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Abstract

Instrumental variable methods have been widely used to identify causal effects in the pres-
ence of unmeasured confounding. A key identification condition known as the exclusion
restriction states that the instrument cannot have a direct effect on the outcome which is
not mediated by the exposure in view. In the health and social sciences, such an assump-
tion is often not credible. To address this concern, we consider identification conditions of
the population average treatment effect with an invalid instrumental variable which does
not satisfy the exclusion restriction, and derive the efficient influence function targeting the
identifying functional under a nonparametric observed data model. We propose a novel
multiply robust locally efficient estimator of the average treatment effect that is consistent
in the union of multiple parametric nuisance models, as well as a multiply debiased machine
learning estimator for which the nuisance parameters are estimated using generic machine
learning methods, that effectively exploit various forms of linear or nonlinear structured
sparsity in the nuisance parameter space. When one cannot be confident that any of these
machine learners is consistent at sufficiently fast rates to ensure y/n-consistency for the
average treatment effect, we introduce new criteria for selective machine learning which
leverage the multiple robustness property in order to ensure small bias. The proposed
methods are illustrated through extensive simulations and a data analysis evaluating the
causal effect of 401(k) participation on savings.

Keywords: Average treatment effect, Exclusion restriction, Instrumental variable, Ma-
chine learning, Multiple robustness

1. Introduction

One of the main concerns with drawing causal inferences from observational data is the
inability to categorically rule out the existence of unobserved factors that are associated
with both the exposure and outcome variables. The instrumental variable (IV) method is
widely used in the health and social sciences for identification and estimation of causal effects
under potential unmeasured confounding (Bowden and Turkington, 1990; Robins, 1994;
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Angrist et al., 1996; Greenland, 2000; Wooldridge, 2010; Hernan and Robins, 2006; Didelez
et al., 2010). A valid IV is a pre-exposure variable that is (a) associated with treatment,
(b) independent of any unmeasured confounder of the exposure-outcome relationship, and
(c) has no direct causal effect on the outcome which is not fully mediated by the exposure.
While the IV approach has a longstanding tradition in econometrics going back to the
original works of Wright (1928) and Goldberger (1972) in the context of linear structural
modeling, Robins (1994), Imbens and Angrist (1994), Angrist et al. (1996) and Heckman
(1997) formalized the approach under the potential outcomes framework (Neyman, 1923;
Rubin, 1974) which allows one to nonparametrically define the causal estimands of interest
and clearly articulate assumptions needed to identify this effect; see recent reviews provided
by Imbens and Wooldridge (2009), Imbens (2014), Baiocchi et al. (2014) and Swanson et al.
(2018). The efficient score for the target estimands of interest in the nonparametric IV
model satisfies the so called Neyman orthogonality condition (Neyman, 1959, 1979; Belloni
et al., 2017; Chernozhukov et al., 2018, 2022), which translates to reduced local sensitivity
with respect to nuisance parameters. This allows for /n-consistent estimation of the causal
estimands of interest even when the complexity of the nuisance parameter space is no longer
tractable by standard empirical process methods (e.g. Vapnik-Chervonenkis and Donsker
classes) (Chernozhukov et al., 2018, 2022), which represents a significant advancement in
the use of machine learning methods for causal inference.

While (b) may be ensured partly through the randomization of the IV either by design
or through some natural or quasi-experiments, the exclusion restriction (c) is not always
credible in observational studies as it requires extensive understanding of the causal mecha-
nism by which each potential IV influences the outcome (Hernén and Robins, 2006; Imbens,
2014). In randomized controlled studies with non-compliance, treatment assignment may
have a direct effect on the outcome if double-blinding is either absent or compromised,
therefore rendering it invalid as an IV for the effects of treatment actually taken (Ten Have
et al., 2008). Throughout, we shall refer to an invalid IV as a potential IV for which exclu-
sion restriction (c) is violated. In response to this concern, there has been growing interest
in the development of statistical methods to detect and account for violation of the exclu-
sion restriction (Small, 2007; Han, 2008; Lewbel, 2012; Conley et al., 2012; Kolesar et al.,
2015; Bowden et al., 2016; Kang et al., 2016; Shardell and Ferrucci, 2016; Wang et al.,
2018; Windmeijer et al., 2019; Guo et al., 2018), primarily in a system of linear structural
equation models. To the best of our knowledge, to date there has been no published work
on the population average treatment effect (ATE) as a nonparametric functional targeted
with an invalid IV, which prevents the use of data-adaptive approaches such as machine
learning methods for estimation. In this paper, we provide a novel, general set of sufficient
conditions under which the ATE is nonparametrically identified despite the IV being invalid,
without a priori restricting the nuisance parameters including the model for the conditional
treatment effect given observed covariates. In the absence of covariates, identification and
inference reduces to a setting studied recently by Tchetgen Tchetgen et al. (2021). Our
work in this paper considerably broadens the scope of inference by allowing for potentially
high dimensional covariates, which is far more challenging than what prior literature has
considered.

For inference about the ATE, we pursue two distinct strategies for modeling the nuisance
parameters: the first using standard parametric models, while the second leverages modern
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machine learning. In the former case we propose a multiply robust locally efficient estima-
tor of the ATE which remains consistent under a union of multiple models, each of which
restricts a separate subset of parameters indexing the observed data likelihood through
low-dimensional parametric specifications. When one cannot be confident that any of these
dimension-reducing models is correctly specified, we propose flexible machine learning of
nuisance parameters by selecting a learner for each nuisance parameter from an ensemble
of highly adaptive candidate machine learners such as random forests, Lasso or post-Lasso
and gradient boosting trees. Building upon recent work by Chernozhukov et al. (2018,
2022) and Cui and Tchetgen Tchetgen (2021), the second main contribution of this paper
is to introduce a novel framework for selective machine learning based on minimization
of a certain cross-validated quadratic pseudo-risk which embodies the multiple robustness
property. The proposed approach ensures that selection of a machine learning algorithm
for a given nuisance function is made to minimize bias of the ATE estimator associated
with a suboptimal choice of machine learning algorithms to estimate the other nuisance
functions. Our selective machine learning framework can be generally used for making
inferences about a finite-dimensional functional defined on semiparametric models which
admit multiply robust estimating functions; examples include multiply robust estimation
in the context of longitudinal measurements with nonmonotone missingness (Vansteelandt
et al., 2007), randomized trials with drop-outs (Tchetgen Tchetgen, 2009), statistical in-
teractions (Vansteelandt et al., 2008), causal mediation analysis (Tchetgen Tchetgen and
Shpitser, 2012), instrumental variable analysis (Wang and Tchetgen Tchetgen, 2018; Cui
and Tchetgen Tchetgen, 2020) and causal inference leveraging negative controls (Shi et al.,
2020).

The rest of the article is organized as follows. In Section 2, we introduce the invalid IV
model and provide formal identification conditions for the ATE in this setting. We present
semiparametric estimation methods in Section 3, and discuss the use of flexible machine
learning of nuisance parameters in Section 4. We evaluate the finite-sample performance of
these proposed methods through extensive simulation studies in Section 5 and illustrate the
approach with an application to estimate the causal effect of 401(k) retirement programs
on savings using data from the Survey of Income and Program Participation in Section 6.
We conclude in Section 7 with a brief discussion.

2. Preliminaries

Suppose that (O, ...,0,) are independent and identically distributed observations of O =
(Y, A, Z, X), where Y is an outcome variable, A is a binary treatment variable encoding the
presence (A = 1) or absence of treatment (A = 0), Z is a binary instrument and X is a set
of measured baseline covariates. To formally define the causal estimands of interest under
the potential outcomes framework (Neyman, 1923; Rubin, 1974), let Y (z,a) denote the
potential outcome that would be observed had the instrument and exposure been set to the
level z and a respectively, and let A(z) denote the potential exposure if the instrument would
take value z. We make the fundamental causal inference assumptions of (i) no interference
between units and (ii) no multiple versions of the instrument and treatment; (i) and (ii) are
collectively also known as the stable-unit-treatment-value assumption (SUTVA) described
in Rubin (1980). The potential outcomes are related to the observed data via the consistency
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assumptions Y =Y (z,a) if Z =z and A =a, and A = A(z) if Z = z. We also define Y (a)
to be the potential outcome had only the treatment been set to level a, which is related via
the consistency assumption Y (a) = (1 — 2)Y (0,a) + ZY (1,a) :==Y (Z, a).

Figure 1(a) gives causal graph representations (Pearl, 2009) of the invalid IV model
considered in this paper. We assume that U contains all unmeasured common causes of A
and Y, such that conditional on (Z, X, U), the effect of A on Y is unconfounded.

Assumption 1
Y(z,0)ILA|Z = 2, X,U, forall z,a € {0,1}. (1)

We will also assume that Z is essentially randomized by design or through some natural
experiments within strata of X (Hernan and Robins, 2006).

Assumption 2
Y(2,a) 1L Z|U, X and Z 1 U|X, for all z,a € {0,1}. (2)

Assumptions 1 and 2 may also be read (via d-separation) from the corresponding single-
world intervention graph (Richardson and Robins, 2013) in Figure 1(b). The prototypical
example of an invalid IV model is a randomized study where Z is the treatment assignment
while A is the treatment actually administered, which may be influenced by some latent
factors U correlated with Y. If double-blinding is either absent or compromised, then
knowledge of Z may influence the post-randomization variable Y directly (Ten Have et al.,
2008).

/,/—\ _/—}‘
O—O—0 > O
Y Al

G, 0

Figure 1: (a) Causal Directed Acyclic Graph (Pearl, 2009) representing the invalid IV model
within strata of measured baseline covariates, with a bi-directed arrow between
Z and A indicating potential unmeasured common causes of Z and A. (b) The
corresponding Single World Intervention Graph (Richardson and Robins, 2013)
with a bi-directed arrow.

The ATE in the overall population E{Y (1) —Y(0)} is arguably the causal parameter of
interest in many studies for policy questions (Robins and Greenland, 1996; Imbens, 2010),
but it cannot be identified under Assumptions 1 and 2 without further restrictions. Much of
the invalid IV literature considered structural assumptions primarily in multiple-IV settings
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Z = (21, Zs, ..., Zp)" which imply the joint semiparametric partially linear model

E(Y|A Z, X, U)=01Z + BA+ &(X,U);

B(A|Z,X,U) = 037 + £,(X,U), ®)

indexed by the parameters § € R,0; = (011,...,01p)" € RP, 02 = (621,...,02,)" € IRP,
and the confounding effects of the measured and unmeasured confounders on the outcome
and treatment are respectively encoded by the measurable and square integrable &, (-) and
&a(+), which remain unspecified. Under the multivariate-IV version of Assumption 1 and
correct specification of the partially linear model (3), the scalar parameter 8 equals the
population ATE. The parameter 61 represents direct effects of Z on Y. Identification of
p (or equivalently the ATE) under (1)-(3) when 6;; # 0 for some j € J C {1,2,...,p}
has been an area of active research, generally by imposing additional restrictions on the
nuisance parameter space of {61,602} (Kolesar et al., 2015; Bowden et al., 2016; Kang et al.,
2016; Windmeijer et al., 2019; Guo et al., 2018).

2.1 Nonparametric identification without exclusion restriction

In this paper, we consider the following generalization of (3).
Assumption 3

EY|A, Z, X, U) =01(X)Z + B(X)A+&/(X,U);

E(A|Z,X,U) = 65(X)Z + £(X, U), (4)

where {B(-),01(-),02(-)} are unknown measurable and square integrable scalar functions of
the measured covariates.

Following the tradition in the IV literature (Robins, 1994; Imbens and Angrist, 1994; An-
grist et al., 1996; Heckman, 1997), we focus on the canonical case of binary A and Z; the
framework can be extended readily to categorical A and Z. The structural equation (4)
models the marginal effect of each scalar Z on the outcome and the treatment which can
vary with the value of observed covariates, rather than the joint effects of all available
IVs, and therefore represents a significant relaxation of the restrictions in (3). We follow
the latent IV formulation of Swanson et al. (2018) and formally define the no direct effect
assumption or exclusion restriction as

E{Y (z,a)|X,U} = E{Y(#,a)|X,U} for all 2,2’ a € {0,1},

which explicitly incorporates the unmeasured confounder U (Dawid, 2003; Didelez et al.,
2010). Under Assumptions 1 and 2, E{Y (z,a)|X,U} = E{Y(z,a)|A =a,Z = 2, X, U} =
E{Y|A=a,Z = z,X,U}. Therefore 6;(X) = E{Y(1,a)|X,U} — E{Y (0,a)|X, U} encodes
the population average direct effect on the outcome within levels of (X, U) for a change of
the IV’s value from 0 to 1 at each treatment level; exclusion restriction is violated in model
(4) if 61(X) # 0 for at least one value in the support of X. In addition, under Assumption
1 and consistency, E{Y (1) — Y(0)|Z,X,U} = E{Y(1)|[A = 1,Z,X,U} — E{Y(0)|A =
0,Z,X, U} =FE{Y|A=1,Z,X,U} - E{Y|A=0,Z,X,U} = 3(X) equals the conditional
ATE within levels of (Z, X,U).
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A design implication of (4) is that even when Z is randomized, it remains important to
measure as many effect modifiers in the outcome and treatment models as possible in the
hope that no residual effect modification involving U remains within strata of the measured
covariates X. We show in the Appendix that (4) may be relaxed so that {8(-),0:(:),02(-)}
varies with U (albeit in restricted ways) even after controlling for X, a setting also known as
essential heterogeneity in the IV literature (Heckman et al., 2006). Essential heterogeneity
is more realistic in a variety of settings. For example, the choice of medical treatment is
likely influenced by idiosyncratic gains from alternative treatment in the analysis of health-
care decisions. The direct effect of treatment assignment on the outcome may also be
influenced by knowledge of such gains if double-blinding is either absent or compromised
in randomized studies (Ten Have et al., 2008). For these reasons, we focus on (4) for
identification and inference, although an alternative identification approach involving the
nonlinear multiplicative model

log{p1(X,U)/po(X,U)} = 02(X),

where p,(X,U) := P(A=1|Z = z,X,U), may be used for binary treatment which rules out
essential heterogeneity (Tchetgen Tchetgen et al., 2021). As pointed out by the reviewers,
the function 62(X) cannot in general be variation independent of the function &,(X,U) if
the resulting treatment conditional mean F(A|Z, X,U) must remain in the unit interval.
Nevertheless, a variation independent parameterization of F(A|Z, X,U) is possible such
that the aforementioned dependence can be encoded in a manner compatible with our
identifying assumptions, by using the odds product parameterization of Richardson et al.
(2017) detailed in Appendix B which is compatible with natural constraints of the data
generating mechanism.

Let Bo(x), po(z,z) == P(A=1|Z = 2,X =x) and € := A — uo(Z, X) denote the true
conditional ATE function, treatment propensity score and the treatment regression residual
respectively. In what follows the residual € serves to tease out the treatment effect via its
orthogonality to direct effect component 0;(X)Z. We show in the Appendix that under
Assumptions 2 and 3,

E(Y]Z, X) = po(X)Var(A|Z, X) + po(X), ()

where Var(A|Z = 2z, X = z) := po(z,z){1 — po(z, )} denotes the conditional variance of A
within the subpopulation {Z = z, X = z} and po(z) := E{e(Y — Bo(X)A)|X = z}. The
conditional covariance independence restriction

E{e(Y — Bo(X)A)|Z, X} = Cov{&a(X, U), &/(X,U)|Z, X} = po(X),

holds almost surely under Assumptions 2 and 3. Therefore the function pg(-) may be
interpreted as encoding the degree of stratum-specific unmeasured confounding. Additional
regularity conditions on the observed data law are required for identification of the ATE.

Assumption 4 The true observed data distribution lies in the interior of the nonparametric
model M that satisfies Var(A|Z = 1,X) — Var(A|Z = 0,X) # 0 (heteroscedasticity), and
mo(1|X) = P(Z =1|X) € (¢,1 —¢) for some c € (0,1/2) (positivity), almost surely.
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Assumption 4 consists of observed data restrictions that are empirically testable.  Het-
eroscedasticity has been widely used in prior works as a source of identification in linear
structural models without exclusion restrictions (Rigobon, 2003; Klein and Vella, 2010;
Lewbel, 2012) and represents a strengthening of the traditional IV relevance assumption
P(A=1Z=1,X)-P(A=1|Z =0,X) # 0 in the context of binary A and Z, as it further
requires P(A =1|Z = 1,X) + P(A =1|Z = 0,X) # 1 to hold almost surely. Positivity
ensures that there is overlap in the distribution of baseline covariates X among Z = 0 and
Z =1 units so that the treatment effect within each level of X can be identified. Equation
(5) in conjunction with Assumptions 1 and 4 implies that

E(EY|Z=1,X) - E(Y|Z = 0,X)
Var(A4|Z =1,X) — Var(A|Z =0,X) |

ATE = B(5(X)} - £ { (©)
The nonparametric representation in (6) appears to be new in literature and has a form
similar to the well-known Wald estimand as a ratio of differences between the two instrument
groups. Similar to the Wald estimand, estimation based on (6) may be vulnerable to bias
and large variance if Var(A|Z, X) only weakly depends on Z. In recent work, Ye et al.
(2021) proposed a measure of weak identification relative to sample size and developed
inference under a many weak invalid IVs asymptotic regime, which however requires correct
specification of parametric models for all nuisance parameters. The observed data density
P(0O) with respect to some appropriate dominating measure factorizes as P(Y, A|Z, X) x
P(Z|X) x P(X). Evaluation of (6) requires knowledge of the joint density P(Y, A|Z, X).
As will be shown below, identification of the ATE may be established based on some but
not necessarily all of these factors. We introduce the additional notation 79(z, z) := E{Y —
Bo(X)A|Z = z, X = x} to simplify presentation for this purpose.

Theorem 1 Under Assumptions 1-4, the ATE v := E{Y (1) = Y(0)} = E{Bo(X)} is
identified in M through the following three representations, each of which involves a distinct
set of nuisance parameters:

Explicit representation (i): 0 = E{¢1(O; o, 110)| X} — Bo(X) almost surely, where

(2Z —1)eY _ )
7o(Z|X)(Var(AlZ = 1,X) — Var(A|Z =0, X))’

©1(0; 0, o) =

Implicit representation (ii): 0 = E{y2(O;m, Bo,70)| X} almost surely, where

(2Z = DALY — Bo(X)A —70(Z, X)} 8)
mo(Z|X) 7

©2(0; o, Bo, 0) =

Implicit representation (iii): 0 = E{p3(O; o, o, po)|Z, X} almost surely, where
©3(0; o, Bo, po) = e{Y — Bo(X)A} — po(X). 9)

In particular, representation (i) provides a generalization of the results in Lewbel (2012) and
Tchetgen Tchetgen et al. (2021) which both rely on a priori restrictions on the functional
form of the conditional treatment effect within strata of measured covariates,

Cov{Z,eY|X =z}

E{p1(Osm0, o) | X = 2} = Cov{Z, cAlX =2}

B(x;n),

7
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where 7 is a finite-dimensional parameter. G-estimators developed in the context of additive
and multiplicative structural mean models (Robins, 1989, 1994) may be constructed based
on unconditional forms of the equivalent restriction

Cov{Z,e(Y — B(X;n)A)| X =z} =0. (10)

No such restriction is needed in representation (i). Thus in principle we can construct
the plug-in estimator 4 = P,,{¢1(O; 7, 1)}, where P,, denotes the empirical mean operator
P,{G(O)} = n71Y,G(0;) and (#, 1) are nonparametric first-step estimators of (o, 1)
which consists of conditional mean functions. Because we are not restricting M except
for regularity conditions, nonparametric estimators of v based on representations (i)—(iii)
are in fact asymptotically equivalent with common influence function given in the following
Theorem 2.

Theorem 2 The efficient influence function for estimating v in M is given by

Speff(O; 0y 1O, 607 70, ;00) =7

where

()Oeff(O;TF7M,B,T,p>_ (2Z—1){5(Y_6(X)A—T(Z,X) —p(X)?; —i—ﬁ(X)

)
~ m(ZIX){Var(A|Z =1,X) — Var(A|Z = 0,X)}

Therefore, the semiparametric efficiency bound for estimating v in M 1is

E{(@eﬁ?(ov 05 MO, 507 70, pO) - 7)2}

In most practical settings, we anticipate that X will generally be of moderate to high
dimension relative to the sample size, as analysts consider a broad collection of covariates
and their functional forms in the hope of capturing the salient features of the confounding
effects. In this case, nonparametric estimators of v may exhibit poor finite-sample behavior
due to the curse of dimensionality (Robins and Ritov, 1997). Below, we describe two distinct
strategies for modeling the nuisance parameters: the first uses standard parametric models,
while the second leverages modern machine learning.

3. Multiply robust estimation

Consider the working parametric models {7 (z|z;n1), u(z, x;12), B(x;n3), 7(z, 2;314), p(x;15) }
indexed by finite-dimensional parameters n = (n{,n5,13,m4,m5 )" . A two-step procedure to

estimate the nuisance parameters is as follows:

Procedure 1.
1) dSolve the score equation 0 =P, , 4, X;1m,m2); to obtain , , where
i) Sol h ion 0 =P, {S(A,Z, X;n1,n btain (0}, 75)", wh

Olog P(A, Z|X;m,m2)

S A,Z,X;U y12) =
( 1 12) CHE
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(ii) Solve 0 = P,{G(O; M1, 72,13,M4,m5)} to obtain (73,714,713 )", where

Ds(X) w5 etm) (Y — B(X:n5)A = 7(Z, X3m4)) — p(X5715)}
G(O;n) = Dy(X)N{Y — B(X;m3)A — 7(Z, X;m4) } ,
D5(X){e(m)(Y — B(X;n3)A) — p(X;n5)}

and D;(X) is a user-specified vector function of the same dimension as n; for j = 3,4, 5.

Similar to Bang and Robins (2005); Tchetgen Tchetgen et al. (2009); Sun et al. (2018);
Sun and Tchetgen Tchetgen (2018); Wang and Tchetgen Tchetgen (2018), in the following
we propose the estimator 4, = Pp{pes(O; 7, i, B, %, p)} based on the form of the efficient
influence function given in Theorem 2, where # = w(:;71), fi = pu(9), B = B(:;73),
7 =7(;m4) and p = p(+;75). Let n* denote the probability limit of 7. Because the two-step
estimator /) may be viewed as solving the joint moment equation 0 = P,{G(O;n)} where
G(O;7) = {S™(A, Z,X:n1,m2), G"(O;n)}" (Newey and McFadden, 1994), the following
result holds by invoking the n~1/2 asymptotic expansion for 7 — n*, allowing for model
misspecification (White, 1982).

Lemma 1 Under standard regularity conditions for method of moments estimation (Newey
and McFadden, 1994), n* is the unique solution to E{G(O;n)} = 0. Furthermore, Yy, is a
consistent and asymptotically normal (CAN) estimator of 75, = E{@er(O;n*)},

~ * d
\/’E(er - ’Ymr) - N(O’ E)a

where ¥ = E[{@m:(O;n*) — %, 2] and
} X }
7]:77* 7]:77*

Let 7 = 7(:;n7), p* = p(m3), B = B(5m3), 7 = 7(smi) and p* = p(-;73) denote
the probability limits under the (possibly misspecified) working models. Based on the three
distinct sets of nuisance parameters characterized in Theorem 1, the efficient influence
function has the multiple robustness property that v = E{@es(O; 7", u*, 8*, 7%, p*)} if at
least one of the following holds: (i) (7*, u*) = (mo, po); (ii) (7*, 8%, 7*) = (mo, Bo, 70) and (iii)
(u*, B*, p*) = (o, Po, po)- This suggests that 4, is a CAN estimator of v under one, but
not necessarily more than one, of the following three different sets of model assumptions:

-1
" N 00er(O; - i}
emr (031") = per(O5*) — E {W G(O;n").

9G(0;n)
s fo

M;: models for (m, o) are correctly specified,;
Ms: models for (g, B, T0) are correctly specified;

Ms: models for (u, Bo, po) are correctly specified.

Lemma 2 #,,, is a CAN estimator of v in the union model M pion = U%Zl./\/lk. Further-
more, Ymy attains the semiparametric efficiency bound in M at the intersection submodel
ﬂ%lek where all the working models are correctly specified.
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Following a theorem due to Robins and Rotnitzky (2001), 4;,, can be shown to also attain
the semiparametric efficiency bound for M0, at the intersection submodel ﬂ%lek.
Because the nuisance parameters in each of My, My and M3 are variation independent
of each other, multiply robust estimation gives the analyst three genuine opportunities to
obtain valid inferences about v, even under partial misspecification of the observed data
models.

3.1 Comparison with existing estimators

Under the particular specification {5(z;n3), 7(z, x;n4), p(x;15)} = {0,0,0}, Yy reduces to
the semiparametric plug-in estimator 41 = P,{y1(O;7, i)} which is CAN only in M;.
An appealing feature of 47 is that the nuisance parameters can all be estimated in step
(i) of procedure 1 without involving outcome data, and therefore mitigates potential for
“data-dredging” exercises (Rubin, 2007). However, 41 is neither multiply robust nor locally
efficient. Furthermore, 4,,, is expected to be more efficient than 41, since the latter fails
to incorporate information from (A, Z, X)) which may be predictive of the outcome values.
Such efficiency considerations are analogous to related results on covariate adjustment in
completely randomized experiments with full compliance (Leon et al., 2003; Davidian et al.,
2005; Rubin and van der Laan, 2011).

Based on moment condition (12), Tchetgen Tchetgen et al. (2021) proposed the covariate-
adjusted “Mendelian Randomization G-Estimation under No Interaction with Unmeasured
Selection” (MR GENIUS) estimator 7§ which solves

[ Ds(X)(2Z ~ De(ip)(Y — B(Xn5)A)
0="Fn { (21X ) } |

(11)

It is straightforward to verify that 4, = P,{8(X;7)} is a CAN estimator of v under the
model assumption

M: models for (g, uo, Bo) are correct.

Interestingly, under Assumptions 1-3 and no unmeasured confounding given (Z, X), i.e., if
either UL A|Z, X or UILY|A, Z, X, the G-estimator 73 of Robins (1989, 1994) solves

0 =Pn{D3(X)e(n2)(Y — B(X;m3)A)}, (12)

and 4 = P,{8(X;7n3)} is a CAN estimator of . Similar to standard G-estimation, a more
efficient MR GENIUS estimator 775 may be obtained as the joint solution to

m(Z|X;m)

D3(X)(2Z—-1)e(2) (Y =B(X;n3) A—7(Z,X;m4))
0=P, (13)
Dy(X)(Y = B(X3n3)A — 7(Z, X;m4))

where information about the association between (Z, X)) and Y is incorporated via an addi-
tional working model for 79(-). Lewbel (2012) considered semiparametric estimation based
on moment restrictions similar to (13) but with nonparametric plug-ins for the nuisance
parameters (n1,72). The resulting estimator 5, = P,{8(X;79)} is doubly robust in the
union model M) U My, which is in turn a submodel of Mypion.

10
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4. Flexible estimation of nuisance parameters

With high-dimensional X, various flexible and data-adaptive statistical or machine learn-
ing methods may be adopted to estimate the nuisance parameters ny = (7o, to, 8o, 70, £0),
including random forests, Lasso, neural nets, boosting or their ensembles. Recent work
by Chernozhukov et al. (2018, 2022) show that \/n-consistent estimation of v is possible
even when the complexity of the nuisance parameters is not tractable by standard empirical
process theory (e.g. Vapnik-Chervonenkis and Donsker classes). Let (Ix)5_; be a K-fold
random partition of the observation indices {1,2,...,n}. For each k, let #(k), i(k), B(k),
7(k) and p(k) be learners of the nuisance parameters that are constructed using all obser-
vations not in [ based on the following two-step procedure.

Procedure 2.

(i) Obtain 7 (k) and fi(k) by machine learning of the conditional mean functions (7, o).
(i) Given #(k) and fi(k), obtain G(k), #(k) and p(k) sequentially by machine learning
based on the following conditional mean relationships: f(z;m, u) = E{p1(O;m, u)|X =z},
(2,03 8) = B{Y — B(X)AIZ = 2, X = a} and plas p, B) = E{e(u)(Y — B(X)A)X = a}.

The cross-fitted debiased machine learning (DML) estimator of  is

K
Samt =+ 3 (O 7 (K), ), AR), 7(8), 5(K).

k=1i€l}

By definition, the efficient influence function peg(O;n) satisfies the Neyman orthogonality
condition (Neyman, 1959, 1979; Belloni et al., 2017; Chernozhukov et al., 2018, 2022), as all
first order influence functions admit second order bias (Robins et al., 2009). Under general
regularity conditions established by Chernozhukov et al. (2018, 2022), 44, is CAN if all
the nuisance parameters are estimated with mean-squared error rates diminishing faster
than n~'/%. Such rates are achievable for many highly data-adaptive machine learning
methods, including LASSO (Tibshirani, 1996), gradient boosting trees (Friedman, 2001),
random forests (Breiman, 2001; Wager and Athey, 2018) or ensembles of these methods.
We note that in low-dimensional settings, Lemma 2 shows that 4,,, is CAN even when some
of the nuisance models is misspecified by invoking the usual n~/2 asymptotic expansion
(White, 1982), which is not applicable when nuisance parameters are estimated via machine
learning methods. Therefore while methods such as DML and CV-TMLE (Zheng and Van
Der Laan, 2010; Van der Laan and Rose, 2011) with machine learning remain consistent
when various strict subsets of nuisance parameter learners (e.g. 7 and i) are consistent
due to the multiple robustness property of the efficient influence function peg(O;n), they
generally require consistent estimation of all nuisance parameters in order to obtain valid
confidence intervals.

4.1 Selective machine learning of multiply robust functionals

The performance of DML estimators is intimately related to the choice of the nuisance pa-
rameter learners, even when the latter includes flexible machine learning or other nonpara-
metric data adaptive methods. For this reason, generally one would like to learn adaptively

11
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from data and avoid choosing models ex ante. The task of model selection of paramet-
ric nuisance models was recently considered by Han and Wang (2013), Chan (2013), Han
(2014), Chan et al. (2014), Duan and Yin (2017), Chen and Haziza (2017) and Li et al.
(2020) in specific semiparametric doubly robust estimation settings. A related strand of
work is CV-TMLE which can provide notable improvements by incorporating an ensemble
of semiparametric or nonparametric methods. Nonetheless, the above methods primarily
focused on optimal estimation of nuisance parameters, but not bias reduction of the func-
tional ultimately of interest. This latter task is considerably more challenging since the risk
of a nonparametric functional does not typically admit an unbiased estimator and therefore
may not be minimized without excessive error. Cui and Tchetgen Tchetgen (2021) proposed
a novel model selection criteria for bias reduction in estimating nonparametric functionals
of interest, based on minimization of a cross-validated empirical quadratic pseudo-risk in
the context of doubly robust estimating functions. In this paper we propose to extend their
work to the multiply robust setting.
Consider the collection of candidate parametric or nonparametric learners

L = {i(a) = i(ar, a2, a3, a4, a5) = (Fays flas, Bass Tags Pag) = 1 < aj <) for j =1,...,5},

with probability limits {n(a) = n(o, az, a3, a4, a5) : 1 < a; < rjfor j =1,...,5}. Suppose
one of the candidate learners 7(&) € L is consistent so that n(&) = (7o, po, Bo, 70, o). The
proposed procedure relies crucially on the following two sets of mean zero implications due
to the multiply robust property of the efficient influence function, that for all 1 < a; <1,
1<aj<rj,je{l, .., 5},

0 = E{@esr(du, G2, &3, Gy, &t5) — Perr(dun, G2, a3, g, a05) }5
0= E{@eff(&lv &27 &37 &47 &5) - @eﬁ(dla a2, d?): d47 a5)}7 (14)

0 = E{@en(a1, i, a3, G4, (5) — e, dro, (i3, 14, (i5) },

and
0 = E{@efr(d1, i, s, &y, o) — Pesi(n, G2, a3, g, 5) 5
0= E{@eﬁ(dlv 0/27 d37 6447 0/5) - @eﬁ(dla ag, d37 6547 065)}; (15)
0= E{@eﬁ?(alla d27 d37 aib d5) - @eﬂ(ala d2a d3a Qy, d5)}a

where @eg() := wer(O;n(a)). To ease presentation, we introduce the sets ¢ = {1,2,3,4,5},
1 = {3,4,5}, 62 = {2,5} and 43 = {1,4} which index the nuisance learner components.
Let ayp, denote the counters for the nuisance learner components indexed by the elements in
Gk, €.8. ap1 = (a3, aq,a5). Similarly, let a_j denote the counters for the nuisance learner
components indexed by the elements in ¢ but not in %%, e.g. a—1 = (a1,a2). Then (14)
and (15) may be restated more concisely as

0 = E{@e(G—k, Oyk) — Pert(C—k, 1)}, (16)
and
0 = E{@efi(q—k, ayr) — Peri(d—k, &/ )} (17)

respectively, for all ayg, o ) € @ = {agp 2 1 < aj < 1,5 € G}, k € {1,2,3}. These
mean zero conditions suggest perturbing the learners indexed by a.; and using some mea-
sure of the resulting spread as a basis for selecting between the learners indexed by «a_p.

12
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Towards this end we introduce two different norms to define the spread or pseudo-risk.
The first type is given by the overall maximum squared bias (i.e., change in the estimated
functional) induced by perturbing one distinct set of learners at a time while holding the re-
maining ones fixed. For an arbitrary learner 7(a*) € £, we define the minimax pseudo-risk

RO (o) = maXye(1,2,3} A,(gl)(oz), where

Al(cl)(a*) = max [E{peg(aly,aly) — Pe(aly, ayg)})?, for k=1,2,3.
£¥+k€,Q/k

The second type is given by the sum of three maximum squared bias terms, each capturing
the bias induced by perturbing a distinct set of learners. We define the mixed minimax

pseudo-risk R (a*) = Zi:l A,(f) (a*), where

A (@) = max  [B{ger(a’y, o) — Ge(a’ o)}, for k=1,2,3,

[eAWH ,O/Jrk €,

For instance, suppose we have 2 candidate learners for each of the 5 nuisance parameters,
ie., L = {n(a) = q(a,az,a3,a4,a5) : 1 < o < 2for j =1,...,5}. Then the minimax
pseudo-risk for the learner 7(1,1,1,1,1) € L is

RW(1,1,1,1,1) = max( max [E{@ei(1,1,1,1,1) — @egr(1, 1, i3, ovg, a5) 2,

az=1,2;04=1,2;a5=1,

max 1 2[E{¢eff(17 11 17 17 1) - @63(17 a2, 17 1> (15)}]2,

az=1,2;a5=1,

max 2[E{¢eff(17 1a 1a 1a 1) - @eﬁ(alv 17 ]-7 Qy, 1)}]2)’

a1=1,2;a4=1,
and its mixed minimax pseudo-risk is
RP(1,1,1,1,1) = max [E{@err(1,1, a3, oua, a5) — @erp(1, 1, oy, o, o5) }]?
az=1,2;a4=1,2;a5=1,2
afb=12;a=1,2;0f=1,2
+ max 2[E{g?)eff(l, ag, 1,1, a5) — @esr(1, 0/2, 1,1, ozg)}]2

az=1,2;a5=1,
ab=1,2;05=1,2

+  max  [E{@en(a1,1,1,a4,1) — @e(a}, 1,1, 0, 1)}
a1=1,2;a4=1,2
oy =1,2;04=1,2

The pseudo-risks for the remaining 2° — 1 learners in £ are evaluated similarly. The popula-
tion version of minimax learners are defined as {arg min,, R(l)(a)} and {argmin,, R®) ()}
respectively.

4.2 Multi-fold cross-validated selection

We repeatedly split the data into a training set and a validation set S times to avoid
overfitting in selecting the minimax learners. For the s-th split where s € {1,2,...,S},
let {I}"}m=0,1 be a random bipartition of the observation indices {1,2,...,n}. We use the
training sample {1 < ¢ < n : ¢ € I§} to construct the estimators {f(a;s) : 1 < o <
rj for j = 1,...,5} based on procedure 2. For each fixed learner 7(a*) € L, the validation
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sample is used to evaluate

S
n * 1 ., %
A ) = max o TBHou (%0t an)}l’ k=123,

where ¢(a; /) 1= @er(03 71 5)) — perr(O371(0; 8)) and P := grymmaemy Y iepm o, for
m = 0,1, with dp denoting the Dirac measure. The empirical terms {K,(f) (0*)}p=1,2,3 may
be evaluated similarly. We select the minimizers of the empirical pseudo-risks ﬁ(l)(a) =
mMaXye(1,2,3} /A\Igl)(a) and R®(a) = e [A\l(f) () as our nuisance parameter learners. Let
al) = arg min,, 7/@(@)(04) for £ = 1,2 respectively. The two proposed selective machine
learning (SML) estimators of - are given by

for £ = 1,2. We provide a high-level Algorithm 1 for the proposed selective machine learning
procedure in Appendix C.

4.3 Excess risk bound of the proposed selectors

We derive risk bounds for the empirically selected minimax learners &1, @2 and show that
their risks are not much bigger than the risks provided by the respective oracle selected learn-

ers o) = argmin,, {maxke{mﬁ} A,(Cl)(a)} and o = argmin,, {22:1 A,(f)(a)}, where

Oc.HCEJZ{k S —1
(2) g
AP (@*) =  max E PHops(o* 1, app; . o 2
k ( ) a+k7a’+k€427k S s:l[ { 8( ko St k +k)}]

and P! denotes the true measure of PL.

Theorem 3 Suppose the nuisance parameter learners satisfy the boundedness conditions (i)
P(c < 7, (11X) <1—¢) =1 and P(|Var(A|Z =1, X; a5) — Var(A|Z = 0, X;09)| > 0) = 1
forl1 < a; <r,1 < az <12 and some ¢ > 0, where T/a\r(A]Z,X;ag) = flay (Z, X){1 —
fi0s (Z, X)}; (i) P(1Baq(X)] < M) = 1, Pl (2, X)] < M) = 1 and P(|pag (X)| < M) = 1
for1<az<rs, 1 <ayg<ry,1<as<rs and some M > 0. Then we have that

P {RD (@)} < (1+ 2P {RD(aV)}

1 1 (2—a9)/q
+ ( + 6) ( i 6) Clog {1 + (7’37“47"5)2(7"27’5)2(7“17"4)2} ,

nl/4 €

14
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for any e > 0, 1 < q < 2, and some constant C, where P° denotes the expectation with
respect to training data,

S
~ ) 1 N (1) ~
RO@) =, o 53 [PHon(05600 60

S
RO@D) = max < S (ou(a il )

and fork=1,2,3,

Gy = arg max SZUP”W aM:600, ) )]s @y = argmax SZW{@( ol au)).

o€, s—1 k€ s=1

Analogous results hold for the mized minimax selected learner,

PO {ﬁ(?)(@@))} < (1+ 2¢)P {@(2) (a@))}

(2-9)/q 3
n 1+e€\ [1+e€ Z C, log [1 n (T3T4T5){l+l(k:1)}(T2T5){1+1(k:2)}(7417,4){1—%1(]4::3)}} 7
nl/a € k=1

for any e >0, 1 < q <2, and some constants C1, Co and Cs, where I1(-) is the indicator
function,

3 8

o 1 -

R (@) = g ) Z[Pl{¢s(a(212;7 G 69, a0
k=1 s=1

) R

RO@@) = < 373 PHos(0 D dria al))
k=1 s=1

and for k=1,2,3,

S
_ . 1 (2 .
(@ @lyy) = argmax < > [P0, avusal) o))
ayp,al € P

S
o 1 2 2
(@) = argmax <> P{ou(a") apria®) o)1)
a+k,a{‘>k€£{k s=1

The bound given in Theorem 3 extends the risk bound established in Cui and Tchetgen Tch-
etgen (2021) to the multiply robust setting, and shows that the error incurred by the empir-
ical risk is of order n~! for any fixed € if ¢ = 1. Therefore, although the proposed selection
procedure is able to incorporate both parametric and nonparametric candidate learners,
it is of most interest in machine learning settings where the pseudo-risk can be of order
substantially larger than O(n~!), so that the error made in selecting the cross-validated
minimax learner is negligible relative to its risk and the proposed selector performs nearly
as well as a oracle selector with access to the true pseudo-risk. It is also of interest in
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such settings to compare the proposed SML estimators with machine learning estimators
using ensemble methods such as super learner (Van der Laan et al., 2007) which selects
through cross-validation the optimal combination from a library of candidate learners to
estimate each nuisance parameter separately; we investigate their empirical performances
via a simulation study in the next section.

The proposed approach is completely agnostic as to whether the collection £ includes
a consistent learner of all the nuisance parameters. Indeed if none of them are consistent
there is no estimator of v that can still be consistent, and the proposed approach is mostly
geared towards identifying the learner that minimizes the minimax pseudo-risks for a given
data set. Standard machine learning methods such as DML do not have this built-in
data-adaptive feature. To illustrate the implications of this selection procedure, we note
that the bias of a DML estimator of v evaluated with the nuisance parameter learner
N(a) = (ﬁal,ﬂaw,@aw Tay» Pas) chosen ex ante is typically of the order

Op {n ™12 + |0y = mollallfas — polla + 1/t = roll2 (11iag = Bollz + 17 = 7oll2) }

which depends crucially on products of the learners’ estimation errors. Because AgQ)(a)
captures the maximum squared bias in the estimated functional induced by perturbing
only the learners indexed by (ag, oy, a5), its minimizer corresponds to learners indexed by
(a1, ) with smallest bias. Cui and Tchetgen Tchetgen (2021) provided formal proof of
a related result. The mixed minimax pseudo-risk represents a natural extension of this
idea as the sum of three maximum squared bias terms, each capturing the bias induced by
perturbing a distinct set of learners. Due to the dependence across cross-validation samples,
formal machine learning post selection inference is challenging and the subject of ongoing
research.

5. Simulation studies

In this section, we investigate the finite-sample properties of the proposed estimators under
a variety of settings. Baseline covariates X = (X1, ..., X5) are generated from independent
standard uniform distributions. We consider the functional form X} = [1 + exp{—20(X}, —
5)} 7t for k = 1,...,5. The unmeasured confounder U is generated from a truncated normal
distribution in the interval [—.5,.5] with mean 0 and variance .25+ .5X7 +.15X5 — .1X} —
1XJ + .1XZ. Conditional on (U, X), the invalid instrument Z, treatment A and outcome
Y are generated from the models

P(Z =1|U, X) = {1 + exp(—0.8 — X} + .2X5 + 2X5 + .2X; — 1XH)} 7Y
P(A=1|Z,U X) = {1 +exp(2 — 1.5Z — 6X7 + .2X5 + 2X5 + 1X} — 1X)} 1 + s U;
E(Y|A, Z,U,X) = -2+ (2X7 + .5X5 + 5X3) A+ 2X} + 5X3 + 2X5 + 1X] + .1X?
— 27 + raU,

where (K1, k2) = (.1,1) and the outcome error term followed standard normal distribution.
We are interested in estimating v = E(2X] + .5X3 4+ .5X3) = 1.5 based on the generated
data for (Y, A, Z, X).
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5.1 Semiparametric estimators

We implement the five semiparametric estimators ¥, 41, 44, 74 and 4., using the R package
nlegslv (Hasselman and Hasselman, 2018), and evaluate their performances in situations
where some models may be misspecified. A particular working model is misspecified when
the quadratic functional form X;* = (Xj — 0.5)? is used in place of X7, k = 1,...,5.
Specifically, we report results from the following four scenarios:

So: All models are correctly specified;
S1: models for (mg, o) are correct, but models for (g, 79, pp) are misspecified;
Sa: models for (mg, 5o, 79) are correct, but models for (ug, po) are misspecified;

S3: models for (ug, 5o, po) are correct, but models for (7, 79) are misspecified.

Table 1 summarizes the results based on 1000 repeated simulations with sample size n =
2000 or 4000. Standard errors are obtained using the empirical sandwich estimator for
generalized method of moments (Newey and McFadden, 1994). The g-estimator 4 which
does not account for unmeasured confounding shows notable bias relative to its standard
error, with coverage below nominal level in all scenarios. In agreement with theory, ¥,
has negligible bias and coverage proportions close to nominal levels in scenarios {S;};j=o.1,
4g only in Sp, 1 in {S;}j=0,2, and Fmr in {S;}j=0,1,2,3, confirming its multiple robustness
property. The estimators 4, and 41 perform similarly to each other in terms of absolute
bias, variance and coverage in &1, but J,, yields smaller variance than 41 in Sg where all
models are correct.

5.2 Machine learning estimators

We implement the DML estimators 41,550, YrF, YaBM and Asp, with covariates X and
K = 2, whereby the nuisance parameters were estimated with (i) LASSO (Tibshirani, 1996;
Friedman et al., 2010a), (ii) classification or regression random forests (Breiman, 2001; Liaw
et al., 2002; Malley et al., 2012), (iii) gradient boosting machines (Friedman, 2001) or the
ensemble method super learner based on a library consisting of (i), (ii) and (iii), using
the R packages glmnet (Friedman et al., 2010b), ranger (Wright and Ziegler, 2017), gbm
(Greenwell et al., 2019) or SuperLearner (Polley et al., 2021) respectively. In addition, we
implement the proposed SML estimators with covariates X by minimizing the empirical
quadratic pseudo-risks over the candidate learners {f(a) : 1 < o; < 3 for j = 1,...,5} with
covariates X and S = 2, whereby each learner component is based on (i), (ii) or (iii). Table
2 summarizes the results based on 1000 repeated simulations with sample size n = 2000 or
4000. Because the functional form of the regressors is misspecified, 41,4550 has noticeable
bias, although it has the smallest Monte Carlo standard error. The bias of 4gr decreases
with increasing sample size, and becomes negligible at n = 4000. The DML estimator
YoM has considerably large bias due to outliers when n = 2000, but its bias decreases when
n = 4000. Remarkably, without access to the true underlying data generating mechanism or
the performance of individual DML estimators, the proposed SML estimators nearly attain
the minimum absolute bias at n = 4000. The mixed minimax SML estimator ’ygr)bl
be more efficient than ‘)/S)Ll, in agreement with previous simulation results for doubly robust
functionals (Cui and Tchetgen Tchetgen, 2021).

tends to
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Table 1: Summary of results for semiparametric estimation of . The result of each scenario
includes two rows, of which the first stands for n = 2000, and the second for
n = 4000.

Estimator

0 71 'AYg Vg Nrmr

So
Bias .033 —.024 100 —.014 —-.016
.031 .014 .051 —.003 —-.002
Var .056 .380 408 .196 .205
.041 .269 .199 141 145
Cov95 .911 .966 .994 .975 978
.867 941 961 .958 .960

S
Bias .146 —.024 —.057 —.255 —.098
135 014 —.144 —-.214 —-.017
Var .060 .380 .611 .359 421
.042 .269 .310 241 273
Cov9s .325 .966 981 931 972
.101 941 .929 .865 .952

S2
Bias 424 267 275 —.012 —-.013
417 .304 698 —.002 —.002
Var .115 .336 765 .186 191
.081 .240 .360 133 .136
Cov95 .017 .845 .883 978 977
.000 736 481 957 .959

S3
Bias .033 .664 .242 024 —.077
.031 .679 112 .019 —-.014
Var .056 344 1.504 911 .343
.041 .249 .308 214 213
Cov9s .911 508 988 .985 991
.867 .162 981 .990 .962

Note: Bias and v/ Var are the Monte Carlo bias and standard deviation of the points estimates, and
Cov95 is the coverage proportion of the 95% confidence intervals, based on 1000 repeated simulations.
Outlier in one run has been removed in computation of results for 4.
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Table 2: Summary of results for machine learning estimation of v. The result of each
scenario includes two rows, of which the first stands for n = 2000, and the second
for n = 4000.

Estimator

N N N N ~(1) ~(2)
YLASSO TRF YGBM YSL Ysmi Yeml

Bias  0.111 —-0.040 129.583 —-1.704 —0.760 0.089
0.088  —0.020 —0.841 0.063 0.010 0.049
MSE  1.658 6.118 3750.165 45.441  25.660 1.442
0.226 0.750 39.048 1.344 1.495 0.473

Note: Bias and vMSE are the Monte Carlo bias and root mean square error of the points estimates
based on 1000 repeated simulations.

6. Application

The causal relationship between 401 (k) retirement programs and savings has been a subject
of considerable interest in economics (Poterba et al., 1995, 1996; Abadie, 2003; Benjamin,
2003; Chernozhukov and Hansen, 2004). The main concern with causal inference based
on observational data is that program participation is not randomly assigned, but rather
are self-selected by individuals. Potential unmeasured confounders U such as individual
preferences may affect both program participation and savings. Thus, estimation of the
effects of tax-deferred retirement programs may be biased even after controlling for observed
covariates (Abadie, 2003). Poterba et al. (1995) proposed 401(k) eligibility as an instrument
for program participation. If individuals made employment decisions based on income and
within jobs classified by income categories, whether or not a firm offers a 401(k) plan can
essentially be viewed as randomized conditional on income and other measured covariates
since eligibility is determined by employers. However, 401(k) eligibility may also interact
with some unobserved heterogeneity at the firm’s level in influencing savings other than
through 401(k) participation (Engen et al., 1996).

In this section, we illustrate the proposed methods by reanalyzing the data from the 1991
Survey of Income and Program Participation (n = 9,915) used in Chernozhukov and Hansen
(2004). The treatment variable A is a binary indicator of participation in a 401(k) plan
and Z is a binary indicator of 401(k) eligibility. In this dataset, 37% are eligible for 401(k)
programs and 26% participated. The outcomes of interest are net financial assets and net
non-401(k) financial assets in 1991 (US dollars). Following Poterba et al. (1995), Benjamin
(2003) and Chernozhukov and Hansen (2004), the vector of measured covariates X includes
an intercept, family size, indicators for marital status, two-earner status, defined benefit
pension status, IRA participation status, homeownership status, four categories of number
of years of education, five categories of age and seven income categories. We consider as
benchmarks the two models

E(Y|A, Z, X,U) = B(X)A+ &(X);

E(Y|A, Z, X,U) = B(X)A+&(X,U), (18)
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which are special cases of the outcome structural equation in Assumption 3. The former
model holds when the effect of A on Y is unconfounded conditional on X, and yields the
observed data model E(Y]A, X) = B(X)A + 7(X). If we specify the parametric models
B(X;n3) = n3 and 7(X;n4) = n; X, the parameters (n3,74) indexing the conditional mean
model E(Y|A, X;n3,n4) may be estimated via ordinary least squares. On the other hand,
the latter model in (18) holds in the presence of unmeasured confounding if Z is a valid
instrument that satisfies exclusion restriction. The observed data model E(Y|Z,X) =
B(X)u(Z,X) + 7(X) may be estimated using two-stage instrumental variable estimation
under an additional model for the propensity score, which we specify as u(Z, X;n2) =
{1 + exp(—n3(Z,X™)T)}~L. We denote the resulting semiparametric ATE estimators as
Yois and A respectively. For comparison, we implement the proposed semiparametric
estimators under the same parametric models for 6(X) and u(Z, X), as well as the additional
models (1| X;m) = {1+ exp(—n{ X)} ', 7(Z, X5m) = 15 (Z, X")" and p(X;n5) = nj X.
The results are summarized in Table 3.

6.1 Effect of 401(k) participation on net financial assets

The point estimate of 444, is noticeably smaller than that of 4,5, which is consistent with
the results in Chernozhukov and Hansen (2004) and suggests that unmeasured confounding
generates an upward-biased estimate of the effect of 401(k) participation on savings. The
proposed estimators yield significant and uniformly positive point estimates that are close to
that of 444y, which provide further evidence that 401(k) participation increases net financial
assets even when exclusion restriction may be implausible. This similarity between 44, and
the proposed estimators is due to the near zero point estimate for the coefficient correspond-
ing to the main effect of Z in 74, which encodes the direct effect of 401(k) eligibility on net
financial assets. Compared to the semiparametric estimators, the proposed SML estimators
implemented with covariates X and whereby each learner component is based on LASSO,
random forests or gradient boosting machines yield similar positive effect estimates, but
with noticeably larger nominal standard errors. This difference in efficiency between semi-
parametric and nonparametric data-adaptive estimation agrees with the simulation results
in Section 5.

6.2 Effect of 401(k) participation on net non-401(k) financial assets

Consistent with the findings in Chernozhukov and Hansen (2004), the point estimate of Jysiy
is negative and noticeably lower than that of 4,;5. On the other hand, the proposed estima-
tors yield uniformly positive point estimates, which suggests that 401(k) participation does
not crowd out non-401(k) savings, although the estimates are not statistically significant.
This difference may be partially explained by the noticeably negative point estimate for
the direct effect of 401(k) eligibility on non-401(k) savings, indicating asset substitution in
401(k) eligible firms which obscured the effect of 401(k) participation. This may happen,
for example, if 401(k) eligible employees have access to improved financial education and
advice on 401(k) plans at the firm level which encourage asset substitution.
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Table 3: Estimates of the causal effect of 401(k) program participation on savings in 1991

(US dollars).

Average treatment effect

Direct effect of 401(k) eligibility

’A}/ols
’A)/tsz'v
N

Vg
Yg
;Ymr
ASL
~(1)
sml
~(2)

sml

’3/015
:Ytsiv
N
Vg
Vg
'A)/mr
ysL
(1)
sml

L(2)

sml

14517 + 2743
13491 + 4490
13248 + 5524
13669 + 4216
13083 4 4199
13610 + 2648
13637 + 5837"

13952 + 7181°
14136 + 60321

Net financial assets

2.04 £ 4189
3.35 £ 3879

Net non-401(k) financial assets

673 + 2571
—546 + 4226
1129 + 5351
1618 + 4077
1838 + 4058
1294 + 2411
1368 + 5637"

1933 + 63917
1853 + 60637

—1436 £ 4092
—1436 + 3766

Note: Point estimate + 2xstandard error. Following Chernozhukov et al. (2018), the median esti-
mate out of 100 repetitions are reported for the machine learning estimators to mitigate the finite-
sample impact of any particular sample splitting realization. § Nominal standard errors obtained
based on the empirical efficient influence functions evaluated under selected learners.
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7. Discussion

There are several improvements and extensions for future work. The finite sample perfor-
mance of the proposed semiparametric estimators can be improved in terms of efficiency
(Tan, 2006, 2010) and bias (Vermeulen and Vansteelandt, 2015). Efficiency can also poten-
tially be improved by incorporating a priori knowledge such as degree of exclusion restric-
tion violation or using IVs that are known to be valid in conjunction with the invalid ones.
Lastly, multiple invalid weak IVs can be incorporated by adopting the generalized method
of moments approach (Newey and Windmeijer, 2009; Ye et al., 2021).
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Appendix A. Proofs
Proof of Theorem 1
Tchetgen Tchetgen et al. (2021) considered the following generalization of Assumption 3 in

which both the treatment effects and treatment choice may depend on U:

Assumption 3’
E(Y|A, Z,X,U) = 0,(X,U)Z + B(X,U)A + £,(X,U);
E(A|Z, X,U) = 0o(X,U)Z + £.(X, U),

where {B(+),01(:),02(-)} are unknown measurable and square integrable functions of both
measured and unmeasured confounders.

This situation is also known as essential heterogeneity in the econometrics literature (Heck-
man et al., 2006). Following the proof of Lemma 3.1 in Tchetgen Tchetgen et al. (2021),
the covariate-specific equality

EEY|Z =2,X =) = fo(x)Var(A|Z = 2, X = z) + po(x)
+ 3 moj(z a)ei(@) + > muk(za)gig(a),  (AD

Jj=1.2 k=0,1,2

holds under Assumptions 2 and 3', where fy(z) := E{8(X,U)|X = z} and

po(x) = Cov{&y (U, X),& (U, X)|X =z}
Yo1(x) == Cov{B(U, X), & (U, X)| X = z};
Yoz(x) = Cov{b1 (U, X), & (U, X)| X = z};
P1o(z) = Cov{&, (U, X),0:(U, X)| X = x};
P11(x) := Cov{B(U, X), 02(U, X)|X = z};
1/)12(.%‘) = COV{Hl(U, X),HQ(U, X)’X = Cl?}

It is straightforward to verify that equation (5) holds if for all j = 1,2 and k£ =0,1,2
1/}0]‘(X) =0 and 1/)1k(X) = 0, (AQ)

almost surely. The orthogonality condition (A2) does not rule out non-linear forms of
essential heterogeneity (Tchetgen Tchetgen et al., 2021). In particular, if 5o(X,U) = Bo(X)
and 0;(X,U) = 0;(X) for j = 1,2 almost surely (i.e., Assumption 3 holds), then (A2) holds.
Assumption 4 ensures that (6) is well-defined while Assumption 1 imbues the identifying
functional therein with causal interpretation as the ATE. The rest of the proof below follows
from (5).

PROOF OF EXPLICIT REPRESENTATION (1)

E(eY|Z =1,X) - E(eY|Z =0, X)
Var(A|Z =1,X) — Var(A|Z =0, X)

E{1(0; 7o, o) | X} = = Bo(X).
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PROOF OF IMPLICIT REPRESENTATION (II)

B{2(0: 0, fos 70)| X} = E {%’,’;)(X)\X} _o.

PROOF OF IMPLICIT REPRESENTATION (III)

E{3(0; po, Bo, po)| Z, X} = po(X) — po(X) = 0.

Proof of Theorem 2

We follow closely the semiparametric efficiency theory of Newey (1990) and Bickel et al.
(1993). Consider a parametric submodel for the law of the observed data,

filo) = filyla, z, @) pe(z, ) {1 = pue(z, 2)} = me(w)* {1 = me(2) } =% fulz),

where pi(z,2) := P(A =1|Z = 2,X = z) and m(z) := P(Z = 1|X = z). The score
function S:(0) is given by Si(yla, z,x) + Si(alz, x) + Si(z|x) + Si(x), where Si(yla, z,x) =

a Z,x out(z,x z—T ot (x
0log fi(yla, z,x)/0t, Si(alz,x) = #t(zx)ﬁt(m()z o) “ta(t ), Si(z|r) = (@ ){1t(7rt)($)} (l;g ) and
Si(x) =log fi(x)/0t. A representation of the tangent space is therefore given by

T = {Si(yla, z,2) +{a — p(z, ¥)}o1.4(2, ) + {z — me(x) }o2,4(%) + 03.4(2)}

where {0;+(-)}j=1,2,3 are arbitrary square-integrable functions. Pathwise differentiability
follows if we can find a random element G;(O) € T such that it satisfies E;(G;) = 0 and
O /0t = E{G¢(0)S:(0)}, where Ei{h(O)} = [h(o)dF;. We make use of the follow-
ing equalities in the proof, that for any arbitrary square-integrable functions o;1(A, Z, X),
02(Z, X) and g3(X),

E{o1(A,Z, X)S(YA, Z,X)} = 0; (A3)
E{02(Z,X)Si(A|Z, X)} = 0;  Ey{02(X, Z)et} = 0; (Ad)
E{03(X)S{(Z|X)} =0;  FEyfo3(X){Z — m(Z]X)}] = 0; (A5)
Ei{p1(0; me, )| X} = Be(X), (A6)

where (A6) follows from the proof of Theorem 1. We start with representation (i) of
Theorem 1. To ease notation, let 02(z, ) := u(z,2){1 — u(z,7)} denote the conditional
variance. Differentiating the right hand side of v = E; {1(O; 7, ut)} under the integral
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with respect to t yields

27 —1 &Y
™ (Z|X) {Jf(l,X) — Uf(O,X)}}
_ { 27 — 1 eY'S, (0) }
¢ ™ (Z]X) {a?(l,X) — af(O,X)}
s { 27 -1 E, (ASt(A|Z,X)\Z,X)Y}
m(Z]1X) {O’?(l,X)*O’?(O,X)}
s { 27 —1 &YV {0?(1,X) —03(07X)}}
" m(21X) {02(1,X) — 02(0, X))}’
. { 27 — 1 &Y S,(Z|X) }
m(Z]1X) {O‘?(LX) —O’?(O,X)}
= L - L— L Y

Vivy = VtEt{

We consider the terms .2 to £ separately:

27 —1 StYSt (O)
2 = FE ;
! t{m (Z1X) {o?(1,X) —07(0,X)} |’

P 5| 221 E(AS(A1Z.X)|2,X)Y
2 m(Z1X) {o2(1,X) - 02(0,X)}

27 —1 E; (AS;(A|Z,X)|Z,X)E/(Y|Z,X)
7(Z|X) {o?(1,X) —0}(0,X)}

27 1 ASy(A|Z, X)E(Y|Z, X)
m(Z|X) {o?(1,X)—07(0,X)}

{ 27 — 1 &,5,(A|Z,X)E,(Y|Z, X)

I
=

I
=

I
&=

m(Z1X) {o}(1,X) - c}(0,X)} } by (A4)

- E 27 —1 €tEt(Y|Z X)St(O)
m(Z1X) {0?(1,X) — 07(0,X)}

} ; by (A3; A4)

27 —1 &Y Vi {o}(1,X) - c}(0,X)}

= {Trt (Z1X)  {02(1,X) - 02(0,X)}? }
{ 27 —1 &Yl — (1, X)|E [AS)(A|1Z = 1,X)|Z = 1, X]}

(2] X) {o2(1,X) — 02(0,X)}”
. { 27 — 1 &Y (1, X)E [AS)(A|Z = 1,X)|Z = 1,X]}
m(Z|X) {02(1,X) — 02(0,X)}"
g { 27 — 1 &Y |1 — (0, X)|E, [AS)(A|Z = 0, X)|Z = 0, X] }
m(Z|X) {o2(1, X) — 02(0, X)}”
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[ 221 aY (0. X)E [AS/(A]Z = 0,X)|Z = 0, X]
"\ m(Z1X) {02(1,X) — 020, X)}?

_ oz B (X) Z  g02(Z,X)S(0)
N X) =020, X)) 7 (Z1X)  mu(Z, X)

B Bt (X) 7 5t0t2(Z,X)St(O)
{021, X) = 02(0, X)} m (Z1X) (1 — me(Z. X))

. B (X) 1 -7 £0}(Z,X)S(0)
{1 X) =070, X)) m (Z1X) (2, X)

B (X) 1—Z 03(Z,X)S(0)
i { {0?(1,X) — 02(0, X)} m (Z|X) [1— pu(Z, X)) } by (A3, A4, A6)

_ g 22 -1 Bt (X) et07(Z, X)S:(0)
"\ m(Z1X) {02(1,X) = 07(0, X)) (2, X)

{ 27 — 1 B, (X) e102(Z, X)S(0) }

7 ZX) {02(1.X) — 070, X)) [1— (2, X)]
m(Z|X) {o2(1,X) — 02(0,X)}

271
Ey [m (Z1X) {o2(1, X)

Y| Z, X
" S(ZIX) ) by (A9
{ —Ey |:7Ft(Z|X) {0’ 1X) O’t OX}

2Z—1
Ly |:7Tt (Z1X) {0'2(1X Ut OX)} ’

27-1
—E [m(Z|X ) {o? 1X) at( X)}Y'X
+
boA

2z [ azxs) () )
'_E{{mwm> aﬂhm—ﬁmXH]%Mm}&w%’

{o?(1,X) — 0}(0, X)
where the last equality holds from the proof of Theorem 1 as well as identity (A6). Com-

bining the terms .24 to %, yields

27 =1 &Y =B (X) (2, X) — (2, X))

Vi :E{mwm> {o3(L,X) — 0(0, X)}

27 — 1 02(Z, X)
- (Z]X) {o2(1,X) —07(0,X)}

B (2Z —1)pi(X)

7"'t(Zp() {O’?(l,X) _0152(07X)}
C2Z-1 B (X)[1 — m(Z,X)]
m(ZX) {03(1, X) — 02(0,X)}

% - B

.

B (X) + Bt (X)

26



SELECTIVE MACHINE LEARNING WITH AN INVALID INSTRUMENTAL VARIABLE

s

27 —1 & [Y — B (X)A—1(Z, X)]
m(Z1X)  {of(1,X) - 07(0,X)}

0, X)

St(O)}

22 -1 &[Y — B (X) A —n(Z, X))
7Tt(Z|X) {JtQ(l?X) - UE(O,X)}

St(O)}
s

We can readily verify that @eg(O; 7, e, Bty 7ty pt) — 1 € T. It follows that

27 -1 ef (X) w(Z, X)
m(Z|1X) {c?(1,X) — 02(0,X)}
+QZ—1 €tﬁt(X)A
7"'t(Zp() {O’?(l,X) - O-tQ(OaX)}
- m(Z)X) {02(1, X) — o2
(2Z — 1)p(X)
27 — 1 Etﬁt (X) [1 — ,U,t(Z,X)}
"T(Z1X) {oA(1, X) — o7(0, X)) St(o)}
27 =1 &Y = B (X) A —7(Z, X))
27 —1 o2(Z, X
+7Tt(Z|X) {02(1,X) — o
- m(Z)X) {o2(1, X
(27 — Dpu(X
_ E{
- (2Z B 1)pt<X) + 51& (X)
_ l[22-1 a4y -8 (X)A-n(2.X)]
B 7"'t(Z|“X) {o-tQ(l?X)_UtQ(OvX)}
2% {07, X) - 70, %)) ) T

_ E{
_ o2
27 -1 e A0 + 84 (X)
_Wt(Z|X) {O't2(1’X)_O-t2(0’X)}
= F
{ 7Tt(Z|X) {Ut2(17X)_01f2(07X>}
27 —1 o?
7Tt(Z|X) {O‘?(l,X)—O’?(O,X)}
7"-1‘/(Z|‘X) {O‘?(l,X)—O’%(O,X)}
(2Z — 1)py(X)
= E[{pet(O; e, 1t Bes Tty pt) — 7215t (O)].

C,Deff(o; 70, MO, 607 70, pO) -

is the efficient influence function for estimating v in M by Theorem 3.1 of Newey (1990).
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Proof of Lemma 1

It suffices to show that v = E{@ex(O; 7, u*, 8%, 7%, p*)} = E{pes(O;n*)} if at least one of
the following holds: (i) Suppose (7*, u*) = (7o, o). Then

27 —1 e{Y — Bo(X)A}
m0(Z1X) 0%(1, X; po) — 02(0, X5 o)
_2Z-1  e{B(X) - Bo(X)}A
m0(Z1X) 02(1, X po) — 02(0, X o)
27 — 1 em*(Z, X)
710(Z]1X) (1, X; o) — 02(0, X puo)

27 —1 p*(X)
 7m0(Z]X) 02(1, X; o) — 02(0, X puo)

E{pes(O;n*)} = E

+E{B*(X)}]
27 -1 po(X)
m0(Z]1X) 02(1, X o) — 02(0, X5 o)

22 -1 o*(Z,X; po){B*(X) — Bo(X)}
m0(Z|1X) o2(1,X;po) — 02(0,X; o)

= F

o]

27 -1 po(X)
m0(Z]1X) 0%(1, X5 o) — 02(0, X5 o)

—{B"(X) = Bo(X)} + B*(X)
= ’y.
(ii) Next, suppose (7, 5*,7%) = (70, Bo, 70). Then
27 — 1 e{Y — Bo(X)A}
mo(Z|X) 0-2(1a X;p*) — 02(07X; )
221 {p(Z,X) — po(Z, X)HY — fo(X)A —70(Z, X)}
WO(Z|X) UZ(LX;M*) _0—2(07X§M*)
271 p*(X)
7T0(Z|X) 02(17X; :U’*) - UQ(OvX; M*)

E{pes(O;n*)} = E

+ Bo(X)

2Z —1 po(X)
mo(Z|X) 0-2(1a X;p*) — 02(07X; )

+ Bo(X )]
(111) Finau}’v suppose (/L*a ﬁ*a p*) = (MO?ﬁO?pO)' Then

2Z -1 e{Y — Bo(X)A} — po(X)
™(Z|X) 02(1, X; o) — 02(0, X5 o)

E{pg(O;n")} = FE

27 1 er*(Z, X)
(Z]1X) 02(1, X; no) — 02(0, X; o)

+ /30(X)]
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— 22 -1 po(X) — po(X)
= T 20 20 X o) — 020, X))

The last claim in Lemma 1 follows by noting that under the intersection submodel
Me_ Mp, E{0¢e(O;n)/On"|y=n+} = 0 by Neyman orthogonality (Neyman, 1959, 1979;
Belloni et al., 2017; Chernozhukov et al., 2018, 2022).

Proof of Theorem 3

To ease notation, let n, := #{1 <i <n:i€ I3} for m = 0,1. By the definition of the
proposed model selector,

S S
max ZP1{¢S& a" )P < max %ZPI{% il ) h2

ke{1,2,3},a’+keyfk ke{1,2,3},o, , €

It follows that

S
R0 (a0 P! @ 2
R (Oé k;er?laéf?,} Z {¢s ) Oé+k) }] )

where dp = argmaxy e < Zle[Pi{és(a(l); a(_ll)g,ag_k)}]? By simple algebra, we have
that for k € {1,2,3},

P {os(@s 50 G} = oo Z [P {g,(aC )it P {os(aM:al) an);)
2 ~(1). A1) ~ ~(1). A(1) ~
+ 3> [sslaDial) dn)i - Pl{¢s<a<l>; al), ami}} P {s(aM; 0l a.n);)
1 ij
1 ~(1). A1) ~ ~(1). A
+ ns?2 Z [¢8(a(1)’ aQ 1k7 O‘-HC)Z - P1{¢8(O‘(1)’ o 1]3;7 a-i-k)z}} x
1

23 3 [6(a50%, a0 (aD; 0%, )il P 0s(a; 60, 1))

6:(60561, a10); — PH{ou(@Ms6l) 6} -
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The same decomposition holds for [P1{¢,(a(V); a(_ll)f, c¢i41)})%. By definition of our estimator,
for any € > 0, we have that

S
~ 1
RO (@) < (1+ 2¢) max gzmﬂws el a1

S

H{+ max 5 S(EHs( 0%, ) B {g(0; 0l i)}

s=1
1 S
—{1+ max £ Y(BHs (a0, an)} - [PHoua M50l aun)}?)

Combined with the decomposition of [P1{¢,(a1); 07(71,)?, d4k)}? and [PH{ps(aD; a(jll, cr) 3,

we further have that

S
RM (D) < (1 + 2) max ZP% aW;a) 6,12

S
+{ + o) max Z[ I al) dn)i = PH{ou (008 )i E os (a0l b))

e Z (2l asn) = PHos(@Msall) dp)i}) ¢
S
(qbs(a“); o, é1); — B {9u(aW; 0l d41)3}) | — emax ¢ S 6400, 60}

S
—{<1+e>mkxlz[§1 > (6uta 6, )i — B {as(aM; a1, apn) )P {au(aMsal), 4}

s 3 (946W; 61 a4 — Pou(a0; 0%, 6 x)i) ) x

(1 ~(1) = (1) ~
(@s(aM:al) dsn); = PH{ou(aM:08, dan);} )| + emax 5 Zu@lws( 56l a2
—1
Note that the only assumption on {I}"},,—0 1 is its stochastic independence of the observa-
tions, we omit sup-index s hereinafter. Because the maximum of sum is at most the sum of
maxima, we deal with the first order and second order terms separately. By Lemma 2.2 in
Van der Vaart et al. (2006), we further have the following bounds for the first order term,

{W > (#las ol — P {olasamr. ) })

IP)O

1.
ke{1,2,3},a,a/ €,
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X }P’l{qﬁ(a; oz_k,o/ﬂc)} — e\/nT[IP’l{qﬁ(a; a_, aﬁrk)}]z}]

16
<P (1(/1/2) log{1 + (rarars) (7“27“5)2(T17"4)2}><
n

[H¢(a; s oy )P g, o ) Hloo

max
ke{1,2,3},a,0/, , €

+(3P1[¢(“;“k’a;mﬂ{qs(a;ak,a;k>}122<1q><1 + 6)(2(1))1/1)

nll—l/q

0P {g(aap, o, ) | P =)

and

2(1 +€
" Le{l,z,:’{?gi;kem{ - [(er)\/m zz: <¢(a; i, olyy)i — P (s o azr’f)i}) X
P {p(a;ap, )} + 6\/771[P1{¢(O‘;a—kval+k)}]2}] < (),

where the maximum is taken over sets that fixes oy as a and varies o/, for k € {1,2,3}.
Thus, PO{R® (&™)} is further bounded by

P{RM (aM)}
< (1+ 2¢)P° (ml?x[lpl{qﬁ(a(l);a(f,l,om)}]z) + \/2771(1)
+P° [max 1;% ‘ Z (qj(a(l); a(f,l, agr)i — PHo(aW; a(,ll)g, 0'z+k)z'}> X

Z?J

<¢(a(1);a(_1,)f,d+k) —P{o(aW;al) asp); }>
SEEES (066, @i~ Bo(a: 6% a4} )

n -
1 Z7J

(o616, da); - P i) } |

Following Lemmas 4 and 5 of Cui and Tchetgen Tchetgen (2021), the U-statistics are
bounded and we have the following excess risk bound,

PURM (@)}
< (1+ QG)PO(m’?X[Pl{qb(Oz(I); Oé(j;ia d—Hc)HQ)

+(1+ e)C{ <27”i\24 log <1 n M(T3T47“5)2(27'2r5)2(r17a4)2)>1/2

1
M(T3T4T5)2 (7"27”5)2(7“17"4)2 >
2

2M
+ —log <1 +
ni
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AM3/2 M 2 2 2
i log?/2 <1+ (r3rars) (;"27"5) (r1ra) +D0> N
ny

AM?
5 log? <1 +
ny

M(T3T47‘5)2(;“27“5)2(7”17‘4)2 4 D1> }

16(1 + ¢
+p° g log{1 + (r3r4r5)2(r27"5)2(r1r4)2}><
njlt/q 1/2

[|(0; oy oy )P {05 i, @) Hloo
nll—l/q

max
k6{1,2,3},a,a’+kepfk

i <3P1 [(a; a_y, aﬁrk)IP’l {gb(a; a_p, O/+k) }]22(1—q) (1+ 5)(2—q) ) l/q:|
EIF{6(as @y, o) HP |

where C, M, Dy, and D; are some universal constants. Finally, recall that for the term
(14 20P° (max{P' {p(aV; 0, 4 ) }?),

dipp is chosen corresponding to a(!) under measure PL. It is further bounded by (1 +
26)P{RM (aM)}, where a4y, is chosen corresponding to o' under true measure P'. This
completes the proof for the risk bound of the minimax estimator &), Although details are
omitted, the proof for the risk bound of the mixed minimax estimator &) is essentially the
same.

Appendix B.

For binary treatment, the baseline risk &,(X,U) = po(X, U) and the risk difference 02(X) =
p1(X,U) — po(X,U) are variation dependent, where p,(X,U) := P(A = 1|Z = 2, X,U).
Richardson et al. (2017) showed that the log odds product

pO(Xv U)pl (X7 U)
{1 = po(X, U)H{1 = po(X,U)}]"
is variation independent of wo(X) := arctanh{f2(X)}, which yields the appropriate lin-

ear structural model P(A = 1|Z, X,U;wi,wz) = 02(X;w2)Z + & (X, U;wi,ws) for binary
treatment in (4), where

wi(X,U) :=log

02(X;we) = tanh{ws(X)};

evt (2 — 62) + 0y — \/{ewl (92 — 2) — 92}2 + 46""1(1 — (92)(1 — 6""1)
2(ewr — 1) ‘

(X, Uswi,wa) =
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Appendix C.

Algorithm 1: Selective machine learning algorithm to estimate the average treat-
ment effect with an invalid instrumental variable

Input: Dataset O = {Oy,...,0,} and H?:1 r; candidate learners
for s=1to S do
In the training dataset O%:
Construct the estimators 7(«; s) for all
ac o = {(o,0,a3,a,a5):1 <a; <r;forj=1,..,5};
4 In the validation dataset O'%:
foreach o* € &/ do
Evaluate Pi{¢s(a"; o, ayp)} and PH{og (o ), a0, aqp)}, for all
g, oy € = {(ag)jes, 1 <aj <rj}and k€ {1,2,3}

[ S

7 end
8 end
9 foreach o* € &/ do
10 Average the perturbations over the S splits to obtain
A 1<
A(l)(a*;a+k) =3 ;[P;{és(a*;a*—kvaka)HQ
and
R S
A(2)(Oé Oé+k,0(+k Z]P) {d)s a kva—Hcva k7a+k)}]27

for all ayp, o\, € o = {(e))je, : 1 <oy <rj}and k € {1,2,3};
11 Evaluate

AY(@*) = max AD o«
D(an) = max AV(a%a)
and R )
A" = max  AP(aag,aly),

a+k,a’+k€£/k
for all k € {1,2,3};
12 Evaluate the empirical pseudo-risks ﬁ(l)(a*) = maxge(1 2,3} KS)(Q*) and

R(Q( ) = Zkl ( );

13 end
14 Select the minimizers @) = arg min,, ﬁ(l)(a) and 4 = argmin, R () as our
nuisance parameter learners, and obtain the selective machine learning estimators
~(1) S S A
30, = L8, Plpun(i(a: )} and 52 = 4 5, PHea(i(a?): )
15 return (d( ), 41 )) (d( ) A(z))
» Ysmil ) 7 » Vsmi
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