn

(
νn(x+)

)
= Γn

(
νn(x−)

)
under our existing partial definition of νn.

By expanding the definition of Γn, consider Γn
(
νn(x+)

)
:

Γn
(
νn(x+)

)
= Γn

((
1, νn−1(x)

))
= −φ(1)−

(
Γn−1

(
νn−1(x)

)
− φ(1)

2

)
+
φ(1)

2
= −Γn−1

(
νn−1(x)

)
.

(20)

Similarly we find that for x−,

Γn
(
νn(x−)

)
= Γn−1

(
νn−1(9x)

)
. (21)

But note that x ∈ ∂In−1, as illustrated in Figure 5. By induction, Equation (19) therefore
applies:

Γn−1

(
νn−1(9x)

)
= −Γn−1

(
νn−1(x)

)
.

Equations (20) and (21) therefore imply that

Γn
(
νn(x−)

)
= Γn

(
νn(x+)

)
. (22)

We have shown that Γn ◦νn takes the same value at either end of each surface vertical. It
remains to extend νn so that Γn ◦ νn remains constant along the entire surface vertical. We
can perform this extension by interpolating along the vertical between I+

n and I−n . Linear
interpolation does not respect this condition of constancy—the definition and justification
of the correct interpolation scheme are given in Appendix C.2.

With νN in hand, the proof of Theorem 20 is complete. We briefly summarise the chain
of reasoning from this section, which is now fully justified by the proof of the above Lemma.

1. We are attempting to model permutation-invariant functions on the input space IM
using sum-decomposition, where the dimension of the latent space, N , is one less than
that of the input space, M .

2. We have shown that, for any choice of continuous encoding map φ : [91, 1]→ RN , the
function ΓN (which depends on φ) has a zero.
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Figure 6: Contours of sum-decomposition approximations to max compared to the true max

function. The sum-decompositions f̂2 and f̂6 are defined by Equation (7), with
a = 2, 6 respectively. As a increases, the corners become sharper, but never
perfectly sharp.

3. Because of the way ΓN was constructed, this implies that there are two disjoint regions
of the input space18 IM which collide under the application of Φ.

4. Any target function which widely separates these regions is therefore impossible to
approximate by sum-decomposition—there will always be a pair of points which collide
under the sum-decomposition but are widely separated by the target.

5. One example of such a function, which therefore cannot be approximated via RN , is
given by Equation (8).

4.3 Some Visual Intuition

We have shown mathematically that there exist functions which cannot be approximately
sum-decomposed via a low-dimensional latent space. In contrast to the heavy mathematical
content above, we now provide some less formal intuition as to why this particular function
is so hard to approximate. To that end, we will gloss over some details for the sake of
readability.

We consider the contours of the encoding map Φ(x) =
∑

i φ(xi). This provides a useful
visual perspective on sum-decomposition, helping to develop some intuition for the behaviour
of functions represented in this form. Contours of Φ must also be contours of the full
sum-decomposition ρ ◦ Φ: if Φ(x) = Φ(y), then ρ ◦ Φ(x) = ρ ◦ Φ(y).

We plot the contours of max in Figure 6, as well as the contours of two terms from an
approximate sum-decomposition of max via R. As can be seen here, the contours of max

have sharp corners on the line y = x, whereas the contours of the approximations have
soft corners here. It is easily seen that a sum-decomposition via R cannot have the same
sharp contours as max—we can push the contours as close to the corner as desired, providing

18. Strictly speaking, there are two disjoint regions of the ordered input space ∆M .
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Figure 7: Contours of the function f∗ as defined by Equation (8).

ever-better approximation, but we cannot make the contours sharp like the true function.
This picture of pushing the sum-decomposition contours closer to the true contours gives
some intuition for why arbitrarily close approximation can be possible even when exact
representation is not.

This contour perspective can also give some intuition for the case we have addressed in
this section, where even approximation is not possible. As long as the sum-decomposition f̂
is differentiable19 and goes via R, any contour of f̂ which meets the line y = x must do so
at right angles, as is the case for the sum-decompositions plotted in Figure 6. max does not
violate this condition so badly that we cannot approximate it—its contours do at least cross
y = x. But as Figure 7 shows, the function f∗ from our proof of Theorem 20 violates this
condition very badly, having a contour along y = x, perpendicular to the contours of any
sum-decomposition.

Again, what we show in Figures 6 and 7 does not prove anything, as we have glossed over
many details, such as the ability of neural networks to represent non-differentiable functions.
But perhaps this provides some intuition for why this function should be so difficult to
model with sum-decomposition.

5. Other Methods for Achieving Permutation Invariance

In this section we discuss methods for achieving permutation invariance beyond k-ary Janossy
pooling. In particular, we cover two paradigms mentioned in passing in Section 2, which are
also discussed in Murphy et al. (2019): methods which achieve exact permutation invariance
through sorting; and methods which do not achieve exact permutation invariance, but only
approximate this property. We also provide a brief discussion of the relationship between
learning permutation-invariant functions for sets and learning on graphs.

19. Neural networks can represent non-differentiable functions, but if we need to construct a φ which is
non-differentiable in infinitely many places, things get more complicated.
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Permutation-Sensitive Network Output

Sorting

Figure 8: Achieving permutation invariance via sorting. Finding or learning a canonical
way of sorting the elements of a set before feeding it into a permutation-sensitive
network yields a permutation-invariant output, as long as the sorting does not
depend on the initial order of the elements.

5.1 Sorting

When a set is represented as an ordered structure, it is generally assumed that the order can
be arbitrary. That is, two representations x and y of the same set, where the elements are
ordered differently, are both regarded as valid representations of the set. However, one could
also say that each set has only one valid representation, corresponding to some canonical
ordering of the elements. If the elements are first sorted, ensuring that only this valid
representation is seen by the model, then permutation invariance is guaranteed. This is,
in most cases, computationally cheaper than permuting and pooling. The only additional
computation necessary is the sorting of the elements into their canonical representation,
which is O(n log n). This method, visualised in Figure 8, does have some drawbacks.

First, there is the inherent ambiguity of how to pick the canonical ordering. This choice
can be made manually, but the choice of ordering may in fact affect the performance of the
model. This is because the ordering may or may not be meaningful in the context of the
task. To illustrate this, consider two ways of sorting the integers. First, sorting according
to the usual order relation on the integers (1 < 2 < 3), and second, sorting alphabetically
by the representation of each integer as an English word (“one” < “three” < “two”). If we
want to compute the max of a set of integers, the first choice of sort operation renders the
task trivial, while the second choice of sort operation does not.

To avoid poorly specified orderings, the ordering can instead be learned. More straight-
forwardly, a function giving a score to each element can be learned, and the elements can
then be sorted by their scores. This raises the issue of how to learn such a scoring function.
More specifically, how are the gradients for this scoring function obtained? The ranking of
elements according to their sorting score20 is a piecewise-constant function, meaning that the
gradients are zero almost everywhere and undefined at the remaining locations. This would
not be a problem if there were labels for the perfect ranking at training time—in that case
the model could just predict the ranking, and gradients could be obtained by comparing the
model’s predictions to the ground truth. But in general, there are no labels for the perfect

20. That is, the function taking a list of elements to a list of ranks. For alphabetical sorting, for example, we
have (bat, cat, ant) 7→ (2, 3, 1).
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ranking. A good ranking is whatever allows the decoder (that is, the permutation-sensitive
network in Figure 8) to perform well. This makes getting proper gradients significantly more
difficult.

Backpropagating through piecewise-constant functions, however, is an established task
in deep learning. The straight-through estimator, for example, is a viable tool to apply
here (Bengio et al., 2013; Yin et al., 2019). Recently, a cheap differentiable sorting operation
with a computational cost of O(n log n) was also proposed by Blondel et al. (2020). To the
best of our knowledge, this has not been applied to standard set-based deep learning tasks,
but this area could certainly provide interesting applications of this method.

Liu et al. (2021) propose yet another approach: after ranking the inputs according to a
learned score function, a 1-dimensional convolution is applied to the ranked values. However,
in order to get gradients for the score function, Liu et al. (2021) multiply each value with
its score before feeding it into the convolutional layer. Interestingly, while the gradients do
backpropagate into the score function, they do not come from the sorting. The gradients
come from the scores being used as features later on.

5.2 Approximate Permutation Invariance

One motivation for k-ary Janossy pooling is its low computational cost relative to full M -ary
Janossy pooling. Recall that the high computational cost of M -ary Janossy pooling is
due to the fact that SM consists of M ! permutations, each of which must be computed.
Murphy et al. (2019) propose an alternative method of reducing this computational cost:
instead of pooling over all permutations in SM , a fixed number p < M ! of permutations
are randomly sampled. The pooling is then performed only over those random samples,
yielding approximate permutation invariance. Murphy et al. (2019) show that this method
can provide good empirical results even when setting p = 1. It is also possible to set, e.g.,
p = 1 during training and p > 1 at test time when the fidelity of the predictions is more
important, akin to ensemble methods. This could even be a potentially useful way to obtain
uncertainty estimates for the model’s predictions.

Pabbaraju and Jain (2019) approach approximate permutation invariance in a different
way. Inspired by generative adversarial networks (Goodfellow et al., 2014), they propose to
use an adversary that tries to find the permutation of the input data which maximises the
loss of the main task. This encourages the model to become close to permutation invariant
to minimise the impact of the adversary.

5.3 From Sets to Graphs

Although this paper is focused on sets, not graphs, there is an obvious link between these
two topics, which we briefly discuss. Graphs typically consist of nodes (which form sets) and
edges, where each edge connects two nodes. This can be extended to hypergraphs, which
include information attached to triplets of nodes (Yadati et al., 2019; Wei et al., 2020). From
this perspective, it becomes clear that a set can be seen as a graph without edges (Figure 9).

Whereas a set of M nodes without edge information can be represented as a vector of
length M , a fully-connected bi-directional graph has M(M−1) edges, which can be captured
in an M ×M adjacency matrix. Analogously, hypergraph data can be represented with
higher-order adjacency tensors. The concept of permutations can now easily be extended
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Sets: Information is 
only assigned to 
individual nodes.

Graphs: Information is 
assigned to edges, i.e., 
pairs of nodes.

Hypergraphs: Information is 
assigned to hyperedges, e.g., 
triplets of nodes.
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Features

Figure 9: From sets to graphs and hypergraphs. Sets can be extended to graphs by intro-
ducing the notion of edges. A permutation of the input now corresponds to a
permutation of the nodes together with the respective edges.

from sets to graphs: in addition to nodes, the adjacency matrices capturing the edge
information are transformed by the same permutation. This raises the question of whether
permutation-invariant architectures from the sets literature can be applied to graphs as well.
Interestingly, there is no canonical way to apply Deep Sets to graphs, as it is not clear how to
process the edge information. Permutation-equivariant models, by contrast, are applicable to
graphs without requiring additional complications. With self-attention algorithms (Vaswani
et al., 2017), for example, it is straightforward to include edge information (Veličković et al.,
2018; Fuchs et al., 2020). Permutation-equivariant models have also been studied in the
context of learning functions from sets to graphs (Serviansky et al., 2020).

Notably, Maron et al. (2019b) study the set of linear permutation-invariant or -equivariant
functions transforming vectorised versions of the adjacency tensors. In fact, there is an
orthogonal basis of such linear permutation-equivariant functions. The number of basis
vectors is connected to the Bell number and is, remarkably, independent of the number of
nodes in the graph (or hypergraph). As an example, the edge information of a bi-directional
graph can be written as an M ×M adjacency matrix or, after vectorising this matrix, as a
vector of length M2. This vector can now be linearly transformed by multiplying it with a
matrix of size M2 ×M2. Maron et al. (2019b) show that there is an orthogonal basis of
at most 15 different M2 ×M2 matrices21 which transform the vectorised adjacency matrix
in an equivariant manner. The number 15 is the fourth Bell number, and remarkably this
upper bound is independent of the size M of the graph.

This result shows a contrast between linear and nonlinear permutation-invariant functions.
The complexity of the space of linear functions does not change as the number of inputs
increases. By contrast, at least from the perspective of Deep Sets, the “complexity” of the
nonlinear function space—as measured by the necessary latent dimension—increases with
the number of inputs, as is shown in Section 3. Our main result in Section 4 shows that this
is the case even if we do not consider the whole function space, but only a dense subspace.

21. As noted in Finzi et al. (2021), for small M this basis may actually have fewer than 15 elements.

29



Wagstaff, Fuchs, Engelcke, Osborne and Posner

6. Universality Beyond Deep Sets

We have seen that Deep Sets is theoretically capable of representing all permutation-invariant
functions if the dimension of the latent space is at least as high as the cardinality of the
sets being processed. For large input set sizes, this can be prohibitively slow and memory-
consuming. Moreover, even for small set sizes, theoretical universality does not guarantee that
this is the best choice in practice. For example, from relational reasoning experiments (Fuchs
et al., 2019), it is known that Deep Sets is not always best at learning about interactions
between input elements. Especially when dependencies between elements are important
for the task, other architectures, such as self-attention, are often preferred. This raises the
question of how this empirical evidence of superior performance on some tasks relates to
general theoretical limitations of these models. In the following, we provide a summary of
the known sufficiency and necessity criteria for universal function representation for different
categories of set-based learning approaches.

6.1 Janossy Pooling

We consider k-ary Janossy pooling as depicted in Figure 1 and described in Section 2. We
assume a universal function approximator processing the permuted input subsets, a sum
over the processed inputs, and a final component—which is again a universal function
approximator—acting on the sum.

Definition 25 Let M,N, k ∈ N, x ∈ RM . Let f : RM → R. Write x{k} for the set of all
k-tuples of coordinates of x. We say that f has a continuous k-ary Janossy representation
via RN if there exist continuous functions φ : Rk → RN and ρ : RN → R such that

f(x) = ρ
( ∑

t∈x{k}

φ(t)
)
.

6.1.1 Case k = 1

This case is Deep Sets. In Sections 3 and 4, we provided an in-depth analysis of this case.
In brief, Janossy pooling for k = 1 can approximate all permutation-invariant functions if
the latent space dimension N is at least as large as the number of inputs M . Moreover, we
show that a smaller latent space (N < M) does not suffice in general.

6.1.2 Case 1 < k < M

This inherits sufficiency from the case k = 1: the network processing tuples of length k can
ignore all coordinates except the first. This recovers Deep Sets, though each element is seen
more than once, so the model must divide its output by the number of tuples having the
same first element. In Janossy pooling, this number is (M − 1)!/(M − k − 1)!. This gives
the following statement:

Theorem 26 Let f : RM → R be continuous and permutation invariant. Then f has a
continuous k-ary Janossy representation via RM for any choice of k.
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Figure 10: Necessary and sufficient conditions for the size of the latent dimension for Janossy
pooling. The large green circles show the minimum and maximum boundaries
according to our proofs. The smaller purple circles show possible true necessary
and sufficient conditions for universal function representation.

6.1.3 Case k = M

In this case, the first part of the neural network sees the entire input, and can therefore
directly approximate the desired function. The model must then divide by a factor which
takes into account the sum over the permuted terms, namely M !. This means that there
is no longer any requirement on the dimension of the latent space, and we can make the
following statement:

Theorem 27 Let f : RM → R be continuous and permutation invariant. Then f has a
continuous M -ary Janossy representation via R.

6.1.4 Open Questions

For the extreme cases of k-ary Janossy pooling, k = 1 and k = M , we know a necessary and
sufficient condition on the latent space dimension required for universal approximation. For
1 < k < M , however, there is a gap between the highest known necessary condition and the
lowest known sufficient condition. Figure 10 visualises the conditions we derived and what
the true, strongest statements might be. For k = 2, for example, we know that a latent
dimension of N = M is sufficient and a latent dimension of N = 1 is necessary in order to
be able to represent all permutation-invariant functions. However, it is possible that N = 2
is sufficient, or that N = M − 1 is necessary. This is an interesting open question, and we
leave further investigation to future work.

The proofs of our results on Deep Sets rely on the input elements being 1-dimensional.
It is known that Deep Sets is universal for approximation of set functions with higher-
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dimensional inputs,22 and indeed sufficient conditions on the latent space dimension are
known for both invariant (Han et al., 2019) and equivariant (Segol and Lipman, 2020;
Maron et al., 2019a) set functions. It is unknown, however, whether these known sufficiency
bounds are also necessary—indeed, no nontrivial necessary bound is known, other than the
1-dimensional case presented in Section 4.

6.2 Sorting

In Section 5.1, we described a category of methods which achieve permutation invariance by
sorting the inputs. We assume that a (potentially learned) scoring function is used to sort
the inputs. A list of sorted inputs is then fed to a universal function approximator—e.g., a
sufficiently large neural network. As the order of the sorted input is invariant with respect
to permutations of the input, the whole architecture is automatically permutation invariant.
Since the second part of the model is a universal approximator, this architecture choice
is therefore a universal function approximator for permutation-invariant functions and we
arrive at the following conclusion:

Theorem 28 Let f : RM → R be continuous and permutation invariant. Then for any
sorted version of the inputs, f has a continuous representation which acts on these sorted
inputs.

Caution must be exercised in the case where the sorting does not operate directly on the
inputs, but instead on features derived from the inputs. Universality still holds if the features
are a smooth bijective mapping from the inputs.

6.3 Approximate Permutation Invariance

In Section 5.2, we mentioned two approaches to approximate permutation invariance. These
models are in some sense too expressive—they may, depending on the exact implementation
details, be capable of approximating the permutation-invariant target function, but they
may also be capable of approximating functions which are not permutation-invariant.

In the approach of Pabbaraju and Jain (2019), permutation invariance is encouraged by
the training process, but the model class is not constrained to be permutation invariant—if
a permutation-sensitive function approximator is used to build the model, then the trained
model may retain the ability to distinguish between different permutations of the same set.
Whether the model is capable of approximating the target function depends entirely on the
model class chosen—Pabbaraju and Jain (2019) choose an LSTM, but other models could
be trained with a similar adversarial method.

In the case of approximate Janossy pooling it is similarly clear that, if a universal
approximator is used for the function whose outputs are pooled (i.e., used for the function f
in the notation of Equation 1), then the overall model inherits this universality. Although
permutation invariance is not guaranteed, the model is guaranteed to approximate permuta-
tion invariance in the following sense. Write p for the number of permutations sampled, and
write f for the permutation-sensitive function whose outputs are pooled. For a given set x,

22. Higher-dimensional inputs are also considered in the context of a similar sum-aggregation-based
permutation-invariant model proposed in Yarotsky (2022). This model is also shown to be univer-
sal.
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there are M ! possible permutations π, and therefore M ! possible outputs f
(
π(x)

)
. When

p = 1, we get an output sampled uniformly from these possible outputs, and we can view
this output as a random variable with variance σ2. For p > 1, the output is the mean of a
random sample of size p from the set of outputs of f . The variance of this random variable is

M !− p
M !− 1

· σ
2

p
.

This goes monotonically to 0 as p→M !.

7. Conclusion

This work provides a theoretical characterisation of the representation and approximation
of permutation-invariant functions. To this end, we focus on the Deep Sets architecture
from Zaheer et al. (2017) and derive sufficient and necessary conditions for continuous
function representation. This is achieved by noting the importance of considering continuous
transformations. We find that Deep Sets is only able to represent all continuous functions if
the latent space dimension is at least as high as the number of inputs. Further, we relate
these insights back to the broader paradigm of Janossy pooling, as introduced by Murphy
et al. (2019).

Continuing our focus on continuous transformations, we adopt a topological perspective
to answer the question of whether requiring universal function representation is an overly
strong criterion, and whether universal function approximation would be possible even with
lower-dimensional latent spaces. We turn again to the Deep Sets architecture and answer
this question in the negative. We show that functions exist which cannot be approximated
when the latent space dimension is lower than the number of inputs.

Regarding future work, it would be interesting to extend the theoretical analysis beyond
scalar-valued set elements to vector-valued set elements, as commonly encountered in practical
applications. We also believe that a deeper exploration of the connections between our
results and other aggregation-based methods, particularly self-attention, would be valuable.
Finally, practitioners would benefit from stronger and more specific practical guidance on the
application of Deep Sets. We see two main directions for producing such guidance. Firstly,
further theoretical work, particularly on the training-time behaviour of Deep Sets, could
strengthen the link between theoretical knowledge and practical recommendations. Secondly,
a detailed empirical investigation would be very valuable, particularly for assessing how the
performance of Deep Sets varies in response to changes in the task, the latent dimension,
and the number of input points.

We hope that our work will inspire future theoretical treatments of the subject, while
also providing practical guidance for machine learning practitioners.
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Appendix A. Mathematical Remarks

In this section we discuss some considerations arising from the mathematics in the main
text.

A.1 Infinite Sums

Throughout this paper we consider expressions of the form

Φ(x) =
∑
x∈x

φ(x) , (23)

where x is an arbitrary set. The meaning of this expression is clear when x is finite, but
when x is infinite, we must be precise about what we mean.

A.1.1 Countable Sums

We usually denote countable sums as, for example,
∑∞

i=1 xi. Note that there is an ordering
of the xi here, whereas there is no ordering in Equation (23). The reason that we consider
sums is for their permutation invariance in the finite case, but note that in the infinite case,
permutation invariance of sums does not necessarily hold! For instance, the alternating

harmonic series
∑∞

i=1
(−1)i

i can be made to converge to any real number simply by reordering
the terms of the sum. For expressions like Equation (23) to make sense, we must require
that the sums in question are indeed permutation invariant. This property is known as
absolute convergence, and it is equivalent to the property that the sum of absolute values of
the series converges. We therefore require everywhere that

∑
x∈x

∣∣φ(x)
∣∣ is convergent. For

any x where this is not the case, we will set Φ(x) =∞.

A.1.2 Uncountable Sums

It is well known that a sum over an uncountable set of elements only converges if all but
countably many elements are 0. Allowing sums over uncountable sets is therefore of little
interest, since it essentially reduces to the countable case.

A.2 Continuity on Variable-Size Sets

In Theorem 16, we consider functions f on [0, 1]≤M , the set of all subsets of [0, 1] containing
at most M elements. When we say that such a function is “continuous”, we mean that the
function fm induced by f on [0, 1]m by fm(x1, . . . , xm) := f

(
{x1, . . . , xm}

)
is continuous for

every m ≤M .

A.3 Remark on Theorem 12

The proof of Theorem 12 from Zaheer et al. (2017) can be extended to deal with multisets,
which are sets with repeated elements. To that end, we replace the mapping to natural
numbers c(x) : U → N with a mapping to prime numbers p(x) : U → P. We then choose
φ(x) = − log p(x). Therefore,

Φ(x) =

M∑
m=1

φ(xm) = log

M∏
m=1

1

p(xm)
,
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Figure 11: The 6-dimensional simplex ∆6, and the low-dimensional faces X+1
6 and X91

6 ,
visualised using the complete graph K7. Here, [m]6 denotes the vertex of ∆6

whose coordinates in R6 consist of m ones followed by 6−m negative ones.

which takes a unique value for each distinct x, therefore extending the validity of the proof
to multisets.

This choice of φ diverges with infinite multiset size. In fact, it is straightforward to show
that there is no function φ for which Φ provides a unique mapping for arbitrary multisets
while at same time guaranteeing convergence for infinitely large multisets. To see this, let
φ be a non-zero function, and let x ∈ U such that φ(x) = a 6= 0. Then the multiset x
comprising infinitely many identical members x would give

Φ(x) =

∞∑
i=1

φ(xm) =

∞∑
i=1

a = ±∞ .

A.4 Visualising High-Dimensional Simplices

In the proof of Theorem 20, we make heavy use of the N -dimensional simplex ∆N , its

N −1-dimensional faces ∆
(i)
N , and the two opposite faces X+1

M and X91
M of the M -dimensional

simplex ∆M . To mentally keep track of all these different objects, it is helpful to have a
way of visualising them. Although these simplices are high-dimensional objects, they can be
visualised easily as graphs, as shown in Figure 11.

An N -dimensional simplex can be defined as the convex hull of N + 1 points in general
position.23 We can represent this as the complete graph KN+1, where just as any pair of
vertices of the simplex are joined by an edge, so are any pair of vertices of the graph. An
N − 1-dimensional face of the simplex is just the convex hull of N of the N + 1 vertices,

23. That is, no three points are collinear, no four points are coplanar, etc.
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and this can be viewed as an induced KN subgraph of KN+1. Lower-dimensional faces can
be viewed similarly.

Under our definition of ∆N , the vertices of the simplex are the points whose coordinates
are a (possibly empty) sequence of ones followed by a sequence of negative ones. Any such
vertex can be written in shorthand as [m]N , indicating the point in dimension N consisting
of m ones followed by all negative ones. For example, [2]3 = (1, 1, 91), the vertex of ∆3

beginning with two ones.
Figure 11 illustrates this way of visualising ∆N , showing the 6-dimensional simplex ∆6

represented as a complete graph with 7 vertices. With the vertices arranged appropriately,
the faces X+1

6 and X91
6 correspond to the indicated subgraphs, and it is visually clear that

it is sensible to describe them as “opposite” faces of the simplex. The faces ∆
(0)
6 and ∆

(6)
6

correspond to the subgraphs obtained by removing [0]6 and [6]6 respectively.

A.5 Extending Theorem 20 to Higher Dimensions

As discussed in the main text, an interesting line of future work lies in extending Theorem 20
to sets of higher-dimensional elements. We briefly make note of an obstacle to extending the
arguments of this work to the higher-dimensional case.

Our proof of Theorem 20 makes use of the fact that an arbitrary continuous function f on
RM can be used to construct a continuous permutation-invariant function by composing with
sort. This simplifies the process of defining a hard-to-approximate continuous permutation-
invariant target function f∗, as in Equation (8). For d-dimensional inputs with d > 1,
however, this simplification is not possible because there is no continuous sorting function
on Rd.

In fact we can say something slightly stronger than this. The important property of sort
for the purpose above is that it maps all permutations of a given set to the same canonical
permutation. We can codify this property of a function f as follows:

1. f is permutation invariant.

2. For any set x, there is a permutation π such that f
(
π(x)

)
= π(x).

We refer to any such function as a quasi-sorting function. sort is a quasi-sorting function,
but this definition also includes many functions which cannot be defined by sorting according
to any order relation. For sets of d-dimensional elements, there is not only no continuous
sorting function, there is also no continuous quasi-sorting function. To see this, we give an
informal argument which can easily be made precise.

Consider the simplest case, a set of two 2-dimensional elements, and let g be a quasi-
sorting function. As is the case throughout this paper, we are working with an ordered
representation of this set, in this case as an element x of R2×2. That is, we have a 2 × 2
matrix x, where each row gives the coordinates of one 2-dimensional element. We can
visualise a set of two 2-dimensional elements as being a pair of points in the plane.

Now rotate this pair of points around their midpoint, in a continuous motion, through
an angle of 180 degrees. This motion is illustrated in Figure 12, with the point in the first
row of x labelled “1” and the point in the second row labelled “2”. The points are coloured
according to which row they belong to in the canonical permutation g(x), with solid blue
indicating the first row and striped red indicating the second row.
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Figure 12: Rotating a pair of points around their midpoint, and seeing how the canonical
ordering changes. Figures 12a and 12e represent the same set, so the canonical
ordering g(x) must be the same in both cases. This is visually represented by
the colours of the points, where the solid blue point occupies the first row of
g(x) and the striped red point occupies the second row of g(x). In order for the
colours in 12a and 12e to match, point “1” must switch from blue to red at some
point during the 180-degree rotation from 12a to 12e. This switching of colours
represents swapping the rows of g(x), which is a discontinuity.
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After a 180-degree rotation, the set is the same as it was at the beginning. The canonical
permutation—that is, the colouring—is therefore also the same as at the beginning. This
means that at some point during the rotation, the colour of each point has switched—in
Figure 12, this happens between 12b and 12c. This switching of colours corresponds to
swapping the rows of the output matrix. Since the rows of the matrix are distinct (because the
points represented by each row are a constant distance apart), this swapping is discontinuous,
and therefore g is not continuous.

Appendix B. Function Representation

In this section we state and prove some additional theorems on function representation. We
also provide proofs of some theorems stated in Section 3.

Theorem 29 There exist functions f : 2Q → R such that, whenever (ρ, φ) is a sum-
decomposition of f via R, φ is discontinuous at every point q ∈ Q.

Theorem 30 Given a space X, write XF for the set of all finite subsets of X. Let
f : RF → R. Then f is sum-decomposable via R.

Theorem 31 If U is uncountable, then there exist functions f : 2U → R which are not sum-
decomposable. This holds even if the sum-decomposition (ρ, φ) is allowed to be discontinuous.

B.1 Proof of Theorem 29

Theorem 29 There exist functions f : 2Q → R such that, whenever (ρ, φ) is a sum-
decomposition of f via R, φ is discontinuous at every point q ∈ Q.

Proof Consider f(x) = sup(x), the least upper bound of x. Let (ρ, φ) be a sum-
decomposition of sup via R, so we have

sup(x) = ρ
(
Φ(x)

)
. (24)

First note that φ(q) 6= 0 for any q ∈ Q. If we had some rational q with φ(q) = 0, then we
would have, for every x ⊂ Q,

Φ(x) = Φ(x) + φ(q) = Φ
(
x ∪ {q}

)
.

So by Equation (24), sup(x) = sup
(
x∪ {q}

)
for all x ⊂ Q. But then, for instance, we would

have

q − 1 = sup
(
{q − 1}

)
= sup

(
{q − 1, q}

)
= q .

This is a contradiction, so φ(q) 6= 0.

Next, note that Φ(x) must be finite for every upper-bounded x ⊂ Q (since sup is
undefined for unbounded x, we do not consider such sets, and may allow Φ to diverge). Even
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if we allowed the domain of ρ to be R ∪ {∞}, suppose Φ(x) =∞ for some upper-bounded
set x. Then

sup(x) = ρ
(
Φ(x)

)
= ρ(∞)

= ρ
(
∞+ φ

(
sup(x) + 1

))
= ρ

(
Φ
(
x ∪ {sup(x) + 1}

))
= sup

(
x ∪ {sup(x) + 1}

)
= sup(x) + 1 .

This is a contradiction, so Φ(x) <∞ for any upper-bounded set x.
Now from the above it is immediate that, for any upper-bounded set x, only finitely

many x ∈ x can have φ(x) > 1
n . Otherwise we can find an infinite upper-bounded set y ⊂ x

with φ(y) > 1
n for every y ∈ y, and Φ(y) =∞.

Finally, let q ∈ Q. We will now construct a sequence qn with:

1. qn → q,

2. φ(qn)→ 0.

Since we have already shown that φ(q) 6= 0, point 2 implies that φ(qn) 6→ φ(q). By point 1,
this implies that φ is discontinuous at q.

So now, for each n ∈ N, consider the set Bn of points which lie within 1
n of q. Since

only finitely many points p ∈ Bn have φ(p) > 1
n , and Bn is infinite, there must be a point

qn ∈ Bn with φ(qn) < 1
n . The sequence of such qn clearly satisfies both points above, and so

φ is discontinuous at q. Since q was arbitrary, φ is discontinuous everywhere.

B.2 Proof of Theorem 30

Theorem 30 Given a space X, write XF for the set of all finite subsets of X. Let
f : RF → R. Then f is sum-decomposable via R.

Proof Define Φ : RF → R by Φ(x) =
∑

x∈x φ(x). If we can demonstrate that there exists
some φ such that Φ is injective, then we can simply choose ρ = f ◦ Φ−1 and the result is
proved.

Say that a set x ⊂ R is finite-sum-distinct (f.s.d.) if, for any finite subsets a,b ⊂ x,∑
a∈a a 6=

∑
b∈b b. Let c be the cardinality of R. If we can show that there is a finite-sum-

distinct set d ⊂ R with cardinality c, then we can simply choose φ to be an injection from R
to d. Then, by finite-sum-distinctness, Φ will be injective, and the result is proved.

Now recall the statement of Zorn’s Lemma: suppose P is a partially ordered set (or
poset) in which every totally ordered subset has an upper bound. Then P has a maximal
element.

The set of all f.s.d. subsets of R, which we will denote D, forms a poset ordered by
inclusion. Supposing that D satisfies the conditions of Zorn’s Lemma, it must have a maximal
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element dmax. Maximality of dmax within D means that, for any set e with dmax ( e, e /∈ D.
Equivalently, the maximality of dmax means that adding any additional elements to dmax

causes it to lose the property of finite-sum-distinctness. We claim that any such maximal
set dmax must have cardinality c.

To see this, let d be a f.s.d. set with infinite24 cardinality κ < c. We will show that
d 6= dmax. Define the forbidden elements with respect to d to be those elements x of R such
that d ∪ {x} is not f.s.d. We denote this set of forbidden elements Fd. By definition, we
have that x ∈ Fd if and only if there exist finite subsets dA,dB of d such that∑

d∈dA

d = x+
∑
d′∈dB

d′ .

So we can write x as a sum of finitely many elements of d, minus a sum of finitely many
other elements of d. So there is a surjection from pairs of finite sets of d to elements of Fd.
That is,

|Fd| ≤ |dF × dF | .
But since d is infinite,

|dF × dF | = |d| = κ < c .

So |Fd| < c, and therefore d ∪ Fd 6= R. So there exists some x ∈ R \ (d ∪ Fd). d ∪ {x} is
f.s.d, and therefore d is not maximal. This demonstrates that dmax must have cardinality c.

To complete the proof, it remains to show that D satisfies the conditions of Zorn’s
Lemma. That is, it remains to show that every totally ordered subset C of D has an upper
bound. So let C be a totally ordered subset of D, and consider

cub :=
⋃
c∈C

c .

We claim that cub is an upper bound for C within D. It is clear that c ⊂ cub for every c ∈ C,
so it remains to be shown that cub ∈ D. That is, we must show that cub is f.s.d.

Let c1, . . . , cm, c
′
1, . . . , c

′
n be elements of cub. We wish to show that

m∑
i=1

ci 6=
n∑
j=1

c′j . (25)

By construction of cub, there must be sets c1, . . . , cm, c
′
1, . . . , c

′
n ∈ C with ci ∈ ci and c′j ∈ c′j .

Since C is totally ordered by inclusion, there exists some set cmax ∈ {c1, . . . , cm, c
′
1, . . . , c

′
n},

with ci ⊂ cmax and c′j ⊂ cmax for all i, j. This implies that ci ∈ cmax, c′j ∈ cmax, for all
i, j. Since cmax ∈ C, it is finite-sum-distinct. Therefore, Equation (25) holds, and cub is
finite-sum-distinct. In summary:

1. D satisfies the conditions of Zorn’s Lemma.

2. Therefore there exists a maximal finite-sum-distinct set, dmax.

3. We have shown that dmax must have cardinality c.

24. Any finite set d cannot be maximal within D, since we can add new elements to any finite set without
losing finite-sum-distinctness.
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4. Since dmax has cardinality c, we can choose φ to be an injection from R into dmax.

5. Given such a φ, finite-sum-distinctness of dmax implies that Φ(x) =
∑

x∈x φ(x) is
injective on RF .

6. Given this injective Φ, we choose ρ = f ◦ Φ−1.

7. This choice gives us f(x) = ρ
(
Φ(x)

)
by construction.

This completes the proof.

B.3 Proof of Theorem 31

Theorem 31 If U is uncountable, then there exist functions f : 2U → R which are not sum-
decomposable. This holds even if the sum-decomposition (ρ, φ) is allowed to be discontinuous.

Proof Consider f(x) = sup(x).
As discussed in Appendix A.1.2, a sum over uncountably many elements can converge

only if only countably many elements are non-zero. But as in the proof of Theorem 29,
φ(x) 6= 0 for any x. So it is immediate that sum-decomposition is not possible for functions
operating on uncountable subsets of U.

Even restricting to countable subsets is not enough. As in the proof of Theorem 29, we
must have that for each n ∈ N, φ(x) > 1

n for only finitely many x. But then if this is the
case, let Un be the set of all x ∈ U with φ(x) > 1

n . Since φ(x) 6= 0, we know that U =
⋃
Un.

But this is a countable union of finite sets, which is impossible because U is uncountable.

B.4 Proof of Theorem 15

Theorem 15 Let M ∈ N, and let f : RM → R be a continuous permutation-invariant
function. Then f is continuously sum-decomposable via RM .

Proof The reverse implication is trivial. We already know from Zaheer et al. (2017) that
the function Φ : ∆M → RM+1 defined as follows is a homeomorphism onto its image:

Φq(x) :=

M∑
m=1

φq(xm) q = 0, . . . ,M ,

φq(x) := xq q = 0, . . . ,M .

Now define Φ̃ : ∆M → RM by

Φ̃q(x) :=

M∑
m=1

φ̃q(xm) q = 1, . . . ,M ,

φ̃q(x) := xq q = 1, . . . ,M .
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Note that Φ0(x) = M for all x, so Im(Φ) = {M} × Im(Φ̃). Since {M} is a singleton, these
two images are homeomorphic, with a homeomorphism given by

γ : Im(Φ̃)→ Im(Φ) ,

γ(x1, . . . , xM ) := (M,x1, . . . , xM ) .

Now by definition, Φ̃ = γ−1 ◦Φ. Since this is a composition of homeomorphisms, Φ̃ is also a
homeomorphism. Therefore (f ◦ Φ̃−1, φ̃) is a continuous sum-decomposition of f via RM .

B.5 Proof of Theorem 16

Theorem 16 (Variable set size) Denote the set of subsets of [0, 1] containing at most
M elements by [0, 1]≤M . Let f : [0, 1]≤M → R be continuous and permutation invariant.
Then f is continuously sum-decomposable via RM .

Proof We use the adapted sum-of-power mapping Φ̃ from above, denoted in this proof by
Φ,

Φq(x) :=
M∑
m=1

φq(xm) q = 1, . . . ,M ,

φq(xm) := (xm)q q = 1, . . . ,M ,

which is shown above to be injective (up to reordering input sets). We separate Φq(x) into
two terms:

Φq(x) =

M ′∑
m=1

φq(xm) +

M∑
m=M ′+1

φq(xm) .

For an input set x with M ′ = M −P elements, with P ≥ 0, we say that the set contains M ′

“actual elements” as well as P “empty” elements which are not part of the input set. Those
P “empty elements” can be regarded as place fillers when the size of the input set is smaller
than M , i.e., when M ′ < M .

We fill in these P elements with a constant value k /∈ [0, 1], preserving the injectivity of
Φq(x) for input sets x of arbitrary size M ′:

Φq(x) =

M ′∑
m=1

φq(xm) +

M∑
m=M ′+1

φq(k) . (26)
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Equation (26) is no longer strictly speaking a sum-decomposition. This can be fixed by
rearranging the expression:

Φq(x) =

M ′∑
m=1

φq(xm) +

M∑
m=M ′+1

φq(k)

=
M ′∑
m=1

φq(xm) +
M∑
m=1

φq(k)−
M ′∑
m=1

φq(k)

=

M ′∑
m=1

[φq(xm)− φq(k)] +

M∑
m=1

φq(k) .

(27)

The last term in Equation (27) is a constant value which only depends on the choice of k

and is independent of x and M ′. Hence, we can replace φq(x) by φ̂q(x) := φq(x) − φq(k).

This leads to a new sum-of-power mapping Φ̂(x) with

Φ̂q(x) =

M ′∑
m=1

φ̂q(xm)

= Φq(x)−M · φq(k) .

Φ̂ is injective, since Φ is injective and the last term in the above sum is constant. Φ̂ is also
in the necessary form for a sum-decomposition.

For each m < M , we can follow the reasoning used in the rest of the proof of Theorem 13
to note that Φ̂ is a homeomorphism when restricted to sets of size m—we denote these
restricted functions by Φ̂m. Now each Φ̂−1

m is a continuous function into Rm. We can
associate with each a continuous function Φ̂−1

m,M which maps into RM , with the M −m
tailing dimensions filled with the value k.

Now the domains of the Φ̂−1
m,M are compact, since the domain of Φ̂−1

m,M is just the image

of the compact set [0, 1]m under the continuous function Φ̂m. The domains of the Φ̂−1
m,M can

also be made disjoint, by taking k sufficiently large (k ≥ 2M suffices). We can therefore find
a function Φ̂−1

C which is continuous on RM and agrees with each Φ̂−1
m,M on its domain.

To complete the proof, let Y be a connected compact subset of R with k ∈ Y, [0, 1] ⊂ Y .
Let f̂ be a permutation-invariant function on YM satisfying

f̂(x) =

{
f(x) x ⊂ [0, 1] ,

f
(
x ∩ [0, 1]

)
x ⊂ [0, 1] ∪ {k} .

We can choose f̂ to be continuous because f is continuous. Then (f̂ ◦ Φ̂−1
C , φ̂) is a continuous

sum-decomposition of f .
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B.6 Max-Decomposition

Analogously to sum-decomposition, we define the notion of max-decomposition. A function
f is max-decomposable if there are functions ρ and φ such that

f(x) = ρ
(
maxi

(
φ(xi)

))
,

where the max is taken over each dimension independently in the latent space. Our definitions
of decomposability via Z and continuous decomposability also extend to the notion of max-
decomposition.

We now state and prove a theorem which is closely related to Theorem 14, but which
establishes limitations on max-decomposition, rather than sum-decomposition.

Theorem 32 Let M > N ∈ N. Then there exist continuous permutation-invariant functions
f : RM → R which are not max-decomposable via RN .

Note that this theorem rules out any max-decomposition, whether continuous or discon-
tinuous. We specifically demonstrate that summation is not max-decomposable.

Proof Consider sum(x) =
∑M

i=1 xm. Let φ : R → RN , and let x ∈ RM such that xi 6= xj
when i 6= j.

For n = 1, . . . , N , let µ(n) ∈ {1, . . . ,M} such that

maxi
(
φ(xi)n

)
= φ(xµ(n))n .

That is, φ(xµ(j)) attains the maximal value in the j-th dimension of the latent space among
all φ(xi). Now since N < M , there is some m ∈ {1, . . . ,M} such that µ(n) 6= m for any
n ∈ {1, . . . , N}. So now consider x̃ defined by

x̃i := xi for i 6= m,

x̃m := xµ(1) .

Then

maxi
(
φ(xi)

)
= maxi

(
φ(x̃i)

)
.

But since we chose x such that all xi were distinct, we have
∑M

i=1 xi 6=
∑M

i=1 x̃i by the
definition of x̃. This shows that φ cannot form part of a max-decomposition for sum. But φ
was arbitrary, so no max-decomposition exists.

Appendix C. Function Approximation

In this section we formalise the stronger statement of Theorem 20 described in Section 4,
and we complete the proof of Lemma 24.
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C.1 A Stronger Statement of Theorem 20

Given a function f : IM → R, write Vf for the variation of f :

Vf := max
x∈IM

(
f(x)

)
− min

x∈IM

(
f(x)

)
.

Theorem 20 (Strong Form) Let M,N ∈ N with M > N . There exists a continuous,
non-constant, permutation-invariant function f : IM → R such that:

1. f is affine on ∆M .

2. For any continuous sum-decomposition ρ ◦ Φ via RN , there is some x ∈ IM with∣∣ρ(Φ(x)
)
− f(x)

∣∣ ≥ Vf
2 .

C.2 Completing the Proof of Lemma 24

Lemma 24 Let n ∈ N. Let Γn be defined as in Equation (12). Then there exists a
continuous function νn : In → ∆n such that, for x ∈ ∂In,

Γn
(
νn(9x)

)
= −Γn

(
νn(x)

)
. (19)

Proof
We proceed by induction. We state our induction hypotheses as follows, in the order in

which we prove the corresponding conclusions:

Hypothesis 1 νn−1 is continuous.

Hypothesis 2 Let x ∈ In−1 and 1 ≤ j < n− 1. Then νn−1(x)j ≥ νn−1(9x)j+1.

Hypothesis 3 The codomain of νn−1 is ∆n−1.

Hypothesis 4 Let x ∈ ∂In−1. Then Γn−1

(
νn−1(9x)

)
= −Γn−1

(
νn−1(x)

)
.

Hypotheses 1, 3 and 4 come from the statement of the lemma. Hypothesis 2 is a technical
condition which is required for the proof. We will refer to these statements as “hypotheses”
when referring to the n−1 case, and “conclusions” when referring to the n case. Conclusion 4
is the main claim of the lemma—Conclusions 1 to 3 will enable us to prove Conclusion 4.

For the base case n = 1, let ν1(x) := x. Conclusions 1 and 3 are trivial. Conclusion 2
is also trivial—there is no j with 1 ≤ j < 1, and so there are no inequalities to satisfy.
∂I1 = {91, 1}, so Conclusion 4 reduces to checking that Γ1(91) = −Γ1(1). This is true by
definition of Γ, so the base case holds.

For the inductive step, we will prove each conclusion in sequence.

C.2.1 Conclusion 1—Defining the Continuous Function νn

We define ν+
n : I+

n → ∆n, ν−n : I−n → ∆n as follows:

ν+
n (x) :=

(
1, νn−1(x)

)
,

ν−n (x) :=
(
νn−1(9x), 91

)
= α

(
ν+
n (9x)

)
.
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These definitions follow the partial definition of νn given in Section 4.2. ν+
n and ν−n are

both continuous by continuity of νn−1 (Hypothesis 1). Both functions have codomain ∆n by
Hypothesis 3. We will define νn to agree with ν+

n and ν−n on their domains, and extend νn
to the rest of In by interpolating between ν+

n and ν−n . As discussed in Section 4.2, any point
x ∈ In lies on a line running parallel to the n-th coordinate axis, and this line meets I+

n , I
−
n

at x+,x− respectively. We interpolate along these “vertical” lines to define νn on the rest
of In. Simple linear interpolation does not define a function with the right properties, so
we instead define the following piecewise-linear interpolation scheme—Figure 13 gives an
example of how this interpolation scheme works for n = 5.

Divide the straight line segment from x+ to x− into n sections of equal length, with
endpoints x(1), . . . ,x(n+1) (so x(1) = x+ and x(n+1) = x−). We fix the value of νn at each
endpoint and linearly interpolate between them. For compactness, we write y+ := ν+

n (x+)
and y− := ν−n (x−), and make the following definition:

mj := median(y+
j , y

−
j−1, y

−
j ) .

Then we fix νn at the endpoints as follows:

νn(x(i))j :=


y+
j i < j ,

mj i = j ,

y−j i > j .

(28)

The special case i = j = 1 depends on ν−n (x−)0, which is undefined—for consistency with
ν+
n , we must set νn(x(1))1 = y+

1 . By continuity of ν+
n , ν−n , median, and linear interpolation,

the function νn defined by the interpolation scheme is continuous. Conclusion 1 is thus
established.

In the rest of the proof, we will often use the more verbose notation when referring to
y±, writing ν±n (x±) to make the dependence on x explicit. We will use the compact notation
y± where this dependence is less important.

C.2.2 Conclusion 2—A Useful Inequality

First we show that for every j, we have

y+
j ≥ y−j . (29)

By definition,

y+
j = νn(x+)j =

{
1 j = 1 ,

νn−1(x)j−1 j > 1 ;

y−j = νn(x−)j =

{
νn−1(9x)j j < n ,

91 j = n .

Equation (29) is therefore trivial for j = 1 and j = n, since Hypothesis 3 implies that νn−1

is bounded between 91 and 1. For 1 < j < n, Equation (29) is exactly Hypothesis 2, and is
therefore true by induction. Note also from the above definitions that

νn
(
x−
)
j

= νn
(
(9x)+

)
j+1

1 ≤ j < n . (30)

46



Universal Approximation of Functions on Sets

I+
5

I−5

I5

x+

x

x−

x(1) = x+

x(2)

x =
x(2)+x(3)

2

x(3)

x(4)

x(5)

x(6) = x−

ν5

(
1 1

2
1
2

0 91
2

)
=ν5(x(1))

(
1 1

2
1
2

0 91
2

)
=ν5(x(2))(

1 1
4

1
4

0 91
2

)
=ν5(x)(

1 0 0 0 91
2

)
=ν5(x(3))

(
1 0 91

2
91
2

91
2

)
=ν5(x(4))

(
1 0 91

2
91 91

)
=ν5(x(5))

(
1 0 91

2
91 91

)
=ν5(x(6))

Figure 13: An example of how the interpolation scheme works for n = 5, with x chosen
to lie on a surface vertical. The specific values of ν5(x(1)) and ν5(x(6)) shown
here are purely illustrative, but the remaining values are computed according
to our interpolation scheme. Equation (28) directly implies that the value of νn
at successive endpoints can differ only along the indicated vertical arrows—for
instance, νn(x(1)) and νn(x(2)) can differ only in the first and second places. One
perspective on this is to view the function values νn(x(i))j as the entries of a
matrix Nij—Equation (28) fixes the above- and below-diagonal entries of N
to match y+ and y− respectively, so values can only change across the main
diagonal. Crossing the main diagonal corresponds to moving along the vertical
arrows shown above.

The final part of the proof of Lemma 24 demonstrates that, along a surface
vertical, the values of νn either do not change from endpoint to endpoint, as seen
here between x(1) and x(2), or they change in equal pairs, as seen here between x(2)

and x(3). In either case, the value of Γn◦νn is not affected—trivially in the former
case, and in the latter case because equal pairs cancel to 0 in the alternating
sum which defines Γn (Equation 12). Importantly, Γn ◦ νn is constant not only at
consecutive endpoints, but also when linearly interpolating between the endpoints.
In the above, for instance, Γ5

(
ν5(x)

)
= Γ5

(
ν5(x(2))

)
= Γ5

(
ν5(x(3))

)
, because the

second and third coordinates are equal and cancel to 0 under Γn. To show that
this Γ-equivalence property always holds, we rely on νn being sufficiently “well
behaved” on I+

n and I−n . In particular we will see that Equation (33), which
relies on Hypothesis 2, is crucial.
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Figure 13 (cont.): Here we have illustrated the interpolation scheme along a surface vertical.
The same interpolation scheme applies across all of In, with the same
behaviour of changing only along the vertical arrows (or equivalently,
only changing across the main diagonal of the matrix N ). However, the
Γ-equivalence property discussed above only holds on surface verticals,
and does not hold on the rest of In.

Equation (29) implies, by definition of mj , that y+
j ≥ mj ≥ y−j for all j. Therefore, by

Equation (28),

νn(x(i))j ≥ νn(x(i+1))j 1 ≤ i ≤ n, all j . (31)

This implies that for all x and for all j, we have

νn(x+)j ≥ νn(x)j ≥ νn(x−)j .

Therefore for 1 ≤ j < n, by Equation (30), we have

νn(x)j ≥ νn(x−)j

= νn((9x)+)j+1

≥ νn(9x)j+1 .

This final inequality is exactly Conclusion 2.

C.2.3 Conclusion 3—The Codomain of νn is ∆n

We must show that νn(x)j is a descending sequence in j. On I+
n and I−n , this follows

immediately by definition and by Hypothesis 3. Away from I+
n and I−n , we must consider

the interpolation scheme. We want νn(x)j ≥ νn(x)j+1 for all j. We only need to check this
inequality at the endpoints x(i) of the interpolation scheme—if it holds at the endpoints,
then the function value at any other point is a convex combination of points from ∆n, and
∆n is convex.

The desired inequality is therefore as follows:

νn(x(i))j ≥ νn(x(i))j+1 all i, 1 ≤ j < n . (32)

To prove this, we will make use of the following inequality, which we claim holds for 1 < j < n:

y−j−1 ≥ y+
j+1 . (33)

Expanding definitions, y−j−1 = νn−1(9x)j−1 and y+
j+1 = νn−1(x)j . Equation (33) therefore

follows directly from Hypothesis 2.

To prove Equation (32), there are five cases to check, enumerated below. For case 4, we
will make use of the fact that a ≥ median(a, b, c) if and only if a ≥ b or a ≥ c. For case 5,
we will make use of the fact that median(a, b, c) ≥ min(a, b).
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1. i < j. Expanding definitions, we need

y+
j ≥ y+

j+1 .

This is the I+
n case, which as already noted is true by definition and induction.

2. i = j = 1. This is also the I+
n case.

3. i > j + 1. Similarly, this is the I−n case.

4. i = j + 1. Expanding definitions, we need

y−j ≥ median
(
y+
j+1, y

−
j , y

−
j+1

)
.

This is true because y−j ≥ y−j+1, which is the I−n case.

5. i = j > 1. Expanding definitions, we need

median
(
y+
j , y

−
j−1, y

−
j

)
≥ y+

j+1 .

This follows because y+
j+1 ≤ min(y−j−1, y

+
j ). Equation (33) implies y+

j+1 ≤ y−j−1, and

y+
j+1 ≤ y+

j is the I+
n case.

Equation (32) therefore holds, so Conclusion 3 is established.

C.2.4 Conclusion 4—The Borsuk-Ulam Condition

In this section we will freely make use of the following inequalities, which we have already
shown to be true:

y+
j ≥ y+

j+1 , y−j ≥ y−j+1 ,

y+
j ≥ y−j , y−j−1 ≥ y+

j+1 .

The top inequalities hold because νn(x) ∈ ∆n (Conclusion 3). The bottom left inequality is
Equation (29). The bottom right inequality is Equation (33).

Conclusion 4 applies to x ∈ ∂In. As shown in Section 4.2, for x ∈ I+
n ∪ I−n , we have

Γn
(
νn(9x)

)
= −Γn

(
νn(x)

)
.

The remaining points on the surface are the points x ∈ ∂In\(I+
n ∪ I−n )—that is, points lying

on surface verticals—and for the remainder of the proof we consider only these points. We
claim that Γn

(
νn(x)

)
= Γn

(
νn(x+)

)
. That is, Γn ◦ νn is constant along surface verticals.

As noted in Section 4.2, this will imply that Conclusion 4 holds on all of ∂In. To prove
our claim, we first define the relation of Γ-equivalence on ∆n, denoted by ∼Γ. We define
x1 ∼Γ x2 if and only if Γn(x1) = Γn(x2) for every choice of φ. For an alternative view on
this relation, given x ∈ ∆n, form xΓ by deleting pairs of equal coordinates until no matching
pairs remain. For example:

(1, 1
2 ,

1
2 ,

1
2 , 0, 9

1
2 , 9

1
2)Γ = (1, 1

2 , 0) .
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Then x1 ∼Γ x2 if and only if (x1)Γ = (x2)Γ. The reverse implication follows from the
alternating-sum form of Γ, so that consecutive equal coordinates cancel to 0. For the forward
implication, if (x2)Γ 6= (x2)Γ, then there is some coordinate xi which appears in (x1)Γ

but not in (x2)Γ. Choosing φ to be non-zero at this co-ordinate, and zero at every other
coordinate of (x1)Γ and (x2)Γ, we obtain Γn(x1) 6= Γn(x2).

Our claim is that the relation ∼Γ is preserved under the interpolation between νn(x+)
and νn(x−). We will prove this by showing that the successive endpoints are Γ-equivalent,
and that the interpolation between any two endpoints preserves Γ-equivalence.

Consider two successive endpoints in our interpolation scheme, x(I) and x(I+1). By
definition, we have νn(x(I))j = νn(x(I+1))j if I > j or I + 1 < j. This leaves I = j or
I + 1 = j. That is, νn(x(I)) can differ from νn(x(I+1)) only in the I-th and I + 1-th
coordinates. From the definition of the interpolation scheme, the relevant quantities are as
follows:

νn(x(I))I = mI , νn(x(I))I+1 = y+
I+1 ,

νn(x(I+1))I = y−I , νn(x(I+1))I+1 = mI+1 .

There are two special cases here. When I = 1, νn(x(1))1 = y+
1 instead of m1. When I = n,

the quantities y+
n+1 and mn+1 are not defined. For now, we assume 1 < I < n, and we

address the special cases at the end of the proof.
We have already shown the following inequalities between the four quantities above—the

left-to-right inequalities are because νn(x) ∈ ∆n (from Conclusion 3), and the top-to-bottom
inequalities are instances of Equation (31).

mI ≥ y+
I+1

> >

(34)

y−I ≥ mI+1

Recalling the visualisation of Figure 13, the four quantities above correspond to two
pairs of coordinates joined by vertical arrows. For example, I = 3 corresponds to the
transition between νn(x(3))3,4 and νn(x(4))3,4. Another way of seeing the above inequalities
is to consider the values νn(x(i))j as a matrix Nij , where the entries of N are (non-strictly)
decreasing downwards and decreasing to the right—see Figure 13 for more on this perspective.

In the above array of four values, we wish to show that either both columns are equal,
or both rows are equal. That is, we wish to show that one of the following two cases holds:

1. mI = y+
I+1 and mI+1 = y−I (columns of Equation 34 are equal);

2. mI = y−I and mI+1 = y+
I+1 (rows of Equation 34 are equal).

In case 1, linear interpolation between endpoints implies that νn(x)I = νn(x)I+1 for every x
on the line segment between x(I) and x(I+1). Since these values are all equal in every other
coordinate, and since Γ-equivalence is not affected by adding a pair of equal coordinates, all
of the values νn(x) for x on this section of the surface vertical are Γ-equivalent. In case 2,
we have νn(x(I)) = νn(x(I+1)). Linear interpolation between endpoints therefore trivially
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gives Γ-equivalence, because νn is constant between the endpoints x(I) and x(I+1). So in
either case, Γ-equivalence is preserved by the interpolation, and therefore Γn ◦ νn is constant
along surface verticals.

To prove that either case holds, we just need to show that, in Equation (34), either the
top or the left equality holds, and either the bottom or the right equality holds. This will
imply that either the rows or the columns are equal, since otherwise we would be in one of
the contradictory situations shown below.

mI = y+
I+1 mI > y+

I+1

> = = >

y−I > mI+1 y−I = mI+1

By definition of mI+1 and our inequalities on the yI , it is immediate that we have either the
bottom or the right equality—either mI+1 = y−I , or mI+1 = y+

I+1.
The case for the top and left equalities is more complex. By definition of mI , and our

inequalities on the yI , we have that mI = y−I if either y−I = y−I−1 or y−I = y+
I . We have

mI = y+
I+1 if either y+

I+1 = y+
I or y+

I+1 = y−I−1. So for neither the top nor the left equality to
hold, all four of these statements must be false. That is, applying our known inequalities for
the yI , we must have

y+
I > y−I ,

y−I−1 > y−I ,

y+
I > y+

I+1 ,

y−I−1 > y+
I+1 .

(35)

In the following representation, letting a := min(y+
I , y

−
I−1), these inequalities say that

everything to the left of the diagonal line is strictly greater than everything to the right of
the diagonal line. The special case I = 1 results in essentially the same picture, with y+

1

being the only point to the left of the diagonal line.

y+
1 . . . . . . y+

I y+
I+1. . . y

+
n

y−1 . . . y
−
I−1 y−I . . . . . . y−n

a≥ a < a

This implies that there are exactly I coordinates of y+ which are at least a, and exactly
I−1 coordinates of y− which are at least a. But now recall that we have shown in Section 4.2,
specifically Equation (22), that

Γn
(
νn(x+)

)
= Γn

(
νn(x−)

)
.

Since this equation holds regardless of the choice of φ, it is equivalent to the statement that
y+ ∼Γ y−. We now note the basic but crucial fact that if y+ ∼Γ y−, then for any a, the
number of occurrences of a in y+ must have the same parity as the number of occurrences of
a in y−. This parity matching is also true if we consider the number of occurrences of values
which are at least a. We have just shown that Equation (35) implies that these numbers
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have differing parity, so Equation (35) is therefore false. As shown above, this implies that
either mI = y+

I+1 or mI = y−I , and this in turn implies that either the rows or the columns
of Equation (34) must be equal. Therefore Γ ◦ ν is constant along the line segment from x(I)

to x(I+1).
As noted above, there is a final special case to consider: I = n. We have shown that Γn◦νn

is constant along the surface vertical between x(1) and x(n), but we have not shown that it is
constant along the final section of the surface vertical, from x(n) to x(n+1). However, we have
shown that νn(x(1)) ∼Γ νn(x(n)) (by transitivity of ∼Γ), and that νn(x(1)) ∼Γ νn(x(n+1)).
Applying transitivity of ∼Γ again, this implies that νn(x(n)) ∼Γ νn(x(n+1)). We also know
that νn(x(n)) and νn(x(n+1)) differ in at most one place (the n-th coordinate). It is easily
seen that if two points are Γ-equivalent, they must differ in an even number of places.
Therefore νn(x(n)) = νn(x(n+1)), so Γn ◦ νn is constant along the final section of the surface
vertical, and Conclusion 4 holds.
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