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Abstract

Recent work suggests that convolutional neural networks of different architectures learn
to classify images in the same order. To understand this phenomenon, we revisit the
over-parametrized deep linear network model. Our analysis reveals that, when the hidden
layers are wide enough, the convergence rate of this model’s parameters is exponentially
faster along the directions of the larger principal components of the data, at a rate governed
by the corresponding singular values. We term this convergence pattern the Principal
Components bias (PC-bias). Empirically, we show how the PC-bias streamlines the order
of learning of both linear and non-linear networks, more prominently at earlier stages of
learning. We then compare our results to the simplicity bias, showing that both biases can
be seen independently, and affect the order of learning in different ways. Finally, we discuss
how the PC-bias may explain some benefits of early stopping and its connection to PCA,
and why deep networks converge more slowly with random labels.

Keywords: Deep linear networks, Learning dynamics, PC-bias, Simplicity bias, Learning
order.

1. Introduction

The dynamics of learning in deep neural networks is an intriguing subject, not yet sufficiently
understood. Recent empirical studies of learning dynamics (Hacohen et al., 2020; Pliushch
et al., 2021; Choshen et al., 2022) showed that neural networks memorize the training
examples of natural datasets in a consistent order, and further impose a consistent order
on the successful recognition of unseen examples. Below we call this effect Learning Order
Constancy (LOC). Currently, the characteristics of visual data, which may explain this
phenomenon, remain unclear. Surprisingly, this universal order persists despite the variability
introduced into the training of different models and architectures.
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To understand this phenomenon, we start by analyzing the deep linear network model
(Saxe et al., 2014, 2019), defined by the concatenation of linear operators in a multi-class
classification setting. Accordingly, in Section 3 we prove that the convergence of the weights
of deep linear networks is governed by the eigendecomposition of the raw data, which is
blind to the labels of the data, in a phenomenon we term PC-bias. These results are valid
when the hidden layers are wide enough, a generalization of the known behavior of the
single-layer convex linear model. In Section 4, we empirically show that this pattern of
convergence is indeed observed in deep linear networks of rather a moderate width, validating
the plausibility of our assumptions. We continue by showing that the LOC-effect in deep
linear networks is determined solely by their PC-bias. We prove a similar (weaker) result for
the non-linear two-layer ReLLU model trained on a binary classification problem, introduced
by Allen-Zhu et al. (2019).

In Section 5, we extend the study empirically to non-linear networks and investigate the
relationship between the PC-bias and the LOC-effect in general deep networks. We first show
that the order by which examples are learned by linear networks is highly correlated with
the order induced by prevalent deep CNN models. We then show directly that the learning
order of non-linear CNN models is affected by the principal components decomposition of
the data. Moreover, the LOC-effect diminishes when the data is whitened, indicating a tight
connection between the PC-bias and the LOC-effect.

Our results are reminiscent of another phenomenon, termed Spectral bias (see Section 2.2),
which associates the learning dynamics of neural networks with the Fourier decomposition
of functions in the hypothesis space. In Section 5.3 we investigate the relation between the
PC-bias, spectral bias, and the LOC-effect. We find that the LOC-effect is very robust: (i)
when we neutralize the spectral bias by using low complexity models such as deep linear
networks, the effect is still observed; (ii) when we neutralize the PC-bias by using whitened
data, the LOC-effect persists. We hypothesize that at the beginning of learning, the learning
dynamics of neural models is governed by the eigendecomposition of the raw data. As
learning proceeds, control of the dynamics slowly shifts to other factors.

The PC-bias has implications beyond the LOC-effect, as expanded in Section 6:

(i) Early stopping. It is often observed that when training deep networks with real
data, the highest generalization accuracy is obtained before convergence. Consequently,
early stopping is often prescribed to improve generalization. Following the commonly used
assumption that in natural images the lowest principal components correspond to noise
(Torralba and Oliva, 2003), our results predict the benefits of early stopping, and relate it to
PCA. In Section 6 we investigate the relevance of this conclusion to real non-linear networks
(see Basri et al., 2019; Li et al., 2020, for complementary accounts).

(ii) Slower convergence with random labels. Zhang et al. (2017) showed that neural
networks can learn any label assignment. However, training with random label assignments
is known to converge slower as compared to training with the original labels (Krueger et al.,
2017). We report a similar phenomenon when training deep linear networks. Our analysis
shows that when the principal eigenvectors are correlated with class identity, as is often the
case in natural images, the loss decreases faster when given true label assignments as against
random label assignments. In Section 6 we investigate this hypothesis empirically in linear
and non-linear networks.
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(iii) Weight initialization. Different weight initialization schemes have been proposed
to stabilize the learning and minimize the hazard of "exploding gradients" (for example,
Glorot and Bengio, 2010; He et al., 2015). Our analysis (see Appendix A) identifies a related
variant, which eliminates the hazard when all the hidden layers are roughly of equal width.
In the deep linear model, it can be proven that the proposed normalization variant in a sense
minimizes repeated gradient amplification.

2. Scientific Background and Previous Work

Below we review related work, and discuss the relation of our work to this prior art.

2.1 Deep Over-Parametrized Neural Networks and Other Simple Models

A large body of work concerns the analysis of deep over-parameterized linear networks. While
not a universal approximator, this model is nevertheless trained by minimizing a non-convex
objective function with a multitude of equally valued global minima. The investigation
of such networks is often employed to shed light on the learning dynamics when complex
geometric landscapes are explored by GD (Fukumizu, 1998; Arora et al., 2018; Wu et al.,
2019a; Du and Hu, 2019; Du et al., 2019; Hu et al., 2020b; Yun et al., 2021). Note that while
such networks provably achieve a simple low-rank solution (Ji and Telgarsky, 2019; Du et al.,
2018) when given linearly separable data, in our work this strict assumption is not needed.

Early on Baldi and Hornik (1989) characterized the optimization landscape of the over-
parameterized linear model and its relation to PCA. More recent work suggests that with
sufficient over-parameterization, this landscape is well behaved (Kawaguchi, 2016; Zhou and
Liang, 2018) and all its local minima are global (Laurent and von Brecht, 2017). Deep
linear networks are also used to study biases induced by architecture or optimization (Ji and
Telgarsky, 2019; Wu et al., 2019b).

Several related studies investigated the dynamics of learning in over-parameterized models
by way of spectral analysis. However, while we employ the eigenvectors of the data covariance
matrix! iy = XX, most of the behavior identified in these studies is driven by the
eigenvectors of the cross-covariance matrix ¥y = Y X . This difference is crucial, as ¥y
is blind to the class labels, unlike ¥y . In addition, quite a few of the studies reviewed below
assumed a shallow 2-layer network, while our analysis accommodates over-parametrized
networks of any depth, further showing that convergence depends on the eigenvectors of ¥y x
rather than X, x without any additional assumption.

More specifically, Saxe et al. (2019) analyzed the evolution of learning dynamics in a
shallow two-layered linear model, showing that convergence is guided by the eigenvectors of
Yy x. This analysis assumed Yy x = Ig, thus obscuring the dependence of convergence on
the raw data eigenvectors of Y x, as all the eigenvalues are now identical by assumption.
Likewise, Arora et al. (2018) also assumed that ¥y x = I; while investigating continuous
gradients of the deep linear model and allowing for a more general loss. Although there is
some superficial resemblance between their pre-conditioning and our gradient scale matrices
as defined below, they are defined quite differently and have different properties.

1. X and Y denote the matrices whose columns are the data points and one-hot label vectors respectively,
see notations in Section 3.
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Similarly to Saxe et al. (2019), Gidel et al. (2019) also investigated a shallow 2-layers
linear model, but no longer assumed that ¥y = I;. Instead, they assumed that ¥y and
Yy x can be jointly decomposed, having the same eigenvectors. Under these conditions, they
were able to show that convergence is guided by the eigenvectors of Xy x, which correspond to
the eigenvectors of Y5 x by the joint decomposition assumption. However, Y.y x is now linked
to the class labels by assumption, which is not the case in most datasets. Recently, Nguyen
(2021) showed that the learning dynamics of two-layered non-linear auto-encoders converge
faster along the eigenvectors of Xy x. While their results resemble ours, unlike us they focus
on auto-encoders and assume that the data is sampled from a Gaussian distribution.

Relations between shallow and deep over-parameterized linear networks are often studied
through the lens of gradient flow (Arora et al., 2018, 2019a). Arora et al. (2019a) derived an
equation for the gradient-flow of over-parameterized deep linear networks, which was later
expanded to shallow ReLU networks by Williams et al. (2019). Bah et al. (2019) showed that
this gradient flow can be re-interpreted as a Riemannian gradient flow of matrices of some
fixed ranked, hinting at a strong connection between the optimization process of shallow and
deep linear networks, in accordance with our results.

Another line of related work was pioneered by Jacot et al. (2018), who showed how neural
networks can be analyzed using kernel theory and introduced the Neural Tangent Kernel
(NTK). In this framework, it was shown that convergence is fastest along the largest kernel’s
principal components. In the one-layer linear model, this result implies that convergence
depends on the eigenvectors of 3y x, but to the best of our knowledge, it was not extended
to the over-parameterized deep model analyzed here. While similar results to ours may be
achieved in the future by using kernel theory, here we provide direct proof, thus bypassing
possible limitations of the kernel theory (Chizat et al., 2019; Yehudai and Shamir, 2019).
This direct proof further enables us to examine the behavior outside the limit of infinite
width, and examine our assumptions using empirical methods.

2.2 Related Research Paradigms

Diverse empirical observations seem to support the hypothesis that neural networks start by
learning a simple model, which then gains complexity as learning proceeds (Gunasekar et al.,
2018; Soudry et al., 2018; Hu et al., 2020a; Kalimeris et al., 2019; Gissin et al., 2020; Heckel
and Soltanolkotabi, 2020; Ulyanov et al., 2018; Pérez et al., 2019; Cao et al., 2021; Jin and
Montuafar, 2020). This phenomenon is sometimes called simplicity bias (Dingle et al., 2018;
Shah et al., 2020).

In a related line of work, Rahaman et al. (2019) empirically demonstrated that the
complexity of classifiers learned by ReLLU networks increases with time. Basri et al. (2019,
2020) showed theoretically, by way of analyzing elementary neural network models, that these
models first fit the data with low-frequency functions, then gradually acquire higher frequen-
cies to improve the fit. Nevertheless, the spectral bias and PC-bias are inherently different.
Indeed, the eigendecomposition of raw images is closely related to the Fourier analysis of
images as long as the statistical properties of images are (approximately) translation-invariant
(Simoncelli and Olshausen, 2001; Torralba and Oliva, 2003). Still, the PC-bias is guided by
spectral properties of the raw data and is therefore blind to class labels. In contrast, the
spectral bias, as well as the related frequency bias that has been shown to characterize NTK
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models (Basri et al., 2020), are all guided by spectral properties of the learned hypothesis,
which crucially depend on label assignment.

Other related research paradigms include curriculum learning (Bengio et al., 2009; Hacohen
and Weinshall, 2019; Weinshall and Amir, 2020), self-paced learning (Kumar et al., 2010;
Tullis and Benjamin, 2011), hard data mining (Fu and Menzies, 2017), and active learning
(Krogh and Vedelsby, 1994; Hacohen et al., 2022; Yehuda et al., 2022). In these frameworks,
the research focus is on the order in which data is presented to the learner. Differently, our
focus is on characterizing the order by which data is learned without additional guidance to
this effect.

3. Theoretical Analysis

In this section, we analyze the over-parameterized deep linear networks model, in which the
principal component bias fully governs the learning dynamics.

3.1 Notations and Definitions

Let X = {(x;,y;)}_, denote the training data, where x; € R? denotes the i-th data point
and one-hot vector y; € {0,1}¥ denotes its corresponding label. Let n%mz denote the
centroid (mean) of class ¢ with n; points n%mz = n% > 1@l —q, and M = [my .. .mg] "
the matrix whose rows are vectors Tn,lT Finally, let X and Y denote the matrices whose
it" column is x; and y; respectively. Yy = XX Tand ¥, = YX T denote the covariance
matrix of X and cross-covariance of X and Y respectively. We note that X xx captures the

structure of the data irrespective of class identity, and that 3, x = M.

3.1.1 DEFINITIONS

Definition 1 (Principal coordinate system) The coordinate system obtained by rotating
the data in RY by an orthonormal matriz U, where SV D(Xxx)=UDUT.

In this system Yy yx =D, a diagonal matrix whose elements are the singular values of XX T,
arranged in decreasing order di > da > ... > dy > 0.

We analyze a deep linear network with L layers, whose parameters are computed by
minimizing (using gradient descent) the following loss L(X,Y)

1
1
L(X,Y) = S[WX — YiF,  w=][w, W eRrmm- (1)
=L

Above m; denotes the number of neurons in layer [, where mg = ¢ and mj, = K.

Definition 2 (Compact representation) Given a deep linear networky = Wr,-...- Wiz,
its compact representation is denoted W € REX1 where W = H}:L Wwi.

Definition 3 (Gradient matrix) For a deep linear network whose compact representation
is W, the gradient matriz of L(X,Y") with respect to W is G, = WXxx — Xy x.

In the principal coordinate system, G, = WD — M.
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Definition 4 (STD initialization) Given a sequence of random matrices {W;}£ | where
W, € R™>™i-1 " qnd all the elements in Wy are chosen i.i.d from a distribution with mean 0
and variance le, define

2 1 1
22 yep..L-1, o2-—, @ o2-_1_
mp_1 +my my mr—1

Def. 4 is a variant of the Glorot initialization (Glorot and Bengio, 2010). For more analytical
and empirical results on STD initialization, refer to App. B.2 and App. C.1 respectively.

3.1.2 ASYMPTOTIC ANALYSIS

Our analysis involves two asymptotic quantities: the learning rate (or gradient step size) u,
and the network’s width m (m denotes the width of the smallest hidden layer). Accordingly,
our analysis neglects terms of magnitude O(u?) and O(Kin), and employs convergence in
probability when m — oo. In Fig. 1, we show the plausibility of these assumptions, as the
predicted dynamics is seen to hold even when the width m is smaller than the input size,
and the step size p permits convergence in a relatively short time.

To simplify the presentation and to allow for modular analysis, we use the following
conventions: (i) O(p?) and O(L) denote terms which are upper bounded by cu? when p is
small and c% when m is large respectively, where ¢ € R denotes a fixed constant that does
not depend on neither g nor m. (ii) Depending on the context, if matrices are involved then
O(p?) and O(Z) denote full rank matrices with element-wise asymptotic quantities defined
as above. (iii) The notation 2, denotes convergence in probability when m — oo, where the
probabilistic lower bound on width m does not depend on . When matrices are involved,
convergence in probability occurs element-wise.

The treatment of the two asymptotic quantities p and m is consolidated in the formal
analysis of the network’s dynamics, as detailed in the proof of Thm 15 in Appendix A.2, and
the proofs of Thms 7-8 in Appendix B.2. Importantly, the analysis is valid at each time step
t, where the only thing that changes with time is the magnitude of the constants governing
the asymptotic behavior.

3.2 The Dynamics of Deep Over-Parametrized Linear Networks

Extending the analysis described in Du and Hu (2019), we derive here the temporal dynamics
of W, denoted W®  as it changes with each GD step.

Proposition 5 Let G (Def. 3) denote the gradient matriz at time t. Let B() and Al(t)
denote the gradient scale matrices, which are defined as follows

(ﬁW](t ) (HW(t)> € RI<Y, ( H W ) ( H Wj(t))T C REHK.

j=l 7=l j=L
(2)

The compact representation W® obeys the following dynamics:

WD — — Z AN .q® . BY 4 o(u?). (3)
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The proof can be found in Appendix B.1. Note that B(()t) = Ag) =1, B](:t) = W(t)TW(t),
and AV = wOW®O

Gradient scale matrices. When the number of hidden layers is 0 (L = 1), both gradient
scale matrices reduce to the identity matrix and the dynamics in (3) is reduced to the known

result that WD = Ww®) — ,uth). Recall, however, that our focus is the over-parameterized
linear model with L > 1, in which the loss is not convex. Since the difference between the
convex linear model and the over-parametrized deep model boils down to these matrices, our
convergence analysis henceforth focuses on the dynamics of the gradient scale matrices. In
accordance, we analyze the evolution of the gradient scale matrices as learning proceeds.

Theorem 6 Let W denote the compact representation of a deep linear network, where

m = min (myq,...,mp_1) denotes the size of its smallest hidden layer and m > {mg, mp}.

(0)

At each layer 1, assume weight initialization W, obtained by sampling from a distribution

with mean 0 and variance 012, normalized as specified in Def. 4. Let (Bl(t) (Im))oo and

m=1
o0
(Al(t)(m)) denote two sequences of gradient scale matrices as defined in (2), where the

mt" element of each series corresponds to a network whose smallest hidden layer has m
neurons. Let 2 denote element-wise convergence in probability as m — oo. Then Vt,l:

BOm) BI4+04?) Well...L -1, BPw)?% gl +0(2) B o),
" 1 (4)
var[B;" (m)] = O(u?) + o<m> Vi,
and
A BIvow) viel..L-1,  APm) B L1404 B ow),
(5)
var[A" (m)] = O(2) + o(ﬂi) .

Proof sketch. The proof proceeds by induction on time ¢. To begin with, we recall that
all the weight matrices {VVI(O)}IL:1 are initialized by sampling from a distribution with mean
0 and variance o? = O(%) In Appendix A.1 we prove some statistical properties of such
matrices, and their corresponding gradient scale matrices BZ(O) and Al(o). This analysis shows
that (4) and (5) are true at ¢ = 0. To prove the induction step, we resort to results stated in
Appendix A.2, where we analyze random matrices that are defined similarly to the gradient
scale matrices, and whose dynamics is consistent with the update rule defined in (3). The
main result can be used to show directly that if the theorem’s assertion holds for Bl(t), it

also holds for Bl(H_l). A complete proof and details can be found in Appendix B.2.

Relation to the one-layer linear model. From Thm 6, if the hidden layers are suffi-
ciently wide (as measured by m), we can assume that Bl(t) (m) ~ I and Agt)(rm) ~ IVl In
this case, the dynamics of the over-parameterized model is identical to the dynamics of the
convex linear model, W{t+1) = w(t) ,uGg). This is shown more formally below in Thm 7.
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Note about convergence, and convergence rate. In Thm 6 we prove two asymptotic
results: Bl(t)(lm) 2, I and Al(t) (m) & I up to small deviations of magnitude O(p?). This is
true VI € [1...L — 1] and V¢, irrespective of the convergence of the network. The only thing
that changes with ¢ is the magnitude of the constants governing this asymptotic behavior,
hidden in the notations O(1) and O(p?), whose magnitude increases with time. For a fixed
network, there will come a time when the asymptotic analysis is longer applicable, and this
may happen before or after the network has converged to its final solution.

Importantly, these constants are significantly different in the two sequences. Specifically,
in (4) and (5) we see that the convergence of Bg)(m) is governed by O (%), while the
convergence of Al(o) (m) is governed by O (%) Typically ¢ > K, as g denotes the dimension
of the data space which can be fairly large, while K denotes the typically small number of
classes. Considered in the context of the proof of Thm 6 by induction, we note that these
constants are amplified in each iteration ¢. As a result, when m is large but fixed, Al(t) (m) is
expected to deviate from I sooner than Bl(t)(rfn) as the GD steps are reiterated.
Empirical validation. To understand the practical significance of the observations stated
above, about the difference in convergence rate between the sequences Bl(t) (m) and Al(t)(rrn)7
we resort to simulations whose results are shown in Fig. 1. These empirical results, recounting
linear networks with 4 hidden layers of width 1024, clearly show that during a significant
part of the training both gradient scale matrices remain approximately I. The difference

between the convergence rate of Bl(t) and Al(t) is seen later on, when Al(t) starts to deviate

from I shortly before the networks have reached their maximal test accuracy, while Bl(t)
remains essentially the same throughout.

/
|
[
b

— . (t) o
g 4| —+— Diag A3 £ .
£ Diag BY £
] @
%2 5,3 —— Off-diag AYY
0! B - _diag BY
| T Off-diag By
Dol a
10° 10! 10? 10° 10* 100 10! 102 103 10%
Epoch Epoch
(a) Diagonal elements, layer 3 (b) Off-diagonal elements, layer 3

Figure 1: The dynamics of Bét) and Agt) when training 10 5-layered linear networks on the small
mammals dataset (see App. D.4). (a) The empirical Lo-distance of the diagonal elements of B?()t)
and Aét) from? 1. (b) The empirical Lo-distance of the off-diagonal elements of Bét) and Agt) from 0.
The networks reach maximal test accuracy in epoch ¢ = 100, before the divergence of Agt). In these
experiments Bét) never reaches the point of divergence. These result are typical of all the layers in
the networks, see Fig. 13 in Appendix C.2.

2. More precisely, the distance is computed respectively to their analytical values of agt) and ﬁét)7 computed
as diag (Agt) - agt)l) and diag (Bét) - ét)I), where Oz(t), 55” are defined in Thm 10, §A.1.

i
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3.3 Weight Evolution

Next, we investigate the implications of Thm 6 regarding the evolution of the compact
representation W. In Thm 7, we show that at the beginning of training, when the assumption
that both Bl(t) ~ I and Al(t) ~ [ is applicable, this evolution resembles the single-layer linear
model and is governed by the eigendecomposition of the data. In Thm 8, we show that later
on, when only Bl(t) ~ I is applicable and the evolution no longer resembles the single-layer
linear model, it is still governed by the eigendecomposition of the data.

More specifically, let wjo»p " denote the j™ column of the optimal solution of (1), and

wj(.o) the j* column of the initial weight matrix. Thm 7 states that if the hidden layers of
the network are all wider than a certain fixed width m and if the learning rate is slower

than /i, then at the beginning of learning (time ¢ € [0...#]), the j®* column of the compact

representation W) is roughly the following linear combination of w jO and ’w]o-p .

1 0 0
W Nl L N, A =1 L ©

with high probability (at least (1 —§)) and low error (at most ). Constant A\; depends on
the j*" singular value of the data d; and the number of layers L.

Result (6) is reminiscent of the well-understood dynamics of training the convex one-layer
linear model. It is composed of two additive terms, revealing two parallel and separate
processes: (i) The dependence on random initialization tends to 0 exponentially fast as a
function of time t, when /\§~ tends to 0. (ii) The optimal solution is reached exponentially
fast as a function of time ¢, when 1 — )\g- tends to 1. In either case, convergence is fastest
for the largest singular eigenvalue, or the first column of W, and slowest for the smallest
singular value. This behavior is visualized in Fig. 2a, which shows that the decrease in the
variance of weight estimation between networks is indeed faster for larger singular values.

1 =
~J 0.5
g oot 3 > —
= —end = 1
g _?30 g T o4 10
s 30 = 3 + 100
20 9 —— 1000
— <03
—1
epoch 0 epoch 10 epoch 100 epoch 10 epoch 50 0.2
(a) 2-layer linear network (b) 2-layer ReLU network 0 50 100 150

Epoch

Figure 2: Empirical evaluation of the dependence of conver-
gence rate on the eigendecomposition in a binary classification twork luated tost dat
problem. Here the classifier is a vector, denoted w. Each line networks evatuated on 1est data pro-

) L. . o jected using PCA to {1,10,100,1000}
corresponds to a specific principal eigenvector, plotting in i ) toxt f dotail
log-log scale the std of element w; (¢ = 1,10, 20, 30, 100, 3072, imensions (see text for more details).
see legend) over 10 independently trained networks.

Figure 3: Mean accuracy of 10 st-VGG

Formally, the theorem can be stated as follows (see proof in Appendix B.2):
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®)

Theorem 7 Let w; denote the j™ column of the compact representation matriz wW® | and

" the 5t column of the optimal solution of (1). Assume that the data is rotated to its

principal coordinate system, and let d; denote the G singular value of the data. Then there
exists t such that V6,e and Vt < t, 3Im, i such that Vu < fi,m > M

Prob<Hw§t+” — Pl + 1= AJw] | < 5) >(1=6), A=1-pud,L.

Proof sketch. We first prove by induction on time ¢ that V¢, Wt = w(t) — ,uLGg)
with high probability and small error. We then shift to the principal coordinate system, and
note that this is true separately for each column of matrix W. The evolution of each column
is then shown to be a telescopic series, whose solution is w( ) = = Nw (0) +[1 = AJw?” * for
Aj =1 — pLd;, with high probability and small error.

Next we state Thm 8, which remains valid for longer (see footnote 3 below) as it does

(t)

not depend on the convergence of A;”. This is the case discussed in Thm 6 and illustrated

in Fig. 1, when Bl( ) ~ I remains approximately true while A # I. More specifically, let

AW = ZZL:1 Al(t). Thm 8 asserts that if the hidden layers of the network are all wider than
m and if the learning rate is slower than ji, then at time ¢ € [0...#],% the j' column of the
compact representation W® is approximately the following

t t t
wi™ ~ [T = nd; A0l 4y | [ (2~ pd; A A®)
t'=1 t'=1t"=t'+1

with high probability (at least (1 — §)) and low error (at most €). Note that the j® column

of the compact representation W) is still a linear combination of w](.o)

(0

the coefficients are much more complex and depend on A;
Formally, the theorem can be stated as follows (see proof in Appendix B.2):

(®)

Theorem 8 Let w;

¢
and w;?p , but now

denote the j™ column of the compact representation matric W | and
qupt the 3t column of the optimal solution of (1). Assume that the data is rotated to its

principal coordinate system, and let d; denote the G singular value of the data. Then there
exists T such that V6, e and V¥t < £, 3mn, ji such that Yu < fi,m > 1D

t
Prob(”'wj(»tﬂ)— [ H(I — Mde(t/))w§0)+

t'=1

(3 TT U - pdg A€t ]

t=1t"=t'+1

<€> > (1-9).

Although the dynamics now depend on matrices Al(t) as well, it is still the case that the
convergence of each column is governed by its singular value d;. This suggests that while the
PC-bias is more pronounced at earlier stages of learning, its effect persists throughout.

3. Presumably, in comparison to Thm 7 and if we fix the network’s width m = , then £ > {.

10



PRrINCIPAL COMPONENTS BIAS IN OVER-PARAMETERIZED LINEAR MODELS

3.4 Adding ReLU Activation

We extend the results above to a relatively simple non-linear model suggested and analyzed
by Allen-Zhu et al. (2019); Arora et al. (2019b); Basri et al. (2019), here trained on a
classification task rather than a regression task. Specifically, it is a two-layer model with
ReLLlU activation, where only the weights of the first layer are being learned. Similarly to (1),
the optimization problem is defined as

1 n
W* =argmin = > ||f(x:) —will>,  f(@:) =aT-o(Wa;), acR™ WeR™
w2

where m denotes the number of neurons in the hidden layer and a a fixed vector. We consider
a binary classification problem with 2 classes, where y; = 1 for «; € C1, and y; = —1 for
x; € Cy. o(-) denotes the ReLU activation function o(u) = max(u,0). Unlike deep linear
networks, the analysis in this case requires two additional symmetry assumptions:

1. Each point ; is drawn from a symmetric distribution D with density fp(X), such
that: fp(x;) = fp(—;).

(0)

2. W and a are initialized symmetrically so that w,

—

] and a,.=—a
7 i—1 2i

01 Vi € (5.

Theorem 9 Retaining the assumptions stated above, at the beginning of the learning, the
temporal dynamics of the model can be shown to obey the following update rule:

WD ~ w® — u% [(aaT)W(t)EXX —M®],

Above M) denotes the difference between the centroids of the 2 classes, computed in the
half-space defined by wﬁt) -x > 0.

The complete proof can be found in App. B.3. Thm 9 is reminiscent of the single-layer linear
model dynamics W) = w(t) — ,qunt), and we may conclude that when it holds, using the
principal coordinate system, the rate of convergence of the j-th column of W® is governed
by the singular value d;. Fig. 2b empirically demonstrated this result, showing the weight
convergence of 10 ReLU models trained on the small mammals dataset (5 classes out of
CIFAR-100, see App. D.4 for details), along different principal directions of the data.

4. PC-Bias: Empirical Study

In this section, we first analyze deep linear networks, showing that the convergence rate
is indeed governed by the principal singular values of the data, which demonstrates the
plausibility of the assumptions made in Section 3. We continue by extending the scope of
the investigation to non-linear neural networks, finding evidence for the PC-bias mostly in
the earlier stages of learning.
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4.1 Methodology

We say that a linear network is L-layered when it has L — 1 hidden fully connected (FC)
layers (without convolutional layers). In our empirical study, we relaxed some assumptions
of the theoretical analysis, to increase the resemblance of the trained networks to networks
in common use. Specifically, we changed the initialization to the commonly used Glorot
initialization, replaced the Lo loss with the cross-entropy loss, and employed SGD instead of
the deterministic GD. As to be expected, the original assumptions yielded similar results (see
§C.3.1). The results presented summarize experiments with networks of equal width across
all hidden layers, fixing the moderate? value of m = 1024 in order to assess the relevance
of our asymptotic results obtained with m — oco. Using a different width for each layer
yielded similar qualitative results. Details regarding the hyper-parameters, architectures,
and datasets can be found in §D.1, §D.3, and §D.4 respectively.

4.2 PC-bias in Deep Linear Networks

In this section, we train L-layered linear networks, then compute their compact representations
W rotated to align with the canonical coordinate system (Def. 1). Note that each row w(r)
in W essentially defines the one-vs-all separating hyper-plane corresponding to class r.

To examine both the variability between models and their convergence rate, we inspect
w(r) at different time points during learning. The rate of convergence can be measured
directly, by observing the changes in the weights of each element in w(r). These weight
values® are compared with the corresponding optimal weights wy,:. The variability between
models is measured by computing the standard deviation (std) of each row vector w(r) across
N models, obtained with different random initializations.

We begin with linear networks. We trained 10 5-layered FC linear networks, and 10
linear st-VGG convolutional networks. When analyzing the compact representation of such
networks we observe a similar behavior—weights corresponding to larger principal components
converge faster to the optimal value, and their variability across models converges faster to 0
(Figs. 4a,4b). Thus, while the theoretical results are asymptotic, the PC-bias is empirically
seen throughout the entire learning process of deep linear networks.

We note that in the principal coordinate system, the absolute values of the optimal solution
are often higher in directions corresponding to lower principal components. Nevertheless,
faster convergence in the directions corresponding to the higher principal components is seen
even after this confounding factor is eliminated by normalization (see App. C.3.2).

Whitened data. The PC-bias is neutralized when the data is whitened, at which point
Yixx is the scaled identity matrix. In Fig. 4c, we plot the results of the same experimental
protocol while using a ZCA-whitened dataset. As predicted, the networks no longer show
any bias towards any principal direction. Weights in all directions are scaled similarly, and
the std over all models is the same in each epoch, irrespective of the principal direction.
(Additional experiments show that this is not an artifact, due to the lack of uniqueness when
deriving the principal eigenvectors of a white signal).

4. Note that for most image datasets, ¢ (the input dimension) is much larger than 1024, and therefore
£ >> 1. In this sense m = 1024 is moderate, as one can no longer assume Al(t)(]m) ~I.
5. We note that the weights tend to start larger for smaller principal components, see Fig. 4a left.

12



PRrINCIPAL COMPONENTS BIAS IN OVER-PARAMETERIZED LINEAR MODELS

Distance

375
g
s M“_.._—M
]
Bos
0

S0 1000 1500 2000 D000 1600 2000 o 00 000 100 2000 n E ] no 000 1500 2000 na 000 1500 2000
Component Component Component Component Component Component

(a) 5-Layered linear network (b) Linear convolutional network

A o Ay

[ 500 1000 1500 2000 0 500 1000 1500 000 0 500 1000 1500 2000 [J 500 1000 1500 2000 0 500 1000 1500 000 6 500 1000 1500 2000
Component Component Component Component Component Component

Distance Std

(c) b-Layered linear network, whitened data (d) Non-linear convolutional network

Figure 4: Convergence of the compact representation along the principal directions in different epochs.
The value of the X-axis corresponds to the index of a principal eigenvalue, from the most significant
to the least significant. (a) 10 5-layered linear networks trained on the cats and dogs dataset. 3 plots
are provided, corresponding to snapshots taken at different stages of learning: the beginning (epoch
1, left), intermediate stage (epoch 100, middle), and close to convergence (epoch 1500 right). Bottom
panel: average distance of the weights in w(1) from the optimal linear classifier; top panel: respective
std. (b) Similarly, for 10 linear st-VGG convolutional networks, trained on CIFAR-10 (epochs plotted:
1,100,500). (c) Similarly, for 10 5-layered linear networks, trained on the cats and dogs dataset,
with ZCA-whitening (epochs plotted: 1,2,1000). (d) Similarly, for 10 non-linear st-VGG networks
trained on the cats and dogs dataset. Here the distance to the optimal solution is not well defined
and we therefore only show the std (epochs plotted: 1,10,100). In all plots, the data dimension is
3072, while only the largest 2000 principal components are shown for clarity. Visualization of the
values of A; can be found in Fig. 16.

4.3 PC-Bias in General CNNs

In this section, we investigate the manifestation of the PC-bias in non-linear deep convolutional
networks. As we cannot directly track the learning dynamics separately in each principal
direction of non-linear networks, we adopt two different evaluation mechanisms:

(i) Linear approximation. We considered several linear approximations, but since all
of them showed the same qualitative behavior, we report results with the simplest one.
Specifically, to obtain a linear approximation of a non-linear network, we ignore the non-linear
layers of max-pooling and batch-normalization, and compute the compact representation
as in Section 3 using only linear activations. We then align this matrix with the canonical
coordinate system (Def. 1), and observe the evolution of the weights and their std across
models along the principal directions during learning. Note that now the networks do not
converge to the same compact representation, which is not unique. Nevertheless, we see that
the PC-bias governs the weight dynamics to a noticeable extent.

We note that, in these networks, a large fraction of the lowest principal components
hardly ever changes during learning. Nevertheless, the PC-bias affects the higher principal
components, most notably at the beginning of training (see Fig. 4d). Thus weights corre-
sponding to higher principal components converge faster, and the std across models of such
weights decreases faster for higher principal components.
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(ii) Projection to higher PC’s. We created a modified test-set, by projecting each test
example on the span of the first P principal components. This is equivalent to reducing
the dimensionality of the test set to P using PCA. We trained an ensemble of N=100
st-VGG networks on the original training set of the small mammals dataset (see App. D.4),
then evaluated these networks during training on 4 versions of the test-set, reduced to
P=1,10,100,1000 dimensions respectively. Mean accuracy is plotted in Fig. 3. Similar results
are obtained when training VGG-19 networks on CIFAR-10, see §C.4.

Taking a closer look at Fig. 3, we see that when evaluated on lower dimensionality test-data
(P=1,10), the networks’ accuracy peaks after a few epochs, at which point performance starts
to decrease. This result suggests that the networks rely more heavily on these dimensions in
the earlier phases of learning, and then continue to learn other things. In contrast, when
evaluated on higher dimensionality test-data (P=100,1000), accuracy continues to rise, longer
so for larger P. This suggests that significant learning of the additional dimensions continues
in later stages of the learning.

5. PC-Bias: Learning Order Constancy

In this section, we show that the PC-bias is significantly correlated with the learning order
of deep neural networks, and can therefore partially account for the LOC-effect described
in Section 1. Following Hacohen et al. (2020), we measure the "speed of learning" of each
example by computing its accessibility score. This score is computed per example, and
characterizes how fast an ensemble of N networks memorizes it. Formally, accessibility(x) =
E[1(ff(x) = y(x))], where ff(x) denotes the outcome of the i-th network trained over
e epochs, and the mean is taken over networks and epochs. For the set of datapoints
{(x;, yj)}?zl, Learning Order Constancy is manifested by the high correlation between 2
instances of accessibility(x), each computed from a different ensemble.

P(C-bias is shown to pertain to LOC in two ways: First, in Section 5.1 we show a high
correlation between the learning order in deep linear and non-linear networks. Since the
PC-bias fully accounts for LOC in deep linear networks, this suggests that it also accounts
(at least partially) for the observed LOC in non-linear networks. Comparison with the critical
principal component verifies this assertion. Second, we show in Section 5.2 that when the
PC-bias is neutralized, LOC diminishes as well. In Section 5.3 we discuss the relationship
between the spectral bias, PC-bias and the LOC-effect.

5.1 PC-Bias is Correlated with LOC

We first compare the order of learning of non-linear models and deep linear networks by
computing the correlation between the accessibility scores of both models. This comparison
reveals high correlation (r = 0.85, p < 107%%), as seen in Fig. 5a. To investigate directly the
connection between the PC-bias and LOC, we define the critical principal component of an
example to be the first principal component P, such that a linear classifier trained on the
original data can classify the example correctly when projected to P principal components.
We trained N=100 st-VGG networks on the cats and dogs dataset (2 classes out of CIFAR-10,
see §D.4 for details), and computed for each example its accessibility score and its critical
principal component. In Fig. 5b we see strong negative correlation between the two scores

14



PRrINCIPAL COMPONENTS BIAS IN OVER-PARAMETERIZED LINEAR MODELS

(p=—0.93, r<10~%), suggesting that the PC-bias affects the order of learning as measured

by accessibility.
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Figure 5: (a) Correlation between the accessibil-
ity score of N=100 st-VGG networks trained with
a low learning rate®, and N=100 linear st-VGG
networks, trained on small mammals (see §D.3,
§D.4 for details). (b) The critical principal compo-
nent score, plotted against the accessibility score of
N=100 st-VGG networks trained on the cats and
dogs dataset. Accessibility values were smoothed
by a moving average filter of width 10. Error bars
indicate standard error.
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Figure 6: LOC as measured with and without PC-
bias. Each bar represents the correlation between
the learning order of two collections of 10 networks
trained on CIFAR-10. Orange bars represent natu-
ral images, in which the PC-bias is present, while
blue bars represent whitened data, in which the PC-
bias is neutralized. As PC-bias is more prominent
earlier on, we compute these correlations using the
entire data (right two bars), and using the subset
of 20% "fastest learned" examples (left two bars).

5.2 Neutralizing the PC-bias Leads to Diminishing LOC

Whitening the data eliminates the PC-bias as shown in Fig. 4c, since all the singular values
are now identical. Here we use this observation to further probe into the dependency of
the Learning Order Constancy on the PC-bias. Starting with the linear case, we trained
four ensembles of N=10 two-layered linear networks (following the same methodology as
Section 4.1) on the cats and dogs dataset, two with and two without ZCA-whitening. We
compute the accessibility score for each ensemble separately, and correlate the scores of the
two ensembles in each test case. Each correlation captures the consistency of the LOC-effect
for the respective condition. This correlation is expected to be very high for natural images.
Low correlation implies that the LOC-effect is weak, as training the same network multiple
times yields a different learning order.

Fig. 6a shows the results for deep linear networks. As expected, the correlation when using
natural images is very high. However, when using whitened images, correlation plummets,
indicating that the LOC-effect is highly dependent on the PC-bias. We note that the drop
in the correlation is much higher when considering only the 20% "fastest learned" examples,
suggesting that the PC-bias affects learning order more strongly at earlier stages of learning.

Fig. 6b shows the results when repeating this experiment with non-linear networks, training
two collections of N=10 VGG-19 networks on CIFAR-10. We observe that neutralizing the
PC-bias in this case affects LOC much less, suggesting that the PC-bias can only partially
account for the LOC-effect in the non-linear case. Nevertheless, we note that at the beginning
of learning, when the PC-bias is most pronounced, once again the drop is much larger and
very significant (down by half), see left two bars of Fig. 6b.

6. As non-linear models achieve the accuracy of linear models within an epoch or 2, a low learning rate is
used.
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5.3 Spectral Bias, PC-bias, and LOC

The spectral bias (Rahaman et al., 2019) characterizes the dynamics of learning in neural
networks differently, asserting that initially neural models can be described by low frequencies
only. This may provide an alternative explanation to LOC. Recall that LOC is manifested in
the consistency of the accessibility score across networks. To compare the spectral bias and
accessibility score, we first need to estimate for each example whether it can be correctly
classified by a low-frequency model. Accordingly, we define for each example a discriminability
score—the percentage out of its k neighbors that share with it a class identity. Intuitively,
an example has a low discriminability score when it is surrounded by examples from other
classes, which would presumably force the learned boundary to incorporate high frequencies.
In §C.5 we show that in the 2D case analyzed by Rahaman et al. (2019), this measure
strongly correlates (r=—0.8, p < 1072) with the spectral bias.

We trained several networks (VGG-19 and st-VGG) on several real datasets, including
small mammals, STL-10, CIFAR-10/100, and a subset of ImageNet-20 (see App. D.4). For
each network and dataset, we compute the accessibility score as well as the discriminability of
each example. The vector space, in which discriminability is evaluated, is either the raw data
or the network’s perceptual space (penultimate layer activation). The correlation between
these scores is shown in Table 1.

Table 1: Correlation between accessibility and discriminability.

Dataset Raw data Penultimate
Small mammals 0.46 0.85
ImageNet 20 0.01 0.54
CIFAR-100 0.51 0.85
STL10 0.44 0.7

Using raw data, low correlation is still seen between the accessibility and discriminability
scores when inspecting the smaller datasets (small mammals, CIFAR-100, and STL10). This
correlation disappears when considering the larger ImageNet-20 dataset. It would appear
that on its own, the spectral bias cannot adequately explain the LOC-effect. On the other
hand, in the perceptual space, the correlation between discriminability and accessibility is
quite significant for all datasets. Differently from the supposition of the spectral bias, it
seems that networks learn a representation where the spectral bias is evident, but this bias
does not necessarily govern its learning before the representation has been obtained.

Discussion. In the limit of infinite width, the spectral bias phenomenon in deep linear
networks follows from the PC-bias. In function space, the training process of neural networks
can be decomposed along different directions defined by the eigenfunctions of the neural
tangent kernel, where each direction has its convergence rate and the rate is determined by
the corresponding eigenvalue (Cao et al., 2021). Since the Neural Tangent Kernel for a deep
linear network is proportional to ¥ xx, the spectral bias, in this case, corresponds to the
statement that the right singular vectors of X are learned at rates corresponding to their
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(squared) singular values. Looking at the spectral decomposition of W X, we see that the
PC Bias implies in function space that the right singular vectors of X are learned at rates
corresponding to their singular values. Thus the PC Bias implies the Spectral Bias in this
model.

Figure 7: Visualization of the small mammals dataset, with amplification of 1.5% of its principal
components by a factor of 10. Top: original data; middle: data amplified along the highest principal
components; bottom: data amplified along the lowest principal components

6. PC-Bias: Further Implications

Early Stopping and the Generalization Gap. Considering natural images, it is often
assumed that the least significant principal components of the data represent noise (Torralba
and Oliva, 2003). In such cases, our analysis predicts that as noise dominates the components
learned later in learning, early stopping is likely to be beneficial. To test this hypothesis
directly, we manipulated CIFAR-10 to amplify the signal in either the 1.5% most significant
(higher) or 1.5% least significant (lower) principal components (see examples in Fig. 7).
Accuracy over the original test set, after training 10 st-VGG and linear st-VGG networks on
these manipulated images, can be seen in Fig. 8. Both in linear and non-linear networks, early
stopping is more beneficial when lower principal components are amplified, and significantly
less so when higher components are amplified, as predicted by the PC-bias.

Slower Convergence with Random Labels. Deep neural models can learn any random
label assignment to a given training set (Zhang et al., 2017). However, when trained on
randomly labeled data, convergence appears to be much slower (Krueger et al., 2017). Assume,
as before, that in natural images the lower principal components are dominated by noise. We
argue that the PC-bias now predicts this empirical result, since learning randomly labeled
examples requires a signal present in lower principal components. To test this hypothesis
directly, we trained 10 two-layered linear networks (following the same methodology as in
Section 4.1) using datasets of natural images. Indeed, these networks converge slower with
random labels (see Fig. 9a). In Fig. 9b we repeat this experiment after having whitened the
images, to neutralize the PC-bias. Now convergence rate is identical, whether the labels are
original or shuffled. Clearly, in deep linear networks, the PC-bias gives a full account for this
phenomenon.
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To further check the relevance of this account to non-linear networks, we artificially
generate datasets where only the first P principal components are discriminative, while the
remaining components become noise by design. We constructed two such datasets: in one
the labels are correlated with the original labels, while in the other they are not. Specifically,
PCA is used to reduce the dimensionality of a two-class dataset to P, and the optimal linear
separator in the reduced representation is computed. Next, all the labels of points that are
incorrectly classified by the optimal linear separator are switched, so that the train and test
sets are linearly separable by this separator. Note that the modified labels are still highly
correlated with the original labels (for P = 500: p = 0.82, < 1071%). The second dataset
is generated by repeating the process while starting from randomly shuffled labels. This
dataset is likewise fully separable when projected to the first P components, but its labels
are uncorrelated with the original labels (for P = 500: p = 0.06, r < 10~19).

The mean training accuracy of 10 non-linear networks with P=10,50,500 is plotted in
Fig. 10a (first dataset) and Fig. 10b (second dataset). In both cases, the lower P is (namely,
only the first few principal components are discriminative), the faster the data is learned
by the non-linear network. Whether the labels are real or shuffled makes little qualitative
difference, as predicted by the PC-bias.
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Figure 10: Learning curves of st-VGG networks trained on 3 datasets, which are linearly separable
after projection to the highest P principal components (see legend).
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7. Summary and Discussion

When trained with gradient descent, the convergence rate of the over-parameterized deep
linear network model is provably governed by the eigendecomposition of the data. Specifically,
we show that parameters corresponding to the most significant principal components converge
faster than the least significant components. Empirical evidence is provided for the relevance
of this result to more realistic non-linear networks. We term this effect PC-bias. This result
provides a complementary account for some prevalent empirical observations, including the
benefit of early stopping and the slower convergence rate with shuffled labels.

We use the PC-bias to explain the Learning Order Constancy (LOC). Different empirical
schemes are used to show that examples learned at earlier stages are more distinguishable by
the data’s higher principal components, which may indicate that networks’ training relies
more heavily on higher principal components early on. A causal link between the PC-bias and
the LOC-effect is established, as the LOC-effect diminishes when the PC-bias is eliminated
by whitening the images. Finally, we analyze these findings given a related phenomenon
termed spectral bias. While the PC-bias may be more prominent early on, the spectral bias
may be more important in later stages of learning.
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Appendix
Appendix A. Random Matrices

A.1 Multiplication of Random Matrices

In this section, we present and prove some statistical properties of general random matrices
and their multiplications. Let {Q, € R™»*™»=1}N denote a set of random matrix whose
elements are sampled iid from a distribution with mean 0 and variance o2, whose kurtosis is
bounded by ¢, and whose support is compact where the norm of each element is bounded by
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o2 for fixed constants ¢, c’. Let

1
Tl =@ ...- QL B'=Q''Q e rR™x™, (7)
+1 -
Q=J[Qu=0Qn - Q. Al =QlQlT e MmN, (8)

Theorem 10 For random matrices A and B' as defined in (7)-(8)

l
E(B) =8I,  Bi=]]mno, (9)
n=1
E(A) = oI, o = H My 102, (10)
n=I[+1

Proof We only prove (9), as the proof of (10) is similar. To simplify the presentation, we
use the following auxiliary notations: V = Q1, U = Hi:l Q, = Q'=UV.
The proof proceeds by induction on [.

o [ =1:

=B[Y  ViiVijl = Y EVaE[Vig] =0 i #j,
k=1

k=1
mi
E[Bf] =E[>_ ViiVii] = ZE V2] = myo?.
k=1

Thus E(B') = p11.
e Assume that (9) holds for [ — 1.

Bjj = QuQl =D UnVui D UsVij,
k k v o
and therefore

ZZZEUkVVVZUkp p] ZZE Vuzvp] Z [UkyUkp] (11)

The last transition follows from the independence of U and V. From (11), where we
denote B =UTU

=D EVil) EVuE(UTU), =0 i#j,
v p
l
ZZE ViV B(UTU),,) = Z]E B, =mo} [[ maoy = Bi.

n=2

where the last transition above follows from the induction assumption applied to
B'=UTU. Thus E(B") = 8 and (9) follows.
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|
Let m denote the width of the smallest hidden layer, m = min (my,...,mz_1), and
assume that max (my,...,mr_1) < m+ Am for a fixed constant Am. mg, my, are likewise

fixed constants (mg corresponds to the input dimension ¢ and my, corresponds to the number
of classes K'), while m is not bounded. Assume that the distribution of the random matrices
{Qn}L_, is normalized as specified in Def. 4, where specifically

2 2

" Mgt +my, | ) Y omy L mp

(12)

It follows that asymptotically, when m — oo, we can write

1 m 1
mnag_l—i—O( ) nell...L—1], ng%_L+O( ),
2 1 5 Mg 1

Corollary 11 From Thm 10, using the initialization scheme specified in Def. 4 and (12)

E(Bl):I—kO(]il) Vie[l...L -1, E(BL):THLI+O<;I>:O<1),

IE(AZ):IJFO(I;) Viell...L—1], IE(AO):T;Z)IJFO(HD:O(E).

Recall that in our asymptotic matrix notations, O(ﬂ%) is short-hand for a matrix which,
for large enough m, is upper bounded element-wise by C % where C' denotes a fixed full rank
matrix, and similarly O(u?) for small enough p. When B! is concerned C' € R™0X™0 and
when A! is concerned C' € R™L*™L  Henceforth, for clarity and simplicity of notations, when
we discuss asymptotic properties of functions of a certain matrix M, including its expected
value E(M) or variance var(M), it is to be understood that the properties are considered
element-wise.

Theorem 12 Given random matrices Al and B' as defined in (7)-(8), and using the initial-
ization scheme specified in Def. 4 and (12), we have

var(Bl):O<1>, var(Al):0<1> vi.

m m

Proof Once again, we only provide a detailed proof for var(B'), as the proof for var(A') is
similar. From Corr 11, and since element-wise Var(Z) = E(Z?) — [E(Z)]?, it is sufficient to
show that the following (somewhat stronger) assertion is valid:

0F) i # .
E[(B)Y)=41+0@) i=4l<L, E[BfiBé»j]zlJrO(m) i (13)
o) i=j,l=1L

The proof proceeds by induction on I.
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Base case [ = 1. Below @ stands for @)1, to simplify index notations.

s . Z E[Q2)EQ};] = s i #
271 i . . | = m1 mi mi
| = E{;QWQW ;QQO} Zl ZlE[QgJ Q%]+ ZlE[Qﬁi] =1+0@2)
v=1 p= v=
p#V

Above we use the assumed fixed bound on the kurtosis of the distribution of Q.

mip mi

E szBjj - |:ZQVZQVZ ZijQp]:| == Z Z m—lm—l =

v=1 p=1

Induction step. Assume that (13) hOldb for [ — 1, and similarly to the above, let @) stand
for @; to simplify index notations. Let - denote the variance of @; as defined in (12).

m; my m; my
[Z Z QWB ij Z Z QMB Q/g]} (by independence)
v=1 1 a=1
" = (14)

myp oMy myp Mmy

= Z Z Z Z E[QuiijQaiQﬁj]E[Blyle(lx_Bl].

v=1 p=1a=1p=1
When 7 # j, using the independence of the elements of @); and the induction assumption

mp o my

ZZE E[(B),")7]

When i = j, we collect below all the terms in (14) which are not 0:

mp o my my my
=2 2 BIQUEIQLIEB,, BuaT+ 3 ) EIQLIEIQLIE(B,, )]
v=1a=1 v=1 p=1
p=v B=«a a=v f=p
aFfv pFv
mp my my
+ZZE JEBL,)+ ) ElQLIE(BL).
=1 p=1 v=1
6 va=p p=a=p=v
p#V

From the induction assumption and since the kurtosis of () is bounded by the assumption

my; my
=> ) EQ JE[BL'BL, 1]+0< >
v= la 1 m
(15)
™y 1+0(F) I<L
S L Lppip 1]+O<1> &)
v=1 g;i mymy m O(%ln) =1L
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To justify the last transition, recall that the initialization scheme specified in Def. 4 implies
that mlﬁ%z =1+ O%) Vi e [1...L—1]. Making use once again of the induction assumption,
it follows from (15) that now E[(Bl )?] = 1+ O(). However, since my, is fixed whereas
ﬁ%L = O(mil) it follows that E[(B%)? O(m)

A similar argument will show that ]E[B,szé j] =1+ O(Hin) when i # j. u

Theorem 13 Let {X(m)} denote a sequence of random matrices where E[X (m)] = F+0(2)

and var[X O(m) Then X (m) 2, F, where & denotes element-wise convergence in
probabzlzty as m — 0.

Proof For every element (i, ) of matrix X (m), we need to show that Ve,d > 0 3m’ € N,
such that Vm > m’
Prob(|XZ](Im) — F'Z]‘ > 6.) <9

Henceforth we use z, f as shorthand for X;;(m), F;; respectively. Since E[X (m)] = F+0(2)
where by definition the asymptotic behavior occurs element-wise, it follows that Ve > 0
dm; € N such that Vm > m; we have

[E(z) = fI < 3,

in which case c
Prob(|z — f| > €) < Prob (yg; ~E(z)] > 5) .
Since var[X (m)] = O(2), it follows that Ve, >0, 3my € N > Vi > m,
2

757

var(z) < :

from the above, and using Chebyshev’s inequality

4var(z)

Prob(|Jz — f| > ¢) < 2 <6,

Vm > m’, where m’ = max{m;, mo}.

Corollary 14 Let A'(m) and B'(m) denote a sequence of random matrices as defined in
(7)-(8), corresponding to multi-layer linear models for which m = min (my,...,my—1). Then

B(m) 5T vield...L—-1], Bfm)23o,
Alm) BT viei...L -1, AO@m) L o.

Proof This result follows from Corr 11, Thm 12, and Thm 13. |
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A.2 The Dynamics of Random Matrices

We now formalize a dynamical system, which captures the evolution of the weight matrices
{W;} by gradient descent as seen in (29)-(30). Specifically, given random matrices as defined
in (7)-(8), consider a dynamical system whereby Q; — Q; — AQ; V7, and

J+1 1
—u(nE[LQn) (nljilczn) U@ G QT 16)

Gr = QLEXX - EYX'

Denoting Q' — Q' — AQ!, B' — B' — AB! and applying the product rule

AQ = Z(HQn)AQg< H Qn)zi(ﬁen)mﬁﬂ : (17)
B = [AQITQ“rQlTAQ]- (18)

Recall that in our notations, O(u?) is short-hand for a matrix which, for small enough p,
is upper bounded element-wise by Cu? where C' denotes a fized full rank matrix. Similarly,
O%) is short-hand for a matrix which, for large enough m, is upper bounded element-wise
by C L Since mg = mg and my, = mg, when B is concerned C' € R9%%, and when A! is
concerned C € REXK In addition, we will use the notation O(e) as short-hand for a matrix
that is upper bounded element-wise by Ce, where C' denotes a fized full rank matrix.

Theorem 15 Let B'(m) = Ql(lm)TQl(m) denote a sequence of random matrices as defined
in (7) for {Qun}L_,, whose dynamics is captured by (16)-(18). Assume that B'(m) is full
rank V1,m. If

Bm) & T1+0@? viel[l...L-1], BE(m) & 0(1?),

var[B!(m)] = O(p?) + 0(1) v,

m
L 1
EIQ"(m)] = O(1) + O( )

then

AB!(m) & O(u?), var[AB!(m)] = O(u?) + O<1) Vi,

Im

BIAQ )] = 00 +0 (1)

Proof B'(m) % I+ O(4?) and BY(m) & O(p?) implies that Ve, d > 0 Jth € N, such that
Vm > 1 and with probability larger than 1 — §:

Bl(m)=T+0(*) +0() VI<L-1, Bl (m) = 0(1?) +0(e).  (19)
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To evaluate AB! from (18), we start from (17) to obtain
. Lo ‘
Q2@ =Y Q" (J]en)r@,Q (20)
j=1 l
We make use of the Moore-Penrose pseudo-inverse of matrices {Q'}, defined as
Q=@ ') 'Q".

This definition is valid since by assumption B! is full rank Vi, and is therefore invertible.
Additionally

Q@Y =@ @)@ Q@) =@ ) =) @
We next use (7) and (21) to simplify Tj—the j*! term in the sum (20)

j+1

Ty = Q" (H @n> Q)G QT Q!
l

j+1
= uQ" (H @n> QT @) QT Q)G BT (Lemma 19)
l

= Q" Q'Q1 (@) 17 Q G, B! (22)
— uBB) Q" Q" Sy — Sy x|BI! (using (16), (21))

= BB B Sy — QP 8y, )BT

= —uQ" Tyx + O(?) + O(e). (using (19))

By assumption E[QF] = O(u) + O(¢), and therefore

l
E(T) = 0(?)+0() — E[Q'AQ| =S E(T}) =042 +0().  (23)

j=1
Finally, since AQ'' Q' = [Q'' AQY]T, from (18) and (23)
E[AB] =EAQ' Q] +E[AQ' QT = 0(:2) + Ofe). (24)
To conclude the proof, we will show that Ve’, ' > 0 dm’ € N, such that Vm > m’
Prob (|ABZ —0(u?)| > 5’) <d element-wise. (25)

Let b denote an element of matrix AB! — O(u?). Recall that (24) is true element-wise with
probability (1 — §) Ve, d and Vi > m. Therefore, Ve',§’ > 0, we can choose ¢, and the
corresponding 1’ such that

/

Prob <E(b)\ < Z) >(1- (;') Ym > 1, (26)
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/ /
Prob (|b] > €") = Prob <|b| > |E(b)| < 62> + Prob <|b > ¢ |E(b)| > z>
/

< Prob <|b _E®)| > 52) + Prob <|]E(b)| > i) .

var(AB!) = O(u?) + O(2) implies that Ve’, ' > 0 3rh” € N, such that Vm >

5/ 6/2

8 b
Using Chebychev inequality, (26) and (27), we finally have

var(b) <

(27)

dvar(b) ¢
vjll;( ) + 3 < 5, Vm > max{m’, m"}.

Prob (|b] > ¢') <

We can now conclude that (25) is true element-wise.

We will only provide a sketch of the proof for var[AB!(m)] and E[AQ¥(m)], as a
detailed proof follows very similar steps, and principles, to the proof presented above.
To analyze the variance of AB!(m), we start from (22) and observe that AB'(m) =
—l,uQLTEYX + O(p?) + O(e), from which (and the theorem’s assumptions) it can be shown
that var[AB'(m)] = O(p?) + O(2). Similarly to (22), we can derive that E[AQ!(m)] =
—pLG, + O(1?) + O(2), from which it follows that E[AQY(m)] = O(p) + O(2). [ ]

Theorem 16 Let Al(m) = Ql(ﬂn)Ql(IIn)T denote a sequence of random matrices as defined

in (8) but where A®(m) = QX xx QOT, whose dynamics is captured by (16). Assume that
Al(m) s full rank VI, m. If

Am) B T1+0@?) viel...L -1,  A%m)3 O(u?)
var[Al(m)] = O(u2) + o@) VI
BIQ )] = 00 + 0 (1)
then
D 1
AAY(m) & o(u?), var[AAY(m)] = O(u?) + O<m> , Vi

1
BlA(m)] = 0w + 0 ).
The proof is mostly similar to Thm 15.

A.3 Some Useful Lemmas
Lemma 17 Given function G(W) = S|UWVX —Y||%., its derivative is the following

dG(W)

= UTowv(vx)! —U'Y(VX)T =UT[UWVExx — Syx]V .
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Lemma 18 Assume Q = H;:N Qn, where @, € RMn>XMn-1 denotes a random matriz whose
elements are sampled iid from a distribution with mean 0 and variance o2 Vi, j, initialized as

defined in (12). Then

E[Qy] =0,  varlQy] = 0@) . (28)

Proof By induction on N. Clearly for N = 1:

E[Qi] =E[(Q1)y] =0,  var[Qij] = var[(Q1)y] = oi.
Assume that (28) holds for N — 1. Let V = H;:N_l Qn, U = Qn. It follows that

E[Qi;] = E[(UV)4] ZE ik Vij] = ZE[Uz‘k]E[ij]:O
!

where the last transition follows from the independence of U and V. In a similar manner

var(Qy;] = E[Q%] = E[() | UnViy)?l = B[ UiVi; > UaVij] = Y E[UZIE[V,)?
k k l k

1 N-1 1 N
2 2 2
= MN-10xN _IUmn‘Un:miNHmn'O'n.
n=1 n=1
With the initialization scheme defined in (12), var(Q;;) O(m) |

Lemma 19 Let C € R¥*™ and V € R™*F both of rank k, where k < m. Then
CV=1 = C=CVV™.
Proof By definition C' = V' | hence

C=VtvCc=CcvvTt.

Appendix B. Supplementary Proofs

B.1 Deep Linear networks

Here we prove Prop. 5 as defined in Section 3.2.
Proposition 5. Let Gﬁf) (Def. 8) denote the gradient matriz at time t. Let Al(t) and
(t

B, ) denote the gradient scale matrices, which are defined in (2). The compact representation
WO obeys the following dynamics:

W+ — “ZA B(t)1+0( 2.
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Proof At time t, the gradient step AWl(t) of layer [ is defined by differentiating L(X) with

®)

respect to W;’. Henceforth we omit index ¢ for clarity. First, we rewrite L(X) as follows:

I+1 1
1
L) =i TTwi ) wi| IT ws | X = Y%
j=L j=l-1
: s . : : _ LW .
Differentiating L(X; W;) to obtain the gradient AW, = ===, using Lemma 17 above, we
get
141 1 T
AW, = | [T Wy] WExx - ZYX]<H WJ> . (29)
j=L -1
Finally,
1 1 L [l+1 1
AW = [[Wi = paw)) = [[Wi=—p) (H Wn> AW, ( 11 Wn> +0(i?). (30)
I=L I=L =1 \n=L n=l-1

Substituting AW; and G, (as specified in Def. 3) into the above completes the proof. |

B.2 Weight Evolution

The proofs in this section assume that the norm of the data matrix X is bounded, that the
norms of the initial random weight matrices VVI(O) are bounded VI, m, and that the norms
of the gradient scale matrices are also bounded VI, m in the relevant time range ¢ < t. The
last assertion follows from our initial assumption, that the support of the distribution of the
weight matrices is compact, and additionally that the norm of each element is bounded by
co? for fixed a constant c.”
We start by proving Thm 6, which is stated in Section 3.2.

Theorem 6. Let W denote the compact representation of a deep linear network, where
m = min (myq,...,mp_1) denotes the size of its smallest hidden layer and m > {mg, mp}.

(0)

At each layer 1, assume weight initialization W, obtained by sampling from a distribution

with mean 0 and variance 012, normalized as specified in Def. 4. Let (Bl(t) (ﬂn))oo ) and
m=

oo
<Al(t)(m)) ) denote two sequences of gradient scale matrices as defined in (2), where the

m'" element of each series corresponds to a network whose smallest hidden layer has m
neurons. Let 2 denote element-wise convergence in probability as m — oo. Then Vt,l:

BO(m) B T1+0(2) Viel...L—1), BYm) S L1402 B o?),

Im

var[B{" (m)] = O(4?) + o<1> Vi,

m

7. These assumptions can be relaxed to having bounds with high probability, which follow from the analysis
of random matrices in Appendix A, but for simplicity we assume fixed bounds.
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and

p_ o

Am) B r+0u®) viel...L—1),  APm) L 221+ 0@ B o),

var[A® (m)] = O(12) + O (1> V. ;

uai}

Proof We will only work out the detailed proof of the first assertion concerning Bl(t) (m), as

the proof of the second assertion is similar. Specifically, we prove by induction on time ¢ a
stronger claim:

BYm) B 1+0w?) viel...L—1], BY(m) % o@?)
var[B" (m)] = O(4%) + 0<1;> Vi (31)

BWem)] = 00 + 0 ).

uai}

For the corresponding series {W(m)}.

Base case t = 0. From (2)

BY = ( W](0)> ! ( I1 Wj@)) .

J=l J=l

Recall that all weight matrices {Wl(o)}lL: , are initialized by sampling from a distribution with
mean 0 and variance o? = O(%) In Appendix A.1 we prove some statistical properties of
such matrices, and their corresponding gradient scale matrices Al(o) and BZ(O). This analysis

culminates in Corr 11 and Thm 12, which can now be used directly to infer that

E(Bl(o))zl+0<;l> Viell...L 1], E(Bg))):o(l)

var[B”)(m)] = O <1> Vi

I

Finally, Thm 13 further proves that such matrices also satisfy
BOm) BT viel...L -1, BYm) %o

Similarly, from Lemma 18 we have that E[W () (m)] = 0 ¥m, and we therefore conclude that
the assertion in (31) is true at ¢t = 0.

Induction step. In Appendix A.2 we analyze random matrices which are defined similarly
to the gradient scale matrices, and whose dynamics correspond to the update rule defined in
(3). The main result is stated in Thm 15, which can be used directly now to show that if
assertion (31) holds for Bl(t) and W) (m), it also holds for Bl(tﬂ) and WD (m).

First, let us verify that the conditions of Thm 15 are met. By construction, the dynamics
captured by (16)-(18) describes the dynamics of {W;}, a result that follows from the proof of
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Prop. 5, where specifically (29)-(30) imply (16)-(17). In addition, as by assumption m > my
and mg = g, Bl(t) (m) € R?%7 is full rank VI, m with probability 1. We may therefore use
Thm 15 to conclude, based on the induction assumption, that

ABP(m) B o(u?), var[ABY (m)] = 0(4?) + 0<K1n> Vi
E[AW® (m)] = O() + O (HD .

Noting that B (m) = B (m) + AB® (m) ¥l and WD (m) = WO (m) + AW, (m),
the assertion in (31) follows for all ¢. [ |

We proceed to prove Thm 7, which is stated in Section 3.3.
Theorem 7. Let w§t) denote the j™ column of the compact representation matriz W®
and w" the ™ column of the optimal solution of (1). Assume that the data is rotated to its
i (

principal coordinate system, and let d; denote the 3 singular value of the data. Then there
exists t such that ¥6,e and ¥Vt < t, Im, i such that Y < fi,m > 1

Prob<”w§.t+1) — W' 41— A H < s) >(1-6), A\ =1-pudL.

Proof First let us derive a bound on the total gradient magnitude HG@H. Since by

assumption the norm of the data || X || and the norms of Wl(o) VI are bounded, it follows that
the loss at time ¢ = 0 is also bounded. Let U; denote this bound, and U, denote the data
bound || X||? < Us. Let L®(X) denote the loss at time t. Since the loss is decreasing, it
follows that L(Y)(X,Y) < U Vt, and therefore

GO = WX - V]XT|? < 20O(X)|| X || < 201 Us.

We now introduce the notation Bl(t) =T1+0?) + A(Bf% and Al(t) =T1+0(u?) + A% Let
Us denote a tight bound so that {HA%HQ, HA%E\P} < Us Vi, t < t, where we further assume
that Us < 1 (this last assumption will be justified later). Starting from (3)

T

L
WD) ) _ MZAl(t) .0 . B (t) L+ O 2)
=1

=W — 3 [T+ 002 + A%) G [1+0(%) + Afg] + O() (32)
=1
w0 n+ (Aot a0y a4 Y2l 6 alf] o)
=1 =1

The last transition is valid because the norms of th), AS?, Ag% are bounded. It follows that

WD —w® — ,LG0)||? < uL2U,Us|Us + Us + UZ] + O(p?) < p6LUUUs + O(p?).
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Thus 3 such that Vu <
WD —w® — ,LG0|1? < p12LUU,Us. (33)
From Thm 6, Vt and VI < L — 1, Bl(t)(xm) 2 I+ 0(u?) and Al(t)(xm) 2 I+0@42) . In

other words, if we fix ¢ and consider all the iterations leading to ¢, then Ve,d > 0 3rh € N,
such that Vi, m > m,t < ¢

2

Prob (‘Bl(t)(rm) — I+ O(/ﬂ)}’ < min {/112;(]1(]2, 1}) > (1-9) element-wise
2

Prob (‘Al(t) (m) — [T + O(,LLQ)]’ < min {/}125[]1(]2, 1}) > (1-9) element-wise

Finally, from (33) and Yu < [

Prob (||W(t+1) — WO — uLGO))2 < 5) > (1-9). (34)
Next, we evaluate )
wt) —w® — ,La®. (35)

We first shift to the principal coordinate system defined in Def 1. In this representation
G =w®D — M, where D = diag({dj}‘}:l) is a diagonal matrix whose elements are the
principal eigenvalues of the data {d; }?:1, arranged in decreasing order. Since D is diagonal,
(35) can be written separately for each column of W®_ and we get for each column w](-t)

- (t+1 t ¢ .
w](- ):w](-)—pL[w](-)dj—mj], JjeK.
This is a telescoping series, whose solution is
@'Y = (1= pLdy)w' + pLm; =
j = plag)w;” + plm; = ...
t
_ At (0) R o A\v—1 &
= (1 — pLdj)'w;” + pLd; [;(1 pLdy) ] 7
0 m;
= Xaw!” +[1 -~ NI Ai=1-uld;
As w

i = %j and using (34), the assertion in the theorem follows.

We conclude by proving Thm 8. To this end we introduce another notation, A® =
Zlel Al(t), and let Uy denote the bound on A; where ||Al(t)||2 < Uy VIt <t
Theorem 8. Let 'wj(-t) denote the j™ column of the compact representation matriz W®),

and 'w?pt the 3 column of the optimal solution of (1). Assume that the data is rotated to its
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principal coordinate system, and let d; denote the 7% singular value of the data. Then there
exists t such that ¥8,e and Vt < T, 3ih, i such that Yy < fi,m > 1h

t
Prob ("w§t+1)— [ H (I — ude(t/))’wj(o)—i-

t'=1

jd; (Z H (I — pd; AT A >) ]

t'=1t"=t'+1

<e> > (1—9).

Proof We use the same bound notations as in the proof of Thm 7, but where only
IAY12 < Us VI, ¢ < a tight bound, Us < 1. Similarly to (32),

L
WD _ o (ZA )Gﬁt) _|_ZAl(t) GO AU+ o?)
1=1
N HW(tJrl) _ [W(t) ,UA ]HZ < p2LUUSUy 4 O(4?).
From Thm 6, Ve, > 0 31h, £, i, such that Vm > vh, ¢ <&, pu < ji
Prob - 1 > (1-9)
,u4LU1U2U4
= Prob( W(t+1) w A(t)G(t)]HQ < 5) > (1-9). (36)

As before, we evaluate

WD — W) _ a0 Go).

In the principal coordinate system this expression is separable by columns, thus

L
B —wl® u 3 A —mg), e K)
=1

Once again we have a telescoping series, whose solution is

t

¢t
~ 1 / 0 " n1]m
wj(-H):H(I—Mde(t))w§)+Mdj[Z H (I—Mde(t ))A(t)}#
t'=1 t=1¢"=t'+1 J

As w? b= %] and using (36), the assertion in the theorem follows. |

B.3 Adding Non-Linear ReLU Activation

In this section, we analyze the two-layer model with ReLLU activation, where only the weights
of the first layer are being learned (Arora et al., 2019b). Similarly to (1), the loss is defined
as

1 n
W* =argmin = Y " |[f(zi) —will®>,  f@) =aT-o(Wx;), acR™ WeR™
w20

37



HACOHEN AND WEINSHALL

where m denotes the number of neurons in the hidden layer and a a fixed vector. We consider
a binary classification problem with 2 classes, where y; = 1 for x; € C1, and y; = —1 for
x; € Cy. o(-) denotes the ReLLU activation function applied element-wise to vectors, where
o(u) =wif u >0, and 0 otherwise.

At time ¢, each gradient step is defined by differentiating the loss with respect to W. Due
to the non-linear nature of the activation function o(-), we separately® differentiate each row
of W, denoted w, where r € [m], as follows:

n

_ _”Z [aT (WO, — yz] of (x;)

wt+D) _ 0 = _, 2L

8wr ¢<"t) 1 ﬁwr gvt)
n m
- _MZ {Z aja(w](t) T ) yz} arxz; 1 (4 (a:z)
=1 j=1
= —par Z 1o (x; [ OO (x;) -y — yl}mj, where U® (x Za w )y w0 ().

Above 1 (t)(azz) denotes the indicator function that equals 1 when w() x; > 0, and 0

otherwise.
To proceed, we make two assumptions:

1. Each point «; is drawn from a symmetric distribution D with density fp(X), such

that: fp(x;) = fo(—x;).

2. W and a are initialized so that w(q):—w(q) and a,.=—a,. . Vi€ [Z].
2% 1 2 2i—1 2

71—

Theorem 9. Retaining the assumptions stated above, at the beginning of the learning, the
temporal dynamics of the model can be shown to obey the following update rule:

A G RO [(aar)wmzm YOl
2
Above M® denotes the difference between the centroids of the 2 classes, computed in the

half-space defined by wﬁt) x> 0.
Proof It follows from Assumption 2 that at the beginning of training 1) (@i)+1 ) (i) =
2j 251

1, Va; such that (CAE #+ w, # 0, and Vj € [3]. Consequently

Zaj'w 1 (t) acl = Zaj aTW(O)

Va; such that Wy, T # W, T # 0. Finally

w£1) _ wﬁo) = —ua, [%GTW(O) Z xx] — Z yzasﬂ

8. Since the ReLU function is not everywhere differentiable, the following may be considered the definition
of the update rule.
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Next, we note that Assumption 1 implies

- 1 < 1
B> max]] = iE[Z zix]] = SE[Sxx].
=1 =1

w-z; >0

for any vector w. Thus, if the sample size n is large enough, at the beginning of training we
expect to see

WD _ o —,u%[aTW(t)Exx —m), v

where row vector ﬁz,(f) denotes the vector difference between the centroids of classes C'; and

Cy, computed in the half-space defined by wﬁt) - > 0. Finally (for small ¢)
1 .
WD @) ~ _ ns [(aar)wwgm _ M(t)]

where M) denotes the matrix whose r-th row is aﬂhq(at). This equation is reminiscent of

the single-layer linear model dynamics W+ = W) — uGs«t), and we may conclude that
when it holds and using the principal coordinate system, the rate of convergence of the j-th

column of W) is governed by the singular value d; . |

Appendix C. Additional Empirical Results

C.1 Weight Initialization

We evaluate empirically the weight initialization scheme from Def. 4 and (12). When
compared to Glorot uniform initialization, the only difference between the two schemes lies in
how the first and last layers are scaled. Thus, to highlight the difference between the methods,
we analyze a fully connected linear network with a single hidden layer, whose dimension
(the number of hidden neurons) is much larger than the input and output dimensions. We
trained N=10 such networks on a binary classification problem, once with the initialization
suggested in (12), and again with Glorot uniform initialization. While both initialization
schemes achieve the same final accuracy upon convergence, our proposed initialization variant
converges faster on both train and test datasets (see Fig. 11).

C.2 Divergence of Gradient Scale Matrices

We now discuss some additional results, complementary to Section 3.3. In Fig. 1, we visualize
how the gradient scale matrices Bl(t) (m) remain approximately equal to I much longer than
Agt) (m), for a specific layer in a 5-layered model. In Fig. 13 we show a similar trend in all 5

layers of the network. Note that in the input and output layers, Bl(t) (m) and Al(t) (m) are I
by definition, and hence their convergence is self-evident.
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Figure 12: Evaluations on test-sets pro-
jected to the first P principal compo-
nents, for different values of P (see leg-
end) of 10 VGG-19 models trained on
CIFAR-10

Figure 11: Learning curves of a fully connected linear net-
work with one hidden layer, trained on the dogs and cats
dataset, and initialized by either Glorot uniform initialization
(orange), or the initialization proposed in (12) (blue).
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Figure 13: Similar to Fig. 1, showing the dynamics of Al(t) and Bl(t) in additional layers, when training
10 5-layered linear networks on the small mammals dataset. (a-d) The empirical Lo-distance of the

diagonal elements of Az(;) and Bét) from their analytical value of ozl(t) and ,BZ(t)—diag (Al(t) — al(t)l)

and diag (Bl(t) — l(t)l )—respectively. (e-h) The empirical Lo-distance of the off-diagonal elements

of Al(t) and Bl(t) from 0. The networks reach their maximal test accuracy in epoch ¢t = 100, before
the divergence of Al(t).

C.3 Empirical Validation of the PC-bias on Original Model
C.3.1 MODELS WITH Lo LOSS

In Section 4, we relaxed some of the theoretical assumptions while pursuing the empirical
investigation, in order to match more commonly used models. Specifically, we changed the
initialization to the commonly used Glorot initialization, replaced the Lo loss with the cross-
entropy loss, and employed SGD instead of the deterministic GD. As can be expected from
the theoretical results, without this relaxation the PC-bias becomes even more pronounced.
To support this claim, we repeated the experiments of Section 4.2 and Fig. 4 with the
assumptions of the theoretical analysis, showing the results in Fig. 14.
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Figure 14: Same as Fig. 4, using the Ly loss and the initialization scheme proposed in Def. 4. Epochs
plotted: 1,5,10, 50, 100, 500.

C.3.2 DISTANCE OF CONVERGENCE IN EACH PRINCIPAL DIRECTION

In Figs. 4, 14, we see that weights in directions corresponding to larger principal components
converge faster, in the sense that the std across different repetitions drops to zero faster
along these directions. However, the optimal solution in each direction is drastically different.
Directions corresponding to larger principal components tend to have lower values in their
optimal solution. This could serve as a possible explanation for the convergence phenomenon—
it might be possible that in all directions the distance of the current solution drops at the
same speed, but as directions corresponding to higher principal values start nearer to the
optimal solution, they seem to converge faster.

To test this hypothesis, we repeated the experiment from the previous section (Fig. 14),
and computed the distance in each direction from the optimal solution, normalized by the
maximal difference achieved in each direction. We plot these results in Fig. 15. As suggested
by our theory, we see that the normalized distance in each direction also drops faster in

directions corresponding to larger principal components.
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Figure 15: Rate of convergence along the principal directions in different epochs. The value of the
X-axis corresponds to the index of a principal eigenvalue, from the most significant to the least
significant. The value of the Y-axis is the Ly distance between the mean value of the weights and the
optimal solution, normalized by the maximum distance across all epochs. The results are plotted for
epochs: 1,2,10, 50,200, for 10 5-layered linear networks trained on the cats and dogs dataset with
the Ly loss.

C.4 Projection to Higher PC’s

In Section 4.3 we described an evaluation methodology, based on the creation of a modified
test-set by projecting each test example on the span of the first P principal components. We
repeat this experiment with VGG-19 networks on CIFAR-10, and plot the results in Fig. 12.

C.5 Spectral Bias

The spectral bias, discussed in Section 5.3, can also induce a similar learning order in different
networks. To support the discussion in Section 5.3, we analyze the relation between the
spectral bias and accessibility, in order to clarify its relation to the Learning Order Constancy
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Figure 16: In the same experimental setup as in Fig. 4, we show the evolution of \; with epochs.

and the PC-bias (§C.5.2) . First, however, we expand the scope of the empirical evidence for
this effect to the classification scenario and real image data (§C.5.1).

C.5.1 SPECTRAL Bi1AS IN CLASSIFICATION

Rahaman et al. (2019) showed that when regressing a 2D function by a neural network,
the model seems to approximate the lower frequencies of the function before its higher
frequencies. Here we extend this empirical observation to the classification framework. Thus,
given frequencies K = (K1, K2, ..., km) With corresponding phases ¢ = (@1, 92, ..., Pm), We
consider the mapping A : [—1,1] — R given by

m

Az) = Z sin(27wkiz + ¢;) == Z fregi(z). (37)

i=1 i=1

Above k is strictly monotonically increasing, while ¢ is sampled uniformly.

The classification rule is defined by A(z) < 0. We created a binary dataset whose points
are fully separated by A(z), henceforth called the frequency dataset (see the visualization in
Fig. 18 and details in §D.4). When training on this dataset, we observe that the frequency
of the corresponding separator increases as learning proceeds, in agreement with the results
of Rahaman et al. (2019).
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Figure 17: Visualization of the separator learned by st-VGG when trained on the frequency dataset,
as captured in advancing epochs (from left to right): 1, 100, 1000, 10000. Each point represents a
training example (yellow for one class and purple for the other). The background color represents
the classification that the network predicts for points in that region.
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To visualize the decision boundary of an st-VGG network trained on this dataset as it
evolves with time, we trained N—=100 st-VGG networks. Since the data lies in R?, we can
visualize it and the corresponding network’s inter-class boundary at each epoch as shown in
Fig. 17. We can see that the decision boundary incorporates low frequencies at the beginning
of the learning, adding the higher frequencies only later on. The same qualitative results are
achieved with other instances of st-VGG as well. We note that while the decision functions
are very similar in the region where the training data is, at points outside this region they
differ drastically across networks.

C.5.2 SPECTRAL BiAS: RELATION TO ACCESSIBILITY
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Figure 18: Visualization of the classifi-
cation dataset used to extend Rahaman
et al. (2019) to a classification frame-
work.

Figure 19: Visualization of the critical frequency, showing all
the points in the 2D-frequency dataset with critical frequency
of (a) 0, and (b) 1.

To connect between the learning order, which is defined over examples, and the Fourier
analysis of classifiers, we define for each example its critical frequency, which characterizes
the smallest number of frequencies needed to correctly classify the example. To illustrate,
consider the frequency dataset defined above. Here, the critical frequency is defined as the
smallest j € [m] such that \; (z)zzgzl fregi(z) classifies the example correctly (see Fig. 19).
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Figure 20: (a) Correlation between critical frequency and accessibility score in the 2D-frequency
dataset. (b) Correlation between discriminability and critical frequency in the 2D-frequency dataset.

In this binary classification task, we observe a strong connection between the order of
learning and the critical frequency. Specifically, we trained N=100 st-VGG networks on

43



HACOHEN AND WEINSHALL

the frequency dataset, and correlated the accessibility scores with the critical frequency of
the examples (see Fig. 20a). We see a strong negative correlation (r = —0.93, p < 1072),
suggesting that examples whose critical frequency is high are learned last by the networks.

To see the effect of the spectral bias in real classification tasks and extend the above
analysis to natural images, we need to define a score that captures the notion of critical
frequency. To this end, we define the discriminability measure of an example as the percentage
out of its k£ neighbors that share the same class as the example. Intuitively, an example has a
low discriminability score when it is surrounded by examples from other classes, which forces
the learned boundary to incorporate high frequencies. In Fig. 20b we plot the correlation
between the discriminability and the critical frequency for the 2D frequency dataset. The
high correlation (r=—0.8, p < 1072) indicates that discriminability indeed captures the
notion of critical frequency.

Discussion. We find that the spectral bias is connected to the LOC effect. Examples that
can be classified correctly by a low-frequency function are also learned faster by the neural
network. However, as the definition of such frequency is not trivial in higher dimensions, it
is yet unclear if this result can be extended to image classification.

Appendix D. Methodology

D.1 Implementation Details and Hyperparameters

The results reported in Section 6represent the mean performance of 100 st-VGG and linear
st-VGG networks, trained on the small mammals dataset. The results reported in Section 6
represent the mean performance of 10 two-layered fully connected linear networks trained
over the cats and dogs dataset. The results in Fig. 10 represent the mean performance of the
100 st-VGG network trained on the small mammals dataset. In every experimental setup,
the network’s hyper-parameters were coarsely grid-searched to achieve good performance
over a validation set, for a fair comparison. Other hyper-parameters exhibit similar results.

D.2 Generalization Gap

In Section 6 we discuss the evaluation of networks on datasets with amplified principal
components. Examples of these images are shown in Fig. 7: the top row shows examples of
the original images, the middle row shows what happens to each image when its 1.5% most
significant principal components are amplified, and the bottom row shows what happens
when its 1.5% least significant principal components are amplified. Amplification involved a
factor of 10, which is significantly smaller than the ratio between the values of the first and
last principal components of the data. After amplification, all the images were re-normalized
to have 0 mean and std 1 in every channel as customary.

D.3 Architectures

st-VGG. A stripped version of VGG which we used in many of the experiments. It is a
convolutional neural network, containing 8 convolutional layers with 32, 32, 64, 64, 128, 128,
256, 256 filters respectively. The first 6 layers have filters of size 3 x 3, and the last 2 layers
have filters of size 2 x 2. Every other layer is followed by a 2 x 2 max-pooling layer and a
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0.25 dropout layer. After the convolutional layers, the units are flattened, and there is a
fully connected layer with 512 units followed by a 0.5 dropout. The batch size we used was
100. The output layer is a fully-connected layer with output units matching the number of
classes in the dataset, followed by a softmax layer. We trained the network using the SGD
optimizer, with cross-entropy loss. When training st-VGG, we used a learning rate of 0.05.

Linear st-VGG. A linear version of the st-VGG network. In linear st-VGG, we change the
activation function to the identity function, and replace max-pooling with average pooling
with a similar stride. Similar to the non-linear case, a cross-entropy loss is being used. The
network does not contain a softmax layer.

Linear fully connected network. An L-layered fully connected network. Each layer
contains 1024 weights, initialized with Glorot uniform initialization. 0.5 dropout is used
before the output layer. Networks are trained with an SGD optimizer, without momentum or
Ly regularization. Unless stated otherwise, a cross-entropy loss is being used. The network
does not contain a softmax layer.

D.4 Datasets

In all the experiments and all the datasets, the data was always normalized to have 0 mean
and std 1, in each channel separately.

Small Mammals. The small mammals dataset used in our experiments is the relevant
super-class of the CIFAR-100 dataset. It contains 2500 train images divided into 5 classes
equally, and 500 test images. Each image is of size 32 x 32 x 3. This dataset was chosen due
to its small size.

Cats and Dogs. The cats and dogs dataset is a subset of CIFAR-10. It uses only the 2
relevant classes, to create a binary problem. Each image is of size 32 x 32 x 3. The dataset is
divided to 20000 train images (10000 per class) and 2000 test images (1000 per class). This
dataset is used when a binary problem is required.

ImageNet-20. The ImageNet-20 dataset (Russakovsky et al., 2015) is a subset of ImageNet
containing 20 classes. This data resembles ImageNet in terms of image resolution and data
variability, but contains a smaller number of examples to reduce computation time. The
dataset contains 26000 train images (1300 per class) and 1000 test images (50 per class). The
choice of the 20 classes was arbitrary, and contained the following classes: boa constrictor,
jellyfish, American lobster, little blue heron, Shih-Tzu, scotch terrier, Chesapeake Bay
retriever, komondor, snow leopard, tiger, long-horned beetle, warthog, cab, holster, remote
control, toilet seat, pretzel, fig, burrito and toilet tissue.

Frequency dataset A binary 2D dataset, is used in Section 5.3, to examine the effects of
spectral bias in classification. The data is define by the mapping A : [-1,1] — R given in
(37) by

m m

Az) = Zsin(?m@iz + i) = Zfreqi(z),
i=1 i=1

with frequencies Kk = (K1, k2, ..., k) and corresponding phases ¢ = (1,92, ..., om). The

classification rule is defined by A(z) < 0.
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In our experiments, we chose m = 10, with frequencies k1 =0, k9 = 1,k3 =2, ..., k10 = 9.
Other choices of m yielded similar qualitative results. The phases were chosen randomly
between 0 and 27, and were set to be: ¢1 =0, o = 3.46, p3 = 5.08, p4 = 0.45, 5 = 2.10,
we = 1.4, o7 = 5.36, g = 0.85, w9 = 5.9, w19 = 5.16. As the first frequency is k1 = 0, the
choice of g does not matter, and is set to 0. The dataset contained 10000 training points,
and 1000 test points, all uniformly distributed in the first dimension between —1 and 1 and
in the second dimension between —27 and 27. The labels were set to be either 0 or 1, in
order to achieve perfect separation with the classification rule A(z).
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