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Abstract

We propose a flexible, yet interpretable model for high-dimensional data with time-varying
second-order statistics, motivated and applied to functional neuroimaging data. Our ap-
proach implements the neuroscientific hypothesis of discrete cognitive processes by fac-
torizing covariances into sparse spatial and smooth temporal components. Although this
factorization results in parsimony and domain interpretability, the resulting estimation
problem is nonconvex. We design a two-stage optimization scheme with a tailored spec-
tral initialization, combined with iteratively refined alternating projected gradient descent.
We prove a linear convergence rate up to a nontrivial statistical error for the proposed
descent scheme and establish sample complexity guarantees for the estimator. Empirical
results using simulated data and brain imaging data illustrate that our approach outper-
forms existing baselines.

Keywords: dynamic covariance, structured factor model, alternating projected gradient
descent, time series data, functional connectivity

1. Introduction

We propose and evaluate a model for dynamic functional brain network connectivity, de-
fined as the time-varying covariance of associations between brain regions (Fox and Raichle,
2007). Understanding the variation in brain connectivity between individuals is believed
to be a crucial step towards uncovering the mechanisms of neural information process-
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ing (Sakoğlu et al., 2010; Chang et al., 2016), with potentially transformative applications
in understanding and treating neurological and neuropsychiatric disorders (Calhoun et al.,
2014).

In the neuroscience literature, estimators for time-varying covariances range from slid-
ing window methods to hidden Markov models. The commonly used sliding-window sam-
ple covariance estimator is computationally efficient (Preti et al., 2017). However, this
estimate is sensitive to the length of the selected window and spurious correlations may
occur when the underlying window length is not specified correctly (Leonardi and Ville,
2015). Discrete-state hidden Markov models construct interpretable estimates of brain
connectivity in terms of recurring connectivity patterns (Vidaurre et al., 2017), yet fail to
capture the smooth nature of brain dynamics (Shine et al., 2016a,b). These shortcomings
motivate a new approach. Specifically, our proposed approach implements the neuroscien-
tific hypothesis that brain functions are interactions between cognitive processes (Posner
et al., 1988), which we model as weighted combinations of low-rank components (Andersen
et al., 2018). Beyond neuroscientific foundations, high-dimensional data often have a low-
dimensional representation (Udell and Townsend, 2019), and low rank can help prevent
overfitting (Udell et al., 2016). Specifically, we propose a structured and smooth low-rank
time-varying covariance model inspired by the observed sparsity of brain factors (Eavani
et al., 2012), and temporal dynamics of brain activity (Shine et al., 2016a,b). Hence, we
constrain the temporal components to be smoothly varying via projection to a temporal
kernel and restrict the sparsity of the spatial components via hard-thresholding, respec-
tively.

We estimate the parameters of the resulting model using a first-order optimization
scheme that is analogous to a Burer-Monteiro factorization (Burer and Monteiro, 2003,
2005). While the first-order approach reduces computational complexity as compared to
semidefinite programming, the resulting optimization program is nonconvex, and special
care is needed to design and analyze an optimization scheme that avoids converging to bad
local optima. To this end, we build on the growing literature studying matrix estimation
problems (Candès et al., 2015; Chi et al., 2019) using a two-stage algorithm. First, spectral
initialization is used to find an initial point within a local region where the objective
satisfies local regularity conditions. Next, the projected gradient descent is used to refine
the estimate and find a stationary point of the objective.

In summary, our contributions include a novel dynamic covariance model motivated
by neuroscientific models of functional brain connectivity networks. We provide an effi-
cient procedure for the estimation along with convergence analysis and sample complexity.
Specifically, under the assumption that spatial components are shared across time, we de-
velop a structured spectral initialization method, which effectively uses available samples
and provides a better spatial estimate than separate initialization per individual. We prove
linear convergence of the factored gradient method to an estimate with a nontrivial sta-
tistical error and provide a non-asymptotic bound on the statistical error when data are
Gaussian. Experiments show that the model successfully recovers temporal smoothness
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and detects temporal changes induced by task activation. The code to implement our
procedure is available at: https://github.com/koyejo-lab/dynamicCov.git.

2. Background

In this section, we first introduce the notation used throughout the manuscript. Then, we
introduce the problem formulation and related work.

2.1 Notation

The inner product of two matrices is denoted as 〈X,Y 〉 = tr(XTY ). For a matrix X,
σk(X) denotes the kth largest singular value, ‖X‖2F = tr(XTX) denotes the Frobenius
norm, ‖X‖2 = σ1(X) denotes the spectral norm, and ‖X‖∞ = maxi,j |Xi,j | denotes the
maximum norm. For two symmetric matrices X and Y , X � Y means that Y − X is
positive semidefinite. The pseudoinverse of X is denoted by X†. The set of K×K rotation
matrices is denoted as O(K). Let x ∈ Rd, ‖x‖0 =

∑d
i=1 1{xi 6=0} denotes the `0 norm and

‖x‖2 = (
∑d

i=1 x
2
i )

1/2 denotes the `2 norm. We use κ(·, ·) to denote a positive definite kernel
function. The function diag : RK → RK×K converts a K-dimensional vector to a K ×K
diagonal matrix. For scalars a and b, a ∨ b denotes max(a, b) and a ∧ b denotes min(a, b).
We use a & b (a . b) to denote that there exists a constant C > 0 such that a ≥ Cb
(a ≤ Cb). We use a � b to denote a & b and a . b. We use [J ] to denote the index set
{1, . . . , J}.

2.2 Problem Statement

Given samples from N subjects recorded at J time points, denoted x
(n)
j ∈ RP , n ∈ [N ],

j ∈ [J ], let SN,j = N−1
∑N

n=1 x
(n)
j x

(n)T
j be the sample covariance across subjects at time

j. We assume that the population covariance takes a factorized form as

E(SN,j) = Σ?
j + Ej = V ?diag(a?j )V

?T + Ej , j ∈ [J ], (1)

where E(·) denotes the expectation, Σ?
j has a rank that is at most K, Ej is a noise matrix

such that the largest singular value of Ej is strictly smaller than the smallest nonzero
singular value of Σ?

j . This structured assumption allows us to separate the components of
interest Σ?

j from the nuisance components Ej . This factorization employs spatial compo-

nents V ? = (v?1, . . . , v
?
K) ∈ RP×K that are time invariant and column-wise orthonormal.

The matrix V corresponds to the top-K eigenvectors of the set of J covariance matrices:
{E(SN,j)}j∈[J ]. Analogously, A? = (a?1, . . . , a

?
J) ∈ RK×J represents the temporal compo-

nents. To facilitate the estimation in a high-dimensional setting, we further assume that
the columns of V ? are sparse and belong to CV (s?) = {v ∈ RP : ‖v‖0 ≤ s?, ‖v‖2 = 1}.
Let G ∈ RJ×J be a positive semidefinite kernel matrix whose entries are Gx,y = κ(x, y) for
x, y ∈ [J ], where the kernel κ is known a priori. Denote G† = QΛQT as the eigendecompo-

3

https://github.com/koyejo-lab/dynamicCov.git


A Nonconvex Framework for Structured Dynamic Covariance Recovery

sition of G†, the generalized inverse of G, with Q ∈ RJ×J being a matrix with orthonormal
columns and Λ ∈ RJ×J being a diagonal matrix with nonnegative entries. The rows of A?,
denoted A?k·, k ∈ [K], are smooth, bounded, and belong to CA(c?, γ?) = {α = Qu ∈ RJ :
0 ≤ αj ≤ c?, uTΛu ≤ γ?}. The kernel κ is used to model the temporal smoothness of the
rows of A? and the box constraint ensures that αj ≥ 0, so the covariance model is positive
semidefinite and is upper bounded by a positive constant for j ∈ [J ].

The eigenvalues of the kernel matrix G may decay quickly, which can result in numer-
ically unstable algorithms when projecting onto the set CA. For example, the eigenval-
ues of a kernel matrix corresponding to the Sobolev kernel decay at a polynomial rate,
while for the Gaussian kernel they decay at an exponential polynomial rate (Schölkopf
and Smola, 2001). Instead of working with the kernel matrix G, we construct a low-
rank approximation, G̃, of G by truncating small eigenvalues. Write Q = (Q̃,Q1), where
the columns of Q̃ are eigenvectors of G corresponding to eigenvalues greater than or
equal to δA, and Λ̃−1 = diag(Λ−1

jj ≥ δA | j ∈ [J ]). Then G̃† = Q̃Λ̃Q̃T . We define

C̃A(c, γ) = {α = Q̃u : 0 ≤ αj ≤ c, uT Λ̃u ≤ γ} and the rank of G̃ is denoted as r(G̃).
Under the model (1), we estimate the parameters Z? = (V ?T , A?)T by minimizing the

following objective

min
Z
fN (Z) = min

vk∈CV (s), k∈[K]

Ak·∈C̃A(c,γ), k∈[K]

1

J

J∑
j=1

1

2
‖SN,j − V diag(aj)V

T ‖2F , (2)

where Ak· is the kth row of A. Although fN is nonconvex with respect to Z = (V T , A)T ,
the corresponding covariance loss `N,j(Σj) = 1

2‖SN,j − Σj‖2F is m-strongly convex and L-
smooth with m = L = 1 (Nesterov, 2013). We use alternating projected gradient descent
to update V and A. The selection of tuning parameters of CV and C̃A is discussed in
Section 3.2.

2.3 Related Work

Dynamic covariance models are common for analyzing time series data in applications
ranging from computational finance and economics (Engle et al., 2019) to epidemiology (Fox
and Dunson, 2015) and neuroscience (Foti and Fox, 2019). Dynamic covariance models can
be fully nonparametric with kernel functions encoding the temporal dependencies (Wu and
Pourahmadi, 2003; Chen and Leng, 2016). In practice, however, it is common to impose
an additional structure on the covariance model. For example, one can assume that the
inverse covariance matrix is sparse and furthermore, follows a particular temporal dynamic.
Such an approach is called dynamic graphical modeling as nonzero entries in the inverse
covariance matrix encode the structure of a Markov network when data are Gaussian. In
the dynamic graphical model setting, one can either impose temporal smoothness using
regularization approaches (Kolar et al., 2010b; Kolar and Xing, 2012; Monti et al., 2014;
Hallac et al., 2017; Gibberd and Nelson, 2017; Zhu and Koyejo, 2018; Geng et al., 2019) or
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using kernel smoothing (Song et al., 2009a; Kolar and Xing, 2009; Zhou et al., 2010; Kolar
et al., 2010a; Kolar and Xing, 2011; Wang and Kolar, 2014; Qiu et al., 2016; Lu et al., 2018;
Geng et al., 2020). We emphasize that the methods for dynamic graphical models assume
that the data are sampled independently at different time points but are generated by
related distributions. In contrast, functional graphical models treat the data as multivariate
random functions (Li and Solea, 2018; Qiao et al., 2019; Zhao et al., 2019; Qiao et al., 2020;
Zapata et al., 2021; Zhao et al., 2022, 2021). Wang et al. (2020) focused on the estimation
and inference of a graph that underlies the data from a point process. Another popular
approach to modeling dynamic covariance models is via factor models. Factor models can
encode the temporal structure using latent kernel regularization (Paciorek, 2003; Kastner
et al., 2017). For example, Andersen et al. (2018) encoded smooth temporal dynamics
by introducing a latent Gaussian process prior. Li (2019) also used piecewise Gaussian
process factors to capture combinations of gradual and abrupt changes. Along similar
lines, our approach implements temporal and spatial structure through projection onto
suitable constraint sets.

Our work is also related to dictionary learning (Olshausen and Field, 1997; Mairal et al.,
2010), which can be viewed as a type of factorization where the signal is decomposed into
atoms and coefficients. In this factorization, the sparsity is controlled through a sparse
penalty on the coefficients. Mishne and Charles (2019) extended this approach to encode
temporal data by constructing time-trace atoms with spatial coefficients. In comparison,
our model has shared spatial structure and individual temporal structure.

Autoregressive models have been applied to model dynamic connectivity in fMRI (Song
et al., 2009b; Qiu et al., 2016; Liégeois et al., 2019). Although autoregressive models employ
modeling assumptions different from ours, they can capture smooth temporal dynamics of
signals. However, autoregressive model forecasts can become unreliable in high-dimensional
settings (Bańbura et al., 2010). To this end, various implementations of structured tran-
sition matrices (Davis et al., 2016; Ahelegbey et al., 2016; Skripnikov and Michailidis,
2019) have been proposed and shown to improve computational efficiency and prediction
accuracy.

The optimization problem in (2) is nonconvex and is optimized by alternating mini-
mization. Recent literature has established a linear convergence rate to global optima (Jain
et al., 2013; Hardt, 2014; Gu et al., 2016; Chen et al., 2021; Yu et al., 2020a, 2018; Na et al.,
2021, 2020). In particular, our work builds on Bhojanapalli et al. (2016), who showed linear
convergence in V when the underlying objective function is strongly convex with respect
to X = V V T . Subsequently, Park et al. (2018) and Yu et al. (2020c) proved a linear con-
vergence rate for nonsymmetric matrices. Unlike previous work, our factorization scheme
V diag(aj)V

T imposes additional structure on eigenvalues, which has potential applications
in regularizing graph-structured models (Kumar et al., 2020).

In nonconvex optimization, finding a good initialization in a local region is often useful
to avoid convergence to bad local optima (e.g., Z = 0 is a trivial stationary point in
our model). One common approach is to use the minimizer of a convex relaxation of the
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original problem as a starting point (Yu et al., 2020c). For some problems, spectral methods
also provide good initialization (Chen and Candès, 2015). We employ a problem-specific
spectral approach to develop a novel initialization method. After initialization, a first-order
gradient descent method is sufficient to ensure convergence to the desired optima (Candès
et al., 2015). Combining with structured constraints, Chen and Wainwright (2015) provided
a theoretical framework for the projected gradient descent method when the constraint
sets are convex. In our work, the iterates are projected onto a nonconvex set, which might
increase the distance ‖V − V ?R‖2F . Therefore, we need a problem-specific analysis to
quantify the expansion coefficient.

3. Methodology

We first introduce the proposed two-stage algorithm. Subsequently, we discuss the selection
of the tuning parameters.

3.1 Two-stage Algorithm

We develop a two-stage algorithm to solve the optimization problem in (2). As the objective
is nonconvex, a local iterative procedure may converge to bad local optima or saddle
points. In the first stage of the algorithm, spectral decomposition is used to find an
initialization point. In the second stage, projected gradient descent is used to locally refine
the initial estimate and find a stationary point that is within the statistical error of the
population parameters. Algorithm 1 summarizes our initialization procedure. Here, the
eigendecomposition of {SN,j}j∈[J ] is performed to obtain initial estimates of V ? and A?.
Specifically, the initialization uses the shared spatial structure of {Σ?

j}j∈[J ] to increase the

effective sample size. That is, the initial estimate V 0 is obtained from the eigenvectors
corresponding to the largest K eigenvalues of the covariance matrix pooled over time,
MN = J−1

∑J
j=1 SN,j . The initial estimate of the temporal coefficients, A0, is obtained by

projecting {SN,j}j∈[J ] onto V 0.

Set MN = (NJ)−1
∑J

j=1

∑N
n=1 x

(n)
j x

(n)T
j

Set V 0 = (v0
1, v

0
2, . . . , v

0
k)← top K eigenvectors of MN

For j = 1 to j = J and k = 1 to k = K
a0
k,j ← v0T

k SN,jv
0
k

Set A0 = (a0
k,j)k∈[K],j∈[J ]

Output V 0, A0

Algorithm 1: Spectral initialization
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After initialization, we iteratively refine the estimates of V and A using an alternating
projected gradient descent. In each iteration, the iterates V and A are updated using the
gradient of fN , where η denotes the step size. Note that we scale down the step size for
the V update by J to balance the magnitude of the gradient. After a gradient update,
we project the iterates onto the constraint sets CV and C̃A to enforce sparsity in V and
smoothness in A. Details are given in Algorithm 2.

Set V 0, A0 = Spectral initialization({x(n)
j }n∈[N ],j∈[J ])

While |fN (Zi−1)− fN (Zi−2)| > ε

Âi ← Ai−1 − η∇AfN (Zi−1)

Ai ← Project rows of Âi to C̃A
V̂ i ← V i−1 − η

J∇V fN (Zi−1)

V i ← Project columns of V̂ i to CV
Output V , A

Algorithm 2: Dynamic covariance estimation

Although CV is a nonconvex set, projection onto this set can be computed efficiently by
picking the top-s largest entries in magnitude and then projecting the constructed vector
to the unit sphere. Despite projecting onto a nonconvex set, we are able to show that
the gradient and projection step jointly result in a contraction (see Appendix A). On the
other hand, the projection onto the convex set C̃A can be computed efficiently via convex
programming: we project onto C̃A by iteratively projecting onto {α ∈ RJ : 0 ≤ αj ≤ c, j ∈
[J ]} and {α = Q̃u : uT Λ̃u ≤ γ}, which gives us a point in the intersection of the sets by
von Neumann’s theorem (Escalante and Raydan, 2011).

3.2 Selection of Tuning Parameters

The parameters of the proposed model include the sparsity level s, the rank K, the kernel
length scale l, the smoothness coefficient γ, the truncation level δA, and the upper bound
c for the constraint. For some kernels, such as the Gaussian kernel, the Matérn five-
half kernel, and other radial basis function kernels, one must also select the length scale
parameter l, which captures the smoothness of the curves (i.e., {A?k·}k∈[K]); for example, a
Gaussian kernel function is κl(x, y) = σ2 exp{−(x− y)2/(2l2)}, where l affects the slope of
decay of the eigenvalues. We denote such kernel functions as κl rather than κ. Our theory
suggests that δA should be upper bound by the magnitude of minj∈[J ] σ

2
K(Σ?

j ) to obtain a
good statistical error. Furthermore, δA is selected for numerical stability. In experiments,
we find that δA = 10−5 is a good empirical choice and satisfies the sufficient conditions. In
principle, we do not want to cut off any important signals, so we choose c as a value greater
than maxj∈[J ] ‖SN,j‖2 and c? = maxj∈[J ] ‖Σ?

j‖2. In terms of estimation performance, we
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observe that the selection of s and K has a greater effect than the selection of γ and l.
Although the underselection of s and K leads to poor evaluation scores, the improper
selection of l and γ has a relatively minor influence. Therefore, we adopt a two-stage
approach to selecting parameters. In the first stage, we perform a grid search on s, K,
γ, l and find the configuration that minimizes the Bayesian information criterion bic =
logN

∑K
k=1 ‖vk‖0−2L̂N , where L̂N is the maximized Gaussian log-likelihood function. We

notice that varying γ and l have a subtle influence on bic. Consequently, in the second
stage, we fix s, K with values selected in the first stage and select γ and l using a 5-fold
cross-validation with the Gaussian log-likelihood, which is motivated by prior work on
nonparametric dynamic covariances (Yin et al., 2010). Empirically, we find that tuning
the length scale parameter l is more effective than tuning γ in producing globally smooth
temporal structures (see Appendix G.5).

4. Theory

We provide theoretical guarantees on the algorithm described in the previous section. We
show that given enough samples, that is, N & KP (logP + log J), the estimate converges
linearly to a statistically good point with high probability. A statistically good point is
one that is close to the population parameters as quantified by the statistical error.

4.1 Preliminaries

Before presenting our main theoretical results, we introduce two tools that will help us
establish the results.

First, we discuss orthogonalization. The spatial component V produced by Algorithm 2
is not necessarily orthonormal. However, V ? has full rank, and if minY ∈O(K) ‖V −V ?Y ‖22 <
1 is guaranteed at each iteration, then V also has full rank. As a result, the subspace
spanned by columns of V is equal to the subspace spanned by columns of the orthogonalized
version of it. To simplify the analysis of Algorithm 2, we add a QR decomposition step
that orthogonalizes V after projection onto CV . That is, in each iteration, we compute

V i
ortho ← V i(Li)−1 (QR decomposition),

where Li is the upper triangular matrix, with diagonal entries less than or equal to 1.
Note that orthogonalization of V in each iteration of Algorithm 2 is not needed in prac-
tice and is only used to establish theoretical properties. This approach is commonly used
in the literature (Jain et al., 2013; Zhao et al., 2015). We further note that the addi-
tion of QR decomposition only increases the distance of the iterate V i to V ?R by a mild
constant (Stewart, 1977; Zhao et al., 2015) (see Appendix A.3). Furthermore, QR decom-
position increases the number of nonzero elements of the iterate V to at most Ks. As we
consider the rank K to be fixed and P & s, the effect of QR decomposition is mild. Our ex-
periments further demonstrate that optimization with and without the QR decomposition
step results in comparable performance.
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Next, we introduce the notion of statistical error, which allows us to quantify the
distance of the population parameters from the stationary point to which the optimization
algorithm converges. Note that the notion of statistical error was used in the context of
M-estimation (Loh and Wainwright, 2015). Let Bt = {v ∈ RP | ‖v‖0 ≤ t, ‖v‖2 ≤ 1} and

Υ(r, t, h, δA) = {{∆j = V diag(aj)W
T }j∈J | vk ∈ Bt, wk ∈ Bt, ATk·G̃†Ak· ≤ h, k ∈ [r]},

where G̃ is the truncation of G at the level of δA. We define the statistical error as

εstat = εstat(2K, 2s+ s?, 2γ, δA) = max
{∆j}j∈[J]∈Υ(2K,2s+s?,2γ,δA)

∑J
j=1〈∇`N,j(Σ?

j ),∆j〉(∑J
j=1 ‖∆j‖2F

)1/2
.

The statistical error describes the geometric landscape around the optimum—it quanti-
fies the magnitude of gradient of the empirical loss function evaluated at the population
parameter in the directions constrained to the set Υ.

4.2 Assumptions and Main Results

We begin by stating the assumptions needed to establish the main results. Note that V in
this section is used to denote an iterate in after the QR factorization step.

An upper bound on the step size is required for convergence of Algorithm 2. Let
Z0
j = (V 0T ,diag(a0

j ))
T , j ∈ [J ], denote the output of Algorithm 1.

Assumption 1 The step size satisfies η ≤ minj∈[J ] J
1/2/(64‖Z0

j ‖22).

Note that the step size depends on the initial estimate, but remains constant throughout
the iterations. Let β = 1 − η/(4Jξ2) < 1, χ = 4β1/2(1 − 2I0/

√
J)−2(1 + 32‖A?‖2∞), and

τ = J−1{9/2 + (1/2 ∨K/8)}, where

I2
0 =

{
1

16ξ2

1

(1 + ‖A?‖2∞J−1)
∧ J

4

}
, ξ2 = max

j∈[J ]

 16

σ2
K(Σ?

j )
+

(
1 +

8c

σK(Σ?
j )

)2
 . (3)

We also require that the tuning parameters be selected appropriately.

Assumption 2 We have c ≥ c?, γ ≥ γ?, s ≥ [{4(1/χ− 1)−2 + 1} ∨ 2]s?. The matrix G̃ is
obtained with the truncation level δA ≤ (16γ?)−1 minj∈[J ] σ

2
K(Σ?

j ).

Note that the condition on δA is mild. It guarantees that we do not truncate too much of
the signal. Finally, we require an assumption on the statistical error.

Assumption 3 We have ε2
stat ≤ JI2

0{(β1/2 − β)/(τη) ∧minj∈[J ] 3‖Z?j ‖22}.
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Assumption 3 is essentially a requirement on the sample size N , since for a sufficiently
large N the assumption will be satisfied with high probability. Note that as the sample
size increases, the statistical error becomes smaller, while the radius of the local region
of convergence, I0, remains constant. Furthermore, if Assumption 3 is not satisfied, this
implies that the initialization point is already close enough to the population parameters
and that the subsequent refinement by Algorithm 2 is not needed.

With these assumptions, we are ready to state the main result, which tells us how
far the estimate obtained by Algorithms 1 and 2 is from the population parameter. Let
ΣI
j = V Idiag(aIj )(V

I)T , j ∈ [J ], denote the estimate of the population covariance after the
Ith iteration.

Theorem 4 Suppose Assumptions 1—3 are satisfied and J ≥ 4. Furthermore, for a suf-
ficiently large constant C0, suppose that there are N = C0KP log(PJ/δ0) independent

samples such that ‖x(n)
j ‖22 ≤ P‖A?‖∞ almost surely, j ∈ [j], with zero mean and covari-

ance as in (1). Then, with probability at least 1− δ0, the estimate obtained by Algorithm 1
and Algorithm 2 satisfies

J∑
j=1

‖ΣI
j − Σ?

j‖2F ≤ βI/2(4µ2ξ2)
J∑
j=1

‖Σ0
j − Σ?

j‖2F +
2τµ2η

β1/2 − β
ε2
stat + 2Kγ?δA, (4)

where µ = maxj∈[J ](17/8)‖Z?j ‖2.

The first term on the right-hand side of (4) corresponds to the optimization error, and we
observe a linear convergence rate. The second and third terms of (4) correspond to the
statistical and approximation errors due to the truncation of the kernel matrix, respectively.
From the bound we observe a trade-off between εstat and the truncation error δA: if δA
decreases, εstat increases.

The proof of Theorem 4 is given in two steps. First, we establish the convergence
rate of the iterates obtained by Algorithm 2 when the initial points V 0 and A0 lie in a
neighborhood around V ? and A? (see §4.3). Subsequently, we show in Theorem 7 that
Algorithm 1 provides suitable V 0 and A0 with high probability (see §4.5).

To give an example of Theorem 4, we consider the case where data are generated from
a multivariate Gaussian distribution and for a Gaussian kernel.

Proposition 5 Let x
(n)
j ∈ RP be independent Gaussian samples with mean zero and co-

variance as in (1) with J ≥ 4 and N & K(P +log J/δ0). Suppose that G is a Gaussian ker-
nel matrix whose eigenvalue decays at the rate exp(−l2j2) for some length scale l > 0. Let
δA � (γ?lN)−1{log(γ?lN)}1/2. Suppose that Assumptions 1—2 hold, s? log(P/s?) < PJ
and maxj∈[J ] ‖Ej‖2 . I0. Then after I & log(1/δ1) iterations of Algorithm 2, with proba-
bility at least 1− δ0, we have

J∑
j=1

‖ΣI
j − Σ?

j‖2F . δ1 +
1

N

[
K

{
1

l
(log γ?lN)1/2 + s? log

P

s?

}
+ log δ−1

0

]
+ J max

j∈[J ]
‖Ej‖22.
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Condition s? log(P/s?) < PJ is mild, since s? . P , and condition maxj∈[J ] ‖Ej‖2 . I0

is mild, since ‖Ej‖2 < σK(Σ?
j ), j ∈ [J ]. Under the Gaussian distribution, the sample

complexity is improved to N & K(P + log J) from N & KP (logP + log J) in Theorem 4.
Proposition 5 provides an explicit bound on the estimator that can be obtained under an
assumption on the eigenvalue decay. The statistical error is comprised of two terms that
correspond to errors when estimating smooth temporal components and sparse spatial
components. In our choice of δA, the truncation error is in the same order as the statistical
error induced by the smooth temporal components.

4.3 Linear Convergence

We establish the linear convergence rate of Algorithm 2 when it is appropriately initialized.
Recall that the rows of A? belong to CA(c?, γ?) ⊆ CA(c, γ), while the projected gradient
descent is implemented on the set C̃A(c, γ) ⊂ CA(c, γ). Let

Ã? = argmin
Bk·∈C̃A(c,γ),k∈[K]

‖B −A?‖2F ,

be the best approximation of A? in C̃A(c, γ). See Appendix E for details on the construction
of Ã?. We define Σ̃?

j = V ?diag(ã?j )V
?T , j ∈ [J ], and Z̃?T = (V ?T , Ã?). With these

definitions, we establish the linear rate of convergence of the iterates to Σ̃?
j and Z̃?. The

convergence rate in Theorem 4 will then follow by combining the results with the truncation
error.

Observe that the covariance factorization is not unique since, for any R ∈ O(K), we
have Σj = V diag(aj)V

T = V RjRj
Tdiag(aj)RjRj

TV T , j ∈ [J ]. By the triangle inequality,
we have

J∑
j=1

‖Σj − Σ̃?
j‖2F ≤

J∑
j=1

αV,j‖V − V ?R‖2F + αA‖diag(aj)−RTdiag(ã?j )R‖2F , (5)

where αV,j = 3{‖V diag(aj)‖22 + ‖V ?diag(ã?j )‖22}, j ∈ [J ], and αA = 3‖V ?‖22‖V ‖22. This

implies that if ‖V −V ?R‖2F +‖diag(aj)−RTdiag(ã?j )R‖2F is small for some rotation matrix
R and every j ∈ [J ], then the left-hand side will also be small. To this end, our goal is to
show that the following distance metric contracts in each iteration of Algorithm 2. Let

R = argmin
Y ∈O(K)

‖V − V ?Y ‖2F , dist2(Z, Z̃?) =

J∑
j=1

d2(Zj , Z̃
?
j ); (6)

d2(Zj , Z̃
?
j ) = ‖V − V ?R‖2F + ‖diag(aj)−RTdiag(ã?j )R‖2F ,

where ZTj = (V T , diag(aj)) and Z̃?Tj = (V ?T ,diag(ã?j )). The metric first finds the rotation
matrix that aligns two subspaces and then computes the transformation of diag(ã?j ) along

11
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the rotation R. This metric is similar to the distance metric commonly used in matrix
factorization problems (Anderson and Rubin, 1956; ten Berge, 1977), but in our model the
choice of R depends only on V .

To show the convergence of dist2(Z, Z̃?), we need the following assumptions.

Assumption 6 Suppose that Z0
j satisfies d2(Z0

j , Z
?
j ) ≤ I2

0 , for j ∈ [J ], where I0 is defined

in (3). Assume that ‖V 0−V ?R‖2F ≤ I2
0/J and ‖diag(a0

j )−RTdiag(a?j )R‖2F ≤ (J −1)I2
0/J .

Since d2(Z0
j , Z̃

?
j ) ≤ d2(Z0

j , Z
?
j ) for j ∈ [J ], Assumption 6 ensures that the distance between

initial estimates and the population parameters is bounded within the ball of radius I0.
Furthermore, I2

0 ≤ J ensures that ‖V − V ?R‖2 ≤ 1, so that V is full-rank. Intuitively,
we assume that the squared distance for V is 1/(J − 1) times smaller than the squared
distance for A, because we have J times more samples to estimate V compared to A.

Theorem 7 Assume that Assumptions 1—3, and Assumption 6 hold. After I iterations
of Algorithm 2, we have

dist2(ZI , Z̃?) ≤ βI/2dist2(Z0, Z̃?) +
τηε2

stat

β1/2 − β
.

Theorem 7 establishes a linear rate of convergence in dist2(Z, Z̃?). The second term on the
left-hand side denotes the constant multiple of the statistical error, which depends on the
distribution of the data and the sample size. Combining with (5) gives us a linear rate of
convergence in

∑J
j=1 ‖Σj − Σ̃?

j‖2F .

4.4 Statistical Error

Theorem 7 shows the linear convergence of the algorithm to a region around the population
parameters characterized by statistical error. One may wonder how large the statistical
error can be. While Assumption 3 provides a condition under which convergence is guaran-
teed, this bound is loose, as it does not depend on the sample size. We establish a tighter
bound under the Gaussian distribution.

Proposition 8 (Statistical Error for Gaussian Data) Let x
(n)
j ∈ RP be independent

Gaussian samples with mean zero and covariance as in (1). Then, with probability at least
1− δ,

εstat(2K, (2m+ 1)s∗, 2m′γ?, δA) ≤ (ν ∨ ν2) +
√
J max
j∈[J ]
‖Ej‖2,

where

ν =
‖A?‖∞
e0

[
1

N

{
log

1

δ
+Kr(G̃) +Ks? log

P

s?

}] 1
2

,

m,m′ are positive integers, e0 is an absolute constant depending on m and m′, and r(G̃)
is the rank of the δA-truncated kernel matrix G̃.

12
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We interpret εstat as follows. The first term corresponds to the error in estimating
the low-rank matrix, while the second term corresponds to the essential error incurred
from approximating the covariance matrix by a low-rank matrix. The low-rank matrix
can be estimated with the rate that converges to zero as [K{r(G̃) + s? logP}/N ]−1/2,
which corresponds to the rate of convergence of temporal and spatial components. We
also highlight that truncation of G simplifies the statistical analysis because we can view
the projection to C̃A as restricting rows of A to a subset of a r(G̃)-dimensional smooth
subspace with r(G̃) much smaller than J , the original dimension.

4.5 Sample Complexity of Spectral Initialization

We discuss the sample complexity required to satisfy Assumption 6. That is, we char-
acterize the sample size needed for Algorithm 1 to give a good initial estimate, so that
Algorithm 2 outputs a solution characterized in Theorem 7. We consider a general case of
a bounded distribution.

Theorem 9 (Sample Complexity of Spectral Initialization) Let x
(n)
j ∈ RP be inde-

pendent zero mean samples with ‖x(n)
j ‖22 ≤ P‖A?‖∞ almost surely, n ∈ [N ], j ∈ [J ], J ≥ 4.

Let M? = J−1
∑J

j=1 E(SN,j) and g = σK(M?) − σK+1(M?) > 0 be the eigengap. Then,
with probability at least 1− δ,

dist2(Z0, Z?) ≤ φ(g,A?)

{
KJP 2

N2

(
log

4JP

δ

)2

+
KJP

N
log

4JP

δ

}
; (7)

φ(g,A?) = 4‖A?‖2∞
{

5(1 + 16ϕ2‖A?‖2∞)

g2J
∨ 8ϕ2

}
,

where ϕ2 = maxj∈[J ]{1 + 4
√

2‖A?‖∞/σK(Σ?
j )}.

From (7) we note that if N & P log(PJ/δ), then Assumption 6 will be satisfied with
high probability. The eigengap g must be greater than 0 for the bound in (7) to be
nontrivial. Moreover, since g ≤ ‖A?‖∞, the first term of φ(g,A?) dominates when J is
small. Combining results from (5), Theorem 7, and Theorem 9, we can establish Theorem 4.

5. Simulations

We evaluate the algorithm described in Section 3 using the metric in (6) and the average
log-Euclidean metric (Arsigny et al., 2006) over a variety of temporal dynamics. Table 1
collects competing methods.

We generate synthetic samples from the following Gaussian distribution: x
(n)
j ∼ N (0,Σ?

j+

σI), n ∈ [N ], j ∈ [J ], where Σ?
j =

∑K
k=1 a

?
k,jv

?
kv
?T
k and σI is additive noise. Unless

stated otherwise, we use the Matérn five-half kernel (Minasny and McBratney, 2005) as
the smoothing kernel for all simulations.
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Method Model low-rank smooth A sparse V

M1 Sliding window principal component analysis 3 3 7

M2 Hidden Markov model 7 7 7

M3 Autoregressive hidden Markov model (Poritz, 1982) 7 3 7

M4 Sparse dictionary learning (Mairal et al., 2010) 3 7 3

M5 Bayesian structured learning (Andersen et al., 2018) 3 3 3

M6 Lasso and kernel regularization (Daubechies et al., 2010) 3 3 3

M7 Slinding window shrunk covariance (Ledoit and Wolf, 2004) 7 3 7

MS Spectral initialization (Algorithm 1) 3 7 7

MR Proposed model with random initialization (Algorithm 2) 3 3 3

M** Proposed model (Algorithm 1—2) 3 3 3

MQ** Proposed model (Algorithm 1—2) with QR decomposition 3 3 3

Table 1: List of competing methods. The implementation details of M6 and MR are
presented in Appendix G.1 and Appendix G.2.

5.1 Ground-truth recovery and linear convergence

We demonstrate the performance of the proposed algorithm under different smooth tem-
poral structures. The tuning parameters are selected as described in Section 3.2. Figure 1
shows the temporal dynamics of the ground truth together with the results. The upper
row corresponds to the setting of mixing temporal weights, where we have sine functions, a
constant function, and a ramp function. The bottom row corresponds to the setting with
different sine functions. Figure 2 shows how distance dist2(Z,Z?) changes with the num-
ber of subjects N ∈ {1, 5, 15, 200}. We see linear convergence of the distance up to some
statistical error, which decreases as the sample size increases, as predicted by Theorem 7.

To compare with other methods, we use the average log-Euclidean metric (Arsigny
et al., 2006): J−1

∑J
j=1 ‖ log(Σj) − log(Σ?

j )‖F , where log(Σj) = Uj log(Λj)U
T
j , U is the

matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues of Σj . In practice, we
truncate the eigenvalues whose magnitude is less than 10−5 to maintain the stability of the
evaluation. Table 2 reports the average log-Euclidean metric, while Table 3 reports the
average running time over 20 independent runs. The simulations under discrete switching
dynamics are presented in Appendix G.3 and simulations with varying K are presented in
Appendix G.4.
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Figure 1: Covariance recovery with K = 4, P = 20, J = 50 and σ = 0. The left two
columns show the ground truth and the right two columns show the recovery with N = 15.
The results indicate good spatial and temporal recovery.

Mixing waveform Sine waveform
Method N = 1 N = 5 N = 10 N = 1 N = 5 N = 10

M1 0.45± 0.01 0.40± 0.01 0.38± 0.01 0.67± 0.03 0.63± 0.01 0.63± 0.01
M2 6.58± 0.31 0.68± 0.02 0.62± 0.01 6.22± 1.02 0.82± 0.01 0.80± 0.01
M3 6.91± 1.39 0.75± 0.02 0.65± 0.01 7.36± 0.24 0.87± 0.02 0.80± 0.01
M4 0.46± 0.01 0.43± 0.02 0.39± 0.02 0.64± 0.01 0.58± 0.03 0.54± 0.04
M5 0.41± 0.01 0.36± 0.01 0.34± 0.00 0.58± 0.01 0.54± 0.01 0.53± 0.01
M6 0.51± 0.03 0.39± 0.02 0.37± 0.02 0.67± 0.03 0.58± 0.02 0.57± 0.03
MS 0.89± 0.05 0.41± 0.01 0.38± 0.01 0.94± 0.06 0.58± 0.02 0.57± 0.01
MR 0.42± 0.01 0.41± 0.02 0.41± 0.00 0.62± 0.00 0.62± 0.00 0.62± 0.00
M** 0.41± 0.03 0.29± 0.03 0.30± 0.04 0.59± 0.02 0.51± 0.03 0.50± 0.02
MQ** 0.37± 0.02 0.31± 0.03 0.29± 0.03 0.58± 0.02 0.56± 0.02 0.56± 0.01

Table 2: Log-Euclidean metric averaged over 20 independent runs. Temporal dynamics
are given in Figure 1 with K = 4, P = 20, J = 50 and σ = 0.5. For M1, we set the window
length as W = 20. For both task cases, M** and MQ** outperform the competing methods
under varying sample size. When N = 1, M2 and M3 have sufficiently large average log-
Euclidean. This is because M2 and M3 are not designed to be low-rank models, whereas
the ground truth is low-rank. Hence, when the estimated covariance matrices are not low-
rank, they have many small trailing nonzero eigenvalues, which results in large average
log-Euclidean metric.
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Figure 2: Convergence rate for different sample sizes with K = 4, P = 20, J = 50 and
σ = 0. The data generating mechanism is given in Figure 1. Irrespective of the sample
size, we observe linear convergence of the algorithm up to a neighborhood of the population
parameters. The radius of the neighborhood is characterized by the statistical error, which
depends on the sample size.
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Number of subjects (N)
Method 1 5 10

Mixing
waveform

M1 0.5 ± 0.1 0.4 ± 0.0 0.6 ± 0.0
M2 300.0 ± 4.0 790.0 ± 10.0 1000.0 ± 40.0
M3 190.0 ± 30.0 2840.0 ± 10.0 2450.0 ± 70.0
M4 60.0 ± 30.0 520.0 ± 290.0 1080.0 ± 510.0
M5 350.0 ± 80.0 360.0 ± 130.0 380.0 ± 60.0
M6 620.0 ± 50.0 630.0 ± 40.0 620.0 ± 60.0
MS 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0
MR 90.0 ± 3.7 220.0 ± 0.0 220.0 ± 3.5
M** 8.2 ± 1.6 4.5 ± 0.2 5.9 ± 0.6
MQ** 18.1 ± 2.2 14.0 ± 0.6 13.4 ± 0.3

Sine
waveform

M1 0.5 ± 0.1 0.4 ± 0.0 0.5 ± 0.0
M2 30.0 ± 4.0 800.0 ± 10.0 830.0 ± 7.9
M3 180.0 ± 20.0 2840.0 ± 20.0 290.0 ± 4.1
M4 70.0 ± 30.0 320.0 ± 150.0 780.0 ± 330.0
M5 350.0 ± 80.0 360.0 ± 110.0 380.0 ± 90.0
M6 570.0 ± 30.0 570.0 ± 30.0 570.0 ± 30.0
MS 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0
MR 73.9 ± 11.4 35.9 ± 3.2 42.9 ± 2.0
M** 6.7 ± 1.7 4.5 ± 0.8 4.3 ± 1.2
MQ** 15.3 ± 2.4 12.9 ± 0.8 12.0 ± 0.6

Table 3: Running time (×10−2s) averaged over 20 independent runs. Temporal dynamics
are given in Figure 1 with K = 4, P = 20, J = 50 and σ = 0.5. For M1, we set the
window length as W = 20. When P is small, MS is the most efficient method as it only
computes eigendecomposition once. M1 computes eigendecomposition multiple times and,
as a result, is slower. The running time of M* is composed of the running time of MS and
the running time of Algorithm 2. MQ** is slower than M** because it requires additional
QR decomposition at each step.
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Number of subjects (N)
Method 1 5 15 200 1000

M
ix

in
g

w
av

ef
or

m MS 208.12± 41.82 45.22± 2.62 15.15± 1.10 1.17± 0.10 0.23± 0.01

MR 29.67± 0.39 29.16± 0.21 28.86± 0.12 28.68± 0.04 28.43± 0.06

M** 18.99± 5.00 6.72± 2.14 2.22± 1.13 0.19± 0.05 0.04± 0.01

S
in

e
w

av
ef

or
m MS 477.54± 95.10 103.24± 9.64 36.64± 3.39 3.53± 1.08 1.53± 1.46

MR 95.60± 0.63 94.05± 0.36 92.86± 0.26 91.39± 0.12 90.85± 0.12

M** 51.06± 12.28 22.27± 5.99 9.85± 4.38 2.41± 3.22 1.44± 2.13

Table 4: Average dist2(Z,Z?) over 20 independent runs. The data generating mechanism
is given in Figure 1 with K = 4, P = 20, J = 50 and σ = 0. M** performs the best
under varying sample sizes. MR outperforms MS for small sample sizes. However, MS
outperforms MR in the large sample size settings.
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5.2 Importance of Spectral Initialization

We compare the spectral initialization method in Algorithm 1 (MS), random initialization
method with iterative refinement (MR) (see Appendix G.1 for details), and the proposed
model (M**) to demonstrate the importance of proper initialization and iterative refine-
ment. The data are generated as in the previous experiment. For each setting, we run the
simulation 20 times with N ∈ {1, 5, 15, 200, 1000} and average dist2(Z,Z?) at convergence.
Table 4 indicates that the error of the MS decreases with increasing sample size, which
corresponds to the result of Theorem 9. We further observe that M** outperforms MR and
MS, indicating that the two-stage algorithm works better than the single-stage algorithms
(MR or MS) under varying sample sizes. Figure 3 shows that the MR method converges to
poor local optima that correspond to large dist2(Z,Z?). We also visually observe that the
recovered temporal dynamics is far from the population ground truth. When the sample
size is small, both MR and M** outperform MS, implying that iterative refinement helps
improve estimation in addition to spectral initialization. When the sample size is larger,
that is, N ∈ {15, 200, 1000}, MS outperforms MR, implying that spectral initialization is
a better option than random initialization.

5.3 Simulations with increasing P and K

We increase both the dimension of the data P and the number of components K to demon-
strate the effectiveness of the proposed algorithm in a high-dimensional setting. For the
data generation process, we randomly generate a sparse orthogonal matrix V ? ∈ RP×K .
Specifically, we generate a diagonal block matrix, denoted Ṽ ?, with four blocks, and the
size of each block is dK/4e. Each block matrix is generated as a random sparse matrix
where the probability that an entry is nonzero is 0.4 and each nonzero entry is drawn from
unif([0, 1]). Finally, we obtain V ? from the QR decomposition of Ṽ ? = QR as V ? = Q.
Note that the spatial components are partially overlapping in this setting, unlike in the
previous setting, making the task more challenging. We generate the temporal components
Ak· as follows. We select 6 knots uniformly at random in [0, T ] and draw the corresponding
y value from unif([0, 1]). These values are interpolated with a cubic spline function.

Table 5 reports the results with N = 100 and J = 100, while P ∈ {50, 100, 150, 200, 300}
and K ∈ {10, 20, 30, 40, 50}. The results indicate that with a fixed N , the distance increases
with rank, which can be expected since there are more parameters to estimate. Moreover,
we also find that dimension P has a small influence on performance.

We compare our algorithm with competing methods in a setting where P = 100, since
some of the other methods are not scalable to higher-dimensional problems. We set J =
100, K = 10, and the noise level to σ = 0.5. Results for σ ∈ {0.1, 0.2} are reported
in Appendix G.5. For all methods, we set the number of components to estimate as 10,
that is, all methods know the true number of components in the data generation process.
For the Bayesian model (M5), we draw 30 samples from the posterior distribution and
compute the estimated covariance. We report the results averaged over 20 independent
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Figure 3: Performance of random initialization method (MR). The data generating mech-
anism is given in Figure 1. The left two columns in the top row correspond to recovery
of mixing waveform, while the right two columns correspond to recovery of sine waveform.
The bottom row displays the convergence with respect to the number of iterations.
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simulation runs. Table 6 summarizes the results. The proposed algorithm performs the
best compared to the alternatives. We also observe that the log-Euclidean metric decreases
as the number of samples increases for M**, which is predicted by the results of Theorem 4
and Proposition 8. When comparing MS and M**, we see a decrease in the log-Euclidean
metric resulting from Algorithm 2. The results of M** and MQ** are similar, implying that
the QR decomposition does not affect the estimation much, supporting the theory that V
and Vortho span the same subspace. Our method delivers performance comparable to M5,
although M5 uses variational inference in a Bayesian framework. This can be expected, as
the underlying models are similar. Table 7 reports the running times for different methods.
The running time of the proposed method remains relatively stable as the number of
subjects increases. On the other hand, the running time of the M2, M3, and M4 methods
increases as N increases. Our method remains efficient even in a high-dimensional setting,
while many other methods become slow as the dimension increases. Finally, although
the M5 and M6 methods make the same structural assumptions and achieve comparable
performance, our method is more computationally efficient. In particular, when the sample
size N increases, our method provides the best practical choice.

5.4 Selections of kernel functions

We vary the number of knots to see how the choice of kernel length scale affects the esti-
mation. Moreover, we investigate the effect of the kernel function. We average simulation
results over 20 independent runs with N = 50, K = 10, P = 100, J = 100 and σ = 0.5. The
components are generated by the same data generation process described in Section 5.3
and we only vary the number of knots. Table 8 shows that as the number of knots in-
creases, indicating that the temporal signal fluctuates more intensively, the optimal choice
of length scale decreases. This behavior is observed with all three kernel functions.

6. Experiment on neuroimaging data

To investigate the proposed model on real data, we focus on (i) the interpretability of
the model and (ii) the out-of-sample prediction. We use motor task data from the Human
Connectome Project functional magnetic resonance imaging (fMRI) data (Van Essen et al.,
2013). Data are preprocessed using the existing pipeline (Van Essen et al., 2013), and an
additional high-pass filter with a cutoff frequency 0.015Hz to remove physiological noise
as recommended by Smith et al. (1999). The data consist of five motor tasks: tapping the
right hand, tapping the left foot, wagging the tongue, tapping the right foot, and tapping
the left hand. During a session, each task is activated twice. See the activation sequence
in Figure 4.

For the model interpretation experiment, we select N = 20 subjects. For each subject,
the preprocessed time series of length J = 284 were extracted from P = 375 cortical and
subcortical parcels, following (Shine et al., 2019). The regions include 333 cortical parcels
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Figure 4: The activation map for the Human Connectome Project motor data set (Van
Essen et al., 2013). The activation time of each task is partially overlapping with the other
tasks.

(161 and 162 regions from the left and right hemispheres, respectively) using the Gordon
atlas (Gordon et al., 2014), 14 subcortical regions from the Harvard–Oxford subcortical
atlas (bilateral thalamus, caudate, putamen, ventral striatum, globus pallidus, amygdala,
and hippocampus), and 28 cerebellar regions from the SUIT atlas 54 (Diedrichsen et al.,
2009).

The goal is to analyze the corresponding dynamic connectivity. To investigate the
temporal and spatial components, we compute the correlation of each weight Ak· with the
onset task activation, and select the component that has the highest correlation. Figure 5
shows the results for three tasks: tapping the left foot, wagging the tongue, and tapping
the left hand. Figure 12 in Appendix G.6 shows the results for tapping the right foot
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Figure 5: The left column shows the temporal components (blue solid lines) whose corre-
lations are the largest with respect to the task activation (black dotted lines). The right
column shows the corresponding brain connectivity patterns (spatial components) for the
tasks. The red lines denote positive connectivity and blue lines denote negative connectiv-
ity.
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Dimension (P)
Rank (K) 50 100 150 200 300

K = 10 0.35± 0.01 0.35± 0.02 0.41± 0.02 0.35± 0.01 0.34± 0.03
K = 20 0.66± 0.02 0.66± 0.02 0.69± 0.02 0.66± 0.03 0.66± 0.01
K = 30 0.82± 0.01 0.82± 0.01 0.82± 0.02 0.80± 0.01 0.79± 0.01
K = 40 0.97± 0.01 0.93± 0.01 0.93± 0.01 0.88± 0.01 0.87± 0.01
K = 50 1.11± 0.01 1.10± 0.01 1.04± 0.01 0.99± 0.01 0.99± 0.01

Table 5: Log-Euclidean metric averaged over 20 independent simulation runs (σ = 0.5).
The data generating mechanism is described in Section 5.3. For a fixed sample size and
increasing K increases, the log-Euclidean metric increases due to large number of param-
eters that need to be estimated. The log-Euclidean metric is only mildly affected by the
dimension P , which is due to the number of nonzero entries being the same for different
values of P .

L R
L R

Task:Right Hand Tapping L R
L R

Task:Left Foot Tapping

L R
L R

Task:Tongue Wagging L R
L R

Task:Right Foot Tapping

L R
L R

Task:Left Hand Tapping

Figure 6: Each connectome is the superposition of the top three spatial components. The
spatial hubs in the connectivity matrices closely match with the expected motor regions
(hands, feet, tongue) as defined in the cortical homunculus (Marieb and Hoehn, 2018).
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Number of subjects (N)
Methods 10 20 30 40 50

M1 0.49± 0.01 0.46± 0.01 0.45± 0.01 0.45± 0.01 0.44± 0.01
M2 1.22± 0.01 1.04± 0.01 1.00± 0.01 0.98± 0.01 0.97± 0.01
M3 71.50± 6.46 1.90± 0.26 1.12± 0.01 1.14± 0.01 1.12± 0.01
M4 0.94± 0.03 0.46± 0.01 0.41± 0.01 0.39± 0.01 0.38± 0.01
M5 0.51± 0.01 0.46± 0.01 0.43± 0.01 0.42± 0.01 0.41± 0.01
M6 0.43± 0.01 0.41± 0.01 0.40± 0.01 0.40± 0.01 0.39± 0.01
MS 0.43± 0.01 0.40± 0.01 0.40± 0.01 0.39± 0.01 0.39± 0.01
M** 0.42± 0.03 0.35± 0.05 0.36± 0.04 0.33± 0.04 0.32± 0.02
MQ** 0.40± 0.04 0.40± 0.01 0.35± 0.04 0.32± 0.03 0.32± 0.02

Table 6: Log-Euclidean metric averaged over 20 independent simulation runs. The data
generating mechanism is described in Section 5.3 and σ = 0.5. For M1, we set the window
length to be W = 20.

Number of subjects (N)
Methods 10 20 30 40 50

M1 0.8 ± 0.4 0.5 ± 0.3 1.2 ± 0.6 1.5 ± 0.5 1.8 ± 0.5
M2 151.9 ± 17.9 222.6 ± 51.0 376.7 ± 53.6 498.8 ± 40.0 635.5 ± 58.2
M3 422.0 ± 33.3 729.7 ± 161.6 1154.4 ± 53.6 1427.4 ± 64.4 1751.7 ± 52.0
M4 267.0 ± 112.1 378.4 ± 148.5 846.2 ± 358.8 872.0 ± 440.8 1841.5 ± 697.2
M5 2243.8 ± 33.3 2263.3 ± 38.4 2273.7 ± 36.0 2259.8 ± 34.2 2278.9 ± 35.1
M6 84.9 ± 37.5 195.2 ± 62.6 201.8 ± 31.9 191.6 ± 51.6 218.3 ± 15.6
MS 0.1 ± 0.0 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
M** 1.2 ± 0.6 1.3 ± 0.7 2.9 ± 1.4 3.9 ± 0.8 3.6 ± 0.7
MQ** 2.2 ± 1.3 1.4 ± 0.7 2.5 ± 1.0 3.8 ± 0.7 3.5 ± 0.6

Table 7: Running time in seconds averaged over 20 independent simulation runs. The data
generating mechanism is described in Section 5.3 and σ = 0.5. For M1, we set the window
length to be W = 20.

and tapping the right hand. Our results show that the temporal fluctuations of the top
components coincide with the task activation. Following the hypothesis that neural activity
is the consequence of multiple components rather than a single component (Posner et al.,
1988), for each task, we select three components with the highest correlations and plot the
connectivity patterns in Figure 6. The spatial hubs in the connectivity matrices closely
match the expected motor regions as defined in the cortical homunculus (Marieb and
Hoehn, 2018). Thus, the results indicate that the proposed algorithm can separate and
identify the components of each task and that each task has a unique connectivity pattern.

As the ground truth is unknown and motivated by the hypothesis that each task has
a different activation pattern, we design a classification task as a surrogate experiment to
evaluate the algorithm. Previous work also indicated that task fMRI data share similar
connectivity patterns among test subjects (Zalesky et al., 2012; Calhoun et al., 2014).
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Number of knots in J = 100
Methods 5 10 15 20

Radial-basis function (l = 5) 0.16± 0.04 0.26± 0.05 0.52± 0.07 0.91± 0.17
Radial-basis function (l = 10) 0.12± 0.04 0.18± 0.05 0.33± 0.07 0.69± 0.18
Radial-basis function (l = 50) 0.09± 0.04 0.16± 0.05 0.76± 0.09 1.17± 0.11
Radial-basis function (l = 200) 0.08± 0.04 0.30± 0.05 0.84± 0.08 1.27± 0.16

Matérn five-half (l = 5) 0.15± 0.04 0.23± 0.05 0.44± 0.06 0.80± 0.18
Matérn five-half (l = 10) 0.13± 0.04 0.20± 0.05 0.36± 0.06 0.70± 0.18
Matérn five-half (l = 50) 0.10± 0.04 0.15± 0.05 0.31± 0.06 0.59± 0.12
Matérn five-half (l = 200) 0.09± 0.04 0.14± 0.05 0.31± 0.07 0.62± 0.19

Rational quadratic (l = 5) 0.14± 0.04 0.24± 0.05 0.51± 0.07 0.89± 0.18
Rational quadratic (l = 10) 0.17± 0.04 0.29± 0.05 0.61± 0.07 1.03± 0.18
Rational quadratic (l = 50) 0.10± 0.04 0.13± 0.05 0.43± 0.07 1.07± 0.18
Rational quadratic (l = 200) 0.08± 0.04 0.22± 0.05 0.81± 0.08 1.26± 0.16

Table 8: Average distance dist2(Z,Z?)/J over 20 independent runs with σ = 0.5. Results
are comparable for different kernel functions when the number of knots is smaller than
J = 15. When J = 20, Matérn five-half kernel function is more effective in capturing the
temporal smoothness compared to the other two kernels.

Therefore, if we can recover the functional connectivity patterns of the training subjects,
then similar patterns exist in the test subjects. We partition 103 subjects in the Human
Connectome Project motor task data set (Van Essen et al., 2013) randomly into a training
and testing set. The duration of each task is identical, 27 time points for each activation,
and 2 activations in each session. Since each task partially overlaps with others (see
Figure 4), we predict the task based on activation blocks rather than on a single time
point. We group the estimated covariances {Σj}j∈[J ] and the test data based on the task
activation map and perform a nearest-neighbor search. Clustered covariances are denoted
as Σtask,i, where task ∈ {tapping the right hand, tapping the left foot, wagging the tongue,
tapping the right foot, tapping the left hand} and i ∈ [54]. The task score for each test
data block is defined as

scoretask({xi}i∈[54]) =

54∑
i=1

‖xixTi − Σtask,i‖2F ,

where {xi}i∈[54] is a block of test data. We predict the task of the block data by choosing
the task with the minimum score. We repeat the experiment 10 times. In each run, we
randomly split the data into a training and testing set. We select the number of training
subjects to be N ∈ {10, 20, 30, 40, 50} and set the remaining subjects as test sets. The
results are shown in Table 9. Note that the Markov model (M2) performs worst even if
we increase the number of states to 60. The dictionary learning model (M4) performs
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similarly to our model when the sample size is large, but our model performs better with
small sample sizes.

7. Discussion

Several directions are worthy of further investigation. We plan to explore a more flexible
spatial structure. Previous work (Gibberd and Nelson, 2017; Hallac et al., 2017) applied
fused graphical lasso and group graphical lasso to encourage similar sparse structures for
time-varying graphical models. These approaches did not restrict the spatial components
to be identical but only similar, and thus are more flexible compared to the proposed
model. To this end, one idea is to build factor models that encourage similar, but not
identical, spatial structures while retaining low rank. Our work has focused on modeling
data sampled at fixed intervals. We also plan to explore models with samples obtained at
irregular time intervals (Tank et al., 2019; Qiao et al., 2020), as this setting is common
in multimodal data (Tsai et al., 2022). Finally, our work has focused on the estimation
of parameters in a flexible covariance model, while the question of how to quantify the
statistical uncertainty remains open. There has been a growing literature on inference for
parameters in high-dimensional models, including linear models (Zhang and Zhang, 2014;
van de Geer et al., 2014; Javanmard and Montanari, 2014; Zhao et al., 2014; Bradic and
Kolar, 2017; Dai and Kolar, 2021; Wang et al., 2021), nonparametric models (Kozbur,
2021; Lu et al., 2020), and graphical models (Ren et al., 2015; Wasserman et al., 2014;
Janková and van de Geer, 2015, 2017; Barber and Kolar, 2018; Wang and Kolar, 2016; Yu
et al., 2016, 2020b; Xia et al., 2015; Kim et al., 2021). The model considered in our paper
is comprised of a sparse spatial and a smooth nonparametric temporal component that will
require the development of new inferential techniques.
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Appendix A. Projection to Constraint Sets

We describe the algorithms used to project iterates to the constraints CV , C̃V , and C̃A.
Next, we characterize the expansion coefficient induced by projecting to nonconvex sets.

A.1 Projections to CV and C̃V
Recall that CV (s) = {v ∈ RP : ‖v‖0 ≤ s, ‖v‖2 = 1}. To project a vector v onto CV (s), we
want to solve the following problem

arg min
x∈CV

‖v − x‖22. (8)

Let S(x) = {i : xi 6= 0} be the support of x. Given a support E ⊂ [P ], let [x]E ∈ RP be a
vector whose ith entry is equal to xi if i ∈ E and 0 otherwise. Let

d(E) = min
x
‖v − x‖22 subject to S(x) ⊆ E, ‖x‖2 = 1,

and observe that

d(E) = min
x
‖v‖22 + ‖x‖22 − 2〈x, v〉

= ‖v‖22 + 1− 2 max
x
〈x, v〉

= ‖v‖22 + 1− 2‖[v]E‖2.

Then we can conclude that

Ê = arg min
E:|E|≤s

d(E) = arg max
E:|E|≤s

‖[v]E‖2, (9)

which can be solved by finding the top-s entries of v in magnitude. This can be done with
computational complexity O(P logP ). After finding the support in (9), we can obtain (8)
by projecting [x]Ê onto the unit sphere. Algorithm 3 summarizes the procedure.

Input: v ∈ RP
vS ← Pick the top-s entries of v in magnitude and set the rest of entries to 0
v̂ ← Project vS to the unit sphere SP−1

Output v̂

Algorithm 3: Projection to CV (s)

Next, we discuss the projection procedure when we additionally orthogonalize the esti-
mate via QR decomposition. Let V̂ = ΠCV (V ) and V̂ = BL be the QR decomposition of
V̂ , where B has orthonormal columns, and L is an upper triangular matrix. We define

ΠC̃V (V ) = B. (10)
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A.2 Projection to C̃A
Recall that C̃A(c, γ) = {α = Q̃u : 0 ≤ αj ≤ c, uT Λ̃u ≤ γ}, where G̃† = Q̃Λ̃Q̃T is the
eigendecomposition of G̃† and λj denotes the jth diagonal entry of Λ̃. To project to the
convex set C̃A, we use an alternating projection method. While the convergence rate of
the alternating projection method is not our focus, in the experiments, we observe that
often one iteration of the alternating projection results in an iterate that satisfies both
constraints. Algorithm 4 summarizes the alternating projection procedure.

Input: α ∈ RJ
While α 6∈ C̃A(c, γ)

α̂← Project α to the hypercube [0, c]J

α← Project α̂ to the set {α = Q̃u : uT Λ̃u ≤ γ} using Algorithm 5
Output α

Algorithm 4: Projection to C̃A(c, γ)

Next, we provide an algorithm to project to the ellipsoid {α = Q̃u : uT Λ̃u ≤ γ},
which is one of the steps in Algorithm 4. It is easy to see that a vector y belonging to
{α = Q̃u : uT Λ̃u ≤ γ} lies in the range space of Q̃, which has dimension r(G̃). Let Q1 be
the matrix whose orthonormal columns form the subspace orthogonal to the columns of Q̃,
which has dimension J − r(G̃). In this case, we have QT1 y = 0.

Input: α̂ ∈ RJ
If α̂T G̃†α̂ ≤ γ
a← Q̃Q̃T α̂

Else

u← Q̃T α̂

D ← Find the roots of x: 3x2
∑r(G̃)

j=1 λ
3
ju

2
j − 2x

∑r(G̃)
j=1 λ

2
ju

2
j +

∑r(G̃)
j=1 λju

2
j − γ = 0

x̂← Pick the largest nonnegative value in the set D

a← Q̃Λ̃−1(x̂I + Λ̃−1)−1Q̃T α̂
Output a

Algorithm 5: Projection to {α = Q̃u : uT Λ̃u ≤ γ}

The projection of α̂ to the ellipsoid {α = Q̃u : uT Λ̃u ≤ γ} is performed by solving the
following constrained optimization problem

arg min
y
‖α̂− y‖22, subject to yT G̃†y ≤ γ, y ∈ R(Q̃), (11)
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where R(Q̃) denotes the range space of Q̃. We can find the solution by finding the Karush-
Kuhn-Tucker condition of the Lagrangian function. The following proposition characterizes
the solution, which justifies Algorithm 5.

Proposition 10 The solution to (11) is{
Q̃Q̃T α̂, if α̂T G̃†α̂ ≤ γ;

Q̃Λ̃−1(x̂I + Λ̃−1)−1Q̃T α̂, otherwise,

where G̃† = Q̃Λ̃Q̃T is the eigendecomposition of G̃† and λj denotes the jth diagonal entry
of Λ̃, x̂ is the largest nonnegative solution to

3x2

r(G̃)∑
j=1

λ3
ju

2
j − 2x

r(G̃)∑
j=1

λ2
ju

2
j +

r(G̃)∑
j=1

λju
2
j − γ = 0,

and u = Q̃T α̂.

Proof of Proposition 10: Let (Q̃, Q1) be a unitary matrix with Q̃TQ1 = 0. Let
û = (Q̃, Q1)T α̂, and ẑ = (Q̃, Q1)T y. Since (Q̃, Q1) is unitary, we have

‖α̂− y‖22 = ‖(Q̃ Q1)T (α̂− y)‖22 = ‖û− ẑ‖22.

Let u = Q̃T α̂ and z = Q̃T y. Since QT1 Q̃ = 0 and we must have QT1 y = 0, the problem (11)
is equivalent to the following

arg min
z
‖u− z‖22, subject to zT Λ̃z ≤ γ. (12)

Letting w = Λ̃1/2z, we can rewrite the objective function (12) as follows

arg min
w
‖u− Λ̃−1/2w‖22, subject to wTw ≤ γ.

Let the corresponding Lagrangian function be

L(w, x) = ‖u− Λ̃−1/2w‖22 + x(wTw − γ).

Condition ∇wL = 0 implies that

w = (xI + Λ̃−1)−1Λ̃−1/2u.

By the Karush–Kuhn–Tucker condition, if wTw < γ, then y∗ = Q̃Q̃T α̂. Otherwise, wTw =
γ. This implies that

r(G̃)∑
j=1

(u2
jλj)

(1 + xλj)2
= γ. (13)
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Using the second-order Taylor expansion, we write (13) as

3x2

r(G̃)∑
j=1

λ3
ju

2
j − 2x

r(G̃)∑
j=1

λ2
ju

2
j +

r(G̃)∑
j=1

λju
2
j − γ = 0. (14)

Then, finding x is equivalent to finding the roots of the above polynomial function. Finally,
we plug x̂, the largest nonnegative solution to (14), into y∗ = Q̃Λ̃−1(x̂I + Λ̃−1)−1Q̃T α̂ and
complete the proof.

A.3 Expansion Coefficients of Projections to CV and C̃V
Let v be a column of V , v? be a column of V ?, and let v̂ denote projection of v to CV .
Since CV is a nonconvex set, v̂ may be further away from v? compared to v. We denote
ΠCV (V ) as the projection operator that projects columns of V to CV . We characterize ρ
such that

‖ΠCV (V )− V ?R‖2F ≤ ρ‖V − V ?R‖2F .

Lemma 13 characterizes ρ by combining results from Lemma 11 and Lemma 12. Lemma 15
provides a bound on ρ when an additional step is performed to orthogonalize V by QR
decomposition.

The following lemma shows the expansion coefficient of the hard thresholding operator,
which corresponds to the first step in Algorithm 3.

Lemma 11 (Lemma 4.1 in Li et al. (2016)) Suppose that u ∈ RP is a sparse vector
such that ‖u‖0 ≤ s?. Let Πs(·) : RP → RP be the hard thresholding operator, which outputs
a vector by selecting the top-s entries of the input vector in absolute value and setting the
rest of the entries to 0. Given s > s?, for any vector v ∈ RP , we have

‖Πs(v)− u‖22 ≤

{
1 +

2
√
s?√

(s− s?)

}
‖v − u‖22.

The following results characterize the expansion coefficient for the second step in Al-
gorithm 3.

Lemma 12 Assume that vTu ≥ 0, ‖u‖2 = 1, and ‖v‖2 ≤ 1. Then

2‖v − u‖22 ≥
∥∥∥∥ v

‖v‖2
− u
∥∥∥∥2

2

.

Proof of Lemma 12: Showing 2‖v − u‖22 ≥ ‖v/‖v‖2 − u‖22 is equivalent to showing

2‖v‖22 + 2vTu

(
1

‖v‖2
− 2

)
≥ 0.
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Let cos θ = (vTu)/(‖v‖2‖u‖2). Then we need to show that

2‖v‖22 + 2 cos θ − 4‖v‖2 cos θ ≥ 0. (15)

Since (a + b) ≥ 2
√

(ab), for a ≥ 0 and b ≥ 0, and cos1/2 θ ≥ cos θ for cos θ ≥ 0, we have
established (15).

Combining Lemma 11 and Lemma 12, we obtain the following result.

Lemma 13 Consider two matrices U, V ∈ RP×K , and assume that vTk uk ≥ 0 and ‖uk‖0 ≤
s? for k ∈ [K]. Assume that s > s∗. Let ΠCV : RP×K → RP×K be the projection operator
that projects columns of the matrix onto the set CV , defined in Section A.1. Then

‖ΠCV (V )− U‖2F ≤ 2

{
1 +

2
√
s?√

(s− s?)

}
‖V − U‖2F . (16)

Proof of Lemma 13: Lemma 11 states the expansion coefficient of the first projection in
Algorithm 3. Similarly, Lemma 12 states the expansion coefficient of the second projection
in Algorithm 3 when the vector before the projection has a norm smaller than 1. If the
vector before projection has the norm greater than or equal to 1, then the projection to
the unit sphere is equivalent to the projection to the unit ball, which is a convex set. Then,
the resulting projection is a contraction. Multiplying the results of two lemmas, we can
obtain the expansion coefficient for the projection to CV for each column vector. Stacking
all the column vectors together, we obtain the result (16).

The following lemmas characterize the expansion coefficient ρ when an additional QR
decomposition step is used. First, we state a result from the perturbation theory of QR
decomposition (Stewart, 1977).

Lemma 14 (Adapted from Theorem 1 in Stewart (1977)) Let A ∈ RP×K be a ma-
trix with rank K and let A† denote its pseudo-inverse. Suppose that E ∈ RP×K and
‖E‖2‖A†‖2 < 1. Then, given a QR decomposition of (A + E) = BL, there exists a de-
composition of A = B?L?, such that B? has orthonormal columns and L? is a nonsingular
upper triangular matrix and

‖B −B?‖F ≤
√

2‖A†‖2‖E‖F
1− ‖E‖2‖A†‖2

.

Next, we apply Lemma 14 to our setting and establish the following lemma.

Lemma 15 Let U be a matrix with orthonormal columns. Let V ∈ RP×K be a rank
K matrix with unit norm columns and ‖V − U‖2 ≤ r′ < 1. Let V = BL be the QR
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decomposition of V , where B ∈ RP×K has orthonormal columns and L ∈ RK×K is an
upper triangular matrix. Then

‖B −B?‖2F ≤
2

(1− r′)2
‖V − U‖2F .

Proof of Lemma 15: Let E = V − U and A = U . We have ‖E‖2 ≤ r′, ‖A†‖2 = 1. The
result then follows from Lemma 14 as ‖B −B?‖F ≤

√
2‖V − U‖F /(1− r′).
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Appendix B. Linear Convergence and Statistical Error

We prove Theorem 7. The proof is divided into several parts. In Section B.1, we discuss
the relationship between dist2(Z, Z̃?) and {‖Σj − Σ̃?

j‖2F }j∈[J ]. The main result is given in
Section B.2, while the supporting lemmas for the proof are given in Sections B.3—B.5.

B.1 Upper Bound for the Distance Metric

We establish an upper bound on dist2(Z, Z̃?) in terms of {‖Σj − Σ̃?
j‖2F }j∈[J ], which serves

as an important ingredient in the analysis of linear convergence.

Lemma 16 For two matrices V, V ? ∈ RP×K with orthonormal columns, let

R = argmin
Y ∈O(K)

‖V − V ?Y ‖2F .

Let Σj = V diag(aj)V
T , Σ̃?

j = V ?diag(ã?j )V
?T , Σ?

j = V ?diag(a?j )V
?T , and c be a positive

constant such that ‖diag(aj)‖2 ≤ c for j ∈ [J ]. Suppose that σK(Σ?
j − Σ̃?

j ) ≤ 1/4σK(Σ?
j )

for j ∈ [J ], then

J∑
j=1

‖V − V ?R‖2F + ‖diag(aj)−RTdiag(ã?j )R‖2F ≤ ξ2
J∑
j=1

‖Σj − Σ̃?
j‖2F ,

where

ξ2 = max
j∈[J ]

 16

σ2
K(Σ?

j )
+

(
1 +

8c

σK(Σ?
j )

)2
 .

Proof of Lemma 16: We establish the result for a single j ∈ [J ]. The bound can easily
be extended to the sum of all j ∈ [J ].

Since Σ̃?
j is of rank K, we have σK+1(Σ̃?

j ) = 0 for j ∈ [J ]. Consequently,

σK(Σ̃?
j )− σK+1(Σ̃?

j ) = σK(Σ̃?
j ) > 0,

for j ∈ [J ] and we can use Lemma 29 to obtain

‖V − V ?R‖2F ≤
8

σ2
K(Σ̃?

j )
‖Σj − Σ̃?

j‖2F . (17)

Moreover, since

σK(Σ̃?
j ) ≥ σK(Σ?

j )− σK(Σ?
j − Σ̃?

j ) ≥
3

4
σK(Σ?

j ),

34



A Nonconvex Framework for Structured Dynamic Covariance Recovery

we have

‖V − V ?R‖2F ≤
16

σ2
K(Σ?

j )
‖Σj − Σ̃?

j‖2F .

Next, by the triangular inequality, we have

‖Σj − Σ̃?
j‖F = ‖V diag(aj)V

T − V ?RRTdiag(ã?j )RR
TV ?T ‖F

≥ ‖V ?R{diag(aj)−RTdiag(ã?j )R}RTV ?T ‖F
− ‖(V − V ?R)diag(aj)V

T ‖F − ‖V ?Rdiag(aj)(V − V ?R)T ‖F .

Since

‖V ?R{diag(aj)−RTdiag(ã?j )R}RTV ?T ‖F = ‖diag(aj)−RTdiag(ã?j )R‖F

and

‖V ‖2 + ‖V ?R‖2 = 2,

we further have

‖Σj − Σ̃?
j‖F ≥ ‖diag(aj)−RTdiag(ã?j )R‖F

− ‖(V − V ?R)‖F
{
‖diag(aj)V

T ‖2 + ‖V ?Rdiag(aj)‖2
}

≥ ‖diag(aj)−RTdiag(ã?j )R‖F − 2‖diag(aj)‖2‖V − V ?R‖F .

Therefore,

‖diag(aj)−RTdiag(ã?j )R‖F ≤ ‖Σj − Σ̃?
j‖F + 2‖diag(aj)‖2‖V − V ?R‖F .

Combining (17) and ‖diag(aj)‖2 ≤ c, we have

‖diag(aj)−RTdiag(ã?j )R‖F ≤

(
1 +

8c

σK(Σ?
j )

)
‖Σj − Σ̃?

j‖F . (18)

The proof is complete by combining (17) and (18).

B.2 Proof of Theorem 7

We prove Theorem 7 in several steps. First, we show that given a current iterate Z, which
satisfies suitable assumptions, the subsequent iterate Z+ obtained by Algorithm 2 with a
suitable step size satisfies

dist2(Z+, Z̃?) ≤ β1/2dist2(Z, Z̃?) + C1ε
2
stat,
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with 0 < β1/2 < 1 and some constant C1. Second, we show that the step size can be
chosen in a way that does not depend on the specific iterate. Finally, the lemma follows
by applying the first step of the proof I times starting from Z0.

We start by introducing some additional notation for simplicity of presentation. We
define

Z =

(
V
AT

)
, Z+ =

(
V +

A+T

)
, Z̃? =

(
V ?

Ã?T

)
,

where Z is the current iterate, Z+ is the iterate obtained by one step of Algorithm 2 starting
from Z, and Z̃? is the truncated version of the ground truth parameter Z?. Furthermore,
let

R = argmin
Y ∈O(K)

‖V − V ?Y ‖2F , R+ = argmin
Y ∈O(K)

‖V + − V ?Y ‖2F .

be the optimal rotation matrices in the current and subsequent step.
Let ΠC̃V (X) be the projection operator defined in (10). Let ΠC̃A(Y ) be the projection

operator that projects rows of Y to C̃A, given in Algorithm 4. One update of Algorithm 2
can be written as

V + = ΠC̃V (V − ηV∇V fN ), A+ = ΠC̃A(A− ηA∇AfN ),

where

∇V fN (Z) =
2

J

J∑
j=1

∇`N,j(Σj)V diag(aj), ∇AfN (Z) =
1

J
W (V ), (19)

with

W (V ) = [wkj(vk)] ∈ RK×J , wkj(vk) = vTk∇`N,j(Σj)vk, ∇`N,j(Σj) = Σj − SN,j .

Similarly, we define

W ?(V ) = [w?kj(vk)] ∈ RK×J , w?kj(vk) = vTk∇`N,j(Σ?
j )vk.

Let SU = S(V ) ∪ S(V +) ∪ S(V ?) and note that |SU | ≤ 2s + s?. Given the index set
SU , we write [X]SU to denote the projection of X to the support SU

[X]SU =

{
Xij (i, j) ∈ SU
0 (i, j) 6∈ SU

.

With some abuse of notation, given a matrix Y with the factored form Y = XXT , we
write

[Y ]SU ,SU = [X]SU [X]TSU .
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With this notation, we have

V + =ΠC̃V (V − ηV∇V fN ) = ΠC̃V (V − ηV [∇V fN ]SU ). (20)

Furthermore, recall that Q̃ is the matrix whose columns are eigenvectors of G̃. Then Q̃Q̃T

is the projection operator to the subspace spanned by the columns of Q̃. Since the output
of Algorithm 5 is in the range space of Q̃, we have that AQ̃Q̃T = A and

A+ = ΠC̃A(A− ηA∇AfN ) = ΠC̃A{(A− ηA∇AfN )Q̃Q̃T } = ΠC̃A{A− ηA(∇AfN Q̃Q̃T )}.(21)

For later convenience, we also note that for a rotation matrix R ∈ O(K), we have

〈∇V fN (Z), V − V ?R〉 =
2

J

J∑
j=1

〈∇`N,j(Σj), V diag(aj)V
T − V ?Rdiag(aj)V

T 〉 (22)

and

〈diag{(∇AfN )j}, diag(aj)−RTdiag(ã?j )R〉

=
1

J
〈∇`N,j(Σj), V diag(aj)V

T − V RTdiag(ã?j )RV
T 〉. (23)

With this notation, we are ready to state the result of the first step of the proof.

Lemma 17 Suppose that Z satisfies

d2(Zj , Z
?
j ) ≤ I2

0 , ‖V −V ?R‖F ≤ I2
0/J, ‖diag(aj)−RTdiag(a?j )R‖2F ≤ (J−1)I2

0/J, (24)

where I2
0 is given in (3). Furthermore, suppose that Assumptions 1, 2, and 3 hold. Then

dist2(Z+, Z̃?) ≤ β1/2dist2(Z, Z̃?) + τβ−1/2ηε2
stat,

where Z+ is obtained with one iteration of Algorithm 2 starting from Z and τ = J−1{9/2+
(1/2 ∨K/8)}.

Note that d2(ZjZ̃
?
j ) ≤ d2(Zj , Z

?
j ) for j ∈ [J ] and δA quantifies the proximity of Z? to

Z̃?. Therefore, we do not need additional assumptions for Z̃?.
Starting from Z0, which satisfies Assumption 6 (which is also restated in (24)), we show

that Z1 also satisfies (24). Therefore, we can apply Lemma 17 over I iterations to obtain
Theorem 7.
Proof of Theorem 7: When we apply one iteration of Algorithm 2, Lemma 17 gives us

dist2(Z+, Z̃?) ≤ β1/2dist2(Z, Z̃?) + τβ−1/2ηε2
stat. (25)

Under Assumption 3, the right-hand side of (25) is bounded by JI2
0 . This implies that the

new estimate is still in a good region where we can apply Lemma 17. That is, Z+ satisfies
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(24). Consequently, since Z0 satisfies Assumption 6 and, therefore, the equation (24), we
can apply the result of Lemma 17 for I iterations to obtain

dist2(ZI , Z̃?) ≤ βI/2dist2(Z0, Z̃?) +
τηε2

stat

β1/2 − β
,

which completes the proof.

B.3 Proof of Lemma 17

Recall that

dist2(Z+, Z̃?) =

J∑
j=1

‖V + − V ?R+‖2F + ‖diag(a+
j )−R+Tdiag(ã?j )R

+‖2F . (26)

We bound the two terms on the right-hand side of (26) separately. From the triangle
inequality, we have

‖diag(a+
j )−R+Tdiag(ã?j )R

+‖2F ≤ 2‖diag(a+
j )−RTdiag(ã?j )R‖2F

+ 2‖RTdiag(ã?j )R−R+Tdiag(ã?j )R
+‖2F .

By Lemma 21, ‖RTdiag(ã?j )R−R+Tdiag(ã?j )R
+‖F ≤ 4‖diag(ã?j )‖2‖V + − V ?R‖F and

J∑
j=1

‖diag(a+
j )−R+Tdiag(ã?j )R

+‖2F

≤ 32J‖Ã?‖2∞‖V + − V ?R‖2F + 2

J∑
j=1

‖diag(a+
j )−RTdiag(ã?j )R‖2F . (27)

Combining (27) with (26) and recalling the definition of V + and A+ from (20) and (21)
we have

dist2(Z+, Z̃?) ≤ Jκ‖ΠC̃V (V − ηV [∇V fN ]SU )− V ?R‖2F

+ 2

J∑
j=1

‖diag
[
ΠC̃A{A− ηA(∇AfN Q̃Q̃T )}j

]
−RTdiag(ã?j )R‖2F .

where κ = (1 + 32‖Ã?‖2∞). Next, we define

V̄ + = ΠCV (V − ηV [∇V fN ]SU ),
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where we recall that ΠC̃V (·) is the projection operator by first applying ΠCV (·) followed by

a QR decomposition step. By Lemma 23, we have ‖V̄ + − V ?R‖2 ≤ 2I0/J
1/2. Therefore,

we can apply Lemma 15 with U = V ?R = B?L?, where B? = V ?R and a nonsingular
matrix L? = I. Then,

‖ΠC̃V (V − ηV [∇V fN ]SU )− V ?R‖2F ≤
2

(1− 2I0
J1/2 )2

‖V̄ + − V ?R‖2F

=
2

(1− 2I0
J1/2 )2

‖ΠCV (V − ηV [∇V fN ]SU )− V ?R‖2F .

By the fact ‖V − V ?R‖F ≤ I0/J
1/2 and Lemma 22, we have

‖V − ηV [∇V fN ]SU − V
?R‖F ≤ ‖V − V ?R‖F + ‖ηV [∇V fN ]SU ‖F ≤

7I0

6J1/2
< 1. (28)

Since columns of V ?R are unit norm, the result in (28) implies that the inner product of the
kth column of V −ηV [∇V fN ]SU and the kth column of V ?R is nonnegative for every k ∈ [K].
Therefore, we can apply Lemma 13 and the further bound ‖ΠC̃V (V −ηV [∇V fN ]SU )−V ?R‖2F
as

‖ΠC̃V (V − ηV [∇V fN ]SU )− V ?R‖2F ≤ ρ‖V − ηV [∇V fN ]SU − V
?R‖2F ,

where ρ = 4(1−r′)−2{1+2
√
s?/
√

(s−s?)} and r′ = 2I0/J
1/2. By the contraction property

of projection to convex sets, we have

J∑
j=1

∥∥∥diag
[
ΠC̃A{A− ηA(∇AfN Q̃Q̃T )}j

]
−RTdiag(ã?j )R

∥∥∥2

F

≤
J∑
j=1

‖diag(aj)− ηAdiag{(∇AfN Q̃Q̃T )j} −RTdiag(ã?j )R‖2F ,

where (∇AfN Q̃Q̃T )j denotes the jth column of ∇AfN Q̃Q̃T ∈ RK×J . Combining the last
two displays and noting that ρ′ = ρκ > 2, we have

dist2(Z+, Z̃?) ≤ ρ′
[
J‖V − ηV [∇V fN ]SU − V

?R‖2F

+

J∑
j=1

‖diag(aj)− ηAdiag{(∇AfN Q̃Q̃T )j} −RTdiag(ã?j )R‖2F
]
.

Recall that ηV = η/J and ηA = η. Therefore

dist2(Z+, Z̃?) ≤ ρ′dist2(Z, Z̃?) + η2ρ′(B1 +B2)− ηρ′(A1 +A2), (29)
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where

A1 = 2〈[∇V fN ]SU , V − V
?R〉,

A2 = 2

J∑
j=1

〈diag{(∇AfN Q̃Q̃T )j}, diag(aj)−RTdiag(ã?j )R〉,

B1 = J−1‖[∇V fN ]SU ‖
2
F ,

B2 =
J∑
j=1

‖diag{(∇AfN Q̃Q̃T )j}‖2F .

Next, we upper bound B = B1 + B2 and lower bound A = A1 + A2 in Lemma 18
and Lemma 19, respectively. With these bounds, we will be able to show contraction
dist2(Z+, Z̃?) with respect to dist2(Z, Z̃?).

Lemma 18 Under the conditions of Lemma 17, we have

A ≥ 1

J

{
3

4

J∑
j=1

‖Σj − Σ̃?
j‖2F −

9

2
ε2
stat +

1

2

J∑
j=1

∥∥∥[∇`N,j(Σj)−∇`N,j(Σ?
j )
]
SU ,SU

∥∥∥2

F

− 8

(
1 +
‖A?‖2∞
J

)
I2

0 dist2(Z, Z̃?)

}
.

Lemma 19 Under the conditions of 17, we have

B ≤ 16

J2

J∑
j=1

{
‖∇`N,j(Σj)−∇`N,j(Σ?

j )‖2F
}
‖Zj‖22 +

4(4 ∨K)

J2
ε2
stat max

j∈[J ]
‖Zj‖22.

Using Lemma 18 and Lemma 19, we have

ηρ′A− η2ρ′B ≥ ρ′η

J

3

4

J∑
j=1

‖Σj − Σ̃?
j‖2F − 8

(
1 +
‖A?‖2∞
J

)
I2

0 dist2(Z, Z̃?)

︸ ︷︷ ︸
C1

− ρ′ηε2
stat

(
9

2J
+

4(4 ∨K)η

J2
max
j∈[J ]
‖Zj‖22

)
︸ ︷︷ ︸

C2

+
ηρ′

J

(
1

2
− 16

η

J
max
j∈[j]
‖Zj‖22

)
︸ ︷︷ ︸

C3

J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖2F .
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Under the assumption that δA ≤ (16γ?)−1 minj∈[J ] σ
2
K(Σ?

j ) and the inequality in (55), we
have

σK(Σ?
j − Σ̃?

j ) = σK(V ?diag(a?j − ã?j )V ?T ) = min
k∈[K]

∣∣a?jk − ã?jk∣∣
≤ max

k∈[K]
‖Ã?k· −A?k·‖2 ≤ (δAγ

?)1/2 ≤ 1

4
σK(Σ?

j )

for j ∈ [J ]. Therefore, using Lemma 16, we have

J∑
j=1

‖Σj − Σ̃?
j‖2F ≥

1

ξ2
dist2(Z, Z̃?).

Furthermore, from the definition of I2
0 in Assumption 6, we have that

8I2
0

(
1 +
‖A?‖2∞
J

)
≤ 1

2ξ2
.

Combining the last two displays, we arrive at

C1 ≥ 1

4ξ2
dist2(Z, Z̃?).

In fact, we can verify that C3 is nonnegative because the step size η that satisfies Assump-
tion 1 is small enough such that the following inequality holds.

Lemma 20 Under the conditions of Lemma 17 we have ‖Zj‖22 ≤ 2‖Z0
j ‖22.

Therefore,

η ≤ min
j∈[J ]

J

32‖Zj‖22
and C3 ≥ 0 can be omitted, while C2 ≤ τ . Then

ηρ′A− η2ρ′B ≥ ρ′η

J

1

4ξ2
dist2(Z, Z̃?)− ε2

statτρ
′η.

Under Assumption 2, it is easy to verify that ρ′ ≤ β−1/2, where β = 1−η/(4Jξ2). Plugging
into (29), we have

dist2(Z+, Z̃?) ≤ β1/2dist2(Z, Z̃?) + τβ−1/2ηε2
stat,

which completes the proof.
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B.4 Proofs of Lemma 18—20

In this section, we provide the proofs of Lemma 18—20.
Proof of Lemma 18: Using (22) and 〈[∇`N,j(Σj)V diag(aj)]ScU , [V − V

?R]SU 〉 = 0, we
have

A1 =
4

J

J∑
j=1

〈[∇`N,j(Σj)V diag(aj)]SU , [V − V
?R]SU 〉

=
4

J

J∑
j=1

〈[∇`N,j(Σj)V diag(aj)]SU + [∇`N,j(Σj)V diag(aj)]ScU , [V − V
?R]SU 〉

=
4

J

J∑
j=1

〈∇`N,j(Σj)V diag(aj), [V − V ?R]SU 〉

=
4

J

J∑
j=1

〈∇`N,j(Σj), [V − V ?R]SU diag(aj)V
T 〉

=
4

J

J∑
j=1

〈∇`N,j(Σj), [V − V ?R]SU [diag(aj)V
T ]SU 〉

=
4

J

J∑
j=1

〈∇`N,j(Σj), [V diag(aj)V
T − V ?Rdiag(aj)V

T ]SU ,SU 〉.

Furthermore, we can write A1 as

A1 = A13 +
4

J

J∑
j=1

〈∇`N,j(Σj), [

∆V︷ ︸︸ ︷
(V − V ?R)RTdiag(ã?j )RV

T ]SU ,SU 〉; (30)

A13 =
4

J

J∑
j=1

〈∇`N,j(Σj), [(

∆V︷ ︸︸ ︷
V − V ?R)

∆aj︷ ︸︸ ︷
{diag(aj)−RTdiag(ã?j )R}V T ]SU ,SU 〉.
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We also write A2 in a suitable way. Note that diag{RTdiag(ã?j )R} = diag(Ha?j ), where

H = (hij)i∈[K],j∈[K] with hij = r2
ji and rij is the ijth entry of R. Then

A2 = 2

J∑
j=1

〈diag{(∇AfN Q̃Q̃T )j}, diag(aj)−RTdiag(ã?j )R〉

= 2〈∇AfN Q̃Q̃T , A−HÃ?〉
= 2〈∇AfN , A−HÃ?〉

= 2
J∑
j=1

〈diag {(∇AfN )j} ,diag(aj)−RTdiag(ã?j )R〉,

since rows of A and Ã? belong to the subspace spanned by eigenvectors of G̃ and AQ̃Q̃T = A
and Ã?Q̃Q̃T = Ã?. Finally, using (23), we have

A2 =
2

J

J∑
j=1

〈∇`N,j(Σj), [V diag(aj)V
T − V RTdiag(ã?j )RV

T ]SU ,SU 〉

= A11 +A12 +
2

J

J∑
j=1

〈∇`N,j(Σj), [Σ̃
?
j − V RTdiag(ã?j )RV

T ]SU ,SU 〉 (31)

A11 =
2

J

J∑
j=1

〈∇`N,j(Σj)−∇`N,j(Σ?
j ), [Σj − Σ̃?

j ]SU ,SU 〉;

A12 =
2

J

J∑
j=1

〈∇`N,j(Σ?
j ), [Σj − Σ̃?

j ]SU ,SU 〉.

Combining (30) and (31), we obtain

A = A11 +A12 +A13 +A14;

A14 =
2

J

J∑
j=1

〈∇`N,j(Σj), [

∆V︷ ︸︸ ︷
(V − V ?R)RTdiag(ã?j )R

∆V T︷ ︸︸ ︷
(V − V ?R)T ]SU ,SU 〉,
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where we have used that

4

J

J∑
j=1

〈∇`N,j(Σj), [∆V R
Tdiag(ã?j )RV

T ]SU ,SU 〉

=
2

J

J∑
j=1

〈∇`N,j(Σj), [∆V R
Tdiag(ã?j )RV

T ]SU ,SU 〉

+
2

J

J∑
j=1

〈∇`N,j(Σj), [V R
Tdiag(ã?j )R∆V T ]SU ,SU 〉,

since ∇`N,j(Σj) for j ∈ [J ] is symmetric. Next, we lower bound A11, A12, A13, and A14
separately.

Recall that Σj = V diag(aj)V
T and Σ̃?

j = V ?diag(ã?j )V
?T . Additionally, since [V ]ScU =

[V ?]ScU = 0,

[Σj − Σ̃?
j ]SU ,ScU = [Σj − Σ̃?

j ]SU ,ScU = [Σj − Σ̃?
j ]ScU ,S

c
U

= 0,

for every j ∈ [J ], and therefore [Σj − Σ̃?
j ]SU ,SU = Σj − Σ̃?

j . Then

A11 =
2

J

J∑
j=1

〈∇`N,j(Σj)−∇`N,j(Σ?
j ),Σj − Σ̃?

j 〉

≥ 1

J

J∑
j=1

{
‖Σj − Σ̃?

j‖2F + ‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖2F

}
,

where we applied Lemma 28 with m = L = 1. For A12, we have

A12 ≥ − 2

J

∣∣∣∣∣∣
J∑
j=1

〈∇`N,j(Σ?
j ), [Σj − Σ̃?

j ]SU ,SU 〉

∣∣∣∣∣∣ .
Since {[Σj − Σ̃?

j ]SU ,SU }j∈[J ] ∈ Υ(2K, 2s+ s?, 2γ, δA), we have

A12 ≥ − 2

J
εstat

 J∑
j=1

‖[Σj − Σ̃?
j ]SU ,SU ‖

2
F

1/2

≥ − 2

J

ε2
stat

2e1
+
e1

2

J∑
j=1

‖Σj − Σ̃?
j‖2F

 ,
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where the last inequality follows by Young’s inequality ab ≤ a2/(2ε) + (εb2)/2 for every
ε > 0. We will use this bound with e1 = 1/4. For A13, we have

A13 ≥ − 4

J

∣∣∣∣∣∣
J∑
j=1

〈∇`N,j(Σ?
j ), [∆V∆ajV

T ]SU ,SU 〉

∣∣∣∣∣∣
− 4

J

J∑
j=1

∣∣〈∇`N,j(Σj)−∇`N,j(Σ?
j ), [∆V∆ajV

T ]SU ,SU 〉
∣∣ . (32)

We first bound the second term on the right-hand side of (32). Applying the Cauchy-
Schwarz inequality and using ‖V ‖2 = 1, we have

− 4

J

J∑
j=1

|〈∇`N,j(Σj)−∇`N,j(Σ?
j ), [∆V∆ajV

T ]SU ,SU 〉|

≥ − 4

J

J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖F ‖∆aj‖F ‖∆V ‖F .

Using the fact that ‖∆V ‖F ‖∆aj‖F ≤ 1
2d

2(Zj , Z̃
?
j ), the above display can be further lower

bounded as

≥ − 2

J

J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖Fd2(Zj , Z̃

?
j ). (33)

Since {[∆V∆ajV
T ]SU ,SU }j∈[J ] ∈ Υ(2K, 2s+s?, 2γ, δA), we can bound the first term of (32)

as

− 4

J

∣∣∣∣∣∣
J∑
j=1

〈∇`N,j(Σ?
j ), [∆V∆ajV

T ]SU ,SU 〉

∣∣∣∣∣∣ ≥ − 4

J
εstat

 J∑
j=1

‖V ‖22‖∆aj‖2F ‖∆V ‖2F

1/2

= − 4

J
εstat

 J∑
j=1

‖∆aj‖2F ‖∆V ‖2F

1/2

≥ − 4

J
εstat

1

4

J∑
j=1

d4(Zj , Z̃
?
j )

1/2

, (34)

where the last inequality uses that ‖∆V ‖F ‖∆aj‖F ≤ 1
2d

2(Zj , Z̃
?
j ). Combining (33) and (34),

we have

A13 ≥ − 2

J

J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖F · d2(Zj , Z̃

?
j )− 4

J
εstat

1

4

J∑
j=1

d4(Zj , Z̃
?
j )

1/2

.
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Applying Young’s inequality with e2 = 4, the above display can be bounded as

A13 ≥ − 1

J

J∑
j=1

{
1

e2
‖∇`N,j(Σj)−∇`N,j(Σ?

j )‖2F + e2d4(Zj , Z̃
?
j )

}

− 1

J

 1

e2
ε2
stat + e2

J∑
j=1

d4(Zj , Z̃
?
j )


≥ − 1

e2J

ε2
stat +

J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖2F

− 2e2

J

J∑
j=1

I2
0 d2(Zj , Z̃

?
j ),

where the last inequality follows by d2(Zj , Z̃
?
j ) ≤ d2(Zj , Z

?
j ) ≤ I2

0 .
A lower bound for A14 can be obtained in a similar way to the one for A13. We have

A14 ≥ − 2

J

J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖F ‖∆V ‖2F ‖diag(ã?j )‖F

− 2

J
εstat

 J∑
j=1

‖∆V ‖4F ‖diag(ã?j )‖22

1/2

.

Applying Young’s inequality with e3 = 4 > 0, the above display can be bounded as

A14 ≥ − 1

e3J

ε2
stat +

J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖2F

− 2e3

J

J∑
j=1

‖∆V ‖4F ‖diag(ã?j )‖22

≥ − 1

e3J

ε2
stat +

J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖2F

− 2e3

J2

J∑
j=1

‖A?‖2∞I2
0 d2(Zj , Z̃

?
j ),

since ‖diag(a?j )‖2 ≤ ‖A?‖∞ and ‖∆V ‖4F ≤ J−1I2
0 d2(Zj , Z̃

?
j ).

Putting everything together, we have

A ≥ 1

J

{
3

4

J∑
j=1

‖Σj − Σ̃?
j‖2F −

9

2
ε2
stat +

1

2

J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖2F

− 8

(
1 +
‖A?‖2∞
J

)
I2

0 dist2(Z, Z̃?)

}
,

which completes the proof.

46



A Nonconvex Framework for Structured Dynamic Covariance Recovery

Proof of Lemma 19: We separately bound B1 and B2. Since Σj = V diag(aj)V
T ,

recalling (19), we have

B1 =
1

J

∥∥∥∥∥∥ 2

J

J∑
j=1

[∇`N,j(Σj)V diag(aj)]SU

∥∥∥∥∥∥
2

F

=
4

J3

∥∥∥∥∥∥
J∑
j=1

[∇`N,j(Σ?
j )V diag(aj)]SU +

[{
∇`N,j(Σj)−∇`N,j(Σ?

j )
}
V diag(aj)

]
SU

∥∥∥∥∥∥
2

F

.

Using the Cauchy–Schwarz inequality and along with the fact that (a + b)2 ≤ 2(a2 + b2),
the above display can be bounded as

≤ 8

J2

J∑
j=1

‖[{∇`N,j(Σj)−∇`N,j(Σ?
j )}V diag(aj)]SU ‖

2
F

+
8

J3

∥∥∥∥∥∥
J∑
j=1

[∇`N,j(Σ?
j )V diag(aj)]SU

∥∥∥∥∥∥
2

F

. (35)

For anyXSU with ‖XSU ‖F = 1, we have {[V diag(aj)X
T ]SU ,SU }j∈[J ] ∈ Υ(2K, 2s+s?, 2γ, δA).

We can bound the second term in (35) as∥∥∥∥∥∥
J∑
j=1

[∇`N,j(Σ?
j )V diag(aj)]SU

∥∥∥∥∥∥
F

= sup
‖XSU ‖F =1

J∑
j=1

tr([∇`N,j(Σ?
j )V diag(aj)]SUX

T
SU )

= sup
‖XSU ‖F =1

J∑
j=1

〈∇`N,j(Σ?
j ), [V diag(aj)]SUX

T
SU 〉

≤ εstat · sup
‖XSU ‖F =1

 J∑
j=1

‖[V diag(aj)X
T ]SU ,SU ‖

2
F

1/2

≤ εstatJ1/2‖V ‖22‖A‖∞. (36)

Plugging (36) back into (35), we arrive at

B1 ≤ 8

J2

J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖2F ‖V ‖22‖diag(aj)‖22 +

8

J2
ε2
stat‖V ‖42‖A‖2∞

≤ 8

J2

J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖2F ‖diag(aj)‖22 +

8

J2
ε2
stat‖A‖2∞,
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where the last inequality follows since ‖V ‖2 = 1.
For B2, we have

B2 =
1

J2
‖W (V )Q̃Q̃T ‖2F =

1

J2
‖{W (V )−W ?(V ) +W ?(V )}Q̃Q̃T ‖2F

≤ 2

J2
‖{W (V )−W ?(V )}Q̃Q̃T ‖2F +

2

J2
‖W ?(V )Q̃Q̃T ‖2F .

Since Q̃Q̃T is an orthogonal projection operator, for a matrix X, we have that ‖XQ̃Q̃T ‖F ≤
‖X‖F . Then

‖{W (V )−W ?(V )}Q̃Q̃T ‖2F ≤ ‖W (V )−W ?(V )‖2F

≤
J∑
j=1

‖V T
{
∇`N,j(Σj)−∇`N,j(Σ?

j )
}
V ‖2F ≤


J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖2F

 , (37)

since ‖V ‖2 = 1. Furthermore, we have

‖W ?(V )Q̃Q̃T ‖2F =
K∑
k=1

‖Q̃Q̃TW ?
k·(vk)‖22

≤

{
K∑
k=1

‖Q̃Q̃TW ?
k·(vk)‖2

}2

=

{
K∑
k=1

sup
‖xk‖2≤1

〈
xk, Q̃Q̃

TW ?
k·(vk)

〉}2

≤

{
K∑
k=1

sup
‖Q̃Q̃T xk‖2≤1

〈
Q̃Q̃Txk,W

?
k·(vk)

〉}2

≤

{
K∑
k=1

(
1

2δAγ

)1/2

sup
‖Q̃Q̃T x′k‖

2
2≤2δAγ

〈
Q̃Q̃Tx′k,W

?
k·(vk)

〉}2

.

Let yk = Q̃Q̃Tx′k for k ∈ [K]. Since a ball of radius (2δAγ)1/2 is contained in the trun-
cated ellipsoid {α = Q̃u : uT Λ̃u ≤ 2γ}, yk, for k ∈ [K], lies in the ellipsoid. Therefore,
{
∑K

k=1 ykjvkv
T
k }j∈[J ] is in Υ(2K, 2s+ s?, 2γ, δA) and we can bound the above display as

≤ ε2
stat ·

1

2δAγ

(
K∑
k=1

sup
‖Q̃Q̃T x′k‖

2
2≤2δAγ

‖Q̃Q̃Tx′k‖22

)
= ε2

statK. (38)
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Combining (37)—(38) and noting that ‖V ‖2 = 1, we have

B2 ≤ 2

J2


J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖2F

 ‖V ‖22 +
2

J2
Kε2

stat‖V ‖22.

Finally, combining B1 and B2 we arrive at the following

B ≤ 8

J2

J∑
j=1

{‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖2F

(
‖diag(aj)‖22 + ‖V ‖22

)
}

+
2(4 ∨K)

J2
ε2
stat(‖V ‖22 + ‖A‖2∞)

≤ 16

J2

J∑
j=1

{
‖∇`N,j(Σj)−∇`N,j(Σ?

j )‖2F
}
‖Zj‖22 +

4(4 ∨K)

J2
ε2
stat max

j∈[J ]
‖Zj‖22,

where the second inequality comes from (‖diag(aj)‖22 ∨ ‖V ‖22) ≤ ‖Zj‖22.

Proof of Lemma 20: We first upper bound ‖Zj‖2 with ‖Z?j ‖2 for every j ∈ [J ]. We have

‖Zj‖2 =

∥∥∥∥( V
diag(aj)

)
−
(

V ?R
RTdiag(a?j )R

)
+

(
V ?R

RTdiag(a?j )R

)∥∥∥∥
2

≤
∥∥∥∥( V

diag(aj)

)
−
(

V ?R
RTdiag(a?j )R

)∥∥∥∥
2

+ ‖Z?j ‖2

≤ I0 + ‖Z?j ‖2

≤
σK(Σ?

j )

16
+ ‖Z?j ‖2

≤ 17

16
‖Z?j ‖2, (39)

where the third inequality follows from (3), in particular that I0 ≤ σK(Σ?
j )/16, and the

last inequality follows because ‖Z?j ‖2 ≥ σK(Σ?
j ).
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Next, we lower bound ‖Z0
j ‖2 in terms of ‖Z?j ‖2 for every j ∈ [J ]. Similar to (39), we

have

‖Z0
j ‖2 =

∥∥∥∥( V 0

diag(a0
j )

)
−
(

V ?R
RTdiag(a?j )R

)
+

(
V ?R

RTdiag(a?j )R

)∥∥∥∥
2

≥ −
∥∥∥∥( V 0

diag(a0
j )

)
−
(

V ?R
RTdiag(a?j )R

)∥∥∥∥
2

+ ‖Z?j ‖2

≥ −I0 + ‖Z?j ‖2

≥ −
σK(Σ?

j )

16
+ ‖Z?j ‖2

≥ 15

16
‖Z?j ‖2. (40)

Combining (39) and (40), we obtain ‖Zj‖22 ≤ 2‖Z0
j ‖22.

B.5 Proofs of Auxiliary Lemmas

Lemma 21 Suppose V ? has orthonormal columns. Let

R = argmin
Y ∈O(K)

‖V − V ?Y ‖2F , R+ = argmin
Y ∈O(K)

‖V + − V ?Y ‖2F .

Then
‖R+ −R‖F ≤ 2‖V + − V ?R‖F

and
‖RTdiag(a?)R−R+Tdiag(a?)R+‖F ≤ 4‖diag(a?)‖2‖V + − V ?R‖F .

Proof of Lemma 21: Recall that V ? has orthonormal columns. This implies that for a
matrix X, we have

‖V ?X‖2F = tr(XTV ?TV ?X) = tr(XTX) = ‖X‖2F .

Using the above property, we have

‖R+ −R‖F = ‖V ?R+ − V ?R‖F = ‖(V + − V ?R) + (V ?R+ − V +)‖F
≤ ‖V + − V ?R‖F + ‖V + − V ?R+‖F
≤ 2‖V + − V ?R‖F ,

(41)

where the last inequality follows as R+ minimizes the distance ‖V + − V ?R‖F . This com-
pletes the proof for the first statement.
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For the second statement, we have

‖RTdiag(a?)R−R+Tdiag(a?)R+‖F = ‖(R−R+)Tdiag(a?)R+R+Tdiag(a?)(R−R+)‖F
≤ ‖diag(a?)‖2(‖R‖2 + ‖R+‖2)‖R+ −R‖F
≤ 4‖diag(a?)‖2‖V + − V ?R‖F ,

where the last inequality follows from (41) and ‖R‖2 = ‖R+‖2 = 1.

Lemma 22 Assume that V has orthonormal columns and

‖V − V ?R‖F ≤ I2
0/J, ‖diag(aj)−RTdiag(a?j )R‖2F ≤ (J − 1)I2

0/J,

and Z = (V T , A)T . Under Assumptions 1—3, we have

η

J
‖[∇V fN (Z)]SU ‖F ≤

I0

6
√
J
,

where I0 is defined in (3).

Proof of Lemma 22: By (19), we have

η

J
‖[∇V fN ]SU ‖F =

2η

J2

∥∥∥∥∥∥
J∑
j=1

[∇`N,j(Σj)V diag(aj)]SU

∥∥∥∥∥∥
F

≤ 2η

J2

{ J∑
j=1

∥∥∥∥[
{
∇`N,j(Σj)−∇`N,j(Σ?

j )
}
V diag(aj)]SU

∥∥∥∥
F

+

∥∥∥∥ J∑
j=1

[∇`N,j(Σ?
j )V diag(aj)]SU

∥∥∥∥
F

}
.

We can bound the second term of the above display using (36) and obtain

≤ 2η

J2

‖A‖∞
J∑
j=1

‖∇`N,j(Σj)−∇`N,j(Σ?
j )‖F + εstatJ

1/2‖A‖∞


=

2η

J2

‖A‖∞
J∑
j=1

‖Σj − Σ?
j‖F + εstatJ

1/2‖A‖∞

 .

From (5), we have

‖Σj − Σ?
j‖2F ≤ 3

{
(‖A‖2∞ + ‖A?‖2∞)‖V − V ?R‖2F + ‖diag(aj)−RTdiag(a?j )R‖2F

}
≤ 3

(
max
j∈[J ]
‖Zj‖2∞ + max

j′∈[J ]
‖Z?j′‖2∞

)
I2

0 ,
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where the last inequality uses that ‖A‖∞ ≤ maxj∈[J ] ‖Zj‖2, ‖A?‖∞ ≤ maxj∈[J ] ‖Z?j ‖2, and
1 = ‖V ‖2 ≤ ‖Zj‖2 for j ∈ [J ]. Then

η

J
‖[∇V fN ]SU ‖2 ≤

2η

J2
max
j∈[J ]

{
2JI0‖Zj‖2(‖Zj‖2 + max

j′∈[J ]
‖Z?j′‖2) + εstatJ

1/2‖Zj‖2
}
.

Applying (39), the above display can be bounded by

≤ 2η

J2
max
j∈[J ]

{
11

5
JI0‖Z?j ‖22 +

17

16
εstatJ

1/2‖Z?j ‖2
}

≤ 9I0η

J
max
j∈[J ]
‖Z?j ‖22

≤ 32I0η

3J
max
j∈[J ]
‖Z0

j ‖22,

where the second to last inequality follows by Assumption 3 and the last inequality follows
by (40). Then, by Assumption 1, we have

η

J
‖[∇V fN ]SU ‖F ≤

I0

6
√
J
,

which completes the proof.

Lemma 23 Assume that V has orthonormal columns and let

V̄ + = ΠCV {V − η/J [∇V fN (Z)]SU }, Z = (V T , A)T , R = argmin
Y ∈O(K)

‖V − V ?Y ‖2F .

Assume that

‖V − V ?R‖F ≤ I2
0/J, ‖diag(aj)−RTdiag(a?j )R‖2F ≤ (J − 1)I2

0/J,

then under Assumptions 1—3, we have

‖V̄ + − V ?R‖2 ≤
2I0

J1/2
< 1.

Proof of Lemma 23: By definition, we have

‖V̄ + − V ?R‖2 ≤ ‖V̄ + − V ‖2 + ‖V − V ?R‖2.

By Assumption 6, we have ‖V − V ?R‖2 ≤ I0/J
1/2. Then, it remains to show that

‖V̄ + − V ‖2 ≤ ‖V̄ + − V ‖F ≤ I0/J
1/2.
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The first step is to apply Lemma 13 on ‖V̄ + − V ‖F . We first verify that the inner
product of the kth column of V − (η/J)[∇V fN ]SU and vk are nonnegative for k ∈ [K]. By
Lemma 22, we have〈

vk −
( η
J

[∇V fN ]SU

)
k
, vk

〉
≥ 1−

∥∥∥( η
J

[∇V fN ]SU

)
k

∥∥∥
2
≥ 1− I0

6
√
J
> 0,

for every k ∈ [K], which allows us to apply Lemma 13. The term 1 + 2
√
s?/
√

(s− s?)
decreases as s increases. Under Assumption 2, s ≥ 2s? and we have 1+2

√
s?/
√

(s− s?) ≤ 3.
Therefore, applying Lemma 13 with s = 2s?:

‖V̄ + − V ‖2 ≤ ‖V̄ + − V ‖F ≤ 6

∥∥∥∥V − η

J
[∇V fN ]SU − V

∥∥∥∥
F

≤ I0√
J
,

where the last inequality follows from Lemma 22.
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Appendix C. Quantification of statistical error

In this section, we present the proof of Proposition 8. We begin with stating the main
result in Section C.1, followed by the details of construction of structured ε-net and its
property in Section C.2 and Section C.3, respectively.

C.1 Proof of Proposition 8

Let Ω(s, P ) be a collection of subsets of [P ], each with cardinality s. Let

SV = SV (K, s) = {SVk ∈ Ω(s, P )}k∈[K],

be the set of supports, where SVk denotes the support of the component k for k ∈ [K]. We
first establish a bound on the statistical error for a fixed support SV and then take the
union bound to establish a bound on the statistical error on the set Υ(2K,ms?, 2m′γ?, δA),
for some constant m,m′ > 0. For some positive semidefinite matrix G, we define the sets

V(SV ,K) = {V ∈ RP×K : ‖vk‖2 = 1, ‖VScV ‖ = 0, k ∈ [K]};
T (G, γ) = {α = Gu : uTΛu ≤ γ},

where G† = QΛQT is the eigendecomposition. For a positive semidefinite kernel matrix G
and a positive scalar γ, we define the seminorm ‖·‖G,γ as

‖x‖2G,γ =
1

γ
(xTG†x).

Therefore, the set T (G, γ) is a unit ball in ‖·‖G,γ . We use NV(εv) to denote the ε-net for

N (V(SV , 2K), εv, ‖ ·‖F ) and NT (εa) to denote the ε-net for N (T (G̃, 2m′γ?), εa, ‖·‖G̃,2m′γ?).

For a matrix A ∈ RK×J , we use Ak· to denote kth row of A and aj to denote the jth
column of A. We define the following set

U(SV , 2m′γ?) = {{Udiag(aj)V
T }j∈J : U, V ∈ V(SV , 2K), Ak· ∈ T (G̃, 2m′γ?), k ∈ [2K]},

and let {∆j = Udiag(aj)V
T }j∈[J ] ∈ U(SV , 2m′γ?). Recall that ∇`N,j(Σ?

j ) = Σ?
j − SN,j for

j ∈ [J ]. We have

sup
{∆j}∈U(SV ,2m′γ?)

J∑
j=1

〈Σ?
j − SN,j ,∆j〉

= sup
{∆j}∈U(SV ,2m′γ?)

J∑
j=1

〈SN,j − Σ?
j − Ej ,∆j〉+

J∑
j=1

〈Ej ,∆j〉. (42)
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For the second term in the above display, we have

J∑
j=1

〈Ej ,∆j〉 =
1

2

J∑
j=1

〈Ej ,∆j + ∆T
j 〉

≤ 1

2

∑
j

‖Ej‖2‖∆j + ∆T
j ‖F ≤

(
max
j
‖Ej‖2

)
·
∑
j

‖∆j‖F , (43)

where the first equality follows by the fact that Ej is symmetric.
Using Lemma 25, we have

sup
{∆j}∈U(SV ,2m′γ?)

∣∣∣∣∣∣
J∑
j=1

〈SN,j − Σ?
j − Ej ,∆j〉

∣∣∣∣∣∣
≤ (1− 2εv − εa)−1 max

U,V ∈NV (εv)
Ak·∈NT (εa), k∈[2K]

∣∣∣∣∣∣12
J∑
j=1

〈SN,j − Σ?
j − Ej ,∆j + ∆T

j 〉

∣∣∣∣∣∣ .
For a fixed set of {∆j}Jj=1 for j ∈ [J ], we let Y

(n)
j = (1/2) tr{(∆j + ∆T

j )x
(n)
j x

(n)T
j }. Note

that E{Y (n)
j } = (1/2) tr

{
(∆j + ∆T

j )
(

Σ?
j + Ej

)}
. Consequently, we have

1

4

J∑
j=1

tr
{(

Σ?
j + Ej

)
(∆j + ∆T

j )
(
Σ?
j + Ej

)
(∆j + ∆T

j )
}
≤ 1

4

J∑
j=1

‖Σ?
j + Ej‖22 tr

{
(∆j + ∆T

j )2
}

=
1

4

J∑
j=1

‖Σ?
j + Ej‖22‖∆j + ∆T

j ‖2F

≤ max
j∈[J ]
‖Σ?

j + Ej‖22
J∑
j=1

‖∆j‖2F

≤ 4‖A?‖2∞
J∑
j=1

‖∆j‖2F ,

where the last step follows from ‖Σ?
j + Ej‖2 ≤ 2‖Σ?

j‖2 ≤ ‖A?‖∞ for all j ∈ [J ].
Then, using Lemma 34,

pr

 1

N

∣∣∣∣∣∣
N∑
n=1

J∑
j=1

Y
(n)
j − E

{
Y

(n)
j

}∣∣∣∣∣∣ ≥ ε

4


≤ 2 exp

{
−Ne0

(
ε2

16‖A?‖2∞
∑J

j=1 ‖∆j‖2F
∧ ε

4‖A?‖∞maxj∈[J ] ‖∆j‖2

)}
,
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where e0 are some absolute constant.
We choose εv = εa = 1/4. Taking the union bound over NV(εv), NT (εa) and the choice

of Ω(ms?, P ), we have

pr

[
max

SV ∈{Ω(ms?,P )}2K
max

U,V ∈NV (εv)
Ak·∈NT (εa), k∈[2K]

1

N

N∑
n=1

∣∣∣∣∣∣
J∑
j=1

Y
(n)
j − E

{
Y

(n)
j

}∣∣∣∣∣∣ ≥ ε

4

]
(44)

≤ 2

(
P

ms?

)4K

94Kms?+2Kr(G̃)

× exp

{
−Ne0

(
ε2

16‖A?‖2∞
∑J

j=1 ‖∆j‖2F
∧ ε

4‖A?‖∞maxj∈[J ] ‖∆j‖2

)}
,

where we applied the metric entropy in Lemma 24.
Given 0 < δ < 1, let

ν ≤ 1

e′0

[
1

N

{
log

1

δ
+Kr(G̃) +Ks? +Ks? log

Pe

s?

}]1/2

for some constant e′0. Combining (43) and (44) with (42), we have

εstat

 J∑
j=1

‖∆j‖2F

1/2

≤ ‖A?‖∞

 J∑
j=1

‖∆j‖2F

1/2

(ν ∨ ν2) +

 J∑
j=1

‖∆j‖F

max
j∈[J ]
‖Ej‖2,

with probability at least 1− δ. Using the Cauchy-Schwarz inequality,

J∑
j=1

‖∆j‖F ≤ J1/2

 J∑
j=1

‖∆j‖2F

1/2

and, therefore,
εstat ≤ ‖A?‖∞(ν ∨ ν2) + J1/2 max

j∈[J ]
‖Ej‖2

with probability at least 1− δ.

C.2 Metric Entropy of the Structured Set

We find the metric entropy of N (V(SV ,K), εv, ‖ · ‖F ) and N (T (G, γ), εa, ‖ · ‖G,γ).

Lemma 24 Given a support set SV (K, s) = {SVk ∈ Ω(s, P )}k∈[K], let

V(SV ,K) = {V ∈ RP×K : ‖vk‖2 = 1, ‖VScV ‖ = 0, k ∈ [K]}.
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The metric entropy of N (V(SV ,K), εv, ‖ · ‖F ) is

log |N (V(SV ,K), εv, ‖ · ‖F )| ≤ Ks log

(
1 +

2

εv

)
.

Given G and γ, the metric entropy of N (T (G, γ), εa, ‖ · ‖G,γ) is

log |N (T (G, γ), εa, ‖ · ‖G,γ)| ≤ r(G) log

(
1 +

2

εa

)
,

where r(G) is the rank of G.

Proof of Lemma 24: The first result directly follows from Lemma 5.2 in Vershynin
(2012). For the second reults, we note that the set T (G, γ) is a r(G)-dimensional unit ball
in the semi-norm ‖·‖G,γ . Therefore, we can again apply Lemma 5.2 in Vershynin (2012).

C.3 Inner Product on a ε-net

We define the following operator similar to the definition of W ?(V ):

Ŵ ?(U, V ) = [ŵ?kj(uk, vk)] ∈ RK×J , ŵ?kj(uk, vk) = uTk∇`N,j(Σ?
j )vk,

where ∇`N,j(Σ?
j ) = Σ?

j − SN,j . Recall that A = [a1, . . . , aj ] ∈ RK×J . Then

J∑
j=1

〈∇`N,j(Σ?
j ), Udiag(aj)V

T 〉 =

K∑
k=1

ATk·Ŵ
?
k·(uk, vk),

where Ak·, Ŵ
?
k·(uk, vk) ∈ RJ denote the kth row of A and Ŵ ?(U, V ), respectively. Conse-

quently, if every row Ak· lies in T (G, γ), we have

J∑
j=1

〈∇`N,j(Σ?
j ), Udiag(aj)V

T 〉 =
K∑
k=1

ATk·QQ
T Ŵ ?

k·(uk, vk),

where Q is the matrix whose columns are eigenvectors of G. This is another representation
of the statistical error and will help us to simplify the proof steps of the following lemma.

Lemma 25 (Inner product on a net) Given a support SV , a matrix G, and a positive
scalar γ, we have

max
U,V ∈V(SV ,K)

Ak·∈T (G,γ), k∈[K]

K∑
k=1

ATk·QQ
T Ŵ ?

k·(uk, vk)

≤ (1− 2εv − εa)−1 max
U,V ∈NV (εv)

Ak·∈NT (εa) k∈[K]

K∑
k=1

ATk·QQ
T Ŵ ?

k·(uk, vk),

where Q denotes the matrix whose columns are eigenvectors of G.
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Proof of Lemma 25: Let Û , V̂ and Â be the quantities that maximize

ε̃ = max
U,V ∈V(SV ,K)

Ak·∈T (G,γ), k∈[K]

K∑
k=1

ATk·QQ
T Ŵ ?

k·(uk, vk).

Then∣∣∣∣∣
K∑
k=1

ATk·QQ
T Ŵ ?

k·(uk, vk)

∣∣∣∣∣
=

∣∣∣∣ K∑
k=1

ÂTk·QQ
T Ŵ ?

k·(ûk, v̂k) +

K∑
k=1

(Ak· − Âk·)TQQT Ŵ ?
k·(uk, vk)

+

K∑
k=1

ÂTk·QQ
T {Ŵ ?

k·(uk, vk)− Ŵ ?
k·(ûk, v̂k)}

∣∣∣∣.
Using the triangle inequality, we have∣∣∣∣∣

K∑
k=1

ATk·QQ
T Ŵ ?

k·(uk, vk)

∣∣∣∣∣ ≥ ε̃− T1 − T2,

where

T1 =

∣∣∣∣∣
K∑
k=1

(Ak· − Âk·)TQQT Ŵ ?
k·(uk, vk)

∣∣∣∣∣
and

T2 =

∣∣∣∣∣
K∑
k=1

ÂTk·QQ
T
{
Ŵ ?
k·(uk, vk)− Ŵ ?

k·(ûk, v̂k)
}∣∣∣∣∣ .

Let θk = (Ak· − Âk·)/‖Ak· − Âk·‖G,γ ∈ RJ . Then ‖θk‖G,γ = 1 for every k ∈ [K] and
θk ∈ T (G, γ). Therefore, we have

T1 ≤ max
k∈[K]

‖Ak· − Âk·‖G,γ

∣∣∣∣∣
K∑
k=1

θTkQQ
T Ŵ ?

k·(uk, vk)

∣∣∣∣∣
= max

k∈[K]
‖Ak· − Âk·‖G,γ

∣∣∣∣∣
K∑
k=1

(QQT θk)
TQQT Ŵ ?

k·(uk, vk)

∣∣∣∣∣ ≤ εaε̃,
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where the inequality holds because QQT θk ∈ T (G, γ) for k ∈ [K]. For T2, we have

T2 =

∣∣∣∣∣
K∑
k=1

ÂTk·QQ
T
{
Ŵ ?
k·(uk, vk)− Ŵ ?

k·(ûk, v̂k)
}∣∣∣∣∣

=

∣∣∣∣∣∣
J∑
j=1

〈
∇`N,j(Σ?

j ),

K∑
k=1

âkj(ukv
T
k − ûkv̂Tk )

〉∣∣∣∣∣∣
≤ ε̃ max

k∈[K]

∥∥ukvTk − ûkv̂Tk ∥∥F
≤ ε̃ max

k∈[K]
(‖vk − v̂k‖2 + ‖uk − ûk‖2) ≤ 2ε̃εv,

where the second equality follows from ÂTk·QQ
T = Ak·.
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Appendix D. Sample Complexity of Spectral Initialization

We prove Theorem 9 in Section D.1. The proof uses Davis-Kahan sin θ theorem stated in
Lemma 29. Section D.2 proves supporting lemmas.

D.1 Proof of Theorem 9

Let MN = J−1
∑J

j=1 SN,j , M
? = E(MN ), and R0 = argminY ∈O(K) ‖V 0 − V ?Y ‖2F . The

proof proceeds in two steps. In the first step, we establish that

dist2(Z0, Z?) ≤ e1‖MN −M?‖22 + e2

J∑
j=1

‖SN,j − Σ?
j‖22, (45)

where e1 = 5KJg−2(1 + 16ϕ2‖A?‖2∞), e2 = 8Kϕ2, g = σK(M?) − σK+1(M?) > 0, and
ϕ2 = maxj∈[J ]{1 + 4

√
2‖A?‖∞/σK(Σ?

j )} . In the second step, we bound ‖MN −M?‖2 and
‖SN,j − Σ?

j‖2 for j ∈ [J ] using Lemma 32.
Step 1. We write

dist2(Z0, Z?) = T1 + T2,

where T1 =
∑J

j=1 ‖V 0−V ?R0‖2F and T2 =
∑J

j=1 ‖diag(a0
j )−R0Tdiag(a?j )R

0‖2F . First, we

find a bound on minY ∈O(K) ‖V 0− V ?Y ‖2F that does not depend on R0. By Lemma 30, we
have

min
Y ∈O(K)

‖V 0 − V ?Y ‖2F ≤
1

2(
√

2− 1)
‖V 0V 0T − V ?V ?T ‖2F . (46)

The following lemma gives us a bound on T2 that does not depend on R0.

Lemma 26 Let ϕ2 = maxj∈[J ]{1 + 4
√

2‖A?‖∞/σK(Σ?
j )}. We have

T2 ≤ 4Kϕ2
J∑
j=1

(
5‖Σ?

j‖22‖V 0V 0T − V ?V ?T ‖22 + 2‖SN,j − Σ?
j‖22
)
.

Putting (46) and Lemma 26 together, we have

dist2(Z0, Z?) ≤ J

2(
√

2− 1)
‖V 0V 0T − V ?V ?T ‖2F

+ 4Kϕ2
J∑
j=1

(
2‖SN,j − Σ?

j‖22 + 5‖Σ?
j‖22‖V 0V 0T − V ?V ?T ‖22

)
. (47)

Using Lemma 29 to bound ‖V 0V 0T − V ?V ?T ‖F and ‖V 0V 0T − V ?V ?T ‖2, and noting that
‖Σ?

j‖2 ≤ ‖A?‖∞, we obtain (45).
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Step 2. We show that ‖MN−M?‖22 and ‖SN,j−Σ?
j‖22 are bounded with high probability

when the eigengap g is bounded away from zero. We apply Lemma 32 with ‖M?‖2 ≤ ‖A?‖∞
and obtain

pr {‖MN −M?‖2 ≥ hM (δ)} ≤ δ

J
,

where

hM (δ) =
2P‖A?‖∞

NJ
log

2PJ

δ
+

(
2P‖A?‖2∞

NJ
log

2PJ

δ

) 1
2

.

Similarly, for J ≥ 4 and for every j ∈ [J ], we have

pr
{
‖SN,j − Σ?

j‖2 ≥ hS(δ)
}
≤ J − 1

J

δ

J
,

where

hS(δ) =
2P‖A?‖∞

N
log

4PJ

δ
+

(
2P‖A?‖2∞

N
log

4PJ

δ

) 1
2

.

Then, collecting results and applying union bound, we have

dist2(Z0, Z?) ≤ 5KJ

g2

(
1 + 16ϕ2‖A?‖2∞

)
h2
M (δ) + 8KJϕ2h2

S(δ),

with probability at least 1− δ. This implies that

dist2(Z0, Z?) ≤ φ(g,A?)

{
KJP 2

N2

(
log

4PJ

δ

)2

+
KJP

N
log

4PJ

δ

}
;

φ(g,A?) = 4‖A?‖2∞
{

5(1 + 16ϕ2‖A?‖2∞)

g2J
∨ 8ϕ2

}
, (48)

with probability at least 1 − δ and φ(g,A?) is a constant that depends on g and A?. In
particular, the bound holds only when the eigengap g is bounded away from zero.

D.2 Proof of Lemma 26

We prove the result for J = 1 and drop the subscript j throughout the proof. The proof can
be easily extended to the case where J > 1. Recall that R0 = argminY ∈O(K) ‖V 0−V ?Y ‖2F
and ϕ2 = maxj∈[J ]{1 + 4

√
2‖A?‖∞/σK(Σ?

j )}. Similar to (18) in the proof of Lemma 16,
we have ∥∥diag(a0)−R0Tdiag(a?)R0

∥∥2

F
≤ ϕ2

∥∥V 0diag(a0)V 0T − V ?diag(a?)V ?T
∥∥2

F

≤ 2Kϕ2

∥∥∥∥∥
K∑
k=1

(v0T
k SNv

0
k)v

0
kv

0T
k − Σ?

∥∥∥∥∥
2

2

, (49)
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since V 0diag(a0)V T =
∑K

k=1(v0T
k SNv

0
k)v

0
kv

0T
k . Writing Σ? =

∑K
k=1(v?Tk Σ?v?k)v

?
kv
?T
k and

applying the triangle inequality to the right-hand side of (49), we have

∥∥diag(a0)−R0Tdiag(a?)R0
∥∥2

F
≤ 4Kϕ2

{∥∥∥∥∥
K∑
k=1

(v?Tk Σ?v?k)(v
0
kv

0T
k − v?kv?Tk )

∥∥∥∥∥
2

2

+

∥∥∥∥∥
K∑
k=1

(v0T
k SNv

0
k − v?Tk Σ?v?k)v

0
kv

0T
k

∥∥∥∥∥
2

2

}
. (50)

Next, we bound the two terms on the right-hand side of (50) separately. We have∥∥∥∥∥
K∑
k=1

(v?Tk Σ?v?k)(v
0
kv

0T
k − v?kv?Tk )

∥∥∥∥∥
2

2

≤ ‖Σ?‖22

∥∥∥∥∥
K∑
k=1

v0
kv

0T
k −

K∑
k=1

v?kv
?T
k

∥∥∥∥∥
2

2

.

By the uniqueness of projection operators, the above display can be written as

= ‖Σ?‖22‖V 0V 0T − V ?V ?T ‖22. (51)

Since v0
1, . . . , v

0
K are orthonormal to each other, we have∥∥∥∥∥

K∑
k=1

{v0T
k SNv

0
k − v?Tk Σ?v?k}v0

kv
0T
k

∥∥∥∥∥
2

2

≤ max
k∈[K]

|v0T
k SNv

0
k − v?Tk Σ?v?k|2

= max
k∈[K]

|v0T
k SNv

0
k − v0T

k Σ?v0
k + v0T

k Σ?v0
k − v?Tk Σ?v?k|2

≤ 2‖SN − Σ?‖22 + 2 max
k∈[K]

|v0T
k Σ?v0

k − v?Tk Σ?v?k|2

= 2‖SN − Σ?‖22 + 2 max
k∈[K]

|〈Σ?, v0
kv

0T
k − v?kv?Tk 〉|2. (52)

Next, we upper bound the second term on the right-hand side of (52). We have

max
k∈[K]

|〈Σ?, v0
kv

0T
k − v?kv?Tk 〉|2 ≤ ‖Σ?‖22 max

k∈[K]
‖v0
kv

0T
k − v?kv?Tk ‖2F

≤ 2‖Σ?‖22 max
k∈[K]

‖v0
kv

0T
k − v?kv?Tk ‖22

≤ 2‖Σ?‖22‖V 0V 0T − V ?V ?T ‖22. (53)

Plugging the result of (53) into (52), we have∥∥∥∥∥
K∑
k=1

(v0T
k SNv

0
k − v?Tk Σ?v?k)v

?
kv
?T
k

∥∥∥∥∥
2

2

≤ 2‖SN − Σ?‖22 + 4‖Σ?‖22‖V 0V 0T − V ?V ?T ‖22, (54)
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where the inequality follows by triangle inequality. Combining results from (51) and (54),
we have

‖diag(a0
j )−R0Tdiag(a?j )R

0‖2F ≤ 4Kϕ2
(
5‖Σ?

j‖22‖V 0V 0T − V ?V ?T ‖22 + 2‖SN,j − Σ?
j‖22
)
,

for every j ∈ [J ]. Hence, we complete the proof.
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Appendix E. Proof of of Theorem 4 and Proposition 5

To prove Theorem 4, we need the following lemma.

Lemma 27 (Linear Convergence Rate) Suppose that Assumptions 1—6 are satisfied.
After I iterations of Algorithm 2, we have

J∑
j=1

‖ΣI
j − Σ̃?

j‖2F ≤ βI/2(2µ2ξ2)
J∑
j=1

‖Σ0
j − Σ̃?

j‖2F + C1ε
2
stat, C1 =

2τµ2η

β1/2 − β
,

where µ = maxj∈[J ](17/8)‖Z?j ‖2 and τ = J−1{9/2 + (1/2 ∨K/8)}.

Since ‖Z?j ‖2 and µ are bounded, Lemma 27 shows that Algorithm 2 achieves error smaller

than δ + C1ε
2
stat after I & log(1/δ) iterations. The second term on the left-hand side

denotes the constant multiple of the statistical error, which depends on the distribution of
the data and the sample size.
Proof of Lemma 27: Let Z = (V T , A)T be an iterate obtained by Algorithm 2, Σj =
V diag(aj)V

T for j ∈ [J ], and

R = argmin
Y ∈O(K)

‖V − V ?Y ‖2F .

We have the following decomposition

Σj − Σ̃?
j = (V − V ?R)RTdiag(ã?j )RR

TV ?T

+ V {diag(aj)−RTdiag(ã?j )R}RTV ?T + V diag(aj)(V − V ?R)T .

Then

‖Σj − Σ̃?
j‖F ≤

{
‖diag(aj)‖2 + ‖diag(ã?j )‖2

}
‖V − V ?R‖F + ‖diag(aj)−RTdiag(ã?j )R‖F .

Since ‖diag(aj)‖2 ≤ ‖Zj‖2 and ‖Zj‖2 + ‖Z̃?j ‖2 ≤ ‖Zj‖2 + ‖Z?j ‖2 ≤ (17/8)‖Z?j ‖2 from (39),
we have

‖Σj − Σ̃?
j‖F ≤ µ

{
‖V − V ?R‖F + ‖diag(aj)−RTdiag(ã?j )R‖F

}
.

Combining Theorem 7 with Lemma 16, in the Ith iteration, we have

J∑
j=1

‖ΣI
j − Σ̃?

j‖2F ≤ 2µ2dist2(ZI , Z̃?)

≤ 2µ2

{
βI/2dist2(Z0, Z̃?) +

τηε2
stat

β1/2(1− β)1/2

}

≤ 2µ2

βI/2ξ2
J∑
j=1

‖Σ0
j − Σ̃?

j‖2F +
τηε2

stat

β1/2(1− β)1/2

 ,
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which completes the proof.

Proof of Theorem 4: We first note that under the assumptions, using Theorem 9,
Assumption 6 is satisfied with probability at least 1− δ0. This allows us to use Lemma 27
to bound

∑J
j=1 ‖ΣI

j − Σ̃?
j‖2F . By triangle inequality, we have

J∑
j=1

‖ΣI
j − Σ?

j‖2F ≤ 2
J∑
j=1

‖ΣI
j − Σ̃?

j‖2F︸ ︷︷ ︸
Estimation error

+2
J∑
j=1

‖Σ̃?
j − Σ?

j‖2F︸ ︷︷ ︸
Approximation error

and, therefore, it remains only to bound the approximation error. We have

J∑
j=1

‖Σ̃?
j − Σ?

j‖2F =
J∑
j=1

‖V ?diag(ã?j − a?j )V ?T ‖2F

=

J∑
j=1

‖diag(ã?j − a?j )‖2F

= ‖Ã? −A?‖2F .

Recall that each row of Ã? is the projection of the corresponding row of A? to the set
C̃A(c, γ), where c ≥ c? and γ ≥ γ?. Recall that columns of Q = (Q̃, Q1) denote eigenvectors
ofG For any k ∈ [K], ifQT1 A

?
k· = 0, then we have no loss in projecting A?k· to C̃A(c, γ). When

QT1 A
?
k· 6= 0, we want to quantify the loss of using a truncated ellipsoid. Let A?k· = Qh?k,

h?k ∈ RJ for k ∈ [K]. Then Ã?k· = Q̃h̃?k, where h̃?kj = h?kj for j ≤ r(G̃), k ∈ [K]. Therefore,
for each row k ∈ [K], we have

‖Ã?k· −A∗k·‖22 =

J∑
j=r(G̃)+1

h?2kj ≤ λr(G̃)

J∑
j=r(G̃)+1

h?2kj
λj
≤ λr(G̃)γ

? ≤ δAγ?. (55)

Then ‖Ã? −A?‖2F ≤ KδAγ?, which completes the proof.

Next, we proceed to prove Proposition 5.
Proof of Proposition 5: The proof is carried out in three steps. First, we verify that
the iterate Z0 obtained by Algorithm 1 satisfies Assumption 6. In the second step, we
bound the statistical and approximation errors. In the final step, we establish a bound on∑J

j=1 ‖ΣI
j − Σ?

j‖2F .

Step 1. The proof is similar to that of Theorem 9. Let MN = J−1
∑J

j=1 SN,j and M? =
E(MN ). Since σK(Σ?

j ) > Ej for every j ∈ [J ], the eigengap g = σK(M?)− σK+1(M?) > 0
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is nonzero and we can apply the Davis-Kahan “ sin θ” theorem, stated in Lemma 29. From
(45),

dist2(Z0, Z?) ≤ e1‖MN −M?‖22 + e2

J∑
j=1

‖SN,j − Σ?
j‖22.

From the definition of ‖ · ‖ψ2 in (59), for every n ∈ [N ] and j ∈ [J ], we have

‖x(n)
j ‖

2
ψ2
≤ max

j∈[J ]
‖Σ?

j + Ej‖2 ≤ 2 max
j∈[J ]
‖Σ?

j‖2 ≤ 2‖A?‖∞.

Lemma 33 then gives us

‖MN −M?‖2 . ‖A?‖∞

[
1

NJ

(
2P + log

2J

δ0

)
+

{
1

NJ

(
2P + log

2J

δ0

)} 1
2

]
, (56)

with probability at least 1− δ0/J . Similarly, for J ≥ 4, we have, for every j ∈ [J ],

‖SN,j − Σ?
j‖2 . ‖A?‖∞

[
1

N

(
2P + log

4J

δ0

)
+

{
1

N

(
2P + log

4J

δ0

)} 1
2

]
,

with probability at least 1− (J − 1)δ0/J
2. A union bound, together with (48), gives us

dist2(Z0, Z?) ≤ φ(g,A?)

[
KJ

N2

{
8P 2 + 2

(
log

4J

δ0

)2
}

+
KJ

N

(
4P + 2 log

4J

δ0

)]
,

with probability at least 1− δ0.
This shows that dist2(Z0, Z?) ≤ JI2

0 with probability at least 1 − δ0 when N &
K (P + log J/δ0). From (46) and (47) we have that ‖V 0 − V ?R‖2F ≤ 5Kg−2‖MN −
M?‖22. From (56) we have that ‖V − V ?R‖2F ≤ I2

0/J with high probability when N &
K (P + log J/δ0). Similarly, ‖diag(aj) − RTdiag(a?j )R‖2F ≤ (J − 1)I2

0/J with high proba-
bility. This shows that Assumption 6 is satisfied..

Step 2. Let r = r(G̃). Recall that G = QΛ†QT . Setting Λ†rr = exp(−l2r2) = δA, we
have

r(G̃) =

{(
1

l2
log

1

δA

) 1
2

∧ J

}
. (57)

Proposition 8 then yields

ε2
stat ≤ 2(ν2 ∨ ν2

2) + 2J max
j
‖Ej‖22
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where

ν2 .
‖A?‖2∞
e4N

[
log

1

δ0
+

{(
1

α2
log

1

δA

) 1
2

∧ J

}
+Ks? log

P

s?

]

with probability at least 1− δ0.
If s? logP/s? < PJ , then

log
1

δ0
+Kr(G̃) +Ks? log

P

s?
.

(
log

1

δ0
+KJP

)
.

Therefore (ν2 ∨ ν2
2) . JI2

0 . Combining with the assumption maxj∈[J ] ‖Ej‖2 . I0, we
establish that Assumption 3 holds with probability at least 1− δ0.

Step 3. Similar to the proof of Theorem 4, we combine results from Step 1 and 2 to
obtain

J∑
j=1

‖ΣI
j − Σ?

j‖2F . δ1 +
Kr(G̃) +Ks? log(P/s?) + log δ−1

0

N
+ J max

j∈[J ]
‖Ej‖22 +Kγ?δA(58)

after I & log(1/δ1) iterations. We omit details for brevity.
In the final step, we choose a δA that satisfies δA ≤ (16γ?)−1 minj∈[J ] σ

2
K(Σ?

j ) and
obtains the optimal error of (58). Plugging (57) into (58), the optimal choice is δ?A �
(γ?lN)−1(log γ?lN)1/2. Note that δ?A is smaller than (16γ?)−1 minj∈[J ] σ

2
K(Σ?

j ), given that
N is not too small. Then, plugging δ?A into (58), we establish the result.
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Appendix F. Known Results

For convenience, we present several known results that are used to prove the main results.

Lemma 28 (Theorem 2.1.12 in Nesterov (2013)) For any L-smooth and m-strongly
convex function h, we have

〈∇h(X)−∇h(Y ), X − Y 〉 ≥ mL

m+ L
‖X − Y ‖2 +

1

m+ L
‖∇h(X)−∇h(Y )‖2.

Lemma 29 (Davis-Kahan sin θ theorem, adapted from Yu et al. (2015))
Let MN = J−1

∑J
j=1 SN,j and M? = E(MN ). V ? is the matrix whose columns are top-K

eigenvectors of M?, and V is the matrix whose columns are the top-K eigenvectors of MN .
Assume that the eigengap g = σK(M?)− σK+1(M?) > 0 is bounded away from zero. Then

‖V V T − V ?V ?T ‖F ≤
2
√
K

g
‖MN −M?‖2, ‖V V T − V ?V ?T ‖2 ≤

2

g
‖MN −M?‖2.

Moreover, we have

min
Y ∈O(K)

‖V − V ?Y ‖F ≤
2
√

2

g
‖MN −M?‖F .

Lemma 30 (Adapted from Lemma 5.4 in Tu et al. (2016)) For any X,U ∈ RP×K ,
we have

min
Y ∈O(K)

‖U −XY ‖2F ≤
1

2(
√

2− 1)σ2
K(X)

‖UUT −XXT ‖2F .

Lemma 31 (Adapted from Theorem 6.6.1 in Tropp (2015)) Consider a sequence of
independent, random Hermitian matrices X1, . . . , XN with dimension P × P . Moreover,
assume that for n ∈ [N ], we have almost surely ‖Xn‖2 ≤ L. Define

Y =

N∑
n=1

Xn − E(Xn), ν(Y ) =

∥∥∥∥∥
N∑
n=1

var(Xn)

∥∥∥∥∥
2

.

Then, for every t ≥ 0, we have

pr(‖Y ‖2 ≥ t) ≤ 2P exp

{
−t2

2(ν(Y ) + Lt)

}
.

Lemma 32 Let x1, . . . , xN be independent centered random vectors in RP with ‖xn‖22 ≤ L
almost surely and S = E(N−1

∑N
n=1 xnx

T
n ). Then

pr

{∥∥∥∥ 1

N

N∑
n=1

xnx
T
n − S

∥∥∥∥
2

≥ t

}
≤ 2P exp

{
−Nt2

2L(‖S‖2 + t)

}
.
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Proof of Lemma 32 For each sample, we have

var
(
xnx

T
n

)
= E

{(
xnx

T
n

)2}− E
(
xnx

T
n

)2 � E
{
‖xn‖22xnxTn

}
� LE

(
xnx

T
n

)
.

Consequently, we have ∥∥∥∥∥ 1

N

N∑
n=1

var
{
xnx

T
n

}∥∥∥∥∥
2

≤ L‖S‖2.

The result follows from Lemma 31.

Let Z be a sub-Gaussian random variable, and we define the sub-Gaussian norm as

‖Z‖ψ2 = sup
p≥1

1
√
p

(E|Z|p)
1
p .

Let Z be a P dimensional Gaussian random vector, then we define the sub-Gaussian norm
as

‖Z‖ψ2 = sup
x∈SP−1

‖〈x, Z〉‖ψ2 . (59)

Lemma 33 (Adapted from Corollary 5.50 in Vershynin (2012)) Consider indepen-
dent centered random vectors with sub-Gaussian distribution, denoted as x1, . . . , xN . Let
‖xn‖2ψ2

≤ L for every n ∈ [N ]. Then, we have

pr

{∥∥∥∥ 1

N

N∑
n=1

xnx
T
n − S

∥∥∥∥
2

≥ t

}
≤ 2 exp

{
2P − e0N

(
t2

L2
∧ t

L

)}
,

for some absolute constant e0.

Lemma 34 (Adapted from Proposition 1.1 in Hsu et al. (2012)) Let A ∈ RP×P
be a matrix, and let Σ = ATA. Let x = (x1, . . . , xP ) be an isotropic multivariate Gaussian
random vector with zero mean. For all t > 0. We have

pr
{∣∣‖Ax‖22 − E(‖Ax‖22)

∣∣ > t
}
≤ 2 exp

[
−
{

t2

4‖Σ‖2F
∧ t

2‖Σ‖2

}]
.

Moreover, consider K matrices A1, . . . , AK , with Σk = ATkAk for k ∈ [K] and xk ∈ RP be
isotropic multivariate random vectors. Then, for all t > 0, we have

pr

{∣∣∣∣∣
K∑
k=1

‖Akxk‖22 − E(‖Akxk‖22)

∣∣∣∣∣ > t

}

≤ 2 exp

{
−

(
t2

4
∑K

k=1 ‖Σk‖2F
∧ t

2 maxk∈[K] ‖Σk‖2

)}
.
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Proof of Lemma 34: The first part is shown in Hsu et al. (2012), we show the second
result. Let VkΛkV

T
k be the eigendecomposition of Σk. define zk = V T

k xk which follows
isotropic multivariate Gaussian distribution by the rotation invariance of Gaussian distri-
bution. Then ‖Akxk‖22 =

∑P
i=1 λkiz

2
ki, where λki is the ith diagonal entry of Λk. Then, we

apply the chi-square tail inequality (Laurent and Massart, 2000) and obtain

pr


K∑
k=1

P∑
i=1

λkiz
2
ki −

K∑
k=1

tr(Σk) > 2

(
ε

K∑
k=1

‖Σk‖2F

) 1
2

+ 2ε max
k∈[K]

‖Σk‖2

 ≤ e−ε.
Consequently, for all t > 0, we have

pr

(∣∣∣∣∣
K∑
k=1

‖Akxk‖22 − E
(
‖Akxk‖22

)∣∣∣∣∣ > t

)

≤ 2 exp

{
−

(
t2

4
∑K

k=1 ‖Σk‖2F
∧ t

2 maxk∈[K] ‖Σk‖2

)}
.

The proof is complete.
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Appendix G. Additional Empirical Results

In this section, we provide additional empirical results. For the convenience of the readers,
we again provide a list of competing methods. We use the same abbreviations as in the
main text.

In Section G.1, we discuss the details of the implementation of M6. In Section G.2, we
discuss the details of the implementation of MR. The additional implementation of square
temporal weights is presented in Section G.3. Section G.4 provides the results for data
with varying ranks. Additional simulation results for different noise levels are presented in
Section G.5. Finally, we include additional results for the fMRI task in Section G.6.

G.1 Implementation Details for M6

The M6 method in Table 1 provides an alternative approach to estimating the model
parameters in (1). Rather than minimizing (2) using a projected gradient descent, the M6
method minimizes an alternative objective function

min
V,A

1

J

J∑
j=1

1

2
‖SN,j − V diag(aj)V

T ‖2F + λ1

K∑
k=1

‖vk‖1 + λ2

K∑
k=1

ãTk G̃
†ãk, (60)

where a regularizer is used in place of the constraints. Following Daubechies et al. (2010),
the objective in (60) can be reformulated as

minhN (Z,D) = min
V,A

min
D∈RK×P

+

1

J

J∑
j=1

1

2
‖SN,j − V diag(aj)V

T ‖2F

+ λ1

K∑
k=1

1

2

(
P∑
i=1

v2
k,i

dki
+ dki

)
+ λ2

K∑
k=1

ãTk G̃
†ãk, (61)

where dki denotes the (k, i)th entry of D. An alternating gradient descent with respect to
A, V , and D can be used to optimize (61) efficiently when P is large. With A and D fixed,
(61) is a quadratic problem with respect to V and is differentiable everywhere. However,
the objective is not continuous at dki = 0. Therefore, for numerical stability, we add a
small constant ϑ > 0 to dki so that dki +ϑ is always bounded away from zero. As a result,
we have

∇V hN (Z,D) =
−2

J

J∑
j=1

{
SN,j − V diag(aj)V )T

}
V diag(aj) + λ1V̌ ,

where V̌ ∈ RP×K with the (j, k)th entry equal to vk,j/dkj . The update with respect to D
can be obtained as dkj =

√
(vk,j)2 + ϑ, k ∈ [K], j ∈ [P ]. The gradient ∇AhN (Z,D) is

∇AhN (Z,D) =
1

J
W (V ) + 2λ2AG̃

†,
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with
W (V ) = [wkj(vk)] ∈ RK×J , wkj(vk) = (vk)

T (Σj − SN,j)vk.

To select λ1, λ2, we use the Bayesian Information Criterion bic with 5-fold cross-validation
discussed in Section 3.2. Algorithm 6 details the method M6.

Input: ε, ϑ > 0, and {x(n)
j }n∈[N ],j∈[J ]

Set V 0, A0 = Spectral initialization({x(n)
j }n∈[N ],j∈[J ])

While |hN (Zi−1, Di−1)− hN (Zi−2, Di−2)| > ε
Ai ← Ai−1 − ηA∇AhN (Zi−1, Di−1)
V i ← V i−1 − ηV∇V hN (Zi−1, Di−1)
Di ← argminhN (Zi, D)

Output: V , A

Algorithm 6: Estimation Procedure of M6

G.2 Implementation Details for MR

The MR method uses random initialization in place of spectral initialization. First, each
entry in vk, k ∈ [K], is drawn independently from N (0, 1). Then, we normalize each vk
to have the unit norm. Each entry of ãk, k ∈ [K], is drawn independently from N (0, 1).
Subsequently, Algorithm 2 is used to refine the initial point. In the simulations, we find that
the convergence points depend on the initial points Z0. Therefore, to make the comparison
fair across different sample sizes, we initialize Z0 using the same pseudo-random number.
As a result, all the curves in Figure 3 have the same starting point.

G.3 Simulation with Temporal Dynamics Following a Markov Model

The data are generated from a model where the temporal dynamics follow a discrete switch-
ing model shown in Figure 7. The results are shown in Table 10 for log-Euclidean metric
and in Table 11 for dist2(Z,Z?). Despite the fact that the temporal dynamics is not
smooth, the proposed method outperforms its counterparts, indicating flexibility in empir-
ically capturing a variety of waveforms.

G.4 The Effect of the Rank on Estimation Accuracy

Figures 8—11 show results as the rank K changes in K ∈ {2, 6, 8, 10}. Each figure shows
simulation results as the sample size varies in N ∈ {20, 200, 2000}. The plots consistently
show that as we increase N , the estimation results are closer to the ground truth. When
K ∈ {2, 6}, we can estimate the temporal components fairly well with a small sample size.
When K ∈ {8, 10}, additional samples are required to obtain good estimation results.
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Number of training subjects
Methods 10 20 30 40 50

M1(a) 49.6± 6.4 70.8± 3.4 77.3± 3.2 79.7± 2.8 80.8± 1.7
M1(b) 26.5± 4.7 34.9± 3.3 36.5± 3.5 38.4± 2.0 39.6± 2.4
M2(a) 27.7± 3.5 27.1± 4.3 25.1± 2.0 24.3± 4.4 24.8± 2.0
M2(b) 37.6± 5.3 44.5± 4.7 40.9± 5.8 38.2± 3.9 44.1± 6.7
M4 52.6± 8.3 77.4± 6.8 85.0± 3.5 89.0± 3.0 90.5± 2.5
M7 70.9± 2.7 78.3± 3.3 81.0± 1.6 79.8± 3.0 81.2± 2.6
M** 61.5± 7.4 81.5± 5.4 87.4± 2.5 90.0± 1.7 90.5± 2.5

Table 9: Classification accuracy on test data averaged over 10 runs. We use use the
covariance parameters to predict tasks in the Human Connectome Project motor data set
(%). M1(a) denotes M1 with K = 15,W = 10; M1(b) denotes M1 with K = 15,W = 50;
M2(a) denotes M2 with K = 15; M2(b) denotes M2 with K = 60. The rank K for M4 and
M** is set as K = 15. The window length W for M7 is set as W = 10.
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Figure 7: The left plot shows the ground truth of square temporal weights and the right
plot shows the corresponding temporal components.
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Figure 8: The top row shows the ground truth. The remaining 3 rows present simulation
results for N ∈ {20, 200, 2000} when K = 2, P = 20, J = 50, and σ = 0.
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Figure 9: The top row shows the ground truth. The remaining 3 rows present simulation
results for N ∈ {20, 200, 2000} when K = 26, P = 20, J = 50, and σ = 0.
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Figure 10: The top row shows the ground truth. The remaining 3 rows present simulation
results for N ∈ {20, 200, 2000} when K = 8, P = 20, J = 50, and σ = 0.
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Figure 11: The top row shows the ground truth. The remaining 3 rows present simulation
results for N ∈ {20, 200, 2000} when K = 10, P = 20, J = 50, and σ = 0.
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Abbr. Model low-rank smooth A sparse V

M1 Sliding window principal component analysis 3 3 7

M2 Hidden Markov model 7 7 7

M3 Autoregressive hidden Markov model (Poritz, 1982) 7 3 7

M4 Sparse dictionary learning (Mairal et al., 2010) 3 7 3

M5 Bayesian structured learning (Andersen et al., 2018) 3 3 3

M6 Lasso and kernel regularization (Daubechies et al., 2010) 3 3 3

M7 Slinding window shrunk covariance (Ledoit and Wolf, 2004) 7 3 7

MS Spectral initialization (Algorithm 1) 3 7 7

MR Proposed model with random initialization (Algorithm 2) 3 3 3

M** Proposed model (Algorithm 1—2) 3 3 3

MQ** Proposed model (Algorithm 1—2) with QR decomposition 3 3 3

Number of subjects (N)
Method 1 5 10

Average log-Euclidean
metric

M1 0.58± 0.02 0.52± 0.01 0.50± 0.01
M2 6.41± 0.42 0.70± 0.01 0.66± 0.01
M3 8.90± 3.33 0.81± 0.04 0.68± 0.01
M4 0.58± 0.01 0.50± 0.03 0.43± 0.03
M5 0.50± 0.01 0.46± 0.01 0.43± 0.00
M6 0.91± 0.06 0.48± 0.02 0.46± 0.02
MS 0.94± 0.11 0.49± 0.01 0.46± 0.01
MR 0.68± 0.00 0.68± 0.00 0.68± 0.00
M** 0.55± 0.03 0.42± 0.07 0.40± 0.09
MQ** 0.54± 0.04 0.42± 0.04 0.38± 0.06

Running time

(×10−2)

M1 0.4 ± 0.1 0.4 ± 0.0 0.5 ± 0.1
M2 31.4 ± 2.9 790.8 ± 6.3 829.7 ± 8.4
M3 173.2 ± 21.0 2834.0 ± 7.3 2909.1 ± 16.6
M4 44.8 ± 14.2 393.1 ± 225.4 961.6 ± 695.1
M5 3521.0 ± 123.2 3596.6 ± 98.3 3800.6 ± 113.3
M6 610.6 ± 48.4 641.6 ± 42.6 634.0 ± 42.7
MS 0.1 ± 0.0 0.3 ± 0.4 0.2 ± 0.0
MR 4.4 ± 0.6 4.0 ± 0.2 4.0 ± 0.3
M** 6.8 ± 1.6 5.9 ± 1.0 5.7 ± 1.5
MQ** 4.8 ± 0.1 3.8 ± 0.2 3.4 ± 0.3

Table 10: Temporal dynamics are given in Figure 7 with K = 4, P = 20, J = 50, and σ = 0.
Log-Euclidean metric and the running time are averaged over 20 independent simulation
runs. For M1, we set the window length as W = 20. The proposed methods, M** and
MQ**, outperform competitors irrespective of the sample size.
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Number of subjects (N)
Method 1 5 15 200 1000

MS 82.27± 27.49 18.86± 2.77 6.46± 0.89 0.59± 0.06 0.10± 0.01

MR 43.20± 1.17 42.38± 0.58 42.07± 0.18 41.70± 0.03 41.78± 0.02

M** 13.22± 1.76 5.32± 0.90 2.44± 0.31 0.42± 0.10 0.14± 0.01

Table 11: Average distance dist2(Z,Z?) over 20 independent simulation runs. Temporal
dynamics are given in Figure 7 with K = 4, P = 20, J = 50, and σ = 0.
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G.5 The Effect of the Noise Level

The data are generated by the data generation process described in Section 5.3. Table 12—
13 show the experimental results when P = 100, J = 100, K = 10 and the noise level
σ ∈ {0.2, 0.1}.

Number of subjects (N)
Method 10 20 30 40 50

M1 0.40± 0.01 0.37± 0.01 0.36± 0.01 0.36± 0.01 0.35± 0.01
M2 2.21± 0.01 2.07± 0.01 2.04± 0.01 2.02± 0.01 2.02± 0.01
M3 78.42± 7.46 1.66± 0.09 2.15± 0.01 2.20± 0.01 2.19± 0.01
M4 0.96± 0.02 0.43± 0.02 0.36± 0.04 0.36± 0.03 0.35± 0.03
M5 0.43± 0.01 0.39± 0.01 0.38± 0.01 0.37± 0.01 0.36± 0.01
M6 0.34± 0.01 0.30± 0.01 0.29± 0.01 0.29± 0.01 0.28± 0.01
MS 0.35± 0.01 0.31± 0.01 0.29± 0.01 0.29± 0.01 0.28± 0.01
M** 0.32± 0.02 0.29± 0.02 0.27± 0.01 0.27± 0.01 0.26± 0.01
MQ** 0.30± 0.02 0.28± 0.02 0.28± 0.02 0.28± 0.01 0.27± 0.01

Table 12: Log-Euclidean metric averaged over 20 independent simulation runs (σ = 0.2).
The data generating mechanism is described in Section 5.3. For M1, we set the window
length to be W = 20.

Number of subjects (N)
Method 10 20 30 40 50

M1 0.35± 0.00 0.33± 0.00 0.33± 0.00 0.32± 0.00 0.32± 0.00
M2 3.03± 0.01 2.90± 0.00 2.87± 0.00 2.85± 0.00 2.85± 0.00
M3 73.62± 9.48 2.25± 0.15 2.98± 0.01 3.03± 0.01 3.01± 0.00
M4 1.00± 0.05 0.48± 0.05 0.41± 0.05 0.37± 0.05 0.39± 0.03
M5 0.39± 0.01 0.36± 0.01 0.35± 0.01 0.34± 0.01 0.33± 0.01
M6 0.31± 0.01 0.27± 0.02 0.25± 0.01 0.25± 0.01 0.23± 0.01
MS 0.31± 0.01 0.27± 0.02 0.25± 0.01 0.24± 0.01 0.24± 0.01
M** 0.28± 0.02 0.26± 0.02 0.24± 0.01 0.23± 0.01 0.23± 0.01
MQ** 0.29± 0.02 0.26± 0.02 0.25± 0.01 0.24± 0.01 0.23± 0.01

Table 13: Log-Euclidean metric averaged over 20 independent simulation runs (σ = 0.1).
The data generating mechanism is described in Section 5.3. For M1, we set the window
length as W = 20.

G.6 Experiment on fMRI Data

Figure 12 shows the results for tapping the right foot and tapping the right hand. See
Section 6 for a description of the experiment. For each estimated curve, we compute its
correlation with the activation map, shown in Figure 4, of each task: tapping the right
hand, tapping the left foot, tapping the tongue, tapping the right foot, and tapping the left
hand. Then, we rank the components by their correlations with the task activation map
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(in magnitude). The result is presented in Table 14. Then, for each task, we select the top
three components and plot the corresponding combined spatial connectomes in Figure 6.
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Figure 12: The left column shows the temporal components (blue solid lines) whose cor-
relations are the largest with respect to the task activation (black dotted lines). The right
column shows the corresponding brain connectivity patterns (spatial components) for the
tasks. The red lines denote positive connectivity and blue lines denote negative connectiv-
ity.
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Task Rank of the correlation, order from largest to smallest (component index)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Right Hand Tapping 9 0 6 5 3 2 14 13 12 11 10 7 1 4 8
Left Foot Tapping 9 4 6 2 14 13 12 11 10 3 1 0 5 7 8
Tongue Wagging 4 1 2 7 14 13 12 11 10 3 9 8 0 5 6
Right Foot Tapping 8 7 6 14 13 12 11 10 3 2 4 1 5 0 9
Left Hand Tapping 8 7 5 3 1 2 6 14 13 12 11 10 0 4 9

Table 14: The correlation of the components with task activation.
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