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Abstract

This paper presents a new approach for regression tree-based models, such as simple
regression tree, random forest and gradient boosting, in settings involving correlated data.
We show the problems that arise when implementing standard regression tree-based models,
which ignore the correlation structure. Our new approach explicitly takes the correlation
structure into account in the splitting criterion, stopping rules and fitted values in the leaves,
which induces some major modifications of standard methodology. The superiority of our
new approach over tree-based models that do not account for the correlation, and over
previous work that integrated some aspects of our approach, is supported by simulation
experiments and real data analyses.

Keywords: random forest, linear mixed models, Gaussian process regression, prediction
error for correlated data, model selection

1. Introduction

Tree-based models are widely used for tabular data due to their high prediction accuracy
and their inherent model selection functionality (Hastie et al., 2009). Commonly, tree-based
models are fitted without assuming any distributional setting on the dependent variable.
While the distribution of the dependent variable is mostly unknown and therefore it is
tempting to avoid distributional assumptions, the correlation structure, which relates to the
sampling mechanism (e.g., clustered data, time-series data, longitudinal data, spatial data), is
frequently known and therefore it is not reasonable to ignore it. Unlike in tree-based models,
the correlation structure is an essential component in many machine learning models, for
example, kernel covariance functions are used in Gaussian processes regression (Rasmussen,
2003), which is frequently implemented for modeling data sets with spatial correlation
structure, such as neuroscience data sets (Caywood et al., 2017) and climatological data
sets (Goovaerts, 1999). Another example is linear mixed model, which is used for data sets
involving clusters and longitudinal correlation structures, as is common in health (Coull
et al., 2001) and trading (Westveld and Hoff, 2011) applications.
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In this paper we develop a method which combines the concepts of random effects and
random fields, which are convenient platforms for analyzing correlated data, and tree-based
models such as: regression tree, random forest and gradient boosting. The desired outcome
is that the tree-based part results a high prediction accuracy and model selection capabilities,
and the random effects part enables to boost the model performance by using the correlation
structure, as well as to provide statistical inference. The idea of integrating between random
effects/random fields and tree-based methods has previously been explored (for example,
see Hajjem et al. 2011; Sela and Simonoff 2012; Stephan et al. 2015), and previous and
parallel work in this area is discussed in detail in Section 3.1. However, we propose a novel
approach which takes advantage of recent developments in model evaluation and selection
methodologies for correlated settings, and yields improved results as demonstrated below.

Section 2 gives relevant background for the proposed method. The background contains
a brief description of tree-based methods, linear mixed model (which is based on random
effects) and prediction error estimation for correlated data, which has a key role in our
approach. Section 3 presents previous and parallel work, and positions our approach within
this context. Section 4 introduces our new approuch, REgression Tree for COrrelated data
(RETCO), in detail and illustrates its central properties. Section 5 presents simulations and
real data analyses.

2. Theoretical Background

This section briefly presents regression tree-based models, linear mixed models and prediction
error estimation for correlated data. Additional information can be found in Appendix A
and in resources which are cited below.

2.1 Tree-based Models

Given a vector of covariates x* € RP, a regression tree estimates the corresponding response,
y* € R, as follows:

s
F@) = Iareg s,
s=1

where g; C RP and pu, € R, for all s € {1,...,S}. The regions {gs}5_, define a partition of
the covariate space, that is gs N g; = () for s # t, and Usszlgs is the entire covariates space.
The scalar ug is the predictor for observations whose covariate vectors are in gs. The set
S = {us, gs}le, is selected using a recursive optimization process that can be diagrammed
as a tree, where S are the terminal nodes (the leaves). The recursive optimization for
selecting S is based on the training set, {y;, z;};—; = {y, X}, where y € R” and X € R"*?
is the design matrix, and it is implicitly assumed that the prediction points, y* and x*, are
drawn from the same distribution as y; and x;. Each step in the tree’s recursive optimization
process is a model selection of linear models, where a threshold of one of the available
covariates is selected in order to minimize a loss function, Loss(-, ) : R? — R. Also, stopping
rules that follow predefined hyper-parameters, e.g., maximal depth of the tree or minimal
number of training set observations in a node, are enforced on the recursive optimization.
These limit the tree’s complexity and affect its statistical properties, in particular limit
overfitting.
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The widely used Random forest (RF) and gradient boosting (GB) predictive modeling
approaches are ensemble methods that combine trees to create powerful and accurate
prediction models. More information about regression tree, RF and GB, as well a formalized
regression tree algorithm, is available in Appendix A, and can also be found in Freund et al.
(1999); Friedman (2001); Breiman (2001); Hastie et al. (2009).

2.2 Linear Mixed Model

In linear mixed models (LMM) there are two covariate vectors: fixed effects covariates,
x* € RP, and random effects covariates, z* € R2. Commonly, y* is assumed to be normally
distributed and decomposed as follows:

y* :Bt$*+btz*+€*,

where 3 is the fixed effects vector of coefficients, b ~ N, (0, G) is the random effects vector,
and €* ~ N(0,02) is the residual. In addition, B'x* is the marginal mean of y*, E(y*|z*),
and B'a* + blz* is the conditional mean of y* given b, which is commonly denoted as
E(y*|x*, z*, b).

The vectors 3 and b are estimated using the training sample, {y;, ;, i}l = {y, X, Z},
which follows the same model:

y=XB+7Zb+e,

where € ~ N,(0,021I,,), and X, Z are the fixed effects and random effects covariate matrices,
respectively. Since y* and y share the same random effects, b, they are correlated, and
estimating b by the training sample can later be used for improving the prediction accuracy
of y*. Given G and V := Var(y) = ZGZ' + 0%I,,, B and b can be estimated as follows:

B — (Xtv—lX)—lXtv—ly
b=GzV Yy — XB).

Harville (1976) showed that given the true covariance matrices, G and V, the estimated
conditional mean,

~ ~ ot ~t

E(y*lz",2",b) =B a" +b 27, (1)
is the best linear unbiased predictor (BLUP) of y*. In practice, the covariance matrices
are mostly unknown and therefore are estimated using maximum likelihood or restricted

maximum likelihood (Verbeke, 1997). Note that given the covariance matrices, LMM is
linear in vy, i.e., the LMM predictor satisfies:

7= hy,

where h*, the hat vector, does not contain the training response vector y, and the element
h*[i] is the weight of y; in predicting y*, Vi € [1,...,n].
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2.2.1 b* # b SCENARIO

In many cases the random effects of y* are not the same as the random effects of y, i.e.,
y* :Bt$*—|—b*t2*+€*, b* 7éb

This means that the correlation between the observations in y is not the same as the
correlation between y* and the observations in y. In case b* L b, which implies Cov(y*,y) =
0, estimating b does not improve the prediction accuracy of y*. Therefore, in this case, y*
is predicted by the marginal mean ,E(y*\x*) = Btw*. This predictor, which is a special
case of the BLUP where b = 0, is also called generalized least squares predictor (GLS). A
simple example for this scenario, is when the prediction set contains different clusters than
in the training set. Several prediction tasks that follow this scenario setting are analyzed
in Section 5.2. For example, using the FIFA data set from Kaggle website, a predictive
model for football players’ market-value was trained, where the prediction goal is to predict
the market-value of players that belong to clubs that do not appear in the training set.
This data set has a clustered correlation structure, where cluster is the player’s club, i.e.,
market-values of players that belong to the same club are correlated, while market-values
of players that belong to different clubs are uncorrelated. Given the prediction goal of
predicting the market-value of players from new clubs, this setting follows exactly the b* 1L b
setting.

Another scenario is when b* L b (although b* # b) and therefore Cov(y*,y) # 0. This
can happen for example when some of the random effects of y and y* are the same and some
are not. In this case, the elements in b that are in b* are estimated and used for predicting
y*. This scenario of b* # b, is common and should be taken into account when developing
tree-based methods for correlated data. Our proposed tree-based model covers this scenario,
which is demonstrated and analyzed in Section 5.2 with a real data set — California Housing
data set.

2.3 Prediction Error Estimation and Model Selection for Correlated Data

Once a predictive model is fitted, it is often evaluated by its prediction error estimator.
Moreover, when there is a set of alternative models (e.g., for LMM: models with different
covariates, for tree-based models: models with different hyper-parameters) the 'best’ model
can be selected based on minimizing the prediction error estimator. It is important to note
that common prediction error estimators, e.g., AIC (Akaike, 1974), Cp (Mallows, 1973),
and even cross-validation (Stone, 1974, CV) are biased in some settings involving correlated
data. Naturally, their corresponding model selection criteria are also suboptimal in those
scenarios. This bias was studied in the recent years, mostly for linear models. Here we
present Cp, AIC and CV versions for correlated data. For description of the original Cp and
AIC versions, that do not address correlation structure, see Appendix A.

2.3.1 Cp

In Cp, the goal is to estimate the squared prediction error:

1
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where H is the hat matrix, and y* € R" is a vector of new observations measured at the
same covariate values as y, {X, Z}, but with new independent noise and potentially different
random effects realizations. This type of prediction error, when both y and y* relate to
the same covariate points, {X, Z}, is called in-sample prediction error. In this setting,
it is natural to consider {X, Z} as fixed matrices rather than random variables. Hodges
and Sargent (2001) extended Cp to LMM with b* = b, here we employ a more general
formulation which reduces to Hodges and Sargent (2001) when b* = b, but also covers the
case that they are different:

1 ~ 2 *
Cp =y =Bl + S (H (Var(y) = Covly"v) )

2.3.2 AIC

Similarly to Cp, AIC is also an in-sample error, however its loss function is based on the
likelihood function. Vaida and Blanchard (2005) presented the conditional AIC (cAIC)
and marginal AIC (mAIC) which are suitable for the scenarios where b* = b and b* L b,
respectively. Here we will use the name AIC for our formulation which subsumes cAIC and
mAIC, but also covers the (b* # b) N (b* L b) scenario:

= = 2tr( H (Var(y) — Cov(y, y*))V, !
aro - 2wEwX, 2b).V) ( ( ) >

n n

where /(y; I/F:(y|X, Z, B), V.) is the conditional log-likelihood of y given /I;, and V., = Var(y*|b).

2.3.3 CROSS-VALIDATION (CV)
Unlike Cp and AIC, CV estimates the generalization error:

n
1
Ex x> zzByry Y gLOSS(yZ‘, Ui (x, 255y, X, 2)),
=1

where y* is drawn from the same marginal distribution as y, but relates to new covariate
values, {x}, 2z} | = {X*, Z*}, which were drawn from the same distribution as {X, Z}.
For simplicity, a special case of CV algorithm, leave-one-out (LOO), is presented:

1. For each i € [1,...,n], fit a model using the whole sample except the ith observation.
Denote the sample without the i** observation by {y_,, X_;, Z_;}.

2. Predict y; from the fitted model and denote the predictor by g’jl_l =yi(xi, zi;y_;, X—i, Z_).

For a squared error loss function and linear predictor of y, the CV error is
1
CV =~y — Hoyll3,

where H,, the CV hat matrix, is

0 hig .. hin
H, — ha1 0 han ,
Mot hny o O
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Method Prediction Error Type Distributional Assumptions

Cp in-sample error -
AlIC in-sample error normal likelihood
CV, generalization error —

Table 1: Summary of prediction errors for correlated data

hi i € RVE K € {1,...,n}. In this presentation, the vector [hy 2, ..., h1,] is the hat vector
of y; 1. K-fold CV generalizes LOO by partitioning {y, X, Z} into K equal size subsets,
{yi, Xk, Zk}szl, where K <n (K =n in LOO).

Rabinowicz and Rosset (2022) presented a generalization of CV, CV,, which is suitable
for scenarios involving correlated data:

Vo=V + 2 tr(Hoo (Varly) - Covly", ).

Note that when b* = b, then CV, = CV. For more information see Rabinowicz and Rosset
(2022).

Cp and CV, do not assume a specific distributional setting and can be applied for any
linear model, while AIC is suitable for LMM, however it can also be adjusted for other
linear models that assume normality, such as Gaussian process regression (GPR). Table 1
summarizes the prediction error estimators that are described in this section.

3. Literature Review and RETCO Approach

Section 3.1 presents a general model that combines regression tree-based models and LMM,
as well as a literature review of previous and parallel work that refers to this model. Section
3.2 presents the main principles that RETCO is based on, and relates them to the previous
work. RETCO is presented in detail in Section 4.

3.1 Previous and Parallel Work

A simple approach for integrating between tree-based methods and random effects is replacing
the marginal mean in LMM, B'x*, by a tree-based model, f(x*) :

f(z*) + b'2*, (2)

where f(x*) is created in a way that does account for the correlation structure (unlike in
the standard regression tree algorithm). The power of the model in expression (2) can
be perceived from different points of views. From the LMM point of view, the additive
representation of marginal and conditional means is preserved, however the marginal mean is
more expressive than in standard LMM. From the regression tree point of view, this approach
differentiates between the two types of covariates—fixed effects, which are used for splitting
the tree’s nodes, and random effects that are added linearly to the fitted tree—enabling
expressing and using the correlation structure. This also enables using inference tools that do
not exist for standard regression trees but exists in LMM, for example, comparing between
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the variance components, o2 and G. Note that expression (2) assumes that the effect of the
random effects on y is linear, however it can be generalized.

To our knowledge, the integration between LMM and regression tree was first proposed
by Hajjem et al. (2011). A similar algorithm, RE-EM, was proposed independently by Sela
and Simonoff (2012). The main idea in RE-EM is fitting f(-) to y — Zb, then, given the fitted
f(), calculating b using the standard BLUP formula. This process is done iteratively until
convergence of b. The fitting of f(-) is a two stages process, where first {gs le are generated
using a standard regression tree, then, given {gs}5_;, {is}scs are estimated together by
GLS (using the whole sample). Therefore, RE-EM takes the correlation into account when
estimating {us}ses, but does not account for the correlation directly when selecting {gs}5_;
(it does account for the correlation indirectly since the tree is fitted to y — ZB) The RE-EM
algorithm, which is presented in more detail in Appendix C, was extended several times, for
example Fu and Simonoff (2015) suggested using conditional inference trees, Hajjem et al.
(2014) and Capitaine et al. (2021) proposed RF algorithms that are based on the same logic
as RE-EM algorithm.

Stephan et al. (2015) proposed the Mixed Random Forest (MRF). The goal in MRF is
fitting a tree-based model that estimates accurately the variance components, rather than
optimizing prediction accuracy. Also, MRF assumes a specific data type and is based on
relatively strong distributional assumptions (y is normally distributed, and G = UfIq). Still,
the approach in MRF is very relevant for this paper: selecting {gs, #3}5:1 by maximizing the
marginal likelihood of y at each split. In this way, MRF takes into account the correlation
in selecting both {gs}_; and {ys}scs. The MRF algorithm is presented in more detail in
Appendix C. Recently, Saha et al. (2021) proposed a similar RF algorithm for spatial data,
as well as presented various asymptotic properties of their method.

Extensions of these papers, where the response is binary or count data, as in generalized
linear mixed model (Wolfinger and O’connell, 1993), were proposed by Fokkema et al. (2018);
Hengl et al. (2018); Ngufor et al. (2019); Speiser et al. (2019); Pellagatti et al. (2021). Next,
our proposed algorithm is presented and analyzed. Detailed methodological and numerical
comparisons between our proposed algorithms and relevant previous algorithms are presented
in Section 4.2 and Section 5.

3.2 RETCO Approach

RETCO, our new algorithm, proposes a different approach for fitting f(a*) than the previous
algorithms. This approach is based on the following points:

1. Distinguishing between the b* = b and b* # b scenarios in the splitting criterion. As
will be presented in Section 4.2, this distinction, which is fundamental in mixed models,
is crucial here.

2. Using prediction error for correlated data loss function in the splitting criterion,
instead of training error loss function as in other algorithms. Using prediction error
for correlated data loss function is essential in order to properly address point 1, and
has many implications on the structure of the RETCO algorithm.
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3. Adopting a global whole-sample point of view for the split selection, rather than the
node-local point of view (as implemented in the standard tree-based models). Unlike
in the i.i.d. setting, where it is reasonable to split each node independently of the
other nodes, fitting trees to correlated data requires taking into account the whole
sample when splitting a node due to the correlation between observations from different
nodes. As presented in Section 3.1, the previous algorithms also include some global
components, however RETCO goes a few steps further.

As presented in the next section, these principles derive the structure of RETCO.

4. RETCO Algorithm

This section introduces and analyzes our new proposed algorithm, RETCO— REgression
Tree for COrrelated data.

4.1 Main Algorithm

RETCO formulation is general and is not based on a specific prediction error type or

distributional setting. Also, the basic algorithm refers to a case when f(-) is a single

regression tree, and the extensions to RF and GB will be discussed in Section 4.1.1.
Algorithm 1, which presents RETCO, uses the following notations:

e f(x;|S) — the intermediate predictor of y; during the tree fitting (for a ”current” tree
with the nodes S).
f(@ilS) = ZI(mEgs)n(NS)?

seS

where

— s is the GLS predictor of {y;|x; € g5}, Vs € S.
— n(us) is the BLUP function for leaf s. Note, when b* 1L b, then n(us) = ps.

After fitting the final tree f(x;) = f(xi|S).

o f(xilj,c,S/s), the predictor of y; when splitting node s using covariate j at the
threshold ¢ for current tree with the nodes S :

f (wl‘ja ¢, S/S) = I(a:,Egs N xi,jgc)n(ué(c))—i—l(wiegs al xi,j>c)77(:u’7sn(c))+ Z I(aciegm)”(ﬂm)v
meS/s

where pl(c) and p’(c) are the GLS predictors of {yi|z; € gs N z;; < ¢} and
{yilxi € gs N x;; > c}, respectively.



TREE-BASED MODELS FOR CORRELATED DATA

Algorithm 1 REgression Tree for COrrelated Data (RETCO)
Input: y, X, Z.
Output: f(-).
General setting:

o select Loss(-,-) : a prediction error estimator loss function—Cp, AIC or C'V,—from
Table 1,

e define the relation between b* and b (b* = b versus b* # b),
e define the stopping rules.

Initialization: S = {g1, 1}, where g; = RP and p; is its GLS predictor.

repeat
Given the predefined stopping rules, find the best node for splitting (5), the best
covariate (jz) and the best threshold (cz) as follows:

. 1 .
$,75,C5 = argmin 7ZLOSS(yiaf(xi|jaCa S/S))
s€S,jeJs,ceRT i1

s.t.: %ZLoss(yi,f (x4, c, S/s)) < %ZLoss(yi,f(xi]S)), (3)
i=1 i=1

where J; is the set of available covariates for splitting node s.
if {3, js,cs} exist, then
Update S : replace (gz, pus) by the new two nodes, (gg Nzj, < Cg,ué(c;g)), (gg Nxj, >
05,,ug(05)), where x;, is the covariate js.
end if
until {3, j;, cs} do not exist or stopping rules are satisfied Vs € S.

As can be seen in Algorithm 1, RETCO covers various settings including different
prediction error measures and correlation structures. Before analyzing its properties, here
are some technical details for RETCO algorithm:

e Predefined stopping rules: stopping rules, such as maximal tree’s depth and minimal
number of observations in a node, are commonly applied when fitting regression trees
(for more details, see Section 2.1).

e Variance estimation: the variance components—mneeded for calculating f (z;|j,¢,S/s),
f(x;|S), and the loss function—can be estimated in different ways, for example
using maximum likelihood or restricted maximum likelihood. For clustered data,
simple closed-form equations that estimate the variance components are available and
presented in Appendix B.

e Main optimization part:
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— the GLS predictors— i} (c), p5(c) and {fim }mes/s—are the estimated coefficients
of the current leaves: {ilx; € g5 N z;; < ¢}, {ilx; € gs N z;; > ¢} and
{ilxi € gm}mes/s- This uses dummy variables setting, where each covariate is an
indicator of a different leaf.

— for every potential split, the variance components are estimated using the whole
sample (rather than only {y;|z; € gs}),

— the condition of inequality (3) is required since the loss function is not a training
error (as in the standard regression tree algorithm) and therefore splitting a node
may increase the loss.

e Algorithm’s Output: since the tree estimates the marginal mean, its predictors are
{1 }ies rather than {n(w)}ics.

As was mentioned above, using prediction error estimator in the splitting criterion enables
us to address different prediction goals, b* = b versus b* # b. Although the regression tree
model is a non-linear function of y, each split is a model selection problem of linear models
and therefore Cp, AIC and C'V, can be implemented. The importance of using prediction
error instead of training error is illustrated in Section 4.2 and Section 5. The other key
principle, of taking into account the whole sample when splitting the nodes in order to
account for the correlation between observations from different paths, is addressed in several
points in RETCO. First, the input at each split is the whole sample, and observations from
different paths interact through various components in the loss function — GLS predictors,
the condition of inequality (3), and the bias correction and likelihood function (depending
on the correlation setting and the selected loss function). Second, an iterative approach is
proposed here instead of the recursive approach that is used in the standard regression tree
model. The iterative approach is expressed by selecting the optimal node, 3, for splitting,
rather than splitting each node independently. The reason behind this iterative approach
is that splitting one node may affect the splitting of others thorough the loss. This is in
contrast to the i.i.d. setting with training error loss function, where a recursive approach
can be used since observations in different paths are independent and therefore splitting one
node does not affect the splitting of others.

For LMM-like setting, when b* X b, once f(-) is fitted, the random effects can be
estimated in the same way as in the BLUP, formula (1):

—

(= Cov(y*, y)‘A/_l(y — f(X)), (4)

where f(X) = [f(wl)a ) f(wn)}

RETCO is formalized in the context of LMM: {us}Y_; are GLS predictors and the
variance is decomposed as in LMM, V = ZGZ! + 02 x I,,. However, these properties are not
fundamental in the algorithm and can easily be generalized. For example, the covariance
matrices, Cov(y*,y) and Var(y), can be expressed using a kernel covariance function as is
common in Gaussian process regression (as will be demonstrated numerically in Section 5).
Also, other linear models instead of GLS can be used for estimating the marginal means,
{us}5_,. Moreover, the random effects, b, can be estimated in different ways than in equation

(4).

10
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Due to the iterative approach the complexity is higher than the complexity of a standard
regression tree. Assuming x;; # xy ;Vi# i € [1,...,n] and j € [1,...,p], the loss function
is evaluated less than n x p x 2% times, where d is the tree’s depth. Practically, due to
hyper-parameters that restrict the number of potential splitting values (such as minimal
number of observations at each node) and due to the constraint in inequality (3), which
frequently shortens the depth of paths, the number of evaluations is smaller. The complexity
of each loss function evaluation depends on the loss function, the predictor type, and the
correlation structure. For example, in Cp loss function, GLS predictor, and clustered data,
each evaluation complexity is O(n?), where n, is the cluster size, and therefore the overall
computational complexity is O(n X px 2% x ng’) The amount of memory required is quadratic
in n due to storing of Var(y).

4.1.1 RETCO ror RF aAnNnD GB

Extending RETCO to RF and GB is done by building ensembles of RETCO trees, while
taking into account the special adjustments that RF and GB require. The random effects
are estimated in the same way. Several aspects should be noted when implementing RF and

GB:

o Training set sampling: sampling with replacement cannot be implemented naively
when the loss function involves calculation of Var(y)~! (as when GLS predictor or
marginal likelihood loss are used) since in that case Var(y) might be a singular matrix
due to duplication. In our case half-sampling worked well, but other sub-sampling
schemes might be relevant. For more information about sub-sampling in RF see Duroux
and Scornet (2018).

o Number of trees: since the trees in RF and GB are correlated, in order to reduce the
variance the number of trees should be large, especially when the trees are deep. When
correlated data are involved, the trees are even more correlated due to the correlation
between the observations. Therefore, the number of trees should be even larger than
in the i.i.d. sample setting. RF based on RETCO is demonstrated in Section 5.

e Response in GB: in common regression GB the trees are fitted consecutively to the
residual of the previous trees. Therefore, the input of the algorithm in all the trees
except the first one is not y. Correspondingly, the estimated variance matrices relate
to the residual of the previous trees, rather than to y.

4.1.2 UsING CV Loss IN REGRESSION TREE

In typical predictive modeling settings, generalization error is the primary objective of
learning, hence CV loss is the natural choice. Surprisingly, there is not much previous
work on using CV loss in trees, even without correlation. Notable exceptions are the
ALOOF algorithm (Painsky and Rosset, 2016) and approximations used in CatBoost
(Prokhorenkova et al., 2018). The main drawback in using CV-based loss function is
increasing the computational cost compared to Cp loss function. Moreover, since RETCO is
iterative rather than recursive, the number of evaluations of the loss function can remain
large for all the splits along the tree.

11
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4.2 The Bias Correction Effect

As explained in the previous sections, we suggest to add a bias correction term to the training
error such that the loss function estimates the prediction error. This section illustrates the
effect of the bias correction on split selection. Extensive numerical analysis is presented in
Section 5.

4.2.1 b* 1 b SCENARIO

Observations with positive correlation are more likely to be similar than uncorrelated
observations. Therefore, loss functions that do not take into account the correlation, tend
to split the nodes based on the correlation structure of the training set observations rather
than their mean. Splitting based on the correlation of the training data is not useful for
predicting uncorrelated observations. Therefore, when b* I b it is important to fit the
regression tree based on the marginal mean only. The corrections in Cp and CV,, which
take into account the correlation structure, balance this tendency. Examples 4.1 and 4.2
demonstrate this mechanism. The code for the examples, as well as for the numerical part in
Section 5, is written in Python and is available in https://github.com/AssafRab/RETCO.

Example 4.1 Consider the setting of b* 1L b and a training data containing four observa-
2 1 0 0

tions from two clusters with the covariance matriz Var(y) = (1) g g (1) , i.e., observations

0 0 1 2

1 and 2 belong to the first cluster and observations 8 and 4 belong to the second cluster. The

CV, correction is reduced in this setting to 2tr(He,Var(y))/n. Two models with the GLS

predictor are tested:

e Model A, which splits the training set into the two clusters. Given the covariance
matric:

2 2
—tr [Hey = —t
. r [He, Var(y)] . r

O O = O
SO O
=]
O~ OO
OO =N
SO N
=N OO
N = OO

e Model B, that mixes between the clusters and selects observations 1 and 3 for one
subset and 2 and 4 for the other subset. Given the covariance matrix:

o L 1 -IN/2 100

2 2 L9 -1 7 1 200

— = - 4 4 =

tr[He, Var(y)] = —tr | | ] ~L 0 L ]loo 21 =05
-1 3 0 0 01 2

As can be seen in Example 4.1, decomposing the penalty, 2tr (HCUVar(y)) /n, shows that
the weights that relate to observations from the same cluster are multiplied by their
positive covariance values and therefore contribute to the penalty, while weights that
relate to observations from different clusters are multiplied by zero and therefore do not
contribute to the penalty. As a result, the penalty of model A, which gives the full weight
to observations from the same cluster, is larger than for model B. Therefore, in this scenario
where b* L b, while C'V selects model A when CV(A) < CV(B), C'V. selects model A when
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CV(A) < (CV(B) — 1.5). In that way CV,, as well as Cp, balance the tendency to split
based on the correlation structure of the training set. Obviously, when the observations in
the training set are highly correlated, the penalty effect is stronger, and the superiority of
RETCO over the standard algorithm is more prominent, compared to settings with lower
correlation where the effect may be minor (see also Section 5.1.1).

Example 4.2 Consider the setting of b* 1L b and y ~ Nygp(0.1 x @1, V), where

2, wheni=j,
Vii,j] =<1, wheni#j and (i,j <50 ori,j > 50),
0, o.w,

and

—0.54 €, when i is even,

) 0.5 + €, when i is odd, €, ~ N(0,0.1),
z[i] =

i.e., Y contains two clusters of 50 observations each, and its mean is not correlated with the
clusters.

Two models are tested, model A which uses the threshold x1 = 0, and model B which
uses xo = 0, where xo is highly correlated with the clusters:

. 0.5 + €, when 1 < 50,
wofi] = .
—0.5+€;, when i > 50.
A simulation of this setting is visualized in Figure 1. In this simulation CV(A) = 1.47
and CV(B) = 1.04, while CV,(A) = 2.47 and CV.(B) = 3.04. Therefore, in this simulation
under the b* I b prediction goal setting, while CV selects model B, CV, selects model A.*

Unlike Cp and CV,., whose penalties depend on Var(y), the penalty of AIC in this
setting (b* L b) is fixed regardless of the training covariance structure at 2p/n. Therefore,
we can conclude that in AIC the log-likelihood, ¢(y; IE(y|X ), V), is responsible for mixing
uncorrelated training set observations in the different paths, while the penalty only affects

the stopping rule.

4.2.2 b*=b

When b* = b, the correlation between y* and y is the same as the correlation between
observations in y. Therefore, unlike in the b* I b setting, here there is no clear motivation
to restrict the tendency to split the nodes based on the correlation structure of the training
set (as is the case in standard regression trees). Correspondingly, the bias corrections in this
setting are also different than in the b* 1L b setting. For example, C'V is not biased in this
setting, i.e., C'V, = C'V (for more details see Section 2.3). The penalty in Cp, 202tr(H)/n,
depends on Var(y) through H for some models (e.g., for LMM), however for other models
it does not depend implicitly on Var(y). In any case, the effect of Var(y) is much less
prominent than in the b* L b setting, where the bias is 2tr(H Var(y))/n. Similarly with the

1. For the b* = b setting, which will be discussed next, CV. = CV and both select model B.

13



RABINOWICZ AND ROSSET

i ¢ y
e o ; e® -3
:. (... ) i ':., .. -2
0.5 ; ° ; ® oo o -1
° ! o0 ® O
e 1
i ® 2
(>\I< 0.0 ———————————————————————— cluster
; ° 1
% 2
-0.5 S > 2
-0.5 0.0 0.5
x1

Figure 1: Illustration of Example 4.2 (see text for details). The dashed blue and green lines
are the thresholds for model A and model B, respectively.

penalty in AIC, 2tr(H)/n. Therefore, in this setting, both Cp and AIC penalties mainly
affect the stopping rule rather than mix between uncorrelated observations. Given additional
stopping rules (e.g., tree depth, minimal number of training set observations in each node),
we can conclude that the effect of using prediction error estimator instead of training error
is limited. This scenario is numerically demonstrated in Section 5.1.2. Still, it is important
to emphasize that the proposed model—f(x*) + b*' z*—is recommended also because of the
inference and the use of a solid statistical perspective that the random effects framework
enables.

4.2.3 b* L b BUT b* # b SCENARIO

From a qualitative perspective, this scenario is the same as the b* 1L b scenario. In both
scenarios, the correlation structure of y is not preserved in the prediction problem. As a
result, the bias correction has a key role in balancing the tendency of standard regression
trees to split based on the correlation structure of y. The main difference between the
scenarios is quantitative, and is explicitly expressed in the bias correction formulas. For

example, the bias correction in Cp is 2tr (H (Var(y) —Cov(y, y*))) /m. This setting of b* £ b
but b* # b is demonstrated in Section 5.2.

5. Numerical Results

This section compares the performance of RETCO to the standard regression tree algorithm
and relevant modifications of it that will be described. The analysis is performed using both
simulated data and real data sets for different correlation settings. The simulation part is
based on random effects framework and presents results for b* = b as well as for b* 1L b
correlation settings. The b* # b but b* [ b correlation setting is demonstrated in the
random fields context using a real data set with spatial correlation. Also, different prediction
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error estimator types (Cp, CV, and AIC) and different tree-based models (regression tree
and RF) are analyzed. The code is available in https://github.com/AssafRab/RETCO.

5.1 Simulation

The training set was generated from the following model:

Y =l(z,50) + L(2350) T L@s>0) + L(@150) L(w2>0)L(ws>0) + Zb + €, ()
where
o I(z,~0) €{0,1}", Vj € [1,2,3] is the indicator vector for z;; >0, Vi € [1,...,n].

e The sample contains C clusters, each one of size n. = n/C. Z € R"*¢ indicates the
clusters, i.e., for the first column the first n. elements are 1, and the rest are zero, for
the last column the last n. elements are 1 and the rest are zero.

e b € RY is the random effects vector, distributed N (0,021¢), and € ~ N, (0, I,,).

e x;, 2 and x3 are generated as Zvy+m, where v ~ N¢ (0, aglc) and 7); are uncorrelated
and distributed uniformly, U(—1,1),Vi € [1,...,n].

5.1.1 NEw RanpoMm ErrecTSs (b* L b)

As was mentioned in Section 2.2, when b* L b (i.e., Cov(y*,y) = 0), then b =0 and the
BLUP is reduced to GLS. Here, Cp prediction error estimator is used and therefore y*
is sampled from the same covariate values as in the training set, ® = {x1, 2,23, Z}. In
order to reduce the variance of the prediction error estimate, the test sample contains 300
replicates of ®. RETCO is compared to a standard regression tree, but with GLS predictor
and with squared error loss function, which is the same loss as in Cp but without the bias
correction term. In both algorithms, the stopping rules are depth of tree smaller than four,
and number of observations in the terminal node greater than two. The relative difference
between the RETCO test error, error(RETCO), and its alternative:

error difference[%] = error(RETCO) — error(standard tree)
Hron CITETeneel Al = error(standard tree) '

is calculated repeatedly for 100 simulation runs. The average simulation run time is 82.1
seconds, where RETCO takes on the order of 3-8 fold longer to run due to its iterative
approach. For more details about RETCO’s computational complexity, see Section 4.

Figure 2, left panel, presents boxplots of error difference[%] for different og values. As
expected, when O'g is larger (i.e., the correlation is stronger), the improvement in using
RETCO over the standard regression tree algorithm is bigger. However, on average, also
for small ag values, RETCO is slightly better than the standard regression tree algorithm.
Appendix D presents additional comparison for different sample sizes (n), different cluster
sizes (n.), different true model setting than the setting in equation (5), as well as for
generalization error setting using C'V, (instead of Cp).

As was mentioned in Section 4.2, RETCO balances the tendency of standard tree to
split based on the correlation structure of the training sample. Therefore, we expect that
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Figure 2: Boxplots of the error difference[%)] for n = 300, n. = 50 and different o (0.5, 1, 5)
for different settings. Left: b* 1L b setting (Section 5.1.1). The means are
—2.5, —9.9 and —25.2. Middle: b* = b setting (Section 5.1.2). The means are
—2.1, —1.1 and —10.4. Right: RF setting with b* 1L b (Section 5.1.3). Two
versions of RETCO are analyzed, in light the version that does not enforce the
stopping rule constraint, and in bold the version that enforces the constraint. The
means are —2.1, —2.9 —11.7 and —2.2, —9.6 and —34.7, respectively.

RETCO mixes training set observations from different clusters in the leaves more than the
standard regression tree. The following measure quantifies this mixing property:

C
homogeneity = » Y _ |n(c, s) — n(s)/C],

s€S c=1

where n(c, s) is the number of training set observations in leaf s that belong to cluster ¢ and
n(s) = 25:1 n(c, s). Smaller homogeneity means bigger mixing. Figure 3 plots the training
sample homogeneity difference|[%],

homogeneity(RETCO) — homogeneity (standard tree)

homogeneity(standard tree) ’

versus the error difference[%] for different o values. As can be seen in Figure 3, error
difference[%)] has a positive correlation with homogeneity difference[%], i.e., the property of
RETCO to balance the tendency of standard regression tree to split based on the correlation
structure of the training sample is essential.

5.1.2 SAME RANDOM EFFECTS (b* = b)

For the b* = b scenario, the training set is the same as in Section 5.1.1, but the prediction
set is different, such that the random effects realizations from the training set are also used
for constructing y*.

For RETCO, AIC loss function with LMM predictor for y is used for splitting. As
presented in Section 4, the predictor in the tree’s leaves is GLS and the random effects
term is added after fitting the tree. For the standard regression tree, negative normal log
likelihood loss function is used with no distinction between random and fixed effects, i.e.,
all the covariates, including the cluster, can be selected for splitting. Correspondingly, the
negative log likelihood of i.i.d. normal distribution (which is effectively the same as squared
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Figure 3: Homogeneity difference[%] versus error difference[%] for n = 300, n. = 50 and
different o7 values.

error loss) is used as a loss function for the standard regression tree algorithm. The middle
panel of Figure 2 compares between the algorithms for different Uf values (when n = 300 and
ne = 50). As we can seen in the figure, RETCO outperforms the standard tree algorithm.
For o7 = 0.5 and o7 = 1, the average error difference[%] is close to zero. As was mentioned
in Section 4.2.2, this phenomenon is expected.

5.1.3 RF - NEw RANDOM EFFECTS

RF is demonstrated for b* 1 b and Cp loss function setting. The training sample model is:

Y :I($1>0) + I(w2>0) + I(w3>0) + I(m1>0)l(a:2>0)1(w3>0) + I(m4>o)f(935>0)1(m6>0) + Zb+ €,

where n = 500, x; Vi € {1,...,6}, Zb, and € have the same distribution as in Section 5.1.1.
Additional parameters that are relevant for RF are:

e the maximal tree depth is 10,
e the number of regression trees is T" = 100,

e a random half-sample method is used for sampling the training set for each tree (i.e.,
the training sample size for each tree is 250 without duplicates),

e three covariates are randomly selected at each split, following the rule of thumb of
selecting randomly round (logz (p)) potential covariates at each split.

Also, two versions of RETCO are tested: the first uses the stopping rule constraint as
presented in RETCO in inequality (3), the second does not enforce this constraint, and
therefore results in deeper trees. The prediction set contains new random effects realizations,
such that Cov(y*,y) = 0. The covariates of the prediction set are 200 replicates of the
covariates of the training set. This simulation was repeated 50 times. The right panel in
Figure 2 presents boxplots of the error difference[%] for different o7. As can be seen, both
versions of RETCO outperform the standard algorithm. Also, enforcing the stopping rule
gives better results.
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5.1.4 COMPARISON WITH PREVIOUS ALGORITHMS

The competitors in the left and the right graphs in Figure 2 preserve the main characteristics
of the MRF algorithm (Stephan et al., 2015): taking into account the correlation structure
by using GLS estimator and differentiation between random and fixed effects. The exact
MRF algorithm, which was designed for a genetic application, is not implemented here since
some of its technical details are specific for genetic applications, which are not our main
use case. A comparison between RETCO and RE-EM algorithm (Sela and Simonoff, 2012)
is presented in Appendix D. As expected, RETCO’s performance is uniformly superior to
both algorithms due to its use of prediction error estimates for splitting, and the careful
consideration of correlation structures in splitting and prediction.

5.2 Real Data Analysis

This section presents real data analyses comparing the performance of the standard regression
tree and RF algorithms to their RETCO versions for six different data sets with various
correlation structures. The data sets and the prediction problems are described in Section
5.2.1, then the results are presented in Section 5.2.2.

5.2.1 PREDICTION PROBLEMS DESCRIPTION

The list below briefly describes the different data sets and their prediction problems, addi-
tional technical information can be found in Table 2 and Appendix D. We note that for all
problems we made the choice to divide the data into a relatively small training set and larger
(in some cases, much larger) test set. This serves two purposes: by making the training
sets smaller, we are increasing the difficulty of the problem and the importance of properly
dealing with random effects in obtaining good performance; and by having large test sets,
we can obtain more reliable estimates of model performance.

FIFA — This data set contains football players’ market-values. The data set has a
clustered correlation structure, where the cluster variable is the player’s club, such that
market-values of players from the same club are correlated, but from different clubs are not
correlated. The prediction goal is to predict the market-values of new players from new
clubs. In order to satisfy this prediction goal, the training set contains the observations
of players from 20 clubs that were randomly sampled (548 observations), and the test set
contains the observations of the other clubs (17,939 observations). Since the covariate values
of the prediction set are not the same as the covariate values of the training set, CV-type
loss function is used in the algorithms’ splitting criterion — C'V, for RETCO and CV for the
standard regression tree/RF algorithms. The prediction error is estimated by the average
squared error of the test set.

Communities and Crime — This data set presents the number of violent crimes per
population size in US communities. The data set has a clustered correlation structure, where
the clusters are the US states (each state contains many communities). The training set
contains 15 clusters that were randomly sampled (790 observations), where the test set
contains the other clusters (1,204 observations). For the same reason as in the FIFA data
set, CV-type loss function is used in the algorithms’ splitting criterion.
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South Korea Temperature ("bias correction of numerical prediction model temperature
forecast’) — This data set contains daily maximal temperature measurements (collected in
August between the years 2013 — 2017) at several sites in South Korea. The prediction goal
is to predict the maximal temperature of new days. Measurements of the first two years
were selected (575 observations) in order to predict the maximal temperature of the same
set of days in the next years (2,325 observations). Due to the spatial correlation structure,
exponential kernel covariance function was used for modeling. Since all the records are
measured at the same sites, in-sample error type is used in the algorithms’ splitting criterion
(Cp for RETCO and training error with a squared error loss function for the standard
regression tree/RF).

California Housing Prices — This data set contains the median house value within a
block for different blocks in California. Some of the blocks belong to the same clusters (same
coordinate values), therefore the data set has a clustered-spatial correlation structure, which
can be represented by the following kernel covariance function:

COV(yi, yj) :K:(’Zi - zj‘) + Uglcluster(i):cluster(j) + U?Iizjy

where K(-) is the exponential kernel covariance function, z;, z; are the coordinates and
cluster(i), cluster(j) are the clusters of y;, y;. The prediction goal is to predict the median
house value of new blocks from new clusters. Therefore, 100 clusters are randomly sampled
(279 observations) for the training set and the other clusters are used as the test set (12,124
observations). Since the prediction goal is to predict median house values from new clusters,
then b* # b. However, due to the spatial correlation, the prediction set median house values
are correlated with the training set median house values, and therefore this setting satisfies
the b* # bNb* L b scenario (see Section 2.2.1). CV-type loss function is used in the
algorithms’ splitting criterion since the covariate points of the training set and the prediction
set are different.

Parkinson’s Disease Telemonitoring — This longitudinal data set contains Parkinson’s
disease symptom scores of 42 individuals along six-months trial. The clustered-temporal
correlation structure, where the clusters refer to the individuals, can be modeled by LMM
with random intercept for the cluster and random slope for the time variable. The prediction
goal is predicting the score of new individuals, therefore five individuals were randomly
sampled (742 observations) for the training set and the others were designated as the test set
(5,179 observations). The covariates in this data set are biomedical voice measurements and
their values are approximately the same for all the individuals. Therefore, Cp and training
error with a squared error loss functions are used in the splitting criterion for RETCO and
standard regression tree/RF, respectively.

Wages — This longitudinal data set presents the average hourly wages by year of 888
employees. As in the Parkinson’s Disease Telemonitoring data set, this data set can be
modeled by LMM with random intercept and random slope, where the employee is the
cluster variable. The prediction goal is to predict the average hourly wage of new employees.
50 individuals were randomly sampled (331 observations) for the training set and the other
are used as the test set (6,071 observations). Since the covariate values of the training set
and the prediction set are different, CV-type loss function is used in the algorithms’ splitting
criterion.

19



RABINOWICZ AND ROSSET

Data set Correlation vari- Covariance tools Reference Link

name ables

FIFA Player’s club Random intercept LMM - Kaggle

Crimes State Random intercept LMM  Redmond and UCI
Baveja (2002)

Korea Coordinates Blocked GPR exponen- Cho et al. UCI

Temperature + Day tial kernel (2020)

California Coordinates GPR exponential kernel =~ Pace and Kaggle

Housing + Blocks’ clusters and random intercept Barry (1997)

Parkinson’s Patient + Time Random intercept Tsanas et al. UCI

Disease and slope LMM (2009)

Wages Employee + Time Random intercept - Brolgar pack-

and slope LMM age

Table 2: Data sets description

5.2.2 REAL DATA RESULTS

Table 3 summarizes the results. As can be seen, for all the six data sets the test error of the
standard regression tree and RF algorithms are greater than the test error of their RETCO
versions (the error difference [%]’s are negative). Moreover, in several cases the improvement
of RETCO over the standard algorithm is very big. These results, which cover various types
of correlation structures and prediction goals, stress the importance in using RETCO as a
unified framework for tree-based model in settings involving correlated data.

Correlation Structure Data set Name Regression Tree RF
Clusters FIFA —4.9% —7.4%
Crimes -8.1% —2.8%
. Korea Temperature —14.5% —13.6%
Spatial . . .
California Housing —14.2% —3.3%
Loneitudinal Parkinson’s Disease —32.9% —35.4%
& Wages ~20.0% ~7.9%

Table 3: Error difference [%] between RETCO and standard regression tree, and between
RETCO and standard RF.

6. Conclusions

This paper presents a new algorithm, RETCO, for fitting regression tree-based models for
correlated data. Analyzing various settings with different correlation structures leads to the
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conclusion that RETCO substantially improves prediction performance in settings involving
correlated data.

Standard regression tree-based models ignore the correlation structure of the data and
are thus clearly ill-fitting for dealing with correlated data situations. Various previous and
parallel efforts have been made to develop approaches that take correlations into account, as
reviewed in Section 3.1. Our suggested algorithm RETCO is unique in its comprehensive and
flexible approach. It accounts for the correlation structure in various ways, including using
prediction error estimates for correlated data as the loss function in the splitting criterion.
As discussed and demonstrated, using prediction error estimators for correlated data instead
of training error neutralizes the tendency to fit a tree that divides the training set based on
its correlation structure, as is likely to happen in standard regression tree-based models.

Extensive data analysis, including analysis of six different real data sets with different
correlation structures and models, shows the superiority of RETCO over standard regression
tree-based models, as well as its generality that enables to implement it under various
settings.
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Appendix A. Theoretical Background

This appendix section extends the theoretical background that is given in Section 2.

A.1 Regression Tree, Random Forest and Gradient Boosting

Algorithm 2 presents a typical regression tree algorithm.

Algorithm 2 A tree-based algorithm
Input: y, X.
Output: f(-).
General setting: select a training error loss function and define stopping rules.
Initialization: S = {g1, 11}, where g1 = RP, py = > | yi/n.
repeat
1.  Given the predefined stopping rules, for each node s € S solve the following
optimization problem:

Cs, Js = argmin Z Loss (yi7 I(xmgc)'ufs(c) + I(xi,]->c).ug(c))v
cER,JET 1€ls

where J; is the set of available covariates for splitting node s, Iy = {i|x; € g5},
pl(c) and p’(c) are the mean estimators of {y;|x; € gs N, ; < ¢} and {y;|z; €
gs Nx;j > c}, respectively.

2. Update S by replacing (gs, s) by the new two nodes: (gs Nz, < cs,ué(cs)),
(9s Nxj, > cs,p15(cs)), where zj, is the covariate js and pl(cs), uf(cs) are the
related mean predictors.

until Stopping rules are satisfied Vs € §

Random forest (RF) and gradient boosting (GB) predictor are based on averaging an

ensemble of trees:
T St
f(a:*) = Z )\t Z I(w*egt7s)/~’bt,87
t=1 s=1

where T is the number of trees and \; € (0,1] is the learning rate (for RF A\, = 1/T, Vt).
The regression trees in RF and GB are fitted in different ways than in a standard
regression tree. In RF, the training set of each tree is sampled from the original sample (e.g.,
sampling with replacement of size n, half-sample), and the set of the potential covariates of
each split is a random sample of J;. In GB the trees are dependent and created consecutively,
where the dependent variable of each tree is the residual of the previous tree. Also, there
are many techniques for reducing over-fitting and model variance which are relevant for RF
and GB, but not relevant for standard regression tree model. For more information about
RF and GB see Freund et al. (1999); Friedman (2001); Breiman (2001); Hastie et al. (2009).
Note, unlike in regression tree model, which tends to over-fit and therefore suffers from
high variance, RF has relatively low variance due to the averaging over the T trees. This
property affects the optimal structure of the trees in RF. While the tree depth in regression
tree model should be restricted in order to avoid over-fitting, the trees in RF can be large
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whenever T is respectively large (Criminisi et al., 2011). Since the trees in RF are correlated,
the RF variance decreases in a smaller rate than 7. Commonly the trees’ depth in RF is
also restricted for various reasons, such as the computational cost of RF with deep trees
(and consequently large T').

A.2 Prediction Error Estimation and Model Selection for Correlated Data
A21 Cp

The original Cp, when Cov(y,y) = 02 x I, and Cov(y*,y) = 0, was introduced by Mallows
(1973):

2

1 N 20
Cp=—|ly—gl5+ —p.
n n

A.2.2 AIC

The standard AIC under normality and i.i.d. assumptions was introduced by Akaike (1974):

. 2
Arc - yEX). o) L

n n

where E(y; E(y|X), 02) is the log-likelihood of y.

Appendix B. Estimating Variance Components for Clustered Data

When vy has a clustered correlation structure, i.e., its covariance matrix follows:

o2+ 0f, wheni=j,
Covli, j] = { o2, when i # j but c(i) = ¢(j) ,

0, 0.W,

where c(i) is the cluster that observation i belongs to and o, o}, are in RT, then o2 and o7
can be estimated in a closed-form way. In order to simplify the equations let us assume that
Ey = 0. In this case:

52 — D i (yz - g(i))Q
‘ (n—=0C)

where g(i) is the average of the cluster that y; belongs to, and C' is the number of clusters,

~2 (E?:1(Z7(i)_37)2 _AQ) y C-1

Gy = Oc) X —a 5,
Cc-1 ¢ S ni/n

where 7 is the average of y and n; is the number of observations in cluster j. When E(y) # 0,
the variance parameters should be calculated for the residual, y — Ey.
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Algorithm 3 RE-EM Algorithm
Input: y, X, Z.
Output: f(-), b
Initialization: b - 0.
repeat
1. Using the fixed effects covariates, fit CART algorithm (Breiman et al., 1984) for

(y— 26"

) and extract the selected regions, {ggk)}sik) from the fitted tree.

s=1>

2. Estimate {us}5_;, G, and o2 using the following LMM model:

S(k)
ijei’“)u t2ib+e,

where b ~ N,(0,G), ¢ ~ N(0,0?%).

3. Given {us }f(kl, G® and V) = ZGM zt 4+ 52(R) ], . estimate 5" using the
BLUP formula. B}
until Convergence of b

Appendix C. Comparison with Other Methods

Algorithm 3 presents the RE-EM algorithm (Sela and Simonoff, 2012). Algorithm 4 presents
the MRF algorithm (Stephan et al., 2015) for a single tree.? For MRF, in order to simplify
notations, {y, X, Z} denotes the bootstrap sample, and the features sampling at each split
is ignored.

Appendix D. Numerical Results

This appendix section presents additional results that are related to Section 5.1, as well as
detailed information relating to the settings in Section 5.2.

D.1 Regression Tree - New Random Effects (b* L b)
D.1.1 IN-SAMPLE ERROR SETTING

Given the simulation setting that is described in Section 5.1.1, Figure 4, left panel, presents
the effect of the cluster size (n.), on the performance of RETCO. As can be seen in the
graph, the average error difference[%)] is smaller for the larger block size (n. = 150).
Figure 4, middle panel, presents the effect of the sample size on the performance of
RETCO. As can be seen, RETCO performs better for all the settings. Also, as expected, the
error difference[%)] variance is small for the large sample size. The variance depends on the
maximal three levels has potentially eight predictors, which is a large amount of predictors

2. Stephan et al. (2015) do not supply an organized algorithm, Algorithm 4 tries to formalize their approach
as given in their supplementary material.
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Algorithm 4 Mixed Random Forest (algorithm for a single tree)
Input: y, X, Z.
Output: f(-), 85,82.
Initialization: g; = {0,1}”. Also, estimate § = 02 /02.
repeat
1.  Given the predefined stopping rules, for each node s € S, find the following
parameters:

Js, 00 = atgmax 0(y; 02, i, 1, {ptm bmesyss 9s N (@5, = 0), 95 0 (x5, = 1), {m tmess),
Js€Js,0°€

where pl, p? and {#m}mess are the GLS estimators for {y;|x; € gsN (i , = 0)},
{yilz: € gs 0 (ij, = 1)}, and {yi|®; € gm}mes/s subsets, respectively.

2. Update f(-) : replace each node s € S by {gs N (z;, = 0), L} and {gs N (x5, =

until Stopping rules are satisfied Vs € S.
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Figure 4: Boxplots of the error difference[%]. Left: In-sample error setting, b* 1 b, n =
300, O'g = 1 and different n.. The means are —9.9, —8.0 and —4.3. Middle: In-
sample error setting, b* I b, ag = 1 n. = 50 and different n. The means are
—2.9, —9.9 and —5.0. Right: Generalization error setting, b* 1L b, n = 300, n. =
50 and different 0’2. The means are —2.8, —11.0 and —7.3.

when n = 100, but small when n = 1000. Therefore, when n = 100 the tree predictions are
noisy for both algorithms, and their relative difference is noisy as well.

D.1.2 GENERALIZATION PREDICTION ERROR SETTING

In order to analyze RETCO performance in generalization prediction error problem, the
test set setting was changed such that the prediction set covariates are nonidentical to the
training sample covariates (but are sampled from the same distribution). As was described
in Section 2.3, C'V, loss function estimates the generalization error unbiasedly by correcting
the standard CV error. Therefore, C'V, loss function is used in RETCO and CV loss function
is used for the standard regression tree algorithm. Figure 4, right panel, presents the error
difference[%)] for different o7.
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Figure 5: Boxplots of the error difference[%)]. Left: In-sample error setting, b* L b, n =
300, ag = 1 and different 02. The means are —11.6, —9.1 and —8.9. Middle:
In-sample error setting, b* I b, for new true model with continues covariates
functions. The means are —0.7, —1.2 and —25.4. Right: In-sample error setting,
b* I b, for new true model with continues covariates functions, noise covariates
and different distributions of x;. The means are —0.1, —3.8 and —25.2.

D.1.3 ADDITIONAL SETTINGS

Figure 5 presents the performance of RETCO for various additional settings.
e Left panel: the same setting as in Section 5.1.1, but for different o2 (and of = 1).

e Middle panel: the same setting as in Section 5.1.1, but with a different true model,
with continues covariates functions:

y = sin(x1) + sin(xs) + sin(xs) + sin(xq) x sin(xy) X sin(xs3) + Zb+¢€,  (6)
where sin is the Sine function.

e Right panel: the same setting as in equation (6), but with new available covariates for
splitting, x4, @5, xg, that do not relate to y. Also, the distribution of the covariates
are different:

—xj =Zv+mn,Vj€{1,3,5}, where v ~ N¢(0,0%1¢) and n; are uncorrelated and
distributed uniformly, U(—1, 1),
—x;=nVje {246}

D.2 Comparison with RE-EM

Figure 6, left figure, presents the error difference between RETCO and RE-EM for the
scenario when b* I b. All the other settings are the same as in Section 5.1.1. Similarly,
Figure 6, right figure, presents the error difference between RETCO and RE-EM for the
scenario when b* = b. All the other settings are the same as in Section 5.1.2. As can be
seen in Figure 6, RETCO performs better than RE-EM.
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Figure 6: Boxplot of Error difference[%] between RETCO and RE-EM. Left figure: b* 1L b
setting. The means are —0.5, —5.2 and —25.5. Right Figure: b* = b setting. The
means are —10.8, —26.4 and —28.86.

D.3 Real Data Analysis

Detailed information about the settings of the real data analyses in Section 5.2 is given
below.

In all implementations, the minimum number of observations in a node is 3. For RF imple-
mentations, the number of covariates that were sampled at each split is round (logg (p)), the
number of trees is 80, and the maximal tree depth is ten. For regression tree implementations,
the maximal regression tree depth is five.

Additional technical information for each data set:

FIFA-

e Dependent variable: Players’ market values
e Number of covariates: 11

e Comments: The covariates that are used in this analysis are: "Age’, ’Overall’, "Potential’,
"Wage’, 'Special’, 'Preferred Foot’, ’International Reputation’, "Weak Foot’, ’Skill
Moves’, "Height’, "Weight’. Other variables have many missing values or are irrelevant.

Crimes (Communities and Crime in US)-

e Dependent variable: Violent crimes in US communities per population size

e Number of covariates: 100 (all the available covariates were used)
Korea Temperature (bias correction of numerical prediction model temperature forecast’)-
e Dependent variable: Daily maximum temperature at several sites in South Korea

e Number of covariates: 4
e Comments:
— The covariates that are used in this analysis are: "Present_Tmin’,’DEM’, ’Slope’,
’Solar radiation’. Other variables in this data set are models scores of the data

set supplier, which are based on previous dependent variable measurements (and
therefore cannot be used for LMM).
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— Exponential kernel covariance function was used. Maximal temperature in differ-
ent days are assumed to be uncorrelated.

— The original data set contains records from July and August. Due to many
missing values in July along the years, only records from August are analyzed.
Also, sites with missing values along the years were omitted.

California Housing-

e Dependent variable: Values of houses in California
e Number of covariates: 6 (all the available covariates were used)
Parkinson’s Disease Telemonitoring-

e Dependent variable: Total UPDRS score, which is a score of Parkinson’s disease
progression

e Number of covariates: 18

e Comments: All the supplied covariates were used except the motor_ UPDRS (which its
relation with the dependent variable is not fully clear to us).

Wages-

e Dependent variable: Average hourly wages

e Number of covariates: 6 (all the available covariates were used)
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