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Abstract

In this paper we consider optimization problems with stochastic composite objective func-
tion subject to (possibly) infinite intersection of constraints. The objective function is
expressed in terms of expectation operator over a sum of two terms satisfying a stochastic
bounded gradient condition, with or without strong convexity type properties. In contrast
to the classical approach, where the constraints are usually represented as intersection of
simple sets, in this paper we consider that each constraint set is given as the level set of a
convex but not necessarily differentiable function. Based on the flexibility offered by our
general optimization model we consider a stochastic subgradient method with random fea-
sibility updates. At each iteration, our algorithm takes a stochastic proximal (sub)gradient
step aimed at minimizing the objective function and then a subsequent subgradient step
minimizing the feasibility violation of the observed random constraint. We analyze the
convergence behavior of the proposed algorithm for diminishing stepsizes and for the case
when the objective function is convex or has a quadratic functional growth, unifying the
nonsmooth and smooth cases. We prove sublinear convergence rates for this stochastic
subgradient algorithm, which are known to be optimal for subgradient methods on this
class of problems. When the objective function has a linear least-square form and the
constraints are polyhedral, it is shown that the algorithm converges linearly. Numerical
evidence supports the effectiveness of our method in real problems.

Keywords: Stochastic optimization, convex functional constraints, stochastic subgradi-
ent, rate of convergence, constrained least-squares, robust/sparse svm.

1. Introduction

The large sum of functions in the objective function and/or the large number of constraints
in most of the practical optimization applications, including machine learning and statistics
(Vapnik, 1998; Bhattacharyya et al., 2004), signal processing (Necoara, 2021; Tibshirani,
2011), computer science (Kundu et al., 2018), distributed control (Nedelcu et al., 2014),
operations research and finance (Rockafellar and Uryasev, 2000), create several theoretical
and computational challenges. For example, these problems are becoming increasingly large
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in terms of both the number of variables and the size of training data and they are usually
nonsmooth due to the use of regularizers, penalty terms and the presence of constraints. Due
to these challenges, (sub)gradient-based methods are widely applied. In particular, proximal
gradient algorithms (Necoara, 2021; Rosasco et al., 2019) are natural in applications where
the function to be minimized is in composite form, i.e. the sum of a smooth term and
a nonsmooth regularizer (e.g., the indicator function of some simple constraints), as e.g.
the empirical risk in machine learning. In these algorithms, at each iteration the proximal
operator defined by the nonsmooth component is applied to the gradient descent step for
the smooth data fitting component. In practice, it is important to consider situations where
these operations cannot be performed exactly. For example, the case where the gradient,
the proximal operator or the projection can be computed only up to an error have been
considered in (Devolder et al., 2014; Nedelcu et al., 2014; Necoara and Patrascu, 2018; Rasch
and Chambolle, 2020), while the situation when only stochastic estimates of these operators
are available have been studied in (Rosasco et al., 2019; Hardt et al., 2016; Patrascu and
Necoara, 2018; Hermer et al., 2020). This latter setting, which is also of interest here,
is very important in machine learning, where we have to minimize an expected objective
function with or without constraints from random samples (Bhattacharyya et al., 2004),
or in statistics, where we need to minimize a finite sum objective subject to functional
constraints (Tibshirani, 2011).

Previous work. A very popular approach for minimizing an expected or finite sum objective
function is the stochastic gradient descent (SGD) (Robbins and Monro, 1951; Nemirovski
and Yudin, 1983; Hardt et al., 2016) or the stochastic proximal point (SPP) algorithms
(Moulines and Bach, 2011; Nemirovski et al., 2009; Necoara, 2021; Patrascu and Necoara,
2018; Rosasco et al., 2019). In these studies sublinear convergence is derived for SGD or
SPP with decreasing stepsizes under the assumptions that the objective function is smooth
and (strongly) convex. For nonsmooth stochastic convex optimization one can recognize
two main approaches. The first one uses stochastic variants of the subgradient method
combined with different averaging techniques, see e.g. (Nemirovski et al., 2009; Yang and
Lin, 2016). The second line of research is based on stochastic variants of the proximal
gradient method under the assumption that the expected objective function is in composite
form (Duchi and Singer, 2009; Necoara, 2021; Rosasco et al., 2019). For both approaches,
using decreasing stepsizes, sublinear convergence rates are derived under the assumptions
that the objective function is (strongly) convex. Even though SGD and SPP are well-
developed methodologies, they only apply to problems with simple constraints, requiring
the whole feasible set to be projectable.

In spite of its wide applicability, the study on efficient solution methods for optimization
problems with many constraints is still limited. The most prominent line of research in this
area is the alternating projections, which focus on applying random projections for solving
problems that involve intersection of a (infinite) number of sets. The case when the objec-
tive function is not present in the formulation, which corresponds to the convex feasibility
problem, stochastic alternating projection algorithms were analyzed e.g., in (Bauschke and
Borwein, 1996), with linear convergence rates, provided that the sets satisfy some linear
regularity condition. Stochastic forward-backward algorithms have been also applied to
solve optimization problems with many constraints. However, the papers introducing those
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general algorithms focus on proving only asymptotic convergence results without rates, or
they assume the number of constraints is finite, which is more restricted than our settings,
see e.g. (Bianchi et al., 2019; Xu, 2020; Wang et al., 2015). In the case where the number
of constraints is finite and the objective function is deterministic, Nesterov’s smoothing
framework is studied in (Tran-Dinh et al., 2018) under the setting of accelerated proxi-
mal gradient methods. Incremental subgradient methods or primal-dual approaches were
also proposed for solving problems with finite intersection of simple sets through an exact
penalty reformulation in (Bertsekas, 2011; Kundu et al., 2018).

The papers most related to our work are (Nedich, 2011; Nedich and Necoara, 2019), where
subgradient methods with random feasibility steps are proposed for solving convex problems
with deterministic objective and many functional constraints. However, the optimization
problem, the algorithm and consequently the convergence analysis are different from the
present paper. In particular, our algorithm is a stochastic proximal gradient extension of
the algorithms proposed in (Nedich, 2011; Nedich and Necoara, 2019). Additionally, the
stepsizes in (Nedich, 2011; Nedich and Necoara, 2019) are chosen decreasing, while in the
present work for strongly like objective functions we derive insightful stepsize-switching rules
which describe when one should switch from a constant to a decreasing stepsize regime.
Furthermore, in (Nedich, 2011) and (Nedich and Necoara, 2019) sublinear convergence
rates are established either for convex or strongly convex deterministic objective functions,
respectively, while in this paper we prove (sub)linear rates under an expected composite
objective function which is either convex or satisfies relaxed strong convexity conditions.
Moreover, (Nedich, 2011; Nedich and Necoara, 2019) present separately the convergence
analysis for smooth and nonsmooth objective, while in this paper we present a unified
convergence analysis covering both cases through the so-called stochastic bounded gradient
condition. Hence, since we deal with stochastic composite objective functions, smooth or
nonsmooth, and relaxed strong convexity assumptions, and since we consider a stochastic
proximal gradient with new stepsize rules, our convergence analysis requires additional
insights that differ from that of (Nedich, 2011; Nedich and Necoara, 2019).

In (Patrascu and Necoara, 2018) a stochastic optimization problem with infinite intersection
of sets is considered and stochastic proximal point steps are combined with alternating pro-
jections for solving it. However, in order to prove sublinear convergence rates, (Patrascu and
Necoara, 2018) requires strongly convex and smooth objective functions, while our results
are valid for a more relaxed strong convexity condition and possibly non-smooth functions.
Lastly, (Patrascu and Necoara, 2018) assumes the projectability of individual sets, whereas
in our case, the constraints might not be projectable. Finally, in all these studies the non-
smooth component is assumed to be proximal, i.e. one can easily compute its proximal
operator. This assumption is restrictive, since in many applications the nonsmooth term
is also expressed as expectation or finite sum of nonsmooth functions, which individually
are proximal, but it is hard to compute the proximal operator for the whole nonsmooth
component, as e.g., in support vector machine or generalized lasso problems (Villa et al.,
2014; Rosasco et al., 2019). Moreover, all the convergence results from the previous papers
are derived separately for the smooth and the nonsmooth stochastic optimization problems.

Contributions. In this paper we remove the previous drawbacks. We propose a stochas-
tic subgradient algorithm for solving general optimization problems having the objective
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function expressed in terms of expectation operator over a sum of two terms subject to
(possibly infinite number of) functional constraints. The only assumption we require is
to have access to an unbiased estimate of the (sub)gradient and of the proximal operator
of each of these two terms and to the subgradients of the constraints. To deal with such
problems, we propose a stochastic subgradient method with random feasibility updates. At
each iteration, the algorithm takes a stochastic subgradient step aimed at only minimizing
the expected objective function, followed by a feasibility step for minimizing the feasibility
violation of the observed random constraint achieved through Polyak’s subgradient itera-
tion, see (Polyak, 1969). In doing so, we can avoid the need for projections onto the whole
set of constraints, which may be expensive computationally. The proposed algorithm is
applicable to the situation where the whole objective function and/or constraint set are not
known in advance, but they are rather learned in time through observations.

We present a general framework for the convergence analysis of this stochastic subgradi-
ent algorithm which is based on the assumptions that the objective function satisfies a
stochastic bounded gradient condition, with or without strong convexity type properties
and the subgradients of the functional constraints are bounded. These assumptions include
the most well-known classes of objective functions and of constraints analyzed in the litera-
ture: composition of a nonsmooth function and a smooth function, with or without strong
convexity, and nonsmooth Lipschitz functions, respectively. Moreover, when the objective
function satisfies some relaxed strong convexity conditions, we prove insightful stepsize-
switching rules which describe when one should switch from a constant to a decreasing
stepsize regime. Then, we prove sublinear convergence rates for the weighted averages of
the iterates in terms of expected distance to the constraint set, as well as for the expected
optimality of the function values/distance to the optimal set. Under some special conditions
we also derive linear rates. Our convergence estimates are known to be optimal for this class
of stochastic subgradient schemes for solving nonsmooth (convex) problems with functional
constraints. Besides providing a general framework for the design and analysis of stochas-
tic subgradient methods, in special cases, where complexity bounds are known for some
particular problems, our convergence results recover the existing bounds. In particular, for
problems without functional constraints we recover the complexity bounds from (Necoara,
2021) and for linearly constrained least-squares problems we get similar convergence bounds
as in (Leventhal and Lewis, 2010).

Content. In Section 2 we present our optimization problem and the main assumptions. In
Section 3 we design a stochastic subgradient projection algorithm and analyze its conver-
gence properties, while is Section 4 we adapt this algorithm to constrained least-squares
problems and derive linear convergence. Finally, in Section 5 detailed numerical simulations
are provided that support the effectiveness of our method in real problems.

2. Problem formulation and assumptions

We consider the general composite optimization problem with expected objective function
and functional constraints:

F ∗ = min
x∈Y⊆Rn

F (x) (:= E[f(x, ζ) + g(x, ζ)])

subject to h(x, ξ) ≤ 0 ∀ξ ∈ Ω2,
(1)
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where the composite objective function F has a stochastic representation in the form of
expectation w.r.t. a random variable ζ ∈ Ω1, i.e., E[f(x, ζ) + g(x, ζ)], Ω2 is an arbitrary
collection of indices and Y is a closed convex set. Here f(·, ζ), g(·, ζ) and h(·, ξ) are proper
lower-semicontinuous functions containing Y in their domains. Moreover, f(·, ζ) are possibly
nonconvex, while g(·, ζ), h(·, ξ) are assumed convex. One can notice that more commonly,
one sees a single g representing the regularizer on the parameters in the formulation (1).
However, there are also applications where one encounters terms of the form E[g(x, ζ)] or∑

ξ∈Ω2
g(x, ξ), as e.g., in Lasso problems with mixed `1 − `2 regularizers or regularizers

with overlapping groups, see e.g., (Villa et al., 2014). Multiple functional constraints,
onto which is difficult to project, can arise from robust classification in machine learning,
chance constrained problems, min-max games and control, see (Bhattacharyya et al., 2004;
Rockafellar and Uryasev, 2000; Patrascu and Necoara, 2018). For further use, we define
the following functions: F (x, ζ) = f(x, ζ) + g(x, ζ), f(x) = E[f(x, ζ)] and g(x) = E[g(x, ζ)].
Moreover, Y is assumed to be simple, i.e. one can easily compute the projection of a point
onto this set. Let us define the individual sets Xξ as Xξ = {x ∈ Rn : h(x, ξ) ≤ 0} for all
ξ ∈ Ω2. Denote the feasible set of (1) by:

X = {x ∈ Y : h(x, ξ) ≤ 0 ∀ξ ∈ Ω2} = Y ∩ (∩ξ∈Ω2Xξ) .

We assume X to be nonempty. We also assume that the optimization problem (1) has finite
optimum and we let F ∗ and X ∗ denote the optimal value and the optimal set, respectively:

F ∗ = min
x∈X

F (x) := E[F (x, ζ)], X ∗ = {x ∈ X | F (x) = F ∗} 6= ∅.

Further, for any x ∈ Rn we denote its projection onto the optimal set X ∗ by x̄, that is:

x̄ = ΠX ∗(x).

For the objective function we assume that the first term f(·, ζ) is either differentiable or
nondifferentiable function and we use, with some abuse of notation, the same notation
for the gradient or the subgradient of f(·, ζ) at x, that is ∇f(x, ζ) ∈ ∂f(x, ζ), where the
subdifferential ∂f(x, ζ) is either a singleton or a nonempty set for any ζ ∈ Ω1. The other
term g(·, ζ) is assumed to have an easy proximal operator for any ζ ∈ Ω1:

proxγg(·,ζ)(x) = arg min
y∈Rm

g(y, ζ) +
1

2γ
‖y − x‖2.

Recall that the proximal operator of the indicator function of a closed convex set becomes
the projection. We consider additionally the following assumptions on the objective function
and constraints:

Assumption 1 The (sub)gradients of F satisfy a stochastic bounded gradient condition,
that is there exist non-negative constants L ≥ 0 and B ≥ 0 such that:

B2 + L(F (x)− F ∗) ≥ E[‖∇F (x, ζ)‖2] ∀x ∈ Y. (2)

We also assume F to satisfy some regularity condition:
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Assumption 2 The function F satisfies a quadratic functional growth condition, i.e. there
exists non-negative constant µ ≥ 0 such that:

F (x)− F ∗ ≥ µ

2
‖x− x̄‖2

(
:=

µ

2
dist2(x,X ∗)

)
∀x ∈ Y. (3)

Note that when µ = 0 relation (3) holds automatically. Finally, we assume boundedness on
the subgradients of the functional constraints:

Assumption 3 The functional constraints h(·, ξ) have bounded subgradients on Y, i.e.,
there exists non-negative constant Bh > 0 such that for all ∇h(x, ξ) ∈ ∂h(x, ξ), we have:

‖∇h(x, ξ)‖ ≤ Bh ∀x ∈ dom g and ξ ∈ Ω2.

Note that our assumptions are quite general and cover the most well-known classes of
functions analyzed in the literature. In particular, Assumptions 1 and 2, related to the
objective function, covers the class of non-smooth Lipschitz functions and composition of a
(potentially) non-smooth function and a smooth function, with or without strong convexity,
as the following examples show.

Example 1 [Non-smooth (Lipschitz) functions satisfy Assumption 1]: Assume that the
functions f and g have bounded (sub)gradients:

‖∇f(x, ζ)‖ ≤ Bf and ‖∇g(x, ζ)‖ ≤ Bg ∀x ∈ Y.

Then, obviously Assumption 1 holds with L = 0 and B2 = 2B2
f + 2B2

g .

Example 2 [Smooth (Lipschitz gradient) functions satisfy Assumption 1]: Condition (2)
includes the class of functions formed as a sum of two terms, f(·, ζ) having Lipschitz con-
tinuous gradient and g(·, ζ) having bounded subgradients, and Y bounded. Indeed, let us
assume that f(·, ζ) has Lipschitz continuous gradient, i.e. there exists Lf (ζ) > 0 such that:

‖∇f(x, ζ)−∇f(x̄, ζ)‖ ≤ Lf (ζ)‖x− x̄‖ ∀x ∈ Y.

Using standard arguments (see Theorem 2.1.5 in (Nesterov, 2018)), we have:

f(x, ζ)− f(x̄, ζ) ≥ 〈∇f(x̄, ζ), x− x̄〉+
1

2Lf (ζ)
‖∇f(x, ζ)−∇f(x̄, ζ)‖2.

Assuming g(·, ζ) convex, then adding g(x, ζ) − g(x̄, ζ) ≥ 〈∇g(x̄, ζ), x − x̄〉 in the previous
inequality, where ∇g(x̄, ζ) ∈ ∂g(x̄, ζ), we get:

F (x, ζ)− F (x̄, ζ) ≥ 〈∇F (x̄, ζ), x− x̄〉+
1

2Lf (ζ)
‖∇f(x, ζ)−∇f(x̄, ζ)‖2,

where we used that ∇F (x̄, ζ) = ∇f(x̄, ζ) +∇g(x̄, ζ) ∈ ∂F (x̄, ζ). Taking expectation w.r.t.
ζ and assuming that the set Y is bounded, with the diameter D, then after using Cauchy-
Schwartz inequality, we get (we also assume Lf (ζ) ≤ Lf for all ζ):

F (x)− F ∗ ≥ 1

2Lf
E[‖∇f(x, ζ)−∇f(x̄, ζ)‖2]−D‖∇F (x̄)‖ ∀x ∈ Y.
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Therefore, for any ∇g(x, ζ) ∈ ∂g(x, ζ), we have:

E[‖∇F (x, ζ)‖2] = E[‖∇f(x, ζ)−∇f(x̄, ζ) +∇g(x, ζ) +∇f(x̄, ζ)‖2]

≤ 2E[‖∇f(x, ζ)−∇f(x̄, ζ)‖2] + 2E[‖∇g(x, ζ) +∇f(x̄, ζ)‖2]

≤ 4Lf (F (x)− F ∗) + 4LfD‖∇F (x̄)‖+ 2E[‖∇g(x, ζ) +∇f(x̄, ζ)‖2].

Assuming now that the regularization functions g have bounded subgradients on Y, i.e.,
‖∇g(x, ζ)‖ ≤ Bg, then the bounded gradient condition (2) holds on on Y with:

L = 4Lf and B2 = 4

(
B2
g + max

x̄∈X ∗

(
E[‖∇f(x̄, ζ)‖2] +DLf‖∇F (x̄)‖

))
.

Note that B2 is finite, since the optimal set X ∗ is compact (recall that in this example Y
is assumed bounded). Further, many practical problems satisfy the quadratic functional
growth condition (3), the most relevant one is given next.

Example 3 [Composition between a strongly convex function and a linear map satisfy
Assumption 2]: Assume F (x) = f̂(ATx) + g(x), where f̂ is a strongly convex function
with constant σf > 0, A is a general nonzero matrix of appropriate dimension and g is a
polyhedral function (i.e., the epigraph of g is a polyhedral set). Assume also that index set
Ω1 is finite and h(·, ζ) are also polyhedral functions. Then, the quadratic functional growth
condition (3) holds on any sublevel set, that is for any M > 0 there exists µ(M) > 0 such
that (Necoara et al., 2019):

F (x)− F ∗ ≥ µ(M)

2
‖x− x̄‖2 ∀x ∈ X : F (x)− F ∗ ≤M.

Quadratic functional growth (3) is a relaxation of the well-known strong convexity notion,
see (Necoara et al., 2019) for a detailed discussion. Clearly, any strongly convex function F
satisfies (3). Moreover, Assumption 3, related to the functional constraints, covers the class
of nonsmooth Lipschitz functions. Finally, note that Assumption 2 may look contradictory
with Example 1 when F is convex, since the following relations need to hold:

µ

2
‖x− x̄‖2 ≤ F (x)− F (x̄) ≤ 〈∇F (x), x− x̄〉 ≤ BF ‖x− x̄‖ ∀x ∈ Y,

where the second inequality follows from the convexity of F and the third one from the
Cauchy-Schwartz inequality and boundedness of the subgradients of F (according to Ex-
ample 1). This implies that ‖x − x̄‖ ≤ 2BF /µ for any x ∈ Y. Note that this inequality is
always valid provided that the set Y is compact and our optimization model (1) allows us
to impose such an assumption on the set Y.

Finally, we also impose some regularity condition for the constraints.

Assumption 4 The functional constraints satisfy a regularity condition, i.e., there exists
non-negative constant c > 0 such that:

dist2(y,X ) ≤ c · E
[
(h(y, ξ))2

+

]
∀y ∈ dom g. (4)
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Note that this assumption holds e.g., when the index set Ω2 is arbitrary and the feasible
set X has an interior point, see (Polyak, 2001), or when the feasible set is polyhedral, see
relation (22) below. However, Assumption (4) holds for more general sets, e.g., when a
strengthened Slater condition holds for the collection of convex functional constraints, such
as the generalized Robinson condition, as detailed in Corollary 3 of (Lewis and Pang, 1998).

3. Stochastic subgradient projection algorithm

Given the iteration counter k, we consider independent random variables ζk and ξk sampled
from Ω1 and Ω2 according to probability distributions P1 and P2, respectively. Then, we
define the following stochastic subgradient projection algorithm, where at each iteration we
perform a stochastic proximal (sub)gradient step aimed at minimizing the expected com-
posite objective function and then a subsequent subgradient step minimizing the feasibility
violation of the observed random constraint (we use the convention 0/0 = 0):

Algorithm 1 (SSP):
Choose x0 ∈ Y and stepsizes αk > 0 and β ∈ (0, 2)
For k ≥ 0 repeat:

Sample independently ζk ∼ P1 and ξk ∼ P2 and update :

vk = proxαkg(·,ζk) (xk − αk∇f(xk, ζk)) (5)

zk = vk − β
(h(vk, ξk))+

‖∇h(vk, ξk)‖2
∇h(vk, ξk) (6)

xk+1 = ΠY(zk). (7)

Here, αk > 0 and β > 0 are deterministic stepsizes and (x)+ = max{0, x}. Note that
vk represents a stochastic proximal (sub)gradient step (or a stochastic forward-backward
step) at xk for the expected composite objective function F (x) = E[f(x, ζ) + g(x, ζ)]. Note
that the optimality step selects a random pair of functions (f(xk, ζk), g(xk, ζk)) from the
composite objective function F according to the probability distribution P1, i.e., the index
variable ζk with values in the set Ω1. Also, we note that the random feasibility step selects
a random constraint h(·, ξk) ≤ 0 from the collection of constraints set according to the
probability distribution P2, independently from ζk, i.e. the index variable ξk with values in
the set Ω2. The vector ∇h(vk, ξk) is chosen as:

∇h(vk, ξk) =

{
∇h(vk, ξk) ∈ ∂((h(vk, ξk))+) if (h(vk, ξk))+ > 0

sh 6= 0 if (h(vk, ξk))+ = 0,

where sh ∈ Rn is any nonzero vector. If (h(vk, ξk))+ = 0, then for any choice of nonzero
sh, we have zk = vk. Note that the feasibility step (6) has the special form of the Polyak’s
subgradient iteration, see e.g., (Polyak, 1969). Moreover, when β = 1, zk is the projection
of vk onto the hyperplane:

Hvk,ξk = {z : h(vk, ξk) +∇h(vk, ξk)
T (z − vk) ≤ 0},
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that is zk = ΠHvk,ξk (vk) for β = 1. Indeed, if vk ∈ Hvk,ξk , then (h(vk, ξk))+ = 0 and the
projection is the point itself, i.e., zk = vk. On the other hand, if vk /∈ Hvk,ξk , then the
projection of vk onto Hvk,ξk reduces to the projection onto the corresponding hyperplane:

zk = vk −
h(vk, ξk)

‖∇h(vk, ξk)‖2
∇h(vk, ξk).

Combining these two cases, we finally get our update (6) . Note that when the feasible set
of optimization problem (1) is described by (infinite) intersection of simple convex sets, see
e.g. (Patrascu and Necoara, 2018; Bianchi et al., 2019; Xu, 2020; Wang et al., 2015):

X = Y ∩ (∩ξ∈Ω2Xξ) ,

where each set Xξ admits an easy projection, then one can choose the following functional
representation in problem (1):

h(x, ξ) = (h(x, ξ))+ = dist(x,Xξ) ∀ξ ∈ Ω2.

One can easily notice that this function is convex, nonsmooth and with bounded subgradi-
ents, since we have (Mordukhovich and Nam, 2005):

x−ΠXξ(x)

‖x−ΠXξ(x)‖
∈ ∂h(x, ξ).

In this case, step (6) in SSP algorithm becomes a usual random projection step:

zk = vk − β(vk −ΠXξk (vk)).

Hence, our formulation is more general than (Patrascu and Necoara, 2018; Bianchi et al.,
2019; Xu, 2020; Wang et al., 2015), as it allows to also deal with constraints that might not be
projectable, but one can easily compute a subgradient of h. We mention also the possibility
of performing iterations in parallel in steps (5) and (6) of SSP algorithm. However, here we
do not consider this case. A thorough convergence analysis of minibatch iterations when the
objective function is deterministic and strongly convex can be found in (Nedich and Necoara,
2019). For the analysis of SSP algorithm, let us define the stochastic (sub)gradient mapping
(for simplicity we omit its dependence on stepsize α):

S(x, ζ) = α−1
(
x− proxαg(·,ζ)(x− α∇f(x, ζ))

)
.

Then, it follows immediately that the stochastic proximal (sub)gradient step (5) can be
written as:

vk = xk − αkS(xk, ζk).

Moreover, from the optimality condition of the prox operator it follows that there exists
∇g(vk, ζk) ∈ ∂g(vk, ζk) such that:

S(xk, ζk) = ∇f(xk, ζk) +∇g(vk, ζk).
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Let us also recall a basic property of the projection onto a closed convex set X ⊆ Rn, see
e.g., (Nedich and Necoara, 2019):

‖ΠX (v)− y‖2 ≤ ‖v − y‖2 − ‖ΠX (v)− v‖2 ∀v ∈ Rn and y ∈ X . (8)

Define also the filtration:

F[k] = {ζ0, · · · , ζk, ξ0, · · · , ξk}.

The next lemma provides a key descent property for the sequence vk and for the proof we
use as main tool the stochastic (sub)gradient mapping S(·).

Lemma 5 Let f(·, ζ) and g(·, ζ) be convex functions. Additionally, assume that the bounded
gradient condition from Assumption 1 holds. Then, for any k ≥ 0 and stepsize αk > 0, we
have the following recursion:

E[‖vk − v̄k‖2] ≤ E[‖xk − x̄k‖2]− αk(2− αkL)E[F (xk)− F (x̄k)] + α2
kB

2. (9)

Proof Recalling that v̄k = ΠX ∗(vk) and x̄k = ΠX ∗(xk), from the definition of vk and using
(8) for y = x̄k ∈ X ∗ and v = vk, we get:

‖vk − v̄k‖2
(8)

≤ ‖vk − x̄k‖2 = ‖xk − x̄k − αkS(xk, ζk)‖2

= ‖xk − x̄k‖2 − 2αk〈S(xk, ζk), xk − x̄k〉+ α2
k‖S(xk, ζk)‖2 (10)

= ‖xk − x̄k‖2 − 2αk〈∇f(xk, ζk) +∇g(vk, ζk), xk − x̄k〉+ α2
k‖S(xk, ζk)‖2.

Now, we refine the second term. First, from convexity of f we have:

〈∇f(xk, ζk), xk − x̄k〉 ≥ f(xk, ζk)− f(x̄k, ζk).

Then, from convexity of g(·, ζ) and the definition of the gradient mapping S(·, ζ), we have:

〈∇g(vk, ζk), xk − x̄k〉 = 〈∇g(vk, ζk), xk − vk〉+ 〈∇g(vk, ζk), vk − x̄k〉
≥ αk‖S(xk, ζk)‖2 − αk〈∇f(xk, ζk),S(xk, ζk)〉+ g(vk, ζk)− g(x̄k, ζk)

≥ αk‖S(xk, ζk)‖2 − αk〈∇f(xk, ζk) +∇g(xk, ζk),S(xk, ζk)〉+ g(xk, ζk)− g(x̄k, ζk).

Replacing the previous two inequalities in (10), we obtain:

‖vk − v̄k‖2 ≤ ‖xk − x̄k‖2 − 2αk (f(xk, ζk) + g(xk, ζk)− f(x̄k, ζk)− g(x̄k, ζk))

+ 2α2
k〈∇f(xk, ζk) +∇g(xk, ζk),S(xk, ζk)〉 − α2

k‖S(xk, ζk)‖2.

Using that 2〈u, v〉 − ‖v‖2 ≤ ‖u‖2 for all v ∈ Rn, that F (xk, ζk) = f(xk, ζk) + g(xk, ζk) and
∇F (xk, ζk) = ∇f(xk, ζk) +∇g(xk, ζk) ∈ ∂F (xk, ζk), we further get:

‖vk − v̄k‖2 ≤ ‖xk − x̄k‖2 − 2αk (F (xk, ζk)− F (x̄k, ζk)) + α2
k‖∇F (xk, ζk)‖2.

10
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Since vk depends on F[k−1]∪{ζk}, not on ξk, and the stepsize αk does not depend on (ζk, ξk),
then from basic properties of conditional expectation, we have:

Eζk [‖vk − v̄k‖2|F[k−1]]

≤ ‖xk − x̄k‖2 − 2αkEζk [F (xk, ζk)− F (x̄k, ζk)|F[k−1]] + α2
kEζk [‖∇F (xk, ζk)‖2|F[k−1]]

= ‖xk − x̄k‖2 − 2αk (F (xk)− F (x̄k)) + α2
kEζk [‖∇F (xk, ζk)‖2|F[k−1]]

≤ ‖xk − x̄k‖2 − 2αk (F (xk)− F (x̄k)) + α2
k

(
B2 + L (F (xk)− F (x̄k))

)
= ‖xk − x̄k‖2 − αk(2− αkL) (F (xk)− F (x̄k)) + α2

kB
2,

where in the last inequality we used xk ∈ Y and the stochastic bounded gradient inequality
from Assumption 1. Now, taking expectation w.r.t. F[k−1] we get:

E[‖vk − v̄k‖2] ≤ E[‖xk − x̄k‖2]− αk(2− αkL)E[(F (xk)− F (x̄k))] + α2
kB

2,

which concludes our statement.

Next lemma gives a relation between xk and vk−1 (see also (Nedich and Necoara, 2019)).

Lemma 6 Let h(·, ξ) be convex functions. Additionally, Assumption 3 holds. Then, for
any y ∈ Y such that (h(y, ξk−1))+ = 0 the following relation holds:

‖xk − y‖2 ≤ ‖vk−1 − y‖2 − β(2− β)

[
(h(vk−1, ξk−1))2

+

B2
h

]
.

Proof Consider any y ∈ Y such that (h(y, ξk−1))+ = 0. Then, using the nonexpansive
property of the projection and the definition of zk−1, we have:

‖xk − y‖2 = ‖ΠY(zk−1)− y‖2 ≤ ‖zk−1 − y‖2

= ‖vk−1 − y − β
(h(vk−1, ξk−1))+

‖∇h(vk−1, ξk−1)‖2
∇h(vk−1, ξk−1)‖2

= ‖vk−1 − y‖2 + β2 (h(vk−1, ξk−1))2
+

‖∇h(vk−1, ξk−1)‖2

− 2β
(h(vk−1, ξk−1))+

‖∇h(vk−1, ξk−1)‖2
〈vk−1 − y,∇h(vk−1, ξk−1)〉

≤ ‖vk−1 − y‖2 + β2 (h(vk−1, ξk−1))2
+

‖∇h(vk−1, ξk−1)‖2
− 2β

(h(vk−1, ξk−1))+

‖∇h(vk−1, ξk−1)‖2
(h(vk−1, ξk−1))+,

where the last inequality follows from convexity of (h(·, ξ))+ and our assumption that
(h(y, ξk−1))+ = 0. After rearranging the terms and using that vk−1 ∈ dom g, we get:

‖xk − y‖2 ≤ ‖vk−1 − y‖2 − β(2− β)

[
(h(vk−1, ξk−1))2

+

‖∇h(vk−1, ξk−1)‖2

]
Assumption 3
≤ ‖vk−1 − y‖2 − β(2− β)

[
(h(vk−1, ξk−1))2

+

B2
h

]
,

which concludes our statement.

In the next sections, based on the previous two lemmas, we derive convergence rates for
SSP algorithm depending on the (convexity) properties of f(·, ζ).

11
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3.1 Convergence analysis: convex objective function

In this section we consider that the functions f(·, ζ), g(·, ζ) and h(·, ξ) are convex. First,
it is easy to prove that cB2

h > 1 (we can always choose c sufficiently large such that this
relation holds), see also (Nedich and Necoara, 2019). For simplicity of the exposition let us
introduce the following notation:

Cβ,c,Bh :=
β(2− β)

cB2
h

(
1− β(2− β)

cB2
h

)−1

> 0.

Let us also define the average sequence generated by the algorithm SSP:

x̂k =

∑k
j=1 αjxj

Sk
, where Sk =

k∑
j=1

αj .

The next theorem derives sublinear convergence rates for the average sequence x̂k.

Theorem 7 Let f(·, ζ), g(·, ζ) and h(·, ξ) be convex functions. Additionally, Assumptions
1, 3 and 4 hold. Further, assume a nonincreasing positive stepsize sequence αk, with α0 ∈(
0, 1

L

)
, satisfying

∑
k≥0 αk = ∞ and

∑
k≥0 α

2
k < ∞, and stepsize β ∈ (0, 2). Then, we

have the following convergence rates for the average sequence x̂k in terms of optimality and
feasibility violation for problem (1):

E [F (x̂k)− F ∗] ≤
‖v0 − v0‖2

Sk
+
B2
∑k

j=1 α
2
j

Sk
,

E
[
dist2(x̂k,X )

]
≤ α0‖v0 − v0‖2

Cβ,c,Bh · Sk
+
α0B

2
∑k

j=1 α
2
j

Cβ,c,Bh · Sk
.

Proof Recall that from Lemma 5, we have:

E
[
‖vk − v̄k‖2

]
≤ E

[
‖xk − x̄k‖2

]
− αk(2− αkL)E [F (xk)− F (x̄k)] + α2

kB
2. (11)

Now, for y = v̄k−1 ∈ X ∗ ⊆ X ⊆ Y we have that (h(v̄k−1, ξk−1))+ = 0, and thus using
Lemma 6, we get:

‖xk − x̄k‖2
(8)

≤ ‖xk − v̄k−1‖2 ≤ ‖vk−1 − v̄k−1‖2 − β(2− β)

[
(h(vk−1, ξk−1))2

+

B2
h

]
.

Taking conditional expectation on ξk−1 given F[k−1], we get:

Eξk−1
[‖xk − x̄k‖2|F[k−1]] ≤ ‖vk−1 − v̄k−1‖2 − β(2− β)Eξk−1

[
(h(vk−1, ξk−1))2

+

B2
h

|F[k−1]

]
(4)

≤ ‖vk−1 − v̄k−1‖2 −
β(2− β)

cB2
h

dist2(vk−1,X ).

Taking now full expectation, we obtain:

E[‖xk − x̄k‖2] ≤ E[‖vk−1 − v̄k−1‖2]− β(2− β)

cB2
h

E[dist2(vk−1,X )], (12)

12
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and using this relation in (11), we get:

E
[
‖vk − v̄k‖2

]
+
β(2− β)

cB2
h

E
[
dist2(vk−1,X )

]
+ αk(2− αkL)E [F (xk)− F (x̄k)]

≤ E[‖vk−1 − v̄k−1‖2] + α2
kB

2. (13)

Similarly, for y = ΠX (vk−1) ⊆ X ⊆ Y we have that (h(ΠX (vk−1), ξk−1))+ = 0, and thus
using again Lemma 6, we obtain:

dist2(xk,X ) = ‖xk −ΠX (xk)‖2 ≤ ‖xk −ΠX (vk−1)‖2

≤ dist2(vk−1,X )− β(2− β)
(h(vk−1, ξk−1))2

+

B2
h

.

Taking conditional expectation on ξk−1 given F[k−1], we get:

Eξk−1

[
dist2(xk,X )|F[k−1]

]
≤ dist2(vk−1,X )− β(2− β)

B2
h

Eξk−1

[
(h(vk−1, ξk−1))2

+|F[k−1]

]
(4)

≤
(

1− β(2− β)

cB2
h

)
dist2(vk−1,X ).

After taking full expectation, we get:

E
[
dist2(xk,X )

]
≤
(

1− β(2− β)

cB2
h

)
E
[
dist2(vk−1,X )

]
. (14)

Using (14) in (13), we obtain:

E
[
‖vk − v̄k‖2

]
+
β(2− β)

cB2
h

(
1− β(2− β)

cB2
h

)−1

E
[
dist2(xk,X )

]
(15)

+ αk(2− αkL)E [F (xk)− F (x̄k)] ≤ E
[
‖vk−1 − v̄k−1‖2

]
+ α2

kB
2.

Summing (15) from 1 to k , we get:

E
[
‖vk − v̄k‖2

]
+ Cβ,c,Bh

k∑
j=1

E
[
dist2(xj ,X )

]
+

k∑
j=1

αj(2− αjL)E [F (xj)− F ∗] ≤ ‖v0 − v̄0‖2 +B2
k∑
j=1

α2
j .

Since α0 ∈ (0, 1/L) and αj ≤ α0, then αj ∈ (0, 1/L) and 2−αjL ≥ 1 for all j ≥ 0. Moreover,
since αj is a nonincreasing sequence, we have αj/α0 ≤ 1. Thus, we obtain:

E
[
‖vk − v̄k‖2

]
+
Cβ,c,Bh
α0

k∑
j=1

αjE
[
dist2(xj ,X )

]
+

k∑
j=1

αjE [F (xj)− F ∗]

≤ ‖v0 − v̄0‖2 +B2
k∑
j=1

α2
j .

13
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Using the definition of the average sequence x̂k and the convexity of F and of dist2(·,X ), we
further get sublinear rates in expectation for the average sequence in terms of optimality:

E [F (x̂k)− F ∗] ≤
k∑
j=1

αj
Sk

E [F (xj)− F ∗] ≤
‖v0 − v̄0‖2

Sk
+B2

∑k
j=1 α

2
j

Sk
,

and feasibility violation:

Cβ,c,Bh
α0

E
[
dist2(x̂k,X )

]
≤
Cβ,c,Bh
α0

k∑
j=1

αj
Sk

E
[
dist2(xj ,X )

]
≤ ‖v0 − v̄0‖2

Sk
+B2

∑k
j=1 α

2
j

Sk
.

These conclude our statements.

Note that for stepsize αk = α0
(k+1)γ , with γ ∈ [1/2, 1), we have:

Sk =
k∑
j=1

αj ≥ O(k1−γ) and
k∑
j=1

α2
j ≤

{
O(1) if γ > 1/2

O(ln(k)) if γ = 1/2.

Consequently for γ ∈ (1/2, 1) we obtain from Theorem 7 the following sublinear convergence
rates:

E [(F (x̂k)− F ∗)] ≤
‖v0 − v̄0‖2

k1−γ +
B2

k1−γ ,

E
[
dist2(x̂k,X )

]
≤ α0‖v0 − v̄0‖2

Cβ,c,Bh · k1−γ +
α0B

2

Cβ,c,Bh · k1−γ .

For the particular choice γ = 1/2, if we neglect the logarithmic terms, we get from Theorem
7 sublinear convergence rates of order:

E [(F (x̂k)− F ∗)] ≤ O
(

1

k1/2

)
and E

[
dist2(x̂k,X )

]
≤ O

(
1

k1/2

)
.

It is important to note that when B = 0, from Theorem 7 improved rates can be derived for
SSP algorithm in the convex case. More precisely, for stepsize αk = α0

(k+1)γ , with γ ∈ [0, 1),

we obtain convergence rates for x̂k in optimality and feasibility violation of order O
(

1
k1−γ

)
.

In particular, for γ = 0 (i.e. constant stepsize αk = α0 ∈ (0, 1/L) for all k ≥ 0) the previous
convergence estimates yield rates of order O

(
1
k

)
. From our best knowledge these rates are

new for stochastic subgradient methods applied on the class of optimization problems (1).

3.2 Convergence analysis: quadratic growth convex objective function

In this section we additionally assume the quadratic growth inequality from Assumption
2. The next lemma derives an improved recurrence relation for the sequence vk under the

14
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quadratic growth inequality. Our proof below is different from the one in (Nedich and
Necoara, 2019), since that paper makes use heavily on the strong convexity condition, the
uniqueness of the optimum point, and the boundedness of the subgradients of the objective
function, while here all these conditions do not hold anymore.

Lemma 8 Let f(·, ζ), g(·, ζ) and h(·, ξ) be convex functions. Additionally, Assumptions
1–4 hold. Define k0 = d8L

µ e, β ∈ (0, 2), θL,µ=1−µ/(2L) and αk= 4
µγk, where γk is given by:

γk =

{ µ
4L if k ≤ k0

2
k+1 if k > k0.

Then, the iterates of SSP algorithm satisfy the following recurrence:

E[‖vk0 − v̄k0‖2] ≤


B2

L2 if θL,µ ≤ 0

θk0L,µ‖v0 − v̄0‖2 +
1−θk0L,µ
1−θL,µ

B2

L2 if θL,µ > 0,

E[‖vk − v̄k‖2] + γkE[‖ΠX (xk)− x̄k‖2] +
1

3
Cβ,c,BhE[dist2(xk,X )]

≤ (1− γk)E[‖vk−1 − v̄k−1‖2] +
16

µ2
γ2
kB

2 ∀k > k0.

Proof One can easily see that our stepsize can be written equivalently as αk = min
(

1
L ,

8
µ(k+1)

)
.

Since for this choice of the stepsize we have αk ≤ 1
L , then (2− αkL) ≥ 1 and using this in

Lemma 5 combined with Assumption 2, we get:

E[‖vk − v̄k‖2] ≤ E[‖xk − x̄k‖2]− αkE[(F (xk)− F (x̄k))] + α2
kB

2

Assumption 2
≤ E[‖xk − x̄k‖2]− µαk

2
E[‖xk − x̄k‖2] + α2

kB
2. (16)

From (12), we also have:

E[‖xk − x̄k‖2] ≤ E[‖vk−1 − v̄k−1‖2]− β(2− β)
E[dist2(vk−1,X )]

cB2
h

(14)

≤ E[‖vk−1 − v̄k−1‖2]− β(2− β)

cB2
h

(
1− β(2− β)

cB2
h

)−1

E[dist2(xk,X )]

= E[‖vk−1 − v̄k−1‖2]− Cβ,c,BhE[dist2(xk,X )]. (17)

For k ≤ k0, we have αk = 1
L and combining (16) with (17), we obtain:

E[‖vk − v̄k‖2] ≤
(

1− µ

2L

)
E[‖xk − x̄k‖2] +

B2

L2

≤ max

((
1− µ

2L

)
E[‖xk − x̄k‖2] +

B2

L2
,
B2

L2

)
≤ max

((
1− µ

2L

)
E[‖vk−1 − v̄k−1‖2] +

B2

L2
,
B2

L2

)
.
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Using the geometric sum formula and recalling that θL,µ = 1− µ/(2L), we obtain the first
statement. Further, for k > k0, from relation (16), we have:

E[‖vk − v̄k‖2] = E[‖xk − x̄k‖2]−
(µαk

4
+
µαk

4

)
E[‖xk − x̄k‖2] + α2

kB
2

=
(

1− µαk
4

)
E[‖xk − x̄k‖2]−

(µαk
4

)
E[‖xk − x̄k‖2] + α2

kB
2.

Further, if we take v = xk ∈ Rn and y = x̄k ∈ X ∗ ⊂ X in (8), we have:

‖ΠX (xk)− x̄k‖2 ≤ ‖xk − x̄k‖2

and using this in the previous recurrence, we get:

E[‖vk − v̄k‖2] ≤
(

1− µαk
4

)
E[‖xk − x̄k‖2]− µαk

4
E[‖ΠX (xk)− x̄k‖2] + α2

kB
2.

Combining this recurrence with (17) and using that 0 ≤ 1 − µαk/4 ≤ 1 for all k > k0, we
further obtain:

E[‖vk − v̄k‖2] +
µαk

4
E[‖ΠX (xk)− x̄k‖2]

≤
(

1− µαk
4

)
E[‖vk−1 − v̄k−1‖2]−

(
1− µαk

4

)
Cβ,c,BhE[dist2(xk,X )] + α2

kB
2.

After rearranging the terms, we have:

E[‖vk − v̄k‖2] +
µαk

4
E[‖ΠX (xk)− x̄k‖2] +

(
1− µαk

4

)
Cβ,c,BhE[dist2(xk,X )]

≤
(

1− µαk
4

)
E[‖vk−1 − v̄k−1‖2] + α2

kB
2.

Since k > k0 = d8L
µ e and αk = 4

µγk, we get:

E[‖vk − v̄k‖2] + γkE[‖ΠX (xk)− x̄k‖2] + (1− γk)Cβ,c,BhE[dist2(xk,X )]

≤ (1− γk)E[‖vk−1 − v̄k−1‖2] +
16

µ2
γ2
kB

2 ∀k > k0.

Note that in this case γk = 2/(k + 1) is a decreasing sequence, an thus we have:

1− γk =
k − 1

k + 1
≥ 1

3
∀k ≥ 2.

Using this bound in the previous recurrence, we also get the second statement.

Now, we are ready to derive sublinear rates when we assume additionally a quadratic growth
on the objective function. Let us define for k ≥ k0 + 1 the sum:

S̄k =
k∑

j=k0+1

(j + 1)2 ∼ O(k3 − k3
0),
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and the corresponding average sequences:

x̂k =

∑k
j=k0+1(j + 1)2xj

S̄k
, x̂∗k = S̄−1

k

k∑
j=k0+1

(j + 1)2x̄j ∈ X ∗

and ŵk =

∑k
j=k0+1(j + 1)2ΠX (xj)

S̄k
∈ X .

Theorem 9 Let f(·, ζ), g(·, ζ) and h(·, ξ) be convex functions. Additionally, Assumptions

1–4 hold. Further, consider stepsize αk = min
(

1
L ,

8
µ(k+1)

)
and β ∈ (0, 2). Then, for k > k0,

where k0 = d8L
µ e, we have the following sublinear convergence rates for the average sequence

x̂k in terms of optimality and feasibility violation for problem (1) (we keep only the dominant
terms):

E
[
dist2(x̂k,X ∗)

]
≤ O

(
B2

µ2Cβ,c,Bh(k2 + kk0 + k2
0)

+
B2

µ2(k + 1)

)
,

E
[
dist2(x̂k,X )

]
≤ O

(
B2

µ2Cβ,c,Bh(k2 + kk0 + k2
0)

)
.

Proof From Lemma 8, the following recurrence is valid for any k > k0:

E[‖vk − v̄k‖2] + γkE[‖ΠX (xk)− x̄k‖2] +
1

3
Cβ,c,BhE[dist2(xk,X )]

≤ (1− γk)E[‖vk−1 − v̄k−1‖2] +
16

µ2
γ2
kB

2.

From definition of γk = 2
k+1 and multiplying the whole inequality with (k + 1)2, we get:

(k + 1)2E[‖vk − v̄k‖2] + 2(k + 1)E[‖ΠX (xk)− x̄k‖2] +
Cβ,c,Bh

3
(k + 1)2E[dist2(xk,X )]

≤ k2E[‖vk−1 − v̄k−1‖2] +
64

µ2
B2.

Summing this inequality from k0 + 1 to k, we get:

(k + 1)2E[‖vk − v̄k‖2] + 2
k∑

j=k0+1

(j + 1)E[‖ΠX (xj)− x̄j‖2]

+
Cβ,c,Bh

3

k∑
j=k0+1

(j + 1)2E[dist2(xj ,X )]

≤ (k0 + 1)2E[‖vk0 − v̄k0‖2] +
64

µ2
B2(k − k0).

By linearity of the expectation operator and using convexity of the norm, we get:

(k + 1)2E[‖vk − v̄k‖2] +
2S̄k

(k + 1)
E[‖ŵk − x̂∗k‖2] +

S̄kCβ,c,Bh
3

E[‖ŵk − x̂k‖2]

≤ (k0 + 1)2E[‖vk0 − v̄k0‖2] +
64

µ2
B2(k − k0),
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After some simple calculations and keeping only the dominant terms, we get the following:

E[‖ŵk − x̂∗k‖2] ≤ O
(

B2

µ2(k + 1)

)
,

E[‖ŵk − x̂k‖2] ≤ O
(

B2

µ2Cβ,c,Bh(k2 + kk0 + k2
0)

)
.

Since ŵk ∈ X , we get the following convergence rate for the average sequence x̂k in terms
of feasibility violation:

E[dist2(x̂k,X )] ≤ E[‖ŵk − x̂k‖2] ≤ O
(

B2

µ2Cβ,c,Bh(k2 + kk0 + k2
0)

)
.

Furthermore, since x̂∗k ∈ X ∗ and using the inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, we also get
convergence rate for the average sequence x̂k in terms of optimality:

E[dist2(x̂k,X ∗)] ≤ E[‖x̂k − x̂∗k‖2] ≤ 2E[‖ŵk − x̂∗k‖2] + 2E[‖ŵk − x̂k‖2]

≤ O
(

B2

µ2Cβ,c,Bh(k2 + kk0 + k2
0)

+
B2

µ2(k + 1)

)
.

This proves our statements.

Recall the expression of Cβ,c,Bh :

Cβ,c,Bh =

(
β(2− β)

cB2
h

)(
1− β(2− β)

cB2
h

)−1

=

(
β(2− β)

cB2
h − β(2− β)

)
.

For the particular choice of the stepsize β = 1, we have:

C1,c,Bh =

(
1

cB2
h − 1

)
> 0,

since we always have cB2
h > 1. Using this expression in the convergence rates of Theorem

9, we obtain:

E
[
dist2(x̂k,X )

]
≤ O

(
B2(cB2

h − 1)

µ2(k2 + kk0 + k2
0)

)
,

E
[
dist2(x̂k,X ∗)

]
≤ O

(
B2(cB2

h − 1)

µ2(k2 + kk0 + k2
0)

+
B2

µ2(k + 1)

)
.

We can easily notice from Lemma 8 that for B = 0 we can get better convergence rates.
More specifically, for this particular case, taking constant stepsize, we get linear rates for
the last iterate xk in terms of optimality and feasibility violation. We state this result in
the next corollary.

Corollary 10 Under the assumptions of Theorem 9, with B = 0, the last iterate xk gen-
erated by SSP algorithm with constant stepsize αk ≡ α < min(1/L, 2/µ) converges linearly
in terms of optimality and feasibility violation.
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Proof When B = 0 and the stepsize satisfies αk = α < min(1/L, 2/µ), if we combine (16)
with (17), we obtain:

E[‖xk+1 − x̄k+1‖2] + Cβ,c,BhE[dist2(xk+1,X )] ≤ E[‖vk − v̄k‖2] ≤
(

1− µα

2

)
E[‖xk − x̄k‖2].

Then, since 1− µα/2 ∈ (0, 1), we get immediately that:

E[‖xk − x̄k‖2] ≤
(

1− µα

2

)k
‖x0 − x̄0‖2,

Cβ,c,BhE[dist2(xk,X )] ≤
(

1− µα

2

)k
‖x0 − x̄0‖2,

which proves our statements.

Note that in (Necoara, 2021) it has been proved that stochastic first order methods are
converging linearly on optimization problems of the form (1) without functional constraints
and satisfying Assumption 1 with B = 0. This paper extends this result to a stochastic
subgradient projection method on optimization problems with functional constraints (1)
satisfying Assumption 1 with B = 0. To the best of our knowledge, these convergence
rates are new for stochastic subgradient projection methods applied on the general class
of optimization problems (1). In Section 4 we provide an example of an optimization
problem with functional constraints, that is the constrained linear least-squares, which
satisfies Assumption 1 with B = 0.

3.3 Convergence analysis: strongly quasi-convex objective function

In this section, we consider for our problem (1) that g = 0 and f(·, ζ) are nonconvex
functions. Hence, we have, f(x) = E[f(x, ζ)], i.e. F (x) = f(x). In these settings the
update for vk takes the form vk = xk − αk∇f(xk, ζk). We also replace Assumption 2 with
the following strongly quasi-convex condition (see Necoara et al. (2019)):
Assumption 2’ The function f satisfies a strongly quasi-convex condition, i.e. there exists
non-negative constant µ > 0 such that:

f(x̄) ≥ f(x) + 〈∇f(x), x̄− x〉+
µ

2
‖x̄− x‖2 ∀x ∈ Y. (18)

In (Necoara et al., 2019) it has been proved that (18) is a stronger condition than the one
given in Assumption 2. In this case we can still derive a recurrence similar to Lemma 5,
without requiring f(·, ζ) to be convex functions.

Lemma 11 Let Assumptions 1 and 2’ hold and g = 0. Then, for any k ≥ 0 and stepsize
αk > 0, we have the following recursion:

E[‖vk − v̄k‖2] ≤ (1− µαk)E[‖xk − x̄k‖2]− αk(2− αkL)E[f(xk)− f(x̄k)] + α2
kB

2. (19)

Proof From the definition of vk iteration, we have:

‖vk − v̄k‖2 ≤ ‖vk − x̄k‖2 = ‖xk − x̄k − αk∇f(xk, ζk)‖2

= ‖xk − x̄k‖2 − 2αk〈∇f(xk, ζk), xk − x̄k〉+ α2
k‖∇f(xk, ζk)‖2.
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Since vk depends on F[k−1]∪{ζk}, not on ξk, and the stepsize αk does not depend on (ζk, ξk),
then from basic properties of conditional expectation, we have:

Eζk [‖vk − v̄k‖2|F[k−1]]

≤ ‖xk − x̄k‖2 − 2αkEζk [〈∇f(xk, ζk), xk − x̄k〉|F[k−1]] + α2
kEζk [‖∇f(xk, ζk)‖2|F[k−1]]

= ‖xk − x̄k‖2 − 2αk〈∇f(xk), xk − x̄k〉+ α2
kEζk [‖∇f(xk, ζk)‖2|F[k−1]]

(18)

≤ (1− µαk)‖xk − x̄k‖2 − 2αk(f(xk)− f(x̄k)) + α2
kEζk [‖∇f(xk, ζk)‖2|F[k−1]]

(2)

≤ (1− µαk)‖xk − x̄k‖2 − 2αk (f(xk)− f(x̄k)) + α2
k

(
B2 + L (f(xk)− f(x̄k))

)
= (1− µαk)‖xk − x̄k‖2 − αk(2− αkL) (f(xk)− f(x̄k)) + α2

kB
2.

Now, taking expectation w.r.t. F[k−1], we get:

E[‖vk − v̄k‖2] ≤ (1− µαk)E[‖xk − x̄k‖2]− αk(2− αkL)E[f(xk)− f(x̄k)] + α2
kB

2,

which concludes our statement.

Lemma 12 Let Assumptions 1, 2’, 3 and 4 hold and g = 0. Define k0 = d2L
µ e, β ∈ (0, 2),

θL,µ = 1− µ/L and αk = γk
µ , where γk is given by:

γk =

{ µ
L if k ≤ k0

2
k+1 if k > k0.

Then, the iterates of SSP algorithm satisfy the following recurrence:

E[‖vk0 − v̄k0‖2] ≤


B2

L2 if θL,µ ≤ 0

θk0L,µ‖v0 − v̄0‖2 +
1−θk0L,µ
1−θL,µ

B2

L2 if θL,µ > 0,

E[‖vk − v̄k‖2] +
γk
µ
E[f(xk)− f(x̄k)] +

1

3
Cβ,c,BhE[dist2(xk,X )]

≤ (1− γk)E[‖vk−1 − v̄k−1‖2] +
γ2
k

µ2
B2 ∀k > k0.

Proof One can easily see that our stepsize can be written equivalently as αk = min
(

1
L ,

2
µ(k+1)

)
.

Since for this choice of the stepsize we have αk ≤ 1
L , then (2− αkL) ≥ 1 and using this in

Lemma 11, we get:

E[‖vk − v̄k‖2] ≤ (1− µαk)E[‖xk − x̄k‖2]− αk E[f(xk)− f(x̄k)] + α2
kB

2.

For k ≤ k0, proceeding in the same manner as in Lemma 8 we get the statement with θL,µ =
1−µ/L. For k > k0, combining the last inequality with (17) and using 0 ≤ 1−µαk ≤ 1 for
all k > k0, we get:

E[‖vk − v̄k‖2] + αkE[f(xk)− f(x̄k)] + (1− µαk)Cβ,c,BhE[dist2(xk,X )]

≤ (1− µαk)E[‖vk−1 − v̄k−1‖2] + α2
kB

2.

20



Stochastic subgradient for composite convex optimization with functional constraints

Finally, using the same reasoning as in Lemma 8, we also get the second statement.

Now, we are ready to derive convergence rates also for the case when the individual functions
f(·, ζ) are nonconvex, but f is still convex. Recall that S̄k, x̂k, x̂

∗
k and ŵk have been already

introduced in Section 3.2.

Theorem 13 Let Assumptions 1, 2’, 3 and 4 hold, g = 0 and f be convex. Further,

consider stepsizes αk = min
(

1
L ,

2
µ(k+1)

)
and β ∈ (0, 2). Then, for k > k0, where k0 = d2L

µ e,
we have the following sublinear convergence rates for the average sequence x̂k in terms of
optimality and feasibility violation (keeping only the dominant terms):

E [f(x̂k)− f(x̂∗k)] ≤ O
(

B2

µ(k + 1)

)
,

E
[
dist2(x̂k,X )

]
≤ O

(
B2

µ2Cβ,c,Bh(k2 + kk0 + k2
0)

)
.

Proof From Lemma 12, the following recurrence is valid for any k > k0:

E[‖vk − v̄k‖2] +
γk
µ
E[f(xk)− f(x̄k)] +

1

3
Cβ,c,BhE[dist2(xk,X )]

≤ (1− γk)E[‖vk−1 − v̄k−1‖2] +
γ2
k

µ2
B2 ∀k > k0.

From definition of γk = 2
k+1 , we further get:

E[‖vk − v̄k‖2] +
2

µ(k + 1)
E[f(xk)− f(x̄k)] +

1

3
Cβ,c,BhE[dist2(xk,X )]

≤
(
k − 1

k + 1

)
E[‖vk−1 − v̄k−1‖2] +

4

µ2

1

(k + 1)2
B2.

Multiplying the whole inequality with (k+ 1)2, and summing the inequality from k0 + 1 to
k, we get:

(k + 1)2E[‖vk − v̄k‖2] +
2

µ

k∑
j=k0+1

(j + 1)E[f(xk)− f(x̄k)]

+
Cβ,c,Bh

3

k∑
j=k0+1

(j + 1)2E[dist2(xj ,X )]

≤ (k0 + 1)2E[‖vk0 − v̄k0‖2] +
4

µ2
B2(k − k0).

By linearity of the expectation operator and using convexity of f and of the norm, we get:

(k + 1)2E[‖vk − v̄k‖2] +
2S̄k

µ(k + 1)
E[f(x̂k)− f(x̂∗k)] +

S̄kCβ,c,Bh
3

E[‖ŵk − x̂k‖2]

≤ (k0 + 1)2E[‖vk0 − v̄k0‖2] +
4

µ2
B2(k − k0).
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After some simple calculations and keeping only the dominant terms, we get the bounds:

E[f(x̂k)− f(x̂∗k)] ≤ O
(

B2

µ(k + 1)

)
,

E[‖ŵk − x̂k‖2] ≤ O
(

B2

µ2Cβ,c,Bh(k2 + kk0 + k2
0)

)
.

Since ŵk ∈ X , we get the following convergence rate for the average sequence x̂k in terms
of feasibility violation:

E[dist2(x̂k,X )] ≤ E[‖ŵk − x̂k‖2] ≤ O
(

B2

µ2Cβ,c,Bh(k2 + kk0 + k2
0)

)
.

This proves our statements.

Note that the convergence rate in optimality from Theorem 13 is in function values, while
in Theorem 9 is in terms of distance to the optimal solution set. This is due to the fact
that we replace Assumption 2 with Assumption 2’ and we do not impose convexity on the
individual functions f(·, ζ).

4. Stochastic subgradient for constrained least-squares

In this section we consider the problem of finding a solution to a system of linear equalities
and inequalities, see also equation (11) in (Leventhal and Lewis, 2010):

find x ∈ Y : Ax = b, Cx ≤ d, (20)

where A ∈ Rm×n, C ∈ Rp×n and Y is a simple polyhedral set. We assume that this system
is consistent, i.e. it has at least one solution. This problem can be reformulated equivalently
as a particular case of the optimization problem with functional constraints (1):

min
x∈Y

f(x)

(
:=

1

2
E
[
‖ATζ x− bζ‖2

])
(21)

subject to CTξ x− dξ ≤ 0 ∀ξ ∈ Ω2,

where ATζ and CTξ are (block) rows partitions of matrices A and C, respectively. Clearly,

problem (21) is a particular case of problem (1), with f(x, ζ) = 1
2‖A

T
ζ x− bζ‖2, g(x, ζ) = 0,

and h(x, ξ) = CTξ x − dξ (provided that Cξ is a row of C). Let us define the polyhedral

subset partitions Cξ = {x ∈ Rn : CTξ x− dξ ≤ 0} and Aζ = {x ∈ Rn : ATζ x− bζ = 0}. In this
case the feasible set is the polyhedron X = {x ∈ Y : Cx ≤ d} and the optimal set is the
polyhedron:

X ∗ = {x ∈ Y : Ax = b, Cx ≤ d} = Y ∩ζ∈Ω1 Aζ ∩ξ∈Ω2 Cξ.

Note that for the particular problem (21) Assumption 1 holds with B = 0 and e.g. L =
2 maxζ ‖Aζ‖2, since f∗ = 0 and we have:

E[‖∇f(x, ζ)‖2] = E[‖Aζ(ATζ x− bζ)‖2] ≤ (2 max
ζ
‖Aζ‖2)

(
1

2
E
[
‖ATζ x− bζ‖2

])
= Lf(x).
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It is also obvious that Assumption 3 holds, since the functional constraints are linear.
Moreover, for the constrained least-squares problem, we replace Assumptions 2 and 4 with
the well-known Hoffman property of a polyhedral set, see Example 3 from Section 2 and
also (Pena et al., 2021; Leventhal and Lewis, 2010; Necoara et al., 2019):

dist2(u,X ∗) ≤ c · E
[
dist2(u,Aζ) + dist2(u, Cξ)

]
∀u ∈ Y, (22)

for some c ∈ (0,∞). Recall that the Hoffman condition (22) always holds for nonempty
polyhedral sets (Pena et al., 2021). For the constrained least-squares problem the SSP
algorithm becomes:

Algorithm 2 (SSP-LS):
Choose x0 ∈ Y, stepsizes αk > 0 and β ∈ (0, 2)
For k ≥ 0 repeat:

Sample independently ζk ∼ P1 and ξk ∼ P2 and update:

vk = xk − αkAζk(ATζkxk − bζk)

zk = (1− β)vk + βΠCξk (vk)

xk+1 = ΠY(zk).

Note that the update for vk can be written as step (5) in SSP for f(x, ζ) = 1
2‖A

T
ζ x−bζ‖2 and

g = 0. In contrast to the previous section however, here we consider an adaptive stepsize:

αk = δ
‖ATζkxk − bζk‖

2

‖Aζk(ATζkxk − bζk)‖2
, where δ ∈ (0, 2).

Note that when Cξ is a row of C, then zk has the explicit expression:

zk = vk − β
(CTξkvk − dξk)+

‖Cξk‖2
Cξk ,

which coincides with step (6) in SSP for h(x, ξ) = CTξ x − dξ. Note that we can use e.g.,
probability distributions dependent on the (block) rows of matrices A and C:

P1(ζ = ζk) =
‖Aζk‖2F
‖A‖2F

and P2(ξ = ξk) =
‖Cξk‖2F
‖C‖2F

,

where ‖ · ‖F denotes the Frobenius norm of a matrix. Note that our algorithm SSP-LS
is different from Algorithm 4.6 in (Leventhal and Lewis, 2010) through the choice of the
stepsize αk, of the sampling rules and of the update law for xk and it is more general as
it allows to work with block of rows of the matrices A and C. Moreover, SSP-LS includes
the classical Kaczmarz’s method when solving linear systems of equalities. In the next
section we derive linear convergence rates for SSP-LS algorithm, provided that the system
of equalities and inequalities is consistent, i.e. X ∗ is nonempty.
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4.1 Linear convergence

In this section we prove linear convergence for the sequence generated by the SSP-LS algo-
rithm for solving the constrained least-squares problem (21). Let us define maximum block
condition number over all the submatrices Aζ :

κblock = max
ζ∼P1

‖ATζ ‖ · ‖(ATζ )†‖,

where (ATζ )† denotes the pseudoinverse of ATζ . Note that if ATζ has full rank, then (ATζ )† =

Aζ(A
T
ζ Aζ)

−1. Then, we have the following result.

Theorem 14 Assume that the polyhedral set X ∗ = {x ∈ Y : Ax = b, Cx ≤ d} is
nonempty. Then, we have the following linear rate of convergence for the sequence xk
generated by the SSP-LS algorithm:

E
[
dist2(xk,X ∗)

]
≤
(

1− 1

c
min

(
δ(2− δ)
2κ2

block

,
2− δ

4δ
,
β(2− β)

2

))k
dist2(x0,X ∗).

Proof From the updates of the sequences xk+1, zk and vk in SSP-LS algorithm, we have:

‖xk+1 − x̄k+1‖2 ≤ ‖xk+1 − x̄k‖2 = ‖ΠY(zk)−ΠY(x̄k)‖2 ≤ ‖zk − x̄k‖2

= ‖vk − x̄k + β(ΠCξk (vk)− vk)‖2

= ‖vk − x̄k‖2 + β2‖ΠCξk (vk)− vk‖2 + 2β〈vk − x̄k,ΠCξk (vk)− vk〉

= ‖xk − x̄k‖2 + α2
k‖Aζk(ATζkxk − bζk)‖2 − 2αk〈xk − x̄k, Aζk(ATζkxk − bζk)〉

+ β2‖ΠCξk (vk)− vk‖2 + 2β〈vk − x̄k,ΠCξk (vk)− vk〉.

Using the definition of αk and that ATζk(xk − x̄k) = ATζkxk − bζk , we further get:

‖xk+1 − x̄k+1‖2 ≤ ‖xk − x̄k‖2 − δ(2− δ)
‖ATζkxk − bζk‖

4

‖Aζk(ATζkxk − bζk)‖2
+ β2‖ΠCξk (vk)− vk‖2

+ 2β〈vk − x̄k,ΠCξk (vk)− vk〉

= ‖xk − x̄k‖2 − δ(2− δ)
‖ATζkxk − bζk‖

4

‖Aζk(ATζkxk − bζk)‖2
+ β2‖ΠCξk (vk)− vk‖2

− 2β〈ΠCξk (vk)− vk,ΠCξk (vk)− vk〉+ 2β〈ΠCξk (vk)− x̄k,ΠCξk (vk)− vk〉.

From the optimality condition of the projection we always have 〈ΠCξk (vk) − z,ΠCξk (vk) −
vk〉 ≤ 0 for all z ∈ Cξk . Taking z = x̄k ∈ X ∗ ⊆ Cξk in the previous relation, we finally get:

‖xk+1 − x̄k+1‖2 (23)

≤ ‖xk − x̄k‖2 − δ(2− δ)
‖ATζkxk − bζk‖

4

‖Aζk(ATζkxk − bζk)‖2
− β(2− β)‖ΠCξk (vk)− vk‖2.
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From the definition of vk and αk, we have:

vk = xk − αkAζk(ATζkxk − bζk) ⇐⇒ α2
k‖Aζk(ATζkxk − bζk)‖2 = ‖vk − xk‖2

⇐⇒
‖ATζkxk − bζk‖

4

‖Aζk(ATζkxk − bζk)‖2
=

1

δ2
‖vk − xk‖2.

Also, from the definition of zk, we have:

‖ΠCξk (vk)− vk‖2 =
1

β2
‖zk − vk‖2. (24)

Now, replacing these two relations in (23), we get:

‖xk+1 − x̄k+1‖2

≤ ‖xk − x̄k‖2 −
δ(2− δ)
δ2

‖vk − xk‖2 −
β(2− β)

β2
‖zk − vk‖2

≤ ‖xk − x̄k‖2 −
δ(2− δ)
2κ2

block

κ2
block

δ2
‖vk − xk‖2

−min

(
δ(2− δ)

4δ2
,
β(2− β)

2

)(
2‖vk − xk‖2 +

2

β2
‖zk − vk‖2

)
. (25)

First, let us consider the subset Cξk . Then, we have:

dist2(xk, Cξk) = ‖xk −ΠCξk (xk)‖2 ≤ ‖xk −ΠCξk (vk)‖2 ≤ 2‖xk − vk‖2 + 2‖vk −ΠCξk (vk)‖2

(24)

≤ 2‖xk − vk‖2 +
2

β2
‖vk − zk‖2.

Second, let us consider the subset Aζk . Since the corresponding ATζk represents a block of
rows of matrix A, the update for vk in SSP-LS can be written as:

vk = (1− δ)xk + δTζk(xk),

where the operator Tζk is given by the following expression

Tζk(xk) = xk −
‖ATζkxk − bζk‖

2

‖Aζk(ATζkxk − bζk)‖2
Aζk(ATζkxk − bζk).

Further, the projection of xk onto the subset Aζk is, see e.g., (Horn and Johnson, 2012):

ΠAζk (xk) = xk − (ATζ )†(ATζkxk − bζk).
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Hence, we have:

dist2(xk,Aζk) = ‖xk −ΠAζk (xk)‖2 = ‖(ATζ )†(ATζkxk − bζk)‖2

≤ ‖(ATζ )†‖2‖ATζkxk − bζk‖
2

= ‖(ATζ )†‖2
‖ATζkxk − bζk‖

2

‖Aζk(ATζkxk − bζk)‖2
‖Aζk(ATζkxk − bζk)‖2

≤ ‖(ATζk)†‖2‖ATζk‖
2
‖ATζkxk − bζk‖

4

‖Aζk(ATζkxk − bζk)‖2

= κ2
block‖Tζk(xk)− xk‖2

=
κ2

block

δ2
‖xk − vk‖2.

Using these two relations in (25), we finally get the following recurrence:

‖xk+1 − x̄k+1‖2 (26)

≤ ‖xk − x̄k‖2 −min

(
δ(2− δ)
2κ2

block

,
2− δ

4δ
,
β(2− β)

2

)(
dist2(xk,Aζk) + dist2(xk, Cξk)

)
.

Now, taking conditional expectation w.r.t. F[k−1] in (26) and using Hoffman inequality
(22), we obtain:

Eζk,ξk [‖xk+1 − x̄k+1‖2|F[k−1]]

≤ ‖xk − x̄k‖2 −
1

c
min

(
δ(2− δ)
2κ2

block

,
2− δ

4δ
,
β(2− β)

2

)
dist2(xk,X ∗)

=

(
1− 1

c
min

(
δ(2− δ)
2κ2

block

,
2− δ

4δ
,
β(2− β)

2

))
‖xk − x̄k‖2.

Finally, taking full expectation, recursively we get the statement of the theorem.

Note that for δ = β = 1 and ATζ a single row of matrix A, we have κblock = 1 and we get

a simplified estimate for linear convergence E
[
dist2(xk,X ∗)

]
≤ (1 − 1/(4c))kdist2(x0,X ∗),

which is similar to convergence estimate for the algorithm in (Leventhal and Lewis, 2010).
In the block case, for δ = β = 1 and assuming that κblock ≥ 2, we get the linear convergence

E
[
dist2(xk,X ∗)

]
≤
(
1− 1/(2cκ2

block)
)k

dist2(x0,X ∗), i.e., our rate depends explicitly on the
geometric properties of the submatrices Aζ and Cζ (recall that both constants c and κblock

are defined in terms of these submatrices). From our best knowledge, this is the first time
when such convergence bounds are obtained for a stochastic subgradient type algorithm
solving constrained least-squares.

5. Illustrative examples and numerical tests

In this section, we present several applications where our algorithm can be applied, such
as the robust sparse SVM classification problem (Bhattacharyya et al., 2004), sparse SVM
classification problem (Weston et al., 2003), constrained least-squares and linear programs
(Tibshirani, 2011), accompanied by detailed numerical simulations. The codes were written
in Matlab and run on a PC with i7 CPU at 2.1 GHz and 16 GB memory.
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5.1 Robust sparse SVM classifier

We consider a two class dataset {(zi, yi)}Ni=1, where zi is the vector of features and yi ∈
{−1, 1} is the corresponding label. A robust classifier is a hyperplane parameterized by
a weight vector w and an offset from the origin d, in which the decision boundary and
set of relevant features are resilient to uncertainty in the data, see equation (2) in (Bhat-
tacharyya et al., 2004) for more details. Then, the robust sparse classification problem can
be formulated as:

min
w,d,u

λ
N∑
i=1

ui + ‖w‖1

subject to : yi(w
T z̄i + d) ≥ 1− ui ∀z̄i ∈ Zi, ui ≥ 0 ∀i = 1 : N,

where Zi is the uncertainty set in the data zi, the parameter λ > 0 and 1-norm is added in the
objective to induce sparsity in w. To find a hyperplane that is robust and generalized well,
each Zi would need to be specified by a large corpus of pseudopoints. In particular, finding a
robust hyperplane can be simplified by considering a data uncertainty model in the form of
ellipsoids. In this case we can convert infinite number of linear constraints into a single non-
linear constraint and thus recasting the above set of robust linear inequalities as second order
cone constraints. Specifically, if the uncertainty set for ith data is defined by an ellipsoid
with the center zi and the shape given by the positive semidefinite matrix Qi � 0, i.e.
Zi = {z̄i : 〈Qi(z̄i − zi), z̄i − zi〉 ≤ 1}, then a solution to the robust hyperplane classification
problem is one in which the hyperplane in (w, d) does not intersect any ellipsoidal data
uncertainty model (see Appendix 1 for a proof):

yi(w
T zi + d) ≥ ‖Q−1/2

i w‖+ 1− ui. (27)

Hence, the robust classification problem can be recast as a convex optimization problem
with many functional constraints that are either linear or second order cone constraints:

min
w,d,u

λ

N∑
i=1

ui + ‖w‖1

subject to : yi(w
T zi + d) ≥ 1− ui, ui ≥ 0 ∀i = 1 : N

yi(w
T zi + d) ≥ ‖Q−1/2

i w‖+ 1− ui ∀i = 1 : N.

This is a particular form of problem (1) and thus we can solve it using our algorithm SSP.
Since every one of the N data points has its own covariance matrix Qi, this formulation
results in a large optimization problem so it is necessary to impose some restrictions on the
shape of these matrices. Hence, we consider two scenarios: (i) class-dependent covariance
matrices, i.e., Qi = Q+ if yi = +1 or Qi = Q− if yi = −1; (ii) class-independent covariance
matrix, i.e., Qi = Q± for all yi. For more details on the choice of covariance matrices see
(Bhattacharyya et al., 2004). Here, each covariance matrix is assumed to be diagonal. In a
class-dependent diagonal covariance matrix, the diagonal elements of Q+ or Q− are unique,
while in class-independent covariance matrix, all diagonal elements of Q± are identical.
Computational experiments designed to evaluate the performance of SSP require datasets
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in which the level of variability associated with the data can be quantified. Here, a noise
level parameter, 0 ≤ ρ ≤ 1, is introduced to scale each diagonal element of the covariance
matrix, i.e., ρQ+ or ρQ− or ρQ±. When ρ = 0, data points are associated with no noise (the
nominal case). The ρ value acts as a proxy for data variability. For classifying a point we
consider the following rules. The “ordinary rule” for classifying a data point z is as follows:
if wT∗ z + d∗ > 0, then z is assigned to the +1 class; if wT∗ z + d∗ < 0, then z is identified
with the −1 class. An ordinary error occurs when the class predicted by the hyperplane
differs from the known class of the data point. The “worst case rule” determines whether
an ellipsoid with center z intersects the hyperplane. Hence, some allowable values of z will

be classified incorrectly if |wT∗ z + d∗| < ‖Q−1/2
i w∗‖2 (worst case error).

Table 1: Comparison between nominal and robust classifiers on training data: class-
dependent covariance matrix (first half), class-independent covariance matrix (second half).

λ ρ
Robust Nominal

w∗ 6= 0 worst case error ordinary error w∗ 6= 0 ordinary error

0.1

0.01

1699 3 332 546 198
0.2 406 25 116 767 113
0.3 698 14 111 774 67

0.1

0.3

1581 63 331 546 198
0.2 1935 86 326 767 113
0.3 1963 77 311 774 67

0.1

0.01

1734 0 331 546 198
0.2 1822 1 268 767 113
0.3 1937 0 266 774 67

0.1

0.3

1629 19 316 546 198
0.2 1899 19 296 767 113
0.3 2050 20 282 774 67

Tables 1 and 2 give the results of our algorithm SSP for robust (ρ > 0) and nominal
(ρ = 0) classification formulations. We choose the parameters λ = 0.1, 0.2, 0.3, β =
1.96, and stopping criterion 10−2. We consider a dataset of CT scan images having
two classes, covid and non-covid, available at https://www.kaggle.com/plameneduardo/

sarscov2-ctscan-dataset. This dataset contains CT scan images of dimension ranging
from 190× 190 to 410× 386 pixels. To implement our algorithm we have taken 1488 data
in which 751 are of Covid patients and 737 of Non-Covid patients. Then, we divide them
into training data and testing data. For training data we have taken 1240 images in which
626 are of Covid and 614 are of Non-Covid. For testing data we have taken 248 images
in which 125 are of Covid and 123 of Non-Covid. We also resize all images into 190 × 190
pixels. First half of the Tables 1 and 2 correspond to feature-dependent covariance matrix
and the second half to feature-independent covariance matrix. Table 1 shows the results for
the training data and Table 2 for the testing data. As one can see from Tables 1 and 2, the
robust classifier yields better accuracies on both training and testing datasets.
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Table 2: Comparison between nominal and robust classifiers on testing data: class-
dependent covariance matrix (first half), class-independent covariance matrix (second half).

λ ρ
Robust Nominal

accuracy (ordinary rule) accuracy (ordinary rule)

0.1
0.01

180, 72.5% 166, 66.9%
0.2 200, 80.6% 198, 79.8%
0.3 198, 79.8% 193, 77.9%

0.1
0.3

180, 72.5% 168, 67.8%
0.2 200, 80.6% 174, 70.2%
0.3 198, 79.8% 172, 69.4%

0.1
0.01

180, 72.5% 167, 67.4%
0.2 200, 80.6% 196, 79.1%
0.3 198, 79.8% 193, 77.9%

0.1
0.3

180, 72.5% 165, 66.6%
0.2 200, 80.6% 183, 73.8%
0.3 198, 79.8% 159, 64.1%

5.2 Constrained least-squares

Next, we consider constrained least-squares problem (21). We compare the performance of
our algorithm SSP-LS and the algorithm in (Leventhal and Lewis, 2010) on synthetic data
matrices A and C generated from a normal distribution. Both algorithms were stopped
when max(‖Ax− b‖, ‖(Cx− d)+‖) ≤ 10−3. The results for different sizes of matrices A and
C are given in Table 3. One can easily see from Table 3 the superior performance of our
algorithm in both, number of full iterations (epochs, i.e. number of passes through data)
and cpu time (in seconds).

5.3 Linear programs

Next, we consider solving linear programs (LP) of the form:

min
z≥0

cT z subject to Cz ≤ d.

Using the primal-dual formulation this problem is equivalent to (20):

find z ∈ [0,∞)n, ν ∈ [0,∞)p : cT z + dT ν = 0, Cz ≤ d, CT ν + c ≥ 0.

Therefore, we can easily identify in (20):

x =

[
z
ν

]
∈ Y = [0,∞)n+p, A = [cT dT ] ∈ Rn+p, C =

[
C 0p×p
0n×n −CT

]
.

Hence, we can use our algorithm SSP-LS to solve LPs. In Table 4 we compare the perfor-
mance of our algorithm, the algorithm in (Leventhal and Lewis, 2010) and Matlab solver
lsqlin for solving the least-squares formulation of LPs taken from the Netlib library available
on https://www.netlib.org/lp/data/index.html, and Matlab format LP library avail-
able on https://users.clas.ufl.edu/hager/coap/Pages/matlabpage.html. The first
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Table 3: Comparison between SSP-LS and algorithm in (Leventhal and Lewis, 2010) in
terms of epochs and cpu time (sec) on random least-squares problems.

δ = β m p n
SSP-LS (Leventhal and Lewis, 2010)

epochs cpu time (s) epochs cpu time (s)

0.96 900 900 103 755 26.0 817 29.9

1.96 900 900 103 591 20.1 787 26.2

0.96 900 1100 103 624 23.2 721 23.9

1.96 900 1100 103 424 16.7 778 27.3

0.96 9000 9000 104 1688 5272.0 1700 5778.1

1.96 9000 9000 104 1028 3469.2 1662 5763.7

0.96 9000 11000 104 1224 5716.0 1437 5984.8

1.96 9000 11000 104 685 2693.7 1461 5575.3

0.96 900 105 103 5 105.0 9 163.9

1.96 900 105 103 4 77.7 9 163.9

0.96 9000 105 104 64 2054.5 214 5698.5

1.96 9000 105 104 42 1306.5 213 5156.7

0.96 9000 9000 105 23 1820.3 23 1829.4

0.96 9000 11000 105 21 2158.7 23 2193.1

1.96 9000 11000 105 19 1939.7 23 2216.9

0.96 900 900 105 14 65.7 17 86.8

1.96 900 1100 105 13 74.3 15 75.6

two algorithms were stopped when max(‖Ax − b‖, ‖(Cx − d)+‖) ≤ 10−3 and we choose
δ = β = 1.96. In Table 4, in the first column after the name of the LP we provide the
dimension of the matrix C. From Table 4 we observe that SSP-LS is always better than
the algorithm in (Leventhal and Lewis, 2010) and for large dimensions it also better than
lsqlin, a Matlab solver specially dedicated for solving constrained least-squares problems.
Moreover, for ”qap15” dataset lsqlin yields out of memory.

5.4 Sparse linear SVM

Finally, we consider the sparse linear SVM classification problem:

min
w,d,u

λ
n∑
i=1

ui + ‖w‖1

subject to : yi(w
T zi + d) ≥ 1− ui, ui ≥ 0 ∀i = 1 : N.

This can be easily recast as an LP and consequently as a least-squares problem. In Table
5 we report the results provided by our algorithms SSP-LS for solving sparse linear SVM
problems. Here, the ordinary error has the same meaning as in Section 5.1. We use several
datasets: covid dataset from www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset;
PMU-UD, sobar-72 and divorce datasets available on https://archive-beta.ics.uci.

edu/ml/datasets; and the rest from LIBSVM library https://www.csie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/. In the first column, the first argument represents the
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Table 4: Comparison between SSP-LS, algorithm in (Leventhal and Lewis, 2010) and Matlab
solver lsqlin in terms of epochs and cpu time (sec) on real data LPs.

LP
SSP-LS (Leventhal and Lewis, 2010) lsqlin

epochs time (s) epochs time (s) time (s)

afiro (21×51) 1163 1.9 5943 2.7 0.09

beaconfd (173×295) 1234 9.9 9213 63.5 1.0

kb2 (43×68) 10 0.02 17 0.03 0.14

sc50a (50×78) 9 0.04 879 1.9 0.14

sc50b (50×78) 25 0.1 411 0.8 0.2

share2b (96×162) 332 1.8 1691 84.9 0.2

degen2 (444×757) 4702 380.6 5872 440.6 9.8

fffff800 (524×1028) 44 5.5 80 9.3 3.4

israel (174×316) 526 5.4 3729 312.9 0.3

lpi bgdbg1 (348×649) 476 15.4 9717 263.1 0.5

osa 07 (1118×25067) 148 3169.8 631 7169.7 3437.1

qap15 (6330×22275) 70 2700.7 373 7794.6 *

fit2p (3000×13525) 7 65.7 458 2188.3 824.9

maros r7 (3137×9408) 635 2346.8 1671 3816.2 3868.8

qap12 (3193×8856) 54 374.1 339 1081.8 3998.4

number of features and the second argument represents the number of data. We divided
each dataset into 80% for training and 20% for testing. For the LP formulation we use the
simple observation that any scalar u can be written as u = u+ − u−, with u+, u− ≥ 0. We
use the same stopping criterion as in Section 5.3. In Table 5 we provide the number of
relevant features, i.e., the number of nonzero elements of the optimal w∗, and the number
of misclassified data (ordinary error) on real training and testing datasets.

Appendix

1. Proof of inequality (27). One can easily see that the robust linear inequality

yi(w
T z̄i + d) ≥ 1− ui ∀z̄i ∈ Zi

over the ellipsoid with the center in zi

Zi = {z̄i : 〈Qi(z̄i − zi), z̄i − zi〉 ≤ 1},

can be written as optimization problem whose minimum value must satisfy:

1− ui ≤min
z̄i

yi(w
T z̄i + d)

subject to: (z̄i − zi)TQi(z̄i − zi)− 1 ≤ 0.

The corresponding dual problem is as follows:

max
λ≥0

min
z̄i

yi(w
T z̄i + d) + λ((z̄i − zi)TQi(z̄i − zi)− 1). (28)

31



Necoara, Singh

Table 5: Performance of sparse linear SVM classifier: ordinary error and sparsity of w∗ on
real training and testing datasets.

Dataset λ w∗ 6= 0 ordinary error (train) ordinary error (test)

sobar-72 (38×72)
0.1 7/38 9/58 3/14
0.5 12/38 1/58 2/14

breastcancer (18×683)
0.1 9/18 12/547 13/136
0.5 9/18 17/547 7/136

divorce (108×170)
0.1 23/108 3/136 0/34
0.5 13/108 0/136 1/34

caesarian (10×80)
0.1 0/10(NA) * *
0.5 5/10 14/64 9/16

cryotherapy (12×90)
0.1 3/12 8/72 5/18
0.5 6/12 6/72 1/18

PMU-UD (19200×1051)
0.1 13/19200 0/841 70/210
0.5 37/19200 0/841 47/210

Covid (20000×2481)
0.1 428/20000 146/1985 101/496
0.5 752/20000 142/1985 97/496

Nomao (16×34465)
0.1 12/14 3462/27572 856/6893
0.5 11/14 3564/27572 885/6893

Training (60×11055)
0.1 31/60 630/8844 152/2211
0.5 30/60 611/8844 159/2211

leukemia (14258×38)
0.1 182/14258 9/31 2/7
0.5 271/14258 9/31 2/7

mushrooms (42×8124)
0.1 30/42 426/6500 121/1624
0.5 31/42 415/6500 105/1624

ijcnn1 (28×49990)
0.1 11/28 3831/39992 1021/9998
0.5 10/28 3860/39992 992/9998

phishing (60×11055)
0.1 56/60 2953/8844 728/2211
0.5 51/60 2929/8844 725/2211

Minimizing the above problem with respect to z̄i, we obtain:

yiw + 2λQi(z̄i − zi) = 0 ⇐⇒ z̄i = zi −
yi
2λ
Q−1
i w. (29)

By replacing this value of z̄i into the dual problem (28), we get:

max
λ≥0

[
− y

2
i

4λ
wTQ−1

i w + yi(w
T zi + d)− λ

]
.

For the dual optimal solution

λ∗ =
1

2

√
y2
i (w

TQ−1
i w) =

1

2

√
(wTQ−1

i w),
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we get the primal optimal solution

z̄∗i = zi −
yiQ

−1
i w√

wTQ−1
i w

,

and consequently the second order cone condition

yi
(
wT zi + d

)
≥ 1 + ‖Q−1/2

i w‖ − ui.
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