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Abstract
An acyclic model, often depicted as a directed acyclic graph (DAG), has been widely employed
to represent directional causal relations among collected nodes. In this article, we propose an
efficient method to learn linear non-Gaussian DAG in high dimensional cases, where the noises
can be of any continuous non-Gaussian distribution. The proposed method leverages the concept
of topological layer to facilitate the DAG learning, and its theoretical justification in terms of exact
DAG recovery is also established under mild conditions. Particularly, we show that the topological
layers can be exactly reconstructed in a bottom-up fashion, and the parent-child relations among
nodes can also be consistently established. The established asymptotic DAG recovery is in sharp
contrast to that of many existing learning methods assuming parental faithfulness or ordered noise
variances. The advantage of the proposed method is also supported by the numerical comparison
against some popular competitors in various simulated examples as well as a real application on
the global spread of COVID-19.

Keywords: Causal inference, DAG, non-Gaussian noise, structural equation model, topological
layer

1. Introduction

A directed acyclic graph (DAG) provides an elegant way to represent directional or causal structures
among collected nodes, which finds applications in a broad variety of domains, including genetics
(Sachs et al., 2005), finance (Sanford and Moosa, 2012) and social science (Newey et al., 1999).
In recent years, learning the DAG structures from observed data has attracted tremendous attention
from both academia and industries.
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In literature, various structure learning methods have been proposed to recover the Markov
equivalence class (Spirtes et al., 2000; Peters et al., 2017) of a DAG, which can be roughly cat-
egorized into three classes. The first class is the constraint-based method (Spirtes et al., 2000;
Kalisch and Bühlmann, 2007), which uses some local conditional independence criterion to test
pairwise causal relations. The second class, referred as the score-based method (Chickering, 2002;
Zheng et al., 2018; Yuan et al., 2019), attempts to optimize some goodness-of-fit measures among
the possible graph space. The last class (Tsamardinos et al., 2006; Nandy et al., 2018) combines
the constraint-based method and score-based method. Although success has been widely reported,
most aforementioned methods can only recover the Markov equivalence class and their computa-
tional burden remains a severe bottleneck. Recently, substantial effort has been made to pursuit
exact DAG recovery. For instances, Peters and Bühlmann (2014) shows that a linear Gaussian DAG
is identifiable under the equal noise variance assumption, and Ghoshal and Honorio (2018) and Park
(2020) relax the Gaussianity assumption but still require an explicit order among noise variances.
Along this line, many learning methods are proposed to recover the exact DAG structure (Ghoshal
and Honorio, 2018; Chen et al., 2019; Yuan et al., 2019; Li et al., 2020; Park, 2020), yet these
assumptions of Gaussianity or ordered noise variances are often difficult to verify in practice.

Linear non-Gaussian DAG, also known as linear non-Gaussian acyclic model (LiNGAM; Shimizu
et al. 2006), relaxes the Gaussianity assumption, and its identifiability does not require any addi-
tional noise variance assumption. It is clear that linear non-Gaussian DAG can accommodate more
flexible distributions, and thus has attracted tremendous interests in recent years (Shimizu et al.,
2006; Hoyer et al., 2008; Entner and Hoyer, 2010; Shimizu et al., 2011; Hyvarinen and Smith,
2013; Tashiro et al., 2014; Wang and Drton, 2020). Specifically, Shimizu et al. (2006) proposes an
iterative search algorithm to recover the causal ordering of a linear non-Gaussian DAG by using
linear independent component analysis (ICA) and permutation. Subsequently, Shimizu et al. (2011)
proposes a multiple-step algorithm to learn a linear non-Gaussian DAG by some pairwise statistics,
which is further extended in Hyvarinen and Smith (2013) to iteratively identify pairwise causal or-
dering by likelihood ratio tests. These methods often require heavy computational cost, which may
lead to practical difficulties even when dealing with a medium-sized DAG. Most recently, Wang
and Drton (2020) proposes a modified direct learning algorithm for a linear non-Gaussian DAG in
high dimensional cases with theoretical guarantee, which sequentially recovers the causal ordering
with a moment-based criterion and reconstructs the directed structure with hard-thresholding. Yet,
it requires the parental faithfulness condition and its computational complexity is of exponential
order of the maximum in-degree. It is worthy pointing out that some most recent methods (Ghoshal
and Honorio, 2018; Park et al., 2021) can also be used to learn linear non-Gaussian DAG under
high dimensional settings, yet their numerical performance and theoretical justification highly rely
on the validity of the required ordered noise variance assumption.

In this paper, we propose a method to learn a linear non-Gaussian DAG with a large number
of nodes, by leveraging the concept of topological layer to facilitate efficient DAG learning. It as-
sures that any DAG can be reformulated into a unique topological structure with T layers, where
the parents of a node must belong to its upper layers, and thus acyclicity is naturally guaranteed.
More importantly, we show that the topological layers can be exactly reconstructed via precision
matrix estimation and independence testing procedure in a bottom-up fashion, and the parent-child
relations can be directly obtained from the estimated precision matrix. These results are obtained
without requiring the popular faithfulness (Uhler et al., 2013; Peters et al., 2017), parental faith-
fulness assumption (Wang and Drton, 2020) or the ordered noise variance assumption (Ghoshal
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and Honorio, 2018). The constructive proof also motivates an efficient learning algorithm for the
proposed method, whose complexity is much smaller than most existing linear non-Gaussian DAG
learning methods (Shimizu et al., 2006, 2011; Wang and Drton, 2020).

The main contribution of this paper is the development of an efficient method to learn linear
non-Gaussian DAG in high dimensional cases, and the investigation on its statistical guarantee in
terms of exact DAG recovery. More precisely, we show that the topological layers of the DAG
can be exactly reconstructed in Theorem 1 and Corollary 1, and the parent-child relations can be
directly recovered along with the topological layers in Corollary 2. We connect learning method and
precision matrix estimation by proving that the topological layers can be exactly reconstructed via
precision matrix estimations in a bottom-up fashion, and the parent-child relations can be obtained
directly from the obtained precision matrix. The statistical guarantees of the proposed method
by using graphical Lasso and distance covariance measure is established with sub-Gaussian and
(4m)-th bounded moment noise distributions, respectively. The established consistency results are
governed by the sample size, the number of nodes, the maximum cardinality of Markov blankets
(Peters et al., 2017) and the number of topological layers. Most interestingly, the obtained results
allow the number of nodes, the maximum cardinality of Markov blankets and the number of layers to
diverge with the sample size at some fast rate, which is particularly attractive in a high-dimensional
learning method. We want to also emphasize that the proposed method differs from most existing
LiNGAM algorithms (Shimizu et al., 2006, 2011; Hyvarinen and Smith, 2013; Wang and Drton,
2020) and some very recent works on linear structural equation models (Ghoshal and Honorio,
2018; Park, 2020; Park et al., 2021), which are mostly algorithm-based (Shimizu et al., 2006, 2011;
Hyvarinen and Smith, 2013), or requires the parental faithfulness assumption (Wang and Drton,
2020) or the ordered noise variance condition (Ghoshal and Honorio, 2018; Park, 2020; Park et al.,
2021) for establishing DAG recovery consistency, not to mention that many of them may suffer
from heavy computational cost even when dealing with a medium-sized DAG .

The rest of this paper is organized as follows. Section 2 introduces some background of lin-
ear non-Gaussian DAG. Section 3 introduces the concept of topological layers and shows that the
topological layers and the parent-child relations can be exactly reconstructed in a bottom-up fashion.
Section 4 provides an efficient learning algorithm for linear non-Gaussian DAG in high dimensional
cases, and Section 5 establishes the reconstruction consistency of the proposed method under mild
conditions. Section 6 compares the proposed method with some existing competitors in terms of
their computational complexity and theoretical guarantees. Numerical experiments on several sim-
ulated examples and one real application to the spread of COVID-19 are conducted in Section 7.
Section 8 contains a brief discussion, and all the technical details are provided in Appendix.

2. Preambles

Consider a DAG G = {N , E}, encoding the joint distribution P (x) of x = (x1, ..., xp)
T ∈ Rp,

where N = {1, . . . , p} consists of a set of nodes associated with each coordinate of x, and E ⊂
N ×N consists of all the directed edges among the nodes. The directed edge from node j to node
k is denoted as j → k, indicating their parent-child relationship. For simplicity, we denote node k’s
parents as pak, its children as chk, its descendants as dek, its non-descendants as ndk, and its Markov
blanket as mbk = pak∪chk∪{i ∈ paj\{k}|j ∈ chk}. It is also assumed that G satisfies the Markov
property (Spirtes et al., 2000), and thus P (x) can be factorized as P (x) =

∏p
k=1 P (xk|xpak),

where xpak = {xj : j ∈ pak}.
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Once each node xk is centered with mean zero, the graph structure in G can be embedded into a
linear structural equation model (SEM),

xk =
∑
j∈pak

βkjxj + εk; k = 1, ..., p, (1)

where βkj 6= 0 for any j ∈ pak, εk denotes a continuous non-Gaussian noise with variance σ2k,
and εl ⊥⊥ εk for any l 6= k. This independent noise condition further implies that εk ⊥⊥ xl for any
l /∈ dek ∪ {k}. It is also often assumed that there is no unobserved confounding effect among the
observed nodes in G, which is known as the casual sufficiency condition in literature (Spirtes et al.,
2000).

Note that the SEM model in (1) can be organized into a matrix form

x = B x +ε,

where B = (βkj)k,j ∈ Rp×p and ε = (ε1, ..., εp)
T is the noise vector with covariance matrix

Ω = diag{σ21, ..., σ2p}. Simple algebra yields that

x = (I−B)−1ε = Aε, (2)

and xk =
∑p

j=1 akjεj , where akj is the (k, j)-th element of A = (I−B)−1, representing the total
effect of xj on xk. The SEM model implies that εj ⊥⊥ xk and thus akj = 0 for any node j ∈
dek. Moreover, the covariance matrix of x is Σ = (I−B)−1Ω(I−B)−T , and the corresponding
precision matrix is Θ = Σ−1 = (I−B)TΩ−1(I−B). In the sequel, we use Θlk to denote the
(l, k)-th element of Θ, and Θ−ll to denote the l-th column of Θ without Θll.

3. Topological layers

In this section, we introduce the concept of topological layer, which allows us to convert a DAG into
a unique topological structure. Particularly, given a DAG G, we construct its topological structure
by assigning each node to one and only one layer, based on its longest distance to one of the leaf
nodes.

Without loss of generality, we assume G has a total of T layers, and At denotes all the nodes
contained in the t-th layer, for t = 0, . . . , T −1. It is clear that ∪T−1t=0 At = N , and all the leaf nodes
and isolated nodes in G belong to the lowest layer A0. For each node k ∈ At, it follows from the
layer construction that pak ⊂ St+1 = ∪T−1d=t+1Ad, and thus acyclicity is automatically guaranteed.
Note that S0 = N . Figure 1 illustrates a toy DAG in the left panel, and its converted topological
structure with three layers in the right panel.

In Figure 1, node 4 is an isolated node and node 3 has no child node, and thus they both belong
to A0. Node 3 has two parent nodes, where node 2 belongs to A1 but node 1 belongs to A2 due
to the existence of a longer path 1 → 2 → 3. It is clear that the concept of topological layer is
general and it can restructure any DAG in such a way that causal ordering among each layers is
uniquely determined. This is in sharp contrast to the idea of causal ordering in literature (Shimizu
et al., 2006, 2011; Wang and Drton, 2020), which only requires that each node is ranked behind its
parents. For the toy DAG in Figure 1, it induces multiple possible causal orderings among the four
nodes, such as 1 → 2 → 3 → 4, 1 → 2 → 4 → 3, 1 → 4 → 2 → 3, or 4 → 1 → 2 → 3. This
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Figure 1: A toy DAG and its topological structure with three layers.

indeterministic causal ordering may cause unnecessary estimation instability and computational
inefficiency in reconstructing the DAG structures.

The concept of topological layer has been considered in recent literature (Gao et al., 2020; Zhou
et al., 2022). Both works define the layers in a top-down fashion based on the longest distances
to the root nodes, but the topological layers in this paper is constructed in a bottom-up fashion
motivated by the theoretical findings on linear non-Gaussian DAG in Section 3.1. Particularly, this
bottom-up layer structure motivates us to develop a new learning method for the linear non-Gaussian
DAG, which connects DAG learning with precision matrix estimation and leads to sound theoretical
justification.

3.1 Reconstruction of linear non-Gaussian DAG

To be self-contained, we first restate the Darmois-Skitovitch theorem (Darmois, 1953; Skitovitch,
1953), which is crucial for the reconstruction of topological layers of a linear non-Gaussian DAG.

Lemma 1 (Darmois-Skitovitch, 1953) Define two random variables u1 and u2 as linear com-
binations of independent random variables si, i = 1, ...,m, that u1 =

∑m
i=1 c1,isi and u2 =∑m

i=1 c2,isi. Then, if u1 and u2 are independent, all variables si with c1,ic2,i 6= 0 are Gaussian
distributed.

Lemma 1 shows that if si’s are non-Gaussian distributed, it is impossible to construct two in-
dependent linear combinations of si’s. This fact motivates us to use independence test to identify
nodes in each layers in a bottom-up fashion.

Theorem 1 Suppose that x = (x1, .., xp)
T ∈ Rp is generated from the linear SEM model in (1)

with precision matrix Θ. For any l ∈ N , we regress xl on all other nodes xN\{l}, and denote the

expected residual as el,N = xl − xTN\{l}M
(l)
N , where M

(l)
N = −Θ−ll/Θll. Then, we have l ∈ A0 if

and only if el,N ⊥⊥ xk for any k ∈ N\{l}.

Theorem 1 provides a sufficient and necessary condition to identify nodes in A0. After all the
nodes in A0 are identified, we can remove them from N and denote S1 = N \ A0. Next, we apply
a similar treatment to S1 as in Theorem 1 to identify A1, and then A2, until all nodes are assigned
to layers. Denote ΘSt as the precision matrix of xSt and ΘS0 = Θ. Further, denote [ΘSt ]lk as the
element of ΘSt corresponding to nodes l and k, and [ΘSt ]−ll as the column of Θ corresponding to
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node l without [ΘSt ]ll. Corollary 1 summarizes the reconstruction of all the topological layers for a
linear non-Gaussian DAG.

Corollary 1 Suppose that all the conditions in Theorem 1 are satisfied and the layers A0, ...,At−1
have been reconstructed. For any l ∈ St, we regress xl on xSt\{l} and denote the expected residual

as el,St = xl − xTSt\{l}M
(l)
St with M

(l)
St = −[ΘSt ]−ll/[Θ

St ]ll. Then we have l ∈ At if and only if
el,St ⊥⊥ xk for any k ∈ St\{l}.

The proof of Corollary 1 is similar to that of Theorem 1 with slight modification by replacing
N with St. The reconstruction of the topological layers follows immediately by applying Corollary
1 repeatedly in the sense of mathematical induction. Furthermore, the parent set of each node in the
DAG can be determined during the reconstruction of the topological layers as well.

Corollary 2 Suppose that all the conditions in Theorem 1 are satisfied. For any l ∈ At and k ∈
St+1, we have βlk = −[ΘSt ]lk/[Θ

St ]ll, and thus pal = {k ∈ St+1 : [ΘSt ]lk 6= 0}.

Corollary 2 follows immediately after Corollary 1, and assures that the parent-child relations
can also be sequentially reconstructed along with the topological layers. It is important to point out
that both Corollaries 1 and 2 do not require the popularly-adopted faithfulness assumption (Uhler
et al., 2013; Peters et al., 2017), the parental faithfulness assumption (Wang and Drton, 2020), or
the ordered noise variance assumption (Ghoshal and Honorio, 2018).

3.2 An illustrative example

Consider a simple linear non-Gaussian DAG generated as follows,

x1 = ε1, x2 = β21x1 + ε2, x3 = β31x1 + β32x2 + ε3, and x4 = ε4, (3)

where εl is a non-Gaussian distributed noise, and εl ⊥⊥ εk for any l 6= k. It is clear that the parental
faithfulness assumption is violated when β32β21 +β31 = 0 as illustrated in Wang and Drton (2020),
and so is the faithfulness assumption. More precisely, if β32β21 + β31 = 0, it follows from (3) that

x3 = (β32β21 + β31)ε1 + β32ε2 + ε3 = 0 + β32ε2 + ε3,

and thus x3 and x1 = ε1 are independent since ε1, ε2 and ε3 are mutually independent by the gen-
erating scheme (3). However, x3 and x1 are not d-separated in the graph, and thus the faithfulness
assumption is violated by Definition 6.33 of Peters et al. (2017). In contrast, such a linear non-
Gaussian DAG can be successfully reconstructed by the proposed criteria in Section 3.1.

Next, we show that all the layers and the parent-child relations can be exactly recovered from
the data by Theorem 1, Corollaries 1 and 2. We first regress xl on x−l and obtain the expected
residuals el,N for l = 1, . . . , 4. It is easy to see that e3,N = ε3 and e4,N = ε4, and each of them is
independent with all the other three nodes. For e1,N and e2,N , it follows from a similar treatment
as in the proof of Theorem 1 that

e1,N =
(
1−M (1)

2 β21 −M (1)
3 (β32β21 + β31)

)
ε1 − (M

(1)
2 +M

(1)
3 β32)ε2 −M (1)

3 ε3,

e2,N =
(
β21 −M (2)

1 −M (2)
3 (β32β21 + β31)

)
ε1 + (1−M (2)

3 β32)ε2 −M (2)
3 ε3,
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where M (l)
k denotes the k-th element of M

(l)
N = −Θ−ll/Θll and can be regarded as the partial

correlation between nodes k and l given all the other nodes in N . Clearly, e1,N and e2,N are not
equivalent to ε1 and ε2, but they are sufficient for the independent test to detect A0. In fact, since
Θ31 = −σ−23 β31 6= 0 and Θ32 = −σ−23 β32 6= 0, M (1)

3 and M (2)
3 are nonzero, and thus both e1,N

and e2,N are dependent with x3, leading to A0 = {3, 4} and S1 = {1, 2}. It also follows from
Corollary 2 that pa3 = {1, 2} and pa4 = ∅.

Next, we repeat the above procedure for x1 and x2, and obtain e1,S1 = (1 − M
(1)
2 β21)ε1 −

M
(1)
2 ε2 and e2,S1 = ε2. Clearly, e2,S1 is independent with x1 = ε1, whereas e1,S1 is dependent with

x2 = β21x1 + ε2 due to the fact that both e1,S1 and x2 depend on ε2 as long as M (1)
2 is nonzero.

Therefore, we have A1 = {2} and pa2 = {1} by Corollaries 1 and 2. Finally, the last remaining
node 1 is assigned to A2, and the topological layers and directed structure of the DAG in (3) are
perfectly reconstructed.

4. DAG learning algorithm

Given a sample matrix X = (x1, . . . ,xp) ∈ Rn×p with xl = (x1l, ..., xnl)
T , we first obtain the

estimated precision matrix Θ̂, and then the residual is êl,N = xl + X−lΘ̂−ll/Θ̂ll, where X−l
denotes the sample matrix without xl. To invoke Theorem 1, we proceed to test the independence
between êl,N and all the nodes in N \ {l}, and estimate A0 as

Â0 =
{
l : êl,N is tested to be independent with xk for any k ∈ N\{l}

}
.

Let Ŝ1 = N\Â0, then Corollary 2 implies that for each l ∈ Â0,

p̂al =
{
k ∈ Ŝ1 : Θ̂lk 6= 0

}
,

and β̂lk = −Θ̂lk/Θ̂ll for any k ∈ p̂al.
Suppose that the estimated layers Â0, ..., Ât−1 are obtained, we denote Ŝt = N\{∪t−1d=0Âd}

and estimate the corresponding precision matrix Θ̂Ŝt . The residuals can be computed as ê
l,Ŝt =

xl + XŜt\{l}[Θ̂
St ]−ll/[Θ̂

St ]ll for any l ∈ Ŝt, where XŜt\{l} denotes the sample matrix correspond-

ing to Ŝt\{l}. By Corollary 1, At can be estimated as

Ât =
{
l : ê

l,Ŝt is tested to be independent with xk for any k ∈ Ŝt\{l}
}
.

Let Ŝt+1 = N\{∪td=0Âd}, then Corollary 2 implies that for each l ∈ Ât,

p̂al =
{
k ∈ Ŝt+1 : [Θ̂Ŝt ]lk 6= 0

}
,

and β̂lk = −[Θ̂Ŝt ]lk/[Θ̂
Ŝt ]ll, for any k ∈ p̂al. The procedure is repeated until |Ŝt| ≤ 1, and we set

T̂ = t+ 1 and Ât = Ŝt if |Ŝt| = 1, and T̂ = t otherwise.
The details of the developed DAG learning method is summarized in Algorithm 1.
Note that the performance of the proposed method relies on the accuracy of the precision matrix

estimation in Step 2a and the independence test procedure in Step 2b. Many existing methods in
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Algorithm 1

1: Input: X ∈ Rn×p, Ŝ = {1, ..., p}, B̂ = {β̂ij}pi,j=1 = 0p×p and t = 0.

2: Repeat: until |Ŝ| ≤ 1:

a. Estimate Θ̂Ŝ and compute ê
l,Ŝ for any l ∈ Ŝ;

b. Estimate Ât =
{
l : ê

l,Ŝ ⊥⊥ xk, for any k ∈ Ŝ\{l}
}

;

c. Estimate p̂al = {k ∈ Ŝ\Ât : [Θ̂Ŝ ]kl 6= 0} and β̂lk = −[Θ̂Ŝ ]lk/[Θ̂
Ŝ ]ll for any l ∈ Ât and

k ∈ p̂al;
d. Let Ŝ = Ŝ\Ât and t← t+ 1.

3: If |Ŝ| = 1, set T̂ = t+ 1 and Ât = Ŝ; otherwise set T̂ = t.
4: Return: {Ât}T̂−1t=0 and B̂.

literature can be adopted, such as the graphical Lasso algorithm (Friedman et al., 2008; Raviku-
mar et al., 2011) or the constrained sparse estimation method (Cai et al., 2011) for precision matrix
estimation, and the Hilbert-Schmidt independence criterion (Gretton et al., 2008), the distance co-
variance measure (Székely et al., 2007; Székely and Rizzo, 2009) or the ball divergence (Pan et al.,
2018) for independence test. For illustration, we adopt the graphical Lasso algorithm and the dis-
tance covariance measure in the proposed method, which yields satisfactory performance in all the
numerical experiments in Section 7.

It is also worthy pointing out that the conditional independence test error is inevitable in practice
and may affect the numerical performance of the proposed method. Once Type I error occurs, some
nodes belonging to the current layer may be assigned to some upper layer; once Type II error occurs,
some nodes belonging to some upper layer may be assigned to the current layer. Both errors will lead
to reconstruction errors and reduce the DAG recovery accuracy. Moreover, if no node is assigned to
A0 owing to Type I error, Algorithm 1 will return a null graph. To prevent it from happening, we
may slightly modify Algorithm 1 by adaptively decreasing the significance level of the conditional
independence test.

5. Statistical guarantees

In this section, we establish asymptotic consistency of the proposed method with the graphical
Lasso and distance covariance measure in terms of exact DAG recovery. The consistency results are
established with explicit dependence on the sample size n, the number of nodes p, the maximum
cardinality of the Markov blankets d = maxl∈N |mbl| and the number of layers T . Note that the
support of Θ−ll is a subset of the Markov blanket of node l (Park et al., 2021).

For simplicity, denote σ2max = maxl∈N σ
2
l , σ2min = minl∈N σ

2
l , βmax = maxl∈N ,k∈pal |βlk|

and βmin = minl∈N ,k∈pal |βlk|. Further, denote f(n) = Ω(g(n)) if there exists a positive constant
a such that f(n) ≥ ag(n) for all sufficiently large n. The following technical assumptions are made
to establish the exact DAG recovery.

Assumption 1 There exists some constant ψ ∈ (0, 1] such that

max
t∈{0,...,T−1}

max
r∈Cct
‖ΓrCt(ΓCtCt)−1‖1 ≤ 1− ψ,
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where Γ = Σ ⊗Σ with ⊗ denoting the Kronecker product, Γ(l,k),(j,m) := Γlp+k,jp+m = ΣlkΣjm,
Ct = {(l, k) ∈ St × St : [ΘSt ]lk 6= 0} and Cct = (St × St)\Ct.

Assumption 2 For any j ∈ N , εj/σj follows a sub-Gaussian distribution with parameter γ.

Assumption 1 limits the correlation between the zero and non-zero elements in Γ, which is
analogous to the irrepresentable condition in Zhang and Yu (2006) or the incoherence condition
in Ravikumar et al. (2011). Assumption 2 characterizes the noise distribution and implies that
xj/
√

Σjj also follows a sub-Gaussian distribution with parameter γ.

Lemma 2 Suppose Assumptions 1 and 2 hold, and n = Ω(d2 log p). For any l ∈ N , there exist
some positive constants a1, a2 and τ > 4 such that with probability at least 1− a2p2−τ , there holds

∥∥∥Θ̂·l

Θ̂ll

− Θ·l
Θll

∥∥∥
2
≤ a1γ2τ1/2

√
d log p

L2
2n

, (4)

provided that the regularization parameter in estimating Θ is λn,0 ∝
√

log p/n, where L2 =
σ−2max min

{
1, ( σminσmax

)2L−11

}
with L1 = βmax(1 + dβmax).

Lemma 2 paves a bridge between the estimated precision matrix and the estimated residuals,
and plays a crucial role in establishing the consistency for the exact DAG recovery.

Assumption 3 There exists a positive constant λmax such that Λmax
(
1
nXTX

)
≤ λmax, where

Λmax(·) denotes the maximum eigenvalue of a matrix.

Assumption 4 For any t = 0, ..., T − 1, we have

max
k∈St\{l}

dcov2(el,St , xk)

{
= 0, if l ∈ At;
≥ ρ2n,t, if l ∈ St\At,

where ρ2n,t = Ω(max{d3n−1/2 log1/2(max{|St|, n}), n−η}) with 0 < η < 1
2 , and |St| denotes the

cardinality of St.

Assumption 3 is a standard regularity condition on the sample covariance matrix of X in N ,
which also regulates the sample covariance matrix of XSt since Λmax

(
1
nXT
StXSt

)
≤ Λmax

(
1
nXTX

)
for any t = 0, ..., T − 1. Assumption 4 assures that the distance covariance is sufficient in dis-
criminating nodes in At or St\At. Similar assumptions have also been employed in Kalisch and
Bühlmann (2007) and Ha et al. (2016).

Theorem 2 (Consistency of Â0) Suppose that all the assumptions in Lemma 2 and Assumptions 3
and 4 hold, and n = Ω(d6 log p). Then there exist some positive constants a3, a4, a5 and a6 such
that

P (Â0 = A0) ≥ 1− a3p4−τ − a4p2 exp{−a5n(1−2η)/3},

provided that the significance level of the independence test is set as αn = 2(1 − Φ(a6
√
nρn,0)),

where Φ(·) denotes the distribution function of N(0, 1).

9
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Theorem 2 shows that the lowest layerA0 in G can be exactly recovered by the proposed method
with properly chosen significance level αn. Note that the chosen αn depends on the lower bound
of distance covariance defined in Assumption 4, and it is clear that αn → 0 as n → ∞. Similar
choice of αn has also been employed in Kalisch and Bühlmann (2007). After reconstructing A0,
the selection consistency of the parent set for nodes in A0 can also be established, following from
the fact that minl∈A0,k∈pal |Θlk| = minl∈A0,k∈pal σ

−2
l |βlk| ≥ σ−2maxβmin and a similar treatment

in Theorem 2 of Ravikumar et al. (2011).

Corollary 3 Suppose that all the assumptions in Theorem 2 are satisfied, and n = Ω((d6 +
β−2min) log p). Then there exists some positive constant a7 such that

P
({

p̂al = pal : l ∈ Â0

}∣∣∣Â0 = A0

)
≥ 1− a7p2−τ .

Further, let Ŝ1 = N\Â0, and we apply the similar treatment on Ŝ1 to establish consistency in
estimating Â1, as well as other upper layers. In the spirit of mathematical induction, we arrive at
the following theorem on the asymptotic estimation consistency of Ĝ.

Theorem 3 (Consistency of Ĝ) Suppose that all the assumptions in Corollary 3 are satisfied, and
n = Ω

(
T 1/(τ−4)(d6 + β−2min)(log(max{p, n}))3/(1−2η)

)
. Then there holds

P (Ĝ = G) −→ 1, as n→∞,

provided that the regularization parameter in estimating ΘSt is λn,t ∝
√

log(max{|St|, n})/n.

Theorem 3 ensures that the linear non-Gaussian DAG G can be consistently recovered by the
proposed method even under the high dimensional setting. Theorem 3 can be further extended
by relaxing the sub-Gaussian noise assumption, such as a noise distribution with (4m)-th bounded
moment; that is, maxj E((εj/σj)

4m) ≤ Km for an integer m > 1 and a positive constant Km.
Note that this bounded moment assumption further implies that xj/

√
Σjj also has (4m)-th bounded

moment (Ghoshal and Honorio, 2018).

Corollary 4 Suppose that all the assumptions in Theorem 3 are satisfied, except that Assumption
2 is relaxed to a noise distribution with (4m)-th bounded moment, Assumption 4 holds with ρ2n,t =

Ω
(

max{d3n−
1
2 |St|

2
m (max{|St|, n})

τ−4
2m , n−η}

)
for some constants 4 < τ < m + 4 and 0 < η <

1
2 , and n = Ω

(
T

1
min{τ−4,2mφ−1} (d6 + β−2min)p

max{ 4
m
, 2
2mφ−1

}
(max{p, n})

τ−4
m

)
for some constant

1
2m < φ < 1

2 − η and m > 1. Then, there holds

P (Ĝ = G) −→ 1, as n→∞,

provided that λn,t ∝ |St|
2
mn−

m+4−τ
2m .

Corollary 4 establishes the asymptotic DAG recovery of the proposed method with (4m)-th
bounded moment noise distributions, which requires a relatively larger sample size compared with
that in Theorem 3. Also, it is worthy pointing out that the sample complexities in Theorem 3 and
Corollary 4 are both polynomial in d and T . Thus, under high-dimensional settings with n � p, d
and T should be relatively small indicating that the DAGs need to be relatively sparse and shallow.
More importantly, both Theorem 3 and Corollary 4 are established without assuming the parental
faithfulness assumption in Wang and Drton (2020) or the ordered noise variance assumption in
Ghoshal and Honorio (2018), indicating a more general applicability of the proposed method.

10
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6. Related work

In this section, we compare the proposed method, denoted as TL, with some existing competitors
in terms of their computational complexity and theoretical results. Specifically, we compare TL
with the direct high-dimension learning algorithm (MDirect; Wang and Drton, 2020), the pairwise
learning algorithm (Pairwise; Hyvarinen and Smith, 2013), the direct learning algorithm (Direct;
Shimizu et al., 2011), the ICA-based learning algorithm (ICA; Shimizu et al., 2006). Note that
all the afore-mentioned methods estimate the causal orderings in a top-down fashion, whereas TL
reconstructs DAG in a bottom-up fashion by leveraging of the concept of topological layer. Most
recently, following a different line of research, some works on linear structural equation models
(Ghoshal and Honorio, 2018; Park, 2020; Park et al., 2021) can also be employed to learn linear
non-Gaussian DAG under some additional ordered noise variance assumption. In particular, we
also compare TL with the bottom-up search LISTEN algorithm (Ghoshal and Honorio, 2018).

The computational complexity of TL is largely determined by the precision matrix estimation
and the independence tests in Steps 2a and 2b of Algorithm 1. The complexity of Step 2a using
graphical Lasso (Friedman et al., 2008) is of orderO

(
n|St|2+R|St|3

)
for both low and high dimen-

sional settings, where |St| denotes the cardinality of St =
∑T−1

k=t Ak and R denotes the number of
coordinate descent cycles until convergence. The computational complexity of Step 2b using the dis-
tance covariance measure (Székely et al., 2007; Huo and Székely, 2016) is of orderO(n log n|St|2).
Therefore, the computational complexity of Algorithm 1 in learning a random linear non-Gaussian
DAG with T layers is of order O

(∑T−1
t=0

(
R|St|3 + n log n|St|2

))
. Theoretically, TL does not

require the popularly-adopted faithfulness assumption (Uhler et al., 2013; Peters et al., 2017), the
parental faithfulness assumption (Wang and Drton, 2020) or the ordered noise variance assumption
(Ghoshal and Honorio, 2018) as shown in Corollaries 1 and 2, and the DAG recovery consistency
of TL, established in Theorem 3 and Corollary 4, guarantees that the linear non-Gaussian DAG can
be exactly recovered by TL with high probability under the high-dimensional setting.

MDirect is one of the most recently proposed learning methods in literature, whose computa-
tional complexity in the worst-case scenario is at least of orderO(J2(n+J)pJ+1), where J denotes
the maximum in-degree of the DAG. It is worthy pointing out that MDirect is mainly designed for
high-dimensional setting and it requires to search all the possible subset of size no more than J for
computing the determining statistic sequentially. Thus, J is suggested to be small in Wang and Dr-
ton (2020). Theoretically, MDirect requires the parental faithfulness assumption, which is weaker
than the faithfulness assumption, but is still somewhat restrictive as illustrated in Section 3.2 and
is usually difficult to verify in practice. Under the parental faithfulness condition as well as other
regularity conditions, the DAG recovery consistency is also established for MDirect in Wang and
Drton (2020).

The computational complexity of ICA is dominated by Steps 1 and 5 of Algorithm A in Shimizu
et al. (2006), and thus its order is up to O(np3 + p4). The computational complexity of Pairwise
is also of order O(np3 + p4). Moreover, the dominant computational part of Direct is the em-
ployed kernel-based independence measure, and thus its total computational complexity is of order
O(np3M2 + p4M3), where M denotes the maximal rank obtained by the applied low-rank matrix
decomposition in the kernel-based independence measure. Note that these three methods are mostly
algorithm based, and their theoretical properties remain undeveloped. These methods may also suf-
fer from heavy computational cost even when dealing with a medium-sized DAG. For example, as

11
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reported in Section 4 of Shimizu et al. (2011), the median computational time of Direct for a sparse
DAG with 500 observations and 100 nodes is up to 2.35 hours.

LISTEN recovers the causal ordering among the nodes in a bottom-up fashion. Particularly,
given the last identified node, LISTEN updates the corresponding elements in the estimated preci-
sion matrix and determines the next node by checking the smallest diagonal values of the updated
precision matrix. Its computational complexity is of order O(Lp5 + np2) for a dense DAG, where
np2 comes from computing the sample covariance matrix, Lp5 comes from the precision matrix
estimation by using CLIME (Cai et al., 2011), and L denotes the number of arithmetic operations
performed (Spielman and Teng, 2003) in CLIME. When the DAG is sparse, the computational
complexity of LISTEN can reduce to O(L(p4 + pd4) + np2), where O(Lp4) comes from solving
p linear programmings in CLIME each with complexity up to O(Lp3) (Spielman and Teng, 2003),
and O(Lpd4) comes from updating only the elements corresponding to the Markov blanket of the
last identified node in each iteration. Theoretically, under the ordered noise variance assumption
as well as other regularity conditions, the exact DAG recovery can also be established for LISTEN
(Ghoshal and Honorio, 2018).

For easy reference, we summarize the computational complexities and theoretical results men-
tioned above in the following table.

Complexity Faithfulness? Consistency
TL O

(∑T−1
t=0

(
R|St|3 + n log n|St|2

))
No X

MDirect O(J2(n+ J)pJ+1) Parental faithfulness X
ICA O(np3 + p4) No −
Direct O(np3M2 + p4M3) No −
Pairwise O(np3 + p4) No −
LISTEN O(L(p4 + pd4) + np2) No X

Table 1: A comparison summary of all competing methods. Here “−” denotes that theoretical
results including DAG recovery consistency are unavailable.

From Table 1, it is clear that TL is computationally more efficient than the other competing
methods, especially for the sparse or shallow graphs with a large number of nodes. When the DAG
is relatively sparse,R can be treated as a constant, and the computational complexity of TL becomes
O(p4 + np3 log n) in the worst-case scenario with T = p. When the DAG is a shallow hub graph
with T = 2, the computational complexity of TL becomes O(p3 +np2 log n), where the log n term
may be discarded if an alternative method of independence test (Jitkrittum et al., 2017) is employed.
It is also interesting to notice that the computational complexity of MDirect is of an exponential
order in J , and thus it may suffer from serious computational challenges when some nodes have a
relatively large number of parents. The computational complexity of LISTEN is comparable to that
of TL for the dense graphs. The computational advantage of TL is also supported by the numerical
results in Section 7. For instance, TL is the only method that can produce a reasonable estimate of
a shallow DAG graph with 1000 nodes. Detailed numerical comparisons in term of computational
complexity are also provided in Section 7.1.

Furthermore, TL and MDirect are two comparable methods in the literature of learning lin-
ear non-Gaussian DAG, with asymptotic DAG recovery consistency based on the property of non-
Gaussianality only. Particularly, Theorem 3 implies that log p in TL is allowed to diverge at order
o(n(1−2η)/3) with 0 < η < 1/2, whereas Corollary 3 in Wang and Drton (2020) shows that log p

12



LEARNING LINEAR NON-GAUSSIAN DAG

in MDirect can only diverge at order o(n1/2K) with K ≥ 3. It is clear that the order of log p in TL
can be much larger than that in MDirect, and more importantly, we want to emphasize again that
the parental faithfulness assumption in Wang and Drton (2020) is unnecessary for Theorem 3 and
Corollary 4. On the other hand, the asymptotic DAG recovery can also be established for LISTEN,
but based on a different set of assumptions on the ordered noise variances, which can be difficult to
verify in practice.

7. Numerical experiments

In this section, we examine the numerical performance of TL, and compare it against some pop-
ular learning linear non-Gaussian DAG methods, including the afore-mentioned MDirect, Pair-
wise and ICA, and some general DAG learning methods, including LISTEN, the high dimensional
constraint-based PC algorithm (PC; Kalisch and Bühlmann, 2007) and a hybrid version of max-min
hill climbing algorithm (MMHC; Tsamardinos et al., 2006). Particularly, TL adopts the graphical
Lasso algorithm with a fixed regularization parameter as suggested in Section 5, and the inde-
pendence test based on distance covariance measure. MDirect is implemented in the R package
highDLingam (Wang and Drton, 2020), both ICA and MMHC are implemented in the R package
CompareCausalNetworks, and LISTEN is implemented by slightly modifying the R pack-
age EqVarDAG. Furthermore, we implement Pairwise by using the R package causalXtreme
(Gnecco et al., 2021), and further extend it with the Lasso algorithm for DAG in high dimensional
cases, and we implement PC by using the R package pcalg (Kalisch et al., 2012), which out-
puts a partial DAG, and then we apply the treatment in Yuan et al. (2019) to convert it to a DAG
by using the pdag2dag routine in the R package pcalg. Following the same treatment as in
Kalisch and Bühlmann (2007), the significance level of independent tests in both TL and PC is set
as αn = 0.01, and the least square estimation is also applied to estimate the connection strength of
directed structures for MDirect, MMHC and PC.

The numerical performance of all the methods is evaluated in terms of estimation accuracy
of directed edges and coefficients. For the accuracy of estimated directed edges, we employ the
true positive rate (TPR) and false discovery rate (FDR) as the evaluation metric. To evaluate the
closeness of the estimated and true DAG, we report the normalized structural Hamming distance
(Tsamardinos et al., 2006), which measures the smallest number of edge insertions, deletions, and
flips to convert the estimated DAG into the truth. For overall accuracy of the estimated DAG struc-
ture, we use the Matthews correlation coefficient (MCC) as an overall evaluation metric, which is
also considered in Yuan et al. (2019). For evaluation of the coefficient estimation, we report the
relative error between the estimated adjacency matrix B̂ and the true adjacency matrix B in Frobe-
nius norm that rel-Fnorm := ‖B̂−B‖F /‖B‖F . Note that a good estimation is implied with small
values of FDR, HM and rel-Fnorm, but large values of TPR and MCC.

7.1 Simulated examples

In this section, the numerical performance of all the methods are evaluated in two simulated exam-
ples, where Example 1 considers a sparse hub graph, and Example 2 considers a scale-free graph
generated by the Barabási-Albert (BA) model.

Example 1. We consider a sparse hub graph with T = 2, A0 = {2, ..., p} and A1 = {1},
whose DAG structure is illustrated in Figure 2a. Specifically, we select the first 3d(log p)2e nodes
in A0 as children of node 1 and the remaining nodes are isolated. Moreover, we randomly draw
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the noise terms from various distributions, including uniform distribution on [−3, 3], student t dis-
tribution with 9 degree of freedom, and double exponential distribution with location parameter
0 and scale parameter

√
1.5, and the corresponding variance σ2 of these noise terms are 3, 9/7

and 3, respectively. Moreover, the coefficient of each directed edge is uniformly generated from
[−1.5,−0.5] ∪ [0.5, 1.5].

Example 2. We consider a similar data generating scheme as in Wang and Drton (2020). Specif-
ically, we start with a graph with only one node, and at each step, a node with 2 directed edges are
added to the graph. The probability of generating a directed edge from each previous node to the
newly added node is proportional to the number of neighbors of the previous node. Its DAG struc-
ture is illustrated in Figure 2b. Moreover, we generate each noise terms εk from υk×Uniform[−3, 3]
where υk ∼ Uniform[1, 2] denotes a prior parameter and is fixed for each εk, and then the corre-
sponding variance σ2k of noise term εk is 3υ2k. Moreover, the coefficient of each directed edge is
uniformly generated from [−1.5,−0.5] ∪ [0.5, 1.5].

(a) (b)

Figure 2: The topological layer of the DAG structures in Examples 1 and 2.

For each example, we repeat the data generating scheme 50 times and the averaged performance
of all the methods under the cases with (n, p) = (200, 100), (200, 200), (400, 200) and (400, 1000)
are summarized in Tables 2 and 3. Note that ICA is only designed for the low dimensional case
with p < n, and some methods do not produce any results for cases with large p in Examples 1 and
2 after more than 48 hours.

It is evident from Tables 2 and 3 that TL outperforms all the other competitors in almost all the
cases, except that it yields the second or third best TPR in the cases with (n, p) = (200, 100) and
(400, 200) in Example 2. In these two cases, Pairwise and ICA attain higher TPR, largely due to the
fact that they tend to produce very dense graphs with many false edges and thus have much higher
FDR. Note that MDirect does not perform well, possible due to its sensitivity to the data generating
scheme, and the performance of LISTEM appears less satisfactory largely due to the violation of its
required ordered noise variance assumption. It is also interesting to point out that the performance
of TL may be further improved with a finer tuning scheme, at the cost of increasing computational
cost.

To scrutinize the exact recovery rate of the proposed method, we consider the same setting
as Example 1 with noises generated from a mixed distribution, and a modified setting with noise
generated solely from a uniform distribution on [−3, 3]. Note that all the noise terms in Example
1 have (4m)-th bounded moments. For example, the noise term εk following student t distribution
with 9 degree of freedom has bounded 8-th moment that E((εk/σk)

8) = 74 < ∞. Moreover, the
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(n, p) Method TPR FDR MCC HM rel-Fnorm
(200, 100) TL 0.9923 (0.0018) 0.0015 (0.0007) 0.9953 (0.0010) 0.0001 (0.0000) 0.0861(0.0045)

MDirect 0.0498 (0.0018) 0.0132 (0.0002) 0.0032 (0.0006) 0.0475 (0.0005) 1.1212 (0.0024)
Pairwise 0.8086 (0.0194) 0.8078 (0.0046) 0.3871 (0.0095) 0.0235 (0.0003) 0.8378 (0.0085)

ICA 0.5569 (0.0049) 0.6977 (0.0020) 0.4048 (0.0029) 0.0114 (0.0001) 0.9265 (0.0013)
MMHC 0.2277 (0.0010) 0.8148 (0.0013) 0.1994 (0.0011) 0.0117 (0.0001) 0.9214 (0.0016)

PC 0.1631 (0.0012) 0.5969 (0.0049) 0.2529 (0.0023) 0.0071 (0.0000) 0.8947 (0.0013)
LISTEN 0.2791 (0.0055) 0.1738 (0.0123) 0.4774 (0.0071) 0.0051 (0.0001) 0.8337 (0.0046)

(200, 200) TL 0.9805 (0.0050) 0.0002 (0.0002) 0.9899 (0.0026) 0.0000 (0.0000) 0.0971 (0.0070)
MDirect 0.0277 (0.0011) 0.9972 (0.0001) 0.0021 (0.0003) 0.0232 (0.0002) 1.1287 (0.0028)
Pairwise 0.4559 (0.0253) 0.9348 (0.0042) 0.1666 (0.0104) 0.0195 (0.0005) 0.7793 (0.0157)

ICA ** ** ** ** **
MMHC 0.1767 (0.0009) 0.9355 (0.0004) 0.1036 (0.0006) 0.0073 (0.0000) 0.9935 (0.0018)

PC 0.1212 (0.0011) 0.8516 (0.0019) 0.1322 (0.0014) 0.0034 (0.0000) 0.9429 (0.0013)
LISTEN 0.0460 (0.0123) 0.9914 (0.0023) 0.0150 (0.0053) 0.0134 (0.0002) 1.0741 (0.0078)

(400, 200) TL 0.9979 (0.0006) 0.0000 (0.0000) 0.9980 (0.0003) 0.0000 (0.0000) 0.0537 (0.0022)
MDirect 0.0227 (0.0006) 0.9977 (0.0001) 0.0004 (0.0002) 0.0235 (0.0001) 1.1071 (0.0016)
Pairwise 0.8388 (0.0140) 0.7512 (0.0041) 0.4547 (0.0075) 0.0057 (0.0000) 0.7505 (0.0068)

ICA 0.7002 (0.0031) 0.8277 (0.0006) 0.3447 (0.0013) 0.0079 (0.0000) 0.9034 (0.0016)
MMHC ** ** ** ** **

PC ** ** ** ** **
LISTEN ** ** ** ** **

(400, 1000) TL 0.9910 (0.0057) 0.0000 (0.0000) 0.9953 (0.0030) 0.0000 (0.0000) 0.0642 (0.0068)
MDirect ** ** ** ** **
Pairwise ** ** ** ** **

ICA ** ** ** ** **
MMHC ** ** ** ** **

PC ** ** ** ** **
LISTEN ** ** ** ** **

Table 2: The averaged measures of all the methods in Example 1 together with their standard errors
in parentheses. Here ** denotes the fact that the corresponding methods are either not applicable or
take too long to produce any results.

noise term drawn from U [−3, 3] is also sub-Gaussian distributed. Following the similar analysis
in Park et al. (2021), we replicate both cases with p = 50 or 100 for 50 times, and vary n/p ∈
{2, 4, ..., 12} for the original setting and n/ log(p) ∈ {25, 50, ..., 200} for the modified setting,
respectively. The averaged exact recovery rates of the proposed method are displayed in Figure 3. It
is clear that the exact recovery rates increase with ratio n/p or n/ log(p), and eventually converge to
1 when the ratios are sufficiently large. This confirms the asymptotic consistencies of the proposed
method in Theorem 3 and Corollary 4 for a sub-Gaussian noise or a (4m)-th bounded moment
noise.

Furthermore, the averaged running times of all the competing methods in Examples 1 and 2 are
reported in Table 4. It is clear that TL has remarkable computational efficiency compared with its
competitors, especially when the underlying DAG has some shallow structure. In Example 1, the
averaged running time of TL is much shorter than the other method, and it is the only method that
can produce a reasonable estimate of a DAG with 1000 nodes. In Example 2, the averaged running
time of TL is shorter than that of MDirect and Pairwise, and comparable to that of ICA, MMHC,
PC and LISTEN.

7.2 Spread of COVID-19

We now apply TL to analyze the spread of COVID-19 based on the daily global confirmed cases
collected by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University,
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(n, p) Method TPR FDR MCC HM rel-Fnorm
(200, 100) TL 0.7113 (0.0098) 0.1379 (0.0072) 0.7788 (0.0083) 0.0080 (0.0003) 0.7518 (0.0247)

MDirect 0.1266 (0.0016) 0.9141 (0.0012) 0.0822 (0.0014) 0.0444 (0.0002) 1.1210 (0.0037)
Pairwise 0.8401 (0.0102) 0.7931 (0.0026) 0.3969 (0.0052) 0.0674 (0.0005) 0.8839 (0.0077)

ICA 0.7056 (0.0028) 0.7034 (0.0014) 0.4413 (0.0013) 0.0394 (0.0003) 0.8339 (0.0029)
MMHC 0.3027 (0.0023) 0.3421 (0.0046) 0.4391 (0.0032) 0.0170 (0.0001) 0.8882 (0.0027)

PC 0.2007 (0.0021) 0.5656 (0.0039) 0.2859 (0.0028) 0.0211 (0.0001) 0.9454 (0.0020)
LISTEN 0.3779 (0.0071) 0.2330 (0.0061) 0.5315 (0.0064) 0.0147 (0.0002) 0.8401 (0.0058)

(200, 200) TL 0.7000 (0.0092) 0.1554 (0.0043) 0.7663 (0.0066) 0.0043 (0.0001) 0.7804 (0.0303)
MDirect 0.0931 (0.0013) 0.9389 (0.0007) 0.0639 (0.0009) 0.0233 (0.0001) 1.1331 (0.0033)
Pairwise 0.6303 (0.0089) 0.8929 (0.0013) 0.2439 (0.0034) 0.0560 (0.0004) 1.2092 (0.0180)

ICA ** ** ** ** **
MMHC 0.2991 (0.0023) 0.3253 (0.0042) 0.4457 (0.0030) 0.0084 (0.0000) 0.8823 (0.0028)

PC 0.1893 (0.0023) 0.5855 (0.0044) 0.2753 (0.0032) 0.0107 (0.0000) 0.9551 (0.0020)
LISTEN 0.3097 (0.0041) 0.3146 (0.0060) 0.4571 (0.0046) 0.0083 (0.0001) 0.8912 (0.0047)

(400, 200) TL 0.7701 (0.0066) 0.1168(0.0035) 0.8227 (0.0044) 0.0033 (0.0001) 0.6969 (0.0194)
MDirect 0.0935 (0.0008) 0.9366 (0.0006) 0.0656 (0.0006) 0.0229 (0.0001) 1.1270 (0.0015)
Pairwise 0.9403 (0. 022) 0.7772 (0.0009) 0.4488 (0.0013) 0.0335 (0.0001) 0.7579 (0.0029)

ICA 0.7827 (0.0014) 0.7788 (0.0006) 0.4063 (0.0006) 0.0298 (0.0001) 0.8158 (0.0009)
MMHC 0.3229 (0.0016) 0.3364 (0.0034) 0.4592 (0.0022) 0.0084 (0.0000) 0.8752 (0.0019)

PC 0.2005 (0.0021) 0.6142 (0.0040) 0.2729 (0.0029) 0.0112 (0.0001) 0.9559 (0.0022)
LISTEN 0.5233 (0.0081) 0.1394 (0.0045) 0.6678 (0.0061) 0.0056 (0.0001) 0.7372 (0.0070)

(400, 1000) TL 0.7411 (0.0097) 0.1532 (0.0043) 0.7908 (0.0058) 0.0008 (0.0000) 0.6898 (0.0174)
MDirect 0.0500 (0.0003) 0.9652 (0.0002) 0.0394 (0.0002) 0.0047 (0.0000) 1.1410 (0.0012)
Pairwise ** ** ** ** **

ICA ** ** ** ** **
MMHC 0.2973 (0.0011) 0.3173 (0.0017) 0.4498 (0.0014) 0.0017 (0.0000) 0.8874 (0.0015)

PC 0.1575 (0.0008) 0.6838 (0.0015) 0.2220 (0.0011) 0.0024 (0.0000) 0.9794 (0.0013)
LISTEN ** ** ** ** **

Table 3: The averaged measures of all the methods in Example 2 together with their standard errors
in parentheses. Here ** denotes the fact that the corresponding methods are either not applicable or
take too long to produce any results.

(a) (4m)-th bounded moment noise (b) Sub-Gaussian noise

Figure 3: The averaged exact recovery rates of the proposed method over 50 replications and their
corresponding standard errors.

which is publicly available at https://github.com/CSSEGISandData/COVID-19. Fig-
ure 4 displays the heat maps for the global cumulative confirmed cases for countries around the
world from March 1st, 2020 to April 15th, 2020. It is clear that most confirmed cases of COVID-19
are first reported in China, Europe and Iran, then it quickly spreads to Middle East and North Amer-
ica, and finally most of the countries are affected by COVID-19, especially USA and west European
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(n, p) TL MDirect Pairwise ICA MMHC PC LISTEN
Example 1 (200, 100) 0.18 (0.01) 0.38 (0.01) 0.24 (0.0) 0.09 (0.00) 0.33 (0.02) 1.66 (0.06) 1.52 (0.03)

(200, 200) 0.26 (0.01) 4.06 (0.10) 2.00 (0.02) ** 0.59 (0.03) 4.42 (0.14) 156.77 (5.37)
(400, 200) 0.77 (0.01) 8.42 (0.08) 4.56 (0.03) 1.37 (0.01) ** ** **
(400, 1000) 11.73 (0.41) ** ** ** ** ** **

Example 2 (200, 100) 0.21 (0.01) 0.14 (0.00) 0.18 (0.00) 0.12 (0.00) 0.02 (0.00) 0.06 (0.00) 0.10 (0.01)
(200, 200) 0.33 (0.02) 0.72 (0.02) 0.89 (0.01) ** 0.08 (0.00) 0.25 (0.00) 2.05 (0.10)
(400, 200) 1.40 (0.03) 1.09 (0.02) 2.51 (0.01) 1.56 (0.02) 0.14 (0.00) 0.44 (0.01) 2.42 (0.07)
(400, 1000) 28.63 (1.23) 114.85 (2.45) ** ** 7.78 (0.07) 33.63 (0.16) **

Table 4: The averaged running times (in mins) of various methods in Examples 1 and 2 together
with their standard errors in parentheses. Here ** indicates that the corresponding methods are
either not applicable or take too long to produce any results.

countries. Interestingly, compared with other continents, countries in Africa appear to be much less
affected.

(a) March 1, 2020 (b) March 15, 2020

(c) March 30, 2020 (d) April 15, 2020

Figure 4: Heat map of the cumulative confirmed cases for countries around the world from March
1st, 2020 to April 15th, 2020.

It is interesting to note that DAG is an efficient tool to describe the spread of COVID-19, where a
directed edge indicates the virus is spread from one country to the other. Although virus-spread may
not be necessarily acyclic, DAG provides insightful information on the future infection tendency of
virus-spread among the countries. We pre-process the dataset and exclude those countries or regions
with no confirmed cases for more than 10 days during March 1st, 2020 to April 15th, 2020. This
leads to the daily confirmed cases in p = 99 countries or regions for a total of 61 days. Further,
we convert the actual number of daily confirmed cases to the percentage over all countries, and use
a 3-day moving average of the percentages as the observation for each day. We then apply TL to
estimate the DAG for the spread of COVID-19, with 99 nodes and 736 directed edges.

Figure 5 shows the top 25 hub nodes with the number of their child nodes in the estimated DAG
for the spread of COVID-19, which consists of mostly Eastern Asian and Western Asian countries,
and most European countries. This concurs with the heat map in Figure 4b that these countries
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Figure 5: Top 25 hub nodes with the number of their child nodes in the estimated DAG for the
spread of COVID-19.

Figure 6: Top 30 directed edges in the estimated DAG for the spread of COVID-19.

reported many confirmed cases in middle March, and thus are more likely to spread the virus.
Figure 6 presents 30 directed edges with largest estimated weights, showing that China, Korea, Italy
and United Kingdom are the major countries that spread the virus to others. This trend of infection
appear sensible, since these countries have more confirmed cases in early March as shown in Figure
4 and they are also closely connected to other countries due to their active economy or tourism
attractions. Moreover, many directed edges are present among European countries, largely due to
the fact that population movement and interaction in these countries are much more frequently than
others. It is also interesting to note that Figure 6 shows no directed edges point from the United
States of America and Canada to other countries, yet they are indeed hub nodes with 11 and 6 child
nodes, respectively. Given the fact that there is a surge in the number of confirmed cases in these two
countries as observed in Figure 4, one can expect the virus would spread from these two countries
to their child nodes after April, 2020.
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8. Discussion

This paper proposes an efficient method to learn linear non-Gaussian DAG in high dimensional
cases with statistical guarantees. The proposed method leverages a concept of topological layers to
facilitate DAG learning, which ensures that the parents of a node must belong to its upper layers, and
thus naturally guarantees acyclicity. To learn the DAG, its layers can be reconstructed via precision
matrix estimation and independence tests in a bottom-up fashion, and its parent-child relations can
be directly obtained from the estimated precision matrix. More importantly, the proposed method
can consistently recover the underlying DAG under more mild conditions than existing methods in
literature. Its advantages over some popular competitors are also supported by numerical experi-
ments on a variety of simulated and real-life examples.
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Appendix A. Proof for Theorem 1

Proof of Theorem 1: First, if l ∈ A0, we have el,N = εl by the SEM model in (1), and thus
el,N ⊥⊥ xk for any k ∈ N\{l}.

Next, we show that if el,N ⊥⊥ xk for any k ∈ N\{l}, then l ∈ A0. If not, denote its youngest
child as j ∈ chl such that node j belongs to the lowest layer compared with other nodes in chl, and
it follows from (1) and (2) that

xj =
∑
k∈paj

βjkxk + εj =
∑
k∈paj

βjk
(∑
d6=j

akdεd
)

+ εj =
∑
d6=j

( ∑
k∈paj

βjkakd
)
εd + εj , (5)

where the second equality follows from the fact that akj = 0 for any k ∈ paj .

The expected residual el,N can be obtained by

el,N = xl −
∑
k 6=l

M
(l)
k xk = xl −

∑
k 6=l,k 6=j

M
(l)
k xk −M

(l)
j xj , (6)

where M (l)
k denotes the k-th element of M

(l)
N = Σ−1−l,−lΣ−l,l = −Θ−l,l/Θl,l, and can be regarded

as the partial correlation between nodes k and l given all other nodes in N . Furthermore, we
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decompose each term in (6) as

xl =
∑
d6=j

aldεd,

M
(l)
j xj =

∑
d6=j

( ∑
k∈paj

M
(l)
j βlkakd

)
εd +M

(l)
j εj ,

∑
k 6=l,k 6=j

M
(l)
k xk =

∑
d6=j

(
∑

k 6=l,k 6=j
M

(l)
k akd)εd + (

∑
k 6=l,k 6=j

M
(l)
k akj)εj

=
∑
d6=j

(
∑

k 6=l,k 6=j
M

(l)
k akd)εd + (

∑
k∈ dej

M
(l)
k akj)εj ,

where the first equality follows from (2) and the fact that alj = 0 since j ∈ del, the second equality
follows from (5), and the last two equalities follow from (2), the fact that l, j /∈ dej and akj = 0 for
any k /∈ dej . Thus, (6) can be rewritten as

el,N =
∑
d6=j

(
ald −

∑
k∈paj

M
(l)
j βlkakd −

∑
k 6=l,k 6=j

M
(l)
k akd

)
εd −

(
M

(l)
j +

∑
k∈ dej

M
(l)
k akj

)
εj . (7)

where M (l)
j is nonzero due to the fact that node j is the youngest child of node l.

Now we consider two cases: (i) chj = ∅; and (ii) chj 6= ∅. For case (i), we have chj = ∅, which
implies that j ∈ A0, and thus dej = ∅. Then the coefficient of εj in (7) reduces to M (l)

j . For case
(ii), it implies that j ∈

⋃T−1
t=1 At and thus dej 6= ∅. Note that for any k ∈ dej , there holds that

nodes l and k are independent given all the other nodes including node j, due to the fact that node
j belongs to the lowest topological layer among all the nodes in chl. This immediately implies that
M

(l)
k = 0 for any k ∈ dej , and thus the coefficient of εj in (7) also reduces to M (l)

j . Therefore, (7)
reduces to

el,N =
∑
d6=j

(
ald −

∑
k∈paj

M
(l)
j βlkakd −

∑
k 6=l,k 6=j

M
(l)
k akd

)
εd −M

(l)
j εj . (8)

Putting (5) and (8) together, since el,N ⊥⊥ xj , it follows from Lemma 1 that εj must be Gaussian
distributed, which contradicts with the generating scheme of the SEM model in (1). This completes
the proof. �

Appendix B. Proof for Lemma 2

Lemma 3 Suppose that Assumptions 1 and 2 hold, and n = Ω(d2 log p), then there exist some
positive constants b1, b2 and τ > 4 such that with probability at least 1− b2p2−τ , there holds

‖Θ̂−Θ‖max ≤ b1γ2τ1/2
√

log p

n
,

provided that λn,0 ∝
√

log p/n, where ‖ · ‖max denotes the matrix max norm.
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Lemma 3 is a standard consistency result for precision matrix estimation by the graphical Lasso
algorithm Ravikumar et al. (2011), and thus its proof is omitted here.

Proof of Lemma 2: Define

D1 =
{∥∥∥Θ̂·l

Θ̂ll

− Θ·l
Θll

∥∥∥
2
≥ 4b1γ

2τ1/2

√
d log p

L2
2n

}
,

and εn = 2b1σ
2
maxγ

2τ1/2
√

log p
n . Then, P (D1) can be decomposed as

P (D1) = P
(
D1 ∩

{
σ2max min

l∈N
|Θ̂ll| ≤ 1− 1

2
εn
})

+ P
(
D1 ∩

{
σ2max min

l∈N
|Θ̂ll| ≥ 1− 1

2
εn
})

≤ P
(
σ2max min

l∈N
|Θ̂ll| ≤ 1− 1

2
εn
)

+ P
(
D1 ∩

{
σ2max min

l∈N
|Θ̂ll| ≥ 1− 1

2
εn
})

:= P1 + P2.

It then suffices to bound P1 and P2 separately. First, P1 can be bounded as

P1 = P
(
σ2max min

l∈N
|Θll + Θ̂ll −Θll| ≤ 1− 1

2
εn

)
≤ P

(
σ2max min

l∈N
Θll − σ2max max

l∈N
|Θ̂ll −Θll| ≤ 1− 1

2
εn

)
≤ P

(
‖Θ̂−Θ‖max ≥

1

2
σ−2maxεn

)
= P

(
‖Θ̂−Θ‖max ≥ b1γ2τ1/2

√
log p

n

)
≤ b2p2−τ , (9)

where the second inequality follows from the fact that minl∈N Θll = minl∈N (σ−2l +
∑

k∈chl σ
−2
k β2kl) ≥

minl∈N σ
−2
l ≥ σ

−2
max, and the last inequality follows from Lemma 3.

Next, to bound P2, we have

P2 ≤P
(
D1 ∩

{
σ2max min

l∈N
|Θ̂ll| ≥

1

2

})
≤P
(∥∥∥Θ̂−ll

Θ̂ll

− Θ−ll

Θ̂ll

∥∥∥
2
≥ 2b1γ

2τ1/2

√
d log p

L2
2n

, σ2max min
l∈N
|Θ̂ll| ≥

1

2

)
+

P
(∥∥∥Θ−ll

Θ̂ll

− Θ−ll
Θll

∥∥∥
2
≥ 2b1γ

2τ1/2

√
d log p

L2
2n

, σ2max min
l∈N
|Θ̂ll| ≥

1

2

)
:=P21 + P22

where the first inequality follows the fact that εn ≤ 1 for sufficiently large n.
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To bound P21, there holds

P21 ≤P
(∥∥Θ̂−ll −Θ−ll

∥∥
2
≥ b1σ−2maxγ2τ1/2

√
d log p

L2
2n

)
≤P
(∥∥Θ̂−ll −Θ−ll

∥∥
∞ ≥ b1σ

−2
maxγ

2τ1/2

√
log p

L2
2n

)
≤P
(∥∥Θ̂−Θ

∥∥
max
≥ b1σ−2maxγ2τ1/2

√
log p

L2
2n

)
≤P
(∥∥Θ̂−Θ

∥∥
max
≥ b1γ2τ1/2

√
log p

n

)
≤ b2p2−τ , (10)

where the second inequality follows from Theorem 1(b) in Ravikumar et al. (2011) which induces
that |Θ̂−ll−Θ−ll| has at most d non-zero elements and thus ‖Θ̂−ll−Θ−ll

∥∥
2
≤
√
d‖Θ̂−ll−Θ−ll

∥∥
∞,

and the last inequality follows from Lemma 3.
To bound P22, we first note that Θlk = −σ−2l βlk − σ−2k βkl +

∑
i∈chl∩chk σ

−2
i βilβik for any

l 6= k and thus maxl 6=k |Θlk| ≤ σ−2minβmax(1 + dβmax) = σ−2minL1. Then, there holds

P22 ≤P
(
‖Θ̂−Θ‖max ≥ 2b1

minl∈N Θll minl∈N |Θ̂ll|
maxl∈N ‖Θ−ll‖2

γ2τ1/2

√
d log p

L2
2n

, σ2max min
l∈N
|Θ̂ll| ≥

1

2

)
≤P
(
‖Θ̂−Θ‖max ≥ 2b1

minl∈N Θll minl∈N |Θ̂ll|
maxl 6=k |Θlk|

γ2τ1/2

√
log p

L2
2n

, σ2max min
l∈N
|Θ̂ll| ≥

1

2

)
≤P
(
‖Θ̂−Θ‖max ≥ b1σ−4maxσ2minL−11 γ2τ1/2

√
log p

L2
2n

)
≤P
(∥∥Θ̂−Θ

∥∥
max
≥ b1γ2τ1/2

√
log p

n

)
≤ b2p2−τ , (11)

where the second inequality follows the fact that Θ−ll has at most d non-zero elements and thus
‖Θ−ll‖2 ≤

√
d‖Θ−ll‖∞ ≤

√
dmaxl 6=k |Θlk|, and the third inequality follows from the facts that

minl∈N Θll ≥ σ−2max and maxl 6=k |Θlk| ≤ σ−2minL1.
Therefore, combining (9), (10) and (11) yields that P (D1) ≤ 3b2p

2−τ . The desired result fol-
lows immediately with a2 = 3b2. �

Appendix C. Proof for Theorem 2

Before providing necessary lemmas and proofs, we first give some notations. For each l ∈ N ,
el,N = xl + xT−l Θ−ll/Θll = xT Θ·l/Θll, el,N = X Θ·l/Θll = (e1l,N , ..., enl,N )T , and êl,N =

X Θ̂·l/Θ̂ll = (ê1l,N , ..., ênl,N )T . Furthermore, for each l ∈ N and k ∈ N\{l}, we consider the
following independence test statistic,

T (el,N , xk) =
dcov2(el,N , xk)

Ilk,2
,
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where dcov2(el,N , xk) = Ilk,1 + Ilk,2−2Ilk,3, Ilk,1 = E[|el,N −e′l,N ||xk−x′k|], Ilk,2 = E[|el,N −
e′l,N |]E[|xk − x′k|] and Ilk,3 = E

[
E[|el,N − e′l,N ||el,N ]E[|xk − x′k||xk]

]
with e′l,N and x′k denoting

an independent copy of el,N and xk, respectively. Its sample and estimated versions are

T̂ (el,N ,xk) =
d̂cov

2
(el,N ,xk)

Îlk,2
and T̂ (êl,N ,xk) =

d̂cov
2
(êl,N ,xk)

Ĩlk,2
.

Here, d̂cov
2
(el,N ,xk) = Îlk,1+Îlk,2−2Îlk,3 with Îlk,1 = 1

n2

∑n
i,j=1 |eil,N−ejl,N ||xik−xjk|, Îlk,2 =

( 1
n2

∑n
i,j=1 |eil,N − ejl,N |)(

1
n2

∑n
i,j=1 |xik − xjk|), Îlk,3 = 1

n3

∑n
i,j,h=1 |eil,N − ehl,N ||xjk − xhk|,

and d̂cov
2
(êl,N ,xk) = Ĩlk,1+ Ĩlk,2−2Ĩlk,3 with Ĩlk,1 = 1

n2

∑n
i,j=1 |êil,N− êjl,N ||xik−xjk|, Ĩlk,2 =

( 1
n2

∑n
i,j=1 |êil,N − êjl,N |)(

1
n2

∑
i,j |xik − xjk|), Ĩlk,3 = 1

n3

∑n
i,j,h=1 |êil,N − êhl,N ||xjk − xhk|.

Lemma 4 Suppose that all the assumptions in Lemma 2 and Assumption 3 are satisfied. For any
l ∈ N , with probability at least 1− a2p2−τ , there holds

1√
n
‖êl,N − el,N ‖2 ≤ a1γ2(τλmax)1/2

√
d log p

L2
2n

.

Proof of Lemma 4: Recall that el,N = X Θ·l/Θll and êl,N = X Θ̂·l/Θ̂ll, and thus

êl,N − el,N = X
(Θ̂·l

Θ̂ll

− Θ·l
Θll

)
.

Furthermore, it follows from Assumption 3 that

1√
n
‖êl,N − el,N ‖2 ≤

1√
n
‖X ‖2

∥∥∥Θ̂·l

Θ̂ll

− Θ·l
Θll

∥∥∥
2
≤ (λmax)1/2

∥∥∥Θ̂·l

Θ̂ll

− Θ·l
Θll

∥∥∥
2
.

It further implies that

P
( 1√

n
‖êl,N − el,N ‖2 ≥ a1γ2(τλmax)1/2

√
d log p

L2
2n

)
≤ P

(∥∥∥Θ̂·l

Θ̂ll

− Θ·l
Θll

∥∥∥
2
≥ a1γ2τ1/2

√
d log p

L2
2n

)
,

and then by Lemma 2, there holds

P
( 1√

n
‖êl,N − el,N ‖2 ≥ a1γ2(τλmax)1/2

√
d log p

L2
2n

)
≤ a2p2−τ .

This completes the proof. �

Lemma 5 Suppose that all the assumptions in Lemma 4 are satisfied, and n = Ω(d6 log p). Then,
for any l ∈ N and k ∈ N\{l}, there exist some positive constants b3 and b4 such that with
probability at least 1− b4p2−τ , there holds

∣∣T̂ (êl,N ,xk)− T̂ (el,N ,xk)
∣∣ ≤ b3γ2τ1/2λmax

√
L2
3d log p

L2
2n

,

where L3 = max{1, 16λmax(dL2
1(
σmax
σmin

)4 + 1)1/2}.
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Proof of Lemma 5: Note that

|Ĩlk,1 − Îlk,1| ≤
1

n2

n∑
i,j=1

|xik − xjk|
∣∣∣|êil,N − êjl,N | − |eil,N − ejl,N |∣∣∣

≤ 1

n2

n∑
i,j=1

|xik − xjk|
(
|êil,N − eil,N |+ |êjl,N − ejl,N |

)
=

2

n2

n∑
i,j=1

|xik − xjk||êil,N − eil,N |

≤ 2

n

n∑
i=1

|xik||êil,N − eil,N |+ 2
( 1

n

n∑
i=1

|xik|
)( 1

n

n∑
i=1

|êil,N − eil,N |
)

≤ 4
1√
n
‖xk‖2

1√
n
‖êl,N − el,N ‖2

≤ 4(λmax)1/2
1√
n
‖êl,N − el,N ‖2,

where the second last inequality follows from Hölder ’s inequality and Jensen’s inequality, and the
last inequality follows from the fact that 1

n‖xk‖
2
2 ≤ Λmax

(
1
nXTX

)
and Assumption 3.

Then, it follows from Lemma 4 that

P
(
|Ĩlk,1 − Îlk,1| ≥ 4a1γ

2τ1/2λmax

√
d log p

L2
2n

)
≤P
( 1√

n
‖êl,N − el,N ‖2 ≥ a1γ2(τλmax)1/2

√
d log p

L2
2n

)
≤ a2p2−τ . (12)

Following a similar treatment, there also holds

P
(
|Ĩlk,2 − Îlk,2| ≥ 4a1γ

2τ1/2λmax

√
d log p

L2
2n

)
≤ a2p2−τ , (13)

P
(
|Ĩlk,3 − Îlk,3| ≥ 4a1γ

2τ1/2λmax

√
d log p

L2
2n

)
≤ a2p2−τ . (14)

Recall that d̂cov
2
(el,N ,xk) = Îlk,1 + Îlk,2− 2Îlk,3 and d̂cov

2
(êl,N ,xk) = Ĩlk,1 + Ĩlk,2− 2Ĩlk,3,

and thus we have∣∣d̂cov
2
(êl,N ,xk)− d̂cov

2
(el,N ,xk)

∣∣ ≤ |Ĩlk,1 − Îlk,1|+ |Ĩlk,2 − Îlk,2|+ 2|Ĩlk,3 − Îlk,3|.

Therefore, combining (12), (13) and (14) yields that

P
(∣∣d̂cov

2
(êl,N ,xk)− d̂cov

2
(el,N ,xk)

∣∣ ≥ 16a1γ
2τ1/2λmax

√
d log p

L2
2n

)
≤ 3a2p

2−τ . (15)
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Next, recall that el,N = X Θ·l/Θll, then there holds

1√
n
‖el,N ‖2 ≤

1√
n
‖X ‖2 ‖Θ·l/Θll‖2 ≤ (λmax)1/2(dL2

1

(σmax
σmin

)4
+ 1)1/2,

where the last inequality follows from Assumptions 3 and the fact that minl∈N Θll ≥ σ−2max and
maxl 6=k |Θlk| ≤ σ−2minβmax(1 + dβmax) = σ−2minL1. Then, we have

|Îlk,1| =
1

n2

n∑
i,j=1

|xik − xjk||eil,N − ejl,N | ≤
1

n2

n∑
i,j=1

(|xik|+ |xjk|)(|eil,N |+ |ejl,N |)

=
2

n

n∑
i=1

|xik||eil,N |+ 2
( 1

n

n∑
i=1

|xik|
)( 1

n

n∑
j=1

|ejl,N |
)
≤ 4(λmax)1/2

1√
n
‖el,N ‖2

≤ 4λmax(dL2
1

(σmax
σmin

)4
+ 1)1/2.

where the second inequality follows from Hölder ’s inequality, Jensen’s inequality and Assumption
3 with the fact that 1

n‖xk‖
2
2 ≤ Λmax

(
1
nXTX

)
. Following a similar treatment, there also holds

|Îlk,2| ≤ 4λmax(dL2
1

(σmax
σmin

)4
+ 1)1/2 and |Îlk,3| ≤ 4λmax(dL2

1

(σmax
σmin

)4
+ 1)1/2,

Therefore, we obtain that

|d̂cov
2
(el,N ,xk)| ≤ |Îlk,1|+ |Îlk,2|+ 2|Îlk,3| ≤ 16λmax(dL2

1

(σmax
σmin

)4
+ 1)1/2. (16)

Note that it follows from (B.10) in Li et al. (2012) that Îlk,2 converges to Ilk,2 with high proba-
bility, and Ilk,2 must be a positive constant by its definition. Thus, when n is sufficiently large, there
holds true that minl 6=k Îlk,2 ≥ b5 with b5 = Ilk,2/2. Then, we denote

ξn = 8a1/b5γ
2τ1/2λmax

√
L2
3d log p

L2
2n

and define the event

D2 =
{∣∣T̂ (êl,N ,xk)− T̂ (el,N ,xk)

∣∣ ≥ b3γ2τ1/2λmax
√
L2
3d log p

L2
2n

}
,

where b3 = 16a1/b6 with b6 = b5 min{1/4, b5}.
Then, P (D2) can be decomposed as

P (D2) = P
(
D2 ∩ {Ĩlk,2 ≤ b5 −

1

2
b5ξn}

)
+ P

(
D2 ∩ {Ĩlk,2 ≥ b5 −

1

2
b5ξn}

)
≤ P

(
Ĩlk,2 ≤ b5 −

1

2
b5ξn

)
+ P

(
D2 ∩ {Ĩlk,2 ≥ b5 −

1

2
b5ξn}

)
= P3 + P4.
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To bound P3, we notice that

P3 ≤ P
(

min
l 6=k

Îlk,2 − |Ĩlk,2 − Îlk,2| ≤ b5 −
1

2
b5ξn

)
≤ P

(
|Ĩlk,2 − Îlk,2| ≥

1

2
b5ξn

)
≤ P

(
|Ĩlk,2 − Îlk,2| ≥ 4a1γ

2τ1/2λmax

√
d log p

L2
2n

)
≤ a2p2−τ , (17)

where the second inequality follows from the fact that minl 6=k Îlk,2 ≥ b5, and the last inequality
follows from (13).

Next, we turn to bound P4. Note that when n is sufficiently large, ξn ∈ (0, 1). Thus,

P4 ≤P
(
D2 ∩ {Ĩlk,2 ≥

1

2
b5}
)

≤P
(∣∣∣ d̂cov

2
(êl,N ,xk)

Ĩlk,2
−

d̂cov
2
(el,N ,xk)

Ĩlk,2

∣∣∣ ≥ 1

2
b3γ

2τ1/2λmax

√
L2
3d log p

L2
2n

, Ĩlk,2 ≥
1

2
b5

)
+

P
(∣∣∣ d̂cov

2
(el,N ,xk)

Ĩlk,2
−

d̂cov
2
(el,N ,xk)

Îlk,2

∣∣∣ ≥ 1

2
b3γ

2τ1/2λmax

√
L2
3d log p

L2
2n

, Ĩlk,2 ≥
1

2
b5

)
:=P41 + P42.

For the first term P41, there holds

P41 ≤P
(
|d̂cov

2
(êl,N ,xk)− d̂cov

2
(el,N ,xk)| ≥

1

4
b3b5γ

2τ1/2λmax

√
L2
3d log p

L2
2n

)
≤P
(∣∣d̂cov

2
(êl,N ,xk)− d̂cov

2
(el,N ,xk)

∣∣ ≥ 16a1γ
2τ1/2λmax

√
d log p

L2
2n

)
≤3a2p

2−τ . (18)

For the second term P42, there holds

P42 ≤P
(
|Ĩlk,2 − Îlk,2| ≥

1

2
b3

Ĩlk,2Îlk,2

|d̂cov
2
(el,N ,xk)|

γ2τ1/2λmax

√
L2
3d log p

L2
2n

, Ĩlk,2 ≥
1

2
b5

)

≤P
(
|Ĩlk,2 − Îlk,2| ≥

1

4
b3

b25

16λmax(dL2
1

(
σmax
σmin

)4
+ 1)1/2

γ2τ1/2λmax

√
L2
3d log p

L2
2n

)

≤P
(
|Ĩlk,2 − Îlk,2| ≥ 4a1γ

2τ1/2λmax

√
d log p

L2
2n

)
≤a2p2−τ , (19)

where the second inequality follows the facts that minl 6=k Îlk,2 ≥ b5 and (16).
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Therefore, combining (17), (18) and (19), we have

P (D2) = P
(
|T̂ (êl,N ,xk)− T̂ (el,N ,xk)

∣∣ ≥ b3γ2τ1/2λmax
√
L2
3d log p

L2
2n

)
≤ 5a2p

2−τ .

This completes the proof. �

Lemma 6 Suppose that Assumption 2 is satisfied. For any l ∈ N and k ∈ N\{l}, there exists some
positive constants b7, b8, b9 and η < 1/2 such that

P
(∣∣T̂ (el,N ,xk)− T (el,N , xk)

∣∣ ≥ b7n−η) ≤ b8 exp(−b9n(1−2η)/3).

Lemma 6 ensures that T̂ (el,N ,xk) converges to T (el,N , xk) with high probability. Its proof is
similar to Theorem 1 in Li et al. (2012), and thus omitted here.

Proof of Theorem 2: Note that the proposed method needs to conduct p(p − 1) times of indepen-
dence tests to estimate A0. Specifically, for any l ∈ N and k ∈ N\{l}, we consider the following
testing hypothesis,

Hlk,0 : el,N ⊥⊥ xk vs Hlk,1 : el,N 6⊥⊥ xk,

and denote Elk = EIlk ∪ EIIlk , where

Type I error : EIlk =
{
nT̂ (êl,N ,xk) > (Φ−1(1− α/2))2 and T (el,N , xk) = 0

}
,

Type II error : EIIlk =
{
nT̂ (êl,N ,xk) ≤ (Φ−1(1− α/2))2 and T (el,N , xk) > 0

}
.

It is clear that P (Â0 6= A0) ≤ P
(
∪l 6=k Elk

)
≤ p2 supl 6=k P

(
Elk
)
, and thus we turn to bound

P
(
Elk
)
.

By Assumption 2, it can be verfied that xk and el,N are also sub-Gaussian distributed, and
thus there must exist some positive constants b10 and b11 such that maxk∈N E|xk| ≤ b10 and
maxl∈N E|el,N | ≤ b11. Then, we set the significance level as α := αn = 2(1 − Φ(a6

√
nρn,0))

with a6 = 1√
8b10b11

, and it is clear that αn → 0 as n→∞. Thus, there holds

sup
l 6=k

P (EIlk) = sup
l 6=k

P
(
nT̂ (êl,N ,xk) > (Φ−1(1− α/2))2

)
= sup

l 6=k
P
(
|T̂ (êl,N ,xk)− T (el,N , xk)| >

1

n
(Φ−1(1− α/2))2

)
= sup

l 6=k
P
(
|T̂ (êl,N ,xk)− T (el,N , xk)| >

ρ2n,0
8b10b11

)
. (20)
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By Assumption 4 and the fact that Ilk,2 ≤ 4E|xk|E|el,N | ≤ 4b10b11, we have T (el,N , xk) =

dcov2(el,N , xk)/Ilk,2 ≥
ρ2n,0

4b10b11
if l /∈ A0, and then

sup
l 6=k

P (EIIlk ) = sup
l 6=k

P
(
nT̂ (êl,N ,xk) ≤ (Φ−1(1− α/2))2

)
≤ sup

l 6=k
P
(
|T̂ (êl,N ,xk)− T (el,N , xk)| ≥

ρ2n,0
4b10b11

− 1

n
(Φ−1(1− α/2))2

)
= sup

l 6=k
P
(
|T̂ (êl,N ,xk)− T (el,N , xk)| ≥

ρ2n,0
8b10b11

)
. (21)

Note that when n is sufficiently large, there must exist some positive constant b12 such that

b12

√
d6 log p
n ≥

√
L2
3d log p

L2
2n

, and then by Assumption 4, we have
ρ2n,0

8b10b11
≥ b3b12γ2τ1/2λmax

√
d6 log p
n +

b7n
−η ≥ b3γ2τ1/2λmax

√
L2
3d log p

L2
2n

+ b7n
−η.

It then follows from (20), (21), Lemmas 5 and 6 that

sup
l 6=k

P (Elk) ≤ sup
l 6=k

P (EIlk) + sup
l 6=k

P (EIIlk )

≤2 sup
l 6=k

P
(
|T̂ (êl,N ,xk)− T (el,N , xk)| ≥

ρ2n,0
8b10b11

)
≤2 sup

l 6=k
P
(
|T̂ (êl,N ,xk)− T̂ (el,N ,xk)| ≥ b3γ2τ1/2λmax

√
L2
3d log p

L2
2n

)
+

2 sup
l 6=k

P
(
|T̂ (el,N ,xk)− T (el,N , xk)| ≥ b7n−η

)
≤2b4p

2−τ + 2b8 exp{−b9n(1−2η)/3}.

Hence, we have

P (Â0 6= A0) ≤P
(
∪l 6=k Elk

)
≤ p2 sup

l 6=k
P
(
Elk
)
≤ 2b4p

4−τ + 2b8p
2 exp{−b9n(1−2η)/3}.

This completes the proof of Theorem 2. �

Appendix D. Proof for Theorem 3

Proof of Theorem 3: Note that

P (Ĝ 6= G) =P
(

(∪T−1t=0 {Ât 6= At}) ∪ {Ê 6= E}
)

≤P (Â0 6= A0) +
T−1∑
t=1

P (Ât 6= At|Â0 = A0, ..., Ât−1 = At−1)+

P (Ê 6= E|Â0 = A0, ..., ÂT−1 = AT−1). (22)
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By Theorem 2, we have P (Â0 = A0) ≥ 1− a3p4−τ − a4p2 exp{−a5n(1−2η)/3}. Then, it suffices
to bound P

(
Ât 6= At

∣∣∣Â0 = A0, ..., Ât−1 = At−1
)

and P (Ê 6= E|Â0 = A0, ..., ÂT−1 = AT−1),
separately.

Note that |St| can be diverging with n or just a fixed constant, and thus the proof of Theorem
2 is not applicable to St directly. Instead, for any t = 1, 2, ..., T − 1, we replace the term pτ

in Theorem 1 of Ravikumar et al. (2011) by |St|4nτ−4, and then it is can be verified that all the
required conditions in the proof of Theorem 1 of Ravikumar et al. (2011) are still satisfied if n =

Ω
(
T 1/(τ−4)(d6+β−2min)(log(max{p, n}))3/(1−2η)

)
. Thus, there must exist some positive constants

b13 and b14 such that with probability at least 1− b14|St|−2n4−τ , there holds

‖Θ̂St −ΘSt‖max ≤ b13γ2τ1/2
√

log(max{|St|, n})
n

,

provided that λn,t ∝
√

log(max{|St|, n})/n. Then, following a similar treatment as the proof of
Theorem 2 and Corollary 3, there must exist some positive constants b15, b16, b17 and b18 such that

P
(
Ât = At

∣∣∣Â0 = A0, ..., Ât−1 = At−1
)
≥ 1− b15n4−τ − b16|St|2 exp{−b17n(1−2η)/3}, (23)

P
({

p̂al = pal : l ∈ Ât
}∣∣∣Â0 = A0, ..., Ât = At

)
≥ 1− b18|St|−2n4−τ . (24)

Furthermore, to bound P (Ê 6= E|Â0 = A0, ..., ÂT−1 = AT−1), we notice that

P
(
Ê 6= E|Â0 = A0, ..., ÂT−1 = AT−1

)
≤

T−2∑
t=0

P
({

p̂al 6= pal : l ∈ Ât
}∣∣∣Â0 = A0, ..., Ât = At

)
≤ a7p2−τ + b18(T − 2)|St|−2n4−τ , (25)

where the last inequality follows from (24) and Corollary 3.
Finally, combing (23) and (25) implies that

P (Ĝ 6= G)

≤ a3p4−τ + a4p
2 exp{−a5n(1−2η)/3}+ (T − 1)

(
b15n

4−τ + b16|St|2 exp{−b17n(1−2η)/3}
)

+ a7p
2−τ + b18(T − 2)|St|−2n4−τ

≤ a3p4−τ + a7p
2−τ + b19Tn

4−τ + b20Tp
2 exp{−b21n(1−2η)/3},

where b19 = 2 max{b15, b18}, b20 = max{a4, b16} and b21 = min{a5, b17}. Thus, when n =

Ω
(
T 1/(τ−4)(d6 + β−2min)(log(max{p, n}))3/(1−2η)

)
, it is clear that P (Ĝ 6= G) → 0 as n diverges.

This completes the proof of Theorem 3. �

Appendix E. Proof for Corollary 4

Lemma 7 Suppose that Assumption 1 holds and for any j ∈ N , εj/σj has (4m)-th bounded mo-
ment. Then there exist some positive constants b22, b23 and 4 < τ < 4+m such that with probability
at least 1− b23p2−τ , there holds

‖Θ̂−Θ‖max ≤ b22

√
pτ/m

n
,
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provided that n = Ω(d2pτ/m) and λn,0 ∝
√

pτ/m

n .

Note that the assumption that for any j ∈ N , εj/σj has (4m)-th bounded moment, implies
that xj/

√
Σjj also has 4m-th bounded moment, and the detailed proof is provided in the proof of

Theorem 3 in Appendix of Ghoshal and Honorio (2018). Clearly, the condition required in Lemma
2 of Ravikumar et al. (2011) is satisfied, and Lemma 7 is a standard consistency result by Lemma
2 of Ravikumar et al. (2011) for the precision matrix estimated by with graphical Lasso. Thus, we
omit the proof of Lemma 7 here.

Lemma 8 Suppose that all the assumptions in Lemma 7 and Assumption 3 are satisfied, and n =
Ω(d6pτ/m). Then, for any l ∈ N and k ∈ N\{l}, there exist some positive constants b24 and b25
such that with probability at least 1− b25p2−τ , there holds

∣∣T̂ (êl,N ,xk)− T̂ (el,N ,xk)
∣∣ ≤ b24λmax

√
L2
3dp

τ/m

L2
2n

.

The proof of Lemma 8 can be established as that in Lemma 5 with slight modification, and thus
we omit it here.

Lemma 9 Suppose that for any j ∈ N , εj/σj has (4m)-th bounded moment. Then for any l ∈ N
and k ∈ N\{l}, there exist some positive constants b26, b27, η < 1

2 and 1
2m < φ < 1

2 − η such that

P
(∣∣T̂ (el,N ,xk)− T (el,N , xk)

∣∣ ≥ b26n−η) ≤ b27n1−2mφ.
Proof of Lemma 9: Note that the proof of Lemma 9 is similar as that of Theorem 1 in Li et al.
(2012) except that we need to replace the upper bounds in (B.5), (B.13), (A.15) of Li et al. (2012)
and modify all the relevant parts correspondingly. Specifically, to replace the upper bound in (B.5),
we notice that for 0 < φ < 1

2 − η and some positive constant b, there holds

P (|xik| ≥ bnφ/2/2) ≤ E(|xk|4m)

b4mn2mφ
,

where the inequality follows from Chebyshev’s inequality and the fact that xj also has (4m)-th
bounded moment with mean zero. Thus, the upper bound in (B.5) of Theorem 1 in Li et al. (2012)
can be modified as

P (|Î∗lk,12| > ε/2) ≤ b28n1−2mφ,

where Î∗lk,12 = 1
n(n−1)

∑
i 6=j |eil,N − ejl,N ||xik − xjk|1(|eil,N − ejl,N ||xik − xjk| > b2nφ) with

1(·) denoting the indicator function and b28 is a positive constant. Then, we use similar argument as
above to replace (B.13) and (A.15) in Theorem 1 of Li et al. (2012) and also modify all the relevant
parts correspondingly. This completes the proof. �

Proof of Corollary 4: The proof of Corollary 4 can be completed following similar arguments as
the proof in Theorem 3. Specifically, P (Â0 6= A0) and P

({
p̂al 6= pal : l ∈ Â0

}∣∣∣Â0 = A0

)
can
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be bounded by Lemmas 8 and 9, and following a similar treatment as in the proof of Theorem 2 and
Corollary 3. Thus, there exist some positive constants b29, b30 and b31 such that

P (Â0 6= A0) ≤ b29p4−τ + b30p
2n1−2mφ, (26)

P
({

p̂al 6= pal : l ∈ Â0

}∣∣∣Â0 = A0

)
≤ b31p2−τ . (27)

To bound P
(
Ât 6= At

∣∣∣Â0 = A0, ..., Ât−1 = At−1
)

, we also replace pτ in Theorem 1 of

Ravikumar et al. (2011) by |St|4nτ−4. Then, there must exist some positive constant b32 and b33
such that with probability at least 1− b33|St|−2n4−τ , there holds

‖Θ̂St −ΘSt‖max ≤ b32
|St|2/m

n(m+4−τ)/(2m)
,

provided that λn,t ∝ |St|2/mn−(m+4−τ)/(2m). Following a similar treatment as the proof of Theo-
rem 3, there must exist some positive constants b34, b35 and b36 such that

P
(
Ât 6= At

∣∣∣Â0 = A0, ..., Ât−1 = At−1
)
≤ b34n4−τ + b35|St|2n1−2mφ, (28)

P
({

p̂al 6= pal : l ∈ Ât
}∣∣∣Â0 = A0, ..., Ât = At

)
≤ b36|St|−2n4−τ . (29)

Moreover, we notice that

P
(
Ê 6= E|Â0 = A0, ..., ÂT−1 = AT−1

)
≤

T−2∑
t=0

P
({

p̂al 6= pal : l ∈ Ât
}∣∣∣Â0 = A0, ..., Ât = At

)
≤ b31p2−τ + b36(T − 2)|St|−2n4−τ , (30)

where the last inequality follows from (27) and (29).
Finally, combing (26), (28) and (30), we have

P (Ĝ 6= G)

≤ b29p4−τ + b30p
2n1−2mφ + (T − 1)

(
b34n

4−τ + b35|St|2n1−2mφ
)

+ b31p
2−τ + b36(T − 2)|St|−2n4−τ

≤ b29p4−τ + b31p
2−τ + b37Tn

4−τ + b38Tp
2n1−2mφ,

where b37 = 2 max{b34, b36} and b38 = max{b30, b35}. Thus, when n = Ω
(
T

1
min{τ−4,2mφ−1} (d6 +

β−2min)p
max{ 4

m
, 2
2mφ−1

}
(max{p, n})

τ−4
m

)
, it is clear that P (Ĝ 6= G)→ 0 as n→∞. This completes

the proof. �
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G. Székely and M. Rizzo. Brownian distance covariance. Annals of Applied Statistics, 3:1236–1265,
2009.
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