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Abstract

Since the proposal of the seminal sliced inverse regression (SIR), inverse-type methods
have proved to be canonical in sufficient dimension reduction (SDR). However, they of-
ten underperform in binary classification because the binary responses yield two slices at
most. In this article, we develop a forward SDR approach in binary classification based
on weighted large-margin classifiers. First, we show that the gradient of a large-margin
classifier is unbiased for SDR as long as the corresponding loss function is Fisher consis-
tent. This leads us to propose the weighted outer-product of gradients (wOPG) estimator.
The wOPG estimator can recover the central subspace exhaustively without linearity (or
constant variance) conditions, which despite being routinely required, they are untestable
assumption. We propose the gradient-based formulation for the large-margin classifier to
estimate the gradient function of the classifier directly. We also establish the consistency
of the proposed wOPG estimator and demonstrate its promising finite-sample performance
through both simulated and real data examples.

Keywords: dimension reduction, Fisher consistency, gradient learning, large-margin
classifier, outer-product gradient

1. Introduction

Sufficient dimension reduction (SDR) seeks a low dimensional subspace of a p-dimensional
predictor X, referred to as a dimension reduction subspace (DRS), to retain the information
of a response Y in X. To be more precise, the space spanned by the columns of B € RP*¢
denoted by span(B) is a DRS if

Y1X|B'X, (1)
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holds where L denotes the statistical independence. However, DRS is unidentifiable since
any linear transformations of B satisfying (1) also satisfy (1). As an identifiable target,
the central subspace, denoted by Sy x, is the intersection of all DRSes and a primal SDR
target. It is shown that the central subspace uniquely exists under mild conditions (Yin
et al., 2008), and we assume that span(B) = Syx throughout this article.

SDR is first proposed in the regression context where Y is continuous. The seminal
sliced inverse regression (SIR, Li, 1991) utilizes the inverse regression function F(X | Y)
to estimate Syx. SIR slices data (y;,%;),i = 1,---,n based on the relative size of the
observed responses, y; to estimate E(X | Y). Following the spirit of SIR, many SDR
methods are developed based on the conditional moments of X given Y. These are called
“inverse” methods, and popular examples include the slice averaged variance estimation
(SAVE, Cook and Weisberg, 1991), contour regression (Li et al., 2005), directional regression
(Li and Wang, 2007), cumulative slicing estimation (Zhu et al., 2010), and principal support
vector machines (PSVM, Li et al., 2011), to name a few. The inverse methods are easy to
implement since the inverse moment can be readily obtained by slicing. However, they
usually require technical assumptions on X, such as the linearity condition and constant
variance condition that assume E(X | BTX) = PX and Cov(X | BTX) = ¥ - PXPT,
respectively, where P = EB(B'EB) !B’ and ¥ = Cov(X). It is well established that
utilizing these conditions when they are not satisfied introduces bias into estimating the
central space. More importantly, employing these conditions leads to a substantial efficiency
loss even when the conditions are satisfied (Ma and Zhu, 2013). In other words, when an
SDR estimator does not exploit linearity and constant variance conditions, its performance
can further be improved.

It is well known that the inverse methods suffer in binary classification, where the slicing
becomes inevitably inefficient. For example, SIR cannot recover Sy |x exhaustively unless
d = 1 since there is one slice available at most for the binary Y. Most inverse methods
based on slicing have similar problems. To overcome this, Shin et al. (2014) proposed
the probability-enhanced SDR (PRE-SDR) that slices data based on the class probability
P(Y =1| X = x). The PRE-SDR estimates the relative order of the class probabilities,
rather than their exact values, by training the weighted support vector machine (WSVM),
whose loss function is Fisher consistent. Shin et al. (2017) proposed the principal weighted
support vector machine (PWSVM) by applying the idea of PRE-SDR to the principal
support vector machine proposed by Li et al. (2011). Although PRE-SDR and PWSVM
are elegantly designed for the SDR with a binary response, they still depend on the linearity
condition and may fail to estimate Sy |x exhaustively.

In the meantime, another type of approach, known as the “forward” method, has been
developed for the SDR. Namely, the forward method estimates Sy|x from the quantities
related to the conditional moments of Y given X, not X given Y. The advantage of
the forward method is that it does not require additional assumptions on X, such as the
linearity and constant variance conditions indispensable to inverse methods. One of the
earliest proposals in this regard is the outer product of gradients (OPG) estimator (Xia
et al., 2002) to estimate the central mean subspace Sgyx) € Syx (Cook and Li, 2002)
defined as Sg(y|x) = span(B), where Y LE(Y | X) | B'X. The equation below presents
the basis of OPG.

span {E [Vm(X){Vm(X)}T} } = Spyx),
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where m(x) = E(Y | X = x) denotes the (forward) regression function and Vm(x) =
om(x)/0x is its gradient vector. Xia et al. (2002) further proposed the minimum average
variance estimation (MAVE), a computationally improved version of the OPG estimator.

Note that Sg(y|x) is a subspace of Sy|x and can be very different. Xia (2007) proposed
the dOPG method that extends the idea of the OPG to estimate Sy|x by replacing the
conditional mean with the corresponding density for which the prefix ‘d’ stands. That is,
it is shown that

span {E [VPY|X(X){VPY|X(X)}T] } = Syx;

where py|x denotes the conditional density of Y given X, and developed an efficient algo-
rithm to compute the sample estimate of Vpy | x(X) based on the local regression. In fact,
any quantity, other than the density, that determines the conditional distribution of Y given
X can be used to recover Sy|x. For example, Wang and Xia (2008) proposed the sliced
regression that estimates the gradient of the conditional distribution function of Y given X
instead of the density. Kong and Xia (2014) proposed the qOPG method that exploits the
gradient of conditional quantile regression functions of Y | X for different quantile levels to
recover Sy|x. We referred to Chapter 11 of Li (2018) for a comprehensive overview of the
forward method for SDR.

In this article, we propose a novel forward SDR method for binary classification based
on the large-margin classifier. The large-margin classifier is one of the most popular classes
for the binary classification, and includes many popular classifiers such as logistic regression
(LR) and support vector machine (SVM).

Let f(x) denote a classification function whose sign predicts the class label y € {—1,1}
corresponding to x. Given a set of training samples (y;,x;),i = 1,---,n, the weighted
large-margin classifier solves

n

min 2 wr(yi) L{yif (xi)} + AT (f), (2)

where L denotes a loss function of the functional margin yf(x), and the weight function
wr(y) equals to 1 — 7 when y = 1 and 7 if otherwise for a given m € (0,1). Note that
the weight 7 controls the relative importance between the two classes and plays a crucial
role in our proposal. The functional J measures the complexity of f, and A is the tuning
parameter that controls the balance between data fitting and the model complexity.

At the population level, the most natural choice for L is the zero-one loss defined as
Lo1(m) =1 if m <0 and 0 otherwise, as its population minimizer yields the Bayes classi-
fication rule. Namely, we have

sign{f7(x)} = sign{p(x) — 7},

where f3(x) = argminger B [wr(Y)Lo1 (Y f(x) <0) [ X =x] and p(x) = P(Y =1 |
X = x) denotes the conditional class probability. However, it is not tractable to minimize
the sample zero-one loss, and one often replaces it with a convex surrogate function that
satisfies the following minimal condition known as Fisher consistency (Lin, 2004; Bartlett
et al., 2006).
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Definition 1 (Fisher Consistency) A loss function L for the binary classification is said
to be Fisher consistent if

sign{ fr(x)} = sign{ f2(x)} = sign{p(x) — 7}, (3)
for an arbitrary given m € (0,1), where

fz(x) =argmin F [w,(Y)L{Y f(x)} | X = x]. (4)
f(x)ER

Well-known examples of Fisher consistent loss include, but are not limited to, the hinge
loss for SVM, the negative binomial likelihood loss for logistic regression, the exponential
loss for boosting, and the large-margin unified machine loss (Liu et al., 2011). Fisher
consistency presents a theoretical connection between fr(x) and p(x). Assuming fr(x) is a
continuous and decreasing function of m, we have p(x) = {7 : fr(x) = 0}. In other words,
fx(x),Vm € (0,1) determines the conditional distribution of Y given X (Wang et al., 2008).
This leads us to naturally extend the idea of the OPG estimator for SDR based on the
large-margin classifier when the response is binary. We showed that the outer product of
the gradient of fr(x) for different values of 7 € (0,1) exhaustively estimate Sy|x. The
idea is directly motivated by the qOPG estimator (Kong and Xia, 2014) that exploits
composite quantile regression (Zou and Yuan, 2008) to extend the concept of “borrowing
strength across different quantiles” to the SDR context. However, the qOPG estimator
suffers inefficiency due to the irregularity of the population quantile function of a binary
random variable. We would like to point out that the weighted large-margin classifier f(x)
plays a similar role to the quantile regression function in qOPG (Kong and Xia, 2014). This
motivates us to refer to our method as the weighted outer-product of gradients (wOPG)
estimator.

In this article, we propose two approaches to estimate the gradient of fr(x), i.e., V fr(x).
First, we estimate fr(x) by solving the conventional large-margin classifier and then com-
pute its gradient V fr(x) by taking derivative with respective x. We call this naive-wOPG
estimator to elaborate on its computational simplicity. Although the naive-wOPG may be
attractive in practice, it often suffers due to the instability of the differential operator. For
instance, the consistency of f(x) does not imply the consistency of its gradient in general.
To overcome this drawback, we propose an alternative approach based on gradient learning
(Mukherjee and Wu, 2006) that directly estimates V f(x) instead of deriving it analytically
from the estimated fr(x). We call this the wOPG estimator without any prefix.

The local linear regression (Hérdle and Stoker, 1989; Fan, 1993) has been widely used
for learning gradients in statistical applications including SDR. (Hérdle and Stoker, 1989;
Fan, 1993; Xia, 2007; Kong and Xia, 2014). In this article, however, we employed the
reproducing kernel Hilbert space (Wahba, 1990, RKHS) to estimate the nonlinear gradient
function since the kernel trick on RKHS is canonical in the large-margin classifier such as
the SVM. The gradient learning in RKHS is also common and has been studied in machine
learning communities. See for example, Mukherjee and Wu (2006), Ye and Xie (2012), Yang
et al. (2016) and the references therein.

The rest of the article is organized as follows. In Section 2, we provide a foundation of
the wOPG estimator by showing that the OPG of the weighted large-margin classifier is
unbiased for SDR and then introduce the naive-wOPG estimator. In Section 3, the wOPG
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estimator based on gradient learning is introduced in great detail, including its computa-
tion and asymptotic properties. Section 4 is devoted to additional issues to complete the
proposed method such as the estimation of the structural dimension and tuning parameter
selection in learning fr. Simulation studies are carried out in Section 5, and the illustration
to Breast Cancer Coimbra data is presented in Section 6. Concluding remarks follows in
Section 7, and the proofs of theorems and complete computational algorithms are relegated
to Appendix.

2. Weighted Outer-Product of Gradients (WOPG)

First, we show that the OPG of fr(x) is unbiased for SDR, which serves as a theoretical
foundation of the wOPG estimator. This leads us to propose a straightforward approach
to estimate Syx.

2.1 Foundation of wOPG

For a binary response Y € {—1, 1}, let us introduce

fx(B'x) = argmin E |w,(Y)L{Y f(x)} | B'TX =B x| .
f(x)ER

Under (1), we have f,(x) = fr(BTx) which implies V fy(x) = BVfE(BTx), where V fr(x)

and V fﬂ(x) denote the p-dimensional gradient vectors of fr(x) and fr(x) at x, respectively.
Motivated by the spirit of the OPG (Xia et al., 2002), we define M(7) as

M(r) = B |V (X){VE(X)}T] (5)
then we have
span{M(m)} € Syx. (6)

This is because M(7) = E [V fz(X){V/fx(X)}'] = BE [Vﬁr(BTX){Vﬁr(BTX)}T} BT,

which implies M(7) = PgM(n)Pp where Pg = B(B'B)"!B' denotes the projection
matrix onto Sy|x = span(B).
Let us define

1
M= / M(7)dr. (7)
0
The following Theorem 2 provides the foundation of the wOPG estimator for Sy x.
Theorem 2 Suppose V fr(X) exists for all m € (0,1), then we have
span(M) = Sy|x.

We refer to M in (7) as the wOPG working matrix, and its d leading eigenvectors consis-
tently estimate the basis set of Syx by Theorem 2. Notably, the wOPG working matrix
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recover Sy|x exhaustively without any additional assumptions such as linearity and con-
stant variance assumptions. It is also worth pointing out that M(7) tends to zero as m goes
to zero or one since fr(x) tends to constant functions, which are not worth considering from
the classification perspective. In such cases, for a given € > 0 we can choose § > 0 such
that [|[M — Mrp|| < e, where

1-6
Mg = i M(m)dr (8)

is the truncated version of (7). For this reason, we restrict our attention to the case when
m € (6,1 —¢) for a sufficiently small 6 > 0 given. Such truncation is not uncommon
in the quantile regression context since standard tools based on the average fail to work
to uncover the asymptotic properties of extreme quantiles (i.e., minimum and maximum)
(Chernozhukov et al., 2017). In addition, Kong and Xia (2014) argued that the truncation
dose not have a significant effect since Mr is expected to be nearly, if not completely,
identical to M for a sufficiently small §. The truncated version of the estimator is given by

Mz = M(m)dr, (9)
d
where
M(r) = - 30 V() V(i) (10)
i=1

and V fﬂ is an estimator of Vf,. Assume that we have H estimates V fﬂh for a given
sequence of weights 0 < § =71 -+ <7y =1— 3 < 1. Then we finally have

. 1 H . 1 H n R A -
M = E ZM(ﬂ—h) = niH szfﬂh(xi){vfﬂh (Xl)} : (11)
h=1

h=1i=1

Note that M in (11) is a common estimates for both (7) and (8). Furthermore, (9) in the
sample level is equivalent to M since the integral can always be approximated as accurate
as possible by choosing sufficiently fine grid of . The basis set of Syx can be estimated

by d leading eigenvectors of M.
As suggested by Kong and Xia (2014), one can modify (11) as

— 1 n
M= —
nH

w(mn)V fr GV fr, ()},

M=

T

11i=1

with the u(7) = Z;lzl v/ E?Zl vj, where v; denotes the first j eigenvalues of ﬁ(w) in order
to further improve the performance. However, it turns out in our limited simulation study
that the improvement was negligible and we focused on the unweighted version (11) in the
rest of article without loss of generality.
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2.2 A Naive Estimator

Employing the reproducing kernel Hilbert space (RKHS, Wahba, 1990) generated by non-
negative definite kernel K : R x R — R, Hf, the solution of (2) has a finite form

f _aﬂ0+zaﬂ'1 XXZ (]_2)

by Representer Theorem (Kimeldorf and Wahba, 1971). Plugging (12) into (2) with J(f) =
HfH%_[K, we have

. A
(G0, &) = argmin Z W (i) L{yi fr (%)} + 504; Ka,, (13)

boz,rz1

where ot = (Qr 1, -+ ,rpn) ' and K is the (n x n)-dimensional kernel matrix whose (7, j)th
element is K (x;,x;). The corresponding sample estimator fr(x) is &r o+, dr i K (X, X;).
Given 7, the gradient vector estimator V f.(x) is given as

vfﬂ'( ) = 8f7T Zaﬂ'le

where Vk;(x) = 0K (x,x;)/0x. Plugging it into (10), we get the empirical estimate of ﬁ(w)
and estimating M in (11) is then straightforward.

3. wOPG Estimator via Gradient Learning

Although the naive-wOPG estimator is practical, the estimator may not perform well be-
cause the differential operator makes it unstable. In particular, the theoretical justification
of the naive-wOPG estimator is not straightforward unless stringent conditions are assumed,
and its finite-sample performance is often unsatisfactory, as demonstrated in Section 5. To
improve the naive-wOPG estimator, we propose to directly estimate V f(x) and refer it as
the wOPG estimator without any prefix.

3.1 A Gradient-based Formulation

For the sake of brevity, we let L {yf(x)} = wx(y)L{yf(x)} and g,(x) be the partial deriva-
tive function of f with respect to the fth predictor, i.e., g(x) = df(x)/0xy, £ = 1,--- |p

and Vf(x) = (g1(x), -, gp(x)) T
The first order Taylor expansion of f(x) around at x" closed to x is given by

Fo) = f(x) + Vf(x) T (x —x). (14)

Mukherjee and Wu (2006) proposed an empirical risk & (f,Vf) based on (14) to directly
estimate the gradient of f(x):

f, Vi) : 3 ZZWS x; — %X;)L [yi{f(xj-)—l-Vf(xj)T(xi—xj)}] , (15)

i=1 j=1



KANG AND SHIN

where w; denotes a smoothing kernel with a bandwidth parameter s. In this article, we
focus on the Gaussian kernel w,(x — u) = (s2) 7P/ exp{— 252 |x — ul|?}, a popular choice in
practice.

Assuming that f, g1, -, gp are living on H g, the RKHS generated by the kernel function
K, we propose to solve

min_ E(f, V) + HfHHKJrZ lgell3, (16)

f1911'" 191)6HK

where A\g and Ay,---, ), are nonnegative tuning parameters that control the complexity
of f and elements of its gradient V f, respectively. Note that we adaptively penalize each
element of the gradient function to further improve the estimation accuracy as the adaptive
LASSO (Zou, 2006; Zhang and Lu, 2007).

By the Representer Theorem, the solution of (16) has the following finite dimensional
form:

n
X) = ZaiOK(XaXi)v and gZ ZOZZEK X XZ) t=1,- b,
i= i=1

where oy = (ayg, -+ ,ane) ' ,£=0,1,---,p. This yields

f(X])—i-Vf(X]) (% —aok "‘Zaé (Tie — x50),

where k; is the j-th column of the kernel matrix K. Let us define ;50 = x4 — xj, for £ # 0
and 6;50 = 1 for £ = 0. Then we have

p
Fxg) + VI (x) " (i = x5) = ) e e (17)
=0

Substituting (17) into (16), we have

P
(o ) = i LSS -k (yiza;kjaiﬂ)
=0

Q0,01 i=1 j=1

A~ T
+2€§9ﬁa€ Kay, (18)

where Ay = A0y, ¢ = 0,1, ,p are reparameterized to select the tuning parameters in an
efficient way. Section 4.2 presents the discussions on how to select A and 6,.

Finally, the gradient is estimated by Vﬁr(xi) = {Gr1(xi), +, Grp(xi)} With Gr (%) =
ki ¢, 0 =1,---,p which directly leads the corresponding wOPG estimator (11).

3.2 Computation

We consider two most popular loss functions: the negative binomial likelihood loss function
for the logistic regression and the hinge loss function for the SVM, which we herein refer to
as wOPG-LR and wOPG-SVM, respectively.
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e wOPG-LR: Lyr(m) =log{1 + exp(—m)}
e wOPG-SVM: Lgy p(m) = max(0,1 —m)

Although it looks canonical, the optimization problem (18) may not be simple to solve even
for well-shaped loss functions due to a large number of parameters. To solve (18) with the
wOPG-LR, we proposed the blockwise Newton-Raphson algorithm, which can be applied
to any convex differentiable loss functions, such as the exponential loss for boosting and the
large-margin unified loss (Liu et al., 2011). For the wOPG-SVM with the hinge loss which is
not differentiable, we rewrite (18) in a constraint form to apply the Lagrangian method. We
first show that the corresponding dual problem turns out to be the quadratic programming
with box constraint only and then employ the box-constraint coordinate ascent method
(Wright, 2015) to update the parameters coordinately. The complete algorithms for both
wOPG-LR and wOPG-SVM are described in Appendix B.

Finally, we remark that the linear approximation (14) is not entirely accurate unless
|x; —x;|| is small. This leads us to focus only on small number (say k < n) of data points
in the nearest neighborhood of x;, which further facilitates the computation in practice.

3.3 Asymptotic Analysis

In what follows, we prove M obtained in Section 3.1 via gradient learning converges to its
population counter part M. Let fr and Vfr = (g1, - ,gw,p)T be the minimizer of (16)
or equivalently (18), and define

fo= argj{ninE (L {Y F(X)}] (19)

and Vf, as the gradient of f;. Note that f;(x) that solves (4) is a pointwise solution of
(19) for a given X = x.

Let P(x) and p(x) denote respectively the distribution and density function of X whose
support is denoted by X, respectively. To explore the asymptotic behavior of (f vV fﬂ), we
assume the following conditions.

(C1) The support X is a compact subset of R?, and for some constant ¢, > 0 which depends
only on p(x),

P{d(X,0X) < s} < ¢,s,

where 0X denotes the boundary of X' and d(x,0X) is the distance between x € X
and OX.

(C2) The density p(x) satisfies
supp(x) < ¢y and (%) — p(w)| < cplx —ul7, Vu,x € X
X

for some 0 < 7 < 1.

(C3) The gradient of the true classification function f; exists, and fr and each element of
V fr reside on Hp, i.e., (fr,Vfr) € ’H’;;rl.
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(C4) There exists a constant ¢; > 0 that depends only on f such that
‘fw fr(x) + V fr(u) (x—u)‘gc]c(u—x)?, VYu,x € X.

In condition (C1), we assume the compactness of support X for the technical simplicity
frequently used in the literature on nonparametric models (Ye and Xie, 2012; Yang et al.,
2016). The behavior of the marginal distribution of X near the boundary 0X is also
specified, and this is implied by (C2) if the boundary 90X is piecewise smooth. Condition
(C2) states that the density of the marginal distribution is Holder continuous with an
exponent 7. Condition (C3) is rather a standard assumption in the RKHS theory. Condition
(C4) ensures that the linear approximation of the gradient learning does not fail. Reference
was made to Mukherjee and Wu (2006) for further details about these conditions.

In order to show the consistency of M, we first compute an error bound of (fr, Vfr).
Recall that we introduce two different loss functions, and the following theorem provides an
Lo-type error bound of ( fr V fﬁ) for wOPG-LR with the logistic loss Ly that is a direct
consequence of Theorem 9 in Mukherjee and Wu (2006). Thus, we omit the proof.

Theorem 3 Let (fr,Vfx) and (fW,Vfﬁ) be the minimizer of (16) and (19), respectively

with L(m) = Lrr(m). Choose s =n “3GTTE and A = $2727. Under conditions (C1)-(C4),
for an arbitrary given n € (0,1/2), there exists a constant Cpr that depends only on a given
n such that with probability greater than 1 — 2n,

mas {81200 ~ 1,00 2 1900~ 9.0018]} < cu (1) 777 o

Theorem 3 provides a justification of the gradient formulation (18) with Lzr. However its
proof depends on the Taylor expansion of the risk and the result is not applicable to non-
differentiable function such as Lgy ;. Now, we establish an analogous version of Theorem
3 for the wOPG-SVM with the hinge loss, which is not a trivial extension of Theorem 3.
Accordingly, we first need to modify (C2) as follows.

(C2') (C2) holds for 0 < 7 < 3.

Note that (C2') is slightly stronger than (C2). In addition, we require additional condition
(C5) for the wOPG-SVM. Given m € (6,1 —0), let us define a set Sy = L, Ulr U Mz

where
Loy = {x: (L= m)p(x) < Vhlnsy = {x: 71 = p(x)) <7} and Ma, = {x: 7 —p(x)| < 7}.

For a sufficiently small v, fr(x) is always positive (resp. negative) if x € L, (resp. Uz ),
or is a (cost-weighted) random classifier if x € My .

(C5) Given 7 € (0,1 — ¢), there exists a constant vy > 0
P(X €85) >0, (21)

where Sy = U ¢(51-6) Sryy » and

/ 1F(3) — Fo()ldP(x / F&) - f0ldP(x),  VfeMr  (22)

for some constant k > 0.

10
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In (C5), (21) prevents that X lies only on Sy for some 7 and (22) is implied by [ |f(x) —
fx(x)|dP(x) < co. Both (21) and (22) are mild for 7 € (4,1 — §) even for sufficiently small
0 > 0 given.

Theorem 4 Let (fw, Vf,r) and (fr,V fz) be the minimizer of (16) and (19) with the hinge
loss L(m) = Lgym(m), respectively. Under conditions (C1), (C2), (C3)-(C5), for s =

1
n 3eFE gnd A = s'T27 for an arbitrary given n € (0,1/2), there exists a constant

Csvr that depends only on a given 1) such that with probability greater than 1 — 2n,
. . 1\ 3GFiF2)
max { E [|/(X) = f=(X)I] . B [IVx(X) = V(X | } < Csvar (n) . (23)

We have a couple of remarks on our theoretical results. First, in Theorem 4 (and
Theorem 3), we reach identical convergence rate for both fﬂ and V fﬂ, which looks counter-
intuitive given that the gradient function V fw is less smoother than its original function
fr=. We derive our results based on the standard RKHS theory under the condition (C3) for
technical simplicity, which yields similar upper bounds of excess errors for both functions
residing on RKHS. In addition, we have very slow rate of convergence in both theorems.
this is mainly because we estimate the classification function and its gradient function,
and the theorems try to bound all of them simultaneously. As a result, the corresponding
excess error depends on the (p + 1)-dimensional quantity which yields a very slow rate of
convergence even when p is moderately large. Similar results can be found in the literature
about the gradient learning (Mukherjee and Wu, 2006; Ye and Xie, 2012; Yang et al., 2016).
Although the theoretical learning rate of the gradient estimator is slow, our empirical result
in Section 5 shows that the proposed method performs reasonably well with moderate
sample size n.

Second, Theorem 3 and Theorem 4 seem to provide different convergence rates since
the former bounds the squared loss while the latter bounds the absolute loss. However,
note that Theorem 4 for the hinge loss requires a stronger condition (C2’) that controls
the Holder constant 7 for the marginal density of x, p(x). Considering the most favorable
scenario for each cases, i.e., 7 = 1 for Theorem 3 and 7 = 1/2 for Theorem 4, we obtain

1
comparable converge rates in terms of the squared loss, n 3®+4 for the logistic loss and

1
n 3@+2) for the hinge loss. In other words, the hinge loss requires a stronger condition than
the logistic loss to achieve a similar rate of convergence, which is sensible given that the
hinge loss is less smooth.

Finally, we establish the consistency of the wOPG working matrix as given in Corollary

Corollary 5 Assume the conditions in Theorem 3 for wOPG-LR and in Theorem 4 for
wOPG-SVM for all m on (6,1 — 0). Furthermore, assume that both M(w) and M(m) are
Lebesgue measurable with respect to m on (0,1 —9). Then MT in (10) converges to M (8)
in probability, that is

—

MT —p MT.

11
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4. Additional Issues

In the subsequent sections, we describe how to select tuning parameters related to the
wOPG estimator.

4.1 Structural Dimension Estimation

The structural dimension of Sy |x, d is another important quantity to be estimated from the
data. There are two popular approaches. The first type is based on the eigenvalues of the
working matrix. For example, Li (1991) proposed a sequential test based on the cumulative
sum of eigenvalues, and Li et al. (2011) proposed the use of a BIC-type criterion; a penalized
version of the cumulative sum of eigenvalues. On the other hand, one can use eigenvectors
to estimate d. For example, Ye and Weiss (2003) proposed to choose the first d eigenvectors
that attain the smallest sampling variability, estimated by bootstrapping.

In this article, we propose to employ the ladle estimator (Luo and Li, 2016) that elegantly
combines the two ideas as follows. For a given k < [p/logp| where [a]| denotes the largest
integer that is not larger than a, we set \Afk = (v, ,Vg) denote p X k-dimensional matrix
of the first £ leading eigenvectors of M. To measure the variability of ﬁ, take n bootstrap
samples denoted by {(y)",x)"),i = 1,--- ,n},j = 1,--- ,n, and compute M?* and Vi
for the jth bootstrap sample analogously defined as ﬁk and \A/'k for the original data,
respectively. Let us define

f,?(k)Z:lzn:{l—det (Vivi) k=1, p—1

1=

with f2(0) = 0. Luo and Li (2016) showed that fg(k:)Ais expected to be minimized at k = d
and gets large for k > d. Finally, the ladle estimator dj,qje is the minimizer of f, (k) + ¢, (k)
where

£O(k) N1
n(k)= ————————— and ¢, (k) = ——.
I = s e W = T

with ), being the Ith largest eigenvalue of ﬁ, l=1---,p.

4.2 Tuning Parameter Selection

Motivated by the adaptive LASSO (Zou, 2006; Zhang and Lu, 2007), there are two layers of
regularization parameters in (18), A and (6o, --- ,6,). The adaptive penalty mitigates the
bias of the gradient estimator by less penalizing the variables containing more information
about Syx. This leads us to set ) = 1/(Pg)i where (Pg); denotes the ith diagonal
element of the projection matrix on span{E} with B being the one obtained from the naive-
wOPG estimator. The constant term f is not directly related to the SDR context and we
propose to set #y = 1. The global tuning parameter A is then selected by the conventional
cross-validation to obtain a set of sensible classifiers that minimizes the misclassification
cost.

We have another tuning parameter s in the Gaussian smoothing kernel w(x; —x;). We
set s to be the median of the standard deviations of x; as suggested by Mukherjee and Wu
(2006) and Yang et al. (2016).

12
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The choice of H may be critical to controlling the computational complexity of the pro-
posed method. Although in principle, the estimator should perform better as H increases,
our limited numerical results show that the finite sample performance of the wOPG esti-
mator is not overly sensitive to the choice of H. In this article, we set 7, = h/(H +1),h =
1,---,H with H =9, i.e., m, = h/10,h=1,---,0, and thus 6 = 0.1.

5. Simulation

In this section, we conduct a simulation study to evaluate the finite-sample performance
of the wOPG method. We set m;, = h/10,h = 1,---,9, and employ the Gaussian kernel
K(x,x") = exp{—||x — x'||?/(20?)} for the RKHS with o being the median of the pairwise
distances between the predictors in the positive and negative classes (Jaakkola et al., 1999).
Tuning parameters A and 6y,£ = 0,2,--- ,p, and the bandwidth parameter s are chosen as
described in Section 4.2.

For the data generation, we assume the following model

y; = sign { f(x;) + 0.2¢;}

where x; i Np(0p,,L,),0 = 1,---,n, and ¢ S N(0,1),i = 1,---,n. We consider the
following three models

e Model (I) f(x) = x1/{0.5+ (z2 + 1)?}
e Model (II) f(x) = (z1 + 0.5)(z2 — 0.5)?
e Model (III) f(x) = sin(z1)/ exp(z2)

All models share a common central subspace, span(B) where B = (e, e2) with e; being a
unit vector whose ith element is 1 and 0 for others, i.e., e x = 21 and e] x = x2. Thus we
have d = 2 which we assume to be known in this section for the fair comparison of different
SDR methods.

As competitors, we include the sliced averaged variance estimation (SAVE, Cook and
Weisberg, 1991), the principal Hessian direction (pHd, Li, 1992), and the direction regression
(DR, Li and Wang, 2007). These are popular SDR methods but they are originally designed
for the continuous response. Note that we exclude the most popular SIR since it can at
most identify one direction, and thus fail for all models under consideration. We also
include recently proposed SDR methods for the binary response: the probability-enhanced
SIR (PRE, Shin et al., 2014), and the linear principal weighted support vector machines
(PWSVM, Shin et al., 2017).

To evaluate the performance of SDR methods, we use the distance between B and B as
d(B,B) = |Pg — PBHF where || - || denotes the Frobenius norm of a matrix. The smaller
value of d(ﬁ, B) indicates the better performance for estimating Sy x. Table 1 contains the
averaged d(]§, B) over 100 independent repetitions under the models (I)—(III) with different
combinations of (n,p) € {500,1000} x {10,20}.

In Table 1, one can observe that SAVE, pHd, and DR developed under the regression
context exhibit worse performance than the rest of the methods carefully designed for the
binary response. Among the SDR methods for binary classification, the wOPG method

13
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clearly outperforms both the PRE and PWSVM. The naive versions still perform reasonably
well but occasionally worse than PWSVM, especially when n is not large. We also highlight
that wOPG-SVM shows slightly better results than wOPG-LR for all the scenarios under
consideration. We believe that it is possibly connected to the fact that SVM generally
outperforms the logistic regression in terms of classification.

Table 1: Averaged d(ﬁ,B) over 100 independent repetitions for Model (I)—(III). Corre-
sponding standard deviations are given in parentheses.

n p  SAVE PHD DREG PRE  PWSVM Ll\g{“"e WOESM R woP GSVM
so0 10 1:28(16) 154 (19) 129 (14) 112(22) 074 (19) 0.83(24) 081 (24) 051(.35) 0.34 (34)
0 20 1.39 (06) 1.80 (.11) 1.35 (.07) 1.31 (.12) 1.03 (.15) 1.32 (.12) 1.29 (.14) 0.99 (.41) 0.84 (.49)
loop 10 L16(:25) 132(25) 130 (13) 0.89(24) 036 (13) 049 (13) 048 (13) 0.26 (09) 0.10 (.07)
20 1.35 (10) 1.69 (.14) 1.36 (.07) 1.24 (.15) 0.78 (.13) 1.05 (:21) 0.94 (:21) 0.44 (.29) 0.29 (.31)
so0 10 126(19) 138(19) 124 (15) 1.06(.23) 1.02(:20) 1.04(:23) 0.92(:25) 0.65(40) 0.45 (41)
) 20 1.50 (11) 1.67 (.14) 1.32 (.09) 1.33 (.11) 1.20 (.13) 1.40 (.07) 1.39 (.09) 1.33 (.22) 1.16 (.37)
oo 10 109(25) 119(28) 114(20) 0.88(22) 0.77 (A7) 007(17) 0.45 (.14)  0.28 (.15) 0.11(14)
20 1.36 (11) 147 (12) 1.27 (12) 1.27 (13) 1.02 (.12) 1.26 (.14) 1.19 (.19) 0.90 (.37) 0.67 (.48
so0 10 1:25(19) 149 (:20) 130 (1) 1.10(:22) 079 (20) 0.85(25) 0.82(27) 0.51(35) ().3a(42)
) 090 1.38 (07) 172 (15) 1.36 (.06) 1.32 (11) 1.03 (.13) 1.20 (.15) 1.26 (.17) 0.94 (.46) 0.82 (.50)
Loop 10 L16(:25) 130 (26) 131 (12) 0.91(23) 057 (13) 050 (12) 050 (12) 0.27 (10) 0.10 (.06)
20 1.36 (.08) 1.59 (.18) 1.36 (.07) 1.25(.15) 0.81 (.12) 1.03 (.19) 0.94 (.20) 0.47 (.33) 0.27 (.29)

We note that both the PRE and PWSVM are SIR-like SDR methods based on the
inverse mean. Hence, they require the linearity condition and fail when the classification
boundary is symmetric about the origin. However, the proposed wOPG estimators are the
forward method which do not require such conditions and exhaustively estimate Sy|x even
when the classification boundary is symmetric about the origin. In order to confirm this,
we additionally consider the following two models:

e Model (IV) f(x) = z1(z1 + 22+ 1)

e Model (V) f(x)= (2% + 422)1/2 log (=% + 3:2)1/2

The central subspaces of these two models are identical to those of the models (I)—(III),
yet the class boundaries of models (IV) and (V) are approximately and exactly symmetric
about the origin, respectively. Under models (IV) and (V), one can observe that both the
PRE and PWSVM clearly fail while the second-moment-based methods such as SAVE and
pHd perform quite well compared to models (I)~(III). However, wOPG-SVM and wOPG-
LR show much better performance. Again, the wOPG-SVM shows better performance than
wOPG-LR under (IV) and (V).

6. Illustration to Real Data

We applied both wOPG-LR and wOPG-SVM to Breast Cancer Coimbra (BCC) data avail-
able at the UCI machine learning repository (https://archive.ics.uci.edu/ml/index.
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Table 2: Averaged d(B,B) over 100 independent repetitions for Model (IV)—(V) whose
classification boundaries are nearly or exactly symmetric. Standard deviations are
given in parentheses.

. Naive wOPG wOPG
n D SAVE PHD DREG PRE PWSVM LR SVM LR SVM

oo 10 077 (27) 0.68 (19) 0.63 (16) 058 (12) 052 (10) 41(09) 038 (08) 026 (07) 0.11 (.06)

) 20 1.18(.20) 1.06 (.21) 0.86 (.14) 0.95 (.11) 0.78 (.11) .77 (.10) 0.73 (.10) 0.40 (.10) 0.19 (.08)
Lopp 10 055 (18) 049 (14) 048 (13) 045 (.09) 040 (08) .26 (.05) 025 (05) 0.18(.05) 0.06 (.04)

20 0.89 (.21) 0.76 (.16) 0.68 (.10) 0.75 (.09) 0.58 (.06) .52 (.07) 0.48 (.07) 0.31 (.06) 0.12 (.04)

sop 10 027(05) 0.28(05) 136(10) 170 (17) 159 (13) .25 (04) 024 (04) 0.14 (06) 0.14 (:04)

W) P90 042 (06) 045 (.07) 141 (.09) 1.80 (.12) 157 (.07) .68 (.18) 0.53 (.08) 0.29 (.09) 0.17 (.08)
oo 10 019 (04) 020 (04) 136 (09) 167 (A7) 1.62 (15) .16 (.03) 0.16 (.03) 0.11(.03) 0.10 (.03)

20 0.20 (.04) 0.29 (.04) 141 (08) 1.79 (.12) 1.58 (.06) .34 (04) 0.31 (.03) 0.18 (.05) 0.11 (.03)

php). The BCC data contains breast cancer diagnosis results for 116 patients with nine con-
tinuous predictors including age, body mass index, and seven measurements from the blood
test, i.e., glucose, insulin, homeostatic model assessment (HOMA), leptin, adiponectin,
resistin, and monocyte chemoattractant protein-1 (MCP-1). The goal is to construct a sen-
sible binary classifier that predicts breast cancer based on the given covariates. See Hosni
et al. (2019) for more details about the data.

To apply the wOPG methods, we set all the related tuning parameters as done in Section
5. In order to determine the structural dimension d, the ladle estimator described in Section
4.1 is employed. Both the wOPG-LR and wOPG-SVM produce similar ladle plots, which
yield d = 2. See Figure 1.

Figure 2 depicts scatter plots of the first two sufficient predictors, x;-rf)l VS X,L—-rf)g where
(red) circles and (blue) cross represent negative and positive classes, respectively. One can
conclude that that both methods successfully achieve the dimension reduction from p to 2
since the two classes look well-separated on the estimated Sy x.

Finally, we conducted a validation study in order to evaluate the effect of SDR in terms
of classification performance. Toward this, we randomly split the data into training and
test sets denoted by D = {(y%r, thr), T (ygr& XE’)%)} and D* = {(y‘isa ths)’ R (yg?Sv XE’)SS)}?
respectively. We then applied various SDR methods to D% and obtained the estimated
basis of Sy|x denoted by ﬁtr. In order to check the classification performance on the

estimated SY‘X = span(ﬁtr) we trained the K-nearest-neighbor classifier with K = 5

from (y; tr Bg ;r) and calculated the test error rate to predict y* from BT ;S These steps

were repeated independently for a hundred times, and Figure 3 compares the boxplots of
test error rates for different SDR methods. The first boxplot represents the benchmark
performance when no SDR is applied. Since d is unknown, we select d for other competing
methods to have the highest test accuracy. While all methods perform quite well in the
sense that the classification performance is comparable to the case when no SDR is applied,
the proposed wOPG methods showed the best performance, which is concordant to what
we have seen in Section 5
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Figure 1: Structural Dimension Estimation for BCC data: The ladle plot which depicts
fn(d) + ¢n(d) as a function of d is presented for wOPG-LR (a) and wOP-SVM
(b). The Vertical line represents the selected d = 2 that minimizes f,(d) + ¢, (d).
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Figure 2: wOPG methods applied to BCC data: Scatter plots of the first two sufficient
predictors estimated by wOPG-LR and wOPG-SVM are depicted, respectively.
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Figure 3: Boxplots of test error rates of KNN classifier with K = 5 trained on estimated
Syx by different SDR methods, over 100 random partitioning for the BCC data:
The proposed wOPG-LR and wOPG-SVM outperform all other methods. The
horizontal (dotted) line corresponds to the average test error rate of the KNN
classifier, which uses original predictors without SDR.
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7. Concluding Remarks

In this study, we propose a novel forward approach for SDR in binary classification, called
the wOPG estimator. The proposed estimator exhibits a clear advantage over the popular
inverse method since it does not require additional conditions on the predictor, which are
essential for the inverse methods. Moreover, wOPG can exhaustively estimate Sy|x.

For estimating the wOPG working matrix, we employed the kernel trick on RKHS, a
quite popular method in machine learning communities, and developed efficient algorithms
applicable to a variety of convex loss functions. In addition, the asymptotic behavior of the
gradient function of the classifier trained from the hinge loss has been studied, which, to
the best of our knowledge, is yet to be explored in the literature.

The proposed wOPG is a general methodology that can be applied to any Fisher con-
sistent loss functions, such as the exponential loss for boosting, the large-marge unified
machine loss (Liu et al., 2011), and the ¢-loss (Shen et al., 2003), to name a few. In addi-
tion, it is possible to extend the wOPG idea to the multiclass problem. Fisher consistency
in multiclass classification has been studied for the truncated large-margin classifiers (Wu
et al., 2010) and the angle-based large-margin classifiers (Zhang and Liu, 2014). The cor-
responding wOPG estimator can be naturally developed for the SDR with a categorical
response, which warrants further investigation.
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Appendix A. Technical Proofs
A.1 Proof of Theorem 2

Since we have (6), it suffices to show that Syjx C span(M). By the definition of M, we
have

M =BWB'.
where

W:/lE[Vfﬂ(BTX){VﬁT(BTX)}T dr.
0

Now, we shall show that the matrix W is of full rank which leads Sy|x C span(M).

Suppose W is not a full-rank matrix, then there exists a vector u; € R% such that
u] Wu; = 0, which leads

u Vi(B'X) =0, almost sure (24)
for all m € (0,1).
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Let U = (uy,---,ug) € RP*? denote a set of orthonormal basis for RZ. Let, for a given
m e (0,1),

ha(V) := fr(V), ha(v) = f2(Uv), B = BU,

then we have

he(Uv) = he(v) and h (B"X) = h(B'X).
The gradient vector of hy(v) can be written as

Ohx(v) _ Ohe(Uv) _ 1 0hs(Uv)

_ 1T
ov ov v oUv U Vhr(Uv),
and thus it is evaluated for v = BT X as
Ohy
Ohn(v) =U'Vh(B"v). (25)

ov |1v=BTX

The first element of (25) is 0 by (24), which implies A, (BT X) does not change with u; BT X.
Notice that o .
h7r<BTX) - hﬂ(BTX) - fﬂ(BTX) - f?T(X>7

and hence for any 7 € (0,1), f»(X) is a function of (ug B'X, -+ ,ufB'X), a (d — 1)-
dimensional variable. Since {f;(X) : 7 € (0,1)} collectively defines P(Y = 1|X) which
is equivalent to the conditional distribution of Y given X, by the Fisher consistency of
the loss function. Finally, F(-|X) is a function of {B(us,---,uy)} "X, which concludes
that span{B(ug,---,uy)} is a DRS but has lower dimension then Sy x. This leads a
contradiction, and thus W must be of full-rank. |

A.2 Proof of Theorem 4

In what follows, we assume (C1)(C2'), and (C3)—(C5). As stated in the following Theorem
6, we first show that both of E(|f(X) — frx(X)|) and E(||Vf(X) — V fz(X)]|1) are bounded
by what we call the excess error defined as:

Exr(f,Vf) = Ews(X = U)LY f(U) + Vf(U)(X — U)}]
-E [ws(X - U)Lﬂ {Yfﬂ'(X)}] )

where U is a random copy of X. For a given r > 0, define
Fo={(/, V) e M I(f, V) <%},
where
1 P
IV =5 (%Hﬂl%K + Zegngen%’ﬁ{) .
/=1
Theorem 6 For (f,Vf) € F, with some r > 1, there exists constants C1,Co > 0 such that
E(|f(X) = fx(X)]) < C1 (s7r + ¥ + s Exr(f,V[))
and

E(|IVF(X) = V(X)) < Co (sr+ 87+ s 7 ' Ear(f,Vf)).
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In order to prove Theorem 6, we need Lemma 7 and 8. To state the lemmas, let us
define the absolute error functional as

A(£.9) = B [w,(X = U) | £(X) = fx(X) +{VF(X) = V(X)}T (U -X)|] .

In addition, we use the following notations for the sake of brevity.
12 - 12
Ny = e 2 |t|%t, N,;= / e 2 |t|9dt,
{teRr |t|<1} teRp

and
Xy ={xe€X:d(x,0X)>sand p(x) > (1+¢,)s"}.

Now, we are ready to state the lemmas.

Lemma 7 For (f,Vf) € F, with somer > 1,

N ST+1
Nos™ / 1160 = £60IPE) + 5 — [ V() = VFe(x)]1dP(x) < 24(4, V).
Proof For u € X such that |u — x| < s with x € X, we have
p(w) = p(x) — {p(x) — p(w)} > (L+ 5" — cplu—x|" > &7,
The absolute error functional is

A VY) / / ws(x —u \f x) + {V/(x) = Vfx(x)} T (u = x)| dP(u)dP(x)
/g/u x|<s (x—u ‘f x) +{Vf(x) - an(x)}T(u—X)‘p(u)dudP(x)

/g/u x|<s (x—u ‘f +{Vf(x) - Vfﬂ(x)}T(ufx)‘dudP(x)
257/9 ws(x —u) | f(x) = fz(x)| dudP(x)

u—x]|<s

=, /| e \Wf<x> = V() (1 - )| dudP(x)
/9/|u x\<s (x—u ‘f —{Vf(x) = Vf(x)} (u—x)| dudP(x)

=J1 + Joy — Js.

The last inequality comes from the fact that |a +b| > |a| 4 |b| — |a — b|, Va,b € R. Note that
the third term, J3 is bounded by A(f, Vf) as follows.

Jy =s / s / IRCCS ) |76 = o) = {95(0) = Vfx(0} T (1 = x) | dudP(x)
s //u R )|£() — 1200 +195(0) = V£:00} T ()| dudP(x)
AL, ),
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where the identity holds because both the integration range and ws(x — u) are symmetric
with respect to |u — x|. This leads us to have

For Ji, we have

A—s/\f @ [ e %s/Lf ()|dP(x),

[t|<1

and Jy is bounded as follows.

r - 3f7r o ltel?/2
J2<s / Z‘gz( - ——(x ‘/ 7 [tg|dtedP (x)
(=1 [te|<1

- N187'+1
-2 Aﬂvﬂ@—vﬂ@WMHw-

which completes the proof. |

Lemma 8 For (f,Vf) € F, with some r > 1, there exists a constant C3 > 0 satisfying
that

A(f,Vf) < Cs (s> + Exr(f,Vf)).

Proof

Given x, we have for the hinge loss
ElLz(Y f(x)} [ x] = (1 = m)p(x)[1 = f()}4 + 7{1 = p(x)}1+S ()]s,
which yields
0 < E[LAY f(x)} | x| = E[Lo{Y fx ()} | x] < [f(x) = fr(x)]-
For a given x € S where S is defined in (C5), we have a non-zero lower bound as
M) = fr ()] < B[LAY ()} | x] = BILAY fr(x)} [ %], VfeHx  (26)
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where 0 <y < infxege {(1 — m)p(x), 7(1 — p(x)), |7 — p(x)[} < 1. Now, we have

Bar(f,Vf) = E [w,(X = U) (L {Y((U) + VF(U) (X = U)) } = Lo {Y £ (X} )|
= Exu [w,(X = U)Byxu |Le {Y(F(U) + VAU (X = U)) | = Lo {Y fr(X)} ]|
> [ o= w [0+ V) (= ) 12| P )P )
/2 [ [ o= w [ £()+ V) 6= w) = £ dP(x)aP(w)
92 [ =) £ + ) (= w) = £ 00| P )P )
> /2 [ [ = w 1)+ V1) (x = w) = £3)| dPx)aP(w)
w2 [ [ et [0 V0T 0] aPGOIP G
> +/B [w(X - U) [1(0) + V(U)T(X - U) - ()]
where 4/ = min{~/2, kvy/2}. The first inequality holds by (21) and (26), and the second

inequality holds by (22).
Let

Ty =Ti(X,U) = f(U) - fx(U) + {Vf(U) - Vf-(U)} (X - U),
T2 = TQ(X’U) = fﬂ'(U) - fﬂ'(X) + Vfﬂ.(U)T(X - U)

Then we have

A(f, V) = E{ws(X = U) - T1[},

and
fU)+VU) (X =U) - fr(X)| = |T1 + To| > |T1| — [T2].

This leads 1
A(f,Vf) < E{ws(X = U) - |To|} + ?Err(f, V).

By (C4), we have
To| < cf(X —U)>

Together with the assumption p(x) < ¢,, we obtain
E{wy(X - U) - |Ta]} < ¢; E{ws(X — U)(X — U)?}

<cch//wsx— (x — u)2dudP(x)

< CchNgs
Taking C'5 = max {CfCFNQ, %} completes the proof. |
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Proof of Theorem 6. Write
E(SX) - 000 = [ 1760 = 601aPG0 + [ 1760~ fo00ldPGe)  (21)
=A; S+ As.
Since XY = {x € X : d(x,0X) < s or p(x) < (14+¢,)s"}, by (C1) we have
PX € X9) < e+ (1 4+ u(X)s" < {ep+ (14 e Ju(X))s",
where 1(X) denotes the Lebesgue measure of X, and this leads
Ar < e+ Ul e + (14 e},

where £ = sup/K (x,x). Here we use the fact || f||c < k|| f||n, for f € Hix. By Lemma 7
xXEX
and Lemma 8, Ay is bounded by

Ay < Crs™” {52 + Exr(f,Vf)}.
No

which completes the proof of the first part of Theorem 6 with

Cy

Co = w1+ [l fxllrs){ep + (1 + o)X} + 5

The second part of Theorem 6 can be shown in an identical manner to the first part, with

e

Cs = p{1 4+ [Vl ) {ep + (T4 cp)u(X)} + N,

which completes the proof. |

Now we turn to find an upper bound of the excess error Exr(f, Vf) To do this, we
introduce an intermediate estimator

(f)\vvf)\) = argmin {g(fvvf)—l_)\‘](favf)}v
(f,VHenr

where
E(f,V1) = B [wX = V)L, {y(f(0) + V/(U) (X~ U))}]. (28)

Theorem 9 If (f, Vf) and (fx, Vfr) are in F, for some r > 1, then with confidence 1 —1),

2
r(1+log )
\/nspP

where Cy > 0 1s a constant depending on cy, c,, but not on r,s and A.

Exr(f,Vf)ﬁC&;( —|—32+)\),
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Proof First of all, we decompose E(f,Vf) as
EF. V) <EF V) = EFVH +EF V) = EFVE) +ELLVH) + A (F, V)
<[/, V) = E, VN + € A,vm E(fa VI + [EWP V) + AT (s £)]
<[ESVH = EF VDI +EFA V) = EP VI + [E(fr, Vir) + AT (fr, V)]
= £,V ) =€ VD + Eh, fA) E(fr. V)]
E Eo
+ [Exr(fm Vfr) + J(fx, Vfw)] +E [wS(X —U)L, {YfW(X)}] .
E3

The first 1nequahty holds because AJ( f ,V f ) > 0, the second inequality holds by the def-
inition of (f,Vf), and the third inequality holds by the definition of (fx,Vfy). If both
(f Vf) and (f\, Vf\) are in F, for some r > 0, then

E; < S(z,r):== sup |E(f.Vf)—E(f, V).
(f,Vf)eF:

for i = 1,2. According to Proposition 27 in Mukherjee and Wu (2006), we have with

probability at least 1 — 7,
r(1+ log %)

E,+ Ey, < Cj NG

for some C5 > 0. From the proof in Lemma 8,
Exr(fz,Vfz) < CprNQS2,

and we have
FE3 < 06(82 + )\),

with i
Cs = max {CprNg, J(fr, Vf,r)} .

Taking Cy = max {C5, Cs}, we attain the desired result. [ ]

To incorporate Theorem 6 and 9, we need to find r such that both (f, Vf) and (f, Vi)
are in F,. A natural bound for 72 is 2A~'s™P because

M(FVF) <GV + (£, V) < €0,0)+0= —

spP

and similarly AJ(fx, Vfy) < s7P. However this bound tends to co as s — 0 and A — 0,
which is limited to applying to Theorem 6 and 9. The following lemma gives a sharper
bound.

Lemma 10 Both (f, Vf) and (fx, Vfx) are in F, with confidence at least 1 —n if

9 _3 _3p
9 5 A"3573
=2 14+ — 1+1 —_— ).
T C4{+>\+<+0g77> T }
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Proof From the process in the proof of Theorem 9, we have
M (fa, V) < Es, (29)

and R X
M (f,Vf) < Ey+ B> + Es.

Since both (f, Vf) and (fx, Vfy) are in F ==, by Theorem 9 with probability at least

1- m,
1 (1+1log2)
Ei+ B <Oy ——F7—"1. 30
1=t AsP \/nsP (30)
Combining (29), (30), we obtain the desired estimate. [ |

We now prove Theorem 4.
Proof [Proof of Theorem 3] By Theorems 6 and 9 we have with probability at least 1 — 7,

both E [|f(X) - f,r(X)q and E [HVf(X) - Vf,r(X)Hl] are bounded by
log 2
max {C1, Cs} {STT’ 4+ Oy (W +82+ >\> } )

if both (f, Vf) and (fy, Vf\) are in F, for r > 1. By Lemma 10 we have confidence at least
1—n, (f,Vf)and (f\, Vfr) are in F, if

9 52 2\ A"3s5 %
=2 1+ — l+log— | ——».
r Cy + Y +< + 0g77> NG

1
Choose s = n” 3w+2%29) X\ = s!*27 Then r > 1 and r < ry with ryp > 1 an absolute
constant. By substituting rg into this bound, we obtain with confidence at least 1 — 27,

1 > 3(p+‘£+27')
)

n

maox { 7X) = £-3)] £ 19700 = V40001 } < Csvar

with CSVM :maX{Cl,CQ}r0(1+C4). |

A.3 Proof of Corollary 5

Let ﬁ(w)ij be the (i,7)th element of ﬁ(w) Theorem 3, 4 and the law of large numbers
implies that M(m);; converges to M(m);; in probability for each 7 € (4,1 — ). For any

dm > 6*)
> 6*>

given € > 0, let 7* = argsup P (\1\//\1(70” — M(7)i5] > e), then

mEe(d,1-9)
1-6 1-6
P ( / M(7)i;dm — M(7);;dm
é

0

<

(= 20) [M(=); — M)

-9

P
P

(|M)s — M),y
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for € = (1 — 2d)e. The last term converges to 0 as n increases to oo, which completes the
proof. |

Appendix B. Computing Algorithms

In this section, we suppress m for the sake of simplicity. Let a = (e, -, )", and
wij = ws(xi — Xj).
B.1 wOPG-LR
For the wOPG-LR, we have the following objective function for (18).
n n ~ 1 D
Gla) = Z Zwijw(yi) log [1 + exp (—yiaTkij)] + 3 Z o) Kay, (31)
i=1 j=1 =0
where f{ij = (6ij0k;'|—a tee ,5ijpk;-|—)—r.

The conventional Newton-Raphson method gives the following updating equation of a:
av — OtOId _ H—l(aold)VG(aold)

where VG(a) and H(a) denote the gradient vector and Hessian matrix of G(a), respec-
tively. However, the dimension of Hessian matrix H is np x np, prohibitively large. To
circumvent this, we propose update a in a block-wise manner, i.e., update ay only at a

time, instead of . For each oy, =0,1,--- ,p, we have the following updating equation:
a?ew — a?ld _ HZI(aOId)VG’g(aOld). (32)
Here the gradient VGy(a) is given by
G (a
VGy(ax) = (o) =K(u; + Moy),
80(4
where Uy = (ufla e 7u€n)—ra Ugj = - Z?:l wl]w(yl)yl/vblj(szjfv.] - 17 e, N, and
1
Mij =

1+ exp(yiaTkij)
The Hessian Hy(a) is given by

0?G ()
H/(a) = — = KV/K+ MK,
E( ) 80[@8&2— ¢ ¢
where V, = diag{ve, - -+ ,vp,} denotes the n-dimensional diagonal matrix with

n
veg = Y wigw(yi) g (1 — i )35
=1

Finally, we can estimate « by iterating the following updating equation
™ = (KVK + MK) 'KV (Ko -V, 1)

until convergence. We like to remark that both u, and V, evaluated at afld, [ |
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B.2 wOPG-SVM
For the wOPG-SVM, (18) with the hinge loss can be equivalently written as

m1n Z wa w(y;)&ij + Z o) Koy (33)

'Lljl

subject to ina;kjém >1—¢;, and &; >0, Vi,j=1,---,n,
£=0

where B = {§;;} € R™". Introducing nonnegative Lagrangian multipliers U = {u;;} €
R™™ and V = {v;;} € R™*", the Lagrangian G associated with (33) is

Gi(a, B, U, V) ZZw” w(yi)&ij + ZAM Kay (34)
=1 j=1
- Z Zulj (yz Z (&7 ' k; 51]@ 1+ {z]) - Z Zvijgij'
i=1 j=1 i=1 j=1

Taking the derivative of (34) with respect to &;; and setting it to zero, we have the following
stationary constraint
wiw(yi) = wij — vij, Vi, j=1,---,n. (35)

Plugging (35) into (34), we have the following reduced form of (34):

Z )\gag Kag — Z Z Ujj (yz Z (67 k 51]6 ) (36)

i=1 j=1

Let djo = >, yidijeus; and dy = (dig,dag, -+ ,dpe) . Then for each £ = 0,1, ..., p, we have

n

Z Z uijYi0;50k; = Kdy.

i=1 j=1
Taking derivative of (36) with respect to ay yields
)\ZKOCZ — Kdz =0 & o= )ng (37)
l

Substituting (37) into (36), we have

n o n p
=1 j=1 2 (=0 )\é
7 N

Let X(i) be n x (p + 1) matrix whose jth row is (

(Wit -y Uin) '

(xi — x;)

o
S
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Let k;; = K(x;,%;) be the (i, 7)th element of the kernel matrix K.
J J

n n

Z Z ;deékjkdkf

0 j=1k=1

ps
M*@

Il
=)
~
Il

n n
Z ¥ yzyhdzﬂéhkﬁuz]k]kuhk
=11=1 h=

p
1
zyhzzuu jkUhk ( g )\7£ CCZg Cl?]g)(:chg — !Tkﬂ))
k=1 /=1

7j=1

~
Il
o

I
M@
T M:

??‘

M= 1M

i
L

\M: HM

T Y T
yiyhu(i) (X( )X( ) ® K) ( )

Il
[}
_|
S
?

where ¥ is n? x n? matrix whose (i,7) block matrix is v;y; (XX, ©@K) and @ =
I LHO2)

(ua)7 ‘e ,u<Tn))T € R". Then we have the following dual program.
1
~mlgx2 h(a)=1"a— EﬁT\Ilﬁ, subject to 0 < wy; < wiyw(yi), 4,5 =1,---,n%  (39)
ucRkn

One can solve (39) using the box-constraint coordinate ascent method (Wright, 2015). Note

g& =1-—1,u and g;; = —1;;, where 1, is the ith row vector of ¥. Now, one can
iteratively update u; as
1—,u
;Y < min (max( Old—i—%,()) ,@i) , i=1,---,n% (40)
i
until convergence. Here @;,i = 1,---,n? denotes the upper bound of @; in the box
constraint of (39), i.e., the ith element of @ = (w(y1)w{, - ,w(y,)w, )" where w; =
(wit, -+ ,wjn)T,j =1,---,n.

Finally, the solution of (18) with the hinge loss is obtained by
. 1 . .
Qjp = szzéwluz‘]a for J= 1a , N and / = 0317"' y Dy
Y
=1

where 4;; € R" x R"™ denotes the re-arranged version of u € R" obtained from (40).
[
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