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Abstract
SU classi�cation employs similar (S) data pairs (two examples belong to the same class) and
unlabeled (U) data points to build a classi�er, which can serve as an alternative to the standard
supervised trained classi�ers requiring data points with class labels. SU classi�cation is advanta-
geous because in the era of big data, more a�ention has been paid to data privacy. Datasets with
speci�c class labels are o�en di�cult to obtain in real-world classi�cation applications regarding
privacy-sensitive ma�ers, such as politics and religion, which can be a bo�leneck in supervised
classi�cation. Fortunately, similarity labels do not reveal the explicit information and inherently
protect the privacy, e.g., collecting answers to “With whom do you share the same opinion on
issue I?” instead of “What is your opinion on issue I?”. Nevertheless, SU classi�cation still has an
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obvious limitation: respondents might answer these questions in a manner that is viewed favorably
by others instead of answering truthfully. �erefore, there exist some dissimilar data pairs labeled
as similar, which signi�cantly degenerates the performance of SU classi�cation. In this paper,
we study how to learn from noisy similar (nS) data pairs and unlabeled (U) data, which is called
nSU classi�cation. Speci�cally, we carefully model the similarity noise and estimate the noise
rate by using the mixture proportion estimation technique. �en, a clean classi�er can be learned
by minimizing a denoised and unbiased classi�cation risk estimator, which only involves the
noisy data. Moreover, we further derive a theoretical generalization error bound for the proposed
method. Experimental results demonstrate the e�ectiveness of the proposed algorithm on several
benchmark datasets.
Keywords: privacy concern, similarity learning, unbiased classi�er

1. Introduction

In standard supervised classi�cation scenarios, the performances of classi�ers crucially rely on the
amount of accurately labeled data. However, in many real-world classi�cation problems, collecting
large-scale fully labeled data is expensive and time-consuming, and sometimes even infeasible.
�erefore, weakly supervised learning (WSL) (Zhou, 2017; Han et al., 2019; Wang et al., 2019; Li
et al., 2017, 2018; Krause et al., 2016; Khetan et al., 2018; Hu et al., 2019; Liu and Tao, 2016; Han
et al., 2018; Wu et al., 2021; Sugiyama et al., 2022; Bai et al., 2022; Li et al., 2022b; Cheng et al., 2022b;
Yang et al., 2022; Wu et al., 2022; Li et al., 2022a; Cheng et al., 2022a; Yao et al., 2022; Xia et al., 2022),
which utilizes weaker supervisions, is becoming more and more prominent.

Within WSL, similarity learning (Gionis et al., 1999; Kulis et al., 2012) is one of the most notable
emerging problems, where recent approaches primarily explore two directions. One direction
focuses on semi-supervised clustering (Wagsta� et al., 2001). For example, similar and dissimilar
data pairs are treated as must-link pairs and cannot-link pairs, which are used as constraints on
clustering (Wagsta� et al., 2001; Basu et al., 2002; Li and Liu, 2009; Hu et al., 2008; Calandriello
et al., 2014); similarity supervision is used for metric learning, which learns a distance function
over instances and can easily convert to clustering tasks (Xing et al., 2003; Davis et al., 2007; Niu
et al., 2014). Another direction aims at classi�cation. For example, the similarity (dissimilarity) and
unlabeled learning was proposed by designing unbiased risk estimators for binary classi�cation
(Bao et al., 2018; Shimada et al., 2021; Bao et al., 2022); a multi-class classi�er can be learned from
similarity supervision (Hsu et al., 2019).

However, the above methods are based on the strong assumption that similarity labels are
entirely accurate, which is hard to meet for many applications. For example, when it comes to
privacy-sensitive ma�ers, such as politics and religion, people o�en hesitate to directly answer
questions like “What is your opinion on issue I?” and prefer to answer questions like “With whom
do you share the same opinion on issue I?”. �estions in this form can be regarded as one type of
randomized response technique, which is a commonly used indirect questioning survey method
that reduces the social desirability bias and increases data reliability (Warner, 1965; Fisher, 1993; Bao
et al., 2018). To some degree, similarity information avoids embarrassment and protects personal
privacy. Nevertheless, in practice, respondents might answer these questions in a manner that is
viewed favorably by others instead of answering truthfully (Oral, 2019). As a result, the collected
similarity data not only contain similar but also dissimilar data pairs. �is kind of noise is random
noise rather than adversarial noise because adversarial noise is o�en designed by considering the
properties of algorithms so that it can confuse the algorithm (Szegedy et al., 2014; Madry et al.,
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2018); however, the noise induced by humans is independent of machine learning algorithms. In
this case, if we directly employ the existing algorithms for clean similarity learning to deal with
noisy similarity supervision, the classi�cation performance will inevitably degenerate because
the model will over�t the noisy data (Zhang et al., 2017). For example, if we directly employ the
estimator designed for SU classi�cation (Bao et al., 2018), an estimation bias would be introduced,
and the learned classi�er would thereby no longer be optimal.

In this paper, we study the problem of how to learn a robust consistent classi�er from noisy
similar data pairs and unlabeled (nSU) data, which is called nSU classi�cation. As shown in Figure 1,
there is no class supervision in SU or nSU classi�cation. In addition, there are some wrong links of
dissimilar data pairs in nSU classi�cation, which makes the problem more di�cult. To this end, we
propose an empirical risk minimization (ERM) (Vapnik, 1991) framework to learn classi�ers from
only nSU data. Although the unbiased classi�cation risk estimator for SU data has been studied,
how to properly model the noise is a signi�cant bo�leneck for solving the nSU problem. �ere are
two widely-used noise models, i.e., the class-conditional label noise (CCN) model (Angluin and
Laird, 1988) and mutually contaminated distributions (MCD) model (Sco� et al., 2013). We employ
MCD to model the noise: the distribution of noisy similar data pairs is a mixture proportion of the
similar and dissimilar data pairs, where the noise rate is de�ned as the proportion of dissimilar
data pairs in noisy similar data pairs. We choose MCD because CCN is a noise model for labeling
noise and MCD is a noise model for sampling noise, which is why MCD is more suitable for the
scenario of surveying sensitive topics with indirect questioning (more discussion can be found in
Appendix G). To estimate the noise rate, we decompose the nSU data distributions and convert
them to a standard mixture proportion estimation (MPE)1 format. We prove that our MPE problem
is well de�ned such that the noise rate is identi�able and can be consistently estimated using MPE
methods. �en we theoretically build an unbiased estimator for the classi�cation risk with respect
to the fully and accurately labeled data.

�e contributions of this paper are summarized as follows:
• Under the ERM framework, we propose a denoised and unbiased estimator for the classi�cation

risk with respect to the accurately labeled data by employing the nSU data.
• We prove that the MPE problem raised in this work is well-de�ned and thus the solutions are

identi�able, i.e., the noise rate and class-prior can be consistently estimated from the nSU data.
• We theoretically establish a generalization error bound for the proposed nSU classi�cation

method, showing that the learned classi�er will converge to the optimal classi�er with respect
to accurately labeled data.

• We empirically demonstrate that the proposed method can e�ectively reduce the side e�ect of
noisy similarity data.

�e rest of this paper is organized as follows. In Section 2, we formalize the fundamental
de�nitions, goals, and assumptions of the nSU classi�cation problem. In Section 3, we propose the
nSU classi�cation method and practical implementation. In Section 4, we discuss how to estimate
the parameters. In Section 5, we analyze the generalization error. In Section 6, we discuss the
experimental results. In Section 7, we conclude our paper.

1. Let F,G, and H be distributions on (X ,S) such that F = (1− κ)G+ κH , where 0 ≤ κ ≤ 1. MPE is to estimate
κ, given i.i.d. samples from both F and H (Blanchard et al., 2010).
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Figure 1: �e illustration of supervised classi�cation, SU classi�cation, and nSU classi�cation. SU
classi�cation learns from similar data pairs and unlabeled data while nSU classi�cation
learns from noisy similar data pairs and unlabeled data.

2. Problem Setup and Related Work

In this section, we formalize the nSU classi�cation problem and introduce related works.

2.1 Preliminaries

We consider the binary classi�cation problem. Let D be the distribution of a pair of random
variables (x, y) ∈ X × {−1, 1}, where X ⊂ Rd and d represents the dimension. Let f : Rd → R
be a hypothesized classi�er in the prede�ned hypothesis class F , and ` : R × {±1} → R be
the loss function measuring how well the true class label Y is estimated by the prediction of a
hypothesis. �e optimal classi�er f∗ is therefore de�ned by the hypothesis that minimizes the
expected classi�cation risk:

R(f) = E
(x,y)∼D

[`(f(x), y)], (1)

i.e.,
f∗ = argmin

f∈F
R(f). (2)

O�en, the distribution of data is unknown. �e standard supervised binary classi�cation method uti-
lizes positive and negative training data drawn i.i.d. fromD to learn the optimal classi�er by minimiz-
ing the empirical classi�cation risk, which is an approximation of the expected risk in Eq. (1). While
in our se�ing, we only have noisy similar (nS) data pairs, i.e., {(xS,1,x

′
S,1), . . . , (xS,nnS

,x′S,nnS
)},

and some unlabeled (U) data, i.e., {xU,1, . . . ,xU,nU
}, which are called the nSU data. A pair of

instances is said to be similar if they are from the same class. Noisy similar data pairs mean that the
data may come from di�erent classes but are treated as similar data pairs. �erefore, our research
problem in this paper is to build an empirical classi�cation risk by only employing the nSU data
that will approximate the expected risk in Eq. (1).

2.2 Noisy Pairwise Similarity and Unlabeled Data

Below, we provide detailed de�nitions and assumptions in the nSU classi�cation.
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Assumption 1 Data independence (Bao et al., 2018). Without any assumptions, the pairwise data
cannot e�ectively be used to approximate the risk. We assume that each instance is independently
drawn from joint distribution D. For example, for every data pair (x,x′), if two instances are similar,
they follow the probability density as

ps(x,x
′) = p(x,x′|y = y′ = +1 ∨ y = y′ = −1)

=
π2+p+(x)p+(x′) + π2−p−(x)p−(x′)

π2+ + π2−
, (3)

where p(A ∨B) represents the probability density that either A or B occurs, and

• π+ = p(y = +1) and π− = p(y = −1) are the class-prior probabilities, which satisfy
π+ + π− = 1,

• p+(x) = p(x|y = +1) and p−(x) = p(x|y = −1) are the class-condition probability density.

More discussion about this assumption can be found in Appendix C.
Eq. (3) shows that two instances are drawn independently following p(x, y), which corresponds

to the density ofD, and they belong to the similar data pairs if they have the same label. In contrast,
if the two instances of a data pair belong to the di�erent classes, they follow the probability density
as

pd(x,x′) = p(x,x′|(y = +1 ∧ y′ = −1) ∨ (y = −1 ∧ y′ = +1))

=
π+π−p+(x)p−(x′) + π+π−p−(x)p+(x′)

2π+π−

=
p+(x)p−(x′) + p−(x)p+(x′)

2
, (4)

where p(A ∧B) represents the probability density that both A and B occur.
For the unlabeled data, we assume that they are independently drawn from the marginal density

p(x), which can be decomposed as

p(x) = π+p+(x) + π−p−(x). (5)

Lemma 1 Assume that Assumption I holds. If two instances x and x′ are drawn independently from
the unlabeled data density, Eq. (5) can easily convert to a pairwise marginal version such that

p(x,x′) = πsps(x,x
′) + πdpd(x,x′), (6)

where πs = π2+ + π2− and πd = 2π+π−.

A detailed proof is provided in Appendix A.

Assumption 2 Contamination model. To handle the noise, we consider the contamination model
proposed by Huber et al. (1964), which has been widely used in the label noise learning community
(Menon et al., 2015; Sco� et al., 2013). Speci�cally, the noisy similarity data consist of both similar
data pairs and dissimilar data pairs:

p̃s(x,x
′) = (1− ρd)ps(x,x

′) + ρdpd(x,x′), (7)
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where ρd ∈ [0, 1) is regarded as the noise rate and p̃s denotes the density of noisy similar data pairs.
More speci�cally, in p̃s, a proportion ρd of data pairs are contaminated by dissimilar data pairs, while
the (1− ρd) proportion remains similar.

We employ the contamination model rather than the CCN model (see Section 2.3 for details)
because the former is more suitable to describe the noise pa�ern of nSU data. We take the “opinion-
on-issue-I” case as an example: In practice, the data generation procedure is to collect answers
to the question “With whom do you share the same opinion on issue I?”. In statistics, it is to
sample examples of similar data pairs from ps(x,x

′). However, some people give wrong answers,
which makes the selected examples contain dissimilar data pairs from pd(x,x′). Overall, the data
generation procedure is an imbalanced sample from both ps(x,x′) and pd(x,x′), which can be
exactly formulated by a contamination model in Eq. (7).

�e above two assumptions overlook the data-dependence in pairwise data (i.e., pairwise data
is independently sampled from ps(x,x

′)) and the instance-dependence of noise (i.e., (1− ρd) is
independent of x and x′). However, this simpli�cation has been widely accepted in statistical
learning theory and the label-noise learning communities, and the empirical results on benchmark
datasets verify the e�ciency of the assumptions (Patrini et al., 2017; Xia et al., 2019). We could then
build a denoised and unbiased estimator for the classi�cation risk with respect to the latent clean
data with the nSU data and provide a theoretical error bound for the proposed method.

We denote the noisy similar data pairs and the unlabeled data by D̃s and Du, respectively.

D̃s , {(xS,1,x
′
S,1), . . . , (xS,nnS

,x′S,nnS
)} i.i.d.∼ p̃s(x,x

′), (8)

Du , {xU,1, . . . ,xU,nU
} i.i.d.∼ p(x), (9)

where nnS is the size of D̃s and nU is the size of Du. We show that a consistent classi�er could be
learned with theoretical guarantee.

2.3 Related Work

�ere are a few works regarding the label noise issue on similarity learning. However, the employed
noise model, the essential parameter estimation method, and the classi�er models of our work are
all di�erent from the related works’.

First, Dan et al. (2021) studied a similar but di�erent problem of how to learn a binary classi�er
from noisy similar data pairs and dissimilar data pairs. �e noise model Dan et al. (2021) employed
is CCN, where the clean labels are assumed to �ip into other classes with a certain probability.
Speci�cally, in Dan et al. (2021), similar data pairs are corrupted into dissimilar data pairs with
probability α, and dissimilar data pairs are corrupted into similar data pairs with probability β:[

p(S̄ = 0|x,x′)
p(S̄ = 1|x,x′)

]
=

[
1− β α
β 1− α

] [
p(S = 0|x,x′)
p(S = 1|x,x′)

]
, (10)

where S and S̄ denote the similarity label and noisy similarity label2.
�is model is di�erent from the MCD model, where the noise distribution is a mixture proportion

of the clean distributions. Speci�cally, for the MCD model, in p̃s (p̃d), a proportion ρd (ρs) of data

2. Dan et al. (2021) called this noise model pairing corruption. �ey also discussed another noise model called labeling
corruption, where labels Y and Y ′ are corrupted in an instance-independent manner.
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pairs are contaminated by dissimilar (similar) data pairs, while the remaining 1 − ρd (1 − ρs)
proportion remains similar (dissimilar):

[
p(x,x′|S̄ = 0)
p(x,x′|S̄ = 1)

]
=

[
1− ρs ρs
ρd 1− ρd

] [
p(x,x′|S = 0)
p(x,x′|S = 1)

]
. (11)

It is notable that the middle matrix in Eq. (10) is column normalized while the middle matrix in
Eq. (11) is row normalized. Moreover, the CCN model is a strict special case of the MCD model
(Menon et al., 2015). It has been studied in Lu et al. (2019) that p(S̄) is �xed in the CCN model
once p(S̄|x,x′) is speci�ed while p(S̄) is free in the MCD model a�er p(x,x′|S̄) is speci�ed.
Furthermore, for p̃(x) being the distribution of noisy x, p̃(x) = p(x) holds in the CCN model but
p̃(x) 6= p(x) holds in the MCD model. Due to this covariate shi� (Sugiyama and Kawanabe, 2012),
CCN methods do not �t the MCD problem se�ing, while the MCD methods �t the CCN problem
se�ing conversely.

For our nSU contamination model, we only have the noisy similar data pairs, and Eq. (7) is
consistent with part of Eq. (11). Besides, there is no restriction on the noisy dissimilar data pairs.
Namely, we can set the imaginary noisy dissimilar data pairs to obey the distribution in Eq. (11).
Moreover, the distribution of the unlabeled data is free to label noise. �erefore, the MCD model,
as well as the CCN model, is a special case of the nSU contamination model.

Second, to build an unbiased classi�cation risk framework from the observation, there are
some essential parameters to estimate. Dan et al. (2021) roughly tuned the noise rate parameter by
cross-validation on the noisy data. �en, based on the tuned parameter, the prior was empirically
estimated. Bao et al. (2018) used an MPE method to solve the estimation problem. However, the
solution of that MPE problem is not guaranteed to be identi�able. By contrast, we prove that
the new MPE problem in this work is irreducible (Sco�, 2015), and thereby can be solved with a
theoretical guarantee (see Section 4 for details).

�ird, Dan et al. (2021) used a neural network to approximately learn the classi�er. However, we
use not only the neural network but also the linear model, of which there exist analytical solutions
to the la�er model.

3. Learning from nSU Data

In this section, we rewrite the classi�cation risk in Eq. (1) by only employing nSU data. �en, we
discuss its practical implementation under di�erent surrogate loss functions. Lastly, we show an
e�ective method for estimating class-prior π+ and noise rate ρd.

3.1 Risk Expression with nSU Data

�eorem 1 Assume that π+ 6= 0.5. �e classi�cation risk in Eq. (1) can be equivalently expressed
only in terms of nSU data as follows:

RnSU,`(f) = E
(x,x′)∼p̃s

[LnS(x,x′)] + E
x∼p

[LU(x)], (12)
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where

LnS(x,x′) =
πs(1− πs)

2(1− ρd − πs)(2π+ − 1)
[l̃(x) + l̃(x′)],

l̃(x) = `(f(x),+1)− `(f(x),−1),

LU(x) =
πsρd − π−(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
`(f(x),+1)− πsρd − π+(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
`(f(x),−1).

A detailed proof and discussion are provided in Appendix B.
�eorem 1 immediately leads to an unbiased risk estimator:

R̂nSU,`(f) =
1

nnS

nnS∑
i=1

LnS(xS,i,x
′
S,i) +

1

nU

nU∑
i=1

LU(xU,i). (13)

3.2 Practical Implementation

Here, we employ the linear-in-parameter-model f(x) = w>φ(x), where w and φ are vectors of
parameters and basis functions with the same dimension. �en employing Eq. (13) with the `2
regularization, the nSU classi�cation can be formulated as the following regularized empirical risk
minimization problem:

ŵ = min
w

Ĵ`(w), (14)

where

Ĵ`(w) =
1

nnS

nnS∑
i=1

LnS(xS,i,x
′
S,i) +

1

nU

nU∑
i=1

LU(xU,i) +
λ

2
‖w‖2

=
A

2nnS

2nnS∑
i=1

[`(w>φ(xS,i),+1)− `(w>φ(xS,i),−1)]

+
B

nU

nU∑
i=1

[`(w>φ(xU,i),+1)]− C

nU

nU∑
i=1

[`(w>φ(xU,i),−1)] +
λ

2
‖w‖2, (15)

and

A =
πs(1− πs)

(1− ρd − πs)(2π+ − 1)
, (16)

B =
πsρd − π−(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
, (17)

C =
πsρd − π+(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
, (18)

and λ (≥ 0) in Eq. (15) is the regularization parameter. Note that since the loss form is symmetric
to xS,i and x′S,i, we use xS,i uniformly in Eq. (15). To solve this optimization problem, we need the
knowledge of class-prior π+ (πs can be calculated from π+) and the noise rate ρd. In Section 4, we
discuss how to estimate them from nSU data.
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Inspired by Bao et al. (2018), Natarajan et al. (2013), and du Plessis et al. (2015), we surprisingly
�nd that adopting certain loss functions, i.e., the margin loss function3 (Mohri et al., 2018), will
result in a convex objective function.

�eorem 2 Assume that the loss function `(z, t) is a convex margin loss function, and for every �xed
t ∈ {±1}, `(z, t) is twice di�erentiable with respect to z. If `(z, t) satis�es the condition

`(z,+1)− `(z,−1) = −z,

then Ĵ`(w) is convex.

A detailed proof and more discussion are provided in Appendix D.
Below, we consider the squared loss function, which satis�es the conditions in �eorem 2.
�e squared loss function is de�ned as `SQ(z, t) = 1

4(tz − 1)2. Substituting `SQ into Eq. (15),
we have

ĴSQ(w) = w>
(

1

4nU
X>UXU +

λ

2
I

)
w −

(
A

2nnS
1>XS +

B + C

2nU
1>XU

)
w,

where I is the identity matrix, 1 represents the vector whose elements are all ones, XS =
[φ(xs,1) · · · φ(xs,2nnS)]>, and XU = [φ(xu,1) · · · φ(xu,nU)]>. �en we have the analytical
solution of this minimization problem as

w = nU ·
(
X>UXU + 2λnUI

)−1( A

nnS
X>S 1 +

B + C

nU
X>U1

)
. (19)

Besides, we provide a deep learning method where we can obtain an approximation to the
optimal solution. Speci�cally, we employ a deep model f with logistic loss: `LG(z, t) = log(1 +
exp(−tz)). �en we directly optimize the objective function Eq. (13), into which `LG substituted:

f̂ = argmin
f∈F

R̂nSU,`LG
(f). (20)

4. Estimating π+, πs, and ρd with the MPE method

In the aforementioned method, similar rate πs, class-prior π+, and noise rate ρd are assumed to be
given in advance, which is not always true. Here, we thus provide a practical method to estimate
them. Mixture proportion estimation (MPE) (Blanchard et al., 2010) is the following problem: Let
F,G, and H be probability distributions on (X ,S) such that

F = (1− κ)G+ κH, (21)

where 0 ≤ κ ≤ 1. Given random samples from F and H , estimate κ.
Similarly, the distributions of bothDu and D̃s (see Eqs. (8) and (9)) have mixture representations

according to Eq. (6) and Eq. (7). By substituting (1− πs) for πd, we obtain

P (x,x′) = (1− πs)Pd(x,x′) + πsPs(x,x
′), (22)

P̃s(x,x
′) = (1− ρd)Ps(x,x

′) + ρdPd(x,x′). (23)

3. ` is said to be a margin loss function if there exists ψ : R→ R+ such that `(z, t) = ψ(tz).
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�e above equations are similar to the standard MPE format but the accessible samples are not
from the corresponding F and H . �erefore, by further calculating [(22)×(1 − ρd) − (23)×πs],
[(22)×ρd − (23)×(1− πs)] respectively and organizing, we obtain

P (x,x′) = (1− πs
1− ρd

)Pd(x,x′) +
πs

1− ρd
P̃s(x,x

′), (24)

P̃s(x,x
′) = (1− ρd

1− πs
)Ps(x,x

′) +
ρd

1− πs
P (x,x′). (25)

According to these mixture representations, i.e., Eq. (22) and Eq. (23), we assume that 1− ρd >
πs, which can easily be held because the proportion of similar data pairs in D̃s (denoted by 1− ρd)
which it collects the similar data pairs purposely, is apparently bigger than that in unlabeled data
(denoted by πs). More discussion can be found in Appendix H.

Based on this reasonable assumption, we have the following lemma:

Lemma 2 Assume 1− ρd > πs. Eq. (24) and Eq. (25) can be equivalently rewri�en as a standard
MPE format such that

P (x,x′) = (1− γ)Pd(x,x′) + γP̃s(x,x
′), (26)

P̃s(x,x
′) = (1− κ)Ps(x,x

′) + κP (x,x′). (27)

where γ = πs
1−ρd ∈ [0, 1), κ = ρd

1−πs ∈ [0, 1).

Proof Lemma 2 directly follows from Eq. (24) and Eq. (25) under the assumption 1− ρd > πs.

Note that since we have no information aboutG in the original MPE problem, without additional
assumptions, MPE is ill-de�ned and the mixture proportion κ is not identi�able.

�e weakest and most common assumption to yield the identi�ability of the mixture proportion
κ is the irreducibility assumption (Blanchard et al., 2010):

De�nition 1 (Sco�, 2015) Let G, andH be probability distributions. We say that G is irreducible
with respect to H if there exists no decomposition of the form G = γH + (1 − γ)F ′, where F ′ is
some probability distribution and 0 < γ ≤ 1.We say that G and H are mutually irreducible if G is
irreducible with respect to H and vice versa.

�e irreducibility assumption states that the maximum proportion of H in G approaches to 0,
otherwise there would exist such an F ′. Consider S is the set of measurable sets in X and above
discussion straightforwardly implies the following fact (Sco� et al., 2013; Blanchard et al., 2010): G
being irreducible with respect to H is equivalent to supp(H) 6⊂ supp(G), i.e.,

inf
S∈S,H(S)>0

G(S)

H(S)
= 0.

In general, the distributions of positive data and negative data are assumed to be mutually
irreducible (Sco� et al., 2013), which leads to the following theorem.

�eorem 3 Assume that the positive data distribution P+ and the negative data distribution P− are
mutually irreducible, then Pd is irreducible with respect to P̃s, and Ps is irreducible with respect to P .
�us, the mixture proportions γ and κ in Lemma 2 is identi�able.

10
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Algorithm 1 nSU classi�cation.
Input: Noisy similar data pairs D̃s and unlabeled data Du;
Output: �e classi�er f̂ ;
Stage 1. Estimate the similar rate πs and noise rate ρd
Intermediate parameters (γ, κ) = MPE(D̃s, Du);
Compute (πs, ρd, π+, π−) from (γ, κ);
Stage 2. Obtain classi�er f̂
if Squared loss then

Compute the analytical solution ŵ by Eq. (19);
end if
if Logistic loss then

Approximate the optimal classi�er f∗ by the SGD;
end if
return f̂ ;

A detailed proof is provided in Appendix E.
Based on Lemma 2 and �eorem 3, we can e�ectively estimate γ and κ by the MPE method

(Ramaswamy et al., 2016). A�er estimating γ and κ, we can reversely calculate πs, ρd, and π+
according to the de�nitions of γ and κ in Lemma 2 as follows:

• Similar rate: πs = γ(1−κ)
1−γκ ,

• Noise rate: ρd = κ(1−γ)
1−γκ ,

• Class-prior4: π+ =

√
2
γ(1−κ)
1−γκ

−1+1

2 ..

Overall, our method for nSU classi�cation is summarized in Algorithm (1).

5. Error Bound Analysis

In this section, we derive a generalization error bound for the nSU classi�cation.
Let F ⊂ RX be a function class of the linear-in-parameter model, and f∗ = argmin

f∈F
R(f) be

the true risk minimizer, and f̂ = argmin
f∈F

R̂nSU,`(f) be the empirical risk minimizer. By introducing

a Rademacher Complexity bound assumption (Bao et al., 2018), i.e., for any probability density µ,
R(F ;n, µ) ≤ CF√

n
for some constant CF > 0, then we can obtain the following theorem.

�eorem 4 Assume the loss function ` is ρ-Lipschitz with respect to the input instancex (ρ ∈ (0,∞)),
and all functions in the hypothesis class F are bounded by Cb, i.e., ‖f‖∞ ≤ Cb for any f ∈ F . Let
C` = supt∈{±1} `(Cb, t). For any δ > 0, with probability at least 1− δ,

R(f̂)−R(f∗) ≤
4AρCF +A

√
2C2

` log 4
δ√

2nnS
+

2(−B − C)ρCF + (−B − C)
√

1
2C

2
` log 4

δ
√
nU

, (28)

4. 2πs − 1 = πs − πd = (π+ − π−)2 = (2π+ − 1)2, such that π+ =

√
2
γ(1−κ)
1−γκ

−1+1

2
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where A, B, and C are de�ned in Eqs. (16), (17), and (18).

A detailed proof is provided in Appendix F.
�eorem 4 implies that the expected risk of the classi�er learned from nSU data is consistent

with that of the classi�er learned from standard positive and negative data if we have π+ and ρd in
advance. �e convergence rate is Op(1/

√
nnS + 1/

√
nU), which achieves the optimal parametric

rate for the empirical risk minimization without additional assumptions (Mendelson, 2008).

6. Experiments

In this section, we experimentally investigate the behavior of the proposed method and the baselines
for nSU classi�cation on both synthetic and benchmark datasets. All experiments were conducted
with 3.10GHz Intel(R) Core(TM) i9-9900 CPU and NVIDIA 2080Ti.

6.1 Data Generation and Common Setup

To obtain nSU data, �rst, we collected raw binary classi�cation datasets which consist of positive
and negative data, while leaving 10% of the data as test data. �en we converted the labeled
data to noisy similar data pairs according to class-prior π+ and noise rate ρd. Speci�cally, we
randomly subsampled similar data and dissimilar data pairs following the ratio of 1− ρd and ρd.
�e similar data pairs consisted of positive and negative pairs with a ratio of π2+ and π2−. A�er that,
we randomly selected unlabeled data samples from positive data and negative data with a ratio of
π+ and π−.

For all the experiments, the sample size of the noisy similar data pairs was �xed to 4000, while
the sample size of the unlabeled data was �xed to 2000. �e class-prior π+ and noise rate ρd
were estimated by the MPE method (Ramaswamy et al., 2016). For the �rst MPE for γ, we used
the default parameters. For the second MPE for κ, to ensure the term in the square root in the

formula π+ =

√
2
γ(1−κ)
1−γκ

−1+1

2 to be greater than zero, we set λright = 2− 1/γ̂ while kept all other
parameters as default, where λright is a parameter in the MPE method (Ramaswamy et al., 2016)
and γ̂ is the estimated value.

We used the linear basis functions and the regularization parameter λwas �xed to 10−4. For the
deep model, we employed a 3-layer MLP (multilayer perceptron) with the so�sign active function
(Saf(x) = x/(1 + |x|)). We used the stochastic gradient descent (SGD) optimizer with an initial
learning rate of 0.002, which decays every 40 epochs by a factor of 0.1 with 200 epochs in total.

6.2 Baselines

We implemented our method with two models. In Stage 1, we employed the KM2 algorithm
(Ramaswamy et al., 2016) to estimate the class-prior and noise rate. In Stage 2, for the linear model,
we obtained the analytical solution by Eq. (19) (denoted by -LC (Linear Classi�er)); for the deep
neural network, we used the SGD to optimize the model (denoted by -DC (Deep Classi�er)). We
compared our proposed method with state-of-the-art methods:

• SU classi�cation (Bao et al., 2018), which is the state-of-the-art method for learning from
similarity and unlabeled data. �is method was also implemented with two models, i.e., linear
and deep models.

12
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• nSD classi�cation (Dan et al., 2021), which learns a classi�er from noisy similarity and
dissimilarity data pairs. To make it compatible with the nSU data, we treated the unlabeled
data as the noisy dissimilarity data and fed the ground-truth class-prior and noises rates to
the nSD algorithm.

• Information-theoretic metric learning (ITML) (Davis et al., 2007), which utilizes pairwise
similarity and dissimilarity as constraints to learn a metric. �en, k-means clustering is
applied on test data with the learned metric.

Moreover, we also implemented some unsupervised learning methods, i.e., k-means (KM) (Mac-
�een, 1967) and hierarchical clustering schemes (HC) (Johnson, 1967). For unsupervised learning
methods, we directly used the implementations on scikit-learn (Pedregosa et al., 2011). We also
employed a support vector classi�er (SVC) (Cortes and Vapnik, 1995) with a linear kernel learned
from fully-supervised data as a benchmark. Note that learning a classi�er without class information
will lose the mapping between the cluster nodes and the semantic classes. �e semantic classes
can be identi�ed with some prior knowledge, e.g., the exact π+ or the sign of (π+ − π−). Here, we
employed the Hungarian algorithm (Kuhn, 1955), which is a commonly used method for evaluating
the clustering accuracy, to assign the output nodes to the dominant semantic classes by using some
training examples with class labels.

6.3 Experiments on Synthetic Datasets

We generated synthetic data drawn from two-dimension normal distributions. Se�ings with various
combinations of parameters were tested. �e results are shown in Figures 2 and 3.

For one case, the positive data follows the Gaussian distribution N
((

1
1

)
,

(
1 0
0 1

))
, and

the negative data followsN
((
−1
−1

)
,

(
1 0
0 1

))
, which we called the syn1 dataset. For another case,

the positive data followsN
((

1
1

)
,

(
1 0
0 2

))
, and the negative data followsN

((
−1
−1

)
,

(
2 0
0 1

))
,

having more overlap, which we called the syn2 dataset. From such two binary datasets, we gener-
ated the nSU data with {π+ = 0.7, ρd = 0.2} (Figures 2.a & 2.c) and {π+ = 0.7, ρd = 0.3} (Figures
2.b & 2.d). Here we employed an SVC with a linear kernel learned from fully-supervised data as a
benchmark. �e class-prior and noise rate were assumed to be known.

In Figure 2, we can see that the nSU classi�er is closer to the SVC classi�er than the SU classi�er
in all four setups. As the noise rate increases from 0.2 to 0.3, the SU classi�er moves further away
from the SVC classi�er, while the nSU classi�er is hardly a�ected. From Figure 3, we can see that
the accuracy of the SU classi�er drops dramatically with the increased noise rate on both datasets.
Meanwhile, there is only a slight �uctuation of the nSU classi�er. Note that the gap between the
accuracy of the nSU classi�er and the SVC classi�er trained on clean data is small, i.e., within two
percentage points.

6.4 Experiments on UCI and LIBSVM Datasets

Here datasets were obtained from the LIBSVM data (Chang and Lin, 2011) and UCI Machine Learning
Repository (Dua and Gra�, 2017). �en we generated the corresponding nSU data following the
data generation method. Tables 1 and 2 demonstrate the remarkable superiority of the nSU classi�er
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(a) syn1: {π+ = 0.7, ρd = 0.2} (b) syn1: {π+ = 0.7, ρd = 0.3}

(c) syn2: {π+ = 0.7, ρd = 0.2} (d) syn2: {π+ = 0.7, ρd = 0.3}

Figure 2: Illustrations based on a single trail of the four setups. �e green and pink lines are
decision boundaries learned by nSU and SU classi�cation from nSU data respectively. �e
orange boundary is obtained by SVC with a linear kernel using the fully-supervised data.

over the SU classi�er and nSD classi�er on all the benchmark-simulated datasets. For some datasets,
ITML also achieved comparable accuracy. It is because ITML is a cluster-based method, whose
performance is closely associated with the natural structure of the dataset, i.e., whether the low
density separation5 condition holds.

6.5 Experiments on Text Datasets

SMS Spam (Almeida et al., 2011) is a public set of short message service (SMS) labeled messages
that have been collected for mobile phone spam research, which is composed of 5,574 English,
real, and non-encoded messages, tagged according to being legitimate or spam. News20 is a
collection of approximately 20,000 newsgroup documents, partitioned nearly evenly across 20
di�erent newsgroups. We selected ten newsgroups and paired them into �ve datasets, i.e., News 05,
. . ., News 49. �e speci�c class information is provided in appendix I. For these two datasets, we

5. �e decision boundary should lie in a low-density region.
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(a) syn1 with stepwise noise (b) syn2 with stepwise noise

Figure 3: Means and Standard Deviations (Percentage) of Classi�cation Accuracy over 5 trials on
syn1 and syn2 with stepwise noise. �e class-prior π+ is �xed at 0.7. When the noise
rate is higher than 0.3, the SU classi�er even loses the identi�cation ability, and assigns
all the test instances the same label, which leads to a steady 0.5 accuracy.

Table 1: Means and Standard Deviations (Percentage) of Classi�cation Accuracy over 5 trials on
the UCI and LIBSVM datasets with {π+ = 0.7, ρd = 0.2}. �e best (except SVC) and
comparable methods (paired t-test at signi�cance level 5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC
australian 83.1±4.4 68.0±8.8 63.7±5.4 54.3±2.9 60.0±2.9 69.1±4.2 82.2±4.4 75.4±11.3 84.9±4.1

breast-cancer 93.6±1.7 85.8±7.2 84.1±3.8 79.4±4.0 93.0±1.2 95.9±2.4 64.1±1.3 95.7±2.0 96.2±1.3
fourclass 71.5±6.7 64.8±6.2 63.7±1.5 63.4±2.1 64.7±4.8 64.8±5.0 80.6±5.8 63.4±15.8 98.2±1.0

magic 76.2±1.5 66.2±2.6 69.5±3.5 64.5±4.1 70.5±3.2 61.8±2.3 68.8±5.9 64.7±1.1 80.3±1.0
cod-rna 89.8±2.7 85.6±3.6 62.1±12.0 63.3±3.7 72.3±7.9 76.8±0.5 83.2±0.3 76.5±2.8 77.2±0.6

adult 67.9±1.0 59.1±6.8 63.6±4.2 58.6±3.0 75.7±0.3 71.1±0.6 84.4±4.2 72.6±2.3 70.5±1.0
banknote 98.0±1.1 62.2±8.2 94.9±5.6 60.6±8.9 62.6±3.9 62.9±2.9 59.1±7.0 66.1±2.0 100.0±0.0

heart 83.3±3.7 61.5±12.7 58.3±7.6 56.3±4.8 70.4±6.4 63.7±6.6 80.0±10.0 62.2±8.4 60.0±5.5
svmguide1 76.1±7.0 56.1±4.3 52.8±3.4 56.6±6.6 71.1±0.6 72.6±1.0 80.3±1.3 75.5±12.0 93.5±1.2

htru 2 96.4±1.3 81.1±8.4 96.1±1.2 86.3±5.7 92.0±1.6 73.4±2.3 86.0±5.0 71.0±8.5 97.1±0.2

used GloVe (Pennington et al., 2014) to extract vector representations from raw text data. Tables 3
and 4 show the consistent superiority of the nSU classi�er over the SU classi�er and nSD classi�er
on all the benchmark-simulated datasets. Due to the natural structure of the dataset, the clustering
methods occasionally achieved the best performance. However, the clustering methods were not
stable, with larger standard deviations.
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Table 2: Means and Standard Deviations (Percentage) of Classi�cation Accuracy over 5 trials on
the UCI and LIBSVM datasets with {π+ = 0.8, ρd = 0.1}. �e best (except SVC) and
comparable methods (paired t-test at signi�cance level 5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC
australian 85.4±3.1 55.1±2.4 82.6±3.6 54.6±2.9 64.6±6.7 69.1±4.2 80.8±5.2 78.9±4.1 86.7±4.2

breast-cancer 94.8±1.7 66.7±3.7 93.0±2.4 64.9±2.6 89.0±3.3 95.9±2.4 67.7±8.0 94.8±1.9 95.4±2.4
fourclass 70.8±5.9 61.8±5.2 57.5±5.3 62.1±5.1 64.3±4.9 62.3±6.4 80.9±5.7 55.2±5.2 97.5±1.0

magic 75.6±2.2 63.2±7.4 71.4±1.6 65.9±1.4 68.5±3.0 58.3±0.6 71.7±19.2 63.4±3.6 75.9±0.7
cod-rna 90.1±0.9 58.7±10.9 71.9±7.0 66.7±0.1 66.7±7.8 77.2±0.5 83.2±0.3 77.8±0.3 59.2±0.3

adult 74.0±2.2 60.9±5.7 73.2±2.2 57.7±3.4 71.1±0.6 75.8±0.1 84.4±4.2 65.3±8.2 65.5±0.8
banknote 97.9±0.7 66.7±6.4 96.7±2.3 63.2±9.5 94.1±7.6 63.8±3.4 83.4±13.5 64.1±4.3 100.0±0.0

heart 77.0±8.4 63.0±9.4 61.5±10.0 55.6±2.6 63.7±4.1 63.7±6.6 80.7±8.8 63.0±10.1 56.6±0.0
svmguide1 73.5±2.5 65.4±1.8 67.3±4.1 57.0±4.6 67.8±3.5 73.3±1.0 81.5±2.3 70.6±13.1 91.1±1.4

htru 2 97.8±0.2 76.4±9.5 97.1±0.5 84.0±7.2 87.5±3.8 77.2±1.5 81.3±13.2 82.2±7.3 97.2±0.3

Table 3: Means and Standard Deviations (Percentage) of Classi�cation Accuracy over 5 trials on
text datasets with {π+ = 0.7, ρd = 0.2}. �e best (except SVC) and comparable methods
(paired t-test at signi�cance level 5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC
SMS Spam 72.4±2.3 71.1±5.3 56.5±4.4 70.4±2.9 86.5±0.1 69.3±0.7 93.1±4.4 58.6±9.4 84.2±1.5
News 05 82.9±2.0 59.4±4.9 72.4±5.3 54.3±1.9 56.6±2.3 62.7±3.7 72.9±8.0 61.0±3.6 92.4±1.9
News 16 77.7±1.9 56.8±4.6 64.7±2.0 52.2±1.4 60.0±9.4 75.6±3.1 71.3±9.2 69.3±4.8 90.2±2.3
News 27 82.9±2.8 52.1±1.1 78.1±6.3 54.3±1.8 57.6±8.0 62.8±2.9 80.7±14.5 61.3±3.7 96.5±1.7
News 38 75.7±3.3 55.3±5.0 65.4±5.1 51.9±1.5 55.5±7.0 59.2±1.7 76.6±4.3 59.3±5.5 85.4±3.3
News 49 84.0±2.2 53.4±4.4 74.0±5.7 54.3±3.9 54.1±3.8 67.6±5.1 75.8±9.4 66.3±9.9 92.4±1.0

Table 4: Means and Standard Deviations (Percentage) of Classi�cation Accuracy over 5 trials on
text datasets with {π+ = 0.8, ρd = 0.1}. �e best (except SVC) and comparable methods
(paired t-test at signi�cance level 5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC
SMS Spam 75.9±2.2 63.0±6.4 58.1±3.1 70.3±1.5 86.5±0.1 70.0±1.0 93.3±1.4 74.3±3.7 79.0±1.4
News 05 88.5±1.7 54.9±3.6 83.4±3.5 56.6±3.8 59.2±5.0 63.4±3.3 76.0±3.6 63.1±2.9 89.2±2.4
News 16 83.2±2.4 53.6±3.6 74.7±3.2 55.9±7.0 53.5±5.9 74.5±3.1 71.4±5.4 67.0±5.4 85.3±1.7
News 27 92.8±3.0 64.6±13.6 88.3±1.7 60.6±8.8 64.4±9.5 62.6±2.9 74.0±9.4 61.5±9.2 94.7±1.0
News 38 80.6±4.0 55.3±2.4 75.9±3.5 55.4±4.1 55.8±9.2 58.2±1.8 71.7±5.9 53.4±2.3 81.8±2.0
News 49 87.1±3.2 58.1±8.6 83.8±4.1 51.7±1.1 59.8±8.7 67.7±4.4 74.1±4.5 65.2±5.8 87.8±2.6
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Table 5: Means and Standard Deviations (Percentage) of Classi�cation Accuracy over 5 trials
on image datasets with {π+ = 0.7, ρd = 0.2}. �e best (except SVC) and comparable
methods (paired t-test at signi�cance level 5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC
Cifar 03 70.4±2.9 57.8±6.5 64.8±4.1 51.9±1.5 58.6±8.2 67.1±1.1 64.9±2.6 68.7±2.1 84.7±1.0
Cifar 14 75.0±3.0 65.0±3.1 73.2±3.3 54.0±2.2 56.3±7.6 63.1±1.9 67.3±9.8 69.3±4.8 88.7±1.0
Cifar 25 72.6±1.6 56.6±3.9 68.0±3.4 54.0±2.6 62.6±5.4 62.8±2.9 70.1±9.1 61.3±3.7 87.3±0.8

Table 6: Means and Standard Deviations (Percentage) of Classi�cation Accuracy over 5 trials
on image datasets with {π+ = 0.8, ρd = 0.1}. �e best (except SVC) and comparable
methods (paired t-test at signi�cance level 5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC
Cifar 03 72.7±2.2 59.0±6.6 69.6±2.5 51.2±0.7 57.0±4.4 66.2±0.9 65.6±1.4 67.2±3.5 77.2±1.4
Cifar 14 76.7±1.4 60.2±7.2 75.6±2.6 54.7±2.1 59.5±4.7 62.0±1.4 71.3±9.2 57.4±4.3 85.2±1.8
Cifar 25 76.9±1.9 64.8±4.0 75.1±2.1 53.6±2.1 65.1±6.3 66.4±2.0 66.8±3.2 66.1±3.3 84.1±0.6

6.6 Experiments on Image Datasets

CIFAR-10 (Krizhevsky et al., 2009) has 32×32×3 color images including 50,000 training images and
10,000 test images of 10 classes. Similarly, we selected six classes and paired them into three datasets,
i.e., Cifar 03, Cifar 14, and Cifar 25. �e speci�c class information is provided in appendix I. Since
the raw feature of CIFAR-10 is far from a good representation, we extracted the 32-dimensional
features of images by a deep variational autoencoder (Kingma and Welling, 2014). Namely, both
linear methods (-LC) and deep methods (-DC) in our experiment are ��ed on top of the same
pre-trained embedding, and take the same advantage of deep models extracting good representations.
Besides, the linear methods (-LC) have the analytical solution for the objective Eq (14) while the
deep methods (-DC) use the SGD method to obtain an approximation to the optimal solution, which
introduces additional optimization errors. �erefore, the linear methods (-LC) could outperform
the deep methods (-DC) in our experiment, which is not con�ict with the fact that generally deep
models do be�er than purely linear models on image datasets like CIFAR-10. Tables 5 and 6 show
the consistent superiority of the nSU classi�er over the SU classi�er, the nSD classi�er, and the
clutering methods on all the benchmark-simulated datasets.

7. Conclusion

In this paper, we proposed a novel weakly supervised learning (WSL) problem named nSU clas-
si�cation, which considers the case where similar data pairs are corrupted with the mutually
contaminated distributions model. To tackle this problem, nSU classi�cation provided a robust
risk-consistent estimator for learning from nSU data. �e mixture proportion estimation (MPE)
method was employed to estimate the noise rate and the class-prior probabilities. When utilizing
proper models and loss functions, we showed that our optimization problem becomes convex.
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Speci�cally, there exists a closed-form solution to the objective function with a linear-in-parameter
model combined with the squared loss. We also established a generalization error bound for the
proposed method. Experiments conducted on benchmark datasets demonstrated that our method
can excellently solve the aforementioned WSL problem and showed the superiority over the baseline
methods. One of the limitations of our work is that for some extreme cases, i.e., heavily unbalanced
data with a large noise rate, the parameters cannot be estimated in an MPE manner. Another
limitation is that our method cannot deal with the multi-class se�ing, investigations on which
might prove important in future work.
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Appendix A. Proof of Lemma 1

Proof Since x and x′ are drawn independently, we have

p(x,x′) = p(x)p(x′)

= π2+p+(x)p+(x′) + π2−p−(x)p−(x′) + π+π−p+(x)p−(x′) + π+π−p−(x)p+(x′)

= πsps(x,x
′) + πdpd(x,x′).

Appendix B. Proof and discussion about �eorem 1

Proof To begin with, we introduce the following lemma:

Lemma 3 (Bao et al., 2018) �e classi�cation risk (1) can be equivalently expressed as

RSU(f) = E
(x,x′)∼ps

[LS(x,x′)] + E
x∼p

[L′U(x)], (A.1)

where

LS(x,x′) =
πs

2(2π+ − 1)
[l̃(x) + l̃(x′)],

l̃(x) = `(f(x),+1)− `(f(x),−1),

L′U(x) =
−π−

2π+ − 1
`(f(x),+1) +

π+
2π+ − 1

`(f(x),−1).

Combining Eq. (6) and Eq. (7) and organizing, we have

ps(x,x
′) =

1− πs
1− ρd − πs

p̃s(x,x
′)− ρd

1− ρd − πs
p(x,x′). (A.2)

Substituting Eq.(A.2) into Eq.(A.1) we have

R(f) = RSU(f)

= E
(x,x′)∼p̃s

[
πs(1− πs)

2(1− ρd − πs)(2π+ − 1)
[`(f(x),+1)− `(f(x),−1) + `(f(x′),+1)− `(f(x′),−1)]

]
+ E

x∼p

[
πsρd − π−(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
`(f(x),+1)− πsρd − π+(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
`(f(x),−1)

]
= E

(x,x′)∼p̃s

[
πs(1− πs)

2(1− ρd − πs)(2π+ − 1)
[l̃(x) + l̃(x′)]

]
+ E

x∼p

[
πsρd − π−(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
`(f(x),+1)− πsρd − π+(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
`(f(x),−1)

]
= E

(x,x′)∼p̃s
[LnS(x,x′)] + E

x∼p
[LU(x)]

= RnSU(f),
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where

LnS(x,x′) =
πs(1− πs)

2(1− ρd − πs)(2π+ − 1)
[l̃(x) + l̃(x′)],

l̃(x) = `(f(x),+1)− `(f(x),−1),

LU(x) =
πsρd − π−(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
`(f(x),+1)− πsρd − π+(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
`(f(x),−1).

B.1 Discussion about π+ 6= 0.5 and how a value of π+ close to 0.5 a�ects the results

�e direct cause of this requirement π+ 6= 0.5 is that the denominator of the risk contains the
term (2π+ − 1), which cannot be zero. �e intuitive and ultimate cause is that if π+ = 0.5, the
marginal distributions of similarity data and unlabeled data are the same, i.e., ps(x) = p(x) =
0.5p+(x) + 0.5p−(x), but at least 2 marginals with di�erent class priors are required to make
comparison and extract contrastive information to make the prediction (Lu et al., 2019). Technically,
if π+ = 0.5, those terms in the original risk expression, e.g., E

x,x′∼p+

[
`(f(x),+1)+`(f(x′),+1)

2

]
cannot

be rewri�en as a linear combination of E
(x,x′)∼ps

[
`(f(x),+1)+`(f(x′),+1)

2

]
and E

x∼p
[`(f(x),+1)].

A π+ value close to 0.5 makes the marginal distributions of ps and p more similar and makes ps
and p more entangled. �us, it becomes more di�cult to solve the MPE problem and thereby leads
to a poor estimation of the parameters. We investigate the e�ect of π+ by conducting experiments
on UCI and LIBSVM datasets with π+ = [0.55, 0.6, 0.7] and a constant noise rate ρd = 0.2. From
Table 7, we can see that the classi�cation accuracy of nSU-LC decreases as the class prior approaches
0.5, indicating the parameters are poorly estimated. Most of SU-LC’s results decrease while some
of them get increased. �e reason could be that the poorly estimated parameters accidentally are
close to the true values for SU-LC. Overall, our method nSU-LC performs be�er than the baseline
with a π+ value close to 0.5.

Table 7: Means and Standard Deviations (Percentage) of Classi�cation Accuracy on the UCI and
LIBSVM datasets with π+ = [0.55, 0.6, 0.7] and ρd = 0.2.

Dataset australian breast-cancer fourclass magic cod-rna adult banknote heart svmguide1 htru 2
{0.7, 0.2}
nSU-LC 83.1±4.2 93.6±1.7 71.5±6.7 76.2±1.5 89.8±2.7 67.9±1.0 98.0±1.1 83.3±3.7 76.1±7.0 96.4±1.3
SU-LC 63.7±5.4 84.1±3.8 63.7±1.5 69.5±3.5 62.1±12.0 63.6±4.2 94.9±5.6 58.3±7.6 52.8±3.4 96.1±1.2
{0.6, 0.2}
nSU-LC 75.1±6.1 91.3±3.4 69.9±7.5 72.4±0.8 87.7±2.4 62.3±3.1 97.3±1.4 81.5±6.8 75.1±6.3 92.5±4.6
SU-LC 59.7±5.5 85.2±3.3 62.4±0.5 69.6±3.2 61.2±3.5 59.8±3.3 93.7±7.5 53.1±2.1 54.6±6.8 95.6±0.5
{0.55, 0.2}

nSU-LC 66.9±9.2 86.4±4.9 69.4±9.4 67.1±4.3 78.4±5.3 54.4±4.5 90.9±3.6 74.1±6.8 69.7±8.8 86.4±6.3
SU-LC 55.7±0.4 79.4±3.3 64.2±0.1 66.3±3.6 65.4±2.7 52.4±3.0 90.3±5.6 54.6±1.9 58.8±7.7 93.1±1.9
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Appendix C. Discussion about the Data independence assumption

Following Bao et al. (2018), we assume that each instance is independently drawn from the joint
distribution, i.e.,

ps(x,x
′) = p(x,x′|y = y′ = +1 ∨ y = y′ = −1)

=
π2+p+(x)p+(x′) + π2−p−(x)p−(x′)

π2+ + π2−
.

However, in real-world surveys, a given positive example might occur very frequently with a
few positive examples and very in-frequently with other positive examples. �en the distribution
of similar pairs is shi�ed from the original one. We denote the shi�ed distribution by p′s(x,x′) and
let p′s(x,x′) = w(x,x′) ps(x,x

′). �en we have

p(x,x′) = πsp
′
s(x,x

′) + πdpd(x,x′), (A.3)
p̃s(x,x

′) = (1− ρd)p′s(x,x
′) + ρdpd(x,x′), (A.4)

ps(x,x
′) =

1− πs
(1− ρd − πs)w(x,x′)

p̃s(x,x
′)− ρd

(1− ρd − πs)w(x,x′)
p(x,x′). (A.5)

�en, by substituting Eq.(A.5) into Eq.(A.1), the original risk can be equivalently expressed in
terms of data sampled from the shi�ed distribution p′s(x,x′) and the unlabeled data as

E
(x,y)∼p

[`(f(x), y)] =
πs(1− πs)

(1− ρd − πs)(2π+ − 1)
E

(x,x′)∼p̃s

[
l̃(x) + l̃(x′)

2w(x,x′)

]

− πsρd
(1− ρd − πs)(2π+ − 1)

E
(x,x′)∼p

[
l̃(x) + l̃(x′)

2w(x,x′)

]
− π−

(2π+ − 1)
E

x∼p
[`(f(x),+1)] +

π+
(2π+ − 1)

E
x∼p

[`(f(x),−1)] .

�erefore, given the weightw(x,x′), we can design an unbiased risk estimator according to the
above equation. To validate this se�ing experimentally, we assign w(x,x′) to every pair, and the
new data is sampled from p′s(x,x

′). We compare the weighted-nSU (wnSU-DC) with the original
nSU-DC and SU-DC on UCI and LIBSVM datasets. From Table 8, we can see that in this shi�ed
se�ing, wnSU-DC outperforms the original nSU-DC and SU-DC. �e weight function w(x,x′)
must be away from 0, and this gap can a�ect both the optimization stability and the generalization
bound where 1/min(w) will also be in the convergence rate. Another implication of having a weight
function is that unbiased risk estimator should be no longer very good to use in practice, because
we need to round up too small w which leads to a benign bias (benign in both optimization stability
and generalization bound).
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Table 8: Means and Standard Deviations (Percentage) of Classi�cation Accuracy on the UCI and
LIBSVM datasets with {π+ = 0.7, ρd = 0.2} and {π+ = 0.8, ρd = 0.1}.

Dataset australian breast-cancer fourclass magic cod-rna adult banknote heart svmguide1 htru 2
{0.7, 0.2}
wnSU-DC 63.4±9.2 93.6±4.7 73.6±8.4 66.2±1.1 78.6±8.8 58.6±6.4 81.2±5.8 72.2±2.6 64.4±10.4 90.8±4.0
nSU-DC 62.9±8.7 82.9±4.3 72.6±8.3 64.2±5.2 74.0±7.0 58.7±7.1 67.6±4.6 70.4±10.5 64.1±8.0 86.8±7.0
SU-DC 55.7±4.8 88.7±7.6 71.0±5.7 64.1±4.4 72.9±6.6 63.8±4.5 68.1±3.1 63.0±5.2 54.9±3.9 90.0±0.7
{0.8, 0.1}
wnSU-DC 61.4±8.6 90.1±9.6 73.2±6.2 68.1±4.2 78.2±4.0 73.8±2.3 75.8±9.9 71.1±8.0 65.0±12.3 93.7±2.3
nSU-DC 60.9±5.2 71.0±6.2 72.6±6.6 64.7±4.8 77.4±10.2 72.9±3.3 75.1±9.1 65.9±4.1 60.6±4.4 85.9±7.7
SU-DC 58.0±4.5 81.4±12.8 72.6±9.6 66.6±1.8 73.9±8.1 75.0±0.9 75.1±6.4 61.5±4.2 61.3±3.5 85.5±5.1

Appendix D. Proof and discussion about �eorem 2

Proof �ere exists a twice di�erentiable function ψ : R→ R+ such that `(z, t) = ψ(tz), because
` is a twice di�erentiable margin loss function. Taking the derivative of

Ĵ`(w) =
1

nnS

nnS∑
i=1

LnS(xS,i,x
′
S,i) +

1

nU

nU∑
i=1

LU(xU,i) +
λ

2
‖w‖2

=
A

2nnS

2nnS∑
i=1

[`(w>φ(xS,i),+1)− `(w>φ(xS,i),−1)]

+
B

nU

nU∑
i=1

[`(w>φ(xU,i),+1)]− C

nU

nU∑
i=1

[`(w>φ(xU,i),−1)] +
λ

2
‖w‖2

=
λ

2
w>w − A

2nnS

2nnS∑
i=1

w>φ(xS,i)

+
B

nU

nU∑
i=1

[`(w>φ(xU,i),+1)]− C

nU

nU∑
i=1

[`(w>φ(xU,i),−1)],

with respect to w,

∂

∂w
Ĵ`(w) = λw − A

2nnS

2nnS∑
i=1

φ(xS,i) +
1

nU

nU∑
i=1

{
B
∂`(ξi,+1)

∂ξi
− C∂`(ξi,−1)

∂ξi

}
φ(xU,i),

where ξi = w>φ(xU,i).
Note that the second-order derivative of `(z, t) with respect to z is

∂2`(z, t)

∂z2
=
∂2ψ(tz)

∂z2
=

∂

∂z

(
t
∂ψ(ξ)

∂ξ

)
= t2

∂2ψ(ξ)

∂ξ2
=
∂2ψ(ξ)

∂ξ2
,

where ξ = tz is employed in the second equality and the last equality holds because t ∈ {+1,−1}.
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�e Hessian matrix is a square matrix of second-order partial derivatives of a scalar-valued
function. A twice continuously di�erentiable function of several variables is convex on a convex
set if and only if its Hessian matrix of second partial derivatives is positive semide�nite on the
interior of the convex set. For Ĵ`, its Hessian matrix is

HĴ`(w) = λI +
1

nU

nU∑
i=1

{
B
∂

∂w

∂`(ξi,+1)

∂ξi
− C ∂

∂w

∂`(ξi,−1)

∂ξi

}
φ(xU,i)

>

= λI +
1

nU

nU∑
i=1

{
B
∂2`(ξi,+1)

∂ξ2i

∂ξi
∂w
− C∂

2`(ξi,−1)

∂ξ2i

∂ξi
∂w

}
φ(xU,i)

>

= λI +
1

nU

nU∑
i=1

{
B
∂2`(ξi,+1)

∂ξ2i
− C∂

2`(ξi,−1)

∂ξ2i

}
φ(xU,i)φ(xU,i)

>

= λI +
1

nU

nU∑
i=1

(B − C)
∂2ψ(ξ)

∂ξ2
φ(xU,i)φ(xU,i)

>

= λI +
1

nU

∂2ψ(ξ)

∂ξ2

nU∑
i=1

φ(xU,i)φ(xU,i)
>.

Since ` is convex, ∂
2ψ(ξ)
∂ξ2

≥ 0. Besides, φ(xU,i)φ(xU,i)
> � 0. �erefore HĴ`(w) � 0, and

Ĵ`(w) is convex.

Examples of marginal loss functions other than the squared loss function that satisfy the
condition in �eorem 2 are logistic loss and double hinge loss.

If we focus on the margin loss function ψ, the condition in �eorem 2 can be relaxed to that
the corresponding loss ` is α-linear-odd: `(x, 1) − `(x,−1) = αx, for any α ∈ R (Patrini et al.,
2016). �is condition is both su�cient and necessary for the composite loss to be convex. �e
su�ciency can be proved in the same way above. Below we prove this condition is necessary.
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Without additional assumptions, the objective function can be decomposed as follows

Ĵ`(w) ,
πS
2nS

2nS∑
i=1

LS,`
(
w>φ(xS,i)

)
+

1

nU

nU∑
i=1

LU,`
(
w>φ(xU,i)

)
+
λ

2
‖w‖2

=
λ

2
w>w +

πS
2nS (2π+ − 1)

2nS∑
i=1

{
`
(
w>φ(xS,i),+1

)
− `

(
w>φ(xS,i),−1

)}
+

1

nU (2π+ − 1)

nU∑
i=1

{
−π−`

(
w>φ(xU,i),+1

)
+ π+`

(
w>φ(xU,i),−1

)}
=
λ

2
w>w +

πS
2nS (2π+ − 1)

2nS∑
i=1

{
`
(
w>φ(xS,i),+1

)
− `

(
w>φ(xS,i),−1

)}
− π−
nU (2π+ − 1)

nU∑
i=1

{
`
(
w>φ(xU,i),+1

)
− `

(
w>φ(xU,i),−1

)}
+

1

nU (2π+ − 1)

nU∑
i=1

{
(π+ − π−)`

(
w>φ(xU,i),−1

)}
.

Notice that the �rst and the last terms are both convex with respect to w. Since the second and
third terms cannot be convex simultaneous unless they are both linear in w. �erefore, to make
this objective function convex for arbitrary data and hyper-parameters, (`(x, 1)− `(x,−1)) must
be linear in x.

Appendix E. Proof of �eorem 3

�eorem 5 Assume the positive data distribution P+ and the negative data distribution P− are
mutually irreducible, then Pd is irreducible with respect to P̃s, and Ps is irreducible with respect to P .
�us the mixture proportion γ and κ in Lemma 2 is identi�able.

Proof Since the positive data distribution P+ and the negative data distribution P− are mutually
irreducible, the following two equations hold:

inf
S∈S,P−(S)>0

P+(S)

P−(S)
= 0, (A.6)

inf
S∈S,P+(S)>0

P−(S)

P+(S)
= 0. (A.7)

For Ps and Pd,
Pd(S, S′)

Ps(S, S′)
=

(π2+ + π2−)(P+(S)P−(S′) + P−(S)P+(S′))

2(π2+P+(S)P+(S′) + π2−P−(S)P−(S′))

=
(π2+ + π2−)(P−(S′)/P+(S′) + P−(S)/P+(S))

2(π2+ + π2−(P−(S)/P+(S))(P−(S′)/P+(S′)))
.

According to Eq. (A.7),

inf
S,S′∈S,Ps(S,S′)>0

Pd(S, S′)

Ps(S, S′)
= 0. (A.8)
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Similarly we have,

inf
S,S′∈S,Pd(S,S′)>0

Ps(S, S
′)

Pd(S, S′)
= 0. (A.9)

�us, Ps and Pd are mutually irreducible.
For Pd and P̃s,

Pd(S, S′)

P̃s(S, S′)
=

Pd(S, S′)

(1− ρd)Ps(S, S′) + ρdPd(S, S′)

=
Pd(S, S′)/Ps(S, S

′)

(1− ρd) + ρdPd(S, S′)/Ps(S, S′)
.

According to Eq. (A.8),

inf
S,S′∈S,P̃s(S,S′)>0

Pd(S, S′)

P̃s(S, S′)
= 0. (A.10)

Similarly we have,

inf
S,S′∈S,P (S,S′)>0

Ps(S, S
′)

P (S, S′)
= 0. (A.11)

�erefore, Pd is irreducible with respect to P̃s, and Ps is irreducible with respect to P .

Appendix F. Proof of �eorem 4

Note that the loss function is symmetric to xS,i and x′S,i, such that the expected and empirical risks
can be expressed as

RnSU(f) = E
x∼p̃s

[LnS(x)] + E
x∼p

[LU(x)],

R̂nSU(f) =
1

2nnS

2nnS∑
i=1

LnS(xS,i) +
1

nU

nU∑
i=1

LU(xU,i).

Let RnS(f) = E
x∼p̃s

[LnS(x)], RU(f) = E
x∼p

[LU(x)],R̂nS(f) = 1
2nnS

∑2nnS
i=1 LnS(xS,i) and

R̂U(f) = 1
nU

∑nU
i=1 LU(xU,i), we have

R(f̂)−R(f∗) = RnSU(f̂)−RnSU(f∗)

= (RnSU(f̂)− R̂nSU(f̂)) + (R̂nSU(f̂)− R̂nSU(f∗))

+ (R̂nSU(f∗)−RnSU(f∗))

≤ (RnSU(f̂)− R̂nSU(f̂)) + 0 + (R̂nSU(f∗)−RnSU(f∗))

≤ 2 sup
f∈F

∣∣∣RnSU(f)− R̂nSU(f)
∣∣∣

≤ 2 sup
f∈F

∣∣∣RnS(f)− R̂nS(f)
∣∣∣+ 2 sup

f∈F

∣∣∣RU(f)− R̂U(f)
∣∣∣ . (A.12)
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�e third inequality holds because of the de�nition of f∗.
Here, we introduce the generalization error with Rademacher complexity.

Lemma 4 (Bartle� and Mendelson, 2002) Let the loss function be upper bounded byM . �en, for any
δ > 0, with the probability 1− δ, we have

sup
f∈F
|E[f(x)]− 1

n

n∑
i=1

f(xi)| ≤ 2Rn(` ◦ F) +M

√
log 1/δ

2n
, (A.13)

where Rn(` ◦ F) is the Rademacher complexity de�ned by

Rn(` ◦ F) = E

[
sup
f∈F

1

n

n∑
i=1

σi`(f(xi), f(xi′), S̄ii′)

]
, (A.14)

and {σ1, · · · , σn} are Rademacher variables uniformly distributed from {−1, 1}.

Now we can bound two terms in Eq.(A.12) with the next two lemmas.

Lemma 5 Assume the loss function ` is ρ-Lipschitz with respect to the �rst argument (0 < ρ <∞),
and all functions in the model classF are bounded, i.e., there exists a constantCb such that ‖f‖∞ ≤ Cb

for any f ∈ F . Let C` , supt∈{±1} `(Cb, t). For any δ > 0, with probability at least 1− δ
2 ,

sup
f∈F

∣∣∣RNS̃(f)− R̂NS̃(f)
∣∣∣ ≤ 4AρCF +A

√
2C2

` log 4
δ√

2nnS
.

Proof By Lemma 4,

sup
f∈F

∣∣∣RNS̃(f)− R̂NS̃(f)
∣∣∣

= A sup
f∈F

∣∣∣∣∣ E
x∼p̃s

[`(f(x),+1)− `(f(x),−1)]− 1

2nnS

2nnS∑
i=1

[`(f(xS,i),+1)− `(f(xS,i),−1)]

∣∣∣∣∣
≤ A

{
sup
f∈F

∣∣∣∣∣ E
x∼p̃s

[`(f(x),+1)]− 1

2nnS

2nnS∑
i=1

`(f(xS,i),+1)

∣∣∣∣∣
+ sup
f∈F

∣∣∣∣∣ E
x∼p̃s

[`(f(x),−1)]− 1

2nnS

2nnS∑
i=1

`(f(xS,i),−1)

∣∣∣∣∣
}

≤ A

4R(` ◦ F ; 2nnS, p̃s) +

√
2C2

` log 4
δ

2nnS

 ,

where ` ◦ F in the last line means {` ◦ f |f ∈ F}. �e last inequality holds from Lemma 4. By
Talagrand’s lemma (Lemma 4.2 in (Mohri et al., 2018)),

R(` ◦ F ; 2nnS, p̃s) ≤ ρR(F ; 2nnS, p̃s).
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Together with R(F ;n, µ) ≤ CF√
n

, we obtain

sup
f∈F

∣∣∣RNS̃(f)− R̂NS̃(f)
∣∣∣ ≤ A

4ρ
CF√
2nnS

+

√
2C2

` log 4
δ

2nnS


=

4AρCF +A
√

2C2
` log 4

δ√
2nnS

.

Lemma 6 Assume the loss function ` is ρ-Lipschitz with respect to the �rst argument (0 < ρ <∞),
and all functions in the model classF are bounded, i.e., there exists a constantCb such that ‖f‖∞ ≤ Cb

for any f ∈ F . Let C` , supt∈{±1} `(Cb, t). For any δ > 0, with probability at least 1− δ
2 ,

sup
f∈F

∣∣∣RU(f)− R̂U(f)
∣∣∣ ≤ 2(−B − C)ρCF + (−B − C)

√
1
2C

2
` log 4

δ
√
nU

.

�is lemma can be proven similarly to Lemma 5.
Combining Lemma 5, Lemma 6 and Eq. (A.12), �eorem 4 is proven.

If we further take the MPE error into consideration, there is a gap between the ground-truth
empirical risk R̂nSU(f) and the approximated empirical risk ˆ̂

RnSU(f), which uses the estimated
class prior and noise rate. We have

|R̂nSU(f)− ˆ̂
RnSU(f)| = |A− Â

2NnS

2NnS∑
i=1

[`(f(xS,i),+1)− `(f(xS,i),−1)]

+
B − B̂
NU

NU∑
i=1

[`(f(xU,i,+1)]− C − Ĉ
NU

NU∑
i=1

[`(f(xU,i),−1)]|

≤

∣∣∣∣∣A− Â2NnS

2NnS∑
i=1

[`(f(xS,i),+1)− `(f(xS,i),−1)]

∣∣∣∣∣
+

∣∣∣∣∣B − B̂NU

NU∑
i=1

[`(f(xU,i),+1)]

∣∣∣∣∣+

∣∣∣∣∣C − ĈNU

NU∑
i=1

[`(f(xU,i),−1)]

∣∣∣∣∣ ,
where Â, B̂, Ĉ are the corresponding estimated ones.

Ideally, if we have the knowledge of the exact class priors and noise rate parameters, those
risks can be directly calculated since they are both empirical risks. If not, according to the �eorem
12 in (Ramaswamy et al., 2016), we know that the estimated value λ̂ converges to the true value λ
with a rate O(m−

1
2 ):

|λ− λ̂| ≤ |α(λ)m−
1
2 |,

where α(λ) is the coe�cient and m is the smaller number of data from two proportions, i.e., F and
H in the MPE. Let πs = g(κ, γ) = γ(1−κ)

1−γκ . �e Taylor series of πs at the true value π∗s (κ∗, γ∗) is:

πs = g(κ, γ) = g(κ∗, γ∗) + (κ− κ∗)g′κ(κ∗, γ∗) + (γ − γ∗)g′κ(κ∗, γ∗) + on.
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By omi�ing the high-order terms, we have:

|πs − π∗s | ≤ |(κ− κ∗)g
′
κ(κ∗, γ∗) + (γ − γ∗)g′κ(κ∗, γ∗)|

≤
(
|α(κ∗)g

′
κ(κ∗, γ∗)|+ |α(γ∗)g

′
κ(κ∗, γ∗)|

) ∣∣∣m− 1
2

∣∣∣ ,
which indicates that the convergence rate for πs is O(m−

1
2 ). Likewise, ρd and π+ both have

the convergence rate of O(m−
1
2 ). Further, given that πs, ρd, and π+ all converge with a rate of

O(m−
1
2 ), similarly, we have that A, B, and C all have the same convergence rate of O(m−

1
2 ).

Appendix G. Motivation for the noise model

�e class-conditional noise model is compelling for the se�ing that the label of a pair of exam-
ples (x,x′) is annotated by human who can inevitably make mistakes, i.e., the corruption is in
P (S|x,x′). However, this se�ing is not very suitable for our problem because we only collect
similar data pairs. �erefore, we do not have seeming dissimilar data pairs and only modelling the
corruption of P (S|x,x′) cannot solve our problem. Besides, as we discuss in the related work, the
CCN model is a special case of the MCD model (Menon et al., 2015). CCN model does not �t the
MCD se�ing problem, though the MCD model �ts the CCN se�ing problem conversely. Namely,
our method, which is developed under the MCD model, can also solve the CCN problem.

In addition to its good generality, we employ the MCD model because CCN is a noise model for
labeling noise and MCD is a noise model for sampling noise, which is why MCD is more suitable for
the scenario of surveying sensitive topics with indirect questioning. Data reliability is a common
concern especially when asking about sensitive topics such as sexual misconduct, or drug and
alcohol abuse. Sensitive topics might cause refusals in surveys due to privacy concerns of the
subjects (Oral, 2019). �is nonresponse reduces sample size and study power and increases bias.
Various indirect questioning methods have been developed to reduce the social desirability bias and
increase data reliability. �estions in the form of ‘With whom do you share the same opinion on
issue I?’ can be regarded as one type of randomized response technique, which is a commonly used
indirect questioning survey method (Warner, 1965; Fisher, 1993; Bao et al., 2018). Such questioning
is to sample examples of similar data pairs from ps(x,x

′). Besides, due to the sensitivity of the
questions, respondents might answer them in a manner that will be viewed favorably by others
instead of answering truthfully (Oral, 2019), which makes the selected examples contain dissimilar
data pairs from pd(x,x′). �ese phenomena motivate us to employ the contamination model to
describe the noisy similar data pairs, i.e., p̃s(x,x′) = (1− ρd)ps(x,x

′) + ρdpd(x,x′).

Appendix H. Why assumption 1− ρd > πs generally holds true

Note that the physical meanings of πs and 1 − ρd are the pro portion of similar data pairs in
unlabeled data Du and noisy similarity data D̃s. Generally, even though D̃s contains some noise,
it still collects the similar data pairs purposely, and thereby the noise is not too large. �us, the
proportion of similar data pairs in purposely collected noisy similarity data D̃s (i.e., 1 − ρd) is
generally bigger than than in unlabeled dataDu (i.e., πs). Besides, if this condition is not satis�ed, it
becomes a di�erent problem and thus we need a new solution rather than still solving this problem
in the proposed way.

28



Learning from Noisy Pairwise Similarity and Unlabeled Data

Appendix I. Speci�c class information regarding News20 and CIFAR-10 datasets

Table 9: �e relationships between the semantic classes in the original News20 and the classes
selected in the News 05, · · · , News 49 datasets.

Dataset Positive Negative
News 05 alt.atheism comp.graphics
News 16 misc.forsale rec.autos
News 27 talk.politics.mideast comp.sys.ibm.pc.hardware
News 38 comp.os.ms-windows.misc sci.crypt
News 49 sci.space sci.med

Table 10: �e relationships between the semantic classes in the original CIFAR-10 and the classes
selected in the Cifar 03, Cifar 14, and Cifar 25 datasets.

Dataset Positive Negative
Cifar 03 airplane dog
Cifar 14 cat ship
Cifar 25 deer truck
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