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Abstract

The recent success of neural network models has shone light on a rather surprising sta-
tistical phenomenon: statistical models that perfectly fit noisy data can generalize well
to unseen test data. Understanding this phenomenon of benign overfitting has attracted
intense theoretical and empirical study. In this paper, we consider interpolating two-layer
linear neural networks trained with gradient flow on the squared loss and derive bounds on
the excess risk when the covariates satisfy sub-Gaussianity and anti-concentration prop-
erties, and the noise is independent and sub-Gaussian. By leveraging recent results that
characterize the implicit bias of this estimator, our bounds emphasize the role of both
the quality of the initialization as well as the properties of the data covariance matrix in
achieving low excess risk.

Keywords: implicit bias, generalization, benign overfitting, interpolation, neural net-
works, regression

1. Introduction

Understanding benign overfitting—the phenomenon where statistical models predict well
on test data despite perfectly fitting noisy training data (see, e.g., Zhang et al., 2017; Belkin
et al., 2019; Bartlett et al., 2021; Belkin, 2021)—has recently attracted intense attention.
One line of work has focused on understanding this phenomenon in relatively simple models
such as linear regression (Kobak et al., 2020; Hastie et al., 2022; Bartlett et al., 2020;
Muthukumar et al., 2020; Negrea et al., 2020; Chinot and Lerasle, 2020; Wu and Xu, 2020;
Tsigler and Bartlett, 2020; Bunea et al., 2020; Chinot et al., 2020; Koehler et al., 2021)
including with random features (Hastie et al., 2022; Yang et al., 2020; Li et al., 2021),
linear classification (Montanari et al., 2019; Chatterji and Long, 2021; Liang and Sur, 2020;
Muthukumar et al., 2021; Hsu et al., 2021; Deng et al., 2022; Wang and Thrampoulidis,
2021), kernel regression (Liang and Rakhlin, 2020; Mei and Montanari, 2019; Liang et al.,
2020) and simplicial nearest neighbor methods (Belkin et al., 2018).

A complementary line of work (Soudry et al., 2018; Ji and Telgarsky, 2019; Gunasekar
et al., 2017; Nacson et al., 2019; Gunasekar et al., 2018b,a; Yun et al., 2021; Azulay et al.,
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2021) has formalized the argument (Neyshabur et al., 2015) that, even when no explicit
regularization is used in training these models, there is nevertheless implicit regularization
encoded in the choice of the optimization method, loss function and initialization. They
argue that this implicit bias is critical in determining the generalization properties of the
learnt model.

Recently, Azulay et al. (2021) characterized the implicit bias of gradient flow applied to
two-layer linear neural networks with the squared loss. More concretely, the setting is as
follows. Given n data points (x1, y1), . . . , (xn, yn) ∈ Rp×R, let y := (y1, . . . , yn)> ∈ Rn and
X := (x1, . . . , xn)> ∈ Rn×p. They studied two-layer linear networks, with m hidden units,
and weights a ∈ Rm and W ∈ Rm×p, that map an input x ∈ Rp to the scalar

a>Wx.

Let θ = a>W ∈ Rp denote the standard parameterization of the resulting linear map. A
two-layer linear network with parameters {a,W} is said to be balanced if

aa> −WW> = 0.

Azulay et al. (2021) showed in Proposition 1 that, starting from a balanced initial point
(a(0),W (0)), if the gradient flow converges to a solution that perfectly fits the data, then
the solution can be characterized as follows:

θ̂ ∈ arg min
θ∈Rp

‖θ‖3/2 − θ(0)>θ√
‖θ(0)‖

, s.t., y = Xθ. (1)

In this paper, we study the generalization properties of this solution in the overpa-
rameterized regime, where such interpolation is possible. We prove upper bounds on the
excess risk and show that it depends both on the properties of the eigenstructure of popula-
tion covariance matrix—as in the case of the minimum `2-norm interpolant (ordinary least
squares) (Bartlett et al., 2020; Tsigler and Bartlett, 2020)—and also on the quality of the
initialization θ(0). In particular, we show that to drive the excess risk to zero, it suffices if
the number of samples is large relative to the trace of the population covariance matrix and
also that the number of “small” eigenvalues is large relative to n. Our bounds also show
that the excess risk can be smaller as a rescaling of θ(0) gets closer to the optimal linear
predictor.

An overview of the techniques that drive our analysis is as follows. We begin by showing
that the predictor θ̂ can be viewed as a perturbation of the ordinary least squares solution in
the subspace orthogonal to the row span of X. To characterize this perturbation we find that
it is important to derive upper and lower bounds on Tr((XX>)−1). To do this, as done in
past work, we instead bound the trace of the “tail” of the matrix—the submatrix formed by
the many low variance directions—and show that it not only concentrates but also provides
a good approximation for the trace of the inverse of the entire matrix Tr((XX>)−1).

Along the way we derive a new multiplicative high-probability lower bound on the least
singular value of a non-isotropic rectangular random matrix (Lemma 15). We could not
find such a result in the literature. The most closely related work that we know of (see
Rudelson and Vershynin, 2010, and references therein), characterizing the “hard edge” of a
random matrix, has focused on the most difficult case of isotropic square matrices.
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The remainder of the paper is organized as follows. In Section 2 we introduce notation
and definitions. In Section 3 we present our results. We provide a proof of our main result,
Theorem 5, in Section 4 and prove our lower bound in Section 5. We conclude with a
discussion in Section 6.

2. Preliminaries

This section includes notational conventions and a description of the setting.

2.1 Notation

Given a vector v, let ‖v‖ denote its Euclidean norm. Given a matrix M , let ‖M‖ denote
its Frobenius norm and ‖M‖op denote its operator norm. For any j ∈ N, we denote the set
{1, . . . , j} by [j]. Given a symmetric matrix M ∈ Rp×p we let µ1(M) ≥ . . . ≥ µp(M) denote
its eigenvalues. We let Ip denote the identity matrix in p dimensions. Given any vector
v ∈ Rp, we let v1:j ∈ Rp denote the vector obtained by zeroing out the last p− j coordinates
of v and let vj+1:p ∈ Rp denote the vector obtained by zeroing out the first j coordinates.
Given a symmetric positive semidefinite matrix M ∈ Rp×p, let M1:j ∈ Rp×p be the matrix
formed by zeroing out the last p − j rows and columns of M , and let Mj+1:p ∈ Rp×p be

the matrix formed by zeroing out the first j rows and columns. We let ‖v‖M :=
√
v>Mv

denote the matrix norm of v with respect to the matrix M . We use the standard “big Oh
notation” (see, e.g., Cormen et al., 2009). We will use c, c′, c1, . . . to denote positive absolute
constants, which may take different values in different contexts.

2.2 The setting

Throughout the paper we assume that p > n. Although we assume throughout that the
input dimension p is finite, it is straightforward to extend our results to infinite p.

For random (x, y) ∈ Rp × R, let

θ? ∈ arg min
θ∈Rp

E
[
(y − x>θ)2

]
be an arbitrary optimal linear regressor. We assume that x is mean zero and let Σ := E[xx>]
denote the covariance matrix of the features. Without loss of generality, we will assume
that the covariance matrix is diagonal and its eigenvalues are arranged in descending order
λ1 ≥ λ2 ≥ . . . ≥ λp > 0. (Note that such a covariance matrix can always be obtained by
a rotation and permutation, and the estimator (1) is correspondingly transformed.) Recall
that y = (y1, . . . , yn)> is the vector of responses and X = (x1, . . . , xn)> is the data matrix.
Define ε = (y1 − x>1 θ?, . . . , yn − x>n θ?)> = (ε1, . . . , εn)> to be the vector of noise.

We make the following assumptions:

(A.1) the samples (x1, y1), . . . , (xn, yn) and (x, y) are drawn i.i.d.;

(A.2) the features x and responses y are mean-zero;
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(A.3) the features x = Σ1/2u, where u has components that are independent σ2
x-sub-

Gaussian random variables with σx a positive constant, that is, for all φ ∈ Rp

E
[
exp

(
φ>u

)]
≤ exp

(
σ2
x‖φ‖2/2

)
;

(A.4) there is an absolute constant c such that, for any unit vector φ ∈ Sn−1 and any
a ≤ b ∈ R

P
[
(Σ−1/2X>φ)i ∈ [a, b]

]
≤ c|b− a|

for all i ∈ [p];

(A.5) the difference y − x>θ? is σ2
y-sub-Gaussian, conditionally on x, with σy a positive

constant, that is, for all φ ∈ R

Ey
[
exp

(
φ(y − x>θ?)

) ∣∣ x] ≤ exp
(
σ2
yφ

2/2
)

(note that this implies that E [y | x] = x>θ?);

(A.6) for all x, the conditional variance of y − x>θ? is

Ey
[
(y − x>θ?)2

∣∣ x] = σ2

where σ is a positive constant.

We emphasize that σx, σy and σ are absolute constants, independent of all other problem
parameters (n, p and Σ). All the constants going forward may depend on the value of these
constants.

The assumptions stated above are satisfied in the case where u is generated from a mean-
zero isotropic log-concave distribution with sub-Gaussian, independent entries and the noise
y − x>θ? is independent and sub-Gaussian. We note that Assumptions A.1-A.3, A.5-A.6
are standard in the literature of benign overfitting in linear models (see, e.g., Bartlett et al.,
2020). We make an additional small-ball probability assumption (Assumption A.4) which
allows us to derive a sharper multiplicative lower tail bound for the minimum eigenvalue of
the submatrices of X (Lemma 15).

Given the training samples define the excess risk of an estimate θ ∈ Rp to be

Risk(θ) := Ex,y
[
(y − x>θ)2 − (y − x>θ?)2

]
,

where x, y are independent test samples.
Define the shorthand

w :=
θ(0)√
‖θ(0)‖

,

so that the estimator described in equation (1) can be written as the solution to a constrained
convex program given by

θ̂ ∈ arg min
θ∈Rp

‖θ‖3/2 − w>θ, s.t., y = Xθ. (2)
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We let UDV > = X be the singular value decomposition of X where U ∈ Rn×n and
V ∈ Rp×p are unitary matrices and D ∈ Rn×p is a rectangular diagonal matrix with its
eigenvalues in descending order. By Lemma 26, we know that the rank of D is n. We let
D† ∈ Rp×n denote the pseudo-inverse of D. Since D has rank n, the bottom p− n rows of
D† are identically zero.

Also define

ỹ := D†U>y, w̃ := V >w and θ̃ := V >θ̂. (3)

We will use the following definitions of the “effective rank” from Bartlett et al. (2020).

Definition 1 Given a subset S ⊆ [p], define s(S) :=
∑

i∈S λi, and define the following
ranks of the covariance matrix Σ with eigenvalues λ1, . . . , λp:

r(S) :=
s(S)

maxi∈S λi
and R(S) :=

s(S)2∑
i∈S λ

2
i

.

Further given any j ∈ [p], with some abuse of notation, define sj :=
∑

i>j λi and

rj :=
sj
λj+1

and Rj :=
s2
j∑

i>j λ
2
i

.

The following lemma (Bartlett et al., 2020, Lemma 5) relates these different effective ranks.

Lemma 2 For any subset S ⊆ [p] the ranks defined above satisfy the following:

r(S) ≤ R(S) ≤ r(S)2.

We define the index k below. The value of k shall help determine what we consider the
“tail” of the covariance matrix.

Definition 3 For a large enough constant b (that will be fixed henceforth), define

k := min{j ≥ 0 : rj ≥ bn},

where the minimum of the empty set is defined as ∞.

Finally we define ψ, which is a rescaling of w.

Definition 4 Define

ψ :=
2
√
σn1/4

3s
1/4
k

w =
2
√
σn1/4

3s
1/4
k

θ(0)√
‖θ(0)‖

.
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3. Main results

In this section we present our main result, Theorem 5, which is an excess risk bound for
the estimator θ̂. It is proved in Section 4.

Theorem 5 Under Assumptions 1-6, there exist constants c0, . . . , c7 such that for any δ ∈
(e−c0

√
n, 1 − c1e

−c2n), if p ≥ c3(n + k), n ≥ c4 max {k, sk} and ‖θ?‖, ‖w‖ ≤ c5 then with
probability at least 1− c6δ

Risk(θ̂) ≤ Bias + Variance + Ξ,

where

Bias ≤ c7

(
‖(θ? − ψ)1:k‖2Σ−1

1:k

(sk
n

)2
+ ‖(θ? − ψ)k+1:p‖2Σk+1:p

)
≤ 2c7‖θ? − ψ‖2sk

n
;

Variance ≤ c7 log(1/δ)

(
k

n
+

n

Rk

)
;

Ξ ≤ c7λ1‖ψ‖2
[
n

Rk
+
n2

r2
k

+
sk
n

+
log(1/δ)

n
+
k2

n2

]
max

{√
r0

n
,
r0

n
,

√
log(1/δ)

n

}
.

Note that Bias goes to zero as ψ → θ?. In the upper bounds on the excess risk for
linear models with a standard (one-layer) parameterization (see Tsigler and Bartlett, 2020,
Theorem 1), the corresponding term scales with the square of the norm of θ? rather than
(θ?−ψ). If one has a “guess” ψ̂ for θ?, then—given knowledge of σ, sk and n—it is possible
to set the initialization as follows:

θ(0) =
9ψ̂‖ψ̂‖

4

√
sk
σ2n

;

which ensures that ψ = ψ̂. Very accurate prior guesses ψ̂ of θ∗ are rewarded with a very
small value of the Bias term.

Next, we note that the upper bound on Variance here is identical to the upper bound on
the variance for the minimum `2-norm interpolant (the OLS estimator) (see Bartlett et al.,
2020, Theorem 4). The initialization θ(0) (through ψ) only affects the conditional bias of
the estimator here, but leaves the conditional variance the same as the OLS solution. This
is because, as we will show below in Lemma 11, θ̂ can be expressed as a perturbation to
the OLS estimator in the subspace orthogonal to the row span of X. It turns out that the
variance only depends on behavior of θ̂ in the subspace spanned by the data, where θ̂ and
the OLS solution are identical.

As mentioned, θ̂ is a perturbation of the OLS estimator. In particular, it is perturbed
by α?Proj⊥X(w), where Proj⊥X(w) is the projection of w onto the subspace orthogonal to the
row span of X and α? is a scalar random variable that depends on the data. We shall
demonstrate in Lemma 13 that, under the setting specified by the theorem, α? concentrates

around 2
√
σn1/4

3s
1/4
k

. The final term in the excess risk bound, Ξ, corresponds to the fluctuation

of α?. We might think of θ(0) (and hence w) as being constructed from ψ and an estimate
of α∗; from this point of view, Ξ accounts for the contribution to the excess risk arising
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from the error in estimating α?. Next we derive sufficient conditions for the excess risk to
go to zero as n, p→∞. Consider the case where λ1, ‖θ?‖, ‖ψ‖ and log(1/δ) are all bounded
by constants. (In the case of ‖ψ‖, this can be achieved by appropriately scaling θ(0).) For
Bias to go to zero it suffices if

sk
n
→ 0.

For Variance to decrease to zero it suffices if

k

n
→ 0 and

n

Rk
→ 0.

Finally, for Ξ to approach zero it suffices for

r0

n
→ 0

which also implies the condition sk
n → 0 needed to control the Bias term. (To see that r0

n → 0
suffices, recall that we have assumed that λ1, log(1/δ) and ‖ψ‖ are constants. Further, the
quantity in the square brackets of our bound on Ξ is at most a constant, which can be seen
as follows. The definition of rk implies that rk ≥ bn, and Lemma 2 gives Rk ≥ rk. Finally,
we have assumed that n ≥ cmax{k, sk}.) To summarize, if k

n ,
r0
n ,

n
Rk
→ 0, the excess risk

of this estimator approaches zero. Some discussion and examples of when this condition is
satisfied are given in (Bartlett et al., 2020; Tsigler and Bartlett, 2020).

To develop intuition, we consider a special case of Theorem 5 defined as follows.

Definition 6 ((k, ε)-spike model) For ε > 0 and k ∈ N, a (k, ε)-spike model is a setting
where the eigenvalues of Σ are λ1 = . . . = λk = 1 and λk+1 = . . . = λp = ε.

Instantiating Theorem 5 in the case of the (k, ε)-spike model, and removing some dom-
inated terms, yields the following corollary.

Corollary 7 Under Assumptions 1-6, there exist constants c0, . . . , c8 such that in the (k, ε)-
spike model for any δ ∈ (e−c0

√
n, 1 − c1e

−c2n), if p > c3(n + k), n ≥ c4 max {k, εp} and
‖θ?‖, ‖w‖ ≤ c5 then with probability at least 1− c6δ

Risk(θ̂) ≤ Bias + Variance + Ξ,

where

Bias ≤ c7

(
‖(θ? − ψ)1:k‖2

(εp
n

)2
+ ε‖(θ? − ψ)k+1:p‖2

)
≤ c8‖θ? − ψ‖2

(εp
n

)
;

Variance ≤ c7 log(1/δ)

(
k

n
+
n

p

)
;

Ξ ≤ c7λ1‖ψ‖2
[
n

p
+
εp

n
+

log(1/δ)

n
+
k2

n2

]
max

{√
k + εp

n
,

√
log(1/δ)

n

}
.

Again, in the case where λ1, ‖ψ‖ and log(1/δ) are bounded by constants, a sufficient condi-
tion for the excess risk to decrease to zero is when εp

n ,
k
n ,

n
p → 0.

Next we establish a lower bound. It is proved in Section 5.
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Proposition 8 If a(0) and W (0) are chosen randomly, independent of X and y, so that
the distribution of a(0)>W (0) is symmetric about the origin, then

Ea(0),W (0),X,y[Risk(θ̂)] ≥ E
[
θ?>Bθ?

]
+ σ2E [Tr(C)] ,

where

B :=
(
I −X>(XX>)−1X

)
Σ
(
I −X>(XX>)−1X

)
and

C := (XX>)−1XΣX>(XX>)−1.

Remark 9 For the distribution of a(0)>W (0) to be symmetric about the origin, it suffices
that a(0) and W (0) are chosen independently, and that either the distribution of a(0) is
symmetric about the origin, or the distribution of W (0) is.

Remark 10 Bartlett et al. (2020) proved that E[Tr(C)] ≥ c
(
k
n + n

Rk

)
for a constant c.

Tsigler and Bartlett (2020) proved a lower bound on E[θ?>Bθ?] under the assumption that
the signs of the components of θ? are chosen uniformly at random. For the case that ψ = 0,
their lower bound matches the upper bound on Bias from Theorem 5 of this paper under the
assumptions of that theorem. However, there is a gap in the upper and lower bounds when
ψ 6= 0.

4. Proof details

The proof of Theorem 5 is built up in parts. First, in Lemma 11 we show that θ̂ can
be viewed as a random perturbation of the ordinary least squares (OLS) solution in the
subspace orthogonal to the row span of X. In Lemma 12, we show that the excess risk can
be decomposed into two terms, one that can bounded above by Variance and the other that
is upper bounded by Bias + Ξ. The next piece is Lemma 13 which is crucial in helping us
characterize the perturbation to the OLS solution. To do this we first present concentration
inequalities in Section 4.1, then we establish upper and lower bounds on Tr((XX>)−1) in
Section 4.2, and finally prove Lemma 13 in Section 4.3. We finish by combining all of these
elements to prove the theorem in Section 4.4. Throughout this section we assume that the
assumptions made in Theorem 5 are in force.

A note about constants. As mentioned earlier, we will not always provide specific
constants. The constants c1, c2, . . . in our proofs are independent of the problem parameters,
but they can depend on one another. It will not be hard to verify, however, that the
constraints on their values are satisfiable. When we write “ci is large enough”, this should be
understood to be relative to the constants previously introduced in the proof not including
b, the constant used in the definition of rk. Loosely speaking, b is chosen last: it should be
taken to be large relative to all other constants.

We begin with the following lemma that provides a closed-form formula for θ̂ as a
perturbation of the ordinary least squares solution.

Lemma 11 The solution θ̂ can be expressed as follows:

θ̂ = θ̂OLS + α?(I −X>(XX>)−1X)w,
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where θ̂OLS = X>
(
XX>

)−1
y is the ordinary least squares solution (minimum `2-norm

interpolant) and

α? =

√
8‖w̃n+1:p‖2 +

√
64‖w̃n+1:p‖4 + 1296‖ỹ‖2

81
. (4)

where w̃ and ỹ are defined in (3).

Proof Recall that X = UDV > is the singular value decomposition of X. Therefore,

θ̂ ∈ arg min
θ∈Rp

‖θ‖3/2 − w>θ, s.t., y = Xθ

⇐⇒ θ̂ ∈ arg min
θ∈Rp

‖θ‖3/2 − w>θ, s.t., D†U>y = D†U>Xθ

⇐⇒ θ̂ ∈ arg min
θ∈Rp

‖θ‖3/2 − w>θ, s.t., ỹ = D†U>Xθ

⇐⇒ V >θ̂ ∈ arg min
θ∈Rp

‖V >θ‖3/2 − (w>V )V >θ, s.t., ỹ = D†U>XV (V >θ)

(since the Euclidean norm is rotation invariant and V V > = Ip)

⇐⇒ θ̃ ∈ arg min
θ∈Rp

‖θ‖3/2 − w̃>θ, s.t., ỹ = D†U>XV θ.

Since the bottom p − n rows of D† are identically zero, the vector ỹ can be written
(ỹ1, . . . , ỹn, 0, . . . , 0)>. Since the SVD of X = UDV > we have that

D†U>XV θ = D†U>UDV >V θ = D†Dθ =

[
In 0
0 0

]
θ.

Hence, for the constraint to be satisfied, the first n coordinates of θ̃ are required to be
equal to (ỹ1, . . . , ỹn), and the remaining coordinates of θ̃ can be anything. That is, the
constraints are satisfied when θ̃ = (ỹ1, . . . , ỹn, 0, . . . , 0)> + φ, for some φ ∈ Rp with its first
n coordinates all equal to zero.

To find this optimal vector φ? we can now proceed to solve the following unconstrained
optimization problem:

φ? ∈ arg min
φ∈Rp

(
‖θ̃1:n‖2 + ‖φ‖2

)3/4
−

p∑
j=n+1

w̃jφj .

Since the first term in the objective function above is rotationally invariant, it must be
the case that the minimizer has the form φ? = α?w̃n+1:p, for some α? > 0. That is, it
is positively aligned with the tail of the vector w̃. (If φ? was not in the span of w̃n+1:p,
removing the projection of φ? in the subspace orthogonal to this direction would improve
the norm without affecting the second term, and if φ? · w̃n+1:p < 0, then −φ? would be a
better solution than φ?.) In particular, we have

w̃n+1:p = 0⇒ φ? = 0.
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Otherwise, φ? = α?w̃n+1:p for the solution α? of the following one-dimensional problem:

α? ∈ arg min
α>0

(
‖θ̃1:n‖2 + α2‖w̃n+1:p‖2

)3/4
− α‖w̃n+1:p‖2.

To simplify notation, let ρ := ‖θ̃1:n‖2 and ζ := ‖w̃n+1:p‖2 > 0. The first derivative of the
objective function is as follows:

d

dα

[(
ρ+ ζα2

)3/4 − αζ] =
3ζα

2 (ρ+ ζα2)1/4
− ζ.

Setting this first derivative equal to zero we get that

3ζα

2 (ρ+ ζα2)1/4
− ζ = 0

⇐⇒ 3α

2 (ρ+ ζα2)1/4
− 1 = 0

⇐⇒ 3α

2
=
(
ρ+ ζα2

)1/4
⇐⇒ 81α4

16
= ρ+ ζα2 (because α > 0 at the optimum)

⇐⇒ 81α4 − 16ζα2 − 16ρ = 0.

We can view this as a quadratic equation in α2, so

α2 =
16ζ ±

√
256ζ2 + 5184ρ

162
=

16ζ
(

1±
√

1 + 81ρ
4ζ2

)
162

,

but the solution with the negative sign can be ignored since α2 must be positive. Taking
square roots we get that

α = ±

√√√√8ζ
(

1 +
√

1 + 81ρ
4ζ2

)
81

.

Again, we drop the negative solution since we know that α > 0 at the optimum. Thus we
find that

θ̃ = ỹ + α?w̃n+1:p

for

α? =

√√√√8ζ
(

1 +
√

1 + 81ρ
4ζ2

)
81

=

√√√√√√8‖w̃n+1:p‖2
(

1 +

√
1 + 81‖θ̃1:n‖2

4‖w̃n+1:p‖4

)
81

=

√√√√8‖w̃n+1:p‖2 +

√
64‖w̃n+1:p‖4 + 1296‖θ̃1:n‖2

81

=

√
8‖w̃n+1:p‖2 +

√
64‖w̃n+1:p‖4 + 1296‖ỹ‖2

81
.
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Recall that by definition θ̃ = V >θ̂, ỹ = D†U>y and w̃ = V >w and hence

θ̂ = V ỹ + α?V w̃n+1:p

= V D†U>y + α?V w̃n+1:p

= X>
(
XX>

)−1
y + α?V w̃n+1:p

= θ̂OLS + α?V w̃n+1:p

= θ̂OLS + α?V

[
0n×n 0n×(p−n)

0(p−n)×n Ip−n

]
V >w.

Recall that the SVD of X is UDV >, and the last (p− n) columns of D are zero. Thus, the
last (p− n) rows of V > span the null space of X.

Furthermore, (Ip−X>(XX>)−1X) represents the projection onto this null space of X.
This can be seen as follows. First, any member u of this null space is mapped to itself (since
Xu = 0). On the other hand, for each row x of X, (Ip −X>(XX>)−1X)x> = 0, as

(Ip −X>(XX>)−1X)X> = 0.

Recalling that the last (p− n) rows of V > span the null space of X, we have

V

[
0n×n 0n×(p−n)

0(p−n)×n Ip−n

]
V > = Ip −X>(XX>)−1X.

This wraps up our proof.

Armed with this formula for θ̂ we can now bound the excess risk.

Lemma 12 The excess risk of θ̂ satisfies

Risk(θ̂) ≤ c(θ? − α?w)>B(θ? − α?w) + c log(1/δ)Tr(C)

with probability at least 1− δ over ε, where

B :=
(
I −X>(XX>)−1X

)
Σ
(
I −X>(XX>)−1X

)
and

C := (XX>)−1XΣX>(XX>)−1.

Proof Since ε = y − x>θ is conditionally mean-zero given x,

Risk(θ̂) = Ex,y
[
(y − x>θ̂)2

]
− Ex,y

[
(y − x>θ?)2

]
= Ex,y

[
(y − x>θ? + x>(θ? − θ̂))2

]
− Ex,y

[
(y − x>θ?)2

]
= Ex

[(
x>(θ? − θ̂)

)2
]
.

11
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Using the formula of θ̂ from Lemma 11, and because y = Xθ? + ε we find that

Risk(θ̂) = Ex
[(
x>
(
I −X>(XX>)−1X

)
(θ? − α?w)− x>X>(XX>)−1ε

)2
]

≤ 2Ex
[(
x>
(
I −X>(XX>)−1X

)
(θ? − α?w)

)2
]

+ 2Ex
[(
x>X>(XX>)−1ε

)2
]

= 2(θ? − α?w)>B(θ? − α?w) + 2ε>Cε.

Now by (Bartlett et al., 2020, Lemma 19) we find that 2ε>Cε ≤ c′σ2
y log(1/δ)Tr(C) ≤

c log(1/δ)Tr(C) with probability at least 1− δ. This completes the proof.

The following lemma provides upper and lower bounds on the value of α? that are tight
up to the leading constant when p is large relative to n+ k and when n is sufficiently large
relative to k and sk =

∑
j>k λj .

Lemma 13 There are constants c0, . . . , c5 such that for any δ ∈ (e−c0
√
n, 1), if p ≥ c1(n+k),

n ≥ c2 max {k, sk} and ‖θ?‖, ‖w‖ ≤ c3 then with probability at least 1− c4δ,∣∣∣∣∣∣∣
α?

2
√
σn1/4

3s
1/4
k

− 1

∣∣∣∣∣∣∣ ≤ c5

[√
n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]
.

Lemma 13 is proved over the next few subsections. As might be expected, for α? to
reliably fall within a small interval, X must be well conditioned in some sense. We begin by
establishing bounds on the singular values of submatrices of X in Sections 4.1, whose proofs
are provided Appendix B. In Section 4.2, we show that the Tr((XX>)−1) is concentrated.
Armed with these bounds, we build up our analysis of α? in stages in Section 4.3.

4.1 Bounds on the extreme singular values of submatrices of X

In this subsection, we will derive bounds on the largest and smallest singular value of a
submatrix of X. Given a subset S of [p], let XS ∈ Rn×|S| be a submatrix of X where only
the columns with indices in S are included.

With this in place, we are now ready to prove our concentration results. We prove this
lemma in Appendix B.1.

Lemma 14 There exists a positive absolute constant c such that, for any subset S ⊆ [p]
and any t ≥ 0, with probability at least 1− 2e−t, for all j ∈ {1, . . . ,min(n, |S|)}

∣∣∣µj(XSX
>
S )− s(S)

∣∣∣ ≤ cs(S)

(
t+ n

r(S)
+

√
t+ n

R(S)

)
.

This lemma provides an additive lower bound on the minimum singular value of subma-
trices of X. Next, we will provide a sharper multiplicative bound on the smallest singular
value of such matrices. Its proof can be found in Appendix B.2.

12
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Lemma 15 There exist absolute positive constants c0, . . . , c3 such that given any subset
S ⊆ [p] if, r(S) ≥ c0n then for all t < c1 < 1

P
[
µn(XSX

>
S ) ≤ t · s(S)

]
≤ (c2t)

c3·r(S).

This sharper multiplicative bound provides a much more refined lower tail probability
estimate for the minimum eigenvalue than the previous additive bound in Lemma 14, espe-
cially when t is close to zero. This is useful in our analysis to control E[Tr(XX>)−1] which
is in turn used to establish Lemma 16 that bounds Tr((XX>)−1).

4.2 Concentration of Tr((XX>)−1)

In this subsection we shall prove the following lemma which shows that Tr((XX>)−1)
concentrates.

Lemma 16 There are positive constants c0, . . . , c4 such that, if p ≥ c0(n + k) then with
probability at least 1− c1e

−c2n∣∣∣∣Tr
(

(XX>)−1
)
− n

sk

∣∣∣∣ ≤ c3n

sk

[√
n

Rk
+
n

rk
+
k

n
+ e−c4

√
n

]
.

The proof of Lemma 16 in turn requires some lemmas. To state them, we need some
additional notation and definitions.

Recall that we have assumed without loss of generality that Σ is diagonal. Let λ1 ≥
. . . ≥ λp be the elements of its diagonal, and define the random vectors

zi :=
Xei√
λi
∈ Rn.

These random vectors zi have entries that are independent, σ2
x-sub-Gaussian random vari-

ables (see Bartlett et al., 2020, Lemma 8). Note that we can write the matrix

XX> =

p∑
i=1

λiziz
>
i .

Definition 17 Define the shorthand A := XX>, and define

H :=

k∑
i=1

λiziz
>
i and T :=

p∑
i=k+1

λiziz
>
i .

Therefore A = H + T .

To prove Lemma 16 we shall prove the following four results:

• in Lemma 18, we show that Tr(A−1) is close to the Tr(T−1) with high probability;

• in Lemma 19, we show that E
[
Tr(A−1)

]
is well approximated by E

[
Tr(T−1)

]
;

13
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• in Lemma 20, we show that Tr(T−1) is close to its expectation with high probability;

• finally, in Lemma 21, we establish upper and lower bounds on E
[
Tr(A−1)

]
that match

up to leading constants.

By using these four results and the triangle inequality we shall demonstrate that Tr(A−1)
is close to n/sk with high probability and prove Lemma 16. Throughout this subsection we
shall assume that the dimension p ≥ c0(n + k), for a sufficiently large constant c0. Under
this condition, Lemma 26 implies that the tail matrix T is full-rank and invertible.

4.2.1 Tr(A−1) is close to Tr(T−1)

We begin by showing that Tr(A−1) is close to Tr(T−1) with high probability.

Lemma 18 There exist positive constants c0, . . . , c3 such that, for all β < c0 < 1, with
probability at least 1− 2 exp(−rk/β2)− (c1β)c2·rk ,

∣∣Tr(A−1)− Tr(T−1)
∣∣ ≤ c3k

β4sk
.

Proof Recall that A = XX> =
∑k

i=1 λiziz
>
i +

∑p
i=k+1 λiziz

>
i = H+T . Let u1, . . . , uk ∈ Rn

be an orthonormal basis for the row span of H, and let u1, . . . , un be an extension to a basis
for Rn. Write U = [u1, . . . , un] = [E;F ], where E is n× k. Thus

Tr(A−1)
(i)
= Tr

(
U>A−1U

)
= Tr

([
U>AU

]−1
)

= Tr

([
U>(H + T )U

]−1
)

= Tr

([
U>HU + U>TU

]−1
)

= Tr

([(
E>HE E>HF
F>HE F>HF

)
+ U>TU

]−1
)

(ii)
= Tr

([(
E>HE 0

0 0

)
+ U>TU

]−1
)

= Tr

([(
E>

0

)
H
(
E 0

)
+ U>TU

]−1
)
,

14
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where (i) follows since U is a unitary matrix, (ii) follows since the columns of F are outside
the span of H. Continuing, we apply the Sherman-Morrison-Woodbury identity to get that

Tr(A−1)

= Tr

([
U>TU

]−1
)

− Tr

([
U>TU

]−1
(
E>

0

)[
H† +

(
E 0

) [
U>TU

]−1
(
E>

0

)]−1 (
E 0

) [
U>TU

]−1
)

= Tr
(
T−1

)
− Tr

(
U>T−1U

(
E>

0

)[
H† +

(
E 0

)
U>T−1U

(
E>

0

)]−1 (
E 0

)
U>T−1U

)
(i)
= Tr

(
T−1

)
− Tr

(
U>T−1EE>

[
H† + EE>T−1EE>

]−1
EE>T−1U

)
= Tr

(
T−1

)
− Tr

(
T−1EE>

[
H† + EE>T−1EE>

]−1
EE>T−1

)
, (5)

where (i) follows since (E; 0)U> = (E; 0)(E;F )> = EE>. Now

0 ≤ Tr

(
T−1EE>

[
H† + EE>T−1EE>

]−1
EE>T−1

)
≤ Tr

(
T−1EE>

(
EE>T−1EE>

)−1
EE>T−1

)
= Tr

(
T−1EE>

(
EE>

)†
T
(
EE>

)†
EE>T−1

)
, (6)

where the second inequality holds because

H† � 0

⇒
(
EE>T−1EE>

)−1
−
(
H† + EE>T−1EE>

)−1
� 0

⇒ T−1EE>
((

EE>T−1EE>
)−1
−
(
H† + EE>T−1EE>

)−1
)
EE>T−1 � 0

⇒ T−1EE>
(
EE>T−1EE>

)−1
EE>T−1 � T−1EE>

((
H† + EE>T−1EE>

)−1
)
EE>T−1

along with the fact that, for any symmetric positive semi-definite matrices Q and S such
that Q � S, for all i, µi(Q) ≥ µi(S) ≥ 0.

Thus combining equations (5) and (6) we get that

∣∣Tr(A−1)− Tr
(
T−1

)∣∣ ≤ ∣∣∣∣Tr

(
T−1EE>

(
EE>

)†
T
(
EE>

)†
EE>T−1

)∣∣∣∣ .
15
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The rank of T−1EE>
(
EE>

)†
T
(
EE>

)†
EE>T−1 is at most k, so

∣∣Tr(A−1)− Tr
(
T−1

)∣∣ ≤ k ∥∥∥∥T−1EE>
(
EE>

)†
T
(
EE>

)†
EE>T−1

∥∥∥∥
op

≤ k‖T−1‖2op‖EE>(EE>)†‖2op‖T‖op

≤ kµ1(T )

µn(T )2
. (7)

Next by invoking Lemma 14, for any t > 2n, with probability at least 1− 2e−t

µ1(T ) ≤ sk
[
1 + c

(
t+ n

rk
+

√
t+ n

Rk

)]
≤ sk

[
1 + 3c

(
t

rk
+

√
t

Rk

)]
≤ c′sk

[
1 +

(
t

rk
+

√
t

Rk

)]
.

Recall that rk ≥ bn by the definition of the index k in Definition 3. Given a β < c0 < 1,
where c0 is small enough, set t = min {rk, Rk} /β2 = rk/β

2 (since rk ≤ Rk by Lemma 2) to
get that

µ1(T ) ≤ c′sk
[
1 +

(
1

β2
+

1

β

)]
with probability at least 1− 2 exp(−rk/β2). Next, note that p− k ≥

∑
j>k λj/λk+1 = rk ≥

bn. Therefore, by Lemma 15, for any β < c0 < 1,

P [µn(T ) ≤ βsk] ≤ (c1β)c2·rk .

Combining the last two inequalities we find that, for any β < c0 < 1

µ1(T )

µn(T )2
≤ c′

sk

1 +
(

1
β2 + 1

β

)
β2

 ≤ c3

β4sk

with probability at least 1− 2 exp(−rk/β2)− (c1β)c2·rk . Combined with inequality (7) this
completes our proof.

4.2.2 E
[
Tr(A−1)

]
is close to E

[
Tr(T−1)

]
Next, we show that E

[
Tr(A−1)

]
is close to E

[
Tr(T−1)

]
.

Lemma 19 There exists a positive constant c0 such that∣∣E [Tr(A−1)
]
− E

[
Tr(T−1)

]∣∣ ≤ c0k

sk
.
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Proof Given any β define

ω =
ck

β4sk
=

ck

β4rkλk+1
.

By Lemma 18 for any ω > c1k
sk

, where c1 is a large enough constant

P
[∣∣Tr(A−1)− Tr(T−1)

∣∣ > ω
]
≤ 2 exp

(
−c′r3/2

k

√
λk+1

k

√
ω

)
+

(
c′′k

ωsk

) c2·rk
4

.

Thus∣∣E[Tr(A−1)]− E[Tr(T−1)]]
∣∣

≤ E
[∣∣Tr(A−1)− Tr(T−1)

∣∣]
=

∫ ∞
0

P
[∣∣Tr(A−1)− Tr(T−1)

∣∣ > ω
]

dω

=

∫ c1k
sk

0
P
[∣∣Tr(A−1)− Tr(T−1)

∣∣ > ω
]

dω +

∫ ∞
c1k
sk

P
[∣∣Tr(A−1)− Tr(T−1)

∣∣ > ω
]

dω

≤ c1k

sk
+

∫ ∞
c1k
sk

2 exp

(
−c′r3/2

k

√
λk+1

k

√
ω

)
dω︸ ︷︷ ︸

=:♠

+

∫ ∞
c1k
sk

(
c′′k

ωsk

) c2·rk
4

dω︸ ︷︷ ︸
=:♣

. (8)

First we control ♠ as follows:

♠ =

∫ ∞
c1k
sk

2 exp

(
−c′r3/2

k

√
λk+1

k

√
ω

)
dω

= 4 exp (−c3rk)
c3rk + 1(

c′r
3/2
k

√
λk+1

k

)2 (since
∫

exp(−
√
z) = −2e−

√
z(
√
z + 1) + c)

=
4k

sk

[
exp (−c3rk)

c3rk + 1

(c′rk)
2

]
(since sk = rkλk+1)

≤ c4k

sk
. (9)

Next we control ♣ as follows

♣ =

∫ ∞
c1k
sk

(
c′′k

ωsk

) c2·rk
4

dω =

(
c′′k

sk

) c2·rk
4
∫ ∞
c1k
sk

(
1

ω

) c2·rk
4

dω

=

(
c′′k

sk

) c2·rk
4

× 1
c2·rk

4 − 1
×
(
sk
c1k

) c2·rk
4
−1

=
c5k

sk

(
(c′′)

c2·rk
4 × 4

c2 · rk − 4
×
(

1

c1

) c2·rk
4
−1
)

≤ c5k

sk
(10)
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where the last inequality follows because the constant c1 large enough and because rk ≥ bn
for a large enough constant b. Combining inequalities (8), (9) and (10) we conclude that

∣∣E [Tr(A−1)
]
− E

[
Tr(T−1)

]∣∣ ≤ c1k

sk
+
c4k

sk
+
c5k

sk
≤ c0k

sk
,

wrapping up the proof.

4.2.3 Tr(T−1) concentrates around its mean

Finally, we shall show that Tr(T−1) is close to its expectation E
[
Tr(T−1)

]
with high prob-

ability.

Lemma 20 There exists a positive constant c0 such that with probability at least 1− 2e−n,

∣∣Tr(T−1)− E
[
Tr(T−1)

]∣∣ ≤ c0n

sk

[√
n

Rk
+
n

rk

]
.

Proof We use a symmetrization argument:

∣∣Tr(T−1)− E
[
Tr(T−1)

]∣∣ =

∣∣∣∣∣
n∑
i=1

1

µi(T )
− E

[
1

µi(T )

]∣∣∣∣∣ ≤
n∑
i=1

∣∣∣∣ 1

µi(T )
− E

[
1

µi(T )

]∣∣∣∣
=

n∑
i=1

∣∣∣∣ 1

µi(T )
− ET ′

[
1

µi(T ′)

]∣∣∣∣ ,
where in the equation above the matrices T and T ′ are independent and identically dis-
tributed. Thus

∣∣Tr(T−1)− E
[
Tr(T−1)

]∣∣ ≤ n∑
i=1

∣∣∣∣ET ′ [ 1

µi(T )
− 1

µi(T ′)

]∣∣∣∣ ≤ n∑
i=1

ET ′
[∣∣∣∣ 1

µi(T )
− 1

µi(T ′)

∣∣∣∣]

=
n∑
i=1

ET ′
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

]
.

(11)

By Lemma 14, with probability at least 1− 2e−n, for all i ∈ [n],

sk

[
1− c1

(
n

rk
+

√
n

Rk

)]
≤ µi(T ) ≤ sk

[
1 + c1

(
n

rk
+

√
n

Rk

)]
. (12)

We will assume that the event described above, which controls the singular values of T , oc-
curs going forward. (This determines the success probability in the statement of the lemma.)
The game plan now is to evaluate the expectation with respect to T ′ in equation (11) by
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integrating tail bounds. Since (12) holds,∣∣µi(T )− µi(T ′)
∣∣

= max{µi(T )− µi(T ′), µi(T ′)− µi(T )}

≤ max

{
sk

[
1 + c1

(
n

rk
+

√
n

Rk

)]
− µi(T ′),

µi(T
′)− sk

[
1− c1

(
n

rk
+

√
n

Rk

)]}
≤ max

{
sk

[
1 + c1

(
n

rk
+

√
n

Rk

)]
− sk

[
1− c2

(
t+ n

rk
+

√
t+ n

Rk

)]
,

sk

[
1 + c2

(
t+ n

rk
+

√
t+ n

Rk

)]
− sk

[
1− c1

(
n

rk
+

√
n

Rk

)]}
(by Lemma 14)

≤ c3sk

(
t+ n

rk
+

√
t+ n

Rk

)
, (13)

with probability 1− 2e−t.
Next, by Lemma 15, we know that for all β < c4 < 1

P
[
µn(T ′) ≤ βsk

]
≤ (c5β)c6·rk . (14)

Combining equations (13) and (14), and because condition (12) holds, we get that

P

∃ i ∈ [n] :
|µi(T )− µi(T ′)|
µi(T )µi(T ′)

≥
c3

(
t+n
rk

+
√

t+n
Rk

)
βsk

[
1− c1

(
n
rk

+
√

n
Rk

)]
 ≤ 2e−t + (c5β)c6·rk .

Now since rk ≥ bn for a large enough constant b by the definition of k, and since Rk > rk
by Lemma 2, we can simplify the denominator in the equation above to get that

P

∃ i ∈ [n] :
|µi(T )− µi(T ′)|
µi(T )µi(T ′)

≥
c7

(
t+n
rk

+
√

t+n
Rk

)
βsk

 ≤ 2e−t + (c5β)c6·rk .

Setting t = n/β yields

P

∃ i ∈ [n] :
|µi(T )− µi(T ′)|
µi(T )µi(T ′)

≥
c7

(
n(β+1)
βrk

+
√

n(β+1)
βRk

)
βsk

 ≤ 2e−n/β + (c5β)c6·rk .

Now since β < c4 < 1, we find that

P
[
∃ i ∈ [n] :

|µi(T )− µi(T ′)|
µi(T )µi(T ′)

≥ c8

sk
max

{
n

β2rk
,

√
n

β3/2
√
Rk

}]
≤ 2e−n/β + (c5β)c6·rk . (15)
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For every β define

ω :=
c8

sk
max

{
n

β2rk
,

√
n

β3/2
√
Rk

}
.

Inverting the map from β to ω yields

β(ω) =


(

c8
√
n

ω
√
Rksk

)2/3
if ω ≤ ωτ := c8

sk

(
r3k
R2
kn

)
,√

c8n
ωrksk

otherwise.
(16)

Let ω0 be such that β(ω0) = c4, and define

ω− := min {ω0, ωτ} and ω+ := max {ω0, ωτ} .

Applying inequality (15) we have that, for all ω ∈ (ω−, ωτ ]

P
[
∃ i ∈ [n] :

|µi(T )− µi(T ′)|
µi(T )µi(T ′)

≥ ω
]

≤ 2 exp

(
−c9

(
ωn
√
Rksk

)2/3
)

+

(
c10
√
n

ω
√
Rksk

)c11·rk
, (17)

and for ω > ω+, we have

P
[
∃ i ∈ [n] :

|µi(T )− µi(T ′)|
µi(T )µi(T ′)

≥ ω
]
≤ 2 exp

(
−c12 (ωnrksk)

1/2
)

+

(
c13n

ωrksk

)c14·rk
. (18)

Thus

ET ′
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

]
=

∫ ∞
0

P
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω
]

dω

=

∫ ω0

0
P
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω
]

dω

+

∫ ωτ

ω−

P
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω
]

dω

+

∫ ∞
ω+

P
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω
]

dω

≤ ω0 +

∫ ωτ

ω−

P
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω
]

dω︸ ︷︷ ︸
=:♠

+

∫ ∞
ω+

P
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω
]

dω︸ ︷︷ ︸
=:♣

. (19)

Let us perform each of these two integrals ♠ and ♣ separately.
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First,

♠

=

∫ ωτ

ω−

P
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω
]

dω

≤
∫ ωτ

ω−

[
2 exp

(
−c9

(
ωn
√
Rksk

)2/3
)

+

(
c10
√
n

ω
√
Rksk

)c11·rk]
dω (by inequality (17))

≤ I[ω− < ωτ ]

∫ ∞
ω−

[
2 exp

(
−c9

(
ωn
√
Rksk

)2/3
)

+

(
c10
√
n

ω
√
Rksk

)c11·rk]
dω.

Now, for ζ := c9

(
n
√
Rksk

)2/3
, we have that

2

∫ ∞
ω−

exp

(
−c9

(
ωn
√
Rksk

)2/3
)

dω

= 2

∫ ∞
ω−

exp
(
−ζω2/3

)
dω

=
3ω

1/3
− exp(−ζω2/3

− )

ζ
+

3
√
π
(

1− erf
(√

ζω
1/3
−

))
2ζ3/2

(since
∫

exp(−z2/3) = 3
4

(√
πerf(z1/3)− 2e−z

2/3
z1/3

)
+ c)

≤
3ω

1/3
− exp(−ζω2/3

− )

ζ
+

3 exp(−ζω2/3
− )

2ζ2ω
1/3
−

=
c15 exp

(
−c9

(
n
√
Rksk

)2/3
ω

2/3
−

)
(n
√
Rksk)2/3

(
ω

1/3
− +

1(
n
√
Rksk

)2/3
ω

1/3
−

)
. (20)

Continuing our work of bounding ♠, we have that∫ ∞
ω−

(
c10
√
n

ω
√
Rksk

)c11·rk
dω =

(
c10
√
n√

Rksk

)c11·rk ∫ ∞
ω−

(
1

ω

)c11·rk
dω

=

(
c10
√
n√

Rksk

)c11·rk
× 1

c11 · rk − 1

(
1

ω−

)c11·rk−1

≤ c16

(
c10
√
n√

Rksk

)c11·rk ( 1

ω−

)c11·rk−1

, (21)

where the last inequality follows since rk ≥ bn for a large enough constant b. By combining
inequalities (20) and (21) we get the following bound on the integral ♠:

♠ ≤ I[ω− < ωτ ]
c15 exp

(
−c9

(
n
√
Rksk

)2/3
ω

2/3
−

)
(n
√
Rksk)2/3

(
ω

1/3
− +

1(
n
√
Rksk

)2/3
ω

1/3
−

)

+ I[ω− < ωτ ]c16

(
c10
√
n√

Rksk

)c11·rk ( 1

ω−

)c11·rk−1

. (22)
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Let us now bound ♣

♣ =

∫ ∞
ω+

P
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

≥ ω
]

dω

≤
∫ ∞
ω+

[
2 exp

(
−c12 (ωnrksk)

1/2
)

+

(
c13n

ωrksk

)c14·rk]
dω (applying inequality (18)).

For ζ ′ := c12 (nrksk)
1/2, we have

2

∫ ∞
ω+

exp
(
−c12 (ωnrksk)

1/2
)

dω

= 2

∫ ∞
ω+

exp
(
−ζ ′ω1/2

)
dω

=
4 exp(−ζ ′√ω+)(ζ ′

√
ω+ + 1)

ζ ′2
(since

∫
exp(−

√
z) = −2e−

√
z(
√
z + 1) + c)

=
c17 exp

(
−c12 (nrkskω+)1/2

) [
c12 (nrkskω+)1/2 + 1

]
nrksk

. (23)

We continue to bound the other integral in ♣ as follows∫ ∞
ω+

(
c13n

ωrksk

)c14·rk
dω ≤ c18

(
c13n

rksk

)c14·rk ( 1

ω+

)c14·rk−1

, (24)

where the bound follows by mirroring the logic used to arrive at inequality (21) above.
Therefore, combining inequalities (23) and (24) we get that

♣ ≤
c17 exp

(
−c12 (nrkskω+)1/2

) [
c12 (nrkskω+)1/2 + 1

]
nrksk

+ c18

(
c13n

rksk

)c14·rk ( 1

ω+

)c14·rk−1

. (25)

Having controlled both♠ and♣ in (22) and (25) respectively, by using the decomposition
in (19) we find that

ET ′
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

]

≤ ω0 + I[ω− < ωτ ]
c15 exp

(
−c9

(
n
√
Rksk

)2/3
ω

2/3
−

)
(n
√
Rksk)2/3

(
ω

1/3
− +

1(
n
√
Rksk

)2/3
ω

1/3
−

)

+ I[ω− < ωτ ]c16

(
c10
√
n√

Rksk

)c11·rk ( 1

ω−

)c11·rk−1

+
c17 exp

(
−c12 (nrkskω+)1/2

) [
c12 (nrkskω+)1/2 + 1

]
nrksk

+ c18

(
c13n

rksk

)c14·rk ( 1

ω+

)c14·rk−1

. (26)
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We now consider two cases.
Case 1: (ω0 < ωτ ). In this case, using the fact that β(ω0) = c4 and the formula for β

in equation (16) we get that

ω0 =
c8
√
n

c
3/2
4

√
Rksk

=
c19
√
n√

Rksk
,

and that

ω− = min{ω0, ωτ} = ω0 =
c8
√
n

c
3/2
4

√
Rksk

,

ω+ = max{ω0, ωτ} = ωτ =
c8r

3
k

R2
knsk

.

Also note that in this case since,

ω0 =
c8
√
n

c
3/2
4

√
Rksk

<
c8r

3
k

R2
knsk

= ωτ ⇒ Rk ≤
c4r

2
k

n

and so ω+ ≥ c8n
c24rksk

.

Thus, substituting the above values of ω0, ω− in inequality (26), and, because the RHS
of this inequality is a decreasing function in ω+ (since the function z 7→ exp(−z)(z + 1) is
a decreasing function for all positive z), replacing ω+ with the above lower bound, we find
that

ET ′
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

]
≤ c19

√
n√

Rksk
+
c20 exp(−c21n)√

nRksk
+
c20 exp(−c21n)

n3/2
√
Rksk

+
c16c8

√
n

c
3/2
4

√
Rksk

(
c10c

3/2
4

c8

)c11·rk
+
c22 exp(−c23n)

rksk
+
c18c8n

c2
4rksk

(
c13c

2
4

c8

)c14·rk
(i)

≤ c19
√
n√

Rksk
+
c20 exp(−c21n)√

nRksk
+
c20 exp(−c21n)

n3/2
√
Rksk

+
c16c8

√
n

c
3/2
4

√
Rksk

+
c22 exp(−c23n)

rksk
+
c18c8n

c2
4rksk

≤ c24
√
n√

Rksk
+
c25n

rksk
,

where (i) follows since c4 is small enough. This combined with inequalities (11) and (12)
proves the lemma in this case.

Case 2: (ω0 ≥ ωτ ). In this case, using the fact that β(ω0) = c4 and the formula for β
in equation (16) we get that

ω0 =
c8n

c2
4rksk

and that

ω− = min{ω0, ωτ} = ωτ ,

ω+ = max{ω0, ωτ} = ω0 =
c8n

c2
4rksk

.
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Now by applying inequality (26) we get that

ET ′
[
|µi(T ′)− µi(T )|
µi(T )µi(T ′)

]
≤ c8n

c2
4rksk

+
c26 exp(−c27n)

rksk
+
c28n

rksk

(
c13c

2
4

c8

)c14·rk
(i)

≤ c8n

c2
4rksk

+
c26 exp(−c27n)

rksk
+
c28n

rksk
≤ c29n

rksk
,

where (i) follows since c4 is small enough. Again, combining this inequality with inequali-
ties (11) and (12) proves the lemma in this second case.

4.2.4 Bounds on E
[
Tr(A−1)

]
To characterize Tr

(
A−1

)
in terms of relevant problem parameters we will need to establish

upper and lower bounds that are tight up to the leading constant on its expectation.

Lemma 21 There are positive constants c0 and c1 such that∣∣∣∣E [Tr
(
A−1

)]
− n

sk

∣∣∣∣ ≤ c0n

sk

[√
n

Rk
+
n

rk
+
k

n
+ e−c1

√
n

]
.

Proof By Lemma 19 we know that

E
[
Tr(T−1)

]
− ck

sk
≤ E

[
Tr(A−1)

]
≤ E

[
Tr(T−1)

]
+
ck

sk
. (27)

Thus, we shall instead upper and lower bound E
[
Tr(T−1)

]
.

The lower bound: By definition

E
[
Tr(T−1)

]
= E

[
n∑
i=1

1

µi(T )

]
≥ E

[
n

1
n

∑n
i=1 µi(T )

]
(by the AM-HM inequality). (28)

By Bernstein’s inequality (see Theorem 31) we know that with probability at least 1−2e−t,

1

n

n∑
i=1

µi(T ) =
1

n
Tr(T )

=
1

n

∑
i>k

λiTr(ziz
>
i )

=
1

n

∑
i>k

λi‖zi‖2

≤
∑
i>k

λi + c2 max

tλk+1,

√
t
∑
i>k

λ2
i


= sk

[
1 + c2 max

{
t

rk
,

√
t

Rk

}]
(since sk =

∑
j>k λj)

≤ sk
[
1 + c2 max

{
t√
Rk

,

√
t

Rk

}]
,
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since rk ≥
√
Rk by Lemma 2. Setting t =

√
n implies that

1

n

n∑
i=1

µi(T ) ≤ sk
[
1 + 2c2

√
n

Rk

]

with probability at least 1− 2e−
√
n. Thus by inequality (28)

E
[
Tr(T−1)

]
≥ n

sk

(
1 + 2c2

√
n
Rk

)P[ 1

n

n∑
i=1

µi(T ) ≤ sk
[
1 + 2c2

√
n

Rk

]]

≥ n

sk

 1− 2e−
√
n

1 + 2c2

√
n
Rk

 . (29)

Combined with the lower bound in inequality (27) we find that

E
[
Tr(A−1)

]
≥ n

sk

 1− 2e−
√
n

1 + 2c2

√
n
Rk

− c1k

sk

≥ n

sk

1−
2c2

√
n
Rk

+ 2e−
√
n

1 + 2c2

√
n
Rk

− c1k

n


≥ n

sk

[
1− c0

(√
n

Rk
+
k

n
+ e−

√
n

)]
(since Rk ≥ rk ≥ bn). (30)

This proves the desired lower bound.

The upper bound: To obtain the upper bound we shall bound

E
[
Tr(T−1)

]
= E

[
n∑
i=1

1

µi(T )

]
≤ nE

[
1

µn(T )

]
. (31)
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We will upper bound the expected value of 1/µn(T ) again by integrating tail bounds. We
have

E
[

1

µn(T )

]
=

∫ ∞
0

P
[

1

µn(T )
≥ ω

]
dω

=

∫ ∞
0

P
[
µn(T ) ≤ 1

ω

]
dω

=

∫ 1

sk

[
1−c3

(
n+η
rk

+

√
n+η
Rk

)]
0

P
[
µn(T ) ≤ 1

ω

]
dω︸ ︷︷ ︸

=:♣

+

∫ 1
c4sk

1

sk

[
1−c3

(
n+η
rk

+

√
n+η
Rk

)] P
[
µn(T ) ≤ 1

ω

]
dω

︸ ︷︷ ︸
=:♠

+

∫ ∞
1

c4sk

P
[
µn(T ) ≤ 1

ω

]
dω︸ ︷︷ ︸

=:♦

, (32)

where

• c3 is the constant c from Lemma 14,

• c4 is smaller than the constant c2
1 in Lemma 15, and

• η is small enough such that it satisfies c4 ≤ 1− c3

(
n+η
rk

+
√

n+η
Rk

)
.

Below we will set η to scale linearly with n, thus, this condition will be satisfied since
Rk ≥ rk ≥ bn for a large enough value of b.

The first term ♣ is positive because η scales linearly with n and Rk ≥ rk ≥ bn for
suitably large b, and so it can be bounded as follows:

♣ ≤ 1

sk

[
1− c3

(
n+η
rk

+
√

n+η
Rk

)] . (33)

Next, consider the term ♠. Here we will use the additive concentration inequality
(Lemma 14). By Lemma 14 we know that with probability at most 2e−t

µn(T ) ≤ sk
[
1− c3

(
t+ n

rk
+

√
t+ n

Rk

)]
≤ sk

[
1− c3

(
t+ n

rk
+

√
t+ n

rk

)]
(since rk ≤ Rk by Lemma 2)

≤ sk
[
1− 2c3 max

{
t+ n

rk
,

√
t+ n

rk

}]
. (34)
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Also, the integral term ♠ is positive, because c4 is chosen to be small enough, η scales
linearly with n, and Rk ≥ rk ≥ bn for suitably large b. Thus,

♠ =

∫ 1
c4sk

1

sk

[
1−c3

(
n+η
rk

+

√
n+η
Rk

)] P
[
µn(T ) ≤ 1

ω

]
dω

≤
∫ 1

c4sk

1

sk

[
1−c5

√
n+η
rk

] P
[
µn(T ) ≤ 1

ω

]
dω

≤ 2

∫ 1
c4sk

1

sk

[
1−c5

√
n+η
rk

] exp

−rk min


(

1− 1
ωsk

)
2c3

,

(
1− 1

ωsk

)2

4c2
3

+ n

 dω

(applying inequality (34), and by setting 1/ω equal to the RHS of (34) and solving for t)

≤ 2en
∫ 1

c4sk

1

sk

[
1−c5

√
n+η
rk

] exp

[
−c6rk

(
1− 1

ωsk

)2
]

dω,

where the last inequality follows since ω > 1/sk and therefore the term in the round bracket
is always smaller than 1. Thus, we get that

♠ ≤ 2en
∫ 1

c4sk

1

sk

[
1−c5

√
n+η
rk

] exp

[
−c6rk

(
1− 1

ωsk

)2
]

dω.

Now we set η = c7n, for a large enough constant c7, and perform a change of variables,
redefining 1− 1

ωsk
→ ω̄, to get

♠ ≤ 2en

sk

∫ 1−c4

c5

√
(c7+1)n
rk

exp
(
−c6rkω̄

2
)

(1− ω̄)2
dω̄

≤ 2 exp (−c8n)

sk

∫ 1−c4

c5

√
(c7+1)n
rk

1

(1− ω̄)2
dω

=
2 exp (−c8n)

sk

 1

1− c5

√
(c7+1)n
rk

− 1

c4


(i)

≤ c9 exp (−c8n)

sk
, (35)

where (i) holds because rk ≥ bn for a large value of b.
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Finally, we turn our attention to the term ♦. By using Lemma 15 we know that

♦ =

∫ ∞
1

c4sk

P
[
µn(T ) ≤ 1

ω

]
dω

≤
∫ ∞

1
c4sk

(
c10

ωsk

)c11rk
dω

=
1

c4sk(c11rk − 1)
(c4c10)c11rk ≤ c12

rksk
, (36)

where the last inequality follows since rk ≥ bn and because c4 is chosen to be small enough.
By combining inequalities (32), (33), (35) and (36) we conclude that

E
[

1

µn(T )

]
≤ 1

sk

[
1− c3

(
n+η
rk

+
√

n+η
Rk

)] +
c9 exp (−c8n)

sk
+

c12

rksk

≤ 1

sk

[
1− c13

(
n
rk

+
√

n
Rk

)] +
c9 exp (−c8n)

sk
+

c12

rksk
(since η = c7n)

=
1

sk

1 + c14


√

n
Rk

+ n
rk

1− c13

(√
n
Rk

+ n
rk

) + exp(−c8n) +
1

rk




≤ 1

sk

[
1 + c15

(√
n

Rk
+
n

rk
+ exp(−c8n)

)]
,

where the last inequality follows since Rk ≥ rk ≥ bn with b being large enough. Hence by
inequality (31)

E
[
Tr(T−1)

]
≤ n

sk

[
1 + c15

(√
n

Rk
+
n

rk
+ exp(−c8n)

)]
≤ n

sk

[
1 + c15

(√
n

Rk
+
n

rk
+ exp(−c8

√
n)

)]
,

which combined with inequality (27) completes our proof.

4.2.5 Proof of Lemma 16

As mentioned previously, by using the previous four lemmas we will now show that the
trace of A−1 is close to n/sk with high probability. Recall the statement of the lemma from
above.

Lemma 16 There are positive constants c0, . . . , c4 such that, if p ≥ c0(n + k) then with
probability at least 1− c1e

−c2n∣∣∣∣Tr
(

(XX>)−1
)
− n

sk

∣∣∣∣ ≤ c3n

sk

[√
n

Rk
+
n

rk
+
k

n
+ e−c4

√
n

]
.
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Proof Recall that by definition A = XX>. By an application of the triangle inequality,∣∣∣∣Tr(A−1)− n

sk

∣∣∣∣ ≤ ∣∣Tr(A−1)− Tr(T−1)
∣∣+
∣∣E [Tr(A−1)

]
− E

[
Tr(T−1)

]∣∣
+
∣∣Tr(T−1)− E

[
Tr(T−1)

]∣∣+

∣∣∣∣E [Tr(A−1)
]
− n

sk

∣∣∣∣ . (37)

By Lemma 18 we know that ∣∣Tr(A−1)− Tr(T−1)
∣∣ ≤ c5k

sk
(38)

with probability at least

1− 2 exp(−c6rk)− (c7)c8rk ≥ 1− c9 exp(−c10rk) ≥ 1− c9 exp(−c11n),

where the last two inequalities follow since rk ≥ bn for some large enough value of b. Next,
by Lemma 19 we know that∣∣E [Tr(A−1)

]
− E

[
Tr(T−1)

]∣∣ ≤ c12k

sk
. (39)

By Lemma 20 we get that with probability at least 1− 2e−n,∣∣Tr(T−1)− E
[
Tr(T−1)

]∣∣ ≤ c13n

sk

[√
n

Rk
+
n

rk

]
. (40)

Finally, by Lemma 21 we know that∣∣∣∣E [Tr(A−1)
]
− n

sk

∣∣∣∣ ≤ c14n

sk

[√
n

Rk
+
n

rk
+
k

n
+ e−c15

√
n

]
. (41)

Combining the (37)-(41) establishes our claim.

4.3 Proof of Lemma 13

Armed with Lemmas 14, 15 and 16, we are ready to prove Lemma 13 and establish upper
and lower bounds on α?. This proof is further divided into a series of lemmas.

We prove bounds on α? in terms of ‖ỹ‖ and ‖w‖ in Lemma 22. We in turn bound ‖ỹ‖
in terms of ‖θ?‖ and ‖D†U>ε‖ in Lemma 23. Next, in Lemma 24 we show that, with high
probability, ‖D†U>ε‖ is close to σ2Tr

(
(XX>)−1

)
. Recall that, in Section 4.2, we showed

that Tr
(
(XX>)−1

)
concentrates around n/sk.

The next lemma provides an upper and lower bound on α?.

Lemma 22 The scaling factor α? satisfies the following

2‖ỹ‖1/2

3
≤ α? ≤ 2‖ỹ‖1/2

3

√√√√√1 +
4‖w‖4
81‖ỹ‖2

+
2‖w‖2
9‖ỹ‖

.
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Proof Recall the definition of α? from above

α? =

√
8‖w̃n+1:p‖2 +

√
64‖w̃n+1:p‖4 + 1296‖ỹ‖2

81
.

Note that ‖w̃n+1:p‖ ≥ 0. This immediately leads to the lower bound. For the upper bound
note that ‖w̃n+1:p‖ ≤ ‖w̃‖ = ‖V >w‖ = ‖w‖, since V is a unitary matrix.

The following lemma provides high probability upper and lower bounds on the norm of
ỹ.

Lemma 23 The squared norm of ỹ satisfies the following

‖D†U>ε‖2
(

1− 2‖θ?‖
‖D†U>ε‖

)
≤ ‖ỹ‖2 ≤ ‖D†U>ε‖2

(
1 +

‖θ?‖
‖D†U>ε‖

)2

.

Proof Recall that UDV > is the SVD of X, ỹ = D†U>y and that y = Xθ? + ε. Therefore

ỹ = D†U>(Xθ? + ε) = D†U>(UDV >θ? + ε) = D†DV >θ? +D†U>ε

=

[
In

0(p−n)×n

]
V >θ? +D†U>ε.

Define θ̃? := V >θ? and so
ỹ = θ̃?1:n +D†U>ε.

Thus,

‖ỹ‖2 = ‖θ̃?1:n‖2 + ‖D†U>ε‖2 + 2
(
ε>UD†>

)(
θ̃?1:n

)
.

Now since 0 ≤ ‖θ̃?1:n‖ ≤ ‖θ̃?‖ = ‖V >θ?‖ = ‖θ?‖ we get that

‖ỹ‖2 ≥ ‖D†U>ε‖2 − 2‖D†U>ε‖‖θ?‖ = ‖D†U>ε‖2
(

1− 2‖θ?‖
‖D†U>ε‖

)
and also that

‖ỹ‖2 ≤ ‖D†U>ε‖2 + 2‖D†U>ε‖‖θ?‖+ ‖θ?‖2

=
(
‖D†U>ε‖+ ‖θ?‖

)2
= ‖D†U>ε‖2

(
1 +

‖θ?‖
‖D†U>ε‖

)2

,

which establishes our claim.

The next result upper and lower bounds ‖D†U>ε‖2 with high probability.

Lemma 24 For any t ≥ 0, with probability at least 1− 2e−t

∣∣∣‖D†U>ε‖2 − σ2Tr
(

(XX>)−1
)∣∣∣ ≤ cmax

 t

µn(XX>)
,

√√√√t
n∑
i=1

1

µ2
i (XX

>)

 .
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Proof Let u1, . . . , un be the columns of U . The matrix U is unitary so each column ui has
unit norm. So

‖D†U>ε‖2 =

n∑
i=1

(u>i ε)2

D2
ii

=

n∑
i=1

(u>i ε)2

µi(XX>)

and

Eε

[
‖D†U>ε‖2 | X

]
=

n∑
i=1

E
[
(u>i ε)2 | X

]
D2
ii

=

n∑
i=1

σ2

D2
ii

= σ2Tr
(

(XX>)−1
)
.

Since the components are ε are independent, σ2
y-sub-Gaussian random variables, with vari-

ance σ2, by invoking the Hanson-Wright inequality (see Rudelson and Vershynin, 2013,
Theorem 1) we infer that∣∣∣‖D†U>ε‖2 − σ2Tr((XX>)−1)

∣∣∣ =
∣∣∣ε> (UD†>D†U>) ε− σ2Tr((XX>)−1)

∣∣∣
≤ c1σ

2
y max

 t

µn(XX>)
,

√√√√t ·
n∑
i=1

1

µ2
i (XX

>)


= cmax

 t

µn(XX>)
,

√√√√t ·
n∑
i=1

1

µ2
i (XX

>)


with probability at least 1− 2e−t, completing the proof.

With these lemmas in place we are now ready to prove Lemma 13. We restate it here.

Lemma 13 There are constants c0, . . . , c5 such that for any δ ∈ (e−c0
√
n, 1), if p ≥ c1(n+k),

n ≥ c2 max {k, sk} and ‖θ?‖, ‖w‖ ≤ c3 then with probability at least 1− c4δ,∣∣∣∣∣∣∣
α?

2
√
σn1/4

3s
1/4
k

− 1

∣∣∣∣∣∣∣ ≤ c5

[√
n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]
.

Proof Using Lemma 16, with probability at least 1− c6e
−c7n,∣∣∣∣Tr(XX−1)− n

sk

∣∣∣∣ ≤ c8n

sk

[√
n

Rk
+
n

rk
+
k

n
+ e−c9

√
n

]
. (42)

Next, by Lemma 14, with probability at least 1− 2e−
√
n, for all i ∈ [n]

µi(XX
>) ≥ sk

1− c10

n+
√
n

rk
+

√
n+
√
n

Rk


≥ sk

[
1− c11

(
n

rk
+

√
n

rk

)]
(since Rk ≥ rk by Lemma 2)

≥ c12sk (since rk ≥ bn).
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This, combined with Lemma 24, tells us that for any δ ∈ (e−c0
√
n, 1) with probability at

least 1− c13δ

∣∣∣‖D†U>ε‖2 − σ2Tr((XX>)−1)
∣∣∣ ≤ c14 max

{
log(2/δ)

sk
,

√
n log(2/δ)

sk

}

≤
c14

√
n log(2/δ)

sk
.

Combining this with inequality (42) and recalling that σ2 is a constant, we infer that, with
probability at least 1− c3δ,

∣∣∣∣‖D†U>ε‖2 − σ2n

sk

∣∣∣∣ ≤ c15n

sk

[√
n

Rk
+
n

rk
+ e−c9

√
n +

√
log(2/δ)

n
+
k

n

]

≤ c16n

sk

[√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

]
(43)

≤ c17n

sk
, (44)

where the last inequality follows since Rk ≥ rk ≥ bn, n ≥ c2k and since δ ≥ e−c0
√
n.

We shall assume that condition (43) holds going forward. (This determines the success
probability in the statement of the lemma.) Now since rk ≥ bn and n ≥ c2 max{k, sk} for
a large enough constants b and c2, by invoking Lemma 23, we find that

‖ỹ‖2 ≤ ‖D†U>ε‖2
(

1 +
‖θ?‖

‖D†U>ε‖

)2

= ‖D†U>ε‖2
(

1 +
‖θ?‖2

‖D†U>ε‖2
+

2‖θ?‖
‖D†U>ε‖

)
(i)

≤ σ2n

sk

[
1 + c16

(√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

)]

×
(

1 + c18

(
‖θ?‖2sk

n
+
‖θ?‖√sk√

n

))
(ii)

≤ σ2n

sk

[
1 + c16

(√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

)](
1 + c19

√
sk
n

)
(45)

≤ c20n

sk
, (46)

where (i) follows by applying inequalities (43) and (44), and also because σ2 is a constant.
The second inequality (ii) follows since ‖θ?‖ ≤ c3 and because n ≥ c2sk. Also, by Lemma 23,
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we get that

‖ỹ‖2 ≥ ‖D†U>ε‖2
(

1− 2‖θ?‖
‖D†U>ε‖

)
≥ σ2n

sk

[
1− c16

(√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

)](
1− c21

√
sk
n

)
(47)

≥ c22n

sk
, (48)

where the last two inequalities follow by repeating the logic from the previous equation
block.

Now recall that, by Lemma 22,

2‖ỹ‖1/2

3
≤ α? ≤ 2‖ỹ‖1/2

3

√√√√√1 +
4‖w‖4
81‖ỹ‖2

+
2‖w‖2
9‖ỹ‖

. (49)

Using the lower bound in the equation above combining with inequality (47) we find that

α? ≥ 2
√
σn1/4

3s
1/4
k

[
1− c16

(√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

)](
1− c23

√
sk
n

)
,

and since n ≥ c2sk for a large enough constant c2,

α?

2
√
σn1/4

3s
1/4
k

− 1 ≥ −c24

[√
n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]
. (50)

Now for the upper bound, since ‖w‖ ≤ c3, by using (48) we have that ‖w‖2/‖ỹ‖ ≤ 1/20,
since n > c2sk, where c2 is large enough. Thus, by (49),

α? ≤ 2‖ỹ‖1/2

3

(
1 +

c25‖w‖
‖ỹ‖1/2

)
≤ 2
√
σn1/4

3s
1/4
k

[
1 + c26

(√
n

Rk
+
n

rk
+

√
log(2/δ)

n
+
k

n

)](
1 + c27

√
sk
n

)

and so

α?

2
√
σn1/4

3s
1/4
k

− 1 ≤ c28

[√
n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]
.

This combined with (50) completes the proof.
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4.4 Proof of Theorem 5

Let us first restate the theorem.

Theorem 5 Under Assumptions 1-6, there exist constants c0, . . . , c7 such that for any δ ∈
(e−c0

√
n, 1 − c1e

−c2n), if p ≥ c3(n + k), n ≥ c4 max {k, sk} and ‖θ?‖, ‖w‖ ≤ c5 then with
probability at least 1− c6δ

Risk(θ̂) ≤ Bias + Variance + Ξ,

where

Bias ≤ c7

(
‖(θ? − ψ)1:k‖2Σ−1

1:k

(sk
n

)2
+ ‖(θ? − ψ)k+1:p‖2Σk+1:p

)
≤ 2c7‖θ? − ψ‖2sk

n
;

Variance ≤ c7 log(1/δ)

(
k

n
+

n

Rk

)
;

Ξ ≤ c7λ1‖ψ‖2
[
n

Rk
+
n2

r2
k

+
sk
n

+
log(1/δ)

n
+
k2

n2

]
max

{√
r0

n
,
r0

n
,

√
log(1/δ)

n

}
.

Proof By Lemma 12, we know that

Risk(θ̂) ≤ c8(θ? − α?w)>B(θ? − α?w) + c8 log(1/δ)Tr(C)

with probability at least 1− δ, where the matrices

B =
(
I −X>(XX>)−1X

)
Σ
(
I −X>(XX>)−1X

)
and

C = (XX>)−1XΣX>(XX>)−1.

Recall that ψ = 2
√
σn1/4w

3s
1/4
k

. Thus, with the same probability

Risk(θ̂) ≤ c8 (θ? − ψ − (α?w − ψ))>B (θ? − ψ − (α?w − ψ)) + c8 log(1/δ)Tr(C)

= c8‖θ? − ψ − (α?w − ψ)‖2B + c8 log(1/δ)Tr(C)

≤ 2c8‖θ? − ψ‖2B + 2c8‖α?w − ψ‖2B + c8 log(1/δ)Tr(C)

= 2c8 (θ? − ψ)>B (θ? − ψ)︸ ︷︷ ︸
“Bias”

+ c8 log(1/δ)Tr(C)︸ ︷︷ ︸
“Variance”

+ 2c8‖B‖op‖α?w − ψ‖2︸ ︷︷ ︸
“Ξ”

. (51)

We shall bound each of the three terms in the inequality above to establish the theorem.

Recall the definition of the matrix T =
∑

j>k λjzjz
>
j from Definition 17 above. Define

S := {j : j > k}, and let XS ∈ Rn×|S| be the submatrix formed by the last p − k columns
of X ∈ Rn×p. It can be verified that T = XSX

>
S . By Lemma 14, with probability at least

1− 2e−n ≥ 1− c9δ, (since δ ≥ e−c0
√
n)

µ1(T ) ≤ c10

∑
j>k

λj and µn(T ) ≥ c11

∑
j>k

λj .
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Therefore, the condition number of the matrix T is a constant with the same probability.
Assuming this bound on the condition number holds we shall bound the first two terms in
(51).

Bound on the bias and variance: Since the condition number of T is at most a constant,
by invoking (Tsigler and Bartlett, 2020, Theorem 1) we get that with probability at least
1− c12δ

Bias ≤ c7

(
‖(θ? − ψ)1:k‖2Σ−1

1:k

(sk
n

)2
+ ‖(θ? − ψ)k+1:p‖2Σk+1:p

)
(52)

and

Variance ≤ c7 log(1/δ)

(
k

n
+

n

Rk

)
. (53)

We simplify our upper bound on Bias by noting that under our choice of k as follows:

c7

(
‖(θ? − ψ)1:k‖2Σ−1

1:k

(sk
n

)2
+ ‖(θ? − ψ)k+1:p‖2Σk+1:p

)
= c7

p∑
i=1

[
I(i ≤ k)(θ?i − ψi)2 s2

k

n2λi
+ I(i > k)λi(θ

?
i − ψi)2

]

= c7

p∑
i=1

λi(θ
?
i − ψi)2

[
I(i ≤ k)

s2
k

n2λ2
i

+ I(i > k)

]

= c7

p∑
i=1

λi(θ
?
i − ψi)2 ( skn )2

( skn )2 + λ2
i

[
I(i ≤ k)

(
1 +

1

λ2
i

(sk
n

)2
)

+ I(i > k)

(
1 + λ2

i

(
n

sk

)2
)]

(i)

≤ c7

p∑
i=1

λi(θ
?
i − ψi)2 ( skn )2

( skn )2 + λ2
i

[
I(i ≤ k)

(
1 + b2

)
+ I(i > k)

(
1 + λ2

i

(
n

sk

)2
)]

≤ c7

p∑
i=1

λi(θ
?
i − ψi)2 ( skn )2

( skn )2 + λ2
i

[
I(i ≤ k)

(
1 + b2

)
+ I(i > k)

(
1 + λ2

k+1

(
n

sk

)2
)]

≤ c7

p∑
i=1

λi(θ
?
i − ψi)2 ( skn )2

( skn )2 + λ2
i

[
I(i ≤ k)

(
1 + b2

)
+ I(i > k)

(
1 +

(
n

rk

)2
)]

(ii)

≤ c7

p∑
i=1

λi(θ
?
i − ψi)2 ( skn )2

( skn )2 + λ2
i

[
I(i ≤ k)

(
1 + b2

)
+ I(i > k)

(
1 +

1

b2

)]

≤ c13

p∑
i=1

λi(θ
?
i − ψi)2 ( skn )2

( skn )2 + λ2
i

,
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where (i) follows since by definition k = min{j ≥ 0 : rj ≥ bn} and so for i ≤ k, sk/λi ≤
si/λi = ri < bn. Inequality (ii) follows since rk ≥ bn. Continuing we get that

c7

(
‖(θ? − ψ)1:k‖2Σ−1

1:k

(sk
n

)2
+ ‖(θ? − ψ)k+1:p‖2Σk+1:p

)
≤ c13

p∑
i=1

λi(θ
? − ψ)2

i

(
sk
n

)2(
sk
n

)2
+ λ2

i

= c13

(sk
n

)2
p∑
i=1

(θ? − ψ)2
i

λi(
sk
n

)2
+ λ2

i

≤ c13

(sk
n

)2
‖θ? − ψ‖2 max

i∈[p]

λi(
sk
n

)2
+ λ2

i

(by Hölder’s inequality)

≤ c13

(sk
n

)2
‖θ? − ψ‖2 max

ζ≥0

ζ(
sk
n

)2
+ ζ2

=
2c13‖θ? − ψ‖2sk

n
. (54)

Bound on Ξ (the estimation error of α?): By Lemma 13 with probability at least 1− c14δ∣∣∣∣∣α? − 2
√
σn1/4

3s
1/4
k

∣∣∣∣∣ ≤ c15
2
√
σn1/4

3s
1/4
k

[√
n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]
and therefore,

‖α?w − ψ‖ ≤ c16‖ψ‖

[√
n

Rk
+
n

rk
+

√
sk
n

+

√
log(2/δ)

n
+
k

n

]

≤ c17‖ψ‖

[√
n

Rk
+
n

rk
+

√
sk
n

+

√
log(1/δ)

n
+
k

n

]
(since δ ≤ 1− c1e

−c2n).

(55)

To control the operator norm of B, we first observe that

‖B‖op =
∥∥∥(I −X>(XX>)−1X

)
Σ
(
I −X>(XX>)−1X

)∥∥∥
op

=

∥∥∥∥(I −X>(XX>)−1X
)(

Σ− X>X

n

)(
I −X>(XX>)−1X

)∥∥∥∥
op

≤
∥∥∥I −X>(XX>)−1X

∥∥∥2

op

∥∥∥∥Σ− X>X

n

∥∥∥∥
op

≤
∥∥∥∥Σ− X>X

n

∥∥∥∥
op

.

Thus, by invoking (Koltchinskii and Lounici, 2017, Theorem 9) we get that with probability
at least 1− δ

‖B‖op ≤ c18λ1 max

{√
r0

n
,
r0

n
,

√
log(1/δ)

n
,
log(1/δ)

n

}

≤ c18λ1 max

{√
r0

n
,
r0

n
,

√
log(1/δ)

n

}
, (56)
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where the second inequality follows since δ ≥ e−c0
√
n.

Combining inequalities (55) and (56) we get that with probability at least 1− c19δ

2c8‖B‖op‖α?w − ψ‖2 ≤ c20λ1‖ψ‖2 max

{√
r0

n
,
r0

n
,

√
log(1/δ)

n

}

×
[
n

Rk
+
n2

r2
k

+
sk
n

+
log(2/δ)

n
+
k2

n2

]
. (57)

Combining inequalities (52), (53), (54) and (57) along with a union bound completes the
proof.

5. Proof of Proposition 8

Recall the statement of the proposition.

Proposition 25 If a(0) and W (0) are chosen randomly, independent of X and y, so that
the distribution of a(0)>W (0) is symmetric about the origin, then

Ea(0),W (0),X,y[Risk(θ̂)] ≥ E
[
θ?>Bθ?

]
+ σ2E [Tr(C)] ,

where

B :=
(
I −X>(XX>)−1X

)
Σ
(
I −X>(XX>)−1X

)
and

C := (XX>)−1XΣX>(XX>)−1.

Proof In the proof of Lemma 12, we showed that, for all X,y, we have

Risk(θ̂) = Ex
[(
x>
(
I −X>(XX>)−1X

)
(θ? − α?w)− x>X>(XX>)−1ε

)2
]
.

Expanding the quadratic yields

Risk(θ̂) = Ex
[(
x>
(
I −X>(XX>)−1X

)
(θ? − α?w)

)2
]

+ Ex
[(
x>X>(XX>)−1ε

)2
]

+ 2Ex
[(
x>
(
I −X>(XX>)−1X

)
θ?
)(

x>X>(XX>)−1ε
)]

− 2Ex
[(
x>
(
I −X>(XX>)−1X

)
(α?w)

)(
x>X>(XX>)−1ε

)]
.

Since the distribution of w is symmetric about the origin, and independent of X and y,
and since, for fixed X and y, α? is determined as a function of w, after conditioning on X
and y, the distribution of α?w is symmetric about the origin, and therefore has zero mean.
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This, along with the fact that E[ε] = 0, gives

E[Risk(θ̂)] = E
[(
x>
(
I −X>(XX>)−1X

)
(θ? − α?w)

)2
]

+ Ex
[(
x>X>(XX>)−1ε

)2
]

= E[(θ? − α∗w)>B(θ − α∗w)?] + E
[(
x>X>(XX>)−1ε

)2
]

≥ E[θ?>Bθ?] + E
[(
x>X>(XX>)−1ε

)2
]

≥ E[θ?>Bθ?] + σ2E [Tr(C)] ,

completing the proof.

6. Discussion

Despite the fact that parameterizing a linear model using a balanced, two-layer linear net-
work has been shown in previous work to have a substantial effect on the inductive bias of
gradient descent (Azulay et al., 2021), it remains compatible with benign overfitting, and
the initial weights also encode a potentially useful bias.

While Proposition 8 limits the prospects for improving our upper bounds, there still
appears to be a gap between our upper and lower bounds.

Moving beyond the case where the initialization is balanced would be an interesting
next step. We briefly note that, for the initial parameters to be balanced, it is necessary for
the weight matrix in the first layer W ∈ Rm×p to have rank one. In the case where there is
a single neuron (m = 1), Theorem 2 by (Azulay et al., 2021) characterizes the implicit bias
of the final solution learnt by gradient flow on the squared loss. The techniques developed
in this paper might perhaps be useful in bounding the excess risk of this solution.

Yet another interesting open question concerns characterizing the implicit bias of gra-
dient flow with the squared loss in the case where a linear model is parameterized using
a deeper representation than two layers, building on existing research (Gunasekar et al.,
2017, 2018b; Arora et al., 2019; Woodworth et al., 2020; Gissin et al., 2020; Razin and
Cohen, 2020; Yun et al., 2021; Azulay et al., 2021; Jagadeesan et al., 2021). It would also
be interesting to prove corresponding excess risk bounds for such solutions, and to study
the effect of depth on the generalization properties of the resulting models.
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Appendix A. The design matrix has full rank (and more)

Lemma 26 Under Assumption 4, for any eigenvector v of Σ, and any sample size n, the
projection of the rows of X onto the subspace of Rp orthogonal to v has rank n.

Proof Assume without loss of generality that Σ is diagonal and v = (1, 0, 0, . . . , 0). Let
x1, . . . , xn denote the rows of X, and let x′1, . . . , x

′
n be obtained from x1, . . . , xn by replacing

each of their first components with 0, thereby projecting them onto the subspace orthogonal
to v. It suffices to prove that, almost surely, x′1, . . . , x

′
n are linearly independent.

We will prove this by induction. The base case, there n = 1, is straightforward. When
n > 1, by the inductive hypothesis, x′1, . . . , x

′
n−1 are linearly independent. Since p > n, As-

sumption 4 implies that the span of x′1, . . . , x
′
n−1 has probability 0, so that, almost surely,

x′n is not a member this span, completing the proof.

Appendix B. Concentration inequalities

For an excellent reference of sub-Gaussian and sub-exponential concentration inequalities
we refer the reader to Vershynin (2018). We begin by defining sub-Gaussian and sub-
exponential random variables.

Definition 27 A random variable φ is sub-Gaussian if

‖φ‖ψ2 := inf
{
t > 0 : E[exp(φ2/t2)] < 2

}
is bounded. Further, ‖φ‖ψ2 is defined to be its sub-Gaussian norm.

Definition 28 A random variable φ is said to be sub-exponential if

‖φ‖ψ1 := inf {t > 0 : E[exp(|φ|/t) < 2]}

is bounded. Further, ‖φ‖ψ1 is defined to be its sub-exponential norm.

Next we state a few well-known facts about sub-Gaussian and sub-exponential random
variables.

Lemma 29 (Vershynin 2018, Lemma 2.7.6) If a random variable φ is sub-Gaussian
then φ2 is sub-exponential with ‖φ2‖ψ1 = ‖φ‖2ψ2

.

Lemma 30 (Vershynin 2018, Lemma 2.7.10) If a random variable φ is sub-exponential
then φ− E[φ] is sub-exponential with ‖φ− E[φ]‖ψ1 ≤ c‖φ‖ψ1 for some positive constant c.

We state Bernstein’s inequality (see, e.g., Vershynin, 2018, Theorem 2.8.1), a concentration
inequality for a sum of independent sub-exponential random variables.

Theorem 31 For independent mean-zero sub-exponential random variables φ1, . . . , φm, for
every η > 0, we have

P

[∣∣∣ m∑
i=1

φi

∣∣∣ ≥ η] ≤ 2 exp

(
−cmin

{
η2∑m

i=1‖φi‖2ψ1

,
η

maxi‖φi‖ψ1

})
,

where c is a positive absolute constant.
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Let us continue by defining an ε-net with respect to the Euclidean distance.

Definition 32 Let S ⊆ Rp. A subset K is called an ε-net of S if every point in S is within
Euclidean distance ε of some point in K.

The following lemma bounds the size of a 1/4-net of unit vectors in Rp.

Lemma 33 Let S be the set of all unit vectors in Rp. Then there exists a 1/4-net of S of
size 9p.

Proof Follows immediately by invoking (Vershynin, 2018, Corollary 4.2.13) with ε = 1/4.

B.1 Proof of Lemma 14

Let Σ =
∑p

i=1 λieie
>
i be the spectral decomposition of the covariance matrix. Define the

random vectors

zi :=
Xei√
λi
∈ Rn.

These random vectors zi have entries that are independent, σ2
x-sub-Gaussian random vari-

ables (see Bartlett et al., 2020, Lemma 8). Note that we can write the matrix

XSX
>
S =

∑
i∈S

λiziz
>
i .

Further, its expected value is as follows:

E
[
XSX

>
S

]
=
∑
i∈S

λiE
[
ziz
>
i

]
=
∑
i∈S

E
[
Xeie

>
i X

>
]

= In
∑
i∈S

λi = Ins(S).

With this in place, we are now ready to prove our concentration results.

Lemma 14 There exists a positive absolute constant c such that, for any subset S ⊆ [p]
and any t ≥ 0, with probability at least 1− 2e−t, for all j ∈ {1, . . . ,min(n, |S|)}

∣∣∣µj(XSX
>
S )− s(S)

∣∣∣ ≤ cs(S)

(
t+ n

r(S)
+

√
t+ n

R(S)

)
.

Proof We shall prove this bound in the case where the set S = [p]. The bound for any
other subset S shall follow by exactly the same logic. First, note that by a standard ε-net
argument (see, e.g, Bartlett et al., 2020, Lemma 25) to bound the operator norm we can
use the following inequality:∥∥∥∥∥XX> − In

p∑
i=1

λi

∥∥∥∥∥
op

≤ 2 max
vj∈N 1

4

∣∣∣∣∣v>j
(
XX> − In

p∑
i=1

λi

)
vj

∣∣∣∣∣ , (58)
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where N 1
4

is a 1/4-net of the unit sphere with respect to the Euclidean norm of size at most

9n. (We know that such a net exists by Lemma 33.) Consider an arbitrary unit vector
v ∈ Sn−1. Then

v>

(
XX> − In

p∑
i=1

λi

)
v =

p∑
i=1

λi

(
(z>i v)2 − 1

)
. (59)

By Lemmas 29 and 30 we know that the random variables λi((z
>
i v)2 − 1) are c1λiσ

2
x-sub-

exponential, for some positive constant c1.Therefore we can use Bernstein’s inequality (see
Theorem 31) to upper bound the sum in equation (59) to get that, with probability at least
1− 2e−t, ∣∣∣∣∣

p∑
i=1

λi

(
(z>i v)2 − 1

)∣∣∣∣∣ ≤ c2σ
2
x max

λ1t,

√√√√t

p∑
j=1

λ2
j

 . (60)

Next by a union bound over all the elements of the cover N 1
4

we find that, with probability

at least 1− 2e−t, for all v ∈ N 1
4
,

∣∣∣∣∣
p∑
i=1

λi

(
(z>i v)2 − 1

)∣∣∣∣∣ ≤ c2σ
2
x max

λ1 (t+ n log(9)) ,

√√√√(t+ n log(9))

p∑
j=1

λ2
j

 .

Hence, by using inequality (58) we get that with probability at least 1− 2e−t∥∥∥∥∥XX> − In
p∑
i=1

λi

∥∥∥∥∥
op

≤ c3σ
2
x max

λ1 (t+ n log(9)) ,

√√√√(t+ n log(9))

p∑
j=1

λ2
j


≤ c4σ

2
x

λ1(t+ n) +

√√√√(t+ n)

p∑
j=1

λ2
j

 .

Recalling that σx is assumed to be a positive constant, this implies that the greatest and

least eigenvalues of XX> are within c5

(
λ1(t+ n) +

√
(t+ n)

∑p
j=1 λ

2
j

)
of
∑p

i=1 λi, which

in turn implies ∣∣∣∣∣µj(XX>)−
p∑
i=1

λi

∣∣∣∣∣ ≤ c5

λ1(t+ n) +

√√√√(t+ n)

p∑
j=1

λ2
j


= c5

(
p∑
i=1

λi

)(
t+ n

r0
+

√
t+ n

R0

)
,

completing the proof.
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B.2 Proof of Lemma 15

We begin by proving an auxiliary lemma that relates the minimum singular value of a
matrix to its approximation over an ε-net under the assumption that its operator norm is
bounded. Recall that XS ∈ Rn×|S|.

Lemma 34 Let Nε be an ε-net of the unit sphere in Rn with respect to the Euclidean norm.
For any a, b ≥ 0, if

inf
z∈Sn−1

‖X>S z‖ ≤ a− εb and ‖X>S ‖op ≤ b

then infz∈Nε‖X>S z‖ ≤ a.

Proof Let ζ be a function that maps any unit vector z to its nearest neighbor (with respect
to the Euclidean norm) in the net Nε. Therefore, if ‖X>S ‖op ≤ b then

inf
z∈Sn−1

‖X>S z‖ = inf
z∈Sn−1

‖X>S (z − ζ(z)) +X>S ζ(z)‖

≥ inf
z∈Sn−1

‖X>S ζ(z)‖ − inf
z∈Sn−1

‖X>S (z − ζ(z))‖

= inf
z∈Nε
‖X>S z‖ − inf

z∈Sn−1
‖X>S (z − ζ(z))‖

≥ inf
z∈Nε
‖X>S z‖ − ‖X>S ‖op inf

z∈Sn−1
‖z − ζ(z)‖

≥ inf
z∈Nε
‖X>S z‖ − εb.

Further if infz∈Sn−1‖X>S z‖ ≤ a − εb then, due to the inequality above, infz∈Nε‖X>S z‖ ≤ a
which completes the proof.

With this lemma in place let us prove our result.

Lemma 15 There exist absolute positive constants c0, . . . , c3 such that given any subset
S ⊆ [p] if, r(S) ≥ c0n then for all t < c1 < 1

P
[
µn(XSX

>
S ) ≤ t · s(S)

]
≤ (c2t)

c3·r(S).

Proof To reduce notational burden in the proof we shall present a proof in the case where
the S = [p], and therefore XS = X. For any other subset S the proof shall proceed in
exactly the same manner.

In the proof we shall prove bounds on the smallest singular value of X, smin(X). This
immediately leads to a bound on µn(XX>) = s2

min(X).

Recall that smin(X) = smin(X>). So we will instead prove a bound on the smallest
singular value of X> to simplify our calculations. For some parameter h ≥ c4 ≥ 1 that will

42



Benign Overfitting in Two-Layer Linear Networks

be set in the sequel, decompose the probability into

P

smin(X>) ≤ t

√√√√ p∑
j=1

λj


= P

smin(X>) ≤ t

√√√√ p∑
j=1

λj

 ∩ {‖X‖op ≤ h√λ1p
}

+ P

smin(X>) ≤ t

√√√√ p∑
j=1

λj

 ∩ {‖X‖op > h
√
λ1p
}

≤ P

smin(X>) ≤ t

√√√√ p∑
j=1

λj

 ∩ {‖X‖op ≤ h√λ1p
}+ P

[
‖X‖op > h

√
λ1p
]
. (61)

Now we will control each of these probabilities separately. First, let us control the second
probability

P
[
‖X‖op > h

√
λ1p
]

= P
[
‖XΣ−1/2Σ1/2‖op > h

√
λ1p
]

≤ P
[
‖XΣ−1/2‖op > h

√
p
]
≤ e−c4h2p, (62)

by invoking Proposition 2.4 by Rudelson and Vershynin (2009).

To control the first probability in inequality (61) we need the following definition. Given
a random vector ξ ∈ Rp define the Lévy concentration function

L(ξ; t) := sup
w∈Rp

P [‖ξ − w‖ ≤ t] .

Let φ ∈ Sn−1 be a fixed unit vector. By Assumption 4 we know that for any a ≤ b ∈ R:

P
[
(Σ−1/2X>φ)i ∈ [a, b]

]
≤ c|b− a|. (63)

Using this fact we find that for any i ∈ [p]:

L((Σ−1/2X>φ)i ; 2t) = sup
w∈R

P
[
|(Σ−1/2X>φ)i − w| ≤ 2t

]
= sup

w∈R
P
[
(Σ−1/2X>φ)i ∈ [w − 2t, w + 2t]

]
≤ 4c5t.

Next by invoking Theorem 1.5 in Rudelson and Vershynin (2015) we infer that

L

X>φ; 2t

√√√√ p∑
i=1

λi

 ≤ (ct)c
′r0 .
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This implies that

P

‖X>φ‖ ≤ 2t

√√√√ p∑
i=1

λi

 ≤ sup
w∈Rp

P

‖X>φ− w‖ ≤ 2t

√√√√ p∑
i=1

λi


= L

X>φ; 2t

√√√√ p∑
i=1

λi

 ≤ (ct)c
′r0 . (64)

This establishes a small-ball probability (anti-concentration) for a fixed unit vector φ. We

will now proceed by using an ε-net argument. For some ε ∈
(

0, 2t
h

√∑p
i=1 λi
λ1p

)
let Nε be an

ε-net of the unit vectors in Rn with respect to the Euclidean norm of size at most
(

2
ε + 1

)n
(such a net exists, see, e.g., Corollary 4.2.13 in Vershynin (2018)). By a union bound over
the elements of the net

P

min
φ∈Nε
‖X>φ‖ ≤ 2t

√√√√ p∑
i=1

λi

 ≤ (ct)c
′r0 ·

(
2

ε
+ 1

)n
. (65)

Next by Lemma 34 we know that

P

smin(X>) ≤ 2t

√√√√ p∑
i=1

λi − εh
√
λ1p

 ∩ {‖X‖op ≤ h√λ1p
}

= P

 inf
z∈Sn−1

‖X>z‖ ≤ 2t

√√√√ p∑
i=1

λi − εh
√
λ1p

 ∩ {‖X‖op ≤ h√λ1p
}

≤ P

min
z∈Nε
‖X>z‖ ≤ 2t

√√√√ p∑
i=1

λi


≤ (ct)c

′r0 ·
(

2

ε
+ 1

)n
.

Setting ε = t
h

√∑p
i=1 λi
λ1p

= t
h

√
r0
p we get that

P

smin(X>) ≤ t

√√√√ p∑
i=1

λi

 ∩ {‖X‖op ≤ h√λ1p
} ≤ (ct)c

′r0 ·
(

2h

t

√
p

r0
+ 1

)n
.

This combined with inequalities (61) and (62) above yields

P

smin(X>) ≤ t

√√√√ p∑
i=1

λi

 ≤ (ct)c
′r0 ·

(
2h

t

√
p

r0
+ 1

)n
+ e−c4h

2p.
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Finally set h = 1
t

√
r0
p to obtain the bound

P

smin(X>) ≤ t

√√√√ p∑
i=1

λi

 ≤ (ct)c
′r0 ·

(
c′′

t2

)n
+ e−c5r0/t

2 (i)

≤ (c2t)
c3·r0

where (i) follows since r0 > c0n for a large enough constant c0 and because t < c1 for a
small enough constant c1.

References

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep
matrix factorization. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E. Woodworth, Nathan
Srebro, Amir Globerson, and Daniel Soudry. On the implicit bias of initialization shape:
beyond infinitesimal mirror descent. In International Conference on Machine Learning
(ICML), pages 468–477, 2021.
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