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Abstract

Square-root (loss) regularized models have recently become popular in linear regression
due to their nice statistical properties. Moreover, some of these models can be interpreted
as the distributionally robust optimization counterparts of the traditional least-squares
regularized models. In this paper, we give a unified proof to show that any square-root
regularized model whose penalty function being the sum of a simple norm and a seminorm
can be interpreted as the distributionally robust optimization (DRO) formulation of the
corresponding least-squares problem. In particular, the optimal transport cost in the DRO
formulation is given by a certain dual form of the penalty. To solve the resulting square-
root regularized model whose loss function and penalty function are both nonsmooth, we
design a proximal point dual semismooth Newton algorithm and demonstrate its efficiency
when the penalty is the sparse group Lasso penalty or the fused Lasso penalty. Extensive
experiments demonstrate that our algorithm is highly efficient for solving the square-root
sparse group Lasso problems and the square-root fused Lasso problems.

Keywords: square-root regularized model, distributionally robust optimization, proximal
point algorithm, semismooth Newton, group Lasso

1. Introduction

Variable selection in high dimensional feature space has played a pivotal role in contempo-
rary statistical and machine learning studies. Let (X1, Y1), . . . , (XN , YN ) be data generated
from a linear regression model

Yi = XT
i β0 + σεi, (1)
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where Xi = (Xi1, . . . , Xin)T ∈ Rn is the ith predictor vector, Yi ∈ R is the corresponding
response variable, and εi’s are independent and identically distributed (i.i.d.) noises such
that E(εi) = 0 and E(ε2i ) = 1. The vector β0 ∈ Rn is the unknown true regression vector,
and σ > 0 is the unknown noise level. We let X := (X1, . . . , XN )T ∈ RN×n be the matrix
of features and Y := (Y1, . . . , YN )T ∈ RN be the response vector. In high dimensional
regression problems, the dimension of predictors n is usually much larger than the sample
size N . With such a large number of predictors, one often prefers to select a smaller
subset that is significant and highly correlated to the response for the ease of interpreting
the model, as well as to avoid the issue of overfitting. One of the most popular methods
for variable selection is the classic Lasso model (Tibshirani, 1996), which minimizes the
residual sum of squared errors plus an `1 norm penalty term. Further imposing problem-
specific assumptions on the structures of the variables, various variants of the classic Lasso
model have been proposed. These variants are referred to as the Lasso-type models, and
they include for example, the (sparse) group Lasso model (Yuan and Lin, 2006; Friedman
et al., 2010), the fused Lasso model (Tibshirani et al., 2005), and the clustered Lasso model
(Petry et al., 2011; She, 2010), to mention only a few. To date, large amount of research
have been conducted on Lasso-type models, and they have been widely applied in real
applications; see for example (Xu et al., 2010b; Muthukrishnan and Rohini, 2016; Yang
et al., 2010; Jacob et al., 2009; Angelosante and Giannakis, 2009; Rao et al., 2015; Bazerque
et al., 2011), just to name a few. Most Lasso-type models incorporate different regularizers
for achieving different underlying sparsity structures in the regression vector and they solve
the following generic squared-loss convex optimization problem:

min
β∈Rn

{
‖Y −Xβ‖2 + λp(β)

}
, (2)

where ‖ · ‖ is the Euclidean norm, p is the regularizer, and λ > 0 is the tuning parameter.

The theoretically optimal values of the tuning parameter λ in the Lasso and group Lasso
models have been well estimated in (Bickel et al., 2009; Lounici et al., 2011; Meinshausen
and Yu, 2009; Zhang and Huang, 2008). However, an outstanding problem is that the choice
of λ will depend on the unknown noise level σ, which is typically nontrivial to estimate.
An alternative for choosing a suitable λ for good generalization performance is by cross
validation, but this procedure can be time-consuming in practice. To eliminate the need
to know or estimate σ, Belloni et al. (2011) introduced the square-root Lasso model, and
subsequently Bunea et al. (2013) extended it to the square-root group Lasso model. The
square-root (loss) regularized model takes the square-root of the residual sum of squared
errors as the loss function and any sparsity inducing norm as the regularizer. From now on
we refer to the following optimization problem as the square-root regularized model and its
solution as the square-root regularized estimator

min
β∈Rn

{‖Y −Xβ‖+ λp(β)} . (3)

An important general step forward has been made by Stucky and van de Geer (2017), who
proved the nice statistical property that the theoretically optimal λ for an estimator given
by (3) will be independent of the unknown noise level σ for any penalty p that is a weakly
decomposable norm (van de Geer, 2014, Definition 4.1). Such an estimator is quite general
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in that p can be an arbitrary weakly decomposable norm. In fact, it was stated in (Stucky
and van de Geer, 2017) that the nice statistical property is applicable for the square-root
Lasso, the square-root (sparse) group Lasso, and the square-root SLOPE (Bogdan et al.,
2015) estimators. In addition, it has been also shown by Jiang et al. (2021) that the choice
of λ in the square-root fused Lasso model is independent of σ. Thus far, we can see that
the square-root regularized model (3) is more preferable over the Lasso-type model (2) in
terms of their statistical properties.

Recently, there has been renewed interest in the square-root regularized model (3) and its
interpretation from the perspective of distributionally robust optimization (DRO). This con-
nection gives a new probabilistic explanation of the penalty level λ based on the DRO formu-
lation. A DRO problem aims to find a regression vector β that minimizes the worst-case loss
over an uncertainty set, namely supP∈U EP[`(X,Y ;β)]. Here, ` denotes a loss function, EP[·]
denotes the expectation with respect to a probability distribution P of (X,Y ), and U denotes
the uncertainty set of probability measures. The uncertainty set U specifies prior distribu-
tional information about P, and it is usually constructed to include the unknown true distri-
bution with a probabilistic guarantee. Let us now introduce some notation and give the DRO
formulation related to (3). We denote the Dirac distribution at (Xi, Yi) by 1{(Xi,Yi)}, the em-

pirical distribution by PN (dx, dy) := 1
N

∑N
i=1 1{(Xi,Yi)}(dx, dy), and the squared-loss func-

tion by `(x, y;β) := (y − βTx)2. Therefore, we have that EPN [`(X,Y ;β)] = 1
N ‖Y −Xβ‖

2,
and (3) takes an equivalent form

min
β∈Rn

{√
EPN [`(X,Y ;β)] +

λ√
N
· p(β)

}
. (4)

When p(β) = ‖β‖q := (
∑n

i=1 |βi|q)1/q ∀β ∈ Rn and q ∈ [1,∞), (4) has the following
equivalent DRO representation, as shown in (Blanchet et al., 2019a),

inf
β∈Rn

sup
P

{
EP[`(X,Y ;β)]

∣∣∣Dc(P, PN ) ≤ λ2

N

}
(5)

whereDc(P,Q) is an optimal transport cost between two probability measures P and Q based
on a suitably chosen cost function c (see (9) for the definition of Dc), and {P | Dc(P,PN ) ≤
λ2

N } is the uncertainty set centered at the empirical distribution PN with radius λ2

N . The in-
ner maximization problem of (5) accounts for all the probability measures that are plausible
variations of PN . The problem (5) tries to minimize the worst-case loss and consequently
it is likely to perform uniformly well around the empirical distribution. Furthermore, we
can interpret from (5) that the regularization parameter λ fully quantifies the radius of

the uncertainty set
{
P | Dc(P,PN ) ≤ λ2

N

}
. In fact, when p is the `q norm, Blanchet et al.

(2019a) proved that an associated cost function c defined by the dual norm of the `q norm
will give rise to the equivalence between (4) and (5). Besides, Blanchet and Kang (2017)
provided a DRO representation for the square-root group Lasso model, i.e., (3) with p
being the group Lasso penalty function. The problem (3) also admits a DRO representa-
tion when the regularizer is given by p(β) = ‖β‖Λ :=

√
βTΛβ ∀β ∈ Rn with Λ being a

given symmetric positive definite matrix, as shown in (Blanchet et al., 2019b, Theorem 1).
Additionally, the connections between regularization and robust optimization have been
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extensively studied in the literature, e.g., (El Ghaoui and Lebret, 1997; Xu et al., 2010a,
2009; Shafieezadeh-Abadeh et al., 2015; Bertsimas and Copenhaver, 2018).

One of our contributions in this paper is to provide a DRO representation for a general
class of square-root regularized models where the regularizer can take the general form as
the sum of a simple norm and a seminorm. This broad class of regularizers can include most
of the popular penalty functions in statistics and machine learning. As a key ingredient
in the DRO formulation, the optimal transport cost is given by a certain dual form of the
regularizer. Despite the superior statistical properties, square-root regularized models are
more complex and challenging to solve compared to their squared-loss counterparts because
now the loss function and the penalty function are both nonsmooth. Thus designing efficient
algorithms that are capable of solving high-dimensional square-root regularized models is
an important task for making these models practically useful. Here we develop a proximal
point dual semismooth Newton algorithmic framework for solving a generic square-root
regularized model. Specifically, we illustrate how the general framework can be adopted to
solve the square-root sparse group Lasso and the square-root fused Lasso models, i.e., for
solving (3) when p is one of the following regularizers:

• the sparse group Lasso regularizer (Friedman et al., 2010)

p(β) = w1‖β‖1 + w2

g∑
l=1

ωl‖βGl‖ ∀β ∈ Rn, (6)

where w1 and w2 are nonnegative regularization parameters, ωl > 0 is the weight
for the lth group, Gl’s form a partition of {1, . . . , n}, and βGl is the subvector of β
restricted to Gl;

• the fused Lasso regularizer (Tibshirani et al., 2005)

p(β) = w1‖β‖1 + w2

n−1∑
i=1

|βi − βi+1| ∀β ∈ Rn, (7)

where w1 and w2 are nonnegative regularization parameters.

We should mention that although the square-root regularized models of the form (3)
enjoy nice statistical properties and insightful DRO interpretation, there is currently no
efficient unified algorithmic framework for solving such models, possibly due to challenge
posed by the nonsmoothness of the square-root loss function in addition to the nonsmooth-
ness of the penalty function. In fact, existing algorithms are limited to solving special
cases such as the square-root Lasso model, and they are not efficient enough for solving
large-scale problems. Belloni et al. (2011) reformulated the square-root Lasso model into
a second order cone programming (SOCP), and then applied TFOCS (Becker et al., 2011)
(first order conic solvers), SDPT3 (Toh et al., 1999; Tütüncü et al., 2003) (interior point
methods), and coordinatewise methods for solving the reformulated SOCP. However, this
SOCP reformulation will at least double the number of variables—thereby increasing the
computational cost substantially, and those off-the-shelf methods are not efficient enough for
solving large-scale problems. Additionally, an alternating direction method of multipliers
was applied in (Li et al., 2015) for solving the square-root Lasso model. But this approach
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may not be efficient for large-scale problems, as can be seen from the numerical experiments
in (Tang et al., 2020). Moreover, proximal gradient descent and proximal Newton methods
were proposed in (Li et al., 2020) for solving the square-root Lasso model. For solving the
square-root group Lasso model, Bunea et al. (2013) proposed a scaled thresholding-based
iterative selection procedure. This method highly depends on the choice of the scaling pa-
rameter, and it usually requires many iterations for solving large-scale problems, as shown
later in our numerical experiments. Moreover, we found that the convergence of the method
(Bunea et al., 2013, Theorem 3.1) is based on a regularity condition that depends on the se-
quence of iterates generated by the method and it may not hold generally. In a recent work,
Tang et al. (2020) proposed a semismooth Newton (SSN) based proximal majorization-
minimization algorithm for solving nonconvex square-root-loss regression problems, and
they demonstrated its efficiency for solving the square-root Lasso model. To the best of
our knowledge, an efficient and robust algorithm for solving the square-root regularized
model that allows for a general regularizer is still in great demand but not yet available.
Inspired by the algorithm of (Tang et al., 2020), we propose in this paper a proximal point
dual semismooth Newton algorithm (PPDNA) for solving (3) with regularizer p having the
property that its proximal mapping and the associated generalized Jacobian can be com-
puted efficiently. In particular, we implement the PPDNA algorithmic framework to solve
the square-root regularized model (3) with the sparse group Lasso regularizer (6) or the
fused Lasso regularizer (7). In contrast to the algorithm in (Tang et al., 2020) which does
not impose structured sparsity, our algorithm will incorporate structured sparsity imposed
by the sparse group Lasso or fused Lasso regularizer. We should add that our PPDNA
framework, just like the one in (Tang et al., 2020), is inspired by the highly efficient SSN
based proximal point algorithmic (PPA) framework developed solving many squared-loss
Lasso-type problems (Li et al., 2018b,c; Lin et al., 2019; Luo et al., 2019; Zhang et al., 2020).
The key difference between our current framework and the one developed for a squared-loss
Lasso-type problem is that the latter is applied to the dual problem having an essentially
smooth strongly convex term in the objective function, but such a property is not present
for our square-root regularized models. Fortunately, as we shall see later, the desirable
properties of the PPA and SSN, such as the fast convergence speed of the PPA and the
ability to exploit second order sparsity in the SSN method, are preserved in our current
PPDNA framework when there is no overfitting of the data.

The remaining parts of the paper are organized as follows. In Section 2 we show that
the square-root regularized model (3) has an equivalent DRO representation. We design a
proximal point dual semismooth Newton algorithm for solving the square-root regularized
model (3) in Section 3, and we elucidate the computational details of two cases where
the regularizer is chosen to be the sparse group Lasso regularizer (6) or the fused Lasso
regularizer (7). We conduct numerical experiments on synthetic and real data sets in
Section 4, and give the conclusion in Section 5.

Notation Throughout the paper any vector is understood to be a column vector. We denote
the inner product of two vectors x and y in Rn by 〈x, y〉 := xT y. We denote the Euclidean
norm by ‖ ·‖ and the unit ball of Euclidean norm by B := {x ∈ Rn | ‖x‖ ≤ 1}. For a matrix
X ∈ Rm×n, we denote the operator norm of X by ‖X‖ := inf {c | ‖Xv‖ ≤ c ‖v‖ ∀v ∈ Rn}.
We denote the elementwise multiplication by �. We adopt the conventions of extended
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arithmetic, whereby ∞ · 0 = 0 · ∞ = 0/0 = 0 and ∞−∞ = −∞ +∞ = 1/0 = ∞. For
any subset A ⊆ Rn, we denote the cardinality of A as |A|. We denote the vector of all ones
by 1 and the identity matrix by I. We denote the vector (or the matrix) of all zeros by
0. For a matrix X ∈ Rm×n and an index set G ⊆ {1, 2, . . . , n}, we denote the range space
(resp. null space) of X by Range(X) (resp. Null(X)) and the submatrix formed by the
columns of X corresponding to G by XG. We denote the square diagonal matrix with the
elements of vector v on the main diagonal by Diag(v). For a vector β ∈ Rn, we denote
the positive part of β by β+ := max{β, 0}, the vector with the signs of the corresponding
elements of β by sign(β) (the sign of a real number is 1, 0, or −1 if the number is positive,
zero, or negative, respectively), the restricted vector of β to an index set G ⊆ {1, 2, . . . , n}
by βG, the support of β by supp(β) := {i |βi 6= 0}. Given a vector space V, a norm on V
is a nonnegative valued function p : V → R with the following properties: for all λ ∈ R
and x, y ∈ V, (1) (triangle inequality) p(x + y) ≤ p(x) + p(y), (2) (absolute homogeneity)
p(λx) = |λ|p(x), (3) (positive definiteness) p(x) = 0 implies x = 0. A seminorm on V
is a function p : V → R with the properties (1) and (2) above. For a seminorm p on
Rn, we define p∗ : Rn → [0,+∞] by p∗(y) := supx {〈y, x〉 | p(x) ≤ 1} ∀ y ∈ Rn (if p is a
norm then p∗ is also a norm, called its dual norm). For a closed proper convex function
f : Rn → (−∞,+∞], we denote its effective domain by dom(f) := {x | f(x) < +∞},
its Fenchel conjugate by f∗(x) := supy∈Rn{〈y, x〉 − f(y)}, the proximal mapping of f at

x by proxf (x) := arg miny{f(y) + 1
2‖x − y‖

2}, and the Moreau envelope (Moreau, 1965;

Yosida, 1964) of f at x by Mf (x) := miny{f(y) + 1
2‖x − y‖2}. The Moreau envelope is

continuously differentiable with the gradient ∇Mf (x) = x− proxf (x) ∀x. The multivariate
normal distribution with mean vector µ and covariance matrix Σ is denoted by N (µ,Σ).

2. DRO Formulation of Squared-loss Linear Regression Problems

In this section, we will show that the square-root regularized model (3) is equivalent to a
DRO formulation of a squared-loss linear regression problem, namely,

inf
β∈Rn

sup
P:Dc(P,PN )≤δ

EP[`(X,Y ;β)]. (8)

In the above, c is an appropriate optimal transport cost function that will be defined
explicitly later, and δ can be regarded as the radius of the uncertainty set centered at PN .
Later we will show that the penalty parameter λ in (3) will fully quantify the radius δ.

2.1 Optimal Transport Costs

We introduce in this section some notation and recall the optimal transport cost between
probability measures; see (Villani, 2008, Chapter 6) for more details. For any two probability
measures P and Q in Rn+1, Π(P,Q) denotes the set of all joint probability measures on
Rn+1 × Rn+1 whose marginals are P and Q. For a given cost function c : Rn+1 × Rn+1 →
[0,∞], where c(u, v) is the cost for transporting one unit of mass from u to v, the optimal
transport cost between P and Q is defined as

Dc(P,Q) := inf
π∈Π(P,Q)

∫
c(u, v)dπ(u, v). (9)
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We assume that c(u, u) = 0 for any u ∈ Rn+1. For any nonnegative lower semicontinuous
cost function c, it is shown in (Villani, 2008, Theorem 4.1) that the infimum in (9) is
attainable. Intuitively, one can regard (9) as a kind of distance between two measures
P and Q, but strictly speaking, it is not guaranteed to satisfy the axioms of a distance.
However, one can obtain a distance from (9) when the cost is defined in terms of a distance.
For example, if the cost function is defined by the `q-norm as c(u, v) = ‖u−v‖ρq , q ≥ 1, ρ ≥ 1,
then Dc(·, ·) is the well known Wasserstein distance of order ρ (also known as the optimal
transport distance or the earth mover’s distance). Wasserstein distances and Wasserstein
barycenters have recently become very popular and are widely applied in many applications
(Yang et al., 2021; Bigot and Klein, 2018; Cuturi and Doucet, 2014; Li and Wang, 2008;
Ye et al., 2017; Rabin et al., 2011). In contrast to standard Wasserstein distances, the cost
function c in our analysis are more general in that we allow for lower semicontinuous cost
functions that may take infinite values. As we will see in Theorem 4, a judicious choice of
c will give rise to the equivalence between (3) and (8).

2.2 DRO Formulation

In this section, we will give a DRO representation of the square-root regularized model (3)
for a broad class of regularizers p expressed as the sum of a simple norm and a seminorm
as follows. Let P : Rn → R and Q : Rs → R be two given norms. We consider p : Rn → R
defined by

p(β) := w1P (β) + w2Q(Bβ), β ∈ Rn, (10)

where B ∈ Rs×n is a given matrix, and w1 and w2 are nonnegative scalars adding up to
one. Such a regularizer p and the corresponding dual function p∗ are essential ingredients
in the definition of the optimal transport cost in the DRO formulation. In Proposition 1,
we give a relatively explicit form of p∗.

Proposition 1 Let p : Rn → R be the function defined in (10). Then the function

p∗(α) := sup
β
{〈α, β〉 | p(β) ≤ 1}, α ∈ Rn (11)

admits the form

p∗(α) = inf
α̃∈Rn, ᾱ∈Rs

sup
t∈[0,1]

{
t
P∗(α̃)

w1
+ (1− t)Q∗(ᾱ)

w2

∣∣∣∣ α̃+BT ᾱ = α

}
, α ∈ Rn. (12)

Before presenting the proof, we would like to give an explanation of this proposition.
By virtue of the convention of extended arithmetic (0/0 = 0, 1/0 = ∞), the formula (12)
can also include the special cases with w1 = 0 or w2 = 0, namely,

p∗(α) =

 P∗(α), if w1 = 1, w2 = 0,

inf
ᾱ∈Rs
{Q∗(ᾱ) |BT ᾱ = α}, if w1 = 0, w2 = 1.

(13)

The convention of extended arithmetic allows us to have a uniform expression (12) without
having to separately write out different cases. Additionally, one can see that p∗ in the
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second case of (13) will have finite values if and only if α ∈ Range(BT ). Note that in this
case p(·) = Q(B·) may only be a seminorm on Rn and therefore p∗ may take infinite values.
We will further characterize the properties of p∗ when p(·) = Q(B·) is a seminorm later in
Proposition 2.
Proof For positive coefficients w1 > 0 and w2 > 0, take an arbitrary 0 6= α ∈ Rn. We
have that

p∗(α) = sup
β
{〈α, β〉 | p(β) ≤ 1}

= sup
β

inf
u≥0
{〈α, β〉+ u(1− p(β))}

= inf
u≥0

sup
β
{〈α, β〉+ u− uw1P (β)− uw2Q(Bβ)}

= inf
u≥0

sup
β
{〈α, β〉+ u− uw1 sup

α̃:P∗(α̃)≤1
〈β, α̃〉 − uw2 sup

ᾱ:Q∗(ᾱ)≤1
〈Bβ, ᾱ〉}

= inf
u≥0
{u+ sup

β
inf

α̃:P∗(α̃)≤1, ᾱ:Q∗(ᾱ)≤1
〈β, α− u(w1α̃+ w2B

T ᾱ)〉}

= inf
u≥0
{u+ inf

α̃:P∗(α̃)≤1, ᾱ:Q∗(ᾱ)≤1
sup
β
〈β, α− u(w1α̃+ w2B

T ᾱ)〉}.

The third equality follows from the strong duality theorem (Rockafellar, 1970, Theorem 28.2
and 28.4); the fourth equality applies the definition of a dual norm; and the last equality
follows from a standard minimax theorem (Sion, 1958, Corallary 3.3). The supremum over
β renders that α− u(w1α̃+ w2B

T ᾱ) = 0. Therefore, we have that

inf
u≥0
{u+ inf

α̃:P∗(α̃)≤1, ᾱ:Q∗(ᾱ)≤1
sup
β
〈β, α− u(w1α̃+ w2B

T ᾱ)〉}

= inf
u, α̃, ᾱ

{u |u ≥ 0, P∗(α̃) ≤ 1, Q∗(ᾱ) ≤ 1, u(w1α̃+ w2B
T ᾱ) = α}

= inf
u, α̃, ᾱ

{u |u > 0, P∗(α̃) ≤ uw1, Q∗(ᾱ) ≤ uw2, α̃+BT ᾱ = α}

= inf
α̃, ᾱ
{max(P∗(α̃)/w1, Q∗(ᾱ)/w2) | α̃+BT ᾱ = α}

= inf
α̃, ᾱ

sup
t∈[0,1]

{
t
P∗(α̃)

w1
+ (1− t)Q∗(ᾱ)

w2

∣∣∣∣ α̃+BT ᾱ = α

}
,

where the second equality holds since α 6= 0, w1 > 0, w2 > 0, and we can simply replace
the variable α̃ by α̃/(uw1) and the variable ᾱ by ᾱ/(uw2). Therefore, (12) holds for w1 > 0
and w2 > 0.

For the case when w1 = 1 and w2 = 0, the required result follows trivially.
Next, we prove the result for case when w1 = 0 and w2 = 1, where p(·) = Q(B ·) is a

seminorm but it is not necessarily a norm. Take an arbitrary 0 6= α ∈ Rn. We have that

p∗(α) = sup
β
{〈α, β〉 |Q(Bβ) ≤ 1} = sup

β
inf
u≥0
{〈α, β〉+ u(1−Q(Bβ))}

≤ inf
u≥0

sup
β
{〈α, β〉+ u(1−Q(Bβ))}

= inf
u≥0

sup
β
{〈α, β〉+ u− u sup

ᾱ:Q∗(ᾱ)≤1
〈Bβ, ᾱ〉}

= inf
u≥0
{u+ sup

β
inf

ᾱ:Q∗(ᾱ)≤1
〈β, α− uBT ᾱ〉}

= inf
u≥0
{u+ inf

ᾱ:Q∗(ᾱ)≤1
sup
β
〈β, α− uBT ᾱ〉}.
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The third inequality follows from the exchange of sup and inf (Rockafellar, 1970, Lemma 36.1);
the fourth equality applies the definition of a dual norm; and the last equality follows from
a standard minimax theorem (Sion, 1958, Corallary 3.3). The supremum over β renders
that α− uBT ᾱ = 0. Therefore, we have that

inf
u≥0
{u+ inf

ᾱ:Q∗(ᾱ)≤1
sup
β
〈β, α− uBT ᾱ〉} = inf

u, ᾱ
{u |u ≥ 0, Q∗(ᾱ) ≤ 1, uBT ᾱ = α}

= inf
u, ᾱ
{u |u > 0, Q∗(ᾱ) ≤ u, BT ᾱ = α} = inf

ᾱ
{Q∗(ᾱ) |BT ᾱ = α},

where the second equality holds since α 6= 0 and we can simply replace the variable ᾱ by
ᾱ/u.

When 0 6= α ∈ Range(BT ), inf ᾱ {Q∗(ᾱ) |BT ᾱ = α} is finite. This, together with the
strong duality theorem (Rockafellar, 1970, Theorem 28.2 and 28.4), implies that equality
holds in the above inequality (∗). Namely, p∗(α) = inf ᾱ {Q∗(ᾱ) |BT ᾱ = α} < +∞ for
0 6= α ∈ Range(BT ).

When 0 6= α /∈ Range(BT ), inf ᾱ {Q∗(ᾱ) |BT ᾱ = α} is infinite. We can have an orthog-
onal decomposition of α: α = αr + αn, αr ∈ Range(BT ), 0 6= αn ∈ Null(B). Note that
p(αn) = 0, and by (11) it holds that p∗(α) ≥ 〈α, kαn〉 = k‖αn‖2 → +∞, as k → +∞.
Therefore, p∗(α) = inf ᾱ {Q∗(ᾱ) |BT ᾱ = α} = +∞ for 0 6= α /∈ Range(BT ).

Together with p∗(0) = 0, the proof is completed.

For a seminorm p, we specify some properties of p and p∗. Note that if p is a norm on
Rn, then p∗ is also a norm on Rn and the following properties (b) and (c) are standard.

Proposition 2 Let B ∈ Rs×n be a given matrix, Q : Rs → R be a norm, and p : Rn → R
be defined by

p(β) = Q(Bβ), β ∈ Rn. (14)

Then p∗ defined by (11) admits the expression

p∗(α) = inf
ᾱ∈Rs
{Q∗(ᾱ) |BT ᾱ = α}, α ∈ Rn, (15)

and the following holds:

(a) dom(p∗) = Range(BT ) and p∗ : Range(BT ) → R is a norm on the vector space
Range(BT );

(b) αTβ ≤ p(β)p∗(α) ∀α, β ∈ Rn;

(c) p(β) = supα{αTβ | p∗(α) ≤ 1} ∀β ∈ Rn. Moreover, this supremum is achievable.
Namely, there exists αβ ∈ Range(BT ) such that p∗(αβ) = 1 and p(β) = αTβ β.

Proof (15) follows from Proposition 1, and it implies that dom(p∗) = Range(BT ). First,
we prove that p∗ : Range(BT ) → R is a norm on Range(BT ). The triangle inequality
is inherited from that of Q∗: p∗(α + β) = infγ{Q∗(γ) |BTγ = α + β} ≤ inf ᾱ,β̄{Q∗(ᾱ +

β̄) |BT ᾱ = α,BT β̄ = β} ≤ inf ᾱ{Q∗(ᾱ) |BT ᾱ = α} + inf β̄{Q∗(β̄) |BT β̄ = β} = p∗(α) +
p∗(β). The absolute homogeneity is obvious from that of Q∗. If p∗(α) = 0, then by the

9
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property of infimum there exist a sequence ᾱk, k = 1, 2, . . . such that BT ᾱk = α and
Q∗(ᾱk) < 1/k. Since Q∗ is a norm on Rs, the latter further implies that ᾱk → 0 and hence
α = 0. Therefore, p∗ is a norm on Range(BT ).

Second, we prove (b). For any α, β, and ᾱ satisfying BT ᾱ = α, we have the inequality
αTβ = (Bβ)T ᾱ ≤ Q(Bβ)Q∗(ᾱ) since Q is a norm. We can deduce (b) by taking infimum
over ᾱ.

Third, we prove (c). On one hand, it follows from (b) that supα{αTβ | p∗(α) ≤ 1} ≤
supα{p(β)p∗(α) | p∗(α) ≤ 1} ≤ p(β) ∀β. On the other hand, we have that supα{αTβ | p∗(α) ≤
1} = supα∈Range(BT ){αTβ | inf ᾱ{Q∗(ᾱ) |BT ᾱ = α} ≤ 1} = supγ{(Bβ)Tγ | inf ᾱ{Q∗(ᾱ) |BT ᾱ =

BTγ} ≤ 1} ≥ supγ{(Bβ)Tγ |Q∗(γ) ≤ 1} = Q(Bβ) = p(β), where the second last equality
follows from the properties of the norm Q and its dual norm Q∗. Moreover, from (a) we know
that p∗ is a norm on Range(BT ) and therefore the set {α | p∗(α) ≤ 1} is compact. Then it
is easy to show that this supremum is achievable at the boundary. The proof is completed.

Proposition 2 includes a similar result in (Maurer and Pontil, 2012) about the operator
norm ‖β‖M∗ := sup1≤l≤g

{
‖M(l)β‖

}
∀β ∈ Rn and its dual form, with M := {M(l)}1≤l≤g

being a set of symmetric matrices M(l) ∈ Sn. See Appendix A for details.
The next proposition about strong duality is a direct application of (Blanchet and

Murthy, 2019, Theorem 1). It shows that the inner maximization in the DRO problem
(8) has a nice univariate dual problem.

Proposition 3 (Blanchet et al., 2019a, Proposition 1) Let c : Rn+1×Rn+1 → [0,+∞] be a
lower semicontinuous cost function satisfying c((x, y), (x′, y′)) = 0 whenever (x, y) = (x′, y′).
For γ ≥ 0 and a loss function `(x, y;β) that is upper semicontinuous in (x, y) for each β,
define

φγ(Xi, Yi;β) := sup
u∈Rn, v∈R

{`(u, v;β)− γc((u, v), (Xi, Yi))} .

Then

sup
P:Dc(P,PN )≤δ

EP[`(X,Y ;β)] = inf
γ≥0

{
γδ +

1

N

N∑
i=1

φγ(Xi, Yi;β)

}
.

Consequently, the DRO problem (8) reduces to

inf
β∈Rn

sup
P:Dc(P,PN )≤δ

EP[`(X,Y ;β)] = inf
β∈Rn

inf
γ≥0

{
γδ +

1

N

N∑
i=1

φγ(Xi, Yi;β)

}
.

Based on Proposition 3, we will prove in the next main theorem the equivalence between
the square-root regularized model (3) and the DRO formulation (8) by finding an explicit
form of φγ . This theorem not only unifies existing results (Blanchet and Kang, 2017;
Blanchet et al., 2019a) but also include a broader class of regularizers; it is applicable for
any regularizer in the additive form expressed in (10).

Theorem 4 Consider the squared-loss function `(x, y;β) = (y− βTx)2 and a regularizer p
of the form (10). Let the cost function c : Rn+1 × Rn+1 → [0,+∞] be defined by

c((u, v), (x, y)) :=

{
(p∗(u− x))2 , if v = y,

+∞, otherwise,

10
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and the associated optimal transport cost Dc(·, ·) be defined by (9). Then it holds that

inf
β∈Rn

sup
P:Dc(P,PN )≤δ

EP[`(X,Y ;β)] =
1

N
· inf
β∈Rn

{
‖Y −Xβ‖+

√
δN p(β)

}2
.

Proof Since c is lower semicontinuous with c((u, v), (u, v)) = 0 for any (u, v), and `(x, y;β)
is upper semicontinuous in (x, y) for each β, based on Proposition 3, we can prove the
required result via finding an explicit form of φγ . Take γ ≥ 0 and β ∈ Rn arbitrarily. By
the definitions of φγ , c, and `, we have that

φγ(Xi, Yi;β) = sup
u

{
(Yi − βTu)2 − γ(p∗(u−Xi))

2 |u−Xi ∈ dom(p∗)
}
.

For notational simplicity, we denote ∆ := u−Xi and Zi = Yi − βTXi. Then it holds that

φγ(Xi, Yi;β) = sup
∆∈dom(p∗)

{
Z2
i − 2Ziβ

T∆ + (βT∆)2 − γ(p∗(∆))2
}

(16)

≤ Z2
i + sup

∆∈dom(p∗)

{
2|Zi|p(β)p∗(∆) +

(
(p(β))2 − γ

)
(p∗(∆))2

}
. (17)

By the property of a norm and Proposition 2, there exists αβ ∈ dom(p∗) such that p∗(αβ) = 1
and p(β) = αTβ β.

If (p(β))2 < γ, then the quadratic function in terms of p∗(∆) in the above supremum

problem (17) is bounded by the value
Z2
i (p(β))2

γ−(p(β))2
at the stationary point p∗(∆) = |Zi|p(β)

γ−(p(β))2
.

That is, φγ(Xi, Yi;β) ≤ Z2
i +

Z2
i (p(β))2

γ−(p(β))2
. It is easy to check that this equality is achievable

when one substitutes ∆ = −Zip(β)
γ−(p(β))2

αβ into (16).

If (p(β))2 > γ, by taking ∆ = kαβ, k > 0 in (16), then it holds that φγ(Xi, Yi;β) ≥ Z2
i −

2kZip(β)+k2(p(β)−γ). Since k can be arbitrarily large, we deduce that φγ(Xi, Yi;β) = +∞.

Lastly, we consider the case where (p(β))2 = γ. If Zip(β) = 0, we have that φγ(Xi, Yi;β) =
Z2
i since (16) implies that φγ(Xi, Yi;β) ≥ Z2

i by taking ∆ = 0 and (17) implies that
φγ(Xi, Yi;β) ≤ Z2

i . If Zip(β) 6= 0, by taking ∆ = −kZip(β)αβ with k > 0 in (16), then
it holds that φγ(Xi, Yi;β) ≥ Z2

i + 2kZ2
i (p(β))2. Since k can be arbitrarily large, we de-

duce that φγ(Xi, Yi;β) = +∞. Therefore, when (p(β))2 = γ, we have that φγ(Xi, Yi;β) ={
Z2
i , if Zip(β) = 0,

+∞, if Zip(β) 6= 0.
In summary, we can have a unified expression if we adopt the conventions of extended

arithmetic given in the paragraph on notation, i.e.,

φγ(Xi, Yi;β) =

 Z2
i +

Z2
i (p(β))2

γ − (p(β))2
, if (p(β))2 < γ, or (p(β))2 = γ and Zip(β) = 0,

+∞, if (p(β))2 > γ, or (p(β))2 = γ and Zip(β) 6= 0.
(18)

Next, we consider the problem

inf
γ≥0

{
γδ +

1

N

N∑
i=1

φγ(Xi, Yi;β)

}
. (19)

11
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If ‖Y − Xβ‖ = 0 (namely, Zi = 0, ∀ i), or p(β) = 0, then it follows from (18) that (19)
reduces to

inf
γ≥(p(β))2

{
γδ +

1

N

N∑
i=1

Z2
i

}
=

1

N
‖Y −Xβ‖2 + δ(p(β))2 =

(
1√
N
‖Y −Xβ‖+

√
δp(β)

)2

.

If ‖Y −Xβ‖ 6= 0 and p(β) 6= 0, then it follows from (18) that (19) reduces to

inf
γ>(p(β))2

{
γδ +

1

N

N∑
i=1

(
Z2
i +

Z2
i (p(β))2

γ − (p(β))2

)}
=

(
1√
N
‖Y −Xβ‖+

√
δp(β)

)2

,

where the minimal value is achieved at γ = 1√
Nδ
‖Y − Xβ‖p(β) + (p(β))2. Thus far, we

have that infγ≥0

{
γδ + 1

N

∑N
i=1 φγ(Xi, Yi;β)

}
=
(

1√
N
‖Y −Xβ‖+

√
δp(β)

)2
. We further

take minimization over β on both sides. This, together with Proposition 3, completes the
proof.

Theorem 4 is applicable for any regularizer of the additive form (10). This form may be
a seminorm when p(·) = Q(B·). In this case, one may take into consideration the effective
domain of p∗, and then the cost function can be written as

c((u, v), (x, y)) :=

{
(p∗(u− x))2 , if v = y and u− x ∈ Range(BT ),

+∞, otherwise.

Our equivalence result in Theorem 4 can cover a broad class of regularizers composed of
a norm and a seminorm as in (10). We can obtain from Theorem 4 that the following
square-root regularized estimators have equivalent DRO formulations:

• the square-root Lasso estimator (Belloni et al., 2011); a solution of (3) with p(β) =
‖β‖1, β ∈ Rn;

• the square-root sparse group Lasso estimator (Stucky and van de Geer, 2017, Sec-
tion 4.4); a solution of (3) with p given by (6);

• the square-root SLOPE estimator (Stucky and van de Geer, 2017, Section 4.3); a
solution of (3) with p being the following weighted and sorted `1 norm with respect to

a nonincreasing sequence of weights ω1 ≥ · · · ≥ ωn > 0: p(β) =
∑n

i=1 ωi|β
↓
i |, where β↓

is a vector obtained from β by sorting its entries in nonincreasing order of magnitude.
This p was shown to be a norm in (Zeng and Figueiredo, 2014, Lemma 2);

• the square-root fused Lasso estimator (Jiang et al., 2021); a solution of (3) with p
being given by (7);

• the SSASR estimator (Xie and Yang, 2020); a solution of (3) with p being given
by p(β) = w1

∑g
l=1

√
|Gl|‖βGl‖ + w2

∑g
l=1

√
|Gl|‖BlβGl‖, where the matrix Bl ∈

R(|Gl|−1)×|Gl| is defined as Blx = (x1 − x2, . . . , x|Gl|−1 − x|Gl|)
T ∀x ∈ R|Gl| if |Gl| ≥ 2;

and Bl = 0 if |Gl| = 1.

12
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3. A Proximal Point Dual Semismooth Newton Algorithm for Solving
the Square-root Regularized Problem

In this section we aim to design a fast algorithm to solve the square-root regularized problem
(3). It can be rewritten as follows with an auxiliary vector y ∈ RN :

min
β∈Rn, y∈RN

{‖y‖+ λp(β) |Xβ − Y = y} . (20)

The dual problem of (20) is given by

− min
u∈RN

{
〈Y, u〉+ (λp)∗(XTu) + δB(u)

}
(21)

where B is the unit Euclidean ball.

Compared with the Lasso-type problem (2), the square-root regularized problem is more
challenging to solve since both the loss function ‖ · ‖ and the regularizer p are nonsmooth.
We aim to use the framework of a proximal point algorithm (PPA) (Rockafellar, 1976) for
solving (20). Given two sequences of positive parameters {σk} and {τk} such that σk ↓ σ > 0
and τk ↓ τ > 0, and an initial point

(
β0, y0

)
∈ Rn×RN , the PPA for solving (20) generates

a sequence
{(
βk+1, yk+1

)}
via

(βk+1, yk+1) ≈ Pk(βk, yk) := arg min
β∈Rn, y∈RN

{
‖y‖+ λp(β)

+σk
2 ‖β − β

k‖2 + τk
2 ‖y − y

k‖2

∣∣∣∣∣Xβ − Y = y

}
.

(22)

Algorithm 1: Proximal point algorithm for solving (20)

Input Data X ∈ RN×n, Y ∈ RN , a penalty parameter λ > 0, and a regularizer p.
Initialize β0 = 0 ∈ Rn, y0 = −Y , σ0 = τ0 = 1.
while the termination criterion is not met, do

Step 1. Update βk+1 and yk+1 by solving (22).
Step 2. Update σk+1 and τk+1. Set k ← k + 1.

end

Output βk and yk.

We use the standard criterion by Rockafellar (1976) for controlling the inexactness when
solving (22) in Algorithm 1:

‖(βk+1, yk+1)− Pk(βk, yk)‖ ≤ εk, εk > 0,
∑
k≥0

εk < +∞.

The global convergence of Algorihm 1 follows from (Rockafellar, 1976) directly. A key
difficulty in Algorithm 1 is how to solve (22) efficiently. Given σk > 0, τk > 0, βk ∈ Rn,
and yk ∈ RN , we recall the subproblem (22) given by

min
β,y

‖y‖+ λp(β) +
σk
2
‖β − βk‖2 +

τk
2
‖y − yk‖2

s.t. Xβ − Y = y.
(23)
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The Lagrangian function associated with (23) is given by

L(β, y;u) = ‖y‖+
τk
2

∥∥∥y − yk − τ−1
k u

∥∥∥2
−
〈
yk, u

〉
− 1

2τk
‖u‖2 − 〈Y, u〉+ λp(β)

+σk
2

∥∥β − βk + σ−1
k XTu

∥∥2
+
〈
βk, XTu

〉
− 1

2σk

∥∥XTu
∥∥2
,

for (β, y, u) ∈ Rn × RN × RN . By some simple manipulations, we can obtain that the dual
problem of (23), i.e., maxu minβ,y L(β, y;u), is given by

− min
u∈RN

Ψ(u) :=
1

2τk
‖u‖2 +

1

2σk
‖XTu‖2 − 〈u,Xβk − yk − Y 〉

− σkM λ
σk
p

(
βk − σ−1

k XTu
)
− τkM 1

τk
‖·‖

(
yk + τ−1

k u
)
.

(24)

It follows from the properties of Moreau envelope that the dual objective function Ψ is
continuously differentiable and convex. Moreover, the gradient of Ψ is given by

∇Ψ(u) = −Xprox λ
σk
p

(
βk − σ−1

k XTu
)

+ prox 1
τk
‖·‖

(
yk + τ−1

k u
)

+ Y, u ∈ RN . (25)

Thus the problem (24) is an unconstrained smooth convex minimization problem. We let a
dual optimal solution be ū ∈ arg min Ψ(u). Then the optimal solution (β̄, ȳ) to (23) can be
computed by

β̄ = prox λ
σk
p

(
βk − σ−1

k XT ū
)
, ȳ = prox 1

τk
‖·‖

(
yk + τ−1

k ū
)
.

Due to the favourable property of the dual problem (24), we propose to solve (23) via its
dual. In particular, the optimal solution of (24) is nothing but the solution of the nonlinear
system ∇Ψ(u) = 0, u ∈ RN . The latter can be solved by a semismooth Newton (SSN)
method. In order to apply the SSN method, we have to characterize a certain generalized
Jacobian of ∇Ψ(·), which in turns depends on the generalized Jacobian of prox λ

σk
p(·). Since

the proximal mappings prox λ
σk
p (·) and prox 1

τk
‖·‖ (·) are Lipschitz continuous, the following

multifunction, which is considered as a generalized Jacobian of ∇Ψ(u), is well defined:

∂̂(∇Ψ)(u) =

σ−1
k XUXT + τ−1

k V

∣∣∣∣∣ U ∈ ∂prox λ
σk
p

(
βk − σ−1

k XTu
)
,

V ∈ ∂prox 1
τk
‖·‖
(
yk + τ−1

k u
)

 .

14



On Regularized Square-root Regression Problems

Once an element H ∈ ∂̂(∇Ψ)(u) can be constructed explicitly for any given u, the SSN
method can be implemented as follows.

Algorithm 2: Semismooth Newton method for solving (24)

Input Data X ∈ RN×n, Y ∈ RN , a penalty parameter λ > 0, a regularizer p.
βk ∈ Rn, yk ∈ RN , σk > 0, τk > 0. η ∈ (0, 1), % ∈ (0, 1]. ρ ∈ (0, 1), µ ∈ (0, 0.5).
tol > 0.

Initialize u0 = 0 ∈ RN , f0 = ∇Ψ(u0) by (25), j = 0.
while

∥∥f j∥∥ > tol, do

Step 1. Find an element Hj ∈ ∂̂(∇Ψ)(uj), and then find an approximate
solution dj to the linear system

Hjd = −f j

such that ‖Hjd+ f j‖ ≤ min(η, ‖f j‖1+%).
Step 2. Find a step size αj = ρmj , where mj is the smallest nonnegative
integer m for which

Ψ(uj + ρmjdj) ≤ Ψ(uj) + µρmj 〈∇Ψ(uj), dj〉.

Step 3. Update uj+1 = uj + αjd
j and compute f j+1 = ∇Ψ(uj) by (25).

Step 4. Set j ← j + 1.
end
Output uj .

We can show that if the optimal solution (β̄, ȳ) to (23) does not overfit, i.e, ȳ = Xβ̄−Y 6=
0, then at the optimal solution ū to (24), the generalized Jacobian ∂prox 1

τk
‖·‖
(
yk + τ−1

k ū
)

is

a singleton and the element is positive definite. But as the proof follows a similar argument
to the one in (Tang et al., 2020, Proposition 12), we omit it here. The above property is
crucial to guarantee the fast convergence of the SSN method for solving (24). We state the
standard convergence result of the SSN method (Algorithm 2) without proof.

Theorem 5 Let (β̄, ȳ) be the optimal solution to the problem (23). Assume that the optimal
solution does not overfit the data, i.e., ȳ = Xβ̄− Y 6= 0. Then the sequence {uj} generated
by Algorithm 2 converges globally to the unique solution ū of (24). Furthermore, the local
rate of convergence is of order 1 + %, with % ∈ (0, 1] given in Algorithm 2, i.e., for all j
sufficiently large, ‖uj+1 − ū‖ = O(‖uj − ū‖1+%).

From now on, we restrict our discussions to the case where the regularizer p is either the
sparse group Lasso regularizer (6) or the fused Lasso regularizer (7). We will illustrate the
explicit form of an element H ∈ ∂̂(∇Ψ)(·) based on (Li et al., 2018b; Zhang et al., 2020).
It is worth noting that the matrix H given below has (structured) sparsity inherited from
that of matrices in the generalized Jacobian ∂proxp (·), and it is known as second order
sparsity. The second order sparsity will reduce substantially the computational cost in the
SSN method, as demonstrated in (Li et al., 2018c,b; Lin et al., 2019; Luo et al., 2019; Zhang
et al., 2020).
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Sparse group Lasso regularizer. We will first illustrate the construction of an ele-
ment in ∂̂(∇Ψ)(·) when p is the sparse group Lasso regularizer given by (6). Given positive
constants κ1, κ2 and β ∈ Rn, it is well known that for any β

proxκ1‖·‖1(β) = (|β| − κ11)+ � sign(β), proxκ2‖·‖(β) =


(

1− κ2
‖β‖

)+
β, if β 6= 0,

0, if β = 0.

We can construct a matrix Uκ1(β) in ∂proxκ1‖·‖1(β) and a matrix Vκ2(β) in ∂proxκ2‖·‖(β)
for any β respectively as follows

∂proxκ1‖·‖1(β) 3 Uκ1(β) := Diag(v),

∂proxκ2‖·‖(β) 3 Vκ2(β) :=

{(
1− κ2

‖β‖

)
I + κ2

‖β‖3ββ
T , if ‖β‖ > κ2,

0, if ‖β‖ ≤ κ2,

where v ∈ Rn is defined by vi = 1 if |βi| > κ1, and vi = 0 otherwise. Let β̃ := βk−σ−1
k XTu

and ỹ := yk + τ−1
k u. By (Zhang et al., 2020, (10) and Theorem 3.1), we can construct a

matrix H ∈ ∂̂(∇Ψ)(·) as follows

H := σ−1
k

g∑
l=1

[
XGlVλw2ωl

σk

(
proxλw1

σk
‖·‖1

(β̃Gl)
)
Uλw1

σk

(β̃Gl)X
T
Gl

]
+ τ−1

k V 1
τk

(ỹ).

Fused Lasso regularizer. Next, we illustrate the construction of an element in
∂̂(∇Ψ)(·) when p is the fused Lasso regularizer given by (7). From (Li et al., 2018b),
we can construct a matrix Wκ2(β) in ∂proxκ2‖B·‖1(β) for any β ∈ Rn as follows

∂proxκ2‖B·‖1(β) 3Wκ2(β) := I −BT (ΣBBTΣ)†B,

where Σ = Diag(σ) and σ is given by

σi =

1, if
(
Bproxκ2‖B·‖1(β)

)
i

= 0,

0, otherwise,
i = 1, 2, . . . , n− 1.

Let β̃ := βk − σ−1
k XTu and ỹ := yk + τ−1

k u. By (Li et al., 2018b, (22) and Theorem 2), we

can construct a matrix H ∈ ∂̂(∇Ψ)(·) as follows

H := σ−1
k XUλw1

σk

(
proxλw2

σk
‖B·‖1

(β̃)
)
Wλw2

σk

(β̃)XT + τ−1
k V 1

τk

(ỹ).

4. Numerical Experiments

In this section, we aim to evaluate the performance of our proximal point dual semismooth
Newton algorithm (PPDNA) for solving the square-root regularized problem (3), when the
regularizer p is chosen to be the sparse group Lasso regularizer (6) or the fused Lasso
regularizer (7).
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4.1 Setup of the Experiments

Let tol be the tolerance, maxiter be the maximum iteration number, and maxtime be the
maximum running time. We terminate a method at the kth iteration if the kth iterative
point βk satisfies one of the following conditions:

•
∥∥Xβk − Y ∥∥ 6= 0, β̄k := XT Xβk−Y

‖Xβk−Y ‖ , and

∆k
kkt :=

∥∥βk − proxλp(β
k − β̄k)

∥∥
1 + ‖βk‖+

∥∥β̄k∥∥ < tol; (26)

•
∥∥Xβk − Y ∥∥ = 0; in this case, if the primal objective value in (20) (denoted as obj(20))
and the dual objective value in (21) (denoted as obj(21)) are available, we report the
relative duality gap

∆k
pd.gap :=

obj(20) − obj(21)

1 +
∣∣obj(20)

∣∣+
∣∣obj(21)

∣∣ ; (27)

otherwise, we report the relative successive change

∆k
var.gap :=

∥∥βk − βk−1
∥∥

1 + ‖βk‖+ ‖βk−1‖
; (28)

• k > maxiter, or the total running time exceeds maxtime.

For all the algorithms, we set tol to be 10−7 and maxtime to be 30 minutes. In addition,
we set maxiter for our algorithm to be 102, and for other algorithms to be 106. All the
experiments are performed in MATLAB (version 9.7) on a Windows workstation (6-core,
Intel Core i7-8750H @ 2.20GHz, 8 Gigabytes of RAM).

For the data matrix X ∈ RN×n, we require each column of X to be nonzero, i.e.,∑N
i=1X

2
ij > 0, j = 1, 2, . . . , n. For all the data matrices in our experiments, we normalize

the columns such that the diagonal entries of the matrix 1
NX

TX are equal to one. That

is, we let d ∈ Rn be defined by dj =
√

N∑N
i=1X

2
ij

, j = 1, 2, . . . , n and then normalize X by

X ← XDiag(d). Such a normalization of the data has been considered in (Bunea et al.,
2013; Stucky and van de Geer, 2017; Blanchet et al., 2019a; Jiang et al., 2021). For the
sparse group Lasso regularizer, we always choose the weights of groups as ωl =

√
|Gl|.

We also give the following explanations for the entries in the tables of numerical results.
We report an estimation of the number of nonzero elements in a computed vector β ∈ Rn
as follows

nnz(β) := arg min
1≤j≤n

{
j
∣∣∣ j∑
i=1

∣∣∣β↓i ∣∣∣ ≥ 0.999 ‖β‖1
}
, (29)

where β↓ is a vector obtained from β by sorting its entries in nonincreasing order of mag-
nitude. When β has a group structure {Gl}gl=1, which forms a partition of {1, 2, . . . , n},
we define b ∈ Rg by bl := ‖βGl‖ , l = 1, . . . , g and report an estimation of the number of

17



Chu, Toh, and Zhang

nonzero groups of β by applying (29) to the vector b: nnzgrp(β) := nnz(b). Besides, we
denote nnzB(β) := nnz(Bβ) where Bβ = (β1 − β2, β2 − β3, . . . , βn−1 − βn)T . We show the
number of outer PPA iterations in Algorithm 1 and the total number of inner SSN iterations
in Algorithm 2 of our PPDNA in the format of “outer iteration | inner iteration” under the
iteration column. The running time is in the format of “minutes:seconds”. An entry “00”
under the column “time” means that the computational time is less than 0.5 second. Based
on the value of ‖Xβk−Y ‖, we report under the error column ∆kkt, ∗∆pd.gap, or #∆var.gap,
given by (26), (27), and (28), respectively.

4.2 Alternating Direction Method of Multipliers for Solving the Square-root
Regularized Problem

To justify the necessity of our second order based method PPDNA in Section 3, here we
develop two first order methods based on the highly popular alternating direction method of
multipliers (ADMM) (Glowinski and Marroco, 1975; Gabay and Mercier, 1976) framework
to compare our PPDNA against them.

Now we describe the implementation of ADMM for solving an equivalent form of the
square-root regularized problem (20) and its dual problem (21). By introducing slack vari-
ables α ∈ Rn, ξ ∈ Rn, and x ∈ RN , we obtain their equivalent forms respectively as follows

min
β∈Rn, y∈RN , α∈Rn

{‖y‖+ λp(α) | Xβ − Y − y = 0, β − α = 0} , (30)

− min
u∈RN , ξ∈Rn, x∈RN

{
〈Y, u〉+ (λp)∗(ξ) + δB(x) | −XTu− ξ = 0, u− x = 0

}
. (31)

Given a positive scalar µ, the augmented Lagrangian functions associated with (30) and
(31) are respectively given by

L(P)
µ (β, y, α;u, ξ) = ‖y‖+ λp(α) +

µ

2

∥∥Xβ − Y − y + µ−1u
∥∥2

+
µ

2

∥∥β − α+ µ−1ξ
∥∥2

− 1

2µ
‖u‖2 − 1

2µ
‖ξ‖2 , ∀ (β, y, α, u, ξ) ∈ Rn × RN × Rn × RN × Rn,

L(D)
µ (u, ξ, x;β, y) = 〈Y, u〉+ δB(x) + (λp)∗(ξ) +

µ

2

∥∥−XTu− ξ + µ−1β
∥∥2

+
µ

2

∥∥u− x+ µ−1y
∥∥2

− 1

2µ
‖β‖2 − 1

2µ
‖y‖2 , ∀(u, ξ, x, β, y) ∈ RN × Rn × RN × Rn × RN .

The ADMM for solving the primal problem (30) and the dual problem (31) is given respec-
tively in Algorithm 3 and Algorithm 4. For the convergence results, we refer the reader to
(Chen et al., 2017; Fazel et al., 2013). We make the following remarks on techniques for solv-
ing linear systems (32) and (33), which is the most expensive part in ADMM frameworks.
When n < N , we solve the n× n linear system (32) either by the Cholesky factorization or
the preconditioned conjugate gradients method, depending on n. Otherwise, we apply the
Sherman-Morrison-Woodbury formula (Golub and Van Loan, 2013)

(I +XTX)−1 = I −X(I +XXT )−1XT ,

and only compute the Cholesky factorization of a smaller N × N matrix I + XXT . For
solving the N ×N linear system (33) when N < n, we use either the Cholesky factorization
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or the preconditioned conjugate gradients method, depending on N . Otherwise, we apply
the Sherman-Morrison-Woodbury formula

(I +XXT )−1 = I −XT (I +XTX)−1X,

and compute the Cholesky factorization of I+XTX. In any case, the Cholesky factorization
(if needed) is only performed once at the beginning of the algorithm.

Algorithm 3: pADMM for solving (30)

Input Data X ∈ RN×n, Y ∈ RN , a penalty parameter λ > 0, a regularizer p.
Initialize
k = 0, y0 = 0 ∈ RN , α0 = 0 ∈ Rn, u0 = 0 ∈ RN , ξ0 = 0 ∈ Rn; ρ = 1.618, µ > 0.

while the termination criterion is not met, do
Step 1. Compute βk+1 by

βk+1 = arg min
β

µ

2

∥∥∥Xβ − Y − yk + µ−1uk
∥∥∥2

+
µ

2

∥∥∥β − αk + µ−1ξk
∥∥∥2

= (I +XTX)−1
[
XT (Y + yk − µ−1uk) + (αk − µ−1ξk)

]
. (32)

Step 2. Compute yk+1, αk+1 by

yk+1 = arg min
y

‖y‖+
µ

2

∥∥∥Xβk+1 − Y − y + µ−1uk
∥∥∥2

= proxµ−1‖·‖

(
Xβk+1 − Y + µ−1uk

)
,

αk+1 = arg min
α

λp(α) +
µ

2

∥∥∥βk+1 − α+ µ−1ξk
∥∥∥2

= proxµ−1λp

(
βk+1 + µ−1ξk

)
.

Step 3. Update uk+1, ξk+1 by

uk+1 = uk + ρµ(Xβk+1 − Y − yk+1), ξk+1 = ξk + ρµ(βk+1 − αk+1).

Step 4. Set k ← k + 1.
end

Output βk.

4.3 Comparison of Efficiency for Solving the Square-root Sparse Group Lasso
Problem

In this section, we conduct extensive experiments to demonstrate the efficiency of our
PPDNA for solving the square-root sparse group Lasso problem where the regularizer p
is given by (6). In particular, we compare our PPDNA (Algorithm 1+Algorithm 2) with
pADMM (Algorithm 3), dADMM (Algorithm 4), and the S-TISP solver (Bunea et al.,
2013). Note that the S-TISP solver is limited to solving the square-root group Lasso prob-
lem where the coefficients in the expression (6) of the regularier p can only be taken as
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Algorithm 4: dADMM for solving (31)

Input Data X ∈ RN×n, Y ∈ RN , a penalty parameter λ > 0, a regularizer p.
Initialize k = 0, u0 = 0 ∈ RN , ξ0 = 0 ∈ Rn, x0 = 0 ∈ RN , β0 = 0 ∈ Rn, y0 = 0 ∈
RN ; ρ = 1.618, µ > 0.

while the termination criterion is not met, do
Step 1. Compute uk+1 by

uk+1 = arg min
u

uTY +
µ

2

∥∥∥−XTu− ξk + µ−1βk
∥∥∥2

+
µ

2

∥∥∥u− xk + µ−1yk
∥∥∥2

= (I +XXT )−1
[
−µ−1Y +X(µ−1βk − ξk)− (µ−1yk − xk)

]
. (33)

Step 2. Compute ξk+1, xk+1 by

ξk+1 = arg min
ξ

(λp)∗(ξ) +
µ

2

∥∥∥−XTuk+1 − ξ + µ−1βk
∥∥∥2

= proxµ−1(λp)∗

(
−XTuk+1 + µ−1βk

)
=
(
−XTuk+1 + µ−1βk

)
− µ−1proxµλp

(
−µXTuk+1 + βk

)
,

xk+1 = arg min
x

δB(x) +
µ

2

∥∥∥uk+1 − x+ µ−1yk
∥∥∥2

= ΠB

(
uk+1 + µ−1yk

)
.

Step 3. Update βk+1, yk+1 by

βk+1 = βk + ρµ(−XTuk+1 − ξk+1), yk+1 = yk + ρµ(uk+1 − xk+1).

Step 4. Set k ← k + 1.
end

Output βk.

(w1, w2) = (0, 1) or (w1, w2) = (1, 0) in that solver. For all tables in this section, we denote
PPDNA, pADMM, dADMM, and S-TISP by “PP”, “pA”, “dA”, and “ST”, respectively.

4.3.1 Synthetic Data

We first show the results on synthetic data sets following the data generation mechanism
in (Yuan and Lin, 2006; Bunea et al., 2013; Blanchet and Kang, 2017). We first choose a
correlation matrix Σ to be a Toeplitz matrix, i.e., Σij = 0.5|i−j|, the dimensions of which
will be clear from the context. We construct four examples in our experiments. As can be
seen from the following examples, the true regression vector β0 designed in Example 3 is not
only groupwise sparse, but also sparse within a group. In contrast, the nonzero groups for β0

in Example 1 and 2 are dense. Besides, based on Example 3, we construct Example 4a/4b
for which the true regression vectors are denser.

Example 1 (Bunea et al., 2013) The dimensions of this example are set as N = 1000,
g = 200 or 2000, n = 3g. We assign every three adjacent entries to be in one group,
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i.e., Gl = {3l − 2, 3l − 1, 3l}, l = 1, . . . , g. The true regression vector β0 only contains
three nonzero groups, i.e., (β0)Gl = (2.5, 2.5, 2.5)T for l = 1, 3, 4 and (β0)Gl = 0 otherwise.
The predictor vectors Xi ∈ Rn, i = 1, . . . , N are generated from the multivariate normal
distribution N (0,Σ). The response variables Yi ∈ R, i = 1, . . . , N are generated from the

linear regression model (1) with εi
i.i.d.∼ N (0, 1) and σ = 1.

Example 2 (Yuan and Lin, 2006; Blanchet and Kang, 2017) The dimensions of this example
are set as N = 500 or 10000, g = 160, n = 3g. The group structure is given by Gl =
{l, l + g, l + 2g}, l = 1, . . . , g. The true regression vector β0 only contains two nonzero
groups, i.e., (β0)G3 = (1, 1, 1)T , (β0)G6 = (2/3,−1, 1/2)T , and (β0)Gl = 0, l /∈ {3, 6}. We
generate random vectors Zi ∈ Rg, i = 1, . . . , N from N (0,Σ) and a random scalar ω ∈ R
from N (0, 1). Let Ai := Zi+ω1√

2
∈ Rg. Then the predictor vectors Xi ∈ Rn, i = 1, . . . , N

are chosen to be the concatenation of three vectors constructed from Ai: Xi := (ATi , A
T
i �

ATi , A
T
i � ATi � ATi )T . The response variables Yi ∈ R, i = 1, . . . , N are generated from the

linear regression model (1) with εi
i.i.d.∼ N (0, 1) and σ = 2.

Example 3 The dimensions of this example are set as N = 4000, g = 2000, n = 3g or
N = 500, g = 3000, n = 3g. The true regression vector β0 only contains four nonzero
groups, i.e., (β0)G3 = (1, 0, 1)T , (β0)G6 = (2/3,−1, 0)T , (β0)G9 = (−1, 0,−1/2)T , (β0)G12 =
(0,−1, 0)T , and (β0)Gl = 0, l /∈ {3, 6, 9, 12}. The group structure {Gl} and the data {X,Y }
are generated in the same way as in Example 2.
Example 4a/4b The dimensions of this example are set as N = 4000, g = 2000, n = 3g.
Let β0 be the true regression vector in Example 3. For a positive integer T , we define
β(T ) ∈ Rn as follows:

β
(T )
Gl

=

{
(β0)Gi if l = 12k + i, k ∈ {0, 1, . . . , T − 1}, i ∈ {1, 2, . . . , 12},
0 otherwise.

By this construction, we have nnz
(
β(T )

)
= 7T and nnzgrp

(
β(T )

)
= 4T . In particular,

we set β(10) and β(100) as the true regression vectors of Example 4a and Example 4b,
respectively. The group structure {Gl} and the data set {X,Y } are generated in the same
way as in Example 3.

We choose λ ∈ {λBun, λStG, λBlG}, where the three tuning parameters λBun, λStG, and
λBlG are theoretically optimal values given in (Bunea et al., 2013; Stucky and van de Geer,
2017; Blanchet et al., 2019a). See Appendix B for the details of the choice of the parameters.
First, we set w1 = 0 and w2 = 1 so that we can compare with the S-TISP solver, and the
comparison of PPDNA, pADMM, dADMM, and S-TISP on Examples 1-4 are reported in
Table 1. We can see from Table 1 that our PPDNA successfully solves all instances except
for Example 4b within several seconds. For Example 3 with (N,n) = (4000, 6000), pADMM
fails to achieve the prespecified accuracy within 30 minutes, dADMM takes approximately
20 minutes, and the running time of S-TISP varies from about 2 minutes to 12 minutes;
however, our PPDNA merely takes 5 seconds. In addition, we set w1 = w2 = 0.5 and
compare the three methods PPDNA, pADMM, and dADMM in Table 2. It can be observed
that our PPDNA outperforms both pADMM and dADMM for all instances in Table 2;
our PPDNA returns accurate solutions for all instances within one minute. Even though
dADMM is faster than pADMM, its running time grows significantly with the increase of
dimensions. In addition, comparing Examples 3, 4a, 4b (N = 4000, n = 6000, g = 2000)
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where the numbers of nonzeros of the true regression vectors are 7, 70, 700, respectively,
we found that the performances of the algorithms do not vary too much. By comparing
Table 1 and Table 2, one may find that the efficiency of our PPDNA remains steady for the
group Lasso regularizer (w1 = 0) and the sparse group Lasso regularizer (w1 = 0.5).

4.3.2 UCI Data with Synthetic Group Structure

We use the UCI repository (Asuncion and Newman, 2007; Chang and Lin, 2011) in this
section. Following (Huang et al., 2010; Li et al., 2018c; Zhang et al., 2020), we expand the
original features of the data sets housing, bodyfat, pyrim, triazines. The UCI data sets are
not equipped with group structures, and we design the group structure as follows. We set
the total number of groups as g = 300, and a feature is assigned randomly to a group with
a uniform probability.

On each UCI data set, we consider two cases: (w1, w2) = (0, 1) and (w1, w2) = (0.5, 0.5).
For each case, we select three values of λ from the set {0.5, 1, 2, 5, 7.5} so that the resulting
solutions do not overfit. When w1 = 0, we compare the performances of PPDNA with
pADMM, dADMM, and S-TISP. Otherwise, we compare the performances of PPDNA with
pADMM and dADMM. The results are presented in Table 3. It can be seen that PPDNA
is always the fastest among the compared methods for all instances in Table 3. We also
find that the iteration numbers and computational time of pADMM, dADMM, and S-
TISP fluctuates wildly with the changes in the dimensions or parameters. In contrast, the
performances of our PPDNA are generally robust; it solves all the problems in Table 3 within
30 seconds except for E2006.train. In addition, we can observe that pADMM is generally
slow for problems in Table 3, and it can not solve the last problem due to insufficient of
memory for computing the Cholesky factorization. Compared to S-TISP, dADMM is faster
for the first four problems. For the last two problems, dADMM fails to solve them within 30
minutes, which is due to the computational cost for solving the linear system (33). But note
that S-TISP does not solve some of instances to the required level of accuracy. Since the
dimensions of problems in UCI data sets are much larger than those of the synthetic data
sets in Section 4.3.1, pADMM, dADMM, and S-TISP reach the maximum running time 30
minutes in many instances. In contrast, our PPDNA succeeds in solving all instances. We
can safely conclude that our PPDNA can be more efficient than pADMM, dADMM, and
S-TISP for solving large-scale square-root sparse group Lasso problems.

4.3.3 Real Data

In this section, we present the numerical results of the square-root sparse group Lasso model
on two real data sets which are equipped with natural group structures. For a given data set
(X,Y ) in this section, we randomly split it into the training set (Xtrain, Ytrain) and the test
set (Xtest, Ytest) so that the number of observations Ntrain of the training data set is roughly
twice larger than the number of observations Ntest of the test set. Based on the training
set, we first set (w1, w2) = (0, 1) and conduct 8-fold cross validation (CV) for selecting λ
over the set

λ ∈ {10−1, 10−0.95, 10−0.9, . . . , 100.95, 101}. (34)
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problem λ nnz| iter time error

(N,n); g nnzgrp PP pA dA ST PP pA dA ST PP pA dA ST

Example 1

(1000, 600)

200

3.485 9|3 17|70 1489 896 46 01 02 01 00 3.4e-08 4.6e-08 4.5e-08 8.8e-08

9.193 9|3 13|41 1071 1291 123 00 01 02 00 7.7e-09 5.3e-08 1.2e-08 9.4e-08

4.929 9|3 15|66 1489 1079 43 01 02 02 00 4.4e-09 3.3e-08 1.9e-08 7.8e-08

Example 1

(1000, 6000)

2000

3.929 9|3 13|28 14374 6235 84 04 03:27 56 00 3.0e-11 5.3e-08 2.1e-08 8.8e-08

9.837 9|3 11|28 11054 3211 63 04 02:45 30 00 2.0e-08 2.0e-08 3.9e-08 8.5e-08

5.605 9|3 11|24 27501 6058 77 04 06:42 54 00 5.2e-08 3.7e-08 3.3e-08 8.7e-08

Example 2

(500, 480)

160

3.462 6|2 14|48 12501 2993 2178 00 09 02 00 4.1e-09 1.6e-08 9.9e-08 1.0e-07

9.193 6|2 13|43 6389 3041 529 00 04 02 00 6.1e-08 2.4e-08 1.9e-08 9.9e-08

4.601 6|2 14|45 10001 3421 1860 00 07 02 00 1.1e-09 1.8e-08 2.5e-08 1.0e-07

Example 2

(10000, 480)

160

3.353 6|2 14|53 100001 9442 3527 08 09:49 01:59 14 4.5e-09 7.0e-08 1.0e-07 1.0e-07

9.020 6|2 14|52 60001 16444 2574 08 05:54 03:28 10 1.6e-09 9.9e-08 9.9e-08 1.0e-07

4.546 6|2 13|55 72501 10014 3053 08 07:09 02:12 12 3.6e-08 8.6e-08 9.9e-08 1.0e-07

Example 3

(500, 9000)

3000

4.026 23|8 13|37 27501 9581 27607 05 04:50 01:00 02:14 2.8e-09 7.0e-08 3.7e-08 1.0e-07

10.008 3|1 12|28 95001 15001 5870 05 17:25 01:37 28 1.2e-09 1.7e-08 3.0e-08 1.0e-07

17.169 0|0 1|1 1 1 1 00 00 00 00 0.0e-00 0.0e-00 0.0e-00 0.0e-00

Example 3

(4000, 6000)

2000

3.800 12|4 14|51 24123 19459 34664 05 30:00 16:50 12:51 1.7e-09 7.1e-05 7.4e-08 1.0e-07

9.760 12|4 14|48 23646 22501 21300 05 30:00 19:52 08:07 3.6e-11 4.8e-06 1.8e-08 1.0e-07

17.163 12|4 13|48 23978 25001 7288 05 30:00 21:48 02:54 7.6e-08 7.7e-06 6.5e-08 1.0e-07

Example 4a

(4000, 6000)

2000

4.005 111|41 21|118 34205 7409 36603 06 30:00 05:21 06:45 4.1e-09 1.8e-07 1.0e-07 1.0e-07

9.791 132|48 21|111 10001 19713 19748 03 08:49 13:57 03:35 1.3e-08 2.1e-08 3.2e-08 1.0e-07

16.910 110|37 20|90 22501 25001 18372 02 19:51 17:40 03:20 6.3e-09 4.1e-08 4.4e-08 1.0e-07

Example 4b

(4000, 6000)

2000

3.994 1256|447 18|103 33392 4233 29186 01:33 30:00 03:11 05:22 3.8e-09 4.9e-07 9.8e-08 1.0e-07

9.791 1142|387 21|127 10001 7271 29179 26 09:04 05:22 05:21 1.4e-08 7.5e-08 1.0e-07 1.0e-07

17.466 852|290 22|143 12501 13635 22256 20 11:13 09:51 04:04 1.6e-08 2.7e-08 2.3e-08 1.0e-07

Table 1: Square-root sparse group Lasso model on synthetic data sets Examples 1-4 with
(w1, w2) = (0, 1).

problem λ nnz| iter time error

(N,n); g nnzgrp PP pA dA PP pA dA PP pA dA

Example 1

(1000, 600)

200

3.589 9|3 14|58 1489 896 01 02 02 1.6e-08 4.5e-08 4.5e-08

9.262 9|3 13|44 1071 1291 00 01 02 1.5e-08 4.9e-08 1.1e-08

5.018 9|3 18|79 1489 1081 01 02 02 2.4e-09 3.2e-08 1.8e-08

Example 1

(1000, 6000)

2000

4.064 9|3 12|26 22501 6243 04 05:46 01:00 2.7e-10 8.2e-08 1.5e-08

9.906 9|3 11|28 9581 3211 04 02:28 31 4.2e-08 3.7e-08 8.9e-08

5.615 9|3 11|24 15001 6210 04 03:51 59 7.5e-08 2.6e-08 4.9e-09

Example 2

(500, 480)

160

3.724 6|3 14|56 10001 2892 01 08 02 5.6e-09 1.2e-08 9.9e-08

9.298 6|2 14|51 5325 3062 01 04 02 3.2e-08 9.3e-08 1.2e-08

4.593 6|2 14|53 10001 3286 01 08 02 1.7e-09 1.4e-08 9.0e-08

Example 2

(10000, 480)

160

3.454 6|3 18|81 52501 8454 10 05:29 01:53 1.9e-09 6.9e-08 1.0e-07

9.039 6|2 15|60 60001 13449 08 06:15 02:57 5.0e-10 9.4e-08 4.2e-08

4.564 6|2 16|79 72501 14916 11 07:33 03:22 6.1e-09 8.6e-08 9.9e-08

Example 3

(500, 9000)

3000

4.422 22|9 13|34 32501 7986 05 05:49 54 2.1e-11 6.1e-08 6.3e-08

10.114 3|1 12|29 35001 11496 05 06:21 01:15 7.9e-10 6.2e-08 8.3e-08

17.216 0|0 1|1 1 1 00 00 00 0.0e-00 0.0e-00 0.0e-00

Example 3

(4000, 6000)

2000

3.955 10|5 14|50 23062 22896 05 30:00 20:45 4.2e-10 8.0e-05 1.0e-07

9.791 10|4 14|54 22845 22046 05 30:00 20:05 1.3e-09 6.0e-06 3.6e-08

16.958 8|4 12|39 22889 22501 05 30:00 20:26 7.8e-08 2.7e-06 8.2e-08

Example 4a

(4000, 6000)

2000

4.005 115|72 20|106 34158 11104 03 30:00 08:09 3.5e-08 1.8e-06 1.0e-07

9.791 101|78 21|104 10001 19907 03 08:49 14:08 4.3e-08 5.6e-08 6.1e-08

16.910 133|61 21|98 15001 17501 03 13:14 12:23 1.5e-08 3.6e-08 4.2e-08

Example 4b

(4000, 6000)

2000

3.994 889|483 22|111 27501 4324 41 24:51 03:18 1.4e-08 8.2e-08 1.0e-07

9.791 1114|403 21|100 25001 5183 21 22:35 03:51 5.6e-09 9.2e-08 1.0e-07

17.466 884|298 18|130 7501 8190 19 06:45 05:56 8.6e-09 3.3e-08 6.9e-08

Table 2: Square-root sparse group Lasso model on synthetic data sets Examples 1-4 with
w1 = w2 = 0.5.
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problem w1|λ nnz| iter time error

(N,n); g nnzgrp PP pA dA ST PP pA dA ST PP pA dA ST

housing

(253, 77520)

300

0.0|0.5 1846|8 12|32 3851 2470 86386 08 02:36 54 30:00 1.2e-08 3.8e-08 1.0e-07 1.7e-04

0.0|1.0 1640|7 17|66 7986 4341 88088 02 05:15 01:32 30:00 1.5e-08 4.1e-08 2.0e-08 8.8e-05

0.0|2.0 724|3 16|66 17501 7986 89932 03 11:26 02:45 30:00 1.9e-08 4.0e-08 4.2e-08 3.3e-05

0.5|0.5 1145|11 15|39 5546 2909 − 09 03:43 01:06 − 1.5e-10 2.6e-08 1.0e-07 −
0.5|1.0 709|7 15|61 11496 4495 − 02 07:39 01:37 − 3.5e-09 5.5e-08 3.2e-08 −
0.5|2.0 460|4 13|48 20001 9020 − 01 12:57 03:07 − 7.6e-09 7.5e-08 2.0e-08 −

bodyfat

(126, 116280)

300

0.0|0.5 703|2 12|25 11496 3081 104870 08 05:52 50 30:00 6.7e-11 9.9e-08 2.6e-08 6.2e-03

0.0|1.0 349|1 12|53 45001 17501 106770 01 22:54 04:42 30:00 1.4e-08 8.8e-08 5.4e-08 4.3e-03

0.0|2.0 348|1 12|39 60191 32501 107478 01 30:00 08:35 30:00 1.8e-11 2.2e-06 8.9e-08 3.3e-03

0.5|0.5 84|3 14|38 47501 10772 − 08 25:02 03:21 − 9.0e-11 9.7e-08 1.0e-07 −
0.5|1.0 85|2 13|60 56682 8317 − 02 30:00 02:24 − 5.9e-08 8.3e-07 8.7e-08 −
0.5|2.0 227|2 13|50 59609 27501 − 01 30:00 07:20 − 7.3e-09 1.0e-05 6.4e-08 −

pyrim

(37, 169911)

300

0.0|0.5 1072|2 13|27 45001 3211 129108 07 18:12 44 30:00 1.6e-09 6.5e-08 3.9e-08 1.3e-02

0.0|1.0 577|1 11|41 52501 7986 62705 01 21:16 01:46 14:05 3.1e-08 7.9e-08 1.1e-08 1.0e-07

0.0|2.0 1099|2 12|39 75001 13795 135011 01 29:58 03:03 30:00 1.9e-09 9.8e-08 1.6e-08 3.3e-03

0.5|0.5 653|3 11|21 37501 2300 − 08 15:24 32 − 3.1e-10 3.7e-08 5.6e-08 −
0.5|1.0 215|1 12|48 32501 12501 − 01 13:17 02:51 − 9.0e-11 6.3e-08 8.6e-08 −
0.5|2.0 350|1 11|38 67501 9581 − 01 26:40 02:07 − 8.1e-09 9.4e-08 8.2e-08 −

triazines

(93, 557845)

300

0.0|0.5 7040|4 18|75 7961 6656 11474 20 30:00 12:39 30:00 9.8e-09 9.9e-06 5.2e-08 5.4e-02

0.0|1.0 3556|2 18|80 8000 14856 12325 15 30:00 30:00 30:00 7.2e-09 9.9e-06 1.1e-07 6.3e-02

0.0|2.0 1806|1 13|57 8981 17492 13194 10 30:00 30:00 30:00 1.1e-08 8.9e-06 1.7e-07 1.9e-02

0.5|0.5 2809|3 21|99 8630 5546 − 20 30:00 09:56 − 8.9e-08 3.7e-05 9.2e-08 −
0.5|1.0 1987|2 21|94 8665 7986 − 16 30:00 14:25 − 2.9e-08 9.2e-06 3.0e-08 −
0.5|2.0 2959|3 14|58 9016 17286 − 10 30:00 30:00 − 2.4e-09 8.8e-06 9.1e-08 −

E2006.test

(1654, 72812)

300

0.0|2.0 5972|37 15|69 37501 12501 17749 03 13:23 03:18 02:06 3.6e-08 6.0e-09 5.4e-08 9.7e-08

0.0|5.0 1395|8 14|46 11497 15001 4100 00 03:58 03:42 27 8.8e-11 7.6e-08 7.3e-08 9.9e-08

0.0|7.5 0|0 1|1 1 1 1 00 00 00 00 0.0e-00 0.0e-00 0.0e-00 0.0e-00

0.5|2.0 4641|65 19|82 32501 18610 − 05 12:01 05:01 − 5.6e-09 6.6e-08 4.6e-08 −
0.5|5.0 656|22 13|49 35001 20692 − 03 12:17 05:25 − 1.3e-10 8.9e-08 1.1e-08 −
0.5|7.5 149|6 12|42 15001 15001 − 00 05:13 03:45 − 6.5e-08 7.4e-08 8.1e-08 −

E2006.train

(8044, 150348)

300

0.0|2.0 16098|46 19|94 − 3031 16517 05:31 − 30:00 07:44 9.3e-10 − 2.7e-01 9.6e-08

0.0|5.0 3088|9 17|71 − 3010 11208 05 − 30:00 05:03 2.2e-08 − 4.6e-04 9.8e-08

0.0|7.5 1092|3 14|57 − 3012 3967 02 − 30:00 01:47 1.8e-09 − 3.8e-04 1.0e-07

0.5|2.0 10427|73 20|100 − 3015 − 33 − 30:00 − 8.3e-08 − 3.0e-01 −
0.5|5.0 1070|23 17|71 − 3006 − 08 − 30:00 − 1.3e-08 − 6.2e-04 −
0.5|7.5 296|9 15|60 − 2865 − 04 − 30:00 − 9.0e-09 − 2.1e-02 −

Table 3: Square-root sparse group Lasso model on UCI data sets with (w1, w2) = (0, 1) or
(0.5, 0.5). “−” denotes that the method is not applicable for the instance.

We then conduct 8-fold CV for selecting parameters w1, w2, and λ over the sets

w1 ∈ {0, 0.1, 0.2, . . . , 0.9, 1}, w2 = 1− w1, and λ ∈ {10−1, 10−0.95, 10−0.9, . . . , 100.95, 101}.
(35)

Based on the test set, we report the mean squared error (MSE) for an approximate solution
β defined by ‖Xtestβ − Ytest‖2/Ntest.

Climate data (Kalnay et al., 1996) The data records climate information of 10512 locations
across the globe (73× 144 grid of latitude and longitude, resolution 2.50 × 2.50). For each
location, it records the monthly means of 7 predictor variables Air Temperature, Precipitable
water, Relative humidity, Pressure, Sea Level Pressure, Horizontal Wind Speed, and Vertical
Wind Speed. The predictor vector Xi ∈ R73584 is the concatenation of the 7 predictor
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variables at 10512 locations in the ith month, and we have data from 1948/1/1 to 2018/5/31
containing N = 814 months. We regard the 7 predictor variables at a location as a group.
The response variable is designed as follows. We first select a target location and then set
Yi to be the Air Temperature at the target location in the ith month. Moreover, we remove
the 7 predictor variables corresponding to the selected target location in X and eventually
we have the data X ∈ R814×73577 and Y ∈ R814.

This data has also been used in (Ndiaye et al., 2016; Zhang et al., 2020), showing that
the sparse group Lasso regularizer is suitable for prediction in climate data. We consider
five different target locations for the diversity of experiments. We first set (w1, w2) = (0, 1),
and select λ by CV over (34). In addition, we select w1, w2, and λ by CV over (35). Table 4
shows the comparisons of PPDNA, pADMM, dADMM, and S-TISP on the climate data sets
with five different target locations. As shown in Table 4, our PPDNA outperforms the other
three methods pADMM, dADMM, and S-TISP by a wide margin in term of computational
time. In particular, both pADMM and S-TISP fail to solve any instance within 30 minutes,
and the accuracy of the solutions returned by S-TISP, approximately 10−3, are still far from
being satisfactory. In addition, we plot the active groups predicting Air Temperature in a
neighborhood of Dubbo, New South Wales, Australia in Figure 1. As one can expect, the
active groups shown in the Figure 1 are close or contiguous to the target location Dubbo.

target location w1|λ MSE iter time error

(Ntrain, n), g PP pA dA ST PP pA dA ST PP pA dA ST

Dakar

(15◦N, 17◦30′W )

(563, 73577), 10511

0.0|0.501 0.294 16|80 19469 6011 35469 17 30:00 05:56 30:00 1.3e-08 1.2e-05 9.8e-08 5.4e-03

1.0|1.259 0.028 19|109 20467 17760 32782 09 30:00 16:21 30:00 6.3e-08 8.5e-06 1.0e-07 1.8e-02

Dubbo

(32◦30′S, 147◦30′E)

(563, 73577), 10511

0.0|0.282 0.059 16|45 19898 7245 35554 47 30:00 07:14 30:00 2.3e-08 1.5e-05 9.9e-08 3.8e-03

0.7|0.562 0.021 20|140 20235 11318 − 13 30:00 11:09 − 4.5e-08 5.4e-06 1.0e-07 −

Enshi

(30◦N, 110◦E)

(563, 73577), 10511

0.0|0.282 0.031 1|186 20230 7397 35177 58 30:00 07:34 30:00 6.2e-07 8.2e-06 1.0e-07 3.9e-03

0.8|0.794 0.023 21|123 20436 19163 − 08 30:00 18:39 − 5.3e-08 9.3e-06 1.0e-07 −

Weihai

(37◦30′N, 122◦30′E)

(563, 73577), 10511

0.0|0.282 0.045 19|74 20220 9667 31370 51 30:00 09:52 30:00 1.1e-10 3.6e-06 1.0e-07 4.1e-03

0.9|0.794 0.034 20|123 20125 21605 − 11 30:00 23:44 − 4.7e-08 9.0e-06 1.0e-07 −

Bosilegrad

(42◦30′N, 22◦30′E)

(563, 73577), 10511

0.0|0.316 0.026 17|82 20639 6783 36771 37 30:00 06:32 30:00 3.6e-08 2.9e-06 1.0e-07 2.7e-03

0.5|0.447 0.024 23|129 20267 9157 − 18 30:00 09:01 − 4.1e-09 4.2e-06 1.0e-07 −

Table 4: Square-root sparse group Lasso model on climate data sets with CV over (34) and
(35). “−” denotes that the method is not applicable for the instance.

Gene data The first data we use is the colon cancer data (Alon et al., 1999)1. This data
has been used in (Li et al., 2017) for the adaptive sparse group Lasso model. It includes

1. It is available at http://www.weizmann.ac.il/mcb/UriAlon/download/downloadable-data.
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Figure 1: Active groups to predict Air Temperature in a neighborhood of Dubbo (in blue).
Left: (w1, w2, λ) = (0, 1, 0.282). Right: (w1, w2, λ) = (0.7, 0.3, 0.562). At the lth
location, the value of ‖βGl‖/max1≤l≤g ‖βGl‖ is displayed.

62 tissues (40 colon tumor tissues and 22 normal tissues), and each tissue Xi includes the
expression profiles of 2000 genes. The response variable is assigned according to the label
of the tissue: Yi = 1 if Xi is a colon tumor tissue and Yi = −1 otherwise.

In addition, we use the lung cancer data (Monti et al., 2003)2, which has also been used
in (Li et al., 2017). This data includes 197 tissues, and each tissue Xi includes the expression
profiles of 1000 genes. Moreover, 197 tissues are divided into four classes: 17 normal, 139
lung adenocarcinoma, 21 squamous cell carcinomas, and 20 carcinoids. Corresponding to
the latter three classes, we construct three data sets by letting the binary response variables
be labels. Specifically, lung adenocarcinoma data set has response variable Yi = 1 if Xi is a
lung adenocarcinoma tissue and Yi = −1 otherwise. Similarly, we construct the squamous
cell carcinomas and carcinoids data sets.

Another data tested is the acute leukemia data (Golub et al., 1999)3. This data includes
72 samples, and each sample Xi includes the expression profiles of 10713 (repeated) genes.
Each sample belongs to one of the three classes: BALL, TALL, or AML. The data sets
BALL, TALL, and AML are constructed in the same way as in the lung cancer data above.

In total, we have 7 data sets with binary response variables. For the first 4 data sets,
we used the weighted gene co-expression networks (Langfelder and Horvath, 2008) to clus-
ter gene expressions in different groups (modules), and an R package is available for this
clustering. The group structures of the last 3 data sets, generated by a similar method,
are provided in (Li et al., 2018a). More details about the group structures can be found in
Appendix C.

2. It is available at http://portals.broadinstitute.org/cgi-bin/cancer/publications/view/87.
3. It is available at https://github.com/wangyanyanwangyanyan/wangyanyan.
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Table 5 presents the results on real gene data sets, where the parameters w1, w2, and
λ are selected by CV over (35). For an approximate solution β, the classification accuracy
is computed by (1− nnz (sign (Xtestβ)− Ytest)/Ntest) · 100%. For problems with w1 = 0
where S-TISP is applicable, we also include S-TISP in the table. The low MSE and high
classification accuracy in Table 5 suggest that the square-root sparse group Lasso model
is effective in selecting (groups of) genes related to certain types of tissues and reliable in
predicting the class of a tissue; see Appendix C for more details. Moreover, the selected
w1 6∈ {0, 1} by CV (35) in 4 out of 7 data sets indicates that the sparse group Lasso
regularizer can improve the performances of classification and gene selection, compared
with the Lasso or group Lasso regularizer. For the BALL and TALL data sets, pADMM
and dADMM return overfitting solutions. Besides, one can observe that the running time
for different methods is quite similar, since the gene data sets are of small to medium size
and they are pre-processed such that highly irrelevant genes were screened out.

problem w1|λ MSE accur iter time error

(Ntrain, n), g PP pA dA ST PP pA dA ST PP pA dA ST

colon cancer

(42, 2000), 11
0.8|0.631 0.448 90% 9|13 2676 665 − 00 00 00 − 4.9e-08 1.7e-08 9.5e-08 −

lung adenocarcinoma

(132, 1000), 8
0.0|0.562 0.156 97% 9|13 717 613 5347 00 00 00 00 5.7e-09 1.4e-08 9.9e-08 1.0e-07

squamous cell carcinomas

(131, 1000), 8
0.0|1.259 0.131 97% 10|15 1861 690 2783 00 00 00 00 5.4e-09 3.7e-08 9.6e-08 1.0e-07

carcinoids

(131, 1000), 8
0.9|1.000 0.008 100% 9|12 1076 509 − 00 00 00 − 4.9e-09 2.6e-08 9.6e-08 −

BALL

(48, 10713), 42
0.0|0.200 0.141 100% 10|19 453 404 1596 00 00 00 02 1.6e-10 ∗9.9e-08 ∗4.9e-08 #2.1e-13

TALL

(48, 10713), 42
0.9|0.891 0.126 96% 11|25 1400 2342 − 01 02 03 − 3.9e-11 ∗9.1e-08 ∗1.0e-07 −

AML

(48, 10713), 42
0.9|1.585 0.193 100% 12|37 18393 1755 − 00 29 02 − 2.4e-08 2.1e-08 5.7e-08 −

Table 5: Square-root sparse group Lasso model on gene data sets with CV over (35). “−”
denotes that the method is not applicable for the instance. The errors reported
are ∆kkt, ∗∆pd.gap, and #∆var.gap, given by (26), (27), and (28), respectively.

4.4 Comparison of Efficiency for Solving the Square-root Fused Lasso Problem

In this section, we compare PPDNA, pADMM, and dADMM for solving the square-root
fused Lasso problem when the regularizer p is the fused Lasso regularizer (7). We found
that a framework of ADMM was applied in (Jiang et al., 2021) for solving the square-root
fused Lasso problem. However, it seems that they applied ADMM in a non-rigorous way
as their formulation of the augmented Lagrangian function might not be correct. Except
(Jiang et al., 2021), there is currently no solver for solving the square-root fused Lasso
problem, to the best of our knowledge. For all tables in this section, we denote PPDNA,
pADMM, and dADMM by “PP”, “pA”, and “dA”, respectively.
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4.4.1 UCI Data

Again, we use UCI data sets housing, bodyfat, pyrim, and triazines described in Section 4.3.1.
We choose w1 = w2 = 0.5 and λ ∈ {1, 5, λJia}. See Appendix B for the details of λJia

given in (Jiang et al., 2021). The numerical results of PPDNA, pADMM, and dADMM
are reported in Table 6. Table 6 shows that our PPDNA substantially outperforms both
pADMM and dADMM for solving the square-root fused Lasso problem on the UCI data
sets. In particular, our PPDNA takes less than 1 minute for all instances; while pADMM
fails to return accurate solutions within 30 minutes for more than half of the instances. One
can conclude that our algorithm is efficient for solving the square-root fused Lasso problem
on the UCI data sets.

4.4.2 Real Data

In this section, we test the square-root fused Lasso model on four real data sets used in (Jiang
et al., 2021). The inbred mouse4 data includes 60 samples, where each sample includes 22689
genes, and the response variable is the feature measured by stearoyl-coenzyme desaturase 1
with probe set ID given as 1415965 at. The rat eye5 data includes 120 rats samples, where
each sample includes 31098 gene probes, and the response variable is selected with respect
to 1389163 at. The credit card6 data includes 284807 transactions samples in which 492
samples are labeled as frauds, and each sample includes 29 features. The safe driver7 data
includes 595212 car insurance observations, where each observation includes 57 features.
We refer the readers to (Jiang et al., 2021, Section 4.3) for detailed descriptions of the data.

Again, we choose w1 = w2 = 0.5 and λ ∈ {1, 5, λJia} with λJia given in (Jiang et al.,
2021). The comparisons of PPDNA, pADMM, and dADMM for solving the square-root
fused Lasso model on the four real data sets are reported in Table 7. On can observe
that our PPDNA significantly outperforms both pADMM and dADMM for all instances.
In particular, both pADMM and dADMM fail to solve the problem safe driver within 30
minutes.

4.5 Simulations with Varying Noise Levels

Here we are interested in how the noise level σ in (1) is associated with the tuning parameter
λ in the least-square model (2) and the square-root model (3). In particular, we let p be the
sparse group Lasso regularizer (6). In this experiment, the noise level σ is chosen from the
set

{
10−1, 10−0.8, . . . , 101

}
, the data is simulated from Example 3 in Section 4.3.1 with

N = 100, g = 50, n = 150, and the parameters w1 and w2 are set to be 0.5. We regard the
8-fold CV selected tuning parameters λ(2) and λ(3) as the optimal parameters for model (2)
and model (3), respectively. We repeat the experiments 100 times, and we plot λ and MSE
against σ in Figure 2.

We can observe from the left panel of Figure 2 that as σ varies from 10−1 to 101,
the curve of λ(3) roughly remains flat with the values of λ(3) staying in the small range
[10−0.5, 100.5]. In contrast, λ(2) shown in the left panel of Figure 2 varies wildly from 10−1

4. It is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3330.
5. It is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5680.
6. It is available at https://www.kaggle.com/mlg-ulb/creditcardfraud.
7. It is available at https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/data.
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problem λ nnz| iter time error

(N,n) nnzB PP pA dA PP pA dA PP pA dA

housing

(253, 77520)

1.000 336|129 19|119 35001 13873 05 25:01 05:48 5.2e-08 8.4e-08 1.0e-07

5.000 168|28 16|81 42814 30001 03 30:00 11:40 2.6e-08 2.1e-06 5.1e-08

9.282 141|18 14|53 42015 32501 02 30:00 12:22 4.0e-08 4.7e-07 7.5e-08

bodyfat

(126, 116280)

1.000 295|63 24|121 27501 6125 05 15:25 02:05 2.2e-08 9.5e-08 1.0e-07

5.000 132|12 14|56 45001 27501 02 25:36 08:34 4.3e-09 9.1e-08 6.8e-08

8.969 79|6 13|41 54052 35001 01 30:00 10:29 2.3e-09 3.8e-07 8.1e-08

pyrim

(37, 169911)

1.000 535|69 40|169 67611 116842 08 30:00 30:00 4.3e-07 ∗8.5e-05 7.8e-01

5.000 386|14 14|52 67844 20001 02 30:00 05:10 4.5e-08 8.8e-02 3.5e-08

7.848 669|10 15|69 60001 24828 03 26:31 06:17 6.1e-10 2.6e-08 2.5e-08

triazines

(93, 557845)

1.000 2771|165 34|247 8176 15422 43 30:00 30:00 5.8e-08 1.3e-05 3.1e-03

5.000 1310|57 22|117 8122 15399 22 30:00 30:00 8.9e-08 8.6e-05 1.2e-04

9.278 196|12 13|37 8053 15716 10 30:00 30:00 1.9e-08 5.7e-04 8.2e-04

Table 6: Square-root fused Lasso model on UCI data sets with w1 = w2 = 0.5. The errors
reported are ∆kkt and ∗∆pd.gap, given by (26) and (27), respectively.

problem λ nnz| iter time error

(N,n) nnzB PP pA dA PP pA dA PP pA dA

inbred mouse

(30, 22689)

1.000 85|4 11|21 2231 6626 02 05 12 2.9e-08 1.1e-08 8.8e-08

5.000 1347|1 13|42 2043 779 00 04 01 1.2e-08 5.8e-10 8.6e-08

6.913 3092|1 13|42 2009 601 00 05 01 2.4e-09 1.1e-09 7.4e-08

rat eye

(60, 31098)

1.000 433|10 12|30 1861 2200 01 09 09 1.3e-08 2.2e-08 1.0e-07

5.000 3303|4 12|40 1549 1305 00 09 05 4.4e-08 3.4e-08 1.0e-07

7.798 7297|4 12|35 1549 666 00 08 02 2.6e-08 7.7e-08 1.0e-07

credit card

(142404, 29)

1.000 27|26 11|24 5485 1343 02 42 21 3.5e-09 7.3e-08 8.1e-08

5.000 25|24 16|84 15001 5210 05 01:49 01:19 6.1e-08 3.2e-08 6.9e-08

5.683 25|24 18|96 15001 9953 06 01:52 02:28 3.2e-08 2.7e-08 7.6e-08

safe driver

(595212, 57)

1.000 48|35 31|223 35850 14429 01:29 30:00 30:00 2.7e-08 1.9e-05 1.3e-04

5.000 48|30 23|134 36352 14333 39 30:00 30:00 2.8e-08 5.3e-07 5.4e-05

6.242 47|28 24|133 35173 14308 37 30:00 30:00 1.9e-08 4.6e-07 1.0e-05

Table 7: Square-root fused Lasso model on real data sets with w1 = w2 = 0.5.

Figure 2: The mean of (left) λ and (right) MSE, and the 95% confidence interval (CI).
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to 102. This phenomenon verifies numerically the advantage of the square-root model (3) in
terms of choosing the tuning parameters compared with the least-square model (2), namely,
the parameter λ in the square-root model (3) can be tuned independent of the noise level
σ. In addition, it can be observed from the slope of the MSE curves in the right panel of
Figure 2 that both the MSE achieved by (2) and that by (3) are approximately quadratic
in the noise level σ.

5. Conclusion

In this paper, we have given a unified proof to show that any square-root regularized model
whose penalty function being the sum of a simple norm and a seminorm can be interpreted
as the distributionally robust optimization formulation of the corresponding least-squares
problem. For solving a generic square-root regularized model, we have developed a proxi-
mal point dual semismooth Newton algorithmic framework to efficiently solve the resulting
convex minimization problem whose objective is the sum of two nonsmooth terms corre-
sponding to the square-root loss and the regularizer respectively. We have illustrated that
the general framework can be adopted to solve the square-root sparse group Lasso and the
square-root fused Lasso models. Our extensive numerical experiments have shown that the
proposed algorithm is indeed highly efficient for solving the square-root sparse group Lasso
and the square-root fused Lasso models, as compared to popular first order methods based
on the ADMM framework.
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Appendix A. Remark on Proposition 2

Proposition 2 includes a similar result in (Maurer and Pontil, 2012). For simplicity, we
show that a simplified form of their results can be derived from Proposition 2. In (Maurer
and Pontil, 2012), M := {M(l)}1≤l≤g denotes a set of symmetric matrices M(l) ∈ Sn, and
the operator ‖ · ‖M : Rn → [0,+∞] is defined by

‖α‖M := inf
α(1),...,α(g)

{
g∑
l=1

‖α(l)‖
∣∣∣∣α(l) ∈ Rn,

g∑
l=1

M(l)α(l) = α

}
∀α ∈ Rn. (36)

It was shown in (Maurer and Pontil, 2012) that ‖ · ‖M is indeed a norm on the subspace of
Rn where it is finite, and the dual norm is given by

‖β‖M∗ := sup
1≤l≤g

{
‖M(l)β‖

}
∀β ∈ Rn. (37)

We define B :=
(
M(1), . . . ,M(g)

)T ∈ Rng×n and Q(ᾱ) := sup1≤l≤g
{
‖α(l)‖

}
for any ᾱ =

(α(1), . . . , α(g)) ∈ Rn × · · · × Rn. Q is a norm on Rng, and its dual norm is given by
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Q∗(ᾱ) :=
∑g

l=1 ‖α(l)‖ ∀ ᾱ = (α(1), . . . , α(g)) ∈ Rn × · · · × Rn. We can see from (36) that

‖·‖M coincides with p∗ in (15), i.e., ‖α‖M = inf ᾱ{Q∗(ᾱ) |BT ᾱ = α} ∀α ∈ Rn. It is indeed a
norm on Range(BT ) from Proposition 2(a). We can also see from (37) that ‖·‖M∗ coincides
with p in (14), i.e., ‖β‖M∗ = Q(Bβ) ∀β ∈ Rn. Therefore, we can derive the result that
‖ · ‖M and ‖ · ‖M∗ are dual to each other directly from Proposition 2.

Appendix B. Theoretical Parameter λ

The independence of the tuning parameter λ on the unknown noise level σ is one of the
nice statistical properties of the square-root regularized model. In this section, we present
various selections of λ which has been studied in literature for the problem (3). The cu-
mulative distribution function of the standard normal distribution N (0, 1) is denoted by
Φ(x) := 1√

2π

∫ x
−∞ e

−t2/2dt. The cumulative distribution function of the F -distribution with

the degrees of freedom a and b is denoted by Fa,b. The quantile function with respect to a
cumulative distribution function F is denoted by QF (a) := inf{x ∈ R | a ≤ F (x)}.

Sparse group Lasso regularizer (6) p(β) = w‖β‖1 + (1−w)
∑g

l=1

√
|Gl|‖βGl‖ ∀β ∈

Rn, where w ∈ [0, 1]. We summarize the selections of λ which are independent on σ in
(Belloni et al., 2011; Bunea et al., 2013; Stucky and van de Geer, 2017; Blanchet et al.,
2019a; Blanchet and Kang, 2017). In the following formulations, a is chosen to be 0.05.
When N < 104, we calculate E[XTX] ≈ 1

NX
TX; otherwise, we randomly sample 104

predictor vectors from X to form X̃, and estimate E[XTX] ≈ 1
104
X̃T X̃.

1. When w = 1, λ can be selected from ΛS := {λBel, λStS, λBlS}.

- (Belloni et al., 2011) λBel := 1.1Φ−1
(
1− a

2n

)
.

- (Stucky and van de Geer, 2017) Denote t :=
√

log
(

4
a

)
,∆ :=

√
1− t

√
4
N , then

λStS :=
√

2 t
∆ +
√

2
(

2 +
√

log(n)
)

.

- (Blanchet et al., 2019a) Estimate Z ∼ N (0,E[XTX]) and F as the cumulative
distribution of π

π−2 ‖Z‖
2
∞. Let η̂1−a := QF (1− a), and λBlS :=

√
η̂1−a.

2. When w = 0, λ can be selected from ΛG := {λBun, λStG, λBlG}.

- (Bunea et al., 2013) Denote Tmax := max1≤l≤g{|Gl|}, Tmin := min1≤l≤g{|Gl|},
τ0 := F−1

Tmin,N−Tmin

(
1− a

g

)
and ζmax := max

{
1
N ‖XGl‖

2 | 1 ≤ l ≤ g
}

. Suppose

that Tminτ0 +N − Tmax > 0, then λBun :=
√

ζmaxτ0
Tminτ0+N−Tmax

√
N .

- (Stucky and van de Geer, 2017) Denote t :=
√

log
(

4
a

)
,∆ :=

√
1− t

√
4
N , then

λStG :=
√

2 t
∆ +
√

2
(

2 +
√

log(g)
)

.

- (Blanchet and Kang, 2017) Estimate Z ∼ N (0,E[XTX]) and F as the cumulative
distribution of π

π−2(p∗(Z))2. Let η̂1−a := QF (1− a), and λBlG :=
√
η̂1−a.

Fused Lasso regularizer (7) Following (Jiang et al., 2021), we let a = 0.05, t =√
4 log( 1

a)/N + 4 log( 1
a)/N and calculate λJia = 2.2

√
2 log(n)/(1 + t).
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Appendix C. Gene Data Sets

In this section, we provide more details about the gene data sets used in Section 4.3.3 and
their numerical results.

black blue brown green grey magenta pink purple red turquoise yellow

71 420 367 98 18 63 64 43 87 507 262

Table 8: The number of genes in each module in the colon cancer data.
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Figure 3: Left: clustering dendrogram of 2000 gene profiles from the colon cancer patients.
Right: heatmap of gene-gene connectivity.

-0.1

-0.05

0

Figure 4: The value of β (coordinates reordered by its groups) in colon cancer data.

Colon cancer data This data includes 62 tissues with binary labels, and each tissue
includes the expression profiles of 2000 genes. We use the R package WGCNA (Langfelder
and Horvath, 2008) with the power parameter 6 to construct the weighted gene co-expression
networks, and divide 2000 genes into 11 modules which are marked by 11 colors in Figure 3.
The number of genes in each module is given in Table 8. The value of the approximate solu-
tion β (coordinates reordered by its groups) with CV (35) selected parameters is presented
in Figure 4. One can observe that there are 6 active groups out of total 11 groups, which
may imply that the red, green, and purple groups are key groups to classify the colon cancer
patients. Moreover, we can see that β is also sparse within each group, which indicates the
effectiveness of the square-root sparse group Lasso regularizer.

Lung cancer data This data includes 197 tissues, and each tissue includes the ex-
pression profiles of 1000 genes. We use the R package WGCNA (Langfelder and Horvath,
2008) with the power parameter 6 to construct the weighted gene co-expression networks,
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black blue brown green grey red turquoise yellow

28 186 112 58 172 38 332 74

Table 9: The number of genes in each module in the lung cancer data.
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Figure 5: Left: clustering dendrogram of 1000 gene profiles from the lung cancer patients.
Right: heatmap of gene-gene connectivity.
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Figure 6: The value of β (coordinates reordered by its groups) in lung cancer data. Top:
lung adenocarcinoma, middle: squamous cell carcinomas, bottom: carcinoids.
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Figure 7: The value of β (coordinates reordered by its groups) for acute leukemia data.
Top: BALL, middle: TALL, bottom: AML.

and divide 1000 genes into 8 modules which are marked by 8 colors in Figure 5. The num-
ber of genes in each module is given in Table 9. The value of the approximate solution β
(coordinates reordered by its groups) with CV (35) selected parameters in lung adenocar-
cinoma, squamous cell carcinomas, and carcinoids data sets is presented in Figure 6. One
can observe that the set of selected groups varies for different data sets. For example, the
brown group is one of the key modules to classify lung adenocarcinoma and squamous cell
carcinomas tissues, while the turquoise module is preferred in the carcinoids data set. Note
that (35) returns w1 = 0 in the first two data sets and w1 = 0.9 in the last data set, which
results in the sparsity of the last regression vector.

Acute leukemia data The raw acute leukemia data set includes 72 samples of 3571
gene expressions. Following (Li et al., 2018a), the grouping strategy with repeated genes was
applied to get the data with 10713 gene expressions. The value of the approximate solution
β (coordinates reordered by its groups) with CV (35) selected parameters in BALL, TALL,
and AML data sets is presented in Figure 7. Similar conclusions could be made as in the
lung cancer data above.
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