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Abstract

We propose a spectral-based approach to analyze how two-layer neural networks separate
from linear methods in terms of approximating high-dimensional functions. We show that
quantifying this separation can be reduced to estimating the Kolmogorov width of two-
layer neural networks, and the latter can be further characterized by using the spectrum of
an associated kernel. Different from previous work, our approach allows obtaining upper
bounds, lower bounds, and identifying explicit hard functions in a united manner. We
provide a systematic study of how the choice of activation functions affects the separation,
in particular the dependence on the input dimension. Specifically, for nonsmooth activation
functions, we extend known results to more activation functions with sharper bounds.
As concrete examples, we prove that any single neuron can instantiate the separation
between neural networks and random feature models. For smooth activation functions, one
surprising finding is that the separation is negligible unless the norms of inner-layer weights
are polynomially large with respect to the input dimension. By contrast, the separation
for nonsmooth activation functions is independent of the norms of inner-layer weights.

Keywords: Kolmogorov width, two-layer neural network, single neuron, spectral decay,
curse of dimensionality

1. Introduction

Neural network-based machine learning has achieved remarkable performances in many ap-
plications, such as computer vision, natural language processing, and scientific computing.
One of the key reasons behind these successes is that neural networks can efficiently approx-
imate certain high-dimensional functions (Barron, 1993, 1994; Bach, 2017a; Ongie et al.,
2019; E et al., 2019; Poggio and Liao, 2018; E et al., 2021; Gribonval et al., 2021; Suzuki,
2019; Klusowski and Barron, 2016), while traditional linear methods cannot (Barron, 1993,
1992; Kurková and Sanguineti, 2002; Siegel and Xu, 2021). In this paper, we provide a
comprehensive study of this phenomenon for two-layer neural networks.

Consider two-layer neural networks given by

fm(x; θ) =
m∑
j=1

ajσ(wTj x+ bj), (1)
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where wj ∈ Rd, aj ∈ R, bj ∈ R and σ : R 7→ R is the nonlinear activation function. We
use θ = {aj , wj , bj}mj=1 to denote all the parameters and m to denote the network width.
Denote by Nm the set of two-layer neural networks of width m:

Nm =
{
fm(·; θ)

∣∣ m∑
j=1

|aj | ≤ 1,max
j

(‖wj‖2 + |bj |) ≤ r
}
. (2)

To study the separation between neural networks and linear methods, we consider target
functions in

N = ∪∞m=1Nm, (3)

which is the closure (with respect to the L∞ metric) of all finite-width neural networks with
bounded norms defined above. Note that the function class N depends on the activation
function σ and the size of inner-layer weights r, which are omitted in the notation for
simplicity. The function class N has been widely used to analyze properties of two-layer
neural networks including but not limited to the separation from linear methods. For more
details, we refer to Barron (1993, 1992); Kurková and Sanguineti (2002); Bach (2017a); E
et al. (2019, 2021) and the references therein. In this paper, we will focus on studying the
separation in terms approximating functions in N .

Denote by ρ the input distribution and the approximation error will be measured with
respect to ρ. Mathematically speaking, quantifying the separation boils down to estimating
the following two quantities:

(1) The approximability by two-layer neural networks:

em(N ) := sup
f∈N

inf
g∈Nm

‖f − g‖2L2(ρ), (4)

which describes the worst-case error of approximating functions in N with two-layer
neural networks.

(2) The (in)approximability by linear methods:

ωm(N ) := inf
φ1,··· ,φm∈L2(ρ)

sup
f∈N

inf
c1,...,cm∈R

‖f −
m∑
j=1

cjφj‖2L2(ρ), (5)

which describes the worst-case error of approximating functions in N with the best-
possible fixed features. Note that ωm(N ) is exactly the Kolmogorov width of N
(Kolmogorov, 1936; Lorentz, 1966).

When ωm(N ) is significantly larger than em(N ), we say that there is a separation between
two-layer neural networks and linear methods (with the best-possible fixed features). In
other words, there exist functions in N such that they can be efficiently approximated by
neural networks but not by linear methods.

We are particularly interested in how the separation depends on the input dimension
d. Does the separation become more significant in higher dimensions? To facilitate the
statement, we use the concept of curse of dimensionality (CoD) (Bellman, 1957). A quantity
qm is said to be free of the CoD if qm ≤ poly(d)m−β with β being a constant independent

2



The separation between neural networks and linear methods

of d. On the contrary, we say qm exhibits or suffers from the CoD if qm ≥ poly(1/d) for all
m ≤ exp(d). A specific rate that achieves the CoD is qm ≥ poly(1/d)m−β/d with β being a
constant independent of d. In particular, when the Kolmogorov width ωm(N ) exhibits the
CoD, we must need exponentially many features for apporoximating functions in N .

The seminal work (Barron, 1993) identified a subclass NF ⊂ N , determined by the
first-order moment of the Fourier transform, and showed em(NF) = O(1/m). This bound
means that approximating functions in NF with neural networks is free of the CoD; in other
words, the approximation rate is dimension-independent. Later, Barron (1992) extended
this result to the whole class N . Along this line of work, (Breiman, 1993; Makovoz, 1998;
Kurková et al., 1997; Kurková and Sanguineti, 2001, 2002; Bach, 2017a; E et al., 2019; Siegel
and Xu, 2020a) improved and extended the upper bound, showing em(N ) = O(1/m) holds
for very general activation functions. Given this upper bound of em(N ), what remains is
estimating the Kolmogorov width ωm(N ).

Barron (1993, 1992) proved that ωm(N ) ≥ Cd−1m−1/d, which implies that approximat-
ing functions N with linear methods (even using the best-possible features) suffers from the
CoD. Together with em(N ) = O(m−1), Barron (1993, 1992) established the first CoD-type
separation for neural networks and linear methods. However, the lower bound is limited
to sigmoidal activation functions, such as the sigmoid and Heaviside step function. Barron
(1993) obtained the lower bound by explicitly constructing exponentially many orthogo-
nal functions in N via the Fourier transform. Kurková and Sanguineti (2002) provided a
systematic study of this orthogonal function argument for general function classes. But
the application to neural networks is still limited to the case considered in Barron (1993),
since the Fourier-based construction of orthogonal functions in Barron (1993) is specific to
sigmoidal activations. It is unclear how to extend it to general cases. On the other hand,
these works did not consider the upper bound of ωm(N ), which is critical for understand-
ing when and how the separation from linear methods becomes negligible. For instance,
if ωm(N ) = O(m−1), then there is no separation between two-layer neural networks and
linear methods for approximating functions in N since em(N ) = O(m−1).

In addition, the separation results mentioned above rely on worst-case analyses and
only guarantee the existence of functions that are hard to approximate with linear meth-
ods. Another important but less-explored question is: Can we identify some specific hard
functions that instantiate the separation? A recent progress was made by E et al. (2019)
and Yehudai and Shamir (2019) for the separation from the specific random feature model
(RFM) (Rahimi and Recht, 2007): hm(x; a) =

∑m
j=1 ajσ(wTj x), where {wj} are indepen-

dently and uniformly drawn from the unit sphere. This model may look similar to two-layer
neural networks. The difference is that the {wj} in two-layer neural networks are adaptive
to the target function, whereas {wj} in the RFM are fixed.

Specifically, E et al. (2019) and Yehudai and Shamir (2019) showed that a single neuron:
x 7→ σ(vTx+ b) is enough to separate the two methods. E et al. (2019) numerically showed
that approximating a single neuron with random features suffers from the CoD; Yehudai
and Shamir (2019) provided a partial theoretical explanation. Yehudai and Shamir (2019)
proved that there exist constants C0, C1 > 0 such that, if m ≤ eC1d and the coefficients
satisfy maxj∈[m] |cj | ≤ eC1d/m, then there exists a b∗ ∈ R such that for any v ∈ Rd with

‖v‖ = d3, the error of approximating x 7→ σ(vTx + b∗) with the random features is larger
than C0. However, this theoretical result is quite unsatisfying in two aspects: (1) The bias
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term b∗ still needs to be chosen in an adversary way, which means that this function is
not completely explicit; (2) The coefficient magnitudes need to be bounded. Consequently,
we cannot fully claim the separation for approximating this specific function. In addition,
the analysis there is essentially also based on explicit constructions of nearly orthogonal
functions (Malach and Shalev-Shwartz, 2020).

1.1 Overview of our contributions

In this paper, we present a spectral-based approach to analyze the separation, which reduces
the problem to estimating the eigenvalues of an associated kernel. Specifially, consider a
general parametric feature ϕ : X × Ω 7→ R and let Φ = {ϕ(·; v) | v ∈ Ω} be the class of
features. The key quantity in our analysis is the following average version of Kolmogorov
width:

A(π)
m (Φ) = inf

φ1,...,φm∈L2(ρ)
Ev∼π inf

c1,...,cm∈R
‖ϕ(·; v)−

m∑
j=1

cjφj‖2L2(ρ), (6)

where π is a probability distribution on Ω. We prove in Lemma 2 thatA
(π)
m (Φ) =

∑∞
j=m+1 λj ,

where {λj}j≥1 are the eigenvalues in a non-increasing order of the kernel: kπ(x, x′) =
〈ϕ(x; ·), ϕ(x′; ·)〉π. Then we apply this general result to the two-layer neural network case
where ϕ(x; v) = σ(wTx+ b). The specfic procedures go as follows.

• Let Qγ,b = {σv(x) = σ(γvTx + b)|v ∈ Sd−1} be the class of single neuron and τd−1

be the uniform distribution over Sd−1. We show in Theorem 10 that when ρ = τd−1,
there exists a Cd = poly(d) such that

sup
γ+|b|≤r

A
(τd−1)
m (Qγ,b) ≤ ωm(N ) ≤ Cd sup

γ+|b|≤r
A

(τd−1)
m (Qγ,b). (7)

• Moreover, by Lemma 2, A
(τd−1)
m (Qγ,b) =

∑∞
j=m+1 λj , where {λj}j≥1 denote the eigen-

values corresponding to the kernel: k(γ,b)(x, x′) = Ev∼τd−1
[σ(γvTx+ b)σ(γvTx′ + b)].

We thus provide a tight characterization of ωm(N ) using the spectrum of k(γ,b). For ReLUα

activations, we even have Cd = O(1), where the characterization becomes exact. Here the
ReLUα activation function is defined by σ(z) = max(0, zα). Note that the kernel k(γ,b)

is in a dot-product form, for which we can apply the harmonic analysis to obtain explicit
estimates of the eigenvalues (Smola et al., 2001; Bach, 2017a).

The above approach does not need the explicit construction of orthogonal functions,
thereby working for very general activation functions, including the commonly-used ReLU,
Gaussian error linear unit (GELU) (Hendrycks and Gimpel, 2016), Swish/SiLU (Ramachan-
dran et al., 2017; Elfwing et al., 2018). Moreover, it allows obtaining upper bounds, lower
bounds, and explicit hard functions simultaneously. Using this approach, we provide a
comprehensive study of how the smoothness of σ affects the decay of ωm(N ), in particular
the dependence on the input dimension. Our specific findings are summarized as follows.

• For the nonsmooth ReLUα activation functions, we show in Proposition 4.1 that

ωm(N ) ≥ C(1/d, α)m−
2α+1
d−1 with C(1/d, α) depending on 1/d polynomially. Com-

bining with the known bounds em(N ) = O(1/m), we establish the first CoD-type
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separation for general ReLUα activations, which includes the result of Barron (1993)
as a special case. In Theorem 6, we prove that the preceding lower bound holds for
any single neuron, which removes all the restrictions of Yehudai and Shamir (2019),
including the boundedness of coefficient magnitudes and the adversarial choice of bias
term. Thus we can now truly claim the separation from the RFM for this specific
function. Moreover, our results hold for any ReLUα activation, whereas Yehudai and
Shamir (2019) only considers the ReLU case, i.e., α = 1.

• For smooth activation functions, we show that whether ωm(N ) exhibits the CoD or not
depends on the norms of inner-layer weights, i.e., the value of r in Eq. (2). Specifically,
Theorem 11 shows that when r = 1, ωm(N ) ≤ d/m for activation functions that satisfy
certain derivative boundedness condition. Proposition 12 further provides a fine-
grained characterization of the dependence on r for the specific arctangent activation,
showing ωm(N ) ≤ d4r2m−max(1/2,1/r2). These rates are dimension-independent and
moreover, they can be achieved by using spherical harmonics, i.e., the homogeneous
harmonic polynomials constrained on Sd−1. Therefore, neural networks in these cases
do not perform (significantly) better than polynomials. On the contrary, Theorems 14
and 15 show that the CoD-type separation can be recovered for sigmoid-like and ReLU-
like smooth activations when r ≥ dC for some positive constant C. In particular,
C > 1/2 is enough for the specific arctangent activation function.

We notice that there is a concurrent work (Siegel and Xu, 2021), obtaining the same
decay rates of ωm(N ) for the ReLUα activations. However, the bounds there are not
very useful in the high-dimensional regime since Siegel and Xu (2021) did not show their
constants depending on d polynomially. On the other hand, the technique used in Siegel and
Xu (2021) is still based on the orthogonal function argument developed in Barron (1993);
Kurková and Sanguineti (2002), whereas ours is completely different.

Essentially, our spectral-based approach, in particular the bound (7), provides a tight
characterization of the Kolmogorov width for two-layer neural networks, which is even
almost exact for the ReLUα activation function. It is also applicable to analyze other prop-
erties that are related to Kolmogorov width. For instance, Siegel and Xu (2021) obtained a
tight lower bound of the metric entropy (logarithm of the covering number) (Kolmogorov,
1958) of two-layer neural networks by using our results.

1.2 Other related work

Approximation with random features Our work is also related to Ghorbani et al.
(2021), which shows that the random feature model effectively fits polynomials. Let γ =
N (0, 1) be the standard normal distribution. Specifically, for the single neuron target func-
tion, Ghorbani et al. (2021) showed that the approximating error with N random features
is roughly controlled by ‖σ>`‖2L2(γ) when d`+δ ≤ N ≤ d`+1−δ for small δ > 0. Here, σ>`(·)
is the projection of σ orthogonally to the subspace spanned by polynomials of minimum
degree `. However, no explicit estimate is provided, and it is, therefore, unclear how the
approximability depends on the input dimension. Moreover, the analysis of Ghorbani et al.
(2021) is limited to the specific forms of features. By contrast, our analysis is applicable to
very general features.

5



Wu and Long

Learning neural networks activated by smooth functions Livni et al. (2014) proved
that two-layer neural networks activated by the sigmoid function can be efficiently approx-
imated by polynomials, if the norms of inner-layer weights are bounded by a constant
independent of d. Then, they use this approximation result to show that these networks
can be learned efficiently in polynomial time (see also Zhang et al. (2016)). In this paper, we
extend this result to more general smooth activations, which include all the commonly-used
ones, such as tanh, softplus, GELU. Moreover, we prove that when the norms of inner-layer
weights are large than dβ with β being a small positive constant, there does not exist fixed
features such that the linear method can avoid the CoD. These improvements over Livni
et al. (2014) benefit from the spectral-based approach developed in our study, which is quite
different from the techniques used in Livni et al. (2014).

The spectrum of the associated kernel It is well-known that the spectrum of the
kernel kπ plays an important role in analyzing the corresponding RFM (Carratino et al.,
2018; Bach, 2017b,a; Mei and Montanari, 2019). Recently, it is also extensively explored
to understand neural networks in the kernel regime (Daniely, 2017; Xie et al., 2017; Jacot
et al., 2018; Chen and Xu, 2021; Bietti and Mairal, 2019; Bietti and Bach, 2021; Scetbon and
Harchaoui, 2021; Bach, 2017a). In contrast to these works, we reveal that the spectrum of
that kernel also play a fundamental role in separating neural networks from linear methods,
which is essentially a property beyond the kernel regime.

At a technical point, our work also bears similarity with Smola et al. (2001) and Bach
(2017a) since we all rely on the harmonic analysis of functions on Sd−1. Specifically, Smola
et al. (2001) provided the integral representation of eigenvalues for general dot-product
kernels; Bach (2017a) provided detailed calculations for the specific kernel kπ. In particular,
Bach (2017a) obtained (complicated) analytic expressions of the eigenvalues for ReLUα

activations, which are expressed in terms of Gamma functions. The reduced problem in our
analysis is also estimating the eigenvalues of the kernel as explained above. We adopt the
integral representation in Smola et al. (2001); Bach (2017a) and the analytic expressions in
Bach (2017a). The specific differences from Bach (2017a) are listed below.

• For ReLUα activation functions, we obtain non-asymptotic estimates of the eigen-
values with the constants depending on d polynomially, whereas Bach (2017a) only
considered the asymptotic regime without tracking the constants. This improvement
is crucial for understanding the separation in high dimensions.

• We provide estimates of the eigenvalues for smooth activation functions, which are
not covered in Bach (2017a). Moreover, for the specific arctangent activation, we
further provide a fine-grained characterization by showing that the eigenvalue can be
expressed analytically using Gaussian hypergeometric functions (Olver et al., 2010).

• Bach (2017a) used the spectrum of that kernel to compute the reproducing kernel
Hilbert space (RKHS) (Aronszajn, 1950) norm induced by that RFM. However, our
interest is analyzing how two-layer neural networks outperform linear methods.

2. Preliminaries

Notation. Let Sd−1 = {x ∈ Rd : ‖x‖2 = 1}, ωd−1 = 2πd/2

Γ(d/2) be the surface area of Sd−1,

and τd−1 be the uniform distribution over Sd−1. For any Ω, denote by P(Ω) the set of
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probability measures over Ω. For a probability measure γ, for simplicity we use 〈·, ·〉γ and
‖ · ‖γ to denote the L2(γ) inner product and norm, respectively. Given a subset B, denote
by 1B the indicator function of B, which has value 1 at points of B and 0 otherwise. Let
Γ(x) be the Gamma function and

(
n
m

)
= Γ(n+1)

Γ(m+1)Γ(n−m+1) be the binomial coefficient. We

shall use poly(β) to denote a quantity that depends on β polynomially. We use X ∼ Y ,
if there exist absolute constants C1, C2 > 0 such that C1Y ≤ X ≤ C2Y . X . Y means
X ≤ CY for an absolute constant C > 0, and X & Y is defined analogously.

2.1 Legendre polynomials and spherical harmonics

We shall focus on the case of ρ = τd−1, where the eigenvalues of the kernel of interest can
be explicitly estimated. Hence, we need to prepare some basic techniques for analyzing
functions on Sd−1. Denote by Pk the associated Legendre polynomials of degree k in d
dimensions (Atkinson and Han, 2012, Section 2.6), which satisfies the following recursive
formula (Atkinson and Han, 2012, Equation 2.86):

P0(t) = 0, P1(t) = t,

Pk(t) =
2k + d− 4

k + d− 3
tPk−1(t)− k − 1

k + d− 3
Pk−2(t), k ≥ 2.

(8)

Note that {Pk}∞k=0 are the orthogonal polynomials with respect to the distribution pd(t) =

(1− t2)
d−3
2 /B(1

2 ,
d−1

2 ), i.e., the distribution of x1 for x ∼ τd−1. Specifically,∫ 1

−1
Pk(t)Pj(t)

(
1− t2

)(d−3)/2
dt = δjk

ωd−1

ωd−2

1

N(d, k)
, (9)

where

N(d, k) =
2k + d− 2

k

(
k + d− 3

d− 2

)
(Atkinson and Han, 2012, Equation 2.67 and 2.68). Notice that the above equation can be
rewritten as follows:∫

Sd−1

Pk(x
Ty)Pj(x

Ty)dτd−1(y) =
δjk

N(d, k)
, ∀x ∈ Sd−1.

The Rodrigues’s formula gives a closed-form expression of Pk:

Pk(t) =

(
−1

2

)k Γ((d− 1)/2)

Γ(k + (d− 1)/2)

(
1− t2

)(3−d)/2
(
d

dt

)k (
1− t2

)k+(d−3)/2
. (10)

The polynomial Pk is even (resp. odd) when k is even (resp. odd).

Let Ydk be the space of all homogeneous harmonic polynomials of degree k in d dimensions
restricted on Sd−1; the dimension of the space Ydk is N(d, k). Let {Yk,j}1≤j≤N(d,k) be an

orthonormal basis of Ydk in L2(τd−1). Then Yk,j : Sd−1 7→ R denotes the j-th spherical
harmonics of degree k. Then {Yk,j}k∈N,1≤j≤N(d,k) forms an orthonormal basis of L2(τd−1)
(Atkinson and Han, 2012, Section 2.1.3, Corollary 2.15 and Theorem 2.38).
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The spherical harmonics is related to the Legendre polynomials:

N(d,k)∑
j=1

Yk,j(x)Yk,j(y) = N(d, k)Pk(x
T y) (11)

(Atkinson and Han, 2012, Theorem 2.24). For any f : [−1, 1] 7→ R, x ∈ Sd−1 and Yk ∈ Ydk ,
the Hecke-Funk formula (Atkinson and Han, 2012, Theorem 2.22) is given by∫

Sd−1

f(x>y)Yk(y) dτd−1(y) =
ωd−2

ωd−1
Yk(x)

∫ 1

−1
f(t)Pk(t)

(
1− t2

)(d−3)/2
dt. (12)

We refer to Schoenberg et al. (1942) and Atkinson and Han (2012) for more details about
the harmonic analysis on Sd−1.

3. A general result

Denote by ϕ : X × Ω 7→ R a general parametric feature. For any π ∈ P(Ω), define

kπ : X ×X 7→ R, kπ(x, x′) = 〈ϕ(x; ·), ϕ(x′; ·)〉π. (13)

Assume that ϕ(·; v) is continuous on X for any v ∈ Ω and X is compact. By Mer-
cer’s theorem, we have the eigendecomposition: kπ(x, x′) =

∑∞
j=1 λjej(x)ej(x

′), where
{λj}j≥1 are the eigenvalues in a non-increasing order and {ej}j≥1 are the corresponding
eigenfunctions that satisfy Ex′∼ρ[kπ(x, x′)ej(x

′)] = λjej(x). The trace of kπ satisfies that∑∞
j=1 λj = Ex∼ρ[kπ(x, x)]. In particular, we are interested in the following quantity

Λπ(m) =

∞∑
j=m+1

λj . (14)

Consider the model: gm(x; θ) =
∑m

j=1 ajϕ(x; vj), where θ = {(aj , vj)}mj=1 denote the
learnable parameters. In the literature, this model is often called variable-basis approxima-
tion (Gnecco, 2012; Kurková and Sanguineti, 2001). Two-layer neural networks correspond
to the specical case where ϕ(x; v) = σ(wTx + b). Other examples include the free-node
splines (DeVore and Lorentz, 1993, Chapter 11), trigonometric polynomials with free fre-
quencies (DeVore and Temlyakov, 1995), etc.

Recall that Φ = {ϕ(·; v) | v ∈ Ω} is the class of parametric feature functions. Define

G =


m∑
j=1

ajϕ(·; vj)
∣∣ m∑
j=1

|aj | ≤ 1,m ∈ N+

, (15)

which is just the closure of the convex, symmetric hull of Φ. When ϕ(x; v) = σ(wTx + b)
and Ω = {(wT , b)T ∈ Rd+1 : ‖w‖2 + |b| ≤ r}, we have G = N .

The following theorem provides a lower bound of the Kolmogorov width of G.

Proposition 1 (Spectral-based lower bound) ωm(G) ≥ supπ∈P(Ω) Λπ(m).
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The proof of Proposition 1 needs the following characterization of the average Kol-
mogorov width of Φ.

Lemma 2 A
(π)
m (Φ) = Ev∼π infc1,...,cm∈R ‖ϕv −

∑m
j=1 cjej‖2ρ = Λπ(m), where ϕv = ϕ(·; v).

It is implied that the best-possible features minimizing the average approximation error
are the leading eigenfunctions.
Proof Without loss of generality (WLOG), assume {φj}mj=1 are orthonormal in L2(ρ),
otherwise we can perform Gram-Schmidt orthonormalization. Then,

Ev∼π inf
c1,...,cm∈R

‖ϕv −
m∑
j=1

cjφj‖2ρ = Ev∼π‖ϕv −
m∑
j=1

〈ϕv, φj〉ρφj‖2ρ = Ev∼π
[
‖ϕv‖2ρ −

m∑
j=1

〈ϕv, φj〉2ρ
]

= Ex∼ρ[kπ(x, x)]−
m∑
j=1

Ex,x′∼ρ[φj(x)φj(x
′)k(x, x′)]

≥
∞∑
j=1

λj − sup
〈ψj ,ψj′ 〉ρ=δj,j′

m∑
j=1

Ex,x′∼ρ[ψj(x)ψj(x
′)kπ(x, x′)]. (16)

The second term in (16) is a standard PCA problem for kπ, where the supremum is reached
at φj = ej and

∑m
j=1 Ex,x′∼ρ[ej(x)ej(x

′)kπ(x, x′)] =
∑m

j=1 λj . Plugging it back to (16) com-
pletes the proof.

Proof of Proposition 1 Lemma 2 provides a estimate of the average approximation
error. The Kolmogorov width, which is the worst-case error, can be bounded as follows:

ωm(Φ) = inf
φ1,...,φm

sup
v∈Ω

inf
c1,...,cm∈R

‖ϕv −
m∑
j=1

cjφj‖2ρ ≥ A(π)
m (Φ) = Λπ(m), ∀π ∈ P(Ω). (17)

Hence, ωm(G) ≥ ωm(Φ) ≥ supπ∈P(Ω) Λπ(m) because of Φ ⊂ G. �
The spectral-based lower bound of ωm(G) in Proposition 1 is quite general, holding

for any parametric features. Even when explicit estimates of the eigenvalues of kπ are not
tractable, we can still numerically compute ones, thereby obtaining a numerical lower bound
of ωm(G).

We notice that a similar lower bound of Kolmogorov width already appeared in Ismag-
ilov (1968) for a completely different purpose. At first glance, the function class considered
in Ismagilov (1968) may look different from G, but they are in fact equivalent (see (Pinkus,
2012, Section 3.4)). However, to the best of our knowledge, our work is the first one exploit-
ing this approach to study variable-basis approximations and two-layer neural networks. In
contrast, the existing works on bounding ωm(G) (Kurková and Sanguineti, 2002; Gnecco,
2012; Siegel and Xu, 2021) all rely on the orthogonal function argument, whose applicability
is limited to some special cases. Moreover, we obtain an upper bound that match the lower
bound in Proposition 1 for two-layer neural networks.

In the remaining of this paper, we will apply the above general result to the case of
two-layer neural networks and the input distribution ρ = τd−1. In such case, we can have

9
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explicit estimates of the eigenvalues, thereby the Kolmogorov widths. Moreover, taking
π = τd−1 also yields an upper bound that matches the above lower bound. For simplicity,
we will omit the subscript of Λπ since π is always fixed to be τd−1 in the following analyses.

4. Approximation of single neurons

We first consider the single neuron without bias: x 7→ σ(vTx). The results established in
this section will be utilized later to analyze two-layer neural networks.

Assume that π = ρ = τd−1. By the rotational invariance, kπ can be written in a
dot-product form:

kπ(x, x′) =

∫
Sd−1

σ(vTx)σ(vTx′) dτd−1(v) = κ(xTx′) (18)

where κ : [−1, 1] 7→ R. Following Smola et al. (2001), the spectral decomposition of κ is
given by:

κ(xTx′) =
∞∑
k=0

N(d,k)∑
j=1

µkYk,j(x)Yk,j(x
′), (19)

where µk is the eigenvalue and the spherical harmonics Yk,j is the corresponding eigenfunc-
tion that satisfies Ex′∼τd−1

[κ(xTx′)Yk,j(x
′)] = µkYj,k(x). Note that {λj} are the eigenvalues

counted with multiplicity, while {µk} are the eigenvalues counted without multiplicity. We
refer to (Schoenberg et al., 1942; Smola et al., 2001) for more details about the spectral
decomposition of a dot-product kernel on Sd−1.

Applying Lemma 2 to single neurons gives the following lower bound

Ev∼τd−1
inf

c1,...,cm
‖σv −

m∑
j=1

cjφj‖2τd−1
≥ Λ(m), (20)

and the inequality can be achieved by using the spherical harmonics as the fixed features.
By exploiting the rotational invariance, one can show the following upper bound.

Proposition 3 (Uniform approximability) Let {φj}mj=1 be the leading spherical har-
monics. For any non-increasing function L : N+ → R+ that satisfies Λ(m) ≤ L(m), let

q(d, L) = supk≥1
L(k)

L((d+1)k) . Then we have for any v ∈ Sd−1,

inf
c1,...,cm

‖σv −
m∑
j=1

cjφj‖2τd−1
. q(d, L)L(m). (21)

The proof is deferred to Appendix A.1. When L(m) ∼ m−s, q(d, L) . ds. Therefore, q(d, L)
is at most polynomial in d. In fact, one can choose L(m) = Λ(m) to obtain the tightest
bound. The introduction of L(m) is to facilitate the explicit calculation of constant q(d, L),
since we hardly have the exact rate of Λ(m).

By applying the eigenvalue estimates given in the next subsections, we have the following
specific results. For the nonsmooth activations considered in Section 4.1, taking L(m) ∼
m−

2α+1
d−1 yields q(d, L) . d

2α+1
d−1 ≤ Cα with Cα being a positive constant independent of d.

10
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For smooth activation functions that satisfy Assumption 8, we can take L(m) = 1/m, for
which q(d, L) . d.

What remains is to estimate the eigenvalues of kπ and the following integral represen-
tation allows both explicit estimations and numerical computations of the eigenvalues.

Lemma 4 For the dot-product kernel kπ, µk = η2
k with

ηk =
ωd−2

ωd−1

∫ 1

−1
σ(t)Pk(t)(1− t2)(d−3)/2 dt. (22)

In addition, assume that σ ∈ C∞(R). Then,

ηk =
Γ(d/2)

2k
√
πΓ(k + (d− 1)/2)

∫ 1

−1
σ(k)(t)

(
1− t2

)k+(d−3)/2
dt. (23)

Proof By the Hecke-Funk formula (12),∫
Sd−1

κ(xTx′)Yk,j(x
′)dτd−1(x′) =

∫
Sd−1

(∫
Sd−1

σ(wTx)σ(wTx′) dτd−1(w)

)
Yk,j(x

′) dτd−1(x′)

=

∫
Sd−1

σ(wTx)

(∫
Sd−1

σ(wTx′)Yk,j(x
′) dτd−1(x′)

)
dτd−1(w)

=

∫
Sd−1

σ(wTx)ηkYk,j(w) dτd−1(w) = η2
kYk,j(x).

Substituting the Rodrigues formula (10) into (22) and applying the integration by parts
give

ηk =

(
−1

2

)k ωd−2

ωd−1

Γ((d− 1)/2)

Γ(k + (d− 1)/2)

∫ 1

−1
σ(t)

(
d

dt

)k (
1− t2

)k+(d−3)/2
dt

=
1

2k
ωd−2

ωd−1

Γ((d− 1)/2)

Γ(k + (d− 1)/2)

∫ 1

−1
σ(k)(t)

(
1− t2

)k+(d−3)/2
dt.

Inserting ωd−1 = 2πd/2

Γ(d/2) completes the proof.

We remark that the integral representation (22) has been adopted in (Bach, 2017a,
Appendix D) to calculate the eigenvalues of kπ for ReLUα activations. Eq. (23) also follows
straightforwardly from Eq. (22). We provide the proof here since it is simple but very helpful
for understanding what property of activation functions affect the eigenvalue. In particular,
Eq. (23) shows that the smaller is the k-th order derivative, the smaller is the eigenvalue and
this formula will be used later to estimate the eigenvalues for smooth activation functions.

Numerical computation of Λ(m) The following procedures provide a numerical way
to compute Λ(m), which works for any activation functions.

• First,
∑∞

j=1 λj =
∫
Sd−1 κ(xTx) dτd−1(x) = κ(1). If κ(1) does not have an explicit

expression, we can use Monte-Carlo integration to numerically compute it by Eq. (18).

• Second, the eigenvalues {λj} are computed through numerically integrating the right
hand side of Eq. (22), where the Legendre polynomials can be efficiently computed
using the recursive formula (8).

• The output is: Λ(m) = κ(1)−
∑m

j=1 λj .

11
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4.1 Nonsmooth activations

Consider the ReLUα activation function: σ(t) = max(0, t)α with α ∈ N. The Heaviside
step and ReLU function correspond to α = 0 and α = 1, respectively. The case of α > 1
also has many applications in scientific computing (E and Yu, 2018; Siegel and Xu, 2020b;
Li et al., 2019). In particular, for α = 0, 1, Cho and Saul (2009) shows

κ(t) =

{
1

2π (π − arccos(t)) if α = 0
1

2πd

(
(π − arccos(t))t+

√
1− t2

)
if α = 1.

(24)

Proposition 5 Let σ(t) = max(0, t)α with α ∈ N. There exists a constant C(1/d, α) de-

pending on 1/d polynomially such that Λ(m) ≥ C(1/d, α)m−
2α+1
d−1 . In particular, C(1/d, 0) =

1/d.

The proof is quite techinical and deferred to Appendix A.2, where the analytic expression
of the eigenvalue µk obtained in (Bach, 2017a, Appendix D) is used. Figure 1 compares the
above bounds of Λ(m) and numerical estimations for various d’s for the case of α = 0. It
is clear that the decay suffers from the CoD and the explicit rate m−(2α+1)/(d−1) given in
Proposition 5 aligns very well with the ground truth for large m’s.

102 105 108 1011 1014

m

10 2

10 1

(m
)

d=5
d=10
d=20

Figure 1: The decay of Λ(m) for various d’s and α = 0. The solid curve corresponds to
the numerical estimate, while the dashed curve corresponds the explicit estimate
m−(2α+1)/(d−1) given in Proposition 5.

Then we have the following theorem, which shows that approximating single neurons
activated by ReLUα with linear methods suffers from the CoD.

Theorem 6 Let σv(x) = max(0, vTx)α for α ∈ N. Then, there exists a constant C(1/d, α)
that depends on 1/d polynomially such that the following statements hold.

• For any fixed features {φj}mj=1, we have

Ev∼τd−1
inf

c1,...,cm∈R
‖σv −

m∑
j=1

cjφj‖2τd−1
≥ C(1/d, α)m−

2α+1
d−1 . (25)

12
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• Consider the random feature: fj(·; ·) : Rd × Rd×qj 7→ R. We assume {fj}mj=1 are
rotationally invariant, i.e., for any j ∈ [m], fj(x;Wj) = fj(Qx;QWj) for any or-
thonormal matrix Q ∈ Rd×d and Wj is sampled from a rotation-invariant distribution
πj. Let W̄ = (W1, . . . ,Wm). Then, for any v ∈ Sd−1,

EW̄ inf
c1,...,cm

‖σv −
m∑
j=1

cjfj(·;Wj)‖2τd−1
≥ C(1/d, α)m−

2α+1
d−1 . (26)

If m ≤ 2d, with probability larger than C(1/d, α) over the sampling of W̄ , we have for
any v ∈ Sd−1,

inf
c1,...,cm

‖σv −
m∑
j=1

cjfj(·;Wj)‖2τd−1
≥ C(1/d, α). (27)

Eq. (25) shows that the average error of approximating single neurons with any fixed
features suffers from the CoD. This suggests that there exists a single neuron σv such that
the approximation is difficult, whereas the specific choice of v is unknown and it depends on
the features. Eq. (26) and (27) improve this by showing that the same conclusion holds for
any v ∈ Sd−1 as long as the features are rotationally invariant. Specifically, Eq. (26) bounds
the error in expectation with respect to the sampling of random features and Eq. (27)
further provides a bound of the failure probability.

A typical form of rotation-invariant random features is fj(x;Wj) = gj(W
T
j x) with

gj : Rqj 7→ R1, which include fj(x;w) = σ(wTx) (emerging in analyzing neural networks)
and kernel predictors with dot-product kernels. Therefore, our results cover the setting con-
sidered in Yehudai and Shamir (2019) but successfully remove all the limitations of Yehudai
and Shamir (2019). Specifically, we impose no restriction on the coefficient magnitudes
and do not need to adversarially choose the bias term. Note that any single neuron can
be approximated exactly by two-layer neural network of width m = 1, whereas the ran-
dom feature approximation requires exponentially many features. They together provides
a CoD-type separation between two methods for approximating this specific function.

Proof of Theorem 6 Eq. (25) follows from a simple combination of Proposition 5 and
Lemma 2. To prove Eq. (26), we need to exploit the rotational invariance of the random
features. Let Sv(W̄ ) = infc1,...,cm ‖σv −

∑m
j=1 cjfj(·;Wj)‖2τd−1

. For any v ∈ Sd−1, let Qv ∈
Rd×d be an orthonormal matrix such that Qv = e1. Then,

EW̄ [Sv(W̄ )] = EW̄ inf
c1,...,cm

‖σv −
m∑
j=1

cjfj(·;Wj)‖2ρ
(i)
= EW̄ inf

c1,...,cm
‖σe1 −

m∑
j=1

cjfj(·;QvWj)‖2ρ

(ii)
= EW̄ inf

c1,...,cm
‖σe1 −

m∑
j=1

cjfj(·;Wj)‖2ρ = EW̄ [Se1(W̄ )],

where (i) and (ii) follow from the rotational invariance of ρ and {πj}, respectively. There-
fore, EW̄ [Sv(W̄ )] is constant with respect to v. By Lemma 2, we have

EW̄ [Sv(W̄ )] = Ev∼τd−1
EW̄ [Sv(W̄ )] = EW̄Ev∼τd−1

[Sv(W̄ )] ≥ EW̄ [Λ(m)] = Λ(m).

13



Wu and Long

Then, applying Proposition 5 completes the proof of Eq. (26).
In addition, we have

Sv(W̄ ) ≤ ‖σv‖2τd−1
=

∫
Sd−1

σ(vTx)2 dτd−1 =

∫ 1

0
t2αpd(t) dt =

Γ(d/2)

Γ(d/2 + α)
.

1

dα
,

where pd(t) = (1−t2)
d−3
2

B( 1
2
, d−1

2
)

is the density function of vTx.

Then,

Λ(m) ≤ E[Sv(W̄ )] . P{Sv(W̄ ) ≥ t}d−α + P{Sv(W̄ ) ≤ t}t ≤ P{Sv(W̄ ) ≥ t}d−α + t. (28)

Taking t = 0.5Λ(m), we have

P{Sv(W̄ ) ≥ 0.5Λ(m)} & dα

2
Λ(m).

When m ≤ 2d, Λ(m) ≥ C(1/d, α)2−2α−1. Hence, we complete the proof of Eq. (27).
�

4.2 Smooth activations

We now turn to smooth activation functions, such as sigmoid, softplus, arctan, GELU, and
Swish/SiLU. We first have the following lemma, which bounds the eigenvalue µk by using
the k-th order derivative of σ.

Lemma 7 Assume that σ is smooth and let Bk = supt∈R |σ(k)(t)|. Then, we have

µk ≤
B2
k

22k

Γ(d/2)2

Γ(k + d/2)2
.

Proof By the assumption,

∣∣ ∫ 1

−1
σ(k)(t)

(
1− t2

)k+(d−3)/2
dt
∣∣ ≤ Bk ∫ 1

−1

(
1− t2

)k+(d−3)/2
dt

= Bk

∫ 1

0
u−1/2(1− u)k+(d−3)/2 du = Bk

Γ(1/2)Γ(k + (d− 1)/2)

Γ(k + d/2)
, (29)

where the second equality follows from the change of variable u = t2. Then, using Eq. (23)

and ωd−1 = 2πd/2

Γ(d/2) gives rise

|ηk| ≤
Bk
2k

ωd−2

ωd−1

Γ(1/2)Γ((d− 1)/2)

Γ(k + d/2)
=
Bk
2k

Γ(d/2)

Γ(k + d/2)
.

Then, applying µk = η2
k completes the proof.

Assumption 8 Assume that Bk := maxt∈R |σ(k)(t)| . Γ(k + 1).

14
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All the popular smooth activation functions satisfy the above assumption as shown below.

• For σ(t) = sin(t) and σ(t) = cos(t), Bk = 1.

• Consider the sigmoid function: σ(z) = 1/(1 +e−z), which can be viewed as a complex
function C 7→ C. The singular points of σ are {z = (2k+ 1)πi}k∈Z. For any t ∈ R, let
Ct = {z ∈ C : |z − t| = 2}. Then, all the singular points must be outside the curve
Ct. Using Cauchy’s integral formula, for any t ∈ R, we have

|σ(k)(t)| =
∣∣∣∣Γ(k + 1)

2πi

∫
Ct

σ(z)

(z − t)k+1
dz

∣∣∣∣ ≤ Γ(k + 1)

2π

∫
Ct

|σ(z)|
|z − t|k+1

|dz|

≤ Γ(k + 1) maxz∈Ct |σ(z)|
2π2k+1

∫
Ct

|dz| ≤ Γ(k + 1) maxz∈Ct |σ(z)|
2k

.
Γ(k + 1)

2k
.

(30)

• For all the other commonly-used smooth activation functions, we can obtain similar
estimates of the k-th order derivatives by using Cauchy’s integral formula.

Proposition 9 Under Assumption 8, we have Λ(m) . 1/m.

The proof is deferred to Appendix A.3. We remark that the above estimate of Λ(m) is
rather rough for most smooth activation functions, where Bk is much smaller than Γ(k+ 1)
as demonstrated in Eq. (30). A simple combination of Proposition 9 and the proof of Lemma
2 gives

Ev∼τd−1
inf

c1,...,cm
‖σv −

m∑
j=1

cjφj‖2τd−1
.

1

m
, (31)

where {φj}mj=1 are the leading spherical harmonics. Applying Proposition 3 to activation
functions satisfying Assumption 8, we can obtain that

sup
v∈Sd−1

inf
c1,...,cm

‖σv −
m∑
j=1

cjφj‖2τd−1
.

d

m
, (32)

By comparing with Theorem 6, we see that for smooth activations, the approximation with
fixed features does not suffer from the CoD. This is very different from the nonsmooth ones.

5. Kolmogorov widths of two-layer neural networks

We are now ready to estimate ωm(N ), which describes the (in)approximability of N by
linear methods. In this section, we use N r instead of N for emphasizing the dependence on
the norms of inner-layer widths. In addition, in order to deal with the bias term, we define
σ(γ,b)(t) = σ(γt+ b) for γ > 0, b ∈ R and the associated kernel

k(γ,b)(x, x′) = Ev∼τd−1
[σ(γvTx+ b)σ(γvTx′ + b)]. (33)

Let Λ(γ,b)(·) denote the trace decay of k(γ,b) defined according to Eq. (14).
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Theorem 10 Let Λr(m) = supγ+|b|≤r Λ(γ,b)(m) and q(d, r) = supk≥1
Λr(k)

Λr((d+1)k) . Then,

Λr(m) ≤ ωm(N r) . q(d, r)Λr(m).

Proof Let σw,b(x) = σ(wTx+ b). Then, for any φ1, . . . , φm,

sup
f∈N r

inf
c1,...,cm∈R

‖f −
m∑
j=1

cjφj‖2τd−1
≥ sup

γ+|b|≤r
Ev∼τd−1

inf
c1,...,cm∈R

‖σγv,b −
m∑
j=1

cjφj‖2τd−1

≥ sup
γ+|b|≤r

Λ(γ,b)(m) = Λr(m),

where the second inequality follows from Lemma 2. Hence, the lower bound is proved. Let
(c1(w, b), . . . , cm(w, b)) = argminc1,...,cm ‖σw,b−

∑m
j=1 cjφj‖2τd−1

. Then by Proposition 3 with
taking L(m) = Λr(m), we have

‖σw,b −
m∑
j=1

cj(w, b)φj‖2τd−1
. q(d, r)Λr(m).

For any f ∈ N r and ε > 0, there exist {(ai, wi, bi)}i such that
∑

i |ai| ≤ 1,maxi(‖wi‖2 +
|bi|) ≤ r and

‖f −
∑
i

aiσwi,bi‖τd−1
≤ ε.

Let c̄j =
∑

i aicj(wi, bi). Then,

‖f −
m∑
j=1

c̄jφj‖τd−1
≤ ε+

∥∥∥∑
i

aiσwi,bi −
m∑
j=1

∑
i

aicj(wi, bi)φj
]∥∥∥
τd−1

≤ ε+
∑
i

|ai|‖σwi,bi −
m∑
j=1

cj(wi, bi)φj‖τd−1

≤ ε+
∑
i

|ai|
√
q(d, r)Λr(m) ≤ ε+

√
q(d, r)Λr(m).

Taking ε→ 0, we complete the proof.

In the proof, the key ingredient is the uniform approximability of single neurons shown
in Proposition 3. It is implied that Λr(m) provide a tight bounds of the Kolmogorov width
ωm(N r). When Λr(m) ∼ m−s, q(d, r) ∼ ds. In particular, when Λr(m) = Cdm

−β/d, we have
q(d, r) ≤ dβ/d = O(1). This means that when Λr(m) exhibits the CoD, ωm(N r) ∼ Λr(m),
i.e., the spectral decay provides an exact description of the Kolmogorov width. Next, we
study how the decay rate is affected by the norms of inner-layer widths and the smoothness
of activation functions.
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5.1 Influence of the norms of inner-Layer weights

For ReLU , N r (up to a rescaling) are obviously the same for different r’s because of the
homogeneity of σ. In particular, Theorem 6 implies

ωm(N r) ≥ C(1/d)r2

m3/(d−1)
, (34)

where C(1/d) depends on 1/d polynomially. Hence, ωm(N r) exhibits the CoD for the ReLU
activation function and the decay rate is independent of the value r. However, for general
activation functions, restricting r may affects the decay rate.

Theorem 11 Suppose that σ ∈ C∞(R) satisfies Assumption 8 and r = 1. Then, ωm(N 1) .
d/m. The equality is reached by choosing the spherical harmonics as the fixed features.

This theorem follows from a simple combination of Proposition 9 and Proposition 10.
For the specific arctangent activation, we have a fine-grained characterization as follows.

Proposition 12 Assume σ(t) = arctan(t). We have

ωm(N r) .
d4r2

mmin(0.5,r−2)
. (35)

The equality is reached by choosing the spherical harmonics as the fixed features.

The key idea is to estimate the integral (23) in the Fourier domain using the Parseval’s
theorem. By using the explicit formula of the Fourier transform of σ(k) for the arctangent
function, we show that the eigenvalue can be expressed analytically using Gaussian hyper-
geometric functions. Then the integral representation of Gaussian hypergeometric functions
is used for the estimation. The proof is quite technical and deferred to Appendix B.1.

Theorem 11 and Proposition 12 imply that two-layer neural networks have no clear
separation from linear methods when the activation is smooth and the norms of inner-
layer weights are bounded. Specifically, in this case, two-layer neural networks behave like
polynomials in terms of approximation power. This is quite different from the ReLU case,
where the separation of two type of methods is independent of the inner-layer weight norms.

Proposition 12 implies that the error rate decreases with r but independent of d if
r = O(1). We conjecture that similar results hold for general smooth activation functions
and some numerical supports are provided in Figure 2. Specifically, we examine four ac-
tivation functions including two sigmoid-like activations: Arctan and Sigmoid, and two
ReLU-like activations: SiLU and softplus. According to Proposition 10, Λr is a good proxy
of the Kolmogorov width. The eigenvalues are numerically computed using Eq. (22). In
experiments, we find that Λr = Λ(r,0) for all the activation functions examined. Figure 2
shows that for all the cases, the rate is independent of d for a fixed r, and decreases with
r for a fixed d. This is consistent with Eq. (35), which is only proved for the arctangent
activation function.

Note that a result similar to Proposition 12 has be provided in Livni et al. (2014) for
the sigmoid activation function. Ours differs from Livni et al. (2014) in two aspects. First,
we show that the same observation holds for more general smooth activation functions by
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(b) Sigmoid.
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(c) SiLU.
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(d) Softplus.

Figure 2: How the decay of Λr(m), thereby the linear approximability, changes with r for
fixed d (left), and changes with d for fixed r (right). Two sigmoid-like and two
ReLU-like smooth activation functions are examined.

clear numerical evidences. In particular, Proposition 10 combined with Lemma 4 provides
us an easy way to numerically compute upper bounds. Second, we can establish a hardness
result given below. These improvements are benefiting from our spectral-based analysis.

Next we then show that when r is polynomially large with respect to d, even for smooth
activation function, ωm(N r) exhibits the CoD.

Assumption 13 Suppose that the activation function σ satisfies either |σ(rt)− step(t)| .
(1 + r|t|)−β or |σ(rt)− rReLU(t)| ≤ (1 + r|t|)−β for any t and some constant β > 0.

This assumption is satisfied by all the commonly-used activation functions.

Theorem 14 Suppose that σ satisfies Assumption 13 and m ≤ 2d. Then, there exists
constants C1(β), C2 > 0 such that if r ≥ dC1(β), we have ωm(N r) & d−C2 .

Proof We only present the proof for the sigmoid-like activation functions. The proof for
ReLU-like ones is similar can be found in Appendix B.2. For any v ∈ Sd−1,

‖σ(rvT ·)− step(vT ·)‖2τd−1
=

1

B(1
2 ,

d−1
2 )

∫ 1

−1
(σ(rt)− step(t))2(1− t2)(d−3)/2 dt,

where we use the fact that the density function of vTx is p(t) = (1−t2)
d−3
2

B( 1
2
, d−1

2
)

. Then, we have
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‖σ(rvT ·)− step(vT ·)‖2τd−1
≤ 2

B(1
2 ,

d−1
2 )

(∫ δ

0
(1− t2)(d−3)/2 dt+

∫ 1

δ

1

(1 + rt)2β
(1− t2)(d−3)/2 dt

)
. d1/2δ +

(
1

rδ

)2β

,

Let h(t) =
√

d
r2
t+ t−2β. Then, h′(t) =

√
d
r2
−2βt−2β−1 = 0 leads to t̄ = (2β

√
r2/d)1/(1+2β).

Hence,

‖σ(rvT ·)− step(vT ·)‖2τd−1
. inf

δ∈[0,1]

(
d1/2δ +

( 1

rδ

)2β)
= C(β)

(
d

r2

) β
2(1+2β)

.

By the triangle inequality,

‖σ(rvT ·)−
m∑
j=1

cjφj‖2τd−1
& ‖ step(vT ·)−

m∑
j=1

cjφj‖2τd−1
− ‖ step(vT ·)− σ(rvT ·)‖2τd−1

& ‖ step(vT ·)−
m∑
j=1

cjφj‖2τd−1
− C(β)

(
d

r2

) β
2(1+2β)

.

Using Theorem 6, there exist a constant C2 > 0 such that

Ev∼τd−1
inf

c1,...,cm
‖σ(rvT ·)−

m∑
j=1

cjφj‖2τd−1
&

1

dC2m1/(d−1)
− C(β)

(
d

r2

) β
2(1+2β)

.

Let C(β)
(
d
r2

) β
2(1+2β) . d−C2 . This leads to r ≥ C(β)

(1+2β)
β d

1
2

+
C2(1+2β)

β . Hence, there exist

C1(β) > 0 such that if m ≤ 2d and r ≥ dC1(β), we must have

Ev∼τd−1
inf

c1,...,cm
‖σ(rvT ·)−

m∑
j=1

cjφj‖2τd−1
&

1

dC2
.

In particular, for the arctangent activation function, we have the following refined result,
whose proof is deferred to Appendix B.3.

Theorem 15 Suppose that σ(t) = arctan(t) and r = dα. If α > 1
2 , there exists constants

C1, C2(α) > 0 such that if m ≤ d−C12C2(α)d2α−1
, ωm(N r) & d−3.

Let r = dα. Theorem 15 improves Theorem 14 by showing that α > 1/2 is sufficient to
establish the CoD-type lower bound. We conjecture that the same results also hold for
more general activation functions. We leave this to future work. These theorems imply
that ωm(N r) also exhibits the CoD for sigmoid-like and ReLU-like smooth activations as
long as the norms of inner-layer weights are polynomial in d.
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This result is related to (Livni et al., 2014, Theorem 5), which shows that the time
complexity of learning N poly(d) is exponential in d. However, (Livni et al., 2014, Theorem
5) relies on cryptographic assumptions. These assumptions mean that some standard hard
problems cannot be learned in polynomial time; otherwise modern cryptosystems can be
broken in polynomial time. The theoretical justification of these assumptions remains an
open problem, although they are believed to be true. By contrast, our result is unconditional
and does not rely on any hardness assumption. Note that two results are generally not
comparable, since ours is for the approximation complexity whereas (Livni et al., 2014,
Theorem 5) is for training complexity.

Lastly, we mention that some previous studies of two-layer neural networks constrain
r to be finite (see, e.g., Chen et al. 2020). Our result suggests that one should be careful
about the value of r, otherwise the result may be not able to distinguish neural networks
from linear methods.

6. Conclusion

In this paper, we provide a systematic study of the separation between two-layer neural
networks and linear methods in terms of approximation functions in high dimension. To
this end, we develop a spectral-based approach, which reduces the problem to computing
the eigenvalues of an associated kernel. Our approach allows obtaining upper bounds, lower
bounds, and identifying explicit hard examples simultaneously. We extend and improve
the previous separation results for the sigmoidal and ReLUα activation functions to general
nonsmooth activation functions. We also find that for smooth activation functions, whether
the separation exists or not crucially depends on the inner-layer weight norms.

Technically speaking, our spectral-based approach provides a way to accurately compute
the Kolmogorov width of two-layer neural networks. This approach should be also applicable
to analyze other properties that are related to the Kolmogorov width, e.g., the metric
entropy. We leave this to future work.

Appendix A. Missing proofs of Section 4

Here, we present the missing lengthy proofs of Section 4.

A.1 Proof of Proposition 3

To prove Proposition 3, we first need the following lemma.

Lemma 16 For any activation function σ and any v ∈ Sd−1,

inf
{ci,j}1≤i≤k,1≤j≤N(d,i)

‖σv −
k∑
i=0

N(d,i)∑
j=1

ci,jYi,j‖2τd−1
=

∞∑
i=k+1

N(d, i)µi.

Proof Recalling that {Yi,j}0≤i≤k,1≤j≤N(d,i) is orthonormal in L2(τd−1), we have

inf
{ci,j}0≤i≤k,1≤j≤N(d,i)

‖σv −
k∑
i=0

N(d,i)∑
j=1

ci,jYi,j‖2τd−1
= ‖σv‖2τd−1

−
k∑
i=0

N(d,i)∑
j=1

〈Yi,j , σv〉2τd−1
.
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Hence, using Eq. (11)

‖σv‖2τd−1
−

k∑
i=0

N(d,i)∑
j=1

〈Yi,j , σv〉2τd−1

=

∫
Sd−1

|σ(vTx)|2 dτd−1(x)−
k∑
i=0

∫
Sd−1

∫
Sd−1

σ(vTx)σ(vTx′)

N(d,i)∑
j=1

Yi,j(x)Yi,j(x
′) dτd−1(x) dτd−1(x′)

=

∫
Sd−1

|σ(vTx)|2 dτd−1(x)−
k∑
i=0

N(d, i)

∫
Sd−1

∫
Sd−1

σ(vTx)σ(vTx′)Pi(x
Tx′) dτd−1(x) dτd−1(x′).

By the rotational invariance of τd−1, we know that the above equation is constant for all
v ∈ Sd−1. Hence,

inf
{ci,j}0≤i≤k,1≤j≤N(d,i)

‖σv −
k∑
i=0

N(d,i)∑
j=1

ci,jYi,j‖2τd−1

=

∫
Sd−1

[

∫
Sd−1

|σ(vTx)|2 dτd−1(v)] dτd−1(x)

−
k∑
i=0

N(d, i)

∫
Sd−1

∫
Sd−1

[

∫
Sd−1

σ(vTx)σ(vTx′) dτd−1(v)]Pi(x
Tx′) dτd−1(x) dτd−1(x′)

=

∫
Sd−1

κ(xTx) dτd−1(x)−
k∑
i=0

N(d, i)

∫
Sd−1

∫
Sd−1

κ(xTx′)Pi(x
Tx′) dτd−1(x) dτd−1(x′).

Combining the last equation and Eq. (11) and Eq. (19), we obtain that

inf
{ci,j}0≤i≤k,1≤j≤N(d,i)

‖σv −
k∑
i=0

N(d,i)∑
j=1

ci,jYi,j‖2τd−1

=

∞∑
i=0

N(d,i)∑
j=1

µi −
k∑
i=0

N(d,i)∑
j=1

µi[

∫
|Yi,j(x)|2 dτd−1(x)]2 =

∞∑
i=k+1

N(d, i)µi.

Proof of Proposition 3 Let mk =
∑k

i=0N(d, i). By Lemma 16 and Proposition 9, we
have

inf
c1,...,cmk

‖σv −
mk∑
j=1

cjφj‖2τd−1
= Λ(mk) ≤ L(mk).

For any m, assume m ∈ [mk−1 + 1,mk]. Then,

inf
c1,...,cm

‖σv −
m∑
j=1

cjφj‖2τd−1
≤ inf

c1,...,cmk−1

‖σv −
mk−1∑
j=1

cjφj‖2τd−1
≤ L(mk−1) ≤ L(mk−1)

L(mk)
L(m)

(36)
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By (A.2) and (37), we have

mk =
Γ(k + d)

Γ(d)Γ(k + 1)
+

Γ(k + d− 1)

Γ(d)Γ(k)
,

when k ≥ 1 and m0 = 0 Then,

mk+1

mk
≤ max{ Γ(k + d+ 1)

Γ(d)Γ(k + 2)

/ Γ(k + d)

Γ(d)Γ(k + 1)
,

Γ(k + d)

Γ(d)Γ(k + 1)

/Γ(k + d− 1)

Γ(d)Γ(k)
}

= max{k + d

k + 1
,
k + d− 1

k
} ≤ d+ 1,

and
m1

m0
= d+ 1.

Therefore,
mk

mk−1
≤ d+ 1,

which means that
L(mk−1)

L(mk)
≤ L(mk−1)

L((d+ 1)mk−1)
≤ q(d, L).

Plugging it into (36), we complete the proof.

A.2 Proof of Proposition 5

We only give the proof when d ≥ 3. The simple case d = 2 can also be proven using similar
argument. According to Appendix D.2 of Bach (2017a) 1, we have

ηk =


C1(1

d , α) if k ≤ α,
0 if k ≥ α+ 1, and k ≡ α (mod 2)
Γ(α+1)√

2π 2k
Γ(d/2)Γ(k−α)

Γ( k−α+1
2

)Γ( k+d+α
2

)
otherwise,

where C1(1
d , α) depends on 1

d polynomially. By Stirling formula, Γ(t) ∼
√

2πtt−1/2e−t+1

for any t ≥ 1. Then, up to a constant only depending on α, we have for k ≥ α + 1 and
k ≡ (α+ 1) (mod 2),

µk ∼ dd−1kk−α−1(k + d)−k−d−α+1.

Note that

N(d, k) =
Γ(k + d)

Γ(d)Γ(k + 1)
− Γ(k + d− 2)

Γ(d)Γ(k − 1)

where up to a constant, we have

Γ(k + d)

Γ(d)Γ(k + 1)
∼ (k + d)k+d− 1

2k−
1
2
−kd

1
2
−d (37)

1. Note that the one provided in Bach (2017a) is not correct due to the miscalculation of ωd−2/ωd−1.
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WLOG, assume that α is odd. By definition,

λm = µ2k, for m ∈
[ α∑
i=0

N(d, i) + 1 +
Γ(2k + d− 2)

Γ(d)Γ(2k − 1)
− Γ(α+ d− 1)

Γ(d)Γ(α)
,

α∑
i=0

N(d, i) +
Γ(2k + d)

Γ(d)Γ(2k + 1)
− Γ(α+ d− 1)

Γ(d)Γ(α)

]
(38)

By (37), when

m ≥ 1 +

α∑
i=0

N(d, i) = C(
1

d
, α), (39)

and there exists k such that (38) is satisfied, we have

m & (2k + d)2k+d− 5
2 (2k)

3
2
−2kd

1
2
−d,

and,

λm = µ2k ∼ (2k + d)−2k−d−α+1(2k)2k−α−1dd,

which means

λmm
d+2α
d−1 ≥ C(

1

d
, α)
(2k + d

2k

) 2α+1
d−1

(2k+d− 5
2

)−α− 3
2 ≥ C(

1

d
, α). (40)

Noticing that when (39) is not satisfied, the above inequality still holds, we have

Λ(m) =

∞∑
j=m+1

λj ≥ C(
1

d
, α)m−

2α+1
d−1 .

In particular, when α = 0, C(1/d, 0) = 1/d.

A.3 Proof of Proposition 9

First, by (A.2) and (A.2),

k∑
j=0

N(d, j) .
2Γ(k + d)

Γ(d)Γ(k + 1)
∼ (k + d)k+d−1/2k−1/2−kd−d+1/2.

Second, plugging Bk . k! into Lemma 7 and using the Stirling formula, we have

µk .
k2k+1e−2k

22k

(
(d/2)d/2−1/2e−d/2+1

(k + d/2)k+d/2−1/2e−k−d/2+1

)2

∼ k2k+1dd−1(2k + d)−2k−d+1.

Let λ̄m = µk if m ∈ [
∑k−1

j=0 N(d, j) + 1,
∑k

j=0N(d, j)], then

Λ(m) ≤
∞∑

j=m+1

λ̄j
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because {λj}j≥0 is the non-increasing rearrangement of {λ̄j}j≥0.

By definition, if λ̄m = µk, we must have m ≤
∑k

j=0N(d, j). Therefore,

λ̄mm
2 . µk(

k∑
j=0

N(d, j))2 ≤ d−d(k + d)2k+2d−1(2k + d)−2k−d+1

=

(
k + d

d

)d( k + d

2k + d

)2k+d−1

≤
(
k + d

d

)d( k + d

2k + d

)2k+d

.

Let k = td, then we have

λ̄mm
2 . (t+ 1)d

(
t+ 1

2t+ 1

)(2t+1)d

=: h(t)d, (41)

where h(t) = (t+1)2t+2/(2t+1)2t+1. Hence, log h(t) = (2t+2) log(t+1)−(2t+1) log(2t+1).

d log h(t)

dt
= 2 log(t+ 1) + 2− 2 log(2t+ 1)− 2 ≤ 0, ∀ t ≥ 0. (42)

Combing with log h(0) = 0, we have log h(t) ≤ 0, i.e., h(t) ≤ 1, for any t ≥ 0. Plugging it
into (41) leads to λ̄mm

2 . 1. In other words, λ̄m . 1/m2. Therefore, we have

Λ(m) ≤
∞∑

j=m+1

λ̄j .
1

m
.

�

Appendix B. Missing proofs of Section 5

B.1 Proof of Proposition 12

We show that for the arctangent activation function, the eigenvalues can be expressed
analytically using the hypergeometric functions.

Lemma 17 Assume σ(z) = arctan(rz + b). Then,

|ηk| ≤ Qd,k
∫ 1

0

(
r2

1 + r2t

) k
2

t
k−1
2 (1− t)

k+d−3
2 dt, (43)

where Qd,k =
Γ(k)Γ( d

2
)

2kΓ( k+1
2

)Γ( k+d−1
2

)
. The equality is reached when b = 0.

Proof Recall (10),

ηk =
1

2k
ωd−2

ωd−1

Γ((d− 1)/2)

Γ(k + (d− 1)/2)

∫ 1

−1
σ(k)(t)

(
1− t2

)k+(d−3)/2
dt.

By Parseval’s theorem,

ηk =
1

2k
ωd−2

ωd−1

Γ((d− 1)/2)

Γ(k + (d− 1)/2)

1

2π

∫
F(σ(k))(ξ)F(νd,k)(ξ) dξ, (44)
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where νk,d(t) = (1 − t2)k+ d−3
2 and F(·) denote the Fourier transform, i.e., F(f)(ξ) =∫

f(t)e−iξt dt.
Notice that

σ′(z) =
r

1 + (rz + b)2
F(σ′)(ξ) = πei

b
r
ξ−|ξ|/r F(σ(k))(ξ) = (iξ)k−1πei

b
r
ξ−|ξ|/r. (45)

Also, using Eqn. (10.9.4) of Olver et al. (2010), we know that

F(νk,d)(ξ) =
√

2π2k+ d−3
2 Γ

(
k +

d− 1

2

)
|ξ|−k−

d−2
2 Jk+ d−2

2
(|ξ|), (46)

where Jk+ d−2
2

is the Bessel function of the first kind with order k + d−2
2 (see, e.g., (Olver

et al., 2010, 10.2.2)). Plugging (45) and (46) into (44) leads to

ηk = 2
d−2
2 Γ

(
d

2

)
1

2π

∫ ∞
−∞
|ξ|k−1πe−|ξ|/r+i

b
r
ξ|ξ|−k−

d−2
2 Jk+ d−2

2
(|ξ|) dξ

= 2
d−2
2 Γ

(
d

2

)∫ ∞
0

ξ−d/2Jk+ d−2
2

(ξ)e−ξ/rik−1[ei
b
r
ξ + e−i

b
r
ξ] dξ.

By Eq. (10.22.49) of Olver et al. (2010), the above integration can be expressed by using
the Gaussian hypergeometric function F (see (Olver et al., 2010, Chapter 15)):

ηk = Γ(k)Γ(
d

2
)
(r

2

)k ik−1

2
[F

(
k

2
,
k + 1

2
; k +

d

2
;− r2

(1 + bi)2

)
+ F

(
k

2
,
k + 1

2
; k +

d

2
;− r2

(1− bi)2

)
],

(47)

Notice that F(p, q;u; z) has the integral representation (Olver et al., 2010, Section 15.6) as
follows:

F(p, q;u; z) =
1

Γ(q)Γ(u− q)

∫ 1

0

tq−1(1− t)u−q−1

(1− zt)p
dt.

Plugging it into (47) gives us

|ηk| ≤
Γ(k)Γ(d2)

2kΓ(k+1
2 )Γ(k+d−1

2 )

∫ 1

0

(
r2

1 + r2t

)k/2
t
k−1
2 (1− t)

k+d−3
2 dt.

Thus, we complete the proof.

Let

I =

∫ 1

0

(
r2

1 + r2t

) k
2

t
k−1
2 (1− t)

k+d−3
2 dt. (48)

Now, our task is to estimate how I depends on r, k, and d. In order to achieve this, we
consider two cases: (1) r2 ≥ 2k+d−4

k−1 ; (2) r2 ≤ 2k+d−4
k−1 , separately.

Lemma 18 Let hα,β(t) = tα(1 − t)β. Then, hα,β is increasing in [0, α
α+β ] and decreasing

in [ α
α+β , 1].
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Proof A simple calculation gives us

h′α,β(t) = αtα−1(1− t)β − βtα(1− t)β−1 =
(
α− (α+ β)t

)
tα−1(1− t)β−1.

Hence, h′α,β(t) ≥ 0 for t ∈ [0, α
α+β ], and h′α,β(t) ≤ 0 for t ∈ [ α

α+β , 1]

Proposition 19 Assume r2 ≥ 2k+d−4
k−1 . Then, I . re−

k+d

2r2 .

Proof Consider the decomposition

I =

(∫ 1
r2

0
+

∫ 1

1
r2

)(
r2

1 + r2t

)k/2
t
k−1
2 (1− t)

k+d−3
2 dt

=: I1 + I2.

Next, we estimate I1, I2, separately.
By Lemma 18, h k−1

2
, k+d−3

2
(·) is increasing for t ≤ t̄ = k−1

2k+d−4 . The assumption on r

ensures that 1
r2
≤ t̄. Therefore, for I1,

I1 ≤
∫ 1

r2

0

rk

(1 + r2t)k/2

(
1

r2

) k−1
2
(

1− 1

r2

) k+d−3
2

dt .
1

kr

(
1− 1

r2

) k+d−3
2

.
1

k

(
1− 1

r2

) k+d
2

,

(49)

where the last inequality uses the fact that r2 ≥ 2.
For I2,

I2 =

∫ 1

1
r2

(
r2t

1 + r2t

) k
2

t−
1
2 (1− t)

k+d−3
2 dt ≤

∫ 1

1
r2

t−
1
2 (1− t)

k+d−3
2 dt

(i)

≤ r

(
1− 1

r2

) k+d−3
2

. r

(
1− 1

r2

) k+d
2

, (50)

where (i) is due to that h− 1
2
, k+d−3

2
(·) is decreasing in [0, 1].

Combining (49) and (50), we have

I . r

(
1− 1

r2

) k+d
2

≤ re−
k+d

2r2 .

Lemma 20 For α, β, γ > 0, let Hγ,α,β(t) :=
(

γt
1+γt

)α
(1− t)β with t ∈ [0, 1]. Assume β ≥ α

and γα/β ≤ 2. Then,

Hγ,α,β(t) ≤
(

γα

γα+ β

)α(
1− α

2β

)β
.
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Proof Taking the derivative gives us

H ′γ,α,β(t) = α

(
γt

1 + γt

)α−1 γ

(1 + γt)2
(1− t)β − β

(
γt

1 + γt

)α
(1− t)β−1

=
(
α− βt(1 + γt)

) γ

(1 + γt)2

(
γt

1 + γt

)α−1

(1− t)β−1

Let δ = α/β. Then, the maximal value of Hγ,α,β(·) is reached at

t̄ =
1

2γ

(√
4γδ + 1− 1

)
.

Notice that 1 + t/4 ≤
√

1 + t ≤ 1 + t/2 for t ∈ [0, 8]. By the assumption, 0 ≤ 4γδ ≤ 8,
which implies that δ

2 ≤ t̄ ≤ δ. Hence,

Hγ,α,β(t) ≤ Hγ,α,β(t̄) =

(
γt̄

1 + γt̄

)α
(1−t̄)β ≤

(
γδ

1 + rδ

)(
1− δ

2

)β
=

(
γα

γα+ β

)α(
1− α

2β

)β
.

Lemma 21 Assume that r2 ≤ 2k+d−4
k−1 and k, d ≥ C for an absolute constant C. Then, we

have

I . d
1
2 r

(
r2k

(r2 + 1)k + d

) k
2

e−k/4.

Recalling (48),

I ≤ r
∫ 1

0

(
r2t

1 + r2t

) k−1
2

(1− t)
k+d−3

2 dt = r

∫ 1

0
Hr2, k−1

2
, k+d−3

2
(t) dt.

By the assumption,

r2 (k − 1)/2

(k + d− 3)/2
≤ 2k + d− 4

k + d− 3
= 2− d− 2

k + d− 3
≤ 2,

which means that the condition in Lemma 20 is satisfied. Therefore, we have

I ≤ r
(

r2(k − 1)

r2(k − 1) + k + d− 3

) k−1
2
(

1− k − 1

2(k + d− 3)

) k+d−3
2

= r

(
r2(k − 1)

(r2 + 1)(k − 1) + d− 2

) k−1
2
(

1− k − 1

2(k + d− 3)

) k+d−3
2

. d
1
2 r

(
r2k

(r2 + 1)k + d

) k
2
(

1− k

2(k + d)

) k+d
2

, (51)

where the last inequality follows from that d, k ≥ C for some absolute constant C. Using
the fact that (1− 1/x)x ≤ e−1 for any x ≥ 1, we complete the proof.
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Proof of Proposition 12 Following Theorem 10, what remains is to show that when
σ(x) = arctan(γx+ b) such that |γ|+ |b| ≤ r, we have

Λ(m) . d2r4m
− 1

max(2,r2) .

According to Lemma 4 and Proposition 17, µk = Q2
d,kI

2 if k is odd, other wise µk = 0.
Assume that k is odd. Let

mk =
Γ(k + d)

Γ(d)Γ(k + 1)
∼ (k + d)k+d− 1

2

kk+ 1
2dd−

1
2

.
(k + d)k+d

kkdd
. (52)

Our task is to determine the smallest β such that

m
1+1/β
k µk ≤ m

1+1/β
k Q2

d,kI
2 =

(
mkQ

2
d,k

) (
m

1/β
k I2

)
≤ Cd,r,

where Cd,r depends on d, r polynomially.
First,

mkQ
2
d,k =

Γ(k + d)

Γ(d)Γ(k + 1)

(
Γ(k)Γ(d2)

2kΓ(k+1
2 )Γ(k+d−1

2 )

)2

∼ (k + d)k+d− 1
2

k
1
2

+kdd−
1
2

· kk−1dd−1

(k + d)k+d−2
. d. (53)

Next, we turn to estimate m
1/β
k I2.

(1) We first consider the case where r2 ≤ 2k+d−4
k−1 . By Proposition 21 and (52), we have

m
1/β
k I2 . dr2

(
(k + d)k+d

kkdd

)1/β (
r2k

(r2 + 1)k + d

)k
e−k/2

. dr2

(
(k + d)(r2k)β

k((r2 + 1)k + d)β

)k/β ((
k + d

d

)d/β
e−k/2

)
=: dr2Ak/βB. (54)

Next, we estimate A and B, separately. To simplify the notation, we write k = sd, a = r2.
For A, if β ≥ a,

A =
(k + d)(r2k)β

k((r2 + 1)k + d)β
=

(s+ 1)(as)β

s((a+ 1)s+ 1)β
≤ aβsβ+1 + aβsβ

(a+ 1)βsβ+1 + β(a+ 1)β−1sβ
≤ 1. (55)

For B, if β ≥ 2,

B =

(
1 +

k

d

)d/β
e−k/2 ≤ ek/β · e−k/2 ≤ 1. (56)

Combining (55) and (56),

m
1/r2

k I2 ≤ dr2.
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(2) Now, we turn to the case where r2 ≥ 2k+d−4
k−1 . By Proposition (19) and (52),

m
1/β
k I2 .

(
(k + d)k+d

kkdd

)1/β

r2e−(k+d)/r2

≤ r2

(
1 +

d

k

)k/β (
1 +

k

d

)d/β
e−(k+d)/r2

≤ r2ed/βek/βe−(k+d)/r2 .

Taking β = r2 gives rise to m
1/r2

k I2 . r2.
Combining two cases, we arrive at

m
1+ 1

max(2,r2)µk . d
2r2.

Therefore,

Λ(m) =
∞∑

j=m+1

λ̄j . d
2r2

∞∑
j=m+1

j
−1− 1

max(2,r2) . d2r4m
− 1

max(2,r2) .

B.2 The missing proof of Theorem 14

Proof Here, we provide the proof for the ReLU-like case, which is similar to the sigmoid-like
case. For any v ∈ Sd−1, we have

‖σ(rvT ·)−rReLU(vT ·)‖2τd−1
=

1

B(1
2 ,

d−1
2 )

∫ 1

−1
(σ(rt)− rReLU(t))2(1− t2)

d−3
2 dt

≤ 2

B(1
2 ,

d−1
2 )

(∫ δ

0
(1− t2)

d−3
2 dt+

∫ 1

δ

1

(1 + rt)2β
(1− t2)

d−3
2 dt

)
. d

1
2 δ +

1

(1 + rδ)2β
≤ d

1
2 δ +

1

(rδ)2β
.

Following the proof of Theorem 14, we have

inf
δ∈[0,1]

(
d

1
2 δ +

1

(rδ)2β

)
≤ C(β)

(
d

r2

) β
2(1+2β)

.

By the triangular inequality,

‖σ(rvT ·)−
m∑
j=1

cjφj‖2τd−1
& ‖rReLU(vT ·)−

m∑
j=1

cjφj‖2τd−1
− ‖rReLU(vT ·)− σ(rvT ·)‖2τd−1

& ‖rReLU(vT ·)−
m∑
j=1

cjφj‖2τd−1
− C(β)

(
d

r2

) β
2(1+2β)

.

Using Theorem 6, there exists a C3 > 0 such that

Ev∼τd−1
inf

c1,...,cm
‖σ(rvT ·)−

m∑
j=1

cjφj‖2τd−1
&

r2

dC3m3/(d−1)
− C(β)

(
d

r2

) β
2(1+2β)

.
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Obviously, there exists C ′(β) > 0 such that when m ≤ 2d and r ≥ C ′(β)dmax(1/2,C3/2), we
have

Ev∼τd−1
inf

c1,...,cm
‖σ(rvT ·)−

m∑
j=1

cjφj‖2τd−1
& 1.

B.3 Proof of Theorem 15

Proof Following the same approach with Proposition 17, we know that

|ηk| =

Qd,k
∫ 1

0

(
d2α

1+d2αt

) k
2
t
k−1
2 (1− t)

k+d−3
2 dt when k is odd

0 when k is even.

Therefore, when Γ(2k+d−3)
Γ(d)Γ(2k−2) + 1 ≤ m ≤ Γ(2k+d−1)

Γ(d)Γ(2k) or m = k = 1, we have

µ
1
2
m = Qd,2k−1

∫ 1

0

(
d2α

1 + d2αt

) 2k−1
2

tk−1(1− t)
2k+d−4

2 dt.

Noticing that Λ(m) is increasing with respect to α, we only consider the case that
α ∈ (1

2 , 1].
First, noticing that∫ 1

0

(
d2α

1 + d2αt

) 2k−1
2

tk−1(1− t)
2k+d−4

2 dt ≥
∫ 1

d

1
2d

(
d2α

1 + d2αt

) 2k−1
2
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2k+d−4

2 dt

& d−
3
2 (

d2α−1

2 + d2α−1
)
2k−1

2 (1− 1

d
)
2k+d−4

2

& d−
3
2 (

d2α−1

2 + d2α−1
)2k.

Also,

N(d, 2k − 1)Q2
d,2k−1 =

4k + d− 4

2k − 1

Γ(2k + d− 3)

Γ(d− 1)Γ(2k − 1)
Q2
d,2k−1

&
(2k + d)2k+d− 7

2

(2k)2k− 3
2dd−

3
2

(2k)2k−2dd−1

(2k + d)2k+d−3

=

(
2kd

(2k + d)

) 1
2

& 1.

Therefore, for any k ≥ 1,

Λ

(
Γ(2k + d− 3)

Γ(d)Γ(2k − 2)

)
=

+∞∑
j=k

N(d, 2j − 1)Q2
d,2j−1

[∫ 1

0

(
d2α
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) 2k−1
2
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Therefore, when k ∼ 1
2d

2α−1, we have

Λ

(
Γ(2k + d− 3)

Γ(d)Γ(2k − 2)

)
& d−3. (57)

On the other hand, when k ∼ 1
2d

2α−1, we have

md,α :=
Γ(2k + d− 3)

Γ(d)Γ(2k − 2)
∼ (2k + d)2k+d− 7

2

(2k)2k− 5
2dd−

1
2

(58)

Therefore, there exist C1, C2(α) > 0 such that

md,α & d
(2−2α)d2α−1− 11

2
+5α = d−

11
2

+5α2C(α)d2α−1 ln(d) ≥ 1

dC1
2C2(α)d2α−1

. (59)
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