
Journal of Machine Learning Research 23 (2022) 1-54 Submitted 7/21; Revised 8/22; Published 9/22

Simple Agent, Complex Environment:
Efficient Reinforcement Learning with Agent States

Shi Dong sdong15@stanford.edu
Benjamin Van Roy bvr@stanford.edu
Stanford University

Zhengyuan Zhou zzhou@stern.nyu.edu

New York University

Editor: Alekh Agarwal

Abstract

We design a simple reinforcement learning (RL) agent that implements an optimistic version
of Q-learning and establish through regret analysis that this agent can operate with some
level of competence in any environment. While we leverage concepts from the literature
on provably efficient RL, we consider a general agent-environment interface and provide a
novel agent design and analysis. This level of generality positions our results to inform the
design of future agents for operation in complex real environments. We establish that, as
time progresses, our agent performs competitively relative to policies that require longer
times to evaluate. The time it takes to approach asymptotic performance is polynomial in
the complexity of the agent’s state representation and the time required to evaluate the
best policy that the agent can represent. Notably, there is no dependence on the complexity
of the environment. The ultimate per-period performance loss of the agent is bounded by a
constant multiple of a measure of distortion introduced by the agent’s state representation.
This work is the first to establish that an algorithm approaches this asymptotic condition
within a tractable time frame.

Keywords: Reinforcement learning, Q-learning, dynamic programming, regret analysis,
agent design.

1. Introduction

Reinforcement learning agents have demonstrated remarkable success in simulated envi-
ronments. For example, the recently developed MuZero agent (Schrittwieser et al., 2020)
learns to interact effectively with any of a broad range of environment simulators and
delivers superhuman performance in playing chess, go, shogi, and arcade games. Continuing
innovations in this area aim to produce agents that can engage with increasingly complex
environments – ultimately, environments like the physical world or the World Wide Web –
which pose far greater complexity than the agent can represent.

There is a growing mathematical literature that focuses on establishing efficiency guarantees,
typically in terms of sample complexity or regret bounds (Kearns and Singh (2002); Jaksch
et al. (2010) represent early instances). Indeed, data efficiency remains an impediment to

c©2022 Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0773.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0773.html

Dong, Van Roy, and Zhou

carrying the success of reinforcement learning from simulated to real environments, in which
agents must learn within reasonable time frames. As such, the mathematical literature ought
to inform future agent designs. However, work in this area has tended to focus on restrictive
classes of environments, and further, to produce bounds that depend on the number of
environment states, which is effectively infinite in a complex environment.

In this paper, we aim to bridge the divide. In particular, we extend ideas from the
mathematical literature while relaxing common restrictions. In doing so, we establish results
that offer insight into how a simple agent can operate effectively in an arbitrarily complex
environment. While we consider a problem formulation that has been previously studied,
this work contributes to multiple fronts: framing of learning objectives, agent design, and
performance analysis.

Figure 1: Bridging the divide: “provably efficient” reinforcement learning versus “practical”
agent design.

1.1 Complex Environments

We consider an interface, as illustrated in Figure 2, which is defined by a finite action set
A and a finite observation set O. The agent interacts with the environment by executing
at each time t an action At and then registering an observation Ot+1, generating a single
stream of experience (A0, O1, A1, O2, . . .). At each time t, the agent selects At based on its
history Ht = (A0, O1, . . . , At−1, Ot). The initial history H0 = () is empty.

The interface we have described is very general. An agent can engage in this manner with
arbitrarily complex environments. As an example, consider an agent that interacts with the
World Wide Web via a computer terminal. Each action could encode a keystroke or mouse
click or movement, while observations could take the form of pixels rendered by a monitor.
In such a context, the environment would likely be far more complex than the agent.

2

Simple Agent, Complex Environment

Environment dynamics are characterized by a function ρ, which assigns a probability
ρ(o|Ht, At) = P(Ot+1 = o|E , Ht, At) to each observation o ∈ O. Hence, an environment is
specified by a tuple E = (A,O, ρ), with fixed sets A and O and an observation probability
function ρ. In order to accommodate complex real environments, such formulation enables
us to relax several restrictive assumptions commonly made in the literature:

Figure 2: The agent-environment interface.

1. We do not assume the environment is a Markov decision process (MDP), which would
require observation probabilities ρ(·|Ht, At) to depend on history only through the
most recent observation.

2. We do not assume that the environment exhibits episodic behavior, which would
require that the environment occasionally “renews.”

3. We do not assume that the performance of an optimal policy can be accurately
estimated within a manageable time frame. In a complex environment, the required
time can be intractably large or even infinite.

4. We do not require that the agent be supplied with the duration T of operation as
input. We consider instead a single endless stream of experience, calling for agents to
perform well over any long horizon.

1.2 Policies and Performance

A policy π is a mapping from histories to action probabilities, with the probability assigned
to action a at history h denoted by π(a|h). Let P denote the set of all policies. We denote
by π̂ ∈ P the policy executed by the agent. Agent design amounts to specifying this policy,
typically in terms of an algorithm that samples each action At according to π̂(·|Ht).

The designer’s preferences are expressed in terms of a reward function r. For each history Ht,
action At, and observation Ot+1, this function prescribes a reward Rt+1 = r(Ht, At, Ot+1).
We will characterize the performance of a policy in terms of expected rewards. To formalize
this notion, we build on a general probabilistic framework, the details of which are presented
in Appendix A. In this framework, actions At and observations Ot+1 are random variables.
The observation probability function ρ is also a random variable, as it is unknown to the
agent designer, and consequently, the environment E is a random variable. As formally
defined in the appendix, we use a subscript to indicate that a probability or an expectation
is evaluated with actions selected by a particular policy. For example, action probabilities

3

Dong, Van Roy, and Zhou

satisfy Pπ(At = a|Ht) = π(At = a|Ht), and the expected return over T timesteps under
policy π is written as Eπ[

∑T−1
t=0 Rt+1]. When expressing probabilities and expectations under

π̂, we suppress subscripts. For example, P(At = a|Ht) = Pπ̂(At = a|Ht) = π̂(a|Ht) and
E
[∑T−1

t=0 Rt+1

]
= Eπ̂

[∑T−1
t=0 Rt+1

]
. With this notation, we denote the average reward of a

policy π ∈ P by

λπ = lim inf
T→∞

Eπ

[
1

T

T−1∑
t=0

Rt+1

∣∣∣E] , (1)

and the optimal average reward by λ∗ = supπ∈P λπ. We quantify the agent’s performance
relative to a reference policy π ∈ P over T timesteps in an environment E in terms of
regret:

Regretπ(T) = E

[
T−1∑
t=0

(
λπ −Rt+1

)∣∣∣E] . (2)

We will also consider a notion of regret relative to a reference policy class P ′ ⊆ P:

RegretP ′(T) = sup
π∈P ′

Regretπ(T). (3)

Note that RegretP(T) is simply the regret relative to the optimal average reward λ∗, and if
there exists an optimal policy π∗ then Regretπ∗(T) = RegretP(T). Note that the expressions
defining regret are random variables, as they depend on the environment E . From the
perspective of an agent designer, a reasonable goal would be to attain low expected regret
E
[
RegretP(T)

]
for all long durations T , where the expectation is taken over randomness in E .

However, in this paper, we will examine the performance of a fixed agent in the case where
the distribution of E is a point mass, i.e. P(E = e) = 1, where e can be any environment.
As such, we will establish almost sure upper bounds of the random variable RegretP(T).
Naturally, such bounds would imply upper bounds on E

[
RegretP(T)

]
, but we note that in

practice, agent designers are not restricted to fixed agents and should be able to leverage
prior knowledge on E to improve agent design. This topic is nevertheless beyond the scope
of this work.

Our regret bounds necessarily depend on the time required to assess policies. In a complex
environment, the time required to assess optimal or near-optimal policies can be arbitrarily
large or even infinite. As such, we develop bounds that depend instead on the time required
to assess policies in reference classes. In particular, our bounds indicate that, as time
progresses and the agent accumulates experience, it can perform well relative to policies
that take longer to assess.

1.3 A Simple Agent

A practical agent must operate with bounded memory and per-timestep computation. With
these constraints, the agent cannot retain and repeatedly process an ever-growing history.
Rather, the agent maintains only an agent state Xt that suffices to produce its actions. Since
Xt represents all the agent retains from history, it must be updated incrementally, according
to

Xt+1 = f̂(Xt, At, Ot+1, Ut+1),

4

Simple Agent, Complex Environment

for some agent state update function f̂ , where Ut+1 represents algorithmic randomness.
As discussed in Lu et al. (2021), in popular agent designs (e.g., DQN (Mnih et al., 2015),
MuZero (Schrittwieser et al., 2020), MPO (Abdolmaleki et al., 2018; Song et al., 2020)), the
agent state can be partitioned into three components:

agent state Xt =
(
situational state St, epistemic state Pt,algorithmic state Zt

)
.

The situational state is meant to capture salient information about the agent’s current
situation in the environment. The epistemic state retains the agent’s knowledge about the
environment. The algorithmic state can record information unrelated to the environment,
such as readings from the agent’s internal clock or internally generated random numbers.
Rewards computed by such an agent depend on history through the situational state. Letting
S denote the finite set of situational states, the reward function takes the form r : S×A×O →
R, generating rewards according to Rt+1 = r(St, At, Ot+1). Note that such reward function
is a special case of that introduced in Section 1.2, where Rt+1 = r(Ht, At, Ot+1). In this
work, we focus on the case where rewards are computed from situational states instead
of directly from histories. Since the set of situational states is finite, allowing rewards to
depend on situational states ensures that the computation of reward function r does not
require infinite memory.

In this paper, we design and analyze a simple agent, which can engage with any environment
after being instantiated with the following inputs:

1. an initial situational state S0 ∈ S and an update function f : S ×A×O 7→ S,

2. a reward function r : S ×A×O 7→ [0, 1].

While we will provide a precise specification later in the paper, here we offer a rough
description of how the agent operates. Our agent updates its situational state according to
St+1 = f(St, At, Ot+1) and uses this to compute rewards, as illustrated in Figure 3. Note
that function f is assumed to be given to the agent at the beginning and fixed throughout
the agent’s lifetime.

With the sequence of situational states defined recursively through f , the situational state
dynamics need not be Markovian; in particular, we can have P(St+1 = s|E , St, At) 6=
P(St+1 = s|E , Ht, At). Our agent’s epistemic state Pt = (Qt, Nt) is comprised of an action
value function Qt : S × A → R and a count function Nt : S × A → Z+. Our agent’s
algorithmic state includes only the current time t. Action values Qt are updated via an
optimistic discounted Q-learning algorithm, with the discount factor and degree of optimism
increasing over time. The agent updates Nt to track visitation counts, which are used to
determine a suitable degree of optimism. Each action At is sampled uniformly from the
set arg maxa∈AQt(St, a) of greedy actions. Hence, at any time, the agent can be seen as
executing a policy πt(·|Ht) for which action probabilities depend on the history Ht only
through the situational state St.

5

Dong, Van Roy, and Zhou

Figure 3: Our agent maintains a situational state and uses that to compute rewards.

It is worth emphasizing that our agent is not designed to offer state-of-the-art performance
in simulated or real environments. Rather, our motivation is to design an agent that is
amenable to theoretical analysis, with an aim to generate insights that inform the design of
future state-of-the-art agents.

1.4 Example: Service Rate Control

Let us consider a didactic example that, while exceedingly simple, serves to elucidate our
notation and framework. The example involves an agent operating a service station, as
illustrated in Figure 4. At each time, there can be at most one customer present, and the
agent applies a service mode – fast or slow. Each customer pays $1 upon arrival. No cost is
incurred when the slow mode is applied or when there is no customer being served. The fast
mode of service incurs a cost of $0.50 per timestep. To maximize average reward, an agent
must make choices that balance revenue against the cost of service.

Figure 4: A service station serving a customer.

This problem is one of service rate control, as studied in operations research (see, e.g., (Weber
and Stidham Jr, 1987; Stidham Jr and Weber, 1989; Jo, 1989; Sennott, 2009)). However,
such work has tended to focus on agents that are effective when applied to particular stylized
models that govern arrival and service rates. Our approach instead adapts to any statistical
structure, and as such, does not suffer from misspecification. Work on reinforcement learning
for control of queueing systems (Moallemi et al., 2008; Raeis et al., 2021) shares this spirit.
We should note that it is only in order to convey ideas in a simple and transparent manner
that we focus on such a simple service system: our agent can be applied to much more
complex environments, for example, involving multiple servers and queues.

6

Simple Agent, Complex Environment

1.4.1 Agent-Environment Interface

From the agent’s perspective, the service station can be viewed as an environment E =
(A,O, ρ). ActionsA = {fast, slow} identify service modes and observationsO = {arrival,¬arrival}×
{departure,¬departure} indicate arrivals and departures. Hence, At is the service mode
applied over timestep t and Ot+1 indicates any arrival or departure occurring by the end
of the timestep. The function ρ specifies observation probabilities conditioned on history,
which are initially unknown. For example, the designer may be uncertain about customer
arrival rates and how they depend on history.

1.4.2 Situational State Dynamics

We consider a situational state St ∈ S = {0, 1} that simply indicates presence of a customer.
Since observations record arrivals and departures, there is a function f for which St+1 =
f(St, At, Ot+1). The service is initially vacant, so S0 = 0. Profit can be written as Rt+1 =
r(St, At, Ot+1) for some function r. Of special interest are policies that select actions based
only on situational state; that is, the set of policies for which Pπ(At+1|Ht) = Pπ(At+1|St).
Let us denote this set by P̃.

1.4.3 Baseline Agents

We consider agents designed to learn policies within P̃ . While this class of policies is simple
enough so that an agent could perform a nearly exhaustive search, we will restrict attention
to approaches that can scale to settings involving much larger sets of situational states. Two
simple agents of this kind will serve as baselines for comparison. Let πε ∈ P̃ be a policy that
in the absence of a customer applies the slow mode, and otherwise samples slow or fast with
probabilities 1− ε and ε. Each of our baseline agents begins by executing πε, with ε = 0 –
that is, by applying the slow service mode over every timestep. The first agent increases ε
after gathering data over a long duration and using that data to estimate the arrival rate,
if the estimate warrants increasing the service rate. This agent’s analysis is static, in the
sense that it does not entail any experimentation and instead assumes the arrival rate will
remain fixed. The second agent additionally tries a small value of ε > 0 for some duration
in order to estimate the derivative dλπε/dε of average reward. If this derivative is positive,
it increases ε. One significant difference relative to the first agent is that, through its use
of the derivative, this second agent anticipates the impact small increases in ε bear on the
arrival rate. As such, the second agent is representative of approaches used in the policy
gradient literature, as discussed in (Sutton and Barto, 2018) and references therein.

1.4.4 Environment Dynamics

We will study the behavior of agents given environment dynamics characterized by a specific
observation probability function ρ∗, with the corresponding realized environment denoted
by e∗ = (A,O, ρ∗). We provide a detailed specification in Appendix B and assume for the
purposes of this analysis that P(E = e∗) > 0. In this environment, the customer arrival rate
depends on the maximum service time experienced among the most recent dozen customers
served. The idea here is that long service times hurt reputation, which in turn reduces the
number of customers seeking service. Service times are impacted by the agent’s choices: with

7

Dong, Van Roy, and Zhou

the fast mode, service is always completed in a single timestep, while with the slow mode,
service is completed over the next timestep with probability 1/2. Given our specification
of ρ∗, the maximal average reward is $0.50 per timestep. This is achieved by applying the
fast mode of service over every timestep, in which case each customer is served over a single
timestep and a new customer arrives as soon as the previous one departs.

1.4.5 Performance

Figure 5 plots cumulative moving average rewards attained by an optimistic Q-learning
agent, which we will later present, averaged over two hundred independent simulations. The
figure also plots the maximum average reward and the average reward attained by always
applying the slow service mode. The baseline agents never choose to deviate from the slow
service mode and therefore realize average reward close to the latter.

Figure 5: Cumulative moving average rewards attained by an optimistic Q-learning agent,
the maximal average reward, and the average reward attained by always applying
the slow service mode, which approximates behavior of the baseline agents.

These results convey potential benefits of an agent designed to address general environments.
The optimistic Q-learning agent eventually figures out that its choices drive future arrival
rates sufficiently to improve performance. The baseline agents do not demonstrate that level
of sophistication.

2. Contributions and Related Literature

The formulation of agent-environment interactions studied in this paper is very general,
involving a single stream of experience, without restrictive assumptions commonly made
in the literature, as discussed in Section 1.1. It is important for theoretical work to relax
such assumptions if it is to inform the design of agents that can operate in complex real
environments. While this formulation bears close resemblance to those studied by McCallum
(1995); Hutter (2004); Daswani et al. (2013, 2014); Lu et al. (2021), such formulations have
not been a focus of work on provably efficient reinforcement learning. Our work is the first
to extend regret analysis tools to this setting.

8

Simple Agent, Complex Environment

Building upon such general modeling of agent-environment interactions, this paper makes
a range of contributions, innovating on framing of learning objectives, agent design, and
performance analysis, as well as generating qualitative insights that can inform practical
agent design. In this section, we summarize these contributions and their relations to prior
literature.

2.1 Framing of Learning Objectives

In the literature on provably efficient reinforcement learning, it is common to study agent
performance through regret analysis. However, the manner in which regret bounds are
typically framed does not suitably accommodate complex environments. We develop concepts
that allow us to frame meaningful learning objectives for such contexts.

2.1.1 Averaging Time

To intelligently choose between policies, an agent must assess their relative performance.
Regret bounds established in the literature typically reflect this requirement via dependence
on statistics that bound the time required to assess an optimal policy. Examples include,
episode duration (Osband et al., 2013, 2019; Azar et al., 2017; Jin et al., 2018), diameter
(Jaksch et al., 2010), or span (Bartlett and Tewari, 2012; Ouyang et al., 2017; Wei et al.,
2020). In a complex environment, the time required to assess an optimal policy can be
intractably large or even infinite. As such, we will derive bounds that instead depend on
reward averaging times of policies in reference classes.

Let λπ(h, T) denote the expected average reward over T timesteps starting at history h so
that λπ = lim infT→∞ λπ(H0, T). We define the reward averaging time τπ of a policy π ∈ P
to be the smallest value τ ∈ [0,∞] such that

|λπ(h, T)− λπ| ≤
τ

T
, (4)

for all h ∈ H and T ≥ 0. This is closely related to a concept introduced in Kearns and Singh
(2002), which defines a notion of averaging time that is a function of a tolerance parameter
associated with the error |λπ(h, T) − λπ|. Our definition relies instead on a single scalar
statistic τπ. If we let π∗ be an optimal policy, τπ∗ is essentially equivalent to the notion of
span introduced in (Bartlett and Tewari, 2012).

Note that there might exist a history h ∈ H and a policy π such that λπ(h, T) does not
converge to λπ as T →∞, resulting in τπ =∞. While we do not need to rule out such cases
in our analysis, we will see later that for certain policies π, τπ =∞ leads to a vacuous regret
bound Regret(T) ≤ ∞. This makes intuitive sense, since an infinite reward averaging time
implies that the agent might not be able to reverse its previous mistakes, and consequently
could “get stuck” in suboptimality indefinitely.

2.1.2 Distortion

A distinctive element of our formulation is in the agent’s instantiation with a situational
state update function. This serves to simplify the agent’s experience by extracting useful
features from history and enables productive behavior in arbitrarily complex environments.

9

Dong, Van Roy, and Zhou

In particular, instead of the number of environment states, our regret bounds will depend
on the number of situational states and the distortion incurred by using them to predict
optimal discounted value.

In what follows, we will let φ(h) denote the situational state that would be generated after
experiencing a history h ∈ H. Specifically, φ : H 7→ S is a mapping defined such that,
if

h = (a0, o1, a1, o2, . . . , at−1, ot)

is a history sequence containing t timesteps, and {s1, . . . , st} is the sequence of situational
states generated by h, i.e.

s1 = f(S0, a0, o1),

s2 = f(s1, a1, o2),

. . .

st = f(st−1, at−1, ot),

then φ(h) = st. It is worth emphasizing that the mapping φ is determined by both S0 and
f . To avoid cluttering, we will suppress such dependence in the notations.

For each discount factor γ ∈ [0, 1), history h ∈ H, and action a ∈ A, denote the optimal
discounted action value by Qγ∗(h, a). The discount factor γ weights the reward realized after
k timesteps by γk and can be thought of as prescribing an effective planning horizon of
τ = 1/(1− γ). We define the distortion for an effective planning horizon τ by

∆τ = max
(s,a)∈S×A

(
sup

h∈H:φ(h)=s
Qγ∗(h, a)− inf

h∈H:φ(h)=s
Qγ∗(h, a)

)
, (5)

where γ = 1− 1/τ . This is the maximum difference between optimal action values across
histories that lead to the same situational state and offers a measure of error introduced
when predicting optimal action values based on situational state instead of history. This sort
of distortion measure has long been used in analysis of approximate dynamic programming
algorithms that aggregate environment states (Gordon, 1995; Tsitsiklis and Van Roy, 1996;
Van Roy, 2006), though in this case we instead aggregate histories.

Our framing requires a stronger notion of distortion, defined by

∆τ = sup
τ ′≥τ

∆τ ′ . (6)

This quantifies the accuracy with which situational states can predict optimal action values
for all planning horizons of duration τ or greater. This distortion measure offers a useful
statistic for characterizing performance of agents that are able to plan effectively over
increasing horizons as data accumulates.

It is worth mentioning that the aggregation of history and the definition of distortion bear a
resemblance to the notion of Q∗-irrelevant abstraction defined in (Li et al., 2006). While Li
et al. (2006) presume that the environment is modeled by a finite-state MDP, in this work
the set of histories is infinite. We would like to highlight the conceptual value of such a

10

Simple Agent, Complex Environment

distinction, since our goal is analysing a concrete agent that operates with finite memory.
And that is why in this work, instead of simply assuming that there exists an abstraction
function mapping from histories to situational states, we consider a situational state update
function f that allows the agent to recursively compute the next situational state based on
the previous one. In such a way, we are able to ensure that the agent is able to maintain
and update its situational state with finite memory. It is worth mentioning that such a
distinction does not affect regret analysis.

Readers familiar with RL theory might also connect this work with (Li, 2009), which
comprehensively studies the Q∗-irrelevant abstraction under the PAC-MDP framework. We
note that the result in this work applies to more general settings, since it does not impose a
fixed discount factor on the sequence of rewards. Moreover, our theory shows that, compared
with delayed Q-learning, which is the algorithm studied in (Li, 2009), the ultimate per-period
performance loss of our agent enjoys a much more graceful dependence on the abstraction
gap (defined in Section 8.2.3 in (Li, 2009)).

Note that the environment that we defined can be viewed as an MDP with infinitely many
MDP states, and the aggregation of history that we are considering amounts to state
aggregation. In a broader context, state aggregation can be viewed as a form of function
approximation, and a large body of theoretical literature has been dedicated to function
approximation in MDPs. One of the most relevant works in this category is (Jiang et al.,
2017), in which the authors show that if the environment dynamics approximately admit a
low-rank factorization and the class of functions to approximate state values is in accordance
with such a factorization, then the number of samples required to learn an ε-optimal policy in
the environment is polynomial with respect to the rank. Specifically, this result implies that
the sample complexity of learning a near-optimal policy with state aggregation is polynomial
in the number of aggregates. Other recent works along this line include (Jin et al., 2020),
(Agarwal et al., 2020), (Wang et al., 2020), and (Zanette et al., 2020). However, algorithms
in these works with sample complexity guarantees mainly serve theoretical purposes and
have little bearing on practical agent design, whereas one of the main targets of our work is
to shed light on elements in empirically successful agents. Readers interested in theoretical
results on function approximation can refer to the recent paper (Zhou et al., 2021), which
provides a comprehensive review.

A limitation of our framing is in its use of a fixed situational state update function f . While
this is consistent with the manner in which some practical agents operate – for example, the
DQN agent of (Mnih et al., 2015) takes its situational state to be some number of recent
video frames – there is likely value to adapting the way in which situational state is updated
based on what is learned about the environment, which is encoded in the agent’s epistemic
state. The MuZero agent (Schrittwieser et al., 2020) does adapt its update function in this
way. That agent represents the update function in terms of a recurrent neural network,
with weights adapted over time based on interactions with the environment. Despite this
limitation, our framing represents a significant step, advancing the mathematical literature
in a direction that may inform future agent designs.

11

Dong, Van Roy, and Zhou

2.1.3 Reference Classes

We frame as agent design objectives a notion of competing effectively with policies from
particular reference classes, with effectiveness measured through the lens of regret as a
function of averaging times, distortions, and S and A. As opposed to a single scalar
objective, the spirit here is to offer a framework for studying trade-offs and to derive
interpretable regret bounds that generate insight that can inform agent designers. To
understand this spirit, it may be helpful to draw an analogy with the field of optimization.
While optimization problems are framed in terms of precise scalar objectives, the design
of optimization algorithms tends to be formulated in terms of measures of computational
complexity and solution quality as a function of numbers of decision variables and constraints,
as well as other salient problem characteristics.

One reference class we introduced earlier, denoted by P̃, consists of all policies π for which
Pπ(At+1|Ht) = Pπ(At+1|St). In other words, these are the policies that select actions
based on situational state instead of history. Ideally, the situational state should suffice
for predicting what the agent requires to make optimal decisions, in which case P̃ would
include an optimal policy. Let π̃ ∈ P̃ be a policy for which λπ̃ = supπ∈P̃ λπ. We will think

of the agent as trying to learn a high-performing policy from within P̃, and as such, it is
natural to expect that λπ̂ ≤ λπ̃, where π̂ is the policy executed by the agent, as is defined
in Section 1.2. As we will discuss in Appendix D, there exist environments and situational
state dynamics such that λ∗ − λπ̃ ≥ ∆τπ̃ , and consequently, if λπ̂ ≤ λπ̃, the average regret
satisfies

lim inf
T→∞

RegretP(T)

T
= λ∗ − λπ̂ ≥ λ∗ − λπ̃ ≥ ∆τπ̃ . (7)

In light of this fundamental limitation of the policy class P̃, we frame as an objective
optimizing the dependence of average regret on the distortion ∆τπ̃ .

The aforementioned objective calls for the agent to eventually compete effectively with the
best policy among those that select actions based on situational state. A second objective
we frame calls for the agent to attain that eventual level of performance quickly. The
time required depends on the time it takes to compare policies, which can be bounded by
averaging times. As discussed earlier, it is important to avoid dependence on the averaging
time of an optimal policy as well as the number of environment states, each of which can
be intractably large or even infinite in a complex environment. We instead consider regret
bounds that depend on the number of situational states and the averaging time of π̃. In
particular, we consider regret bounds of the form

RegretP(T) ≤ foobar(T,S,A, τπ̃,∆τπ̃),

where foobar is a metasyntactic function and, with some abuse of notation, we use S and
A to denote set cardinalities. An understanding of how regret depends on the arguments
can guide designs that more quickly learn to perform well relative to π̃.

We additionally consider, for each τ ≥ 1, a reference class Pτ = {π ∈ P : τπ ≤ τ}, consisting
of policies with averaging times no greater than τ . For these classes, we consider bounds of
the form

RegretPτ (T) ≤ foobar(T,S,A, τ,∆τ),

12

Simple Agent, Complex Environment

for a different function foobar. Such bounds offer insight into how agents can quickly learn
to perform well relative to policies with any particular averaging time. An agent ought to be
able to compete against policies in Pτ within some time that grows with τ , and such regret
bounds reflect that relationship and draw attention to balancing associated trade-offs.

2.2 Agent Design

Our agent implements a variant of Q-learning (Watkins, 1989). Early analyses of Q-learning
focused on asymptotic convergence guarantees under the assumption that the agent tries
each action at each environment state infinitely often (Watkins, 1989; Watkins and Dayan,
1992; Tsitsiklis, 1994; Jaakkola et al., 1994). More recently, research on Q-learning has
merged with concepts from the literature on regret analysis, leading to provably efficient
variations (Jin et al., 2018; Wei et al., 2020). These optimistic Q-learning agents ensure a
level of efficiency by using carefully chosen step sizes and perturbing action value updates to
maintain optimistic estimates. This merging presents an opportunity to bridge the efficient
reinforcement learning literature with practical agent design, as Q-learning is more aligned
with the state-of-the-art than other algorithms that have been studied in the mathematical
literature.

While we build on this line of work to design a new optimistic Q-learning agent that is
suitable for complex environments, our agent relies on several algorithmic innovations. While
the agents of (Jin et al., 2018; Wei et al., 2020) maintain action values at each environment
state, ours maintains action values at each situational state. Further, the algorithm of Jin
et al. (2018) is designed for fixed-horizon episodic environments and that of Wei et al. (2020)
operates with a fixed discount factor that depends on the horizon T . Our algorithm is
designed for general environments, and while it does make use of a discount factor, the
discount factor increases over time to generate effective behavior over increasingly long
planning horizons. Further, while step sizes used in (Jin et al., 2018; Wei et al., 2020)
depend on the horizon T , our agent is designed to operate indefinitely rather than over a
predetermined horizon T , and as such, uses step sizes that do not depend on T .

2.3 Performance Analysis

Critical contributions of this paper lie in our performance analysis. While the results will be
presented in Section 4, here we discuss a few key implications. Firstly, we establish that, if
τπ̃ <∞, our agent attains average regret

lim sup
T→∞

RegretP(T)

T
= λ∗ − λπ̂ ≤ 4∆τπ̃ . (8)

This is exactly four times the lower bound of (7). It is also interesting to relate this upper
bound to Theorem 19 in Section D, which indicates that, for all ε > 0, there exists an
environment, a set of situational states, a situational state update function and a reward
function, such that particular approximate dynamic programming (ADP) methods one
might apply (e.g., Whitt (1978); Gordon (1995); Tsitsiklis and Van Roy (1996); Munos and
Szepesvári (2008)) yield a policy µ for which λ∗ − λµ ≥ τπ̃∆τπ̃ − ε, which is generally far
worse that 4∆τπ̃ . Further, Van Roy (2006) suggests that a temporal-difference fixed point
would yield a policy µ′ that satisfies λ∗ − λµ′ ≤ ∆τπ̃ , but it is not known whether such a

13

Dong, Van Roy, and Zhou

fixed point can be determined by a computationally tractable algorithm. It is intriguing
that our agent – which is computationally tractable and itself based on a temporal-difference
method – attains average regret within a factor of four of that. We provide a brief discussion
on this topic at the end of Appendix D.

Specialized to the case where the distortion ∆τπ̃ = 0, our analysis implies the following:

RegretP(T) .
(√
SA+ τπ̃

)
T 4/5 + SAT 1/5 + τ5

π̃ , (9)

where . indicates omission of constant and poly-logarithmic factors. In this case, since
situational states enable exact predictions of optimal value, the regret grows sublinearly
in T , meaning that the agent eventually learns a globally optimal policy. The dependence
on T is worse than the usual T 1/2 scaling, which appears in results pertaining to episodic
environments (Jin et al. (2018); Zhang et al. (2020)). In our formulation, a T 1/2 scaling is
unachievable without additional problem-dependent terms in the regret bound that scale
exponentially with S and A (Jaksch et al. (2010); Wei et al. (2020)). It is worth noting that,
while Wei et al. (2020) considers an average reward objective, though with zero distortion,
and provides a regret bound that scales with T 2/3 rather than T 4/5, the algorithm crucially
relies on knowledge of a fixed duration T . Our agent and analysis can also be modified to
attain a T 2/3 scaling given a fixed duration T .

Combining (8) and (9), we can see that besides S,A and T , the bound only depends on τπ̃,
the reward averaging time of the best policy in the reference class. Previous regret bounds
for tabular reinforcement learning scale with the number of states or the reward averaging
time of an optimal policy. In a complex environment, these quantities can be arbitrarily
large or infinite. Interestingly, our bound ensures that the agent is able to learn efficiently
in spite of that.

We further establish that, for all τ ≥ 1,

RegretPτ (T) .
(√
SA+ τ

)
T 4/5 + SAT 1/5 + τ5 + ∆τT. (10)

Recall that Pτ is the class of policies with reward averaging times no greater than τ and
RegretPτ (T) quantifies regret relative to that class. This bound offers insight into how,
over time, the agent can learn to perform competitively against policies with larger reward
averaging times. To understand this, let us focus on a special case where ∆τ = 0 for all τ .
In this case, the bound implies that, for all ε ∈ (0, 1), setting τ = εT 1/5,

lim sup
T→∞

RegretPτ (T)

T
. ε. (11)

Hence, for sufficiently large T , the agent’s average reward approximates that of the best
policy with reward averaging time no greater than εT 1/5.

2.4 Qualitative Insights

While it shares elements common to state-of-the-art agents, our agent is far simpler. Our
motivation was not to produce another state-of-the-art agent, but rather to offer a context

14

Simple Agent, Complex Environment

amenable to analyses that can inform design of future state-of-the-art agents. We now
discuss some key insights supported by our results.

First of all, our results demonstrate that it is possible for an agent to operate effectively within
a tractable time frame through a single endless stream of interactions with an arbitrarily
complex environment. Previous results either rely on the fact that the environment mixes
in a modest amount of time (Jin et al., 2018; Jaksch et al., 2010; Zhang et al., 2020) or
that the horizon T of operation is fixed and known to the agent (Wei et al., 2020). Further,
previous results focus on MDPs, and while there has also been related work on POMDPs
(Jafarnia-Jahromi et al., 2021; Kara and Yuksel, 2020; Subramanian et al., 2022), those
results are relevant only when there is a tractable number of environment states. Our bounds
do not depend on the environment’s mixing time or number of states. Among other things,
our results imply that an agent can perform well even in an environment that is so complex
that the performance of an optimal policy would take forever to estimate.

Secondly, we are the first to establish that an algorithm with average regret bounded by a
constant multiple of distortion approaches such asymptotic performance within a tractable
time frame. An example in (Van Roy, 2006) implies that certain common ADP algorithms,
which require that environment dynamics be known, do not output a policy π ∈ P̃ such that
λ∗ − λπ is within a constant multiple of ∆. Indeed, previous analyses of ADP algorithms
instead bound λ∗ − λπ by a multiple of τ∆, where τ is some notion of averaging time that
depends on environment complexity (Whitt, 1978; Gordon, 1995; Tsitsiklis and Van Roy,
1996). This scaling by τ is far worse than a constant, with τ becoming arbitrarily large in
complex environments. In real environments, it is impractical to attain zero distortion, and
therefore, some degree of impact on performance is inevitable. Our result offers insight into
how to avoid scaling by τ .

An intriguing aspect of our agent design is that the effective planning horizon increases with
time, allowing the agent to eventually optimize performance over arbitrarily long horizons.
Our agent’s effective planning horizon scales with t1/5, and this rate leads to our regret
bound. The notion that planning may benefit from restricting the effective horizon based on
the quantity of data gathered has also been observed by Jiang et al. (2015).

Our regret bounds depend on the distortion induced by a fixed situational state update
function. However, some state-of-the-art agents leverage the ability of neural networks to
adapt this update function (Nachum et al., 2018; Schrittwieser et al., 2020). While our
results do not directly address such adaptation, they do offer insight into the way in which
that can influence agent performance.

3. Value Functions

Central to the theory of MDPs are value functions. While value functions are typically
considered to be functions of environment state, we consider instead functions of history. In
this section we define these value functions and characterize them as solutions to Bellman
equations.

15

Dong, Van Roy, and Zhou

Throughout this section, we consider a fixed discount factor γ ∈ [0, 1) and environment
E = (A,O, ρ). To simplify notation, we will use (h, a, o) to denote the history generated by
concatenating action a and observation o to history h. For each a ∈ A, we define an H×H
transition matrix Pa, with entries

Pahh′ =

{
ρ(o|h, a) if h′ = (h, a, o)

0 otherwise
, (12)

for each h, h′ ∈ H. Similarly, for each policy π ∈ P, we define a transition matrix Pπ,
with

Pπhh′ =
∑
a∈A

(
π(a|h) · Pahh′

)
, ∀h, h′ ∈ H, (13)

for each h, h′ ∈ H. Further, for each action a ∈ A and policy π ∈ P, let ra and rπ be
H-dimensional vectors, with components given by

rah =
∑
o∈O

(
ρ(o|h, a) · r

(
φ(h), a, o

))
and rπh =

∑
a∈A

(
π(a|h) · rah

)
. (14)

For each policy π ∈ P, let

V γ
π (h) =

∞∑
t=0

(
γt ·

(
P tπrπ

)
(h)
)

and Qγπ(h, a) = rah +
∑
h′∈H

(
Pahh′ · V γ

π (h′)
)
. (15)

These functions represent expected discounted rewards starting at history h if either all
subsequent actions are selected by π or only after an action a is executed. By taking the
supremum over policies, we obtain optimal values:

V γ
∗ (h) = sup

π∈P
V γ
π (h) and Qγ∗(h, a) = sup

π∈P
Qγπ(h, a), ∀h ∈ H, a ∈ A. (16)

The following proposition, which follows from Proposition 2.1.1 in Bertsekas (2018), charac-
terizes V γ

∗ and Qγ∗ as unique solutions among the set of bounded functions to the Bellman
equations.

Proposition 1 The pair (V γ
∗ , Q

γ
∗) uniquely solves the system of equations

V (h) = maxa′∈AQ(h, a′) ∀h ∈ H
Q(h, a) = rh,a + γ ·

∑
h′∈H

(
Pahh′ · V (h′)

)
∀h ∈ H, a ∈ A.

among all pairs of bounded functions V : H → R and Q : H×A → R.

We close this section with an important lemma, which ties together three concepts relating
to a policy π: the long-term expected average reward λπ, the reward averaging time τπ, and
the discounted value function V γ

π . The lemma closely resembles Theorem 4.1 in de Farias
and Van Roy (2006), and we omit the proof.

Lemma 2 For all π ∈ P, h ∈ H and γ ∈ [0, 1),
∣∣∣V γ
π (h)− λπ

1−γ

∣∣∣ ≤ τπ.

This result establishes that the reward averaging time bounds the difference between
discounted value V γ

π (h) and average reward λπ scaled by the effective horizon 1/(1−γ).

16

Simple Agent, Complex Environment

4. Agent Design and Performance Analysis

In this section we present and study our optimistic Q-learning agent. Similarly with agents
that have demonstrated success in large-scale simulations, ours learns to predict action values.
However, rather than a neural network representation, our agent maintains a lookup table
containing one prediction per (situational) state-action pair. Actions are selected greedily
with respect to these predictions. Upon each observation, the agent incrementally adjusts
the prediction assigned to its previous state-action pair based on a temporal difference.

The agent predicts discounted value. However, in order to eventually maximize average
reward, the associated discount factor increases over time and approaches one. The idea is
for the agent to plan, at any given time, over a particular effective horizon. This horizon
increases as the agent gathers more data, which enables planning over longer horizons with
greater confidence.

4.1 Discounted Q-Learning

As a prelude to our primary agent, we introduce a simpler one that serves didactic purposes.
This simper agent plans over a fixed effective horizon τ and is designed to operate over
a fixed duration T � τ , with both these variables required as input when instantiating
the agent. In particular, the agent executes Algorithm 1 (discounted q learning). The
effective horizon τ prescribes a discount factor γ = 1− 1/τ . The agent starts with an initial
situational state S0. Over each timestep, the agent increments the visitation count N(s, a),
computes the next situational state s′ = f(s, a, o), and updates the prediction Q(s, a) via a
discounted Q-learning iteration, with discount factor γ = 1− 1/τ .

The Q-learning update of Line 11 adjusts the action value in response to a temporal difference.
Two elements of this update warrant further discussion. One is the step size α, which is
given by (1 + 2τ)/(N(s, a) + 2τ). This step size sequence is adapted from that used in Jin
et al. (2018) and has a number of desirable properties, as will be established in Lemma 9. In
particular, these properties ensure that estimation errors do not accumulate exponentially as
the agent updates action values. A second key element is the optimistic boost added to the
temporal difference, which is given by β/

√
N(s, a). This term injects optimism to ensure

that predictions are likely to be optimistic, in terms of dominating Qγ∗ . As the number of
visits N(s, a) to a state-action pair increases, uncertainty around its prediction decreases,
and this is reflected in the denominator

√
N(s, a).

Let π̂τ,T ∈ P be the policy implemented by an agent that executes Algorithm 1 with effective
planning horizon τ and operation duration T . Let the regret relative to a reference policy
π ∈ P experienced by this agent over T timesteps be denoted by

Regretτπ(T) = Eπ̂τ,T

[
T−1∑
t=0

(
λπ −Rt+1

)∣∣∣E] . (17)

Recall that τπ = infT≥0 |λπ(h, T)− λπ| is the reward averaging time of policy π and

∆τ = max
(s,a)∈S×A

(
sup

h∈H:φ(h)=s
Qγ∗(h, a)− inf

h∈H:φ(h)=s
Qγ∗(h, a)

)
,

17

Dong, Van Roy, and Zhou

Algorithm 1 discounted q learning

Input: S0 initial situational state
f situational state update function
r reward function
τ effective planning horizon
T duration of operation

1: γ ← 1− 1/τ
2: β ← τ3/2 · 4

√
log(2T 2)

3: s← S0

4: Q(·, ·)← τ
5: for t = 1, 2, . . . , T do
6: a← sample unif

(
arg maxa′∈AQ(s, a′)

)
7: execute action a and register observation o
8: N(s, a)← N(s, a) + 1
9: α← 1+2τ

N(s,a)+2τ

10: s′ ← f(s, a, o)

11: Q(s, a)← Q(s, a) + α ·
(
r(s, a, o) + γ ·maxa′∈AQ(s′, a′)−Q(s, a) + β√

N(s,a)

)
12: Q(s, a)← min(Q(s, a), τ)
13: s← s′

14: end for

where γ = 1− 1/τ , is the distortion introduced in predicting the optimal value over effective
horizon τ based on the situational state instead of history. We have the following regret
bound.

Theorem 3 For all τ ≥ 1, T ≥ 1 and π ∈ P, we have

Regretτπ(T) ≤ 24τ3/2 ·
√
SAT log(2T 2) +

[
3∆τ + τπ/τ

]
· T +

[
SA+ 5 + 2 log(T)

]
· τ.

While Algorithm 1 requires the effective planning horizon τ and the duration T of operation
as input, we establish in Section 4.2 a regret bound for a more sophisticated agent that does
not require τ or T as input. The agent relaxes the need for these parameters by operating
with an effective planning horizon that increases over time.

4.2 Growing the Horizon

Rather than targeting fixing the duration of operation and the effective planning horizon,
as done by Algorithm 1 (discounted q learning), we can design an agent that operates
effectively over any duration by planning over a growing horizon. We now study our primary
agent, which executes Algorithm 2 (growing horizon q learning) to accomplish this. The
agent is instantiated with only three inputs: an initial situational state, a situational state
update function, and a reward function. It is worth noting that the agent interacts with
the environment through a single stream of experience, with no resets or reinitialization
of the situational state. While the Q-learning update of Line 14 is looks identical to that

18

Simple Agent, Complex Environment

of Algorithm 1, the effective horizon τ – and thus, the discount factor γ – and optimism
coefficient β now change over time.

Algorithm 2 growing horizon q learning

Input: S0 initial situational state
f situational state update function
r reward function

1: s← S0

2: Q(·, ·)← 1, N(·, ·)← 0
3: for t = 1, 2, . . . do
4: τ ← foo1(t)
5: β ← foo2(t)
6: Q(·, ·)← Q(·, ·) + foo3(t)
7: N(·, ·)← N(·, ·) · foo4(t)
8: a← sample unif

(
arg maxa′∈AQ(s, a′)

)
9: execute action a and register observation o

10: N(s, a)← N(s, a) + 1
11: α← 1+2τ

N(s,a)+2τ

12: s′ ← f(s, a, o)
13: γ ← 1− 1/τ

14: Q(s, a)← Q(s, a) + α ·
(
r(s, a, o) + γ ·maxa′∈AQ(s′, a′)−Q(s, a) + β√

N(s,a)

)
15: Q(s, a)← min(Q(s, a), τ)
16: s← s′

17: end for

The algorithm calls subroutines foo1 through foo4, which govern evolution of the effective
planning horizon τ the optimism coefficient β, and suitably adjust action values Q and
visitation counts N in tandem with changes in τ and β. In particular,

• foo1(t) prescribes the effective planning horizon;

• foo2(t) prescribes the optimism coefficient;

• foo3(t) increases all action values so that they remain optimistic as the effective
planning horizon increases;

• foo4(t) deemphasizes less recent temporal differences, which were based on a substan-
tially different discount factor.

A sequence of change points, beginning with T0 = 1 and continuing with Tk = 20 · 2k−1

for k = 1, 2, 3, . . ., underlie these functions. To specify the functions, it is helpful to define
notation for the most recent change point at each time t. In particular, with the index of
the most recent change point given by kt = max{k ≥ 0 : Tk ≤ t} if t > 0 and k0 = 0, the
most recent change point is Tkt . The first of these functions, which provides the effective
planning horizon τ , is

foo1(t) = T
1/5
kt

. (18)

19

Dong, Van Roy, and Zhou

The optimism coefficient β is similarly updated at changed points according to

foo2(t) = 4T
3/10
kt

√
log(2T 2

kt
). (19)

Note that T
3/10
kt

= foo
3/2
1 (t), so the optimism coefficient scales with the effective planning

horizon raised to a power of 3/2 times a logarithmic term. To ensure that the action values
remain optimistic, they are incremented by the same amount as the effective horizon; this is
accomplished by

foo3(t) = T
1/5
kt
− T 1/5

kt−1
. (20)

Finally, to simplify analysis, we reset state-action counts at change points by multiplying
them by

foo4(t) = 1(Tkt = Tkt−1). (21)

The count becomes one upon the next visit to any state-action pair, and the resulting step
size α = 1 replaces the action value with the temporal difference, effectively forcing the
agent to forget all experience preceding the change point. It is important to note that these
choices of foo1 through foo4 were designed to facilitate analysis rather to produce the most
effective agent. We will discuss alternative choices in the next section that may improve
performance.

We denote by π̂ the policy executed by Algorithm 2 with the subroutines specified above.
Recall that Regretπ(T) is the regret experienced by π̂ relative to a reference policy π ∈ P
and that ∆τπ = supτ≥τπ ∆τ is the maximum distortion over effective horizons equal to or
exceeding the reward averaging time τπ. The following theorem is the main theoretical result
of this paper.

Theorem 4 For all π ∈ P and T ≥ 1,

Regretπ(T) ≤
(

120
√
SA log(2T 2) + 5τπ

)
T 4/5 + 3∆τπT + (54SA+ 18 log(T))T 1/5 + 2τ5

π .

Algorithm 2 can be viewed as operating over a sequence of episodes, delineated by change
points and with the effective planning horizon and optimism coefficient fixed over each. As
such, it can be thought of as instantiating and applying 1 over each episode. Despite that,
Theorem 4 is not follow directly from Theorem 3. The reason is that the latter applies to
an agent that begins with an empty history, whereas an agent that is instantiated at some
change point does not. Theorem 3 in Appendix C.4 bridges this gap, offering a generalization
to Theorem 3 that applies to an agent starting with an arbitrary history h ∈ H so long as
its situational state is initialized to φ(h).

Two corollaries of Theorem 4 facilitate interpretation of its implications. The first charac-
terizes regret relative to reference classes Pτ , each of which consists of policies for which
reward averaging times do not exceed τ . Since RegretPτ (T) = supπ∈Pτ Regretπ(T), we have
the following corollary.

20

Simple Agent, Complex Environment

Corollary 5 For all τ ≥ 1 and T ≥ 1,

RegretPτ (T) ≤
(

120
√
SA log(2T 2) + 5τ

)
T 4/5 + 3∆τT + (54SA+ 18 log(T))T 1/5 + 2τ5.

(22)

It follows from this corollary that, for all ε > 0, τ ≥ 1 and some polynomial poly(·, ·, ·),
the agent attains average reward within 3∆τ + ε of supπ∈Pτ λπ within τ5 · poly(S,A, 1/ε)
timesteps. Hence, within time that scales with τ5, the agent attains average reward
competitive with any policy with reward averaging time τ . Also implicit in this observation
is that, over time, the agent becomes competitive with policies that require longer times to
evaluate.

A second corollary bounds regret relative to the optimal average reward λ∗. This follows
from Theorem 4 and our next lemma, which is a consequence of Corollary 5.1 of (Van Roy,
2006).

Lemma 6 For all τ ≥ 1, λ∗ − λπ̃ ≤ ∆τ .

Applying Lemma 6 and taking π to be π̃, we arrive at the following corollary to Theorem
4.

Corollary 7 For all T ≥ 1,

RegretP(T) ≤
(

120
√
SA log(2T 2) + 5τπ̃

)
T 4/5 + 4∆τπ̃T + (54SA+ 18 log(T))T 1/5 + 2τ5

π̃ .

(23)

This corollary conveys another intriguing property of our result: the agent approaches its
asymptotic performance in time that scales with τ5

π̃ . In particular, this time does not depend
on the reward averaging time of an optimal policy, which in a complex environment could be
intractably large or even infinite. The dependence is instead on the reward averaging time
of π̃, which is determined by situational, rather than environment, state dynamics.

4.3 Scheduling Schemes

The functions foo1 through foo4 prescribe schedules for adjusting the effective planning
horizon, the optimism coefficient, and value and count functions. The particular choices
specified in the previous section as part of Algorithm 2 were designed to facilitate regret
analysis. Indeed, their irregular structure, with abrupt adjustments occurring at particular
change points, was introduced solely to simplify analysis by partitioning the stream into
episodes. More natural choices involving “smooth” schedules may substantially improve
realized performance while satisfying similar or improved regret bounds. Further, the rate
at which the effective horizon grows with time plays an important role, and a rate of t1/5

may be onerously slow, requiring a very long time to develop plans that span reasonable
horizons.

To illustrate the importance of these schedules, let us revisit the service rate control example
of Section 1.4. Simulation results reported in that section, which demonstrated the capability
of optimistic Q-learning to improve performance over time, made use of particular smooth

21

Dong, Van Roy, and Zhou

schedules:

foo1(t) =1.5t1/5,

foo2(t) =0.44t3/10
√

log(2t2),

foo3(t) =1.5(t1/5 − (t− 1)1/5),

foo4(t) =1.

Note that, while it may be beneficial to modify the rate at which the planning horizon grows,
for the purposes of our current study, we retain the t1/5 rate and only tune other aspects
of the schedules. Figure 6 compares results reported in Section 1.4.5 against the schedules
of Algorithm 2. Each plot represents an average over two hundred simulated trajectories.
While the latter agent eventually improves performance, that requires a very long time due
to its impractical schedules.

Figure 6: Performance of Algorithm 2 with its original schedules versus improved smooth
schedules.

It may be surprising that Algorithm 2 performs so poorly despite satisfying regret bounds of
the previous section. Indeed, as is common to mathematical results on efficient reinforcement
learning, such regret bounds tend to be very weak. They typically do not offer accurate
predictions of realized performance, and given the level of inaccuracy, they do not offer
precise guidance on agent design. However, these bounds and the analyses that lead to them,
can be useful for developing qualitative understanding and insights, as we have discussed in
earlier sections.

5. Closing Remarks

We presented and studied a simple agent that through a general agent-environment interface
interacts over a single stream of experience. Our results bound regret realized by the agent.
These bounds bear implication on asymptotic performance and the rate at which the agent

22

Simple Agent, Complex Environment

approaches that level of performance. Importantly, these bounds do not depend on the
number of environment states or their mixing time. One interesting insight that emerges
involves the relation between the agent’s effective planning horizon and its duration T of
past experience: the agent plans effectively over a horizon that grows with T 1/5. There are
a number of directions in which the results in this work can be strengthened or extended.
We will discuss a few in this section.

Our agent uses a particularly simple representation for the action value function, comprised
of a fixed, prespecified situational state update function and a lookup table over situational
states. State-of-the-art agents adapt the situational state update function based on the
agent’s experience and generalize over situational states, typically by using a neural network
instead of a lookup table, and these extensions allow for much larger situational state spaces
and can greatly improve performance.

The agent that we analyze discards all previous experience whenever the effective planning
horizon is increased. This is impractical and done only to facilitate analysis. It ought to be
possible to analyze a variation that more gradually phases out the influence of past data,
along the lines discussed in Section 4.3.

To maximize long-term average reward, it may be natural for the agent to learn a differential
value function directly, as is studied in Wan et al. (2020), rather than discounted value
functions, as does our agent. However, an open issue is whether an agent can explore the
environment efficiently when doing so. We believe that this is a problem that is worth
further investigation.

Finally, we suspect that the T 4/5 term in our regret bound, which reflects the rate at which
the agent approaches its asymptotic performance, is not fundamental and can be improved
with a better agent design and a more nuanced analysis. We note that this dependence stems
from the subroutines foo1 (18) through foo4 (21) that the agent uses to adjust the planning
horizon. As we mentioned in Section 4.2, these settings induce an effective planning horizon
that grows with T 1/5, suggesting that it takes time τ5 to plan effectively over a horizon
of length τ . We conjecture that there exists an environment in which any agent requires
time τ3 to do this, which would translate to a T 2/3 instead of T 4/5 term in the regret lower
bound. Such a lower bound could shed light on the limits of learning and could offer useful
insight to agent designers on how long the agent ought to plan, given the duration of past
experience.

Acknowledgements

Financial support from Army Research Office (ARO) grant W911NF2010055, National
Science Foundation grant CCF-2106508, and the Digital Twin research grant from Bain &
Company are gratefully acknowledged. Shi Dong was partly supported by the Herb and
Jane Dwight Stanford Graduate Fellowship. Zhengyuan Zhou acknowledges the generous
support from New York University’s Spring 2022 Center for Global Economy and Business
faculty research grant. We thank J. Michael Harrison, Satinder Singh, John Tsitsiklis, and
Xiuyuan Lu for stimulating discussions and helpful feedback. We also thank Alex Cloud for
pointing out a mistake in a previous version of this paper.

23

Dong, Van Roy, and Zhou

Appendix A. Probabilistic Framework

In this appendix, we define our probabilistic framework and notation. We will define all
random quantities with respect to a probability space (Ω,F ,P). The probability of an event
F ∈ F is denoted by P(F). For all events F ,G ∈ F with P(G) > 0, the probability of F
conditioned on G is denoted by P(F |G).

A random variable is a function with the set of outcomes Ω as its domain. For all random
variable Z, P(Z ∈ Z) denotes the probability of the event that Z lies within a set Z. The
probability P(F |Z = z) is of the event F conditioned on the event Z = z. When Z takes
values in RK and has a density pZ , though P(Z = z) = 0 for all z, conditional probabilities
P(F |Z = z) are well-defined whenever pZ(z) > 0, and will be denoted by P(F |Z = z). For
fixed F , this is a function of z. We denote the value, evaluated at z = Z, by P(F |Z), which
is itself a random variable. Even when P(F |Z = z) is ill-defined for some z, P(F |Z) is
well-defined because problematic events occur with zero probability.

For each possible realization z, the probability P(Z = z) that Z = z is a function of z. We
denote the value of this function evaluated at Z by P(Z). Note that P(Z) is itself a random
variable because is it depends on Z. For random variables Y and Z and possible realizations
y and z, the probability P(Y = y|Z = z) that Y = y conditioned on Z = z is a function
of (y, z). Evaluating this function at (Y,Z) yields a random variable, which we denote by
P(Y |Z).

Particular random variables appear routinely throughout the paper. One is the environment
E = (A,O, ρ). While A and O are deterministic sets that define the agent-environment
interface, the observation probability function ρ is a random variable. This randomness
reflects the agent designer’s epistemic uncertainty about the environment. We often consider
probabilities P(F |E) of events F conditioned on the environment E .

Our main results involve upper bounding random variables in the form of E[·|E], which is a
function of E . To establish E[·|E] ≤ B with probability one, a sufficient argument is that for
all environment e, if the distribution of E has a positive mass on e, then E[·|E = e] ≤ B. In
Appendix C, when readers encounter notations like E[·|E = e], it may be helpful to think of
an accompanying quantifier “for all distributions of E where e enjoys a positive mass.”

A policy π assigns a probability π(a|h) to each action a for each history h. For each
policy π, random variables Aπ0 , O

π
1 , A

π
1 , O

π
2 , . . ., represent a sequence of interactions gen-

erated by selecting actions according to π. In particular, with Hπ
t = (Aπ0 , O

π
1 , . . . , O

π
t)

denoting the history of interactions through time t, we have P(Aπt |Hπ
t) = π(Aπt |Hπ

t) and
P(Oπt+1|Hπ

t , A
π
t , E) = ρ(Oπt+1|Hπ

t , A
π
t). As shorthand, we generally suppress the superscript

π and instead indicate the policy through a subscript of P. For example,

Pπ(At|Ht) = P(Aπt |Hπ
t) = π(Aπt |Hπ

t),

and

Pπ(Ot+1|Ht, At, E) = P(Oπt+1|Hπ
t , A

π
t , E) = ρ(Oπt+1|Hπ

t , A
π
t).

The dependence on π extends to algorithmic state Zπt , situational state Sπt , and epistemic
state P πt , and we use the same conventions to suppress superscripts when appropriate.

24

Simple Agent, Complex Environment

Figure 7: The customer arrival probability is a decreasing function of the maximum service
time experienced among the most recent dozen customers served.

When expressing expectations, we use the same subscripting notation as with probabilities.
For example, the expectation of a reward Rπt+1 = r(Sπt , A

π
t , O

π
t+1) conditioned on the environ-

ment E , state Sπt , and action Aπt is written as E[Rπt+1|E , Sπt , Aπt] = Eπ[Rt+1|E , St, At].

Much of the paper studies properties of interactions under a specific policy π̂. When it is
clear from context, we suppress superscripts and subscripts that indicate this. For example,
Ht = H π̂

t , At = Aπ̂t , Ot+1 = Oπ̂t+1. Further,

P(At|Ht) = Pπ̂(At|Ht) = π̂(At|Ht).

Appendix B. Service Rate Control Example

This appendix supplements the discussion of Section 1.4. In particular, we provide a
precise characterization of environment dynamics and establish that the two baseline agents
described in Section 1.4 do not deviate from the slow mode of service. We also present a
third, more sophisticated, baseline agent and establish that even that does not learn to
deviate from the slow mode.

B.1 Environment Dynamics

The service station is initially vacant, and customers may arrive starting at the end of the
first timestep. At each time, the arrival probability depends on maximum service time
experienced among the most recent 12 customers served. We denote this statistic by Wt

and initialize with W0 = 1. The customer arrival probability decreases as Wt increases, as
illustrated in Figure 7. In particular, conditioned on Wt, the probability that a customer
arrives at time t, if the service station is vacant then, is Pt = 0.1 + 0.9e−10(Wt−1).

The choice of service mode impacts service times: with the fast mode, service is always
completed in a single timestep, while with the slow mode, the service is completed over the

25

Dong, Van Roy, and Zhou

next timestep with probability 1/2. As such, the observation probabilities conditioned on
St = 0 are given by

ρ∗(o|Ht, ·) departure ¬departure

arrival 0 Pt
¬arrival 0 1− Pt

and, conditioned on St = 1,

ρ∗(o|Ht, fast) departure ¬departure

arrival Pt 0
¬arrival 1− Pt 0

ρ∗(o|Ht, slow) departure ¬departure

arrival Pt/2 0
¬arrival (1− Pt)/2 1/2

It is easy to verify that the long-run average reward is maximized if the agent applies the fast
mode of service over every timestep. This policy minimizes service times, with each customer
waiting for precisely one timestep. Consequently, under this policy, Wt converges to 1, as
does the arrival probability. The long-run average reward is therefore 1− 0.5 = 0.5.

B.2 Analysis of Baseline Agents

We now study the performance of the two baseline agents introduced in Section 1.4, as well
a more sophisticated variant. Recall that these agents at each time apply a policy πε, which
selects the fast mode with some probability ε, which can vary with time. Each of these
agents begins with knowledge of service completion probabilities: 1/2 and 1 for the slow
and fast modes, respectively. Throughout the discussion, Let W∞ and P∞ denote random
variables sampled from the steady-state distributions of Wt and Pt, respectively.

Let cε be the service completion probability over any timestep when a customer is served
under policy πε. In particular, cε = ε+ 1

2(1− ε) = 1+ε
2 . The average reward λπε is then given

by

λπε =
profit per customer

mean interarrival time
=

1− 0.5 ε
cε

1
cε
− 1 + 1

Eπε [P∞|E=e∗]

. (24)

The first agent applies π0 and only deviates if warranted after observing data over a long
duration, assuming that the arrival probability is fixed. Whether it decides to increase
ε depends on its arrival probability estimate. Under the policy π0, a customer’s service
time is 1 with probability 1/2 and, otherwise, at least 2. Since Wt is the largest among 12
service times, Pπ0(W∞ = 1 | E = e∗) = 1/4096 and Pπ0(W∞ ≥ 2 | E = e∗) = 4095/4096.
Consequently,

Eπ0 [P∞ | E = e∗] = Eπ0
[
0.1 + 0.9e−10(W∞−1) | E = e∗

]
< 1.

To keep things simple, suppose the agent’s estimate of this steady-state arrival probability
is exactly Eπ0 [P∞ | E = e∗]. As such, the agent’s estimate of the average reward under πε is

λ̂πε =
profit per customer

mean interarrival time
=

1− 0.5ε 1
cε

1
cε
− 1 + 1

Eπ0 [P∞|E=e∗]

=
1

1− ε+ 1+ε
Eπ0 [P∞|E=e∗]

. (25)

26

Simple Agent, Complex Environment

Note that the difference between Equation (25) and Equation (24) is due to the first agent’s
use of an arrival probability that results from π0 rather than πε. Since Eπ0 [P∞ | E = e∗] < 1,
λ̂πε is strictly decreasing in ε ∈ [0, 1]. As such, the agent does not deviate from the slow
mode.

The second agent additionally tries a small value of ε > 0 for some duration in order to
estimate the derivative dλπε/dε of the average reward at ε = 0. If this derivative is positive,
it increases ε. Here, we show that this derivative is negative, and hence the second agent
does not deviate from the slow mode. As such, one can easily check that for each positive
integer w and for all ε ∈ [0, 1], we have:

Pπε(W∞ ≤ w | E = e∗) =

(
1−

(
1− ε

2

)w)12

. (26)

Recalling that cε = 1+ε
2 and following Equation (24), we have:

λπε =
1− 0.5ε 1

cε
1
cε
− 1 + 1

Eπε [P∞|E=e∗]

=
G(ε)

(1− ε)G(ε) + (1 + ε)
, (27)

where G(ε) = Eπε [P∞ | E = e∗] =
∑∞

w=1 Pπε(W∞ = w | E = e∗)
(
0.1 + 0.9e−10(w−1)

)
.

Consequently, taking its derivative with respect to ε and evaluating it ε = 0 yields:

dλπε
dε

∣∣∣∣∣
ε=0

=
d
dεG(ε)|ε=0 −G(0) +G(0)2[

G(0) + 1
]2 < −0.072. (28)

As such, the second agent will not deviate from π0.

Finally, we can even consider a third agent, which is similar to the second agent except
it additionally estimates the second derivative d2λπε/dε

2. It then chooses ε to maximize
a second-order Taylor expansion of λπε around ε = 0 subject to the constraint 0 ≤ ε ≤ 1.
This agent again ends up always selecting the slow mode of service, because even exploiting
second-order information suggests that staying with π0 is the best thing to do. To see

this, we evaluate the second derivative of λπε at ε = 0, yielding 1
2

d2λπε
dε2

∣∣∣
ε=0

< 0.0716.

As such, when using a second-order polynomial for extrapolation, one would get λ̃πε =

λπ0 −
dλπε

dε

∣∣∣
ε=0

ε + 1
2

d2λπε
dε2

∣∣∣
ε=0

ε2 < λπ0 − 0.072ε + 0.0716ε2 < 0, thereby yielding a strictly

smaller value than λπ0 for all ε ∈ (0, 1].

In summary, the first baseline agent represents what might be produced by a conservative
designer, who demands to see empirical evidence justifying fast service before ever trying
that. The second agent is representative of approaches used in the policy gradient literature,
as discussed in (Sutton and Barto, 2018) and references therein. The third agent pursues a
more sophisticated approach entailing estimation and use of the second derivative in addition
to the gradient. Per the analysis given above, all three agents end up choosing the slow-only
policy, and hence perform poorly relative to our optimistic Q-learning agent, which adapts
action values Qt(St, At) to predict future return and select actions.

27

Dong, Van Roy, and Zhou

Appendix C. Proofs

C.1 Proof of Lemma 2

The lemma is restated below.

Lemma 8 For all π ∈ P, h ∈ H and γ ∈ [0, 1),
∣∣∣V γ
π (h)− λπ

1−γ

∣∣∣ ≤ τπ.

To prove this lemma, recall that, for a fixed policy π ∈ P, discount factor γ ∈ [0, 1), and
history h ∈ H,

V γ
π (h) =

∞∑
t=0

(
γt ·

(
P tπrπ

)
(h)
)
. (29)

For simplicity, let r` = γ` ·
(
P `πrπ

)
(h). We have that

V γ
π (h) =

∞∑
`=0

γ`r`. (30)

By the definition of τπ, for all ` ≥ 0,

τπ ≥

∣∣∣∣∣∑̀
k=0

(
rk − λπ

)∣∣∣∣∣ . (31)

Hence, ∣∣∣∣V γ
π (h)− λπ

1− γ

∣∣∣∣ =

∣∣∣∣∣
∞∑
`=0

γ` ·
(
r` − λπ

)∣∣∣∣∣
=

∣∣∣∣∣
∞∑
`=0

(1− γ)γ` ·
∑̀
k=0

(
rk − λπ

)∣∣∣∣∣
≤

∞∑
`=0

(1− γ)γ` ·

∣∣∣∣∣∑̀
k=0

(
rk − λπ

)∣∣∣∣∣
≤

∞∑
`=0

(1− γ)γ` · τπ

= τπ,

which is our desired result.

C.2 Properties of the Learning Rates

In this subsection, we generalize a useful lemma from (Jin et al., 2018) on properties of the
learning rates. Let

αik = αi ·
k∏

`=i+1

(1− α`), i = 1, . . . , k, (32)

28

Simple Agent, Complex Environment

where (α` : ` = 1, 2, . . .) is the learning rate sequence α` = (1 + 2τ)/(`+ 2τ), and

α0
k = 1{k = 0}. (33)

Naturally,
∑k

i=0 α
i
k = 1. We also have the following:

Lemma 9

(a) For all k ≥ 1, 1√
k
≤
∑k

i=1
αik√
i
≤ 2√

k
;

(b) For all k ≥ 1, maxi=1,...,k α
i
k ≤

4τ
k and

∑k
i=1(αik)

2 ≤ 4τ
k ;

(c) For all i ≥ 1,
∑∞

k=i α
i
k = 1 + 1

2τ .

Proof. The proof of Lemma 4.1 in (Jin et al., 2018) covers the case where H = 2τ is a
positive integer. We note that their proof of parts (a) and (b) also applies for all H > 1.
Thus, what is left for us here is showing that part (c) holds for all real numbers H > 1. To
this end, we first establish that, for all positive real numbers b > a,

a

b− a
=
∞∑
i=1

i∏
j=1

a+ j − 1

b+ j
. (34)

In fact, we can show by induction on positive integer ` that

a

b− a
=
∑̀
i=1

i∏
j=1

a+ j − 1

b+ j
+

a

b− a
∏̀
j=1

a+ j

b+ j
. (35)

When ` = 1, we have that

a

b− a
− a

b+ 1
=

a

b− a
·
[
1− b− a

b+ 1

]
=

a

b− a
· a+ 1

b+ 1
. (36)

Hence, (35) holds for ` = 1. Now suppose that (35) holds for `. There is

a

b− a
−

`+1∑
i=1

i∏
j=1

a+ j − 1

b+ j
=

 a

b− a
−
∑̀
i=1

i∏
j=1

a+ j − 1

b+ j

−
`+1∏
j=1

a+ j − 1

b+ j

=
a

b− a
∏̀
j=1

a+ j

b+ j
−

`+1∏
j=1

a+ j − 1

b+ j
(37)

=

 a

b− a
∏̀
j=1

a+ j

b+ j

 ·
(

1− b− a
b+ `+ 1

)

=
a

b− a

`+1∏
j=1

a+ j

b+ j
, (38)

29

Dong, Van Roy, and Zhou

where (37) follows from our induction hypothesis. Thus, (35) also holds for `+ 1, concluding
our induction. Following (35), we have

a

b− a
−
∞∑
i=1

i∏
j=1

a+ j − 1

b+ j
= lim

`→∞

 a

b− a
−
∞∑
i=1

i∏
j=1

a+ j − 1

b+ j

 = lim
`→∞

a

b− a
∏̀
j=1

a+ j

b+ j
. (39)

However,

log
∏̀
j=1

a+ j

b+ j
=
∑̀
j=1

log

(
1− b− a

b+ j

)
≤ −

∑̀
j=1

b− a
b+ j

. (40)

The right-hand side goes to −∞ as `→∞, implying that

lim
`→∞

∏̀
j=1

a+ j

b+ j
= 0. (41)

Thus, (34) follows from (39). Now we have

∞∑
k=i

αik =
H + 1

H + i
·

1 +

∞∑
k=i

k−i∏
j=0

i+ j

H + i+ j + 1


=

H + 1

H + i
·

1 +

∞∑
k=1

k∏
j=1

i+ j − 1

H + i+ j


=

H + 1

H + i
·
{

1 +
i

H

}
=

H + 1

H

= 1 +
1

2τ
, (42)

as we have claimed in part (c). �

C.3 Regret Analysis of the Discounted Q-Learning Agent

In this section, we focus ourselves on the discounted variant of the agent in Section 4.1.
Throughout this section we assume that the discount factor γ = 1 − 1/τ ∈ [0, 1) is fixed.
We also consider a hypothetical setting, in which the history starts from an arbitrary
h ∈ H and the agent starts from situational state φ(h). Since every time the agent changes
the discount factor, the environment history is not reset to H0, our main goal here is to
demonstrate that our result holds regardless of the initial history, as long as the agent
starts from the corresponding agent state. In order to simplify notations, in this section
we always condition on the environment being a generic fixed environment e = (A,O, ρ),
and P(·|E = e), E[·|E = e] are shortened as P(·), E[·], respectively. We let H0 = h be a fixed,
possibly non-empty history, and S0 = φ(h). We will also omit the superscript γ on value

30

Simple Agent, Complex Environment

Algorithm 3 Discounted Q-learning subroutine

1: Input: f, r, γ, β,Q′

2: initialize history to h
3: t = 0, s← φ(h)
4: Q← Q′, N(·, ·)← 0
5: V (s)← maxa′∈AQ(s, a′), ∀s ∈ S
6: while True do
7: a← sample unif(arg maxa′∈AQ(s, a′))
8: N(s, a)← N(s, a) + 1

9: α← 2+(1−γ)
2+N(s,a)·(1−γ)

10: execute action a and register observation o
11: s′ ← f(s, a, o)

12: Q(s, a)← (1− α) ·Q(s, a) + α ·
[
r(s, a, o) + γ · V (s′) + β√

N(s,a)

]
13: Q(s, a)← min

{
Q(s, a), 1/(1− γ)

}
14: V (s)← maxa′∈AQ(s, a′)
15: s← s′, t← t+ 1
16: end while

functions V γ
∗ , Qγ∗ , V

γ
π and Qγπ. Readers should keep in mind that all value functions in this

section are with respect to discount factor γ.

Specifically, we will consider Algorithm 3, which is identical to Algorithm 1 except that the
initial history can be arbitrary, and that we use Q′(s, a) to initialize Q(s, a) for all s ∈ S
and a ∈ A. Let H1, H2, . . . be the history trajectory of Algorithm 3, i.e.

Ht =
(
h,A0, O1, . . . , At−1, Ot

)
, t = 1, 2, . . . , (43)

and let

St = φ(Ht), Rt = r(St−1, At−1, Ot), t = 1, 2, (44)

Also let Vt(s) be the value of situational state s at timestep t immediately after the
update

Q(St−1, At−1)← (1− α) ·Q(St−1, At−1) + α ·

(
Rt + γ · V (St) +

β√
N(St−1, At−1)

)
, (45)

Q(St−1, At−1)← min

{
Q(St−1, At−1),

1

1− γ

}
, (46)

and

V (St−1)← max
a′∈A

Q(St−1, a
′), (47)

31

Dong, Van Roy, and Zhou

and let Vt(h) be a shorthand for Vt(φ(h)). Similarly are Qt(s, a) and Qt(h, a) defined. Note
that since the actions are selected greedily, we have

Qt(Ht, At) = max
a∈A

Qt(Ht, a) = Vt(Ht). (48)

Finally, we let P be the transition operator, such that for all functions g : H 7→ R and
history-action pairs (h, a) ∈ H ×A,

Pg(h, a) =
∑
h′∈H

(
Pahh′ · g(h′)

)
. (49)

Let π̊ be the policy corresponding to Algorithm 3. Recall that the distortion with respect to
effective planning horizon τ ≥ 1 is defined as

∆τ = max
(s,a)∈S×A

(
sup

h∈H:φ(h)=s
Q

1−1/τ
∗ (h, a)− inf

h∈H:φ(h)=s
Q

1−1/τ
∗ (h, a)

)
. (50)

To avoid cluttering, for γ ∈ [0, 1) we will simply use ∆γ to represent ∆τ with τ = 1/(1− γ).
Our aim is to show the following result:

Theorem 10 For all T ≥ 1, if Algorithm 3 is executed with γ ∈ [0, 1),

β =
4

(1− γ)3/2

√
log(2T 2), (51)

and Q′ such that for some ι ≥ 0,

Q∗(h, a)− ι

1− γ
≤ Q′

(
φ(h), a

)
≤ 1

1− γ
, ∀h ∈ H, a ∈ A, (52)

then for all initial history h ∈ H,

Eπ̊

[
T−1∑
t=0

(
V∗(Ht)− Vπ̊(Ht)

)]
≤ 24

(1− γ)
5
2

·
√
SAT · log(2T 2) +

3∆̃γT

1− γ
+
SA+ 3

(1− γ)2
, (53)

where ∆̃γ = max{∆γ , ι}.

C.3.1 Regret Decomposition

In this subsection we will prove the following lemma, which decomposes the left-hand side
of (53) and paves the way for further analysis.

Lemma 11 For all T ≥ 1,

Eπ̊

[
T−1∑
t=0

(
V∗(Ht)− Vπ̊(Ht)

)]
≤ 1

1− γ
· Eπ̊

[
T−1∑
t=0

(
V∗(Ht)−Q∗(Ht, At)

)]

+
1

(1− γ)2
. (54)

32

Simple Agent, Complex Environment

Proof. We have

Eπ̊

[
T−1∑
t=0

(
V∗(Ht)− Vπ̊(Ht)

)]
= Eπ̊

[
T−1∑
t=0

(
Vt(Ht)− Vπ̊(Ht)

)]

− Eπ̊

[
T−1∑
t=0

(
Vt(Ht)− V∗(Ht)

)]
. (55)

Taking a closer look at the first term on the right-hand side, since π̊ is greedy with respect
to Vt for each t,

Eπ̊

[
T−1∑
t=0

(
Vt(Ht)− Vπ̊(Ht)

)]
= Eπ̊

[
T−1∑
t=0

(
Vt(Ht)−Qπ̊(Ht, At)

)]

= Eπ̊

[
T−1∑
t=0

(
Vt(Ht)−Q∗(Ht, At)

)]

+ Eπ̊

[
T−1∑
t=0

(
Q∗(Ht, At)−Qπ̊(Ht, At)

)]

= Eπ̊

[
T−1∑
t=0

(
Vt(Ht)−Q∗(Ht, At)

)]

+ γ · Eπ̊

[
T−1∑
t=0

(
V∗(Ht+1)− Vπ̊(Ht+1)

)]
. (56)

Combining (55) and (56), we have

(1− γ) · Eπ̊

[
T−1∑
t=0

(
V∗(Ht)− Vπ̊(Ht)

)]
≤ Eπ̊

[
T−1∑
t=0

(
V∗(Ht)−Q∗(Ht, At)

)]

+

(
V∗(HT)− Vπ̊(HT)

)
. (57)

Dividing both sides by 1− γ and considering that V∗(HT)− Vπ̊(HT) ≤ 1/(1− γ), we arrive
at (54). �

For simplicity, let

χk = Vk(Hk)− V∗(Hk) +
∆̃γ

1− γ
(58)

and

ξk = Qk(Hk, Ak)−Q∗(Hk, Ak) (59)

for each k ≥ 0. Using these notations, (54) can be written equivalently as

Eπ̊

[
T−1∑
t=0

(
V∗(Ht)− Vπ̊(Ht)

)]
≤ 1

1− γ
· Eπ̊

[
T−1∑
t=0

(
ξk − χk

)]
+

∆̃γT

(1− γ)2
+

1

(1− γ)2
. (60)

33

Dong, Van Roy, and Zhou

C.3.2 Establishing Near-Optimism

In this subsection we show that at each timestep t, the value function Vt is almost optimistic
uniformly across all histories. We have the following result.

Lemma 12 For all T ≥ 1, if Algorithm 3 is executed with γ ∈ [0, 1),

βδ =
4

(1− γ)3/2

√
log

2T

δ
, (61)

and Q′ such that for some ι ≥ 0,

Qγ∗(h, a)− ι

1− γ
≤ Q′(h, a) ≤ 1

1− γ
, ∀h ∈ H, a ∈ A, (62)

then with probability at least 1− δ, for all h ∈ H, a ∈ A and 0 ≤ t ≤ T ,

Vt(h) ≥ V∗(h)− ∆̃γ

1− γ
and Qt(h, a) ≥ Q∗(h, a)− ∆̃γ

1− γ
,

where ∆̃γ = max{∆γ , ι}.

Proof. For the moment let us fix h ∈ H and a ∈ A. Let Q̂k be the Q-value of
(
φ(h), a

)
after

it has been updated k times, with Q̂0 = 1/(1− γ) being the initial value. Further, for each
k = 1, 2, . . . , let tk be the timestep at which

(
φ(h), a

)
is updated. Note that we have

φ(Htk) = φ(h), Atk = a. (63)

From the update rule in Algorithm 3, when n ≥ 1,

Q̂n =

n∑
i=1

αin ·
(
Rti+1 + γ · Vti

(
Hti+1

)
+
βδ√
i

)
. (64)

34

Simple Agent, Complex Environment

Thus, when n ≥ 1,

Q̂n −Q∗(h, a) =

n∑
i=1

αin ·
(
Rti+1 + γ · Vti

(
Hti+1

)
+
βδ√
i
−Q∗(h, a)

)

≥
n∑
i=1

αin ·

(
Rti+1 + γ · Vti

(
Hti+1

)
+
βδ√
i

)

−
n∑
i=1

αin ·

(
Q∗(Hti , Ati) + ∆̃γ

)
(65)

=
n∑
i=1

αin ·

(
γ · Vti

(
Hti+1

)
− γ ·PV∗(Hti , Ati)

)

+

{
n∑
i=1

αin ·
βδ√
i

}
− ∆̃γ (66)

≥
n∑
i=1

αin ·
(
Vti(Hti+1)− V∗(Hti+1)

)
+

n∑
i=1

αin ·
(
V∗(Hti+1)−PV∗(Hti , Ati)

)
+

βδ√
n
− ∆̃γ , (67)

where (65) follows from (63) and that

φ(Hti) = φ(h) ⇒ |Q∗(h, a)−Q∗(Hti , a)| ≤ ∆γ ≤ ∆̃γ , ∀a ∈ A; (68)

and (66) follows from the fact that

Q∗(Hti , Ati) = Rti+1 + γ ·PV∗(Hti , Ati). (69)

Consider the following sequence:

Gk =

k∑
i=1

αin ·
(
V∗(Hti+1)−PV∗(Hti , Ati)

)
, k = 1, . . . , n, (70)

with G0 = 0. We have that, for k ≥ 1,

E[Gk|Gk−1] = E
[
αkn ·

(
V∗(Htk+1)−PV∗(Htk , Atk)

)]
= E

[
E
[
αkn ·

(
V∗(Htk+1)−PV∗(Htk , Atk)

)∣∣∣∣Htk , Atk

]]
= 0, (71)

implying that {Gk : k = 0, . . . , n} is a martingale. As a result, it follows from Azuma-
Hoeffding inequality that, with probability at least 1− δ,∣∣Gn −G0

∣∣ =

∣∣∣∣∣
n∑
i=1

αin

(
V∗(Hti+1)−PV∗(Hti , Ati)

)∣∣∣∣∣
≤ 4

(1− γ)3/2
· 1√

n
·
√

log
2

δ
, (72)

35

Dong, Van Roy, and Zhou

where we used assertion (b) of Lemma 9 and the fact that∣∣∣V∗(Hti+1)−PV∗(Hti , Ati)
∣∣∣ ≤ 1

1− γ
. (73)

Scaling δ to δ/T and applying union bounds, we have that, with probability at least 1− δ,
simultaneously for all h ∈ H, a ∈ A and n ≥ 1, as long as

(
s(h), a

)
is updated not more

than n times in timesteps 1, 2 . . . , T ,∣∣∣∣∣
n∑
i=1

αin

(
V∗(Hti+1)−PV∗(Hti , Ati)

)∣∣∣∣∣ ≤ 4

(1− γ)3/2
· 1√

n
·
√

log
2T

δ
. (74)

We denote the above event by E. Recall that we choose

βδ =
4

(1− γ)3/2
·
√

log
2T

δ
. (75)

As a result, following (67), conditioned on event E,

Q̂n −Q∗ ≥ γ ·
n∑
i=1

αin ·
(
Vti
(
Hti+1

)
− V∗(Hti+1)

)
− ∆̃γ . (76)

We will now show our desired result by induction. Assume that event E occurs. At t = 0,
from our requirements on Q′, obviously there is V0(h) ≥ V∗(h)− ∆̃γ/(1− γ) for all h ∈ H.
Suppose that the result holds for all t < t′. At t = t′, for all (h, a) ∈ S × A, as long as(
φ(h), a

)
is updated n ≥ 1 times in timesteps 1, 2 . . . , t′, from (76) we have

Qt′(h, a)−Q∗(h, a) ≥ γ ·
n∑
i=1

αin ·
(
Vti
(
Hti+1

)
− V∗(Hti+1)

)
− ∆̃γ

≥ γ ·

(
− ∆̃γ

1− γ

)
− ∆̃γ

= − ∆̃γ

1− γ
. (77)

Otherwise, if
(
φ(h), a

)
is not updated in timesteps 1, 2, . . . , t′, then Vt′(h) = V0(h) ≥

V∗(h)− ∆̃γ/(1− γ). This leads to

Vt′(h)− V∗(h) = min

{
max
a′∈A

Qt′(h, a
′),

1

1− γ

}
− V∗(h) ≥ − ∆̃γ

1− γ

for all h ∈ H. Therefore, the result holds for all 0 ≤ t ≤ T . �

Note that one direct implication of Lemma 12 is that χt ≥ 0 for all t = 0, 1, . . . , T .

36

Simple Agent, Complex Environment

C.3.3 A High-Probability Bound

In this subsection we will prove the following lemma.

Lemma 13 If Algorithm 3 is executed with γ, βδ and Q′ specified in Lemma 12, then with
probability at least 1− δ,

T−1∑
t=0

(
ξt − χt

)
≤ 2− 3γ

1− γ
· ∆̃γT +

SA+ 1

1− γ
+

24

(1− γ)3/2
·
√
SAT · log

2T

δ
,

where ξt and χt are defined in (59) and (58), respectively.

Proof. For the moment let us fix t ∈ {0, 1, . . . , T}, and consider the situational state-action
pair

(
φ(Ht), At

)
, which has been updated n ≥ 1 times before (and including) timestep t. Let

1 ≤ t1 < · · · < tn ≤ t be the timestep in which
(
φ(Ht), At

)
is updated. Recall that

φ(Hti) = φ(Ht), Ati = At, ∀i = 1, . . . , n. (78)

We have that, conditioned on event E,

Qt(Ht, At)−Q∗(Ht, At) =
n∑
i=1

αin ·
(
Rti+1 + γ · Vti

(
Hti+1

)
+
βδ√
i
−Q∗(Ht, At)

)

≤

{
n∑
i=1

αin ·
[
γ · Vti

(
hti+1

)
− γ ·PV∗

(
Hti , Ati

)]}

+ ∆̃γ +

n∑
i=1

αin ·
βδ√
i

(79)

≤

{
γ ·

n∑
i=1

αin ·
[
Vti
(
Hti+1

)
−PV∗

(
Hti , Ati

)]}

+ ∆̃γ +
2βδ√
n

(80)

=

{
γ ·

n∑
i=1

αin ·
[
Vti
(
Hti+1

)
− V∗

(
Hti+1

)]}
+ ∆̃γ +

2βδ√
n

+

{
γ ·

n∑
i=1

αin ·
[
V∗
(
Hti+1

)
−PV∗

(
Hti , Ati

)]}

≤

{
γ ·

n∑
i=1

αin ·
[
Vti
(
Hti+1

)
− V∗

(
Hti+1

)]}
+ ∆̃γ +

3βδ√
n
,

(81)

where (79) follows from the fact that

φ(Hti) = φ(Ht) ⇒ |Q∗(Ht, a)−Q∗(Hti , a)| ≤ ∆γ ≤ ∆̃γ , ∀a ∈ A; (82)

37

Dong, Van Roy, and Zhou

inequality (80) follows from assertion (a) of Lemma 9; and (81) follows from that, conditioned
on the event E, ∣∣∣∣∣

n∑
i=1

αin ·
[
V∗
(
Hti+1

)
−PV∗

(
Hti , Ati

)]∣∣∣∣∣ ≤ βδ√
n
. (83)

Combining (48) and (81), we have

Vt(Ht)− V∗(Ht) ≤ Vt(Ht)−Q∗(Ht, At)

≤ Qt(Ht, At)−Q∗(Ht, At)

≤

{
γ ·

n∑
i=1

αin ·
[
Vti
(
Hti+1

)
− V∗

(
Hti+1

)]}
+ ∆̃γ +

3βδ√
n
. (84)

For each i = 1, . . . , n, if φ(Hti+1) = φ(Hti), then

Vti
(
Hti+1

)
− V∗

(
Hti+1

)
= Vti

(
Hti

)
− V∗

(
Hti+1

)
≤ Vti

(
Hti

)
− V∗

(
Hti

)
+ ∆̃γ . (85)

Otherwise, if φ(Hti+1) 6= φ(Hti), then φ(Hti+1) is not updated at timestep ti + 1, leading
to

Vti
(
Hti+1

)
= Vti+1

(
Hti+1

)
. (86)

Combining the two cases, we can claim that there exists 1 ≤ w1 < · · · < wn ≤ t+ 1, such
that

Vt(Ht)− V∗(Ht) ≤ Qt(Ht, At)−Q∗(Ht, At)

≤

{
γ ·

n∑
i=1

αin ·
[
Vwi
(
Hwi

)
− V∗

(
Hwi

)]}
+ 2∆̃γ +

3βδ√
n
. (87)

Note that (87) only applies to times t after which has been updated at least once. Suppose
that

(
φ(Ht), At

)
is first updated at time t+ 1 (meaning that it has not been updated even

once prior to timestep t); then, naturally there should be

Vt(Ht)− V∗(Ht) ≤
1

1− γ
. (88)

Recall that n is the number of times at which the value of
(
φ(Ht), At

)
is updated before

(and including) timestep t. We now let t to take values in 0, 1, . . . , T , and replace n and wi
by nt and wt,i respectively to reflect their dependence on t. Summing all sides of (87) from
t = 0 to t = T − 1, and considering (88), we have

T−1∑
t=0

(
Vt(Ht)− V∗(Ht)

)
≤

T−1∑
t=0

(
Qt(Ht, At)−Q∗(Ht, At)

)

≤

{
γ ·

T−1∑
t=0

nt∑
i=1

αint ·
[
Vwt,i

(
Hwt,i

)
− V∗

(
Hwt,i

)]}

+ 2∆̃γT +
SA

1− γ
+

T−1∑
t=0

3βδ√
nt
, (89)

38

Simple Agent, Complex Environment

where we note that there can be at most SA many “first visits.” We now want to determine
whether VT (HT)− V∗(HT) appears in the summation on the right-hand side of (89). Based
on (85) and (86), if it appears, there must be

wT−1,nT−1
= T, (90)

meaning that the situational state-action pair
(
φ(HT), AT

)
has never been visited in t =

0, 1, . . . , T − 1, which leads to VT (HT) − V∗(HT) ≤ 1/(1 − γ). Therefore, we can claim
that

T−1∑
t=0

(
Vt(Ht)− V∗(Ht)

)
≤

{
γ ·

T−1∑
t=0

nt∑
i=1

αint ·
[
Vwt,i

(
Hwt,i

)
− V∗

(
Hwt,i

)]}

+ 2∆̃γT +
SA+ 1

1− γ
+
T−1∑
t=0

3βδ√
nt
, (91)

where for all t and i, wt,i ≤ t− 1.

We have shown that conditioned on event E, χk ≥ 0 for all k. Inequality (89) implies
that

T−1∑
t=0

ξt ≤

{
γ ·

T−1∑
t=0

nt∑
i=1

αint ·

(
χwt,i −

∆̃γ

1− γ

)}
+ 2∆̃γT +

SA+ 1

1− γ
+
T−1∑
t=0

3βδ√
nt
,

=

{
γ ·

T−1∑
t=0

nt∑
i=1

αint · χwt,i

}
+

2− 3γ

1− γ
· ∆̃γT +

SA+ 1

1− γ
+

T−1∑
t=0

3βδ√
nt
, (92)

Examining the first term on the right-hand side of (92), from Lemma 9 (c), there should
be

T−1∑
t=0

nt∑
i=1

αint · χwt,i ≤
3− γ

2

T−1∑
t=0

χt. (93)

In terms of the last term in (92), letting nT (s, a) be the number of times situational
state-action pair (s, a) is updated at times t = 1, . . . , T , we have

T−1∑
t=0

1
√
nt

=
∑
s∈S

∑
a∈A

nT (s,a)∑
m=1

1√
m

≤
∑
s∈S

∑
a∈A

2
√
nT (s, a)

≤ 2

√
SA ·

∑
s∈S

∑
a∈A

nT (s, a)

= 2
√
SAT , (94)

where in the final step we used the fact that∑
s∈S

∑
a∈A

nT (s, a) = T.

39

Dong, Van Roy, and Zhou

Now we can revisit (92), starting from which there is

T−1∑
t=0

ξt ≤

{
γ ·

T−1∑
t=0

nt∑
i=1

αint · χwt,i

}
+

2− 3γ

1− γ
· ∆̃γT +

SA+ 1

1− γ
+
T−1∑
t=0

3βδ√
nt

≤ γ(3− γ)

2
·

(
T−1∑
t=0

χt

)
+

2− 3γ

1− γ
· ∆̃γT +

SA+ 1

1− γ
+ 6βδ

√
SAT . (95)

Equivalently,

T−1∑
t=0

(
ξt − χt

)
≤
(
γ(3− γ)

2
− 1

)
·

(
T−1∑
t=0

χt

)
+

2− 3γ

1− γ
· ∆̃γT +

SA+ 1

1− γ
+ 6βδ

√
SAT . (96)

Recall that conditioned on event E, χt ≥ 0 for all t, and further we have

γ(3− γ)

2
− 1 < 0, ∀γ ∈ (0, 1).

Thus, we can drop the first term in (96) and deduce that, with probability 1− δ,

T−1∑
t=0

(
ξt − χt

)
≤ 2− 3γ

1− γ
· ∆̃γT +

SA+ 1

1− γ
+

24

(1− γ)3/2
·
√
SAT · log

2T

δ
. (97)

C.3.4 Finishing the Proof of Theorem 10

It remains to show that the high-probability bound in Lemma 13 also implies a bound on
the expected sum of ξt − χt. For all δ > 0, let Eδ denote the event in (74). Because

ξt − χt = V∗(Ht)−Q∗(Ht, At)−
∆̃γ

1− γ
≤ 1

1− γ
, (98)

we have that

E

[{
T−1∑
t=0

(
ξt − χt

)}
1(Ec)

]
≤ T

1− γ
·
(
1− P(Eδ)

)
=

δT

1− γ
. (99)

Therefore,

E

[
T−1∑
t=0

(
ξt − χt

)]
= E

[{
T−1∑
t=0

(
ξt − χt

)}
1(E)

]
+ E

[{
T−1∑
t=0

(
ξt − χt

)}
1(Ec)

]

≤ 24

(1− γ)3/2
·
√
SAT · log

2T

δ
+

2− 3γ

1− γ
· ∆̃γT +

SA+ 1 + δT

1− γ
.

(100)

Letting δ = 1/T , we have that

β =
4

(1− γ)3/2

√
log(2T 2), (101)

40

Simple Agent, Complex Environment

and

E

[
T−1∑
t=0

(
ξt − χt

)]
≤ 24

(1− γ)3/2
·
√
SAT · log(2T 2) +

2− 3γ

1− γ
· ∆̃γT +

SA+ 2

1− γ
. (102)

Plugging the above inequality into (60), we arrive at

Eπ̊

[
T−1∑
t=0

(
V∗(Ht)− Vπ̊(Ht)

)]
≤ 24

(1− γ)
5
2

·
√
SAT · log(2T 2)

+

(
2− 3γ

(1− γ)2
+

1

(1− γ)2

)
· ∆̃γT

+
SA+ 2

(1− γ)2
+

1

(1− γ)2

=
24

(1− γ)
5
2

·
√
SAT · log(2T 2)

+
3∆̃γT

1− γ
+
SA+ 3

(1− γ)2
,

which concludes the proof of Theorem 10. �

C.4 From Discounted Return to Average Reward

In this section we still continue to study the discounted Q-learning subroutine Algorithm 3,
but we shift our focus to the learning performance with respect to the average reward. Our
goal is to show the following stronger version of Theorem 3.

Theorem 14 For all τ ≥ 1 and T > τ · log(T), if Algorithm 3 is executed with γ = 1− 1/τ ,

β = 4τ3/2
√

log(2T 2), (103)

and Q′ such that for some ι ≥ 0,

Qγ∗(h, a)− ιτ ≤ Q′
(
φ(h), a

)
≤ τ, ∀h ∈ H, a ∈ A, (104)

then for all π′ ∈ P and initial history h ∈ H, we have that

Eπ̊

[
T−1∑
t=0

(
λπ′ −Rt+1

)]
≤ 24τ3/2 ·

√
SAT · log(2T 2) + 3

[
∆̃τ + τπ′/τ

]
· T

+
[
SA+ 5 + 2 log(T)

]
· τ, (105)

where ∆̃τ = max{∆τ , ι} .

Proof. First notice that for all t ≥ 0,

Eπ̊
[
V γ
π̊ (Ht)

]
= E

[∞∑
`=0

γ`Rt+`+1

]
. (106)

41

Dong, Van Roy, and Zhou

Thus, we have that

E

[
T−1∑
t=0

V γ
π′(Ht)− V γ

π̊ (Ht)

]
≥ E

[
T−1∑
t=0

(
λπ′

1− γ
− τπ′

)]
− E

[
T−1∑
t=0

∞∑
`=0

γ`Rt+`+1

]
(107)

= E

[
T−1∑
t=0

∞∑
`=0

γ` ·
(
λπ′ −Rt+`+1

)]
− τπ′ · T

= E

[
T−1∑
t=0

1− γt+1

1− γ
·
(
λπ′ −Rt+1

)]

+ E

[∞∑
t=T

γt+1−T 1− γT

1− γ
·
(
λπ′ −Rt+1

)]
− τπ′ · T, (108)

where (107) is the result of Lemma 2. Notice that, since |λπ′ −Rt| ≤ 1,

E

[∞∑
t=T

γt+1−T 1− γT

1− γ
·
(
λπ′ −Rt+1

)]
≥ −

∞∑
t=T

γt+1−T 1− γT

1− γ

= −1− γT

1− γ
· γ

1− γ

≥ − 1

(1− γ)2
. (109)

Let T γ0 = blog(T)/(1− γ)c, then for all t > T γ0 ,

γt ≤ γ
log T
1−γ ≤

(
1

e

)log T

=
1

T
. (110)

Therefore,

E

 T−1∑
t=T γ0

1− γt+1

1− γ
·
(
λπ′ −Rt+1

) = E

 T−1∑
t=T γ0

1

1− γ
·
(
λπ′ −Rt+1

)
− E

 T−1∑
t=T γ0

γt+1

1− γ
·
(
λπ′ −Rt+1

)
≥ 1

1− γ
· E

 T−1∑
t=T γ0

(
λπ′ −Rt+1

)− T−1∑
t=T γ0

γt+1

1− γ

≥ 1

1− γ
· E

 T−1∑
t=T γ0

(
λπ′ −Rt+1

)− 1

(1− γ)T
· T

≥ 1

1− γ
· E

 T−1∑
t=T γ0

(
λπ′ −Rt+1

)− 1

(1− γ)
. (111)

42

Simple Agent, Complex Environment

On the other hand,

E

T γ0 −1∑
t=0

1− γt+1

1− γ
·
(
λπ′ −Rt+1

) ≥ − 1

1− γ
· T γ0 ≥ −

log(T)

(1− γ)2
. (112)

From Theorem 10, there is also

E

[
T−1∑
t=0

V γ
π′(Ht)− V γ

π̊ (Ht)

]
≤ E

[
T−1∑
t=0

V γ
∗ (Ht)− V γ

π̊ (Ht)

]
≤ 24τ5/2 ·

√
SAT log(2T 2) + 3∆̃τ · τ · T +

[
SA+ 3

]
· τ2,

(113)

where we note that ∆̃γ = ∆̃τ since γ = 1− 1/τ . Combining (108)-(113), we have that

τ · E

 T−1∑
t=T γ0

(
λπ′ −Rt+1

) ≤ 24τ5/2 ·
√
SAT log(2T 2) + 3∆̃τ · τ · T +

[
SA+ 3

]
· τ2

+
[

log(T) + 1
]
· τ2 + τ + τπ′ · T. (114)

For T > τ · log(T) ≥ T γ0 ,

E

[
T−1∑
t=0

λπ′ −Rt+1

]
≤ 24τ3/2 ·

√
SAT log(2T 2) + 3∆̃τ · T +

[
SA+ 3

]
· τ

+
[

log(T) + 1
]
· τ + 1 + τπ′/τ · T + T γ0

≤ 24τ3/2 ·
√
SAT log(2T 2) + 3∆̃τ · T +

[
SA+ 5

]
· τ

+2 log(T) · τ + τπ′/τ · T, (115)

which is what we claim in Theorem 14. �

C.5 Proof of Lemma 6

The lemma is restated below.

Lemma 15 For all τ ≥ 1, λ∗ − λπ̃ ≤ ∆τ .

In fact, for a fixed τ ≥ 1, let γ = 1− 1/τ < 1. Then, for all γ′ ∈ (γ, 1) and h1, h2 ∈ H, as
long as φ(h1) = φ(h2), there should be∣∣V γ′

∗ (h1)− V γ′
∗ (h1)

∣∣ ≤ ∆τ . (116)

From Theorem 7.1 in Van Roy (2006), for all ε > 0 and γ′ ∈ (γ, 1), there exists a policy

π̃γ
′
ε ∈ P̃ and a distribution µε,γ′ on H, such that, for all h ∈ H,

µε,γ′(h) > 0, (117)

43

Dong, Van Roy, and Zhou

and

(1− γ′)
∑
h∈H

µε,γ′(h)

[
V γ′
∗ (h)− V γ′

π̃γ
′
ε

(h)

]
≤ γ′∆τ + ε. (118)

Taking the limit γ′ ↑ 1 and noticing that, for all π ∈ P and h ∈ H,

lim
γ′↑1

(1− γ′)V γ′
π (h) = λπ, (119)

we arrive at

lim sup
γ′↑1

λ
πγ
′
∗

(h)− λ
π̃γ
′
ε

(h) ≤ ∆τ + ε. (120)

This means that, for all ι > 0, there exists γι ∈ (γ, 1), such that

λπγι∗ (h)− λπ̃γιε (h) ≤ ∆τ + ε+ ι. (121)

Since λπ̃γιε ≤ λπ̃, the above inequality implies that, for all ε, ι > 0,

λπγι∗ (h)− λπ̃(h) ≤ ∆τ + ε+ ι. (122)

Now notice that, following the result in Blackwell (1962), when γι ↑ 1, there should be
λπγι∗ (h)→ λ∗(h). Hence, we can take ε ↓ 0 and ι ↓ 0, which gives us

λ∗(h)− λπ̃(h) ≤ ∆τ , (123)

as we desire. �

C.6 Concluding the Proof of Theorem 4

In this section we complete the final steps towards Theorem 4, which we restate below.

Theorem 4 For all π ∈ P and T ≥ 1,

Regretπ(T) ≤
(

120
√
SA log(2T 2) + 5τπ

)
T 4/5 + 3∆τπT + (54SA+ 18 log(T))T 1/5 + 2τ5

π .

With the set of subroutines foo1 to foo4 specified in (18)–(21), the interactions between
the agent and the environment can be viewed through epochs k = 1, 2 . . . , with each epoch

corresponding to executing Algorithm 3 with a fixed a fixed discount factor γk = 1− 1/T
1/5
k ,

which is equivalent to a fixed effective planning horizon τk = T
1/5
k , where Tk are the change

points, with T0 = 1 and Tk = 20× 2k−1, k ≥ 1. In the previous subsections we have analysed
the average-reward regret of Algorithm 3 when the discount factor is fixed. In this subsection
we will allow the discount factor to change and use a “doubling trick” to bound the total
regret of π̂. Throughout this section, we assume that the total number of timesteps T is
fixed. We start with the following useful lemma.

44

Simple Agent, Complex Environment

Lemma 16 Let a, S > 0, b ≥ 0 be integers, ζ ∈ (0, 1) and f : Z+ 7→ R is such that f(x) ≤ xζ
for all x. Consider the sequence tj = a · 2b+j, j = 0, 1, . . . and let k be the minimum index
such that t0 + t1 + · · ·+ tk ≥ S. If k ≥ 1, then

f(t0) + · · ·+ f(tk) ≤
22ζ

2ζ − 1
· Sζ . (124)

Proof. First notice that

t0 + t1 + · · ·+ tk ≤ 3S. (125)

This is because based on the definition,

t0 + t1 + · · ·+ tk−1 = a · 2b · (2k − 1) ≥ a · 2b+k−1 =
1

2
tk. (126)

Hence, if
∑k

t=0 tk > 3S, then
∑k−1

t=0 tk > S, contradicting the minimality of k. Since∑k
t=0 tk = a · 2b · (2k+1 − 1), we have

k ≤ 1 + log2

S

a · 2b
. (127)

Therefore,

f(t0) + · · ·+ f(tk) ≤
k∑
t=0

tζk ≤ a
ζ · 2(k+1)ζ

2ζ − 1
≤ 22ζ

2ζ − 1
· Sζ , (128)

as desired. �

In light of our requirements on Q′ in Algorithm 3, we also need the following result.

Lemma 17 For all γ1, γ2 such that 0 ≤ γ1 < γ2 < 1,

Qγ1∗ (h, a)− 1

1− γ1
≥ Qγ2∗ (h, a)− 1

1− γ2
. (129)

Proof. For i = 1, 2, let πi ∈ P be such that, for all h ∈ H, πi(·|h) is the uniform distribution
over arg maxa′∈AQ

γi
∗ (h, a′). From Proposition 1, (πi : i = 1, 2) exists, and

Qγi∗ (h, a) = rh,a +
∑
h′∈H

Pahh′ ·
∞∑
t=0

γt+1
i

(
P tπirπi

)
(h′), ∀i ∈ {1, 2}, h ∈ H, a ∈ A. (130)

As a result, we have

Qγ2∗ (h, a)−Qγ1∗ (h, a) ≤ Qγ2π2(h, a)−Qγ1π2(h, a)

=
∑
h′∈H

Pahh′ ·
∞∑
t=0

{(
γt+1

2 − γt+1
1

)
·
(
P tπ2rπ2

)
(h′)

}
≤

∑
h′∈H

Pahh′ ·
∞∑
t=0

{(
γt+1

2 − γt+1
1

)
· 1
}

=
γ2

1− γ2
− γ1

1− γ1

=
1

1− γ2
− 1

1− γ1
, (131)

45

Dong, Van Roy, and Zhou

which is what we desire. �

The above lemma, together with Lemma 12 and the subroutine foo3 defined in (20), ensures
that at the beginning of epoch k,

Q
(
φ(h), a

)
≥ Qγk∗ (h, a)−∆τk · τk, ∀k = 0, 1, . . . , h ∈ H, a ∈ A. (132)

Let Tk denote the timesteps in the k-th epoch, k = 0, 1, . . . , L, where L is the index of the
epoch that contains timestep T − 1 (which is the last epoch that we are concerned about),
i.e.

T0 = {0, 1, . . . , 19},
T1 = {20, 21, . . . , 39},
T2 = {40, 41, . . . , 79},
· · ·

TL = {20 · 2L−1, 20 · 2L−1 + 1, . . . , T − 1}.

Letting |T | be the length of epoch T , we have that |Tk| = Tk for 1 ≤ k ≤ L−1 and |T0| = 20,
|TL| = T − 20 · 2L−1. For a fixed reference policy π ∈ P, let

Rπ(Tk) = E

∑
t∈Tk

(
λπ −Rt+1

)∣∣∣E
 . (133)

For k ≥ 1, let

γk = 1− 1

T
1/5
k−1

= 1− 1

|Tk|1/5
(134)

be the discount factor used in the k-th epoch (where γ0 = 0 is the discount factor in the
0-th epoch). By Theorem 14, either

Rπ(Tk) ≤ 24τ
3/2
k ·

√
SA|Tk| log(2|Tk|2) +

[
3∆τπ + τπ/τk

]
· |Tk|

+
[
SA+ 2 log(|Tk|) + 5

]
· τk

≤
(

24 ·
√
SA log(2T 2) + τπ

)
· |Tk|4/5 + 3∆τπ · |Tk|

+
[
6SA+ 2 log(T)

]
· |Tk|

1
5 , (135)

or, if τk ≤ τπ,

Rπ(Tk) ≤ |Tk|. (136)

Let

Ik =

{
1 if τk > τπ

0 otherwise
, (137)

46

Simple Agent, Complex Environment

and let

g(t) =
(

24 ·
√
SA log(2T 2) + τπ̃∗

)
· t

4
5 + 3∆ · t+

(
6SA+ 2 log(T)

)
· t

1
5 . (138)

We arrive at

Regretπ(T) ≤
L∑
k=0

Rπ(Tk)

≤
L∑
k=0

|Tk| · 1(Ik = 0) + g(|Tk|) · 1(Ik = 1)

=
L∑
k=0

|Tk| · 1 {τk ≤ τπ}+ g(|Tk|) · 1 {τk > τπ}

=
L∑
k=0

|Tk| · 1
{
|Tk| ≤ τ5

π

}
+ g(|Tk|) · 1

{
|Tk| > τ5

π

}
≤ 2τ5

π +

L∑
k=0

g(|Tk|) · 1
{
|Tk| > τ5

π

}
. (139)

By Lemma 16,

L∑
k=0

g(|Tk|) · 1
{
|Tk| > τ5

π

}
≤
(

120
√
SA log(2T 2) + 5τπ

)
· T

4
5 + 3∆T +

(
54SA+ 18 log(T)

)
· T

1
5 .

Therefore, we have

Regretπ(T) ≤
(

120
√
SA log(2T 2) + 5τπ

)
· T

4
5 +

(
54SA+ 18 log(T)

)
· T

1
5

+3∆ · T + 2τ5
π , (140)

which justifies our claim in Theorem 4. �

Appendix D. Results on Approximate Dynamic Programming

Theorem 18 There exists an environment e0 = (A,O, ρ), a set of situational states S,
a situational state update function f and a reward function r, such that, conditioned on
E = e0,

λ∗ − λπ̃ = ∆τ , ∀τ ≥ 1. (141)

Proof. Consider an environment with two actions A = {1, 2} and two observations O =
{0, 1}. The observation probabilities are given by

ρ(1|h, a) =

{
1 if a|h|−1(h) 6= a

0 otherwise
, ∀h 6= H0, (142)

47

Dong, Van Roy, and Zhou

and

ρ(0|H0, a) = 1. (143)

In other words, the observation is deterministically 1 if and only if the agent takes a different
action from the one that it took in the previous timestep, and the observation is always 0
in the first timestep. There is only one situational state S = {1}, and the situational state
update function is

f(s, a, o) = 1, ∀s, a, o. (144)

The reward is equal to the observation, i.e.

r(s, a, o) = o. (145)

Notice that λ∗ = 1 in this environment, which can be attained by alternating between the
two actions in each timestep. We let this environment be e0.

We claim that, conditioned on E = e0, ∆γ = 1 for all γ ∈ (0, 1). Since there is only
one situational state, we only have to verify that, for all history pairs (h1, h2) and action
a ∈ {1, 2}, ∣∣Qγ∗(h1, a)−Qγ∗(h2, a)

∣∣ ≤ 1. (146)

Indeed, for all history h and action a, we have

Qγ∗(h, a) =

{
1

1−γ if h 6= H0 and a 6= a|h|−1(a)
γ

1−γ otherwise
. (147)

Since Qγ∗(h, a) can only take the above two values, (146) obviously holds. Thus,

∆τ = 1, ∀τ ≥ 1. (148)

However, there are only two policies in P̃ , one always taking action 1, and the other always
taking action 2. Either policy results in an all-zero reward sequence, implying that λπ̃ = 0.
Thus,

λ∗ − λπ̃ = 1, (149)

as we desire. �

Next we show that an intuitive learning algorithm may generate a policy whose performance is
much worse than π̃, and this happens even when the environment dynamics are known.

The learning algorithm proceeds as follows. In iteration k, the algorithm independently

samples o
(k)
1 , . . . , o

(k)
M ∈ O according to the uniform distribution. The value function is then

updated via

V (k) ← arg min
V :S7→R

M∑
m=1

[
V
(
φ(o(k)

m)
)
−max

a∈A

{
r
ao

(k)
m

+ γ ·P
(
V (k−1) ◦ φ

)
(o(k)
m , a)

}]2

, (150)

48

Simple Agent, Complex Environment

where γ ∈ (0, 1) is a fixed discount factor. Note that if the environment dynamics function
ρ is known, then the algorithm is able to compute r and P, otherwise it has to use fitted
values of r and P in (150). This algorithm is a version of the fitted value iteration algorithm
with `2-norm loss function, as is studied in (Munos and Szepesvári, 2008). It is worth
mentioning that, in general, fitted value iteration need not converge. However, since the
update rule (150) amonts to fitted value iteration with aggregated states, the sequence(
V (k) : k = 0, 1, 2, . . .

)
always converges in probability to V (∞) : S → R as per Munos and

Szepesvári (2008). Using an example adapted from Van Roy (2006), we have the following
result.

Theorem 19 If the value function is updated via (150), then for all γ ∈ (0, 1) and ε > 0,
there exists integer M and an environment e such that, conditioned on E = e, for all τ ≥ 1
and π(∞) greedy with respect to V (∞),

λ∗ − λπ(∞) ≥ τπ(∞) · γ ·∆τ − ε. (151)

Proof. For integer N ≥ 2, we can consider an MDP with 2N states {1, 2, . . . , 2N} and two
actions {1, 2}. Note that this MDP can be viewed as an environment eN = (A,O, ρ), where
A = {1, 2}, O = {1, 2, . . . , 2N} with observations corresponding to the MDP states (which
we will simply call “states” hereafter), and ρ depends on the history only through the most
recent observation. The 2N observations (or states) induce 2N equivalence classes in the set
of histories H, where h ∼ h′ if and only if their last observations are the same. Henceforth
we will use observation o to denote the equivalence class in H induced by o. We will also
not distinguish between “observations” and “states.”

In every timestep, with probability ε1 the system “resets” itself, and the next state is
drawn uniformly from {1, 2, . . . , 2N}. Conditioned on that the system does not reset, from
states 3, 5, . . . , 2N − 1 the system transitions deterministically to state 1, and from states
4, 6, . . . , 2N the system transitions deterministically to state 2, regardless of the action; from
state 1 the system transitions to state 2 with probability ε2 under both actions; and from
state 2, the system transitions to state 1 deterministically under action 1, and stays in
state 2 deterministically under action 2. The environment dynamics ρ can thus be written
as

ρ(1|o, a) =


(1− ε1)(1− ε2) + ε1

2N if o = 1

1− ε1 + ε1
2N if

(
o ∈ {3, 5, . . . , 2N − 1}

)
or
(
o = 2, a = 1

)
0 otherwise

,

ρ(2|o, a) =


(1− ε1)ε2 + ε1

2N if o = 1

1− ε1 + ε1
2N if

(
o ∈ {4, 6, . . . , 2N}

)
or
(
o = 2, a = 2

)
0 otherwise

,

and

ρ(x|o, a) =
ε1

2N
, ∀x ∈ {3, 4, 5, . . . , 2N}, o ∈ O, a ∈ A.

49

Dong, Van Roy, and Zhou

Let δ, κ > 0. From every state in {4, 6, . . . , 2N}, the agent receives reward δ if it takes action
1, and reward −κ if it takes action 2. From every state in {3, 5, . . . , 2N − 1}, the agent
receives reward −δ regardless of the action. Additionally, the agent also receives reward −κ
if it takes action 2 in state 2. In all other scenarios the agent receives zero reward. The
situational state space is S = {1, 2}, with φ(o) = 1 whenever o ∈ {1, 3, . . . , 2N − 1} and
φ(o) = 2 whenever o ∈ {2, 4, . . . , 2N}.

Conditioned on E = eN , for a fixed γ ∈ [0, 1), we can verify that

Qγ∗(1, a) = 0, a ∈ {1, 2},

and

Qγ∗(k, a) = −δ, ∀k ∈ {3, 5, . . . , 2N − 1}, a ∈ {1, 2}.

There is also

Qγ∗(2, 1) = 0, Qγ∗(2, 2) = −κ,

and

Qγ∗(k, 1) = δ, Qγ∗(k, 2) = −κ, ∀k ∈ {4, 6, . . . , 2N}.

Since all states in {1, 3, . . . , 2N − 1} are mapped to situational state 1 and all states in
{2, 4, . . . , 2N} are mapped to situational state 2, we have that

∆τ = δ,

for all τ ≥ 1.

The optimal average reward in environment eN is λ∗ = 0, which is attained by applying
action 1 in every state. We can consider π′ ∈ P̃, which chooses action 1 in situational state
1 and action 2 in situational state 2. Apparently λπ′ < −κ/2. In addition, Van Roy (2006)
established that whenever κ < 2γδ/(1− γ) and ε1 = 1− γ, there exists N and M such that
π(∞) = π′. Thus,

λ∗ − λπ(∞) = λ∗ − λπ′ > κ/2. (152)

Since in this environment τπ′ = 1/ε1 = 1/(1− γ), it follows that

τπ(∞) · γ ·∆τ = τπ′ · γ ·∆τ =
γδ

1− γ
. (153)

Therefore, for all ε > 0, we can choose

κ =
2γδ

1− γ
− 2ε, (154)

which allows (151). �

Finally, we would like to provide a brief discussion over the dependence on the distortion
factor ∆τ . In (Van Roy, 2006), it is shown that if then environment is an MDP, and we

50

Simple Agent, Complex Environment

consider the fixed-point solution to a version of approximate value iteration that takes into
account the invariant distribution of appropriate policies, then the greedy policy with respect
to such fixed-point solution always attains the optimal dependence on distortion. More
specifically, the projection in approximate value iteration has to incorporate the invariant
distribution of the greedy policy with respect to the current values. However, approximate
value iteration is a planning algorithm in which the values of all state-action pairs in the MDP
are updated simultaneously. When it comes to learning algorithms, where value updates
depend on the state-action pair visited in each timestep, temporal-difference learning, which
constitutes the core of our agent, implicitly carries out such projection. Readers interested
in this connection can refer to Section 8 in (Van Roy, 2006), and the set of lecture slides on
real-time value iteration with aggregated states (Russo, 2020).

References

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess,
and Martin Riedmiller. Maximum a posteriori policy optimisation. In International
Conference on Learning Representations, 2018.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. FLAMBE: Struc-
tural complexity and representation learning of low rank MDPs. arXiv preprint
arXiv:2006.10814, 2020.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In International Conference on Machine Learning, pages 263–272.
PMLR, 2017.

Peter L Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for rein-
forcement learning in weakly communicating MDPs. arXiv preprint arXiv:1205.2661,
2012.

Dimitri P Bertsekas. Abstract dynamic programming. Athena Scientific, 2018.

David Blackwell. Discrete dynamic programming. The Annals of Mathematical Statistics,
pages 719–726, 1962.

Mayank Daswani, Peter Sunehag, and Marcus Hutter. Q-learning for history-based rein-
forcement learning. In Asian Conference on Machine Learning, pages 213–228. PMLR,
2013.

Mayank Daswani, Peter Sunehag, Marcus Hutter, et al. Feature reinforcement learning:
state of the art. In Sequential decision-making with big data: papers from the AAAI-14
workshop. Association for the Advancement of Artificial Intelligence, 2014.

Daniela Pucci de Farias and Benjamin Van Roy. A cost-shaping linear program for average-
cost approximate dynamic programming with performance guarantees. Mathematics of
Operations Research, 31(3):597–620, 2006.

51

Dong, Van Roy, and Zhou

Geoffrey J Gordon. Stable function approximation in dynamic programming. In Machine
Learning Proceedings 1995, pages 261–268. Elsevier, 1995.

Marcus Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic
probability. Springer Science & Business Media, 2004.

Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. On the convergence of stochastic
iterative dynamic programming algorithms. Neural computation, 6(6):1185–1201, 1994.

Mehdi Jafarnia-Jahromi, Rahul Jain, and Ashutosh Nayyar. Online learning for unknown
partially observable MDPs. arXiv preprint arXiv:2102.12661, 2021.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforce-
ment learning. Journal of Machine Learning Research, 11(4), 2010.

Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence of effective
planning horizon on model accuracy. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, pages 1181–1189. Citeseer, 2015.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire.
Contextual decision processes with low bellman rank are PAC-learnable. In International
Conference on Machine Learning, pages 1704–1713. PMLR, 2017.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably
efficient? arXiv preprint arXiv:1807.03765, 2018.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages
2137–2143. PMLR, 2020.

Kyung Y Jo. A Lagrangian algorithm for computing the optimal service rates in Jackson
queuing networks. Computers & operations research, 16(5):431–440, 1989.

Ali Devran Kara and Serdar Yuksel. Near optimality of finite memory feedback policies in
partially observed Markov decision processes. arXiv preprint arXiv:2010.07452, 2020.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial
time. Machine learning, 49(2):209–232, 2002.

Lihong Li. A unifying framework for computational reinforcement learning theory. Rutgers
The State University of New Jersey-New Brunswick, 2009.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state
abstraction for mdps. ISAIM, 4(5):9, 2006.

Xiuyuan Lu, Benjamin Van Roy, Vikranth Dwaracherla, Morteza Ibrahimi, Ian Osband, and
Zheng Wen. Reinforcement learning, bit by bit. arXiv preprint arXiv:2103.04047, 2021.

R Andrew McCallum. Instance-based utile distinctions for reinforcement learning with
hidden state. In Machine Learning Proceedings 1995, pages 387–395. Elsevier, 1995.

52

Simple Agent, Complex Environment

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533,
2015.

Ciamac C Moallemi, Sunil Kumar, and Benjamin Van Roy. Approximate and data-driven
dynamic programming for queueing networks. unpublished manuscript, 2008.

Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal
of Machine Learning Research, 9(5), 2008.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation
learning for hierarchical reinforcement learning. arXiv preprint arXiv:1810.01257, 2018.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning
via posterior sampling. arXiv preprint arXiv:1306.0940, 2013.

Ian Osband, Benjamin Van Roy, Daniel J Russo, Zheng Wen, et al. Deep exploration via
randomized value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain. Learning unknown Markov
decision processes: A Thompson sampling approach. arXiv preprint arXiv:1709.04570,
2017.

Majid Raeis, Ali Tizghadam, and Alberto Leon-Garcia. Queue-learning: A reinforcement
learning approach for providing quality of service. arXiv preprint arXiv:2101.04627, 2021.

Daniel Russo. Online variants of value iteration and approximation via state aggre-
gation. https://djrusso.github.io/Dynamic-Optimization-Course/DP_slides_7.

pdf, 2020. Lecture Slides.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al.
Mastering Atari, Go, chess and shogi by planning with a learned model. Nature, 588
(7839):604–609, 2020.

Linn I Sennott. Stochastic dynamic programming and the control of queueing systems, volume
504. John Wiley & Sons, 2009.

H. Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer,
Jack W. Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, Nicolas Heess, Dan Belov,
Martin Riedmiller, and Matthew M. Botvinick. V-MPO: On-policy maximum a posteriori
policy optimization for discrete and continuous control. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=SylOlp4FvH.

Shaler Stidham Jr and Richard R Weber. Monotonic and insensitive optimal policies for
control of queues with undiscounted costs. Operations research, 37(4):611–625, 1989.

Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. Approximate
information state for approximate planning and reinforcement learning in partially observed
systems. Journal of Machine Learning Research, 23:12–1, 2022.

53

https://djrusso.github.io/Dynamic-Optimization-Course/DP_slides_7.pdf
https://djrusso.github.io/Dynamic-Optimization-Course/DP_slides_7.pdf
https://openreview.net/forum?id=SylOlp4FvH

Dong, Van Roy, and Zhou

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

John N Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine learning,
16(3):185–202, 1994.

John N Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale dynamic
programming. Machine Learning, 22(1):59–94, 1996.

Benjamin Van Roy. Performance loss bounds for approximate value iteration with state
aggregation. Mathematics of Operations Research, 31(2):234–244, 2006.

Yi Wan, Abhishek Naik, and Richard S Sutton. Learning and planning in average-reward
Markov decision processes. arXiv preprint arXiv:2006.16318, 2020.

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general
value function approximation: Provably efficient approach via bounded eluder dimension.
Advances in Neural Information Processing Systems, 33:6123–6135, 2020.

Christopher J.C.H. Watkins. Learning from delayed rewards. PhD thesis, 1989.

Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

Richard R Weber and Shaler Stidham Jr. Optimal control of service rates in networks of
queues. Advances in applied probability, pages 202–218, 1987.

Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, Hiteshi Sharma, and Rahul Jain.
Model-free reinforcement learning in infinite-horizon average-reward Markov decision
processes. In International Conference on Machine Learning, pages 10170–10180. PMLR,
2020.

Ward Whitt. Approximations of dynamic programs, I. Mathematics of Operations Research,
3(3):231–243, 1978.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning
near optimal policies with low inherent bellman error. In International Conference on
Machine Learning, pages 10978–10989. PMLR, 2020.

Zihan Zhang, Xiangyang Ji, and Simon S Du. Is reinforcement learning more difficult
than bandits? A near-optimal algorithm escaping the curse of horizon. arXiv preprint
arXiv:2009.13503, 2020.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement
learning for linear mixture markov decision processes. In Conference on Learning Theory,
pages 4532–4576. PMLR, 2021.

54

	Introduction
	Complex Environments
	Policies and Performance
	A Simple Agent
	Example: Service Rate Control
	Agent-Environment Interface
	Situational State Dynamics
	Baseline Agents
	Environment Dynamics
	Performance

	Contributions and Related Literature
	Framing of Learning Objectives
	Averaging Time
	Distortion
	Reference Classes

	Agent Design
	Performance Analysis
	Qualitative Insights

	Value Functions
	Agent Design and Performance Analysis
	Discounted Q-Learning
	Growing the Horizon
	Scheduling Schemes

	Closing Remarks
	Probabilistic Framework
	Service Rate Control Example
	Environment Dynamics
	Analysis of Baseline Agents

	Proofs
	Proof of Lemma 2
	Properties of the Learning Rates
	Regret Analysis of the Discounted Q-Learning Agent
	Regret Decomposition
	Establishing Near-Optimism
	A High-Probability Bound
	Finishing the Proof of Theorem 10

	From Discounted Return to Average Reward
	Proof of Lemma 6
	Concluding the Proof of Theorem 4

	Results on Approximate Dynamic Programming

