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Abstract

We study the mixing time of the Metropolis-adjusted Langevin algorithm (MALA) for
sampling from a log-smooth and strongly log-concave distribution. We establish its optimal
minimax mixing time under a warm start. Our main contribution is two-fold. First, for
a d-dimensional log-concave density with condition number x, we show that MALA with
a warm start mixes in O(mﬁ) iterations up to logarithmic factors. This improves upon
the previous work on the dependency of either the condition number s or the dimension
d. Our proof relies on comparing the leapfrog integrator with the continuous Hamiltonian
dynamics, where we establish a new concentration bound for the acceptance rate. Second,
we prove a spectral gap based mixing time lower bound for reversible MCMC algorithms
on general state spaces. We apply this lower bound result to construct a hard distribution
for which MALA requires at least Q(kv/d) steps to mix. The lower bound for MALA
matches our upper bound in terms of condition number and dimension. Finally, numerical
experiments are included to validate our theoretical results.

Keywords: Langevin algorithms, MCMC algorithms, Hamiltonian dynamics, Computa-
tional complexity, Bayesian computation

1. Introduction

Drawing random samples from a distribution is an essential challenge in various fields
such as Bayesian statistics, operations research and machine learning (Andrieu et al., 2003;
Robert and Casella, 2013). Among all the sampling methods, Markov Chain Monte Carlo
(MCMC) algorithms stand out by enabling a wide range of applications (Plummer et al.,
2003; Carpenter et al., 2017), especially for those involving high-dimensional target distri-
butions. Many Metropolis-Hastings sampling algorithms have been proposed and theoreti-
cally studied since the fundamental work of Metropolis et al. (1953) and the more general
results by Hastings (1970). Popular MCMC algorithms for sampling from continuous dis-
tributions include the Metropolized random walk (MRW) (Mengersen et al., 1996; Roberts
and Tweedie, 1996b), the Metropolis-Adjusted Langevin Algorithm (MALA) (Roberts and
Tweedie, 1996a; Roberts and Rosenthal, 1998; Roberts and Stramer, 2002) and the Hamil-
tonian Monte Carlo (HMC) (Neal et al., 2011).
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Despite the wide adoption of these MCMC algorithms, establishing the exact mixing
time of many algorithms has been challenging even in simple settings. In particular, for
the problem of sampling from log-smooth and strongly log-concave distributions (that is, d-
dimensional distributions with a density 7(-) oc e~/ () where f is L-smooth and m-strongly
convex), the optimal mixing time results were not well understood for MALA or HMC. Nev-
ertheless, the rationale behind MALA is simple: it constructs a Markov chain which is the
Euler discretization of the continuous Langevin dynamics and then applies the Metropolis-
Hastings accept-reject step to ensure convergence to the correct stationary distribution.
While the continuous Langevin dynamics is well understood (see Bakry et al. (2014)), an-
alyzing the discretization and the Metropolis-Hastings step is far from settled.

The study of mixing time on log-concave distributions is important for practice, because
these distributions often appear in statistical modeling and bad sampling outputs result in
bad statistical estimates. Typical examples of log-concave distributions in statistics include
multivariate Gaussian distributions and Bayesian logistic regression models. On the other
hand, it is a vital question to ask where the theoretical computational gap between sampling
from a distribution and optimizing for its maximum lies. To be precise, the setting of
the log-smooth and strongly log-concave distribution is closely related to the smooth and
convex optimization setting in the convex optimization literature. Observing the resolution
of optimal convergence rates for various optimization algorithms with precise upper and
lower bounds in the latter literature (Nemirovskij and Yudin, 1983; Nesterov, 2003), it is
natural to wonder how to accomplish the same for sampling algorithms. In fact, Dalalyan
(2017) was intrigued by the same question, which drove him to lay the groundwork on non-
asymptotic guarantees for sampling algorithms in high dimensional log-concave settings.
Motivated by the need in practice and the lack of theoretical understanding, in this work,
we focus on sampling from log-smooth and strongly log-concave distributions and aim to
determine the optimal mixing time for MALA.

1.1 Related work

The study of the mixing time of MALA and related algorithms started in the 80s (Parisi,
1981). And it has recently witnessed a surge on non-asymptotic analyses starting from the
work of Dalalyan (2017).

MALA is the Metropolized version of a simpler algorithm called unadjusted Langevin
algorithm (ULA). ULA can be seen as the Euler discretization of the continuous Langevin
dynamics without Metropolis-Hastings steps. The study of the mixing time of ULA pro-
vides a source of inspiration for understanding the discretization step in MALA (Parisi,
1981; Grenander and Miller, 1994; Dalalyan, 2017; Durmus and Moulines, 2017; Cheng and
Bartlett, 2018; Durmus and Moulines, 2019; Erdogdu et al., 2021). In particular, under the
same log-concave and log-smooth setting in this paper, it was first shown by Dalalyan (2017)
that ULA converges in total variation (T'V) distance in O(k?de2) steps. The follow-up work
by Durmus and Moulines (2017) extended this result by studying ULA with decreasing step
size in TV distance. Similar results for ULA were proved under Kullback-Leibler (KL) di-
vergence, 2-Wasserstein distance (Cheng and Bartlett, 2018; Durmus and Moulines, 2019),
and more recently y2-divergence Erdogdu et al. (2021).
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Higher order discretization of the continuous Langevin dynamics are also studied in the
similar setting, such as underdamped Langevin MCMC (Cheng et al., 2018a,b; Eberle et al.,
2019; Dalalyan and Riou-Durand, 2020; Ma et al., 2021), Hessian-free high-resolution Nes-
terov acceleration (Li et al., 2020) and high-order Langevin (Mou et al., 2021). Compared to
ULA, the underdamped Langevin MCMC achieves € error tolerance with better dimension
dependency and error dependency, as shown in Cheng et al. (2018b) where they derived
a bound of order O(m~1/2k2d"/2¢1) in 2-Wasserstein distance. This condition number
dependency was further improved in Dalalyan and Riou-Durand (2020). It is worth noting
that Ma et al. (2021) interpreted the underdamped Langevin MCMC as a Nesterov accel-
eration in KL divergence, explaining its faster convergence rate when compared to ULA.
However, one limitation of employing unadjusted sampling algorithms is the polynomial
dependence of their mixing time on e~!, which can lead to impractical run times when high
quality samples are required. Additionally, the resulting ergodic averages are asymptotically
biased, which makes it difficult to choose a stopping time in practice.

Introduced by Besag (1994), the Metropolis-Hastings step in MALA ensures that the
Markov chain has the correct stationary distribution. The exponential convergence of
Langevin diffusion and its discretization with Metropolis-Hastings was first established
by Roberts and Tweedie (1996a). This result highlights the convergence difference be-
tween unadjusted and Metropolis-Hastings-adjusted sampling algorithms. In a follow-up
work, Roberts and Rosenthal (1998) studied the mixing time of MALA from an asymp-
totic viewpoint under high order smoothness assumptions. Non-asymptotic mixing time
bounds of MALA were later established in Bou-Rabee and Hairer (2013) with implicit
dimension d and error dependency. More recently, in Dwivedi et al. (2019); Chen et al.
(2020), an non-asymptotic mixing time upper bound for MALA was derived in the log-
concave sampling setting with a logarithmic dependency on €. Specifically, they show
that the MALA mixing time with an appropriate step-size choice is bounded from above
by O (max {m3/2d1/2, kd} -log(e™!)) under either a warm start or a Gaussian initialization.
A warm start is an initial distribution where maximal ratio between the initial distribution
and target distribution is bounded by a constant; see Section 2.1 for a formal definition.

This bound is further improved in Lee et al. (2020). They showed that from a Gaussian
start, the MALA mixing time is upper bounded by O(Iid) with a log-polynomial dependency
on €~ !, using a better log-smooth gradient concentration inequality. Mangoubi and Vishnoi
(2019) showed that it is possible to obtained a better dimension dependency of order O(d?/?)
if additional assumptions on higher order smoothness of f are imposed. Later Chewi et al.
(2021) showed in the log-smooth and strongly log-concave sampling setting that MALA
mixes in O(k%/2d"/?) steps from a warm start, which provides the state-of-the-art dimension
dependency for the MALA mixing time. After observing these upper bounds, it is natural
to ask whether it is possible to establish a mixing time upper bound which shares the best
condition number and dimension dependency of all.

Other than studying the mixing time upper bound directly, the best way to refute
the possibility of a certain upper bound is to establish mixing time lower bounds. For
Markov chains in discrete spaces, there are well-established generic techniques for mixing
time lower bounds, such as geometric lower bounds, spectral lower bounds and log-Sobolev
lower bounds (Borgs, 2003; Wilson, 2004; Montenegro, 2006; Diaconis and Saloff-Coste,
1996); see Section 5 of Montenegro and Tetali (2006) and Section 7 of Levin and Peres
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(2017) for more details. For general state spaces, although some results in discrete spaces
can be directly extended to general state spaces, the lower bound literature is relatively
more disorganized. For example, lower bounds have been established using diverse proof
techniques for MCMC with parallel and simulated tempering (Woodard et al., 2009) and
adaptive MCMC methods (Schmidler and Woodard, 2011). As for MALA, mixing time
lower bounds are typically obtained from considering hard log-smooth and strongly log-
concave distributions. Chewi et al. (2021) took an indirect approach to argue the tightness of
their mixing time upper bound. Instead of establishing a mixing time lower bound directly,
they constructed an adversarial target distribution and showed that its spectral gap upper
bound matches their spectral gap lower bound in terms of dimension dependency Q(dl/ 2
from a warm start. From their proof, it is not straight-forward to check whether their
condition number dependency is also tight. In the case of MALA under an exponentially-
warm start, Lee et al. (2021a) constructed a hard initialization and a hard target distribution
which resulted in a nearly-tight mixing time lower bound of order Q(Hd). It remains unclear
whether taking the smaller exponents on dimension and condition number in both bounds
result in the lower bound for MALA from a warm start.

1.2 Our contribution

This paper makes two main contributions. First, we show that under a warm start MALA
converges in O(mdl/ 2) iterations in the log-smooth and strongly log-concave setting; see
Table 1 for a detailed comparison with previous work. This bound improves upon previous
results obtained by Chewi et al. (2021), O(k%/2d'/?), in terms of dependence on . Its
linear condition number dependency also matches mixing time shown in Lee et al. (2020)
for MALA under a Gaussian start. Consequently, we sharpen both dependencies in the
upper bound O(max(x3/2d"/2, kd)) obtained by Dwivedi et al. (2019); Chen et al. (2020)
when the chain has a warm initialization.

MALA initialization =~ Mixing Time Upper Bound

Dwivedi et al. (2019)

warm / N(z*, L711,;) max{m%d%, kd}
Chen et al. (2020)
a Lee et al. i2020) N(z*, L711,) kd
© Chewi et al. (2021) warm Kk3d2
B this W0;k warm kd?

Table 1: Summary of e-mixing time in TV distance for MALA with a L-log-smooth and
m-strongly log-concave target under a warm start or a Gaussian initialization N'(z*, L™'1y),
where x* denotes the unique mode of the target density. These statements hide logarithmic
factors in d, e~ and k = L/m.

Second, we establish an explicit mixing time lower bound in y2-divergence for reversible
Markov chains in general state spaces, and apply this result to obtain a matching lower
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bound Q(kd/?) for MALA under a warm start. The lower bound proof works for reversible
Markov chains in general state spaces and can be of independent interest.

In addition to the two theoretical contributions, we also provide numerical experiments
to demonstrate the best choice of step size in terms of condition number dependency and
dimension dependency in various settings.

Organization: The remainder of the paper is organized as follows. In Section 2, we provide
background on Markov chain Monte Carlo, mixing time analysis, the set-up of log-concave
sampling and an introduction to MALA and Hamiltonian dynamics. Section 3 is devoted
to our main results on the minimax mixing time of MALA. In Section 3.1, we sketch the
proof of our upper bound by establishing a high probability bound on the acceptance rate
of MALA. In Section 3.2, we prove a spectral lower bound for general state space Markov
chains, and use this result to obtain a matching lower bound for MALA. Section 4 consists
of numerical experiments that we perform to verify the correctness of our theoretical results
for a difficult target distribution. Proofs of main theorems and lemmas are in Section 5;
the proof of other technical lemmas are deferred to appendices. Finally, we conclude our
results and discuss future directions in Section 6.

Notations: We use z; to denote the k-th obtained sample from the Markov chain. We
use [|z[|, to denote the Euclidean norm of a d-dimensional vector x, x;) to denote its i-th
coordinate, and z_; to denote the vector without the i-th coordinate. The big-O notation
O(+) and big-Omega notation §2(-) are used to denote asymptotic bounds ignoring constants.
For example, we write g1(z) = O(g2(x)) if there exists a universal constant ¢ > 0 such that
91(z) < cgo(x) when z is large enough. Adding a tilde above these notations such as O(-),
Q(-) and ©O(-) denotes asymptotic bounds ignoring logarithmic factors for all symbols. We

use poly(x) to denote a polynomial of z.

2. Background and problem set-up

In this section, we first introduce the background needed for carrying out the mixing time
analysis of Markov chains. Then we set up our theoretical framework by defining log-
smoothness, strongly log-concavity and warmness in Section 2.2. Finally, we formally intro-
duce the Metropolis-adjusted Langevin algorithm (MALA) and Hamiltonian Monte Carlo
(HMC) dynamics in Section 2.3.

2.1 Markov chain and mixing time

Consider the problem of sampling from a distribution 7 on a general state space X. A
standard class of sampling methods is to construct an irreducible and aperiodic discrete-
time Markov chain with an initial distribution pug and with 7 as its stationary distribution;
see for example, the book by Meyn and Tweedie (2012) for details. To obtain samples from
the target distribution within certain error tolerance, one simulates the chain for multiple
steps, number of which is determined by the mixing time analysis.

Let the time-homogeneous Markov chain be defined on a general state space (X', B(X))
associated with a transition kernel K : X x B(X) — Rxg, where B(X) denotes the Borel-
sigma algebra on X. The k-step transition kernel K* is defined recursively by K*(z,dy) =
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Joex K¥ ! (2,dz)K(2,dy). The Markov chain is assumed to be reversible, meaning
K(z, dy)m(dx) = K(y, dx)m(dy).

We define the expectation and the variance of a function f with respect to = as

E.[f] = / _ J@)m(dz), Vars[f) = Eolf?] - (:[1])".

In the following, we define several notions related to the mixing time analysis of a Markov
chain.

Transition Operators: We use 7 to denote the transition operator of the Markov chain
as

T()(S) = / HA)K(y.5). VS € B(X). (1)
ye

When g is the probability distribution of the current state of the Markov chain, 7 (u)
denotes the distribution at the next state of the chain. We use uo and u, to denote the
initial distribution and the n-step distribution of the Markov chain, that is, g, = 7" (uo).

Mixing Time: In this paper we consider two ways to quantify the mixing time. One is
based on the total variation (TV) distance, and the other is based on the x2-divergence. Let
i be a probability distribution. Its £,-divergence with respect to the target distribution =

is defined as
a )= ( |
TeEX

For p = 1, we get the total variation distance dv (p, 7) = d; (p, ) /2. For p = 2, da (u, )
corresponds to the y?-divergence. Note that the y2-divergence can be controlled by the total
variation distance if the two distributions have bounded ratio. Specifically, if there exists
M > 1 such that u(S)/7(S) < M for all S € B(X), we have da (u, 7r)2 < 2M - dpy (p, ).
With the £,-divergence, the £, mixing time of the Markov chain with initial distribution
1o is defined as

ﬂ(dac)) . (2a)

du P
My -1
7 (@)

ty (e, p10) = inf {n € N | dj (1in,7) < €} . (2b)
The mixing time in total variation distance is denoted by try (€, 1) similarly.

Dirichlet form: The mixing property of Markov chain is closely related to its Dirichlet
form introduced as follows. Let La(7) be the space of square integrable functions under the
density m. We define the Lo-norm on La(w) by

113, = [ 1@n(an) )
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The Dirichlet form Ex : La(m) X La(m) — R associated with the transition kernel K is given
by

Exclo.h) = [ of@)(h(@) ~ b)) K(x,dy)r(d) (1)

s-Conductance: Since it is difficult to compute the spectral gap for a specific Markov
chain, conductance is usually used as an alternative for analysis. For scalar s € (0,1/2), we
define the s-conductance as
T (S)m(d
b, = inf M (5)
r(S)e(s,1/2]  w(S) —s

In this definition, 7, is the shorthand for 7(d,), the transition distribution at x, where d,
denotes the Dirac distribution at . We have T,(-) = K(z,-) by definition.

Lazy chain: We say that a Markov chain is w-lazy if for each iteration the chain stays in
the same state with probability at least w. Since laziness only slows down the convergence
rate by a constant factor, we study 1/2-lazy Markov chains in this paper for convenience of
theoretical analysis. We use 72°"1%% 6 denote the transition distribution before applying

the lazy step. By definition, we have
1 1
To(8) = 502(8) + ST0(8), VS € B(X). (6)

2.2 Log-concave sampling under a warm start

From now on we assume X = R unless otherwise specified. A differentiable function f on
R? is said to be L-smooth and m-strongly convex if

Fl) < f@)+ V5@ —a)+ 5 e —yl}  for all 2,y € B! (7a)
and

f4) = f@) + Vi@ (y—2)+ 5 e -y} foralle,yeR (7b)
The condition number x of such function f is defined as k := L/m. For an m-strongly

convex function, its global minimum is uniquely defined. We denote the global minimum
of f by x* := argmin,cgaf(x). The target distribution 7 is said to be L-log-smooth and
m-strongly log-concave if it admits a density m(x) o exp(—f(x)), and f is L-smooth and
m-strongly convex.

Warmness: We say that the initial distribution pg is M-warm if it satisfies

sup to(S)
seB(rd) T(5)

< M. (8)

As the warmness parameter M decreases, the initial distribution is closer to the target and
the task of sampling becomes easier. For a sequence of target distributions, we say that a
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corresponding sequence of jg is constant-warm, if log(M) is a polylogarithmic function of
the condition number x and the dimension d of the target distribution. If M is exponential
in k or d, we say that pg is exponentially-warm. In this paper, when we say “a warm start”,
we refer to the case of a constant-warm initialization. One practical choice of the initial
distribution is the Gaussian initialization pg = N(z*, L7'I;) (Dwivedi et al., 2019; Lee
et al., 2020). It is exponentially-warm, as shown in Dwivedi et al. (2019) that the warmness
of this Gaussian start satisfies M < x%2. In practice, however, a (constant-)warm start is
not always available. Despite this limitation, we focus on the case of warm starts in the
interest of theoretical understanding of the MALA algorithm, and comparing mixing time
under a warm start with an exponentially-warm start in previous papers (Dwivedi et al.,

2019; Chen et al., 2020; Lee et al., 2020).

2.3 MALA and HMC dynamics

Metropolis-adjusted Langevin algorithm (MALA) was original proposed by Besag (1994)
and its properties were examined in detail by Roberts and Tweedie (1996a). Given a state
x) at the kth iteration, MALA proposes a new state yg1 ~ N (x — hV f(zx), 2hl;). Then
it decides to accept or reject yx11 using a Metropolis-Hastings correction; see Algorithm 1.
We use Q, = N(z — hV f(x),2hl;) to denote the proposal kernel of MALA at z.

Algorithm 1: Metropolis-Adjusted Langevin Algorithm (MALA)

Input: Initial point x¢ from a starting distribution pug, step size h, number of steps
n

Output: Sequence of samples z1,2o,..., T,

for k=0,1,...,n—1do

Draw from the proposal distribution yg ~ N (z, — hV f(x1), 2hl,);

3 Compute the acceptance rate

exp (= F(ge) — ok — v+ KV £ () 3 /4h)

exp (= (wr) =y — 1+ BV ()3 /4h)
Draw u ~ Unif[0, 1];
if © < oy, then
‘ Accept the proposal: xpi1 < yi;
else
‘ Reject the proposal: xg1 <+ xk;
end

N o=

Q) + min

)

© N o otk

10 end

The MALA algorithm has a close connection to the Hamiltonian Monte Carlo (HMC)
sampling algorithm from the physics literature, popularized in statistics by Neal et al.
(2011). Define the Hamiltonian function H : R x R — R as

Hg.p) = f(a) + 3l )
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The following continuous Hamiltonian dynamics describes the trajectory of (g, p;) € R xR?
for t > 0. Starting from the initial state (qo, po), the pair (g, p;) satisfies

dg _ OH

T 87p(pt’%) =Dt (10a)
dpt o oH _
% = - dq (ptaqt) = Vf(Qt)- (10b)

Note that the Hamiltonian is preserved throughout the continuous Hamiltonian dynamics
% = 0. The solution of the continuous Hamiltonian dynamics satisfies, for ¢ € [0, ],

t S
Gt = qo + tpg — / / Vf(qr)drds (11a)
0 Jo

t
pe = po— /0 V £ (qs)ds. (11b)

In practice, it is difficult to obtain an explicit formula for the solution (g, p;). To discretize
the continuous Hamiltonian dynamics, Neal et al. (2011) proposed to use the leapfrog or
Stormer-Verlet discretization, known as the Hamitonian Monte Carlo (HMC) algorithm.
Starting from (qo, po), a single leapfrog step satisfies

Puj2 =0 = 3V £(q0) (12a)
Gy = qo + NPy 2 (12b)
by = Puj2 = 3V (@): (12¢)

Mathematically, starting from an initial point ¢y = x¢ and letting po ~ N(0,1;), the
proposal of MALA is the same as ¢, in Equation (12b), where the original step size h in
MALA and the step size n in HMC are related through

1

h=-n* 13

57 (13)
With the above observation, one step of MALA can be regarded as one iteration of HMC
with a single leapfrog step. This property allows us to study the acceptance rate of MALA
via studying the acceptance rate of HMC with leapfrog discretization.

3. Main results

In this section, we state our main results on the minimax mixing time of MALA. Let
Agrm = { poce ! | f:RY— R, twice-differentiable, L-smooth and m—strongly—concovex}
denote the collection of all d-dimensional L-log-smooth and m-strongly log-concave distri-
butions. Define the minimax mizing time of MALA in total variation distance as
T(d,L,m,e, M) :=min max max tpy (€ . 14
( ’ ’ ) h>0 m€Aq, 1, m M-warm po ™ ( ’MO) ( )
This minimax definition considers the best step size that minimizes the worst time mix-
ing among all L- log-smooth and m-strongly log-concave distributions under an M-warm
initialization. Our first theorem provides an upper bound of the minimax mixing time.
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Theorem 1 Let 7 be a d-dimensional L-log-smooth and m-strongly log-concave target dis-
tribution. Define the condition number k = L/m. There exist universal constants cy, c1,ca >
0, such that for any M-warm initial distribution po and any error tolerance € € (0,1), the
e-mizing time of 1/2-lazy MALA with step size

€o

h =
Ly/dlog? (max {/{, d, %, 02})

(15)
1s bounded by

M
toy (6, o) < e1rVdlog? (max {H, d, —, cz}> . (16)
€

See Section 5.3 for the proof. It is a direct corollary of Theorem 3 which states a mixing
time upper bound assuming 7 is log-smooth and log-concave but not necessarily strongly
log-concave, and satisfies an isoperimetric inequality. The proof mainly relies on bounding
the s-conductance @ from below so that we can control drv (pn, 7). To do so, we develop
a new concentration bound on the acceptance rate of MALA in Lemma 5. By Theorem 1,
we obtain an upper bound on the minimax mixing time

M
%(d,L,ym,e, M) < c16Vdlog? (max {H,d, ,CQ}) . (17)
€

Theorem 1 provides an explicit choice for the step size h, which ensures that approx-
imately O (/idl/ 2) iterations is enough to achieve an e error tolerance in total variation
distance. This result improves previous upper bound in terms of either the condition num-
ber dependency (Chewi et al., 2021) or the dimension dependency (Dwivedi et al., 2019).
Note that recently Lee et al. (2021b) developed a reduction framework which can improve
the condition number dependency from polynomial to linear for sampling algorithms. This
technique can improve the mixing time obtained in Chewi et al. (2021) to O(kd"/?), how-
ever, the resulting algorithm will be different from the original MALA and it is not trivial
to implement the algorithm in practice.

In terms of dependencies on the error tolerance parameter € and the warmness parameter
M, the bound above may not be tight. Dwivedi et al. (2019); Chen et al. (2020) prove an
upper bound with dependency log(1/¢) and loglog(M) for all initial distributions. Under
an exponentially-warm start, additional dimension dependency will be introduced by the
log(M) term in Theorem 1, while it can be ignored under a warm start. We leave future
work to achieve better dependencies on these two parameters.

The second theorem provides a matching lower bound on the mixing time.

Theorem 2 Under the same assumptions in Theorem 1, further assume that 3 < k < a-dP
for some o, 3 > 0. There exists an integer No g > 0 such that for any d > N, g, M > 12
and € € (0,1), we have

T(d>L7TrL> €, M) > (18)

c3kVd ) g<04>’

max {log , log d}*

where c3,cq4 > 0 are universal constants.

10
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See Section 5.7 for the proof. In the proof we first establish a spectral gap based mixing
time lower bound in y2-divergence for reversible Markov chains on general state spaces.
Then we use it to analyze the mixing time for the worst-case log-concave distributions
with specifically designed warm initializations. The worst-case distributions are perturbed
Gaussian distributions adapted from Lee et al. (2020) and Chewi et al. (2021). Note that the
warmness parameter M does not appear in the lower bound, as we implicitly assume a warm
start. Chewi et al. (2021) bounded the spectral gap of the perturbed Gaussian distribution
to suggest the optimal choice of step size. However, a rigorous argument for relating the
spectral gap and the mixing time for continuous state Markov chains was missing. Note
that our lower bound result is not directly comparable to that in Lee et al. (2021a), because
they assume an exponentially-warm initialization with the warmness growing exponentially
in dimension.

The upper bound in Theorem 1 and the lower bound in Theorem 2 match perfectly
after ignoring logarithmic factors. That is, under a warm start, assuming that 3 < k =
O(poly(d)) and ignoring all logarithmic factors in d, k, M and €, these two bounds match in
terms of dimension and condition number dependency. We thus obtain a minimax mixing
time of order © (md1/2).

3.1 Mixing time upper bound

In this section we outline the key steps to obtain Theorem 1. In Section 3.1.1, we state
Theorem 3 which upper bounds the mixing time when 7 is log-concave and log-smooth, and
satisfies an isoperimetric inequality. Theorem 1 immediately follows from this theorem. In
Section 3.1.2, we analyze the acceptance rate of MALA and establish a new high probability
concentration bound for it. The new high probability concentration bound is the key to
the improved acceptance rate analysis and is also the main reason behind the improved
dimension and condition number dependency in Theorem 1.

3.1.1 MIXING TIME UPPER BOUND VIA ISOPERIMETRIC INEQUALITY

Instead of assuming the target distribution m to be both log-smooth and strongly log-
concave, we consider a more general setting where we only assume that 7 is log-smooth
and log-concave but not necessarily strongly log-concave, and 7 satisfies an isoperimet-
ric inequality. A distribution 7 in R? is said to satisfy an isoperimetric inequality with
isoperimetric constant (), if given any partition Si, Se,S3 of RY, we have

m(83) > () - D(S1,52) - w(S1)7(S2), (19)

where the distance between two sets 51, S is defined as (51, S2) = infzes, yes, |2 — Yllo-
In particular, when 7 is m-strongly log-concave, Cousins and Vempala (2014) (Theorem 4.4)
proved that 7 satisfies an isoperimetric inequality with isoperimetric constant log2 - \/m;
See also Ledoux (2001). Thus an upper bound of mixing time based on the isoperimetric
constant can be applied to strongly log-concave targets.

The following theorem provides a mixing time upper bound for MALA applied to log-
concave and L-log-smooth target distributions satisfying an isoperimetric inequality.

11
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Theorem 3 Let 7 be a d-dimensional log-concave and L-log-smooth distribution satisfying
an isoperimetric inequality with isoperimetric constant ¥ (m). There exist universal constants
co,C1,¢c2 > 0, such that for any M-warm initial distribution pog and any error tolerance
e €(0,1), the 1/2-lazy MALA with step size

Co

- L\/d - 1og? <max {d, #, %,Cg})

h (20)

has mixing time given by

toy (€, ) < ¢ - max {j(\;i -log® <max {d, zp(Lw)? Aj,czD ,log (2]6\4> } . (21

See Section 5.2 for the proof of the above theorem. Theorem 1 follows directly by
noticing that m-strongly log-concave distributions satisfy an isoperimetric inequality with
constant log 2 - /m. The proof of Theorem 1 is provided in Section 5.3.

Here we sketch the proof of Theorem 3. We follow the framework of bounding the
conductance of Markov chains to analyze mixing times (Sinclair and Jerrum, 1989; Lovéasz
and Simonovits, 1993). The basic idea is to bound the s-conductance ®g, as implied by the
following lemma in Lovéasz and Simonovits (1993).

Lemma 4 Consider a reversible 1/2-lazy Markov chain with stationary distribution © and
initial distribution pg. Let 0 < s < 1/2 and Hg := sup {|po(B) — n(B)| : m(B) < s}. Then

H o2
drv (,Umﬂ—) < Hg + ?s(l - i)na

where the s-conductance g is defined in equation (5).

Instead of bounding the conductance for all z € R, the notion of s-conductance enables
us to consider a high probability region T with good mixing behavior for analysis. Previously
in Dwivedi et al. (2019), T was defined as a convex set with bounded ||z||, such that the
gradient norm ||V f(x)]|, is small. More recently, Lee et al. (2020) considered T to be the not-
necessarily-convex region where ||V f(z)||, is small and obtained a better x dependency via
blocking conductance. To avoid issues caused by the non-convexity of T, their conductance
argument introduced additional logarithmic dependency on the error tolerance € in the final
bound. In our work, we still apply the s-conductance argument. But in our definition of T,
we require not only ||V f(x)]|, to be bounded, but also the acceptance rate of MALA to be
above some positive constant. This region Y allows us to achieve both linear x dependency
and d'/2 dimension dependency in the case of a warm start. Since our region Y is not
guaranteed to be convex as in Lee et al. (2020), we also introduce additional logarithmic
factors on € compared to Dwivedi et al. (2019) and Chen et al. (2020).

In the next section we show how we control the acceptance rate and develop a high
probability concentration bound for it.

12
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3.1.2 ACCEPTANCE RATE OF MALA

As introduced in Section 2.3, viewing MALA as a special case of HMC allows us to write
down its acceptance rate as follows

min {exp (@) 5 ol + Sao) + 3 Im) 1 (22)

Then, we use the fact that the continuous HMC dynamics conserves the Hamiltonian, that
is,

1 1
Flae) + 5 Ipell3 = F(ao) + 5 Ipoll3 . Ve > 0.

Combined with Equation (22), the MALA acceptance rate can be equivalently written as

min {exp (~f1a) = 5 190l + £(an) + 31l ) 1} (23)

The key to control the MALA acceptance rate is to control the discretization error when
each step of HMC is discretized with the leapfrog scheme. The next lemma provides a
control of the the MALA acceptance rate with high probability.

Lemma 5 Assume the negative log density f is L-smooth and convex. For any d € (0,1),
there exists a set A C RT x R with Py r pon01,)((@0,p0) € A) > 1 =6, such that for
(qo,po) € A and the step-size choice n?L < 1, we have

. 1.2 1 2
— fldy) — 5 5y ll5 + f(ay) + 3 n 15

24\ 2 . 12\ \?
> —100 (4 + log (5)) n*Ldz — 8 <\/8+ log <5>) n*L2.

where (¢n, py) are the states of HMC after one step of leapfrog discretization starting from
(g0, po) in Equation (12b) and (12c), and (qy,p,) are solutions at time 1 of the continuous
Hamiltonian dynamics starting from (qo, po) in Equation (11a), (11b).

(24)

See Section 5.1 for the proof of this lemma.

Lemma 5 establishes a high probability bound on the exponent in the acceptance rate.
If we ignore constants and logarithmic factors for now, taking n? roughly 1/ (Ldl/ 2) suffices
to keep the acceptance rate above some positive constant for any (qo,po) € A. In our proof
of Theorem 3, we construct our good region T based on set A introduced in this lemma.

3.2 Mixing time lower bound

In this section we outline the key steps to obtain the mixing time lower bound in Theorem 2.
In Section 3.2.1, we lower bound the mixing time in y2-divergence for reversible Markov
Chains on general state spaces. We show that obtaining this lower bound can be reduced to
controlling the spectral gap. In Section 3.2.2, we show that the spectral gap of MALA can
be upper bounded by considering a special perturbed Gaussian distribution. Theorem 2
then follows from these two parts.

13
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3.2.1 SPECTRAL LOWER BOUND

In this section, the state space X can be any general state space. For reversible Markov
chains on general state spaces, we establish the following lower bound on the y?-divergence
via Dirichlet form and spectral gap. Similar results appeared in previous work, see Lemma
3.1 in Goel et al. (2006), Proposition 4.2 in Coulhon et al. (2001), Proposition 4.3 in
Coulhon and Grigor’yan (1997), and remark on Page 524 in Coulhon (1996) for details.
However, most of these results make use of eigenvalues of the Markov operator, and do
not directly extend to infinite-dimensional operators. Consequently, none of these results
are directly applicable in our setting; instead we prove a new lower bound on mixing time
which combines ideas from these previous results.

Theorem 6 Let K be the kernel of a reversible Markov chain with invariant distribution
. For any initial distribution pg < m satisfying da (po, 7) < 00, let hg = dupo/dr, then we
have

_ Exalho, ho) > " (25)

dy (ftn, ™) > dg (g, )* - <1
" ds (10, )°

See Section 5.4 for the proof of this theorem. The proof is inspired by Coulhon and
Grigor’yan (1997) on lower bounds for heat kernels and Markov chains.

This lower bound has an exponential rate of convergence, and its rate depends on the
Dirichlet form of the two-step transition kernel K2. Note that dy (p0,7)* = Var[hg], so
Ex2(ho, ho)/da (1o, m)? is the spectral gap of the function ko under the two-step transition
kernel K2. The two-step transition kernel K2 can be related to the transition kernel K via
Er2(f, ) < 2Ek(f, f) (see Lemma 13). This observation allows us to obtain the following
corollary on mixing time lower bound in y2-divergence.

Corollary 7 Let K be the kernel of a reversible Markov chain with invariant distribution
m. For any € > 0 and any initial distribution py < 7w satisfying daz (no,m) < oo, let
ho = duo/dr, if the spectral gap Ex(ho,ho)/d2 (1o, m)* < 1/2, then its mizing time in
x?-divergence has a lower bound

to (€, po) > 2 (—log (1 - W>>_ log dQ(’iO’?T). (26)

Consequently, if the spectral gap Ex (ho, ho)/d2 (,uo,w)Z < 1/4, the mizing time satisfies

1

o (e pi0) > ( (27)

~1
> SK(ho,ho)> logdz(uo,ﬂ)_

ds (1o, 7)° €

See Section 5.5 for the proof.

According Corollary 7, the mixing time lower bound depends on the spectral gap of a
function hg and the logarithmic ratio between the initial y?-divergence and error tolerance.
Given an initial distribution, establishing mixing time lower bounds can be reduced to
finding a function hg such that the spectral gap is upper bounded.

14
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3.2.2 A WORST-CASE EXAMPLE

Following Corollary 7, here we construct a worst-case example where the spectral gap
can be upper bounded with tight dependency on both the condition number x and the
dimension d. Note that Lee et al. (2020) showed that Gaussian distribution has the tight
k dependency, and Chewi et al. (2021) showed that a perturbed Gaussian distribution has
the tight dimension dependency. We combine these two ideas and introduce the following

worst-case target distribution. Let = = (z[y),...,%[q41)) € R, For 0 € (0,1/4), define
[
Jo(x) = 3 Z T 2d’_2‘9 Zcos (d4 L2:cH) a:[d+1], (28)
i=1

where we assume L > 2m. It is not hard to show that fp(z) is 3L/2-smooth and m-strongly
convex by calculating the Hessian of fy(z). The Hessian is diagonal with the first d main
diagonal elements being L(1 + cos(d1/4*9L1/2x[i])/2) € [L/2,3L/2] and m being the last
element.

This worst-case distribution is adapted from a Gaussian distribution following two steps.
First, we create d dimensions with variance 1/L and another dimension with variance 1/m.
This step is intended to make the condition number roughly . Second, cosine terms are
added to the first d dimensions such that the second order derivative switches between L/2
and 3L/2 frequently, and the third derivative can go to infinity as d grows. As we will see
later, such perturbation makes the sampling process challenging for MALA, and as a result
the best step size is of order O(d~'/?).

Lemma 8 Consider the target distribution mw(x) < exp(—fo(x)) where 6 € (0,1/4) may
vary with d. Fix the warmness M = 12.

(a) There exists an M-warm initial distribution po with da (1o, m) > 1/2, such that for
any h € (0,1/m), the spectral gap of hy = dug/dm under the MALA transition kernel
K with step size h satisfies

Ex (ho, ho)

3 (0. 7)? < 18mh. (29)

(b) Further assume that @ € (0,1/20) and d’ > max {logd/2+ 6,10}. There exists
an M-warm initial distribution pg with dg (up,m) > 1/2, such that for any h €
(1/(Ld1/2_39), oo), the spectral gap of hg = duo/dm under the MALA transition kernel
K with step size h satisfies

Ex (ho, h d*?
K (o, 02) < 48 exp(—
da (po, ™ 16384

). (30)

See Section 5.6 for the proof, part of the which is adapted from Chewi et al. (2021).
Lemma 8 bounds the spectral gap of MALA. Compared to results in Chewi et al. (2021),
this lemma further includes the smoothness parameter L and the strong convexity parameter
m. Also, Lemma &(b) holds for a much larger range of step-size choices, whereas Chewi
et al. (2021) requires h < d~1/3. To turn these spectral gap upper bounds into rigorous
mixing lower bounds, we combine this lemma with Corollary 7 and obtain Theorem 2.
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4. Numerical experiments

In this section, we apply MALA in various simulation settings to validate our theoretical
results for the worst-case example in Section 3.2.2. We consider m(x) o< exp(—fp(x)) as
the target distribution, where the negative log density fy is defined in Equation (28). We
aim to find the best step size for this special distribution. For simplicity we replace d with
d — 1 in fy so that the dimension of the state space is exactly d. In the following, we fix
6 = 1/40 which satisfies the conditions in Lemma 8. For this difficult target distribution,
we show that the best step size should have d='/2 dimension dependency under a warm
start in Section 4.1. In terms of the condition number dependency, we illustrate that the
best step size should be L='d~1/2 under a warm start in Section 4.2.

4.1 Dimension dependency

We fix the smoothness parameter L = 1 and strong convexity parameter m = 1, and vary
the dimension d in this section. To measure the convergence of the chain, we consider two
metrics. The first is the accept-reject rate of the chain, and the second is a proxy for the
mixing time. It is defined as

’f‘ = min {n :‘ (jn’o.g — qO.g‘ S 0.05},
n>1

where §y, 0.9 is the 90% quantile of the last dimension of the first n samples from MALA,
and ¢g.9 is the actual 90% quantile of the last dimension of the target distribution. If the
accept-reject rate is close to zero, then the chain needs a large number of iterations to mix.
If the error in 90% quantile in the last dimension is large, then the chain has not mixed yet.

To illustrate how different initializations leads to different mixing times and choice of the
best step size, we experiment with both a (constant-)warm start and an exponentially-warm
start. The warm initialization is obtained by constraining the target distribution on the set
G={z:vVL Hx[,d} H2 < Vd—1, \/m|zg| < 1}, which is a simplified approximation of the
warm start we used in the proof of Lemma 8 in Section 5.6. In order to generate initial
samples from this distribution, we take advantage of the fact that its density can be written
as a product. Hence we can simulate each dimension of the target distribution separately
using MALA with sufficient number of steps until convergence, and take samples that are
in set G. The exponentially-warm start we use is N(0,1;/1000), a Gaussian distribution
with most generated samples close to 0. It is not hard to show that the warmness of this
initialization has exponential dependency in d; see Dwivedi et al. (2019) for details.

For the warm start, we consider step size h = d~7 for v € {0.2,0.35,0.5,0.65,0.8}. For
the Gaussian start, we use h = d=7 for v € {0.5,0.75,1.0,1.25,1.5}. In each experiment,
we simulate 200 chains and calculate the average of each metric.

Figure 1 shows the results of these experiments. From panels (a) and (b) we see that
under a warm start, d 9 is the best possible choice of step size. When the step size is too
large h = d=%2 or d7935, the acceptance rate tends to zero when d is large. Additionally,
the mixing time in these two cases are larger than that in the case of h = d=%5. We remark
that for v = 0.35 the decrease in acceptance rate is very slow. It might require experiments
with even larger d to see its acceptance rate to become very close to 0. Such a large d may
rarely appear in practice, and using a slightly larger step size such as 7 = 1/3 in Roberts
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Figure 1: Acceptance rate and mixing time of MALA with 7(z) o fp(x) using step size h =
d~7. Panels (a) and (b) show that under a warm initialization, step size d~°-% has a non-vanishing
acceptance rate and the best mixing time. Panels (¢) and (d) show that under an exponentially-
warm initialization, d=! is the best step size. In (d), mixing times for v = 0.5 and v = 0.75 are not
shown in the plot because their corresponding mixing times are too large and out of range.

and Rosenthal (1998) may not hurt the performance of MALA significantly. When the step
size is less than d~9°, the acceptance rate is always kept above some positive constant.
Additionally, the mixing time in these cases have a non-exponential growth and are still
larger than that in the case of h = d~°. These results match our main results in Section 3
as well as the theoretical results in Chewi et al. (2021). On the other hand, if the chain is
initialized under a Gaussian start with an exponential warmness, panels (c¢) and (d) show
that the step size d~! becomes the best possible choice of step size. The observation that
step-size choice d~% has close-to-zero acceptance rate under this exponentially-warm start
agrees with the mixing time lower bound established in Lee et al. (2021a).

4.2 Condition number dependency

We fix the dimension d to be 32 and vary the condition number by changing L while
retaining m = 1. The experimental setup is the similar to that of the previous section,
except that here we only consider a warm start for simplicity.
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Figure 2: Acceptance rate and mixing time of MALA with 7(z) o fy() using step size h = k= 7d "2
under a warm start. Step size with a linear condition number dependency has a non-vanishing
acceptance rate and the best mixing time.

The chain is simulated for step sizes with the same dependency on the dimension but
varying dependency on the condition number: h = L71x!77d"1/2 = x=7d=Y2 for v €
{0.5,0.75,1.0,1.25,1.5}. We observe in Figure 2 that the step size with condition number
dependency k7% or k797 leads to vanishing acceptance rates and large mixing times. On
the other hand, using a step size less than or equal to x~1d~1/2 keeps the acceptance rate
above some positive constant and has a much shorter mixing time. As predicted by our
theoretical results in Section 3, the step size with a linear x dependency turns out to be
the best in terms of mixing time. Combing these results with the previous experiments on
dimension dependency in Section 4.1, we conclude that the best choice of step size should
be roughly L~'d~'/2, which matches the step size in Theorem 1.

5. Proofs

In this section we prove main theorems. Section 5.1, 5.2 and 5.3 are devoted to the mixing
time upper bound. Proof of lower bound related results are in Section 5.4, 5.5, 5.6 and 5.7.

5.1 Proof of Lemma 5

Given (qo,po) € R? x R?, define the following quantity on the squared gradient norm
interpolated for ¢t > 0

Gt(q0,po) = Vf(go + tpo) "V f(qo + tpo). (31)

For simplicity, if the dependence on (qo,po) is clear from the context, we use G; as a
shorthand for G(qo,po). In the following, we separate the exponent in Lemma 5 into two
parts and bound the two parts with two lemmas.
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Lemma 9 Assume the negative log density f is L-smooth. Given (qo,po) € R? x Re, for
the step-size choice satisfying n’L < 1, we have

. IR 3 1 2
) =t <3 [ [0 = Goards + 24122 (1ol + = 19 ao)l

where q, and G, are defined in the same way as in Lemma 5.

Lemma 10 Assume the negative log density f is L-smooth and convex. For any § € (0,1),
there exists a set A C R% x R with Py po~A(0,1) (20, P0) € A) > 1 =0, such that for
(g0, po) € A and the step-size choice n?L < 1, we have

1 1 1 (M 2d\ \ 2 1
il — 5ol < 5 [ =) (@~ Gy s+ 100 (14105 (3 ) ) 2La
0
3022 (ol + —2 19 F@)l, )
477 pO 2 \/E qO 2 )

12
Il < Va-+10g (7).

194 (o), < VI (wm log (152)) .

where p,, and P, are defined in the same way as in Lemma 5.

See Appendix A for the proofs of Lemma 9 and 10.
Note that using integration by parts, we have

U U n s
/ s(Gs — Gp)ds = 7]/ (G — Go)dr — / / (G — Go)drds.
0 0 0 JO

Thus the first terms on the right hand sides of Lemma 9 and 10 get cancelled when we sum
them up. Plugging bounds of ||pg||, and ||V f(qo)||5 from Lemma 10 into Lemma 9 and 10,
we conclude Lemma 5.

5.2 Proof of Theorem 3
Since pg is M-warm, we have Hg = sup{|uo(B) — n(B)|: n(B) < s} < Ms. Applying
Lemma 4, we get

dry (fn, ™) < Ms + Me 5%,

Then dry (fn, m) < € follows from taking

2 oM
€ > Zlog Tt (32)

S:W’n—qﬁ €

The rest of the proof is dedicated to controlling the s-conductance ®5. Let A be the set
introduced in Lemma 5 satisfying Equation (24) for any (qo,po) € A. Define

7
T:=|q € R ]P’pONN(()Jd)((QOapO) €A) > 8|
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Because Py r po~A7(0,1,) (90, P0) € A) > 16 by Lemma 5, we have Py,~x(q € T) > 1—84.
Otherwise, using the law of total probability, we would have 1 —§ < (1—84)-1+86 -% =1-6
which is a contradiction.

We need the following two assumptions regarding the choice of step size h and §. They
will be used to bound the s-conductance ®¢ from below.

2 1 1
7= 5" S 001V (4 1 tog (240) 2 (33)
80 < min {Z, \?{:fw(ﬂ') . s} (34)

Denote the acceptance rate at (qo, po) by

A, o) = min fexp (1) = 1l + Flan) + Il 1}

The accept-reject step in MALA implies that

1 lleol3

before-lazy _ . 0
Tao ({qo})—/Rd(l A(qo,p0)) Nori dpo.

And we have

1 1 lieol3
ar (T, Q) = 5 (TR (o) + [ (1= Al o)) e ¥ o)

V2T
1 1 llpo 13
=~ (2-2 [ Ago,po)—m—e"2"d
5 < /Rd (qo0 po)me po)

=1- EpoNN(O,Hd) [A(Q(LPOH (35)
Applying Lemma 5, for all (qo,po) € A we have

R 1, 1
= F(dn) = 5 Py + £(an) + 5 w2

24\ \ 2 1 12\ \ 2
> —100 <4 + log <5>> n*Ld? —8 <\/&+ log <5>> n*L?.

@ 1

P —

- 32
where we use assumption (33) in step (i). For any go € T, by definition P, rr(0,1,)((g0, o) €
A) > 7/8. Then Equation (35) implies

7 1
dry (,7:1]3ef01re—1:amy7 qu) <1-— gefé < 1 Vpo € T. (36)

Next we show that Equation (36) is enough to bound the s-conductance. The following
conductance argument follows from Dwivedi et al. (2019) and Lee et al. (2020). Let S be
an arbitrary measurable set with probability 7(S) € (s, 1/2]. Define the sets

Sy = {x € S|T.(5° < é}, Sy = {a: € ST (9) < é}

and Sz = (51 U S2)¢. Consider two distinct cases below.
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(1) ©(S1) <m(S)/2 or w(S2) < m(S9)/2.
(2) 7(S1) > w(S)/2 and 7(S2) > 7(S5°)/2.

In the first case, we get

or m(S2) < w(S)/2= | Tz(S)m(dx) = /Sc T2 (S)m(dx) (37)

In the second case, we first prove that D(S;1 N 7Y,S2 NYT) > v2h/6. On the one hand,
forany z € S1NY and y € SeNY, we have

dry (T, Ty) = sgpmm) —Ty(A)| = |Ta(S) = Ty(9)]
7 1 3
>_ - ==
-8 8 4

On the other hand, for h < 2/L, we obtain from Equation (6) that

1
dpy (7;’ 7;) <-4 §dTV (:7;bef01re-lauzy7 Ebefore-lazy)

IN
N = N =N =

1
+ 5 (dTV (Ebefore-lazy’ Qy) +dpy (Q:va Qy) + dpy (Qy; Ebefore-lazy))

LI(L ooyl 1
2\ 6 Voh 6/

In step (i), the first and the third term are bounded by 1/6 by Equation (36), and the
second term follows by a direct calculation of the total variation between two Gaussians
(see Lemma 7 in Dwivedi et al. (2019)). Thus ®(S; N Y,S2 N Y) > v/2h/6. By the
isoperimetric inequality of 7, we get

(4)

=

IN

7(S5UT) = 7((S1 N T)°N (S2 N T)°) >

\/?Q/J(W) (ST NY)w(Se NY).

Since 7(T) = Pyyr(go € T) > 1 — 86, we have

7(S3) + 85 = m(S3) + w(T°)

> \/?th(w) (S N T)r(S2 N T)

> Y2 ) (m(51) - 80) (m(52) — 80

g @wm : <7T(25) - 86) (”fc) = 85)

> ‘/zhw(w) - <7r(25) - 85> <411 - 85) . (38)
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In step (i), we use the assumption of the second case. Applying assumption (34), we have

(50> Y2y T s
Joh
> Y20 (r) m(S).

Thus

/S To(S¢)7(z)dx = ;( /S To(S¢)m(dz) + E(S)w(d@)

Sc

@1 </ 1 / 1 >
> = —7(dx) + —7(dx
2\ Jsns; 8 (dz) Sensy 8 (d)

1 V2h
= 157 (%) 2 6144w< ™) - m(S), (39)

where step (7) is from the definition of Ss.
From the analysis of these two cases in Equation (37) and (39), we obtain the following
lower bound on the s-conductance

1 Ve
o0 min{ o i} (10

Now we solve h from assumption (33) and (34). Let ¢ be a constant which may change
from line to line. Using s = €/2M, we observe that 0 needs to satisfy

2

2
LN d6? <4 + log (?)) < ¢(w)2%

€
d 646 < —
an <y

Take 6~ = cmax (plog p, M /€) where ¢ > 0 is a large enough constant and p = %
to meet conditions above. Equation (33) gives the final choice of h by
h= “ (41)

LVd - log? (max {d, ﬁ, %, CQ}) '

for some universal constants cg,co > 0. By Equation (32), (40) and (41), mixing time of

MALA has an upper bound
L M 2M
2
<max {d, Qp(ﬂ')Q’ ?, CQ}) s 1} . lOg <6>

Vd
()

for some universal constants ¢y, co > 0.

L
tov (€ o) < ¢1 - max

5.3 Proof of Theorem 1

When 7 is m-strongly log-concave, we have (7)) > log2 - v/m by Theorem 4.4 in Cousins
and Vempala (2014)). Now Theorem 1 follows from Theorem 3.
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5.4 Proof of Theorem 6

We define the heat kernel with respect to the initial distribution pg, as the ratio of the
density of the Markov chain at the n-th iteration to the target density, via the following
recursion

ho(z) = %(@ and hy(z) =

Note that Ex[h,] = [} pn(dz) = 1, we have

_dpn, dT" (o)
g (@) = — —(2).

Vara[hn] = /X (ha(@) —1)* w(da) = |hn — 112,

_ /X (‘Z‘:(;c) _ 1>27r(dac) = dy (i, 7)°.

For f € La(m), we define a function K f € Lo(7) via operating K on the left of f by

(42)

Kf(z)= K(x,dy) f(y).

yeX

Since K is reversible, we have

e (40) = T(un) (o) = [ () K o)
ye
- / () (dy) K (y, )
yeX

_ / _ fm @) () K Gz, dy)
= Khy(z)m(dz).

As a consequence of the above observation, the heat kernel at n-th iteration has a simplified
expression

Byt = Khy = K" hy.

To prove Theorem 6, vge start with two lemmas. The first lemma relates Dirichlet form
2
Exa to |13, and | K2f]f5 .

Lemma 11 Let K be the kernel of a reversible Markov chain with invariant distribution
. For any f € La(m), we have

Ex2(f 1) = 15 = 1K FI15 (43)
The second lemma provides a control over ||[K" f ||§77T, and is applied to bound Vary[h,].

Lemma 12 Let K be the kernel of a reversible Markov chain with invariant distribution

. For any f € La(w), we have
1112, 112,
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See Section 5.4.1 and 5.4.2 for the proof of these two lemmas.
With the above two lemmas in hand, we are now equipped to prove the mixing time
lower bound. By Equation (42), we have

da (ptn, )% = | hn — 1]I3

@) | o
= K™ (ho = D)3

) <||K<ho — 1>\|§,ﬁ>"
2,
Hho - 1”;,7r
i Ew2(ho, ho)\ "™
(:) do (,U(),Tr)2 . <1 — 71{2( 0 02)>
da (/’L077T)

Here step (i) uses the fact that K is a linear operator and K (1) = nyX K(x,dy) = 1. Step
(i7) follows by Lemma 12 and the step (#i7) makes use of Lemma 11.

(@)
> |lho — 1

5.4.1 PrROOF OF LEMMA 11

The left hand side of Equation (43) can be expanded as follows

Elfo N =g [ (@) = f0) K dye(do)
T,ye

=/ (f(ﬂ?))27f(d$)—/ F@) f(y) K (x, dy)m(da).
reX T,yeX?

The first term is || f||3 . by definition. The second term is equal to IKfl3 - in that

%513, = | (K F@) i)

¢ TR (), (45)

where step (i) uses the reversible condition K (z,dz)n(dx) = K(z,dz)m(dz), and step (i7)
uses the definition of K2 that K*(z,dy) = [,_, K(z,dx) K (x, dy).

xT

5.4.2 PROOF OF LEMMA 12

The proof goes by induction on n. First we show that the inequality holds for n = 2, that
is,

(46)

152l (HKng,wy
Il — \ IIf

2
‘2,7r
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By Cauchy-Schwartz inequality, we have

2
1A U1 > ([ K2s@) oyt

2

- (/ KQ(x’dy)f(y)'f(l‘)Tr(dx))
zeX Jyex
9 (1 s13,) "

where step (7) is by Equation (45). The case n = 2 in Equation (46) follows by rearranging
the terms in the above equation.

Assuming Lemma 12 holds for n — 1, we obtain that

Ik fE, K ED],

£, Ifll5A
HKn ! Kf H27r . ||Kf‘|g77r
1K £113 I1£13

@

.

)

Y

. n—1
G (K" 1Kl
- > 1122

_ (HKng,ﬂY
115

where step () uses the induction hypothesis, and step (ii) uses Equation (46) again.

<|1K<Kf>u2ﬂ>"‘1 IKfI12,

5.5 Proof of Corollary 7

Corollary 7 follows from Theorem 6 after observing the following lemma which relates £
to & K-

Lemma 13 Let K be the kernel of a reversible Markov chain with invariant distribution
. For any f € La(m), we have

Proof By the definition of Dirichlet form, we have

SN =5 [ @)~ 1) K dy)r(in)

/ (f(2) — F())? K(x,d=)K (2, dy)n(dz)
JY,2€EX3

N =

| =

[ (@) = 1) + 1) = £0) K (0. d2) K (. dy)(d)
Y:2€
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| @) = 1) K d2) K dyya(ae)

N =

1
1 ORI

—/ p (f(2) = f(2)) (f(2) = f(y)) K (2, d2) K (2, dy)m(dw)
x,Yy,2€

*K(z,d2)K (2, dy)m(dz)

i

—~
=

N | =

/ cx (f(x) - f(z))QK(gg7 dz)m(dz)

S PCCRRIEIILTS

-] (1o [ swKEa) )
zEX teX
< 25K(f) f)7

where step (i) uses the fact that K is reversible. [ ]

Applying Lemma 13 and Theorem 6, if 25 (ho, ho)/d2 (po, 7)* < 1 we get

do (MOJT)Q
2&k (ho, h0)>n
da (po, )

do (i, )2 > da (119, 7)2 (1 -

Z d2 (/1/07 7[')2 : <1 -

It follows that the mixing time in x2-divergence has a lower bound

-1
ta (€, po) > 2 <—log (1 - 25K(h0’h0)>> log M‘

da (M077r)2 €

If the spectral gap satisfies Ex (ho, ho)/da (p0, 7)? < 1/4, using log(1 — z) > —z/(1 — ) for
€ (0,1), we get

2Ek (ho, h , , T
t2(67M0)2< K 0 0) Q,ZOh (Mo )
dg (o, ™ Ek (ho, ho)
1 <5K(ho,ho)) 110g da (o, )
2 \ ds (1o, ) €

5.6 Proof of Lemma 8

In this section we prove the two statements in Lemma 8. We procced by first constructing
difficult warm initialization and then upper bounding the spectral gap. To prove Lemma 8-
(a), it suffices to make the initialization pg different from the target 7 in only the last
dimension. To prove Lemma 8-(b), we construct a warm initialization supported on a set
where the acceptance rate is exponentially small.
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5.6.1 PROOF OF THE STATEMENT (A) IN LEMMA 8

Consider a initial distribution po(z) = ho(2[g41)7(z) where hg : R — R is the following
piece-wise function

1
7l Vmlu| <2
_J1 4
ho(u) = S(o=—lul)  2<vmlu <4
m
0 vmlu| >4

and Z is the normalizing constant that ensures [pq po(x)dz =1,

2 _4
Z =2 (/ﬁ zy /me—’%“fdx+/ﬁ(4x), /me—’?mgd:c>
0 27 2 27

vm

2 </2 L, —5t2dt+/4 S _5t2dt>
= — e —(4 —t)e .
vm \Jo V2r 2 V2w

This construction guarantees that the warmness of pg(x) is M = 2/(Z+/m) and

1
|ho(u) — ho(v)] < E|u —v|, Yu,ve€R.

Numerical calculations show that Zy/m € (0.7,0.8), the warmness M € (2.6,2.7) and the
initial y2-divergence da (po,7)* € (0.4,0.5). Then the spectral gap of this initialization is
controlled by

Exlhohe)  3Beemint | (holaarn) — ho(wary))’]

d2 (no,m)* da (po,m)°
1 1
< >k ~y~Te | 5o (T _ 2:|
2dy (,UOJF)Q army~Ta [22( [d+1] y[d+1])

1 1
— —Fpru~ —(x _ 2]
- 2dy (MOJT)Q Y~ Qa [22( [d+1] y[d+1])

() 2
<3m- Ex[dH]~N(0,1/m),§~N(0,1) [(h "MI[g1] — \/ﬁﬁ) }
< 6m - (Er[dJrl]NN(O,l/m) [thzx[QdJrl]} =+ E{NN(O,l) [2h§2]>
= 6 (m*h® + 2mh)

< 18mh,

where step (i) uses estimations of Z and ds (o, 7), and the last step is from mh < 1.

5.6.2 PROOF OF THE STATEMENT (B) IN LEMMA 8

The target density 7(z) can be written as a product 71 (z(1.q))72(%[441]), Where 71 is the
marginal density of the first d dimensions, and 7 is the marginal density in the last dimen-
sion. We claim two lemmas which uppers bound the acceptance rate of MALA with the
target distribution being 7, and 79 respectively.
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Lemma 14 Fiz smoothness parameter L > 0, dimension d and scalar 6 € (0,1/20) satis-
fying d° > max {logd/2 + 6,10}. Consider the following target distribution

d
m1(x) o< exp <§ Za:%d — % Zcos (d4 szm>> (47)

i=1 2d>
Let Q1(x,-) denote the density of the MALA proposal distribution at x. There exists a set
Fy ¢ R? satisfying w1 (F1) > 1/6, such that whenever h > 1/ (Ld1/2*39), for any x € Fy,
there exists a set G, C RY satisfying

d49
dy>1—-1 - d
GmQ1($,y) y > 0€Xp< 16384>, an

(@Y, 7) _ d*?
(@) Qi y) = p( 32) vy € Go-

Lemma 15 Given m > 0, consider the target distribution mo(x) o< exp (—ma?/2). Let
Q2(z,-) denote the density of the MALA proposal distribution at x. There exists a set
F5> C R satisfying mo(F») € (1/2,3/4), such that

/ —WQ(y)QQ(y’x)dy <92 VoeF
R ma(x) - '

See Appendix B.1 for the proof of Lemma 14, which is inspired by Theorem 8 in Chewi
et al. (2021). It is a stronger result as it includes the smoothness parameter I and holds
for a larger range of step size. See Appendix B.2 for the proof of Lemma 15.

Given these two lemmas, we construct the following initial distribution ug.

1
Mo(ﬂf) = m : 77(30) : ]loceFl x Fy

The warmness of this initial distribution M = 1/ (71 (F1)m2(F2)) € (4/3,12) and its initial

y2-divergence is
pio(x)? 2
d = dr—1) =M —-1)=.
2<Mov7r) (/Rd 7r(a:) €T ) ( )

Then the spectral gap of this initialization is bounded by

D=

gK(h07h0) . M2E$Nﬂ',y~7} [(ILIEF1><F2 - ILy€Fl><Fz)2]

da (po,m)° —1)

T M1 /J:EFl X Fy /y¢F1 X Fy min { WEHT;

(
Q(
sup /yERd min {1 W} Q(x,y)dy - w(Fy X Fy)

M - 1 r€F X Fo (I’ [B,y

M m(y)Q(y, z)
.50 ([ Sy e [ i)

28
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O _M [, 4N 10 a’
S a1 PP\ Ty ) TSP Tgasg

(i7) d40 d49
< _ _
< 4<Zexp( 32> +10exp< 16384>>

46
16384)’

< 48 exp(—

where step (i) uses Lemma 14, Lemma 15, and step (i) uses the lower bound of M.

5.7 Proof of Theorem 2

When jig is M-warm, it is straightforward to show that p, is also M-warm. The Y-
divergence of u, with respect to 7 is bounded by the total variation distance via

4 (un,ﬂ)2:/<ig:(:v)—1>27r(dx) gM/’aZ;"(x)—l

and therefore

W(d.ﬂ?) — 2M . dTV (/,67“77-) .

to (V 2Me, ,U«O> < try (5, MO)

By the definition of the minimax mixing time, ¥(d, L,m,e, M) > ¥(d, L, m,€,12). From
now on we fix M = 12. The condition x > 3 enables us to consider the perturbed Gaussian
distribution in Lemma 8.

In the definition of fy in Equation (28) , replace L with 2L/3 so that the smoothness of
fo is exactly L. Replace the dimension d with d — 1 so that the dimension of 7 is exactly d.
Since we only consider the case when d is large, we do not distinguish between d — 1 and d
in the following proof for simplicity. We study two cases of step size h.

e In Lemma 8-(b), take

_log log(md%) +log12

0
logd

, or equivalently d’ = 121og (ﬁd%> .

Since 3 < k < oz-d/B, there exists N7 > 0 such that when d > N we have 6 < 1/20 and
d’ > max {logd/2 + 6,10}. Given that exp(d*?/16384) > exp ((log kd'/?)*) > rd'/?,
there exists Ny > 0 such that Ex(ho,ho)/da (po,m)? < 48(kd"/2)~' < 1/4 for all
d > Ny. By Corollary 7 and Lemma 8-(b), there exists an M-warm pg such that for
any h € (3/(2Ld"/?>73%), 00) and d > max { Ny, No} we have

1 do (o, 7)? log <d2 (Moﬂ))
2 Ex(ho,ho) 2Me

1 1 1
> —pd? log | —— ) . 4
= 96" Og(mﬁ) (48)

e In Lemma 8-(a), consider h < 3/ (2Ld1/2*39) < ¢-max {log k, log d}*® / (Ld1/2), where
¢ > 0 is some universal constant. There exists N3 > 0 such that mh < 1 and

T2 (V2M€7ﬂ0) >
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Ex (ho, ho)/da (1o, )% < 18mh < 1/4 for all d > N3. By Corollary 7 and Lemma 8-
(a), there exists an M-warm o such that for any h € (0, 3/(2LdY?=%)) and d > N3

we have
1 1 d
= 10g 2 (lu‘Oa 7T)
2 18mh 2Me

< kd2 ) ( 1 >
0O, Y
~ 36¢ - max {log x, log d}* & 104/e

v

T2 <\/M, ,uo)

(49)

Combining theses two cases by letting N, 3 = max (N1, N2, N3), we obtain Theorem 2.

6. Discussion

In this paper, we proved matching upper and lower bounds for the minimax mixing time
of Metropolis-adjusted Langevin algorithm under a warm start. Specifically, our results
show that for L-log-smooth and m-strongly log-concave target distributions, with step size
chosen roughly O (1/(Ld1/2)) , MALA has a mixing time of order O(kd'/?). Furthermore,
larger step size can lead to exponentially slow mixing for certain worst-case distributions.

Several open questions arise from our work. First, it is intriguing how to improve the
warmness dependency and the error tolerance dependency of MALA. In our mixing time
upper bounds, we have polynomial logarithmic dependencies on both warmness and inverse
error tolerance. In Chen et al. (2020), the warmness dependency was loglog(M) and the
error dependency was simply log(1/¢€) albeit a worse dependency on dimension. It is not
clear whether one has to suffer worse dependencies on both M and ¢! in order to obtain
the tightest bound in terms of dimension and condition number dependency.

Second, since a warm initialization is not always available in practice, one usually in-
stead initializes the chain using a standard Gaussian distribution centered at z*. For such
an exponentially-warm start, one may consider running ULA or underdamped Langevin al-
gorithm for a few steps first to obtain moderate accuracy, and then continue the chain using
MALA. We find that this hybrid algorithm mixes much faster than directly running MALA
under certain bad initializations in simulations. But whether we can obtain theoretical
guarantees for the hybrid algorithm remains open.

Another future work is to apply and adapt our results to Hamiltonian Monte Carlo. In
our proof, we showed that in a single-step leapfrog integration, the difference in Hamiltonian
is of order roughly L?n*d. Since Hamiltonian Monte Carlo are usually run with multiple
steps of leapfrog integration at each iteration, it remains interesting how to generalize our
proof techniques to the case where multiple steps of leapfrog integration are involved.
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Appendix A. Lemmas related to the upper bound

In this section we prove Lemma 9 and Lemma 10. For ¢ € [0, 7], we define

) ¢

gt == qo + tpo — gvf(%) (50)
2

gt == qo + tpo — §Vf(CI0 + tpo). (51)

The definition of ¢ is the same as definition of ¢, in Equation (12b). The following two
lemmas regarding the distance distance between qq, q;, ¢ and §; will be frequently used in
the proof.

Lemma 16 Assume the negative log density f is L-smooth. For step size n > 0 satisfying
Ln* <1 andt € [0,n], we have

g — QOHQ <2t Hp0||2 + ¢ va(qo)”Qa
R ¢
1ge = qoll> < tllpolly + 5 1V £ (a0) 2

1G: = anlly < (0 =) [Ipolly +1(n =) IV £ ()2,

where qt, Gt ¢y are defined in Equation (11a), (50) and (12b).

Lemma 17 Assume the negative log density f is L-smooth. For step size n > 0 satisfying
Ln? <1 andt € [0,n], we have

lge = (a0 + tpo) I < V'L [Ipolly + £ 1V f(a0)
] 1 t
o= el < 2 (3 Il + 5 197 a)l,
where qt, G; are defined in Equation (11a) and (50).

See Appendix A.3 and A.4 for the proof of Lemma 16 and Lemma 17, respectively.

A.1 Proof of Lemma 9
Observe that
. (@ L T .
f(%) - f(qW) = /0 (Qn - ‘.777) Vf (T(Qn - ‘.777) + Qn) dr
1
= (=) VH ) + [ = 00) (VS 00— 2) +00) = V@) dr

) /0 ! /0 (V@) — V(@) VF(go)drds

Aq
1 s
+/0 /0’7/0 (Vf(gr) = V)" (Vf (7(Gy — ay) + @) — V£ (q0)) drdsdr,
A

2

(52)
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where step (i) follows from the fact that the function r — f (r(¢, — ¢,) + qy) is differentiable,
step (ii) plugs in the definition of ¢, (12b) and ¢, (11a).
The term As in Equation (52) is relatively easy to bound. We have

1 s
4] < / / / IV 7(gx) = V@)l [V F (G — a) + Gn) — V£ (q0) |, drdsdr

<L2///|qT qolls 17(Gn — g0) + (1 — ) (ay — qo0)|l, drdsdr

(i7)
< L2/ / / (27 [Ipolly + T2 IV £ (q0)lls) (27 [polly + 72 IV £(q0)||5) drdsdr

2

< 202 (Ipolly + 219 f(ao)l)

(iii) 2 2
22 4L2<HP0H2 fano)ng), (53)

where step (i ) follows from the smoothness assumption, step (ii) applies Lemma 16 and step
(iii) uses Ln? < 1. We bound the term A; by making appear the term V f(go + 7po)

A= / ! / (Y F(gr) = V(g0 + 7p0) V flqo)drds
0 0
n rs
+ / / (V£ (g0 + 7p0) — V(@) TV f(qo)drds
0 0
o [T [°
4 / / (VF(ar) — Vflgo + 7p0)) "V (qo)drds
0 0
n rs
w3 19 o+ ool = 19 ) drds
n s
=5 | [ 19 ) = V@l aras

(i) [m s . 1 [ [
< [ [ st =Vt ) @) dras+ 5 [* [ 6o - Goards, 64

~
A1

where step (i) follows from (a — b)"b = 1(a® — b%) — 3(a — b)? for any a,b € R?, step (ii)

removes the last nonnegative term and uses the definition of G, in Equation (31). For the
term Aj; 1, we have

n rs
Apy < / / IV5(¢2) = V£ (a0 + 700)l [V £ (a0)l, drds
0 0
(4) s
<L /0 ! /0 lar — (@0 + 7p0)ly [V £ q0) | drds
) o
L / / (VI polly + 72 19 £ @)y 1V (o)l drds
0 0

_n'L

(VI Ipolly + 19 (o)l ) 19 F(ao)ll
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(zu) 472 2
n L7 (||p0H2 \fHVf(qo)nz) | (55)

where step (i) follows from the smoothness assumption, step (ii) follows from Lemma 17
and step (iii) follows from (a 4+ b)b < (3a + b)? for a,b € R.
Combining Equation (53) (54) (55) with Equation (52), we obtain

1 [ [® 3 1 2
f(an) — flay) < 2/0 /O (G7 — Go)drds + 1774L2 <Hp0H2 + N va(QO)”2> -

A.2 Proof of Lemma 10

Observe that we can decompose 3 [|p,]|5 — % [|Ipy[|5 as follows

2 1 2

5 HanQ - 9 ”p77||2
(P — )" (By + Pr)
Py —DPn) Pn TPy

l
2
]
;( ['vrt. ds—Vf(qo)—Vf(qn)> (o + 1)
)y 1
23

(/ Vi(g) — VF (d)d )T@wpn)

v

Z

( / Vi s—fo(C]o) vf(dn))T(pn+pn) (56)

~~

Ay

where step (i) plugs the definition of p, and p, in Equation (12c) (11b) and step (ii) adds
and substracts ¢s related terms. The terms Ajs is relatively easier to bound. We have

= [ (V5@ + 55 a0+ V@) ) s

= om0~ 209 a0+ [ (9 10a0) = 91000 + 55 500) - V@) ) s
(id)

U L [ )
< (2= 9 5@l + £ [ o= s+ £ [ o~ dla)

(444) n
< (2lp0lly + 2019 7(a0)lly + 2L (lpolly + 2 1V (ao) 1))

4 (rpo||2 + IIVf(qO)H2> , (57)

where step (i) plugs the definition of p, and p, in Equation (12c¢) (11b), step (ii) uses the

smoothness assumption, step (iii) uses Lemma 16 and step (iv) uses Ln? < 1. Using the
bound (57), we can bound the term Ajs as follows

. (®)
15y + Pally =

2

1 /" R .
40l < 5 [T IV) =TI 15+ ol ds
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—~
.
~

< [N 195 = 9 s@ads2 (Il + = 195

(id)

g /0 L||qs—€?s|2d5'2<||p0\|2+\E”Vf(QO)Hz)

)

< /O "2 (1 Ipoll, + 7 HW(qo)\z) ds -2 (\mHQ + HVf(qO)H2>

i) L2 2
n'Lt <||poH2 fuw<qo>u2) | (58)

where step (i) follows from the bound (57), step (ii) uses the smoothness assumption, step
(iii) uses Lemma 17 and step (iv) uses Ln? < 1. For term Ay, the bound (57) is no longer
tight enough. We can decompose A, into two terms

]
A= ([ 91 @ods = 395t - 1vs @)

(b3 [ (Vo) + 57t + Vra) ) as)
= Ag1 + Ay, (59)

where

:
Agy = ( vt @) ds = 39 5a) - s (qm) (ro — 1V f(a0)).

]
Mo = ([ 91 G@)ds = 39 s - 197 )

B /O ! (vf(qO) VS an) + 3 (V) - Vf(qm) ds] .

For Ay 2, we have

| Ag 2]

Tora n Nor s
| V@) ds = IV 5(a) - 397 @) ds
0

< —
=9 )

' H/on (Vf (g0) =V f(gs) + % (V£(q0) — Vf(%))) 2l

(i) 12 nz noo n n..
S 1= wloas+ [ a s ) ([l = alds + D - )
0 n/2 0

2 3 3 2 3 3
L (” Il + 2 19 7@)l, ) (2 Wl + 22 195 o)l

2
(Hpolg - uwwu) | (60)

where step (i) uses the smoothness assumption, step (ii) uses Lemma 16 and step (iii) uses
2
n°L < 1.
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.
Agy = ( vt @) ds = 395 - It (qw) (b0 — 1V £ (a0))

= [V @) (o= 5V aw)) ds = 1 an) 0 = JV )T (o =1V fia)

Ag11

n ,,72
+ [T 9@ (= )V ) ds + 9 an) Y F ) (61)

~~

Ag1,2

For term Ay 12, we have

! T n?
Asz= [ (= mVF @)V s + 5V a0) )

2
= [ =091 ot )" e + 55 H )V )

K T
4 /0 (5= 1) (V£ (@) = V£ (d0+ 5p0)) T V F(ao0)ds
(2)

9 [t =) |5 (195 G+ 5ol = IV £@0)IB) = 519w + sp0) = V)] s

n
[N =) (V5 @) = 9 o+ sp0) TV F s
(47) 472 2
<5 [ = (197 o sl - 195 @) ds + 2 (Il + 1 197l

12
1 472 1 2
=3 [ G- Goas+ T (Il + IVl (62)

where step (i) follows from the fact that a'b = 3 (HaH% — HbH%) —%la— bl|3 + ||b]|3 for any
a,b € RY, step (ii) uses

K 2 2 o [ 2 n*L? 2
; (n—8) IV f(go + spo) — Vf(q)l5ds < L ||poll5 ; (n—s)s™ds = ETH Ipoll3 »

and also

/077(8 —0) (Vf(ds) = V(0 + spo)) " Vflgo)ds

n 2
< /0 (1= $)L | 5V #(a0) 1)l ds
n _ 2
<1 [N v s as
n'L

< 5y IVF (@)l

35



WU, SCHMIDLER AND CHEN

The term Ay 1,1 is the most difficult term in this lemma. We replace s in A4 11 with ¢
defined in Equation (51), and denote the replaced quantity by

By (qo, po) := /077 V£(ds)" (po— sV f(qo))ds — gi(qo)Tpo - gi((jn)T(po =1V £(q))-
(63)

To bound Ay 1,1, we need the following lemma which provides a high probability bound for
B;,(qo, po) when g is randomly drawn from 7 and py is independently drawn from N (0, I4).

Lemma 18 Assume the negative log density f is L-smooth and convex. There exists a set

A C R4 x R? with P o~ po~(0,14) ((90,P0) € A) > 1 — 0, such that for (qo,po) € A, for By,
defined in Equation (63), Ln* < 1, we have

By (q0,p0) < 100 <4+log<6d>> n2Ld?, and
19 ao)ly < VE (Vi +1og () ). and
Il < v+ 10g ().

The proof of Lemma 18 is deferred to Appendix A.5. Since Bj(qo,po) is obtained by
replacing ¢s with ¢, in A4 11, we have

3 X N
| As1,1 — By(qo, po)lly < 37 max IV£(Gs) — Vf(ds)lly [lpo — sV £(qo)ll,

() 3’/’]4L2
< Ipolly (lpolly + 711V f(q0)ll5)

( ) 3’/’]4L2

(\pouz " HVf(QO’z) | (64)

Step (3) uses [V £(ds) — V£(@)lly < Lllds — dolla < L25% [polly /2, and step (i) uses °L <
1.

Combining Lemma 18, Equation (64), (62), (61), (60) into Equation (59), and then
combining it with (58) into Equation (56), we obtain that, there exists a set A ¢ R% x R?
with Pgo wr po~nr(0,1,) (90, o) € A) > 1—0, such that for (qo, po) € A and the step-size choice
n?L < 1, we have

1 1 1 [ 2d\ \ 2 1
Il = 5l < 5 [ =) (G~ Gy s+ 100 (44105 (5 ) ) Pra
5 4 2 2
Do V f(qo ) -

(H o+ = IV Sl

Finally, bounds on ||po||, and ||V f(qo)l||; in Lemma 10 come from Lemma 18.
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A.3 Proof of Lemma 16
Recall from the definition (11a) and (50) that

t S
qr = qo + tpg — / / Vf(qr)drds
0 JO

X t2
dt = qo +tpo — 5Vf(%)-

Directly from the above definition, we obtain the second part of the lemma via triangular
inequality

X t2
1Ge = aolla < tllpolly + 5 1V f (o)l -

Similarly,

2

S n? — 12
G — dnlly < (n =) [lpolly + 2 IV f(q0) I

< (n=1) llpolly +n(n =) [V £ (q0)ll, -

For the first part, we have

t S
g — aolls < #llpolls + / / IV ()l drds
t S
< tllpoll, + / / IV F(ar) — VF(qo)ls + IV F (o)) drds

(3) t s
< t|polly +/O /0 (L llgr = qolly + IV £ (q0) ) drds

1 1
< tlpolly + 5Lt* sup llgr — qolly + 58 IV (o)l »
2 T€[0,t] 2

where step (i) follows from the smoothness assumption. Taking supreme of the left-hand
side over 7 € [0,t] and rearranging terms, we obtain

1 t2
(1= 5Lt*) sup lgr —golly < tllpolly + 5 V£ (@0)lls -
2 T€[0,t] 2

Because Lt? < L772 <1, we have
£2
o= all <2 (tllall+ 5 197 @l )

A.4 Proof of Lemma 17

Compared with the bound of ||¢: — qol|; in Lemma 16, the bound of ||¢: — (go + tpo)||5
requires an extra factor of t. The main proof strategy remains the same. We have

t S
lat — (a0 + tpo)l, < /O /0 1V £ (g0l drds
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t ps

< /0 /0 (va(QT) - Vf(qD)H2 + va(qo)H2) drds

(@) [t s

<[ @la =l + 19 @) ) dras

(i) [t s

< / / (L (2t lpolly + IV £ (@0)lly) + V£ (q0)ll5) drds
0 Jo

(it5) [t s
[ [ Vet + 2195 a)l) ars
— VI [polly + ¢ [V £ (a0)ll )

where step (i) follows from the smoothness assumption, step (ii) uses Lemma 16 and step
(iii) uses Lt?> < 1. Compared to the above term, the bound of ||g — ¢, requires another
factor of t. We have

o=l = [ [ 95ta0) - Vsta) dris 2

G [t
S/ / L|lgr — qollo drds
0 JO

(@) [t s
= /O /0 L (27 |[polly + 272V f(q0)||,) drds

(#4) 1 t
<L (3 Il + IVl ).

where step (i) follows from the smoothness assumption, step (ii) uses Lemma 16, step (iii)
just completes the integration.

A.5 Proof of Lemma 18
Given (qo,po) € R? x R? and t > 0, define
Dy(q0,p0) == V£ (@) (po — tVf(q0)) — V (g0) " po- (66)

For B, defined in Equation (63), we have B, (qo, po) fo s(q0, po)ds — 3Dy (qo, po). To
prove a high probability bound for By (qo,po), we first bound D (go,po) in hlgh probability
via Markov’s inequality. We need the following two lemmas.

Lemma 19 For s > 0, for Dy defined in (66), we have
E gy po~N(0,1,) Ps (90, Po) = 0.

Lemma 20 There exists a universal constant ¢ > 0 such that for s >0, s>’L < 1 and k > 4
an even positive integer, for Dy defined in (66),

_k _k
EQONWPONN(OHd)L 2D3(q07p0>
k Kk k
gmax{l 60(3k)"s maX{dez, L2Ep a0ty llpolls quwuvf(qo)”’;}}_
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The proofs of Lemma 19 and Lemma 20 are deferred to Appendix A.5.1 and A.5.2.
Assuming these two lemmas for now, we complete the proof of Lemma 18.

First, to provide upper bounds for the moments [, (0,1, ||p0||]2€ and Egr ||Vf(q0)||§,
we evoke the following bound established in Theorem 5 of Lee et al. (2020). For f twice-

differentiable, L-smooth and convex, 7 o< e/, we have for \ € (0, %),

14+ 3VIA
oy [exp A1V a0) )] < 74 725 exp (WEd) (67)

Applying the above result, for 72L < 1, we have

1 k (4) 1
Earn T L5 [V £ (q0) |5 < Eqgn [exp (7213 [V (q0)]) ]

k!
1+ 372L
T 1- %TQL

< 3exp <T2Ld%) (68)

exp (TQLd%)

(i) follows from the power series expansion of exp. (ii) makes use of Equation (67) with
72L < 1. Similarly, we have

1 1
g L o < 3exp <72Ld2> (69)

Second, plugging Equation (68) and Equation (69) into the bound in Lemma 20, we have
for s € (0,7,

qu~7r,po~/\/(o,ud)77kD§ (CIOa pO)
k 2k
< max {nkL§,60(3k)k (nQLd%) ,180(3k)* k! (ﬁ> exp (TQLdé>}
T

(i) k 2%
< max {nkLg, 1802k%4+2 (3) (nL%di> } .
e

The last step (i) takes 72 = 1/ (Ldl/ 2) and uses the upper bound of the Stirling’s approxi-
mation (see for example, upper bound of the Gamma function in Mortici (2011)).

Third, fix § > 0 and take k to be the smallest even integer larger than max {4, log (2d/J)}.
By Markov’s inequality and the expectation calculation in Lemma 19, we obtain

quww,])oNN(O,]Id)nkDI;(qu pU)
ak
k
max {nklec, 180e2k2F+3 (%)k <772Ld%) }
<

I[_quNWaPONN(O,Hd) (?7 |Ds(q0,p0)| > OZ) <

Taking a = 50k2n2Ld%, we have

_ 1)
Pyomrpo~A(0,1) (1 Ds(q0, po)| = a) <e k< 24"
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Because k < 4 + log (%d), for s € (0,n], we have

2d 2 1 1)
P o~ po~N (0.14) (77 |Ds (g0, po)| > 50 <4 + log <5>> nQLd2> <5 (70)

To obtain a high probability bound for B,, defined in Equation (63) from the high probability
bound for Dy, we build a covering the segment [0, 7] and apply union bound. We have, for
any integer d > 1,

n
n
By, (q0, o) =/ Ds(qo, po)ds — = Dy(qo, po)
0

2
3
< 5 Sup 1 |Ds(qo,po)|
s€[0,n]
3 0D; (90, P0
<5 sup 1 1Ds(qo, po)| +g sup n‘séqp)
se{0,2,27 .. (d-1)1} s€[0,n] 5

For the derivative of D, with respect to s, we have

82 T
= (Po — sV f(qo + spo) — qu+pop0> Hg, (po — sV f(qo))

2
—V£(ds) V£(q)
< 8L |poll3 + 811V f(0)ll3

0Ds (qo, po)
0s

Using the Gradient norm concentration (see Corollary 6 in Lee et al. (2020)), we have
Pogror | IV£ (@0)lly = VId+ VL] <3¢,

Thus for v = log (12/0), we have
12 )
Barer IV a0l 2 VEd +log (12 ) VE| < 5.

Similarly, we have

12
Py~ (0,1) [HPOHQ > Vd + log (5>] <
Denote the following three events,

d d 2d 2 gr il

Ey = { (qo,po) € R® x R? | sup 1 1Ds(go, po)| <50 | 4+ log 5 n2LdE S
12

E2 = {(Qpro) S Rd X Rd | ||Vf(q0)||2 S \/m+ log (6) \/Z} ,

d d 12
E3 = 4 (q0,p0) € R? x R? | [lpol, < Vd+1log (= ] ¢

0
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For (qo,po) € E1 N Ey N E3, we have

24\ > 167 12\\°
By (qo,po) <75 (4 + log <5>) 772Ld% + %L <\/g+ log <5))

2
<100 (4 +log (?)) n2Ld? .

Furthermore, we have

P ((q0,p0) € (E1 N Ea N E3)%) < P(EY) + P(ES) + P(ES)

5)
5 5 6
Sdogititg

<.

A.5.1 Proor OoF LEMMA 19

For s > 0, we have

E gy o030 | V(@) 0]

i 2
= /Rd /Rd [Vf (x + 8po — %Vf(:c + Sp0)>] poe @ \/(17de_upg|2dp0dx
5 /R d /IR d [Vf (v-3v/w) )} st
- = i S L 1 Hy acH2
/Rd /Rd [vf y=3VIW) VI (x)] ’ . W

D By 01 a0 | VF(@) VF(0)]

(i) applies change of variable pg <— (y—z)/s. (ii) applies integration by parts with respect to
ly—=I3

z (withu=Vf(y—5Vf(y)) e 7@ andv=e"" 27 ), and the boundary term is zero. (iii)
changes the variable back y <— x 4 spg. Note that the above derivation requires s > 0. But
for the case s = 0, we trivially have EqONW,pONN(oJ(i)Vf(CIo)Tpo = 0 since £, n(0,1,)[Po] = 0.
Overall, we have proved that for any s > 0,

E gy pon01) | VF(@)T (o0 = sV f(a0))] = 0.
Consequently, we have
EQONﬂvpoNN(Oyﬂd)DS(qO’po) =0.

A.5.2 PROOF OF LEMMA 20

The main idea to upper bound the expectation of the k-th power of D is to use integration
by parts and Holder’s inequality to establish a recursive relationship for it. Before we dive
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into integration by parts, we first establish a few derivatives of D* that become handy in
the rest part of the proof. Using the change of variables x < qg,y < qo + spo, we have

D; (x, Y ; 36) =Vf <y - S;Vf(’y))T (y ; < sz(x)> — Vi)' (y;x)

0D, (z, ¥5* ’ i
0D (x,*5%) _ _éw <y - ‘;Vf(y)> — sH,V f <y — SQVf(y)>

ox
_H, (yx> + 19 (71)
S S
aDS 7y;w 2 _
(gy - (Hd N S2Hy> By v <y s "o 5Vf(:c)>

+ %Vf <y - S;Vf(y)> - %Vf(x)-

Using the L-smoothness assumption and s2L < 1, it is not hard to obtain the following
derivative bounds

8Ds ’ = -
H(x) §5LHH + 3LV F(@),
ox 5 g
2
0D, (z, == —
HM g3LH“ +25L ||V F(@),
oy ) 5 g
oD ,
PP < 81 ol + 8 191wl (72)
‘We have
EgomnEponn(0.12) D (¢0, po)
» 9 T k lly==13
© _s y—x _ T(Y—* Lo—f@) &
I/ (w (v-5vrw) (2 -s9i@) - vrwT (1 )) I
52 T y—x Yy— 6_%&
Z/ \2 (y— 2Vf(y)> ( s —sz(a:)) Df_l (907 s >~e_f(f”)(21_152)ddydx

ly==13

B T(y—= k—1 Yy—x ) —f(z) e 252
/ Vf(x) <s > D (:r, . > 2 7(2Hs2)ddydx
_ly==13

T e
(1) 52 8D5 (:u L) k—2 Yy—x —f(@) e 252
= — —1 - — s /D . T
s(k )/ i (y 5 Vf(y)) 5 ; z, e oL dydx

lly—=113
oD, (z, =%) vz R
—s(k—1 Vi(z TADQ“*2 <x, > P S —, [ [ 73
(k=1) / O T ; S (73)

(i) applies change of variable qg <— = and pg < (y — x)/s. (ii) applies integration by parts
with respect to z in the first term and applies integration by parts with respect to y in the
second term, the boundary terms are zero.
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Observe that parts of the two integrals can be combined together, we have

’ T oD, (v, 152 oD, (v, 152

—sVf (y - ‘;W@)) # - sz(x)T%;&)

9 2

= HVf (y - SQVﬂy)) - V(@)
2
T
) 52 T 52 ) . 52
#9297 (5= 5V0) HIS - 59700 -2V (L= FH, ) H, oy, T/6
T>

52 T 82

95 (1= 5950 ety =095 (1= SH, ) H, ey - ()
T3 T

where we used the derivative formula in Equation (71) and reorganized the terms. T} and
T, can be bounded by linear combinations of || 42|, and ||V f(z)||, via triangle inequalities.
We have

Ty| < AL |ly — 2|5+ s*L? |V f(2)])5
Ty < 25°L|Th| + 3s2L ||V f(x)3.

T3 and T} require another treatment of integration by parts. For T3, using integration by
parts with respect to y, we have

_lly==113

s2 )T Y—x e 22
\Y - =V H,(y — x)DF2 (x, ) A p———; 7
51 (v-5510)) ty-2) - —
9 _||y—§\|§
= 52 _ k=2 (p YTTN —f@) & 2T
=3 // trace <<]Id 3 Hy> Hy—fo(y)HI) Dy <:c, . ) e (QHsz)ddydx

9 T oD ( vz B 7||y—§u§
2 _ 5 (2, 57) s Y-\ —r@ & >
s*(k 2)/ Vf <y 5 Vf(y)) H, oy D? (x, . ) e \/mdydx.
Hence, using the derivative bound (72), we have
lly==113

_ s
// T3D*2 [z, y—ry. eif(w)Ldydm
s (2I1s2)4

lly==113

_ )
< 2s%L%d DF=2 | g, YT, e*f(w)Ldydx
° s (2I1s2)d

+sk-2) [[ <9Lg 195 @3+ 1Ls | ==

_ly—=13

2
()
2 S (2H82)d

Similarly, for Ty, using integration by parts with respect to x, we have

_ly==13

2 2
T S k—2 y— =z —flx) €%
/ Vi(z) (]Id - 2Hy> Hyfgvf(y)(?/ - x)D; (% B ) eIt Wdydx

43



WU, SCHMIDLER AND CHEN

2

@ o2 // trace ((H;v ~Vf(@)Vf(=)") (Hd B SQH”> Hysjvf(y)>
lly—=113

D (w 1/—96) I e
S
Yy—

V/ (211s2)¢
0D, (x, )

82 S
+ 5% (k — 2)/ Vi)' (Hd - 2Hy) Hy—éwf(y)T

D3 (x Y- 5”) S R N

Hence, using the derivative bound (72), we have

_ly==13

_ Y
// T4D§_2 T, y—7r -e_f(”f)Ldydx
s (2IIs2)d

ly—=13

— T sz

< 282L2d// ’D§_2 <$7 H) . e_f(“')Ldydx
s (2I1s2)4

_ Hy—zn%
_ y—x _ e 2s
e [ i sa]ot? (s, 55 )| e 2
IV £(@)II3 | Dk - S

9 7||y—§||%
DEs <x - x)‘ e t@ 2 gy,
2) ‘ s /(211524 Y

Finally, combining the T, T, T3, T4 bounds into Equation (74) and then Equation (73),
we obtain

+ sk —2) // <6L3 IV f(z)|2+3L3

y—x
S

’EQONWEpoNN(O,Hd)DE (QO7p0) ’
< (k= VEqpmrpornviony | (452L2d + 12822 o3 + T52L IV (a0) I3 ) | D5~ (a0, p0))
5 3 _
(k= 1)k = 2)E gy pornons) [ (145°L3 lpol3 + 1552L3 [V a0)3) | D5~ (a0, p0)||
For k£ > 4 an even positive integer, applying Holder’s inequality, we relate D’;_Q and D§_3
with D¥. We have

k
EQONEPONN(O,M)DS (q07 pU)

2/k 2/k
ﬂﬂ@wmd%wwm@ H@Mwmw)>
—2

k=2
k

‘ (quw,pow(o,ud)Df(qo,po))
2/k

3 2/k /
#1222 (1L (Bpioso Ioll) " +15 (Baer 197(al5) ™)

k-3

) <EQO~W,po~N(O,Hd)D§(QO7pO)) *
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Hence

_k K
Eqommpo~(01,) L™ 2 D5 (g0, Po)
k k k
< max {1, 60(3k)"s* max {L2d2 LEE, ot IPolls s Egorar ||vf(q0)||g}} ,

Appendix B. Lemmas related to the lower bound
We provide the proof of Lemma 14 and Lemma 15 in Appendix B.1 and B.2.

B.1 Proof of Lemma 14

Define the event

Fi = {x € RY| max V'L oy | < 41/log(8),
1€
Lzl < d+d'~* 4+ 5Vd,

: AL} Lo Lgimac g o
Z—cos( ) < 1 t5 + 2dz,
=1

d

_ crio R Y I ST 1

> —cos(2d Laayy) + od' 7| < cd' T+ 243,
=1

d

1

3" Lragsin(d*Lizy)| < SR zd%} (75)

=1

Bounding the measure of F; under 7 requires concentration inequalities for m;. Its proof
is deferred to Lemma 23, where we proved 71 (Fy) > 1/6.

Let ¢ = 1/4—0. For any = € R, denote the negative log density by f(z) = %Zgzl :z[2i] —
Qd%g Zle cos(dCL%x[l-]) and its cosine part by fp(x) = —Qd%c Z?Zl cos(dCL%x[i]). The gra-
dient of f at x is

i sin(dCL%a}[l])
Vf(x):Lx—l—pr(m):Lx—}—Q—dc :

Sin(dCL%ZE[d])

For any z € Fy and y € R?, we can express the quantity of interest as follows

m1(y)Q1(y, )
m1(2)Q1(x, y)

= exp () = (o)~ 7 lle —y + RS + 2oy — 2+ F)B]

Define g := y —x+ hV f(z). We further decompose the quantity of interest by isolating the
linear, quadratic terms on ¢ and the cosine part fp. We have

f(x) = )
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(hl3 = 1wl3) + fr(@) = fr(y)
(hl3 = lle = bV £ (@) + gl3) + fr(2) ~ Fr(y)

L
= =5 ((-2Lh+ 12W?) |l2]} + 2(1 — Lh) z,9) + 1)

2
F LRV fp(a), (1~ Lh)a + ) — To- VA2 + fo(e) — o)
And we have

ey W+ il e+ 41t I
1
= g IV 1 @)+ ) — g3+ - ol

- % (9. Vf(z) +Vf(y) — g IV£(2)+ Vil

= Tlgll3 + 5 {9, L2~ by + (1 — LRV fp(a) + Vip(u)) — & V1) + V)3

= T g3+ 5 (o, L2 ~ Lh)a + (1~ LRV () + V o))

2
M@~ Ihy 4 g3 - B (2~ e+ 0, (1~ LRV fp(e) + Y/ (w)

- " (1 = LRV () + V()2

Rearranging the terms in the above two equations, we have

F@) — F) ~ g5 o~y + VSR + 1 Hy—w+th(x)H§

L*h*  L'h? L3h?*  L?h
= gl = o)+ (555 = 0 Y Iell - E 1ol (555 - 1) o)
\—,_/

AQ A3
<VfP

1—|—L2h2> > <pr( ), 1—1—2th>

{
(5

212 3 3
+ (Ve (50 - 5 ) o) = (Va5 - L))
Asg
LIV p(@) [} (1~ L0V fole) + V()3 (76)
Ag Ar

We bound each of these seven terms in Lemma 24 under the condition x € Fi, y =
x—hVf(x)+gand g ~ N(0,2hl;). According to Lemma 24, for h > 1/ (Ld1/2*39), any
fixed z € Fy and y ~ N(x — hV f(x),2h],) we have

7
> Ai(w,y) < —d*/32

46



MINIMAX MiIXING TIME oF MALA

with probability at least 1 — 10exp (—d49 / 16384). Finally, Lemma 14 follows by setting G,

to be {y R ST, Ai(a,y) < —d49/32}.

B.1.1 LEMMAS ON CONCENTRATION PROPERTIES OF THE PERTURBED (GAUSSIAN
DISTRIBUTION

In this section we present three lemmas (Lemma 21, 22 and 23) to characterize several
properties of the perturbed Gaussian distribution 71 in Equation (47). Lemma 23 directly
implies that the set F} in Equation (75) satisfies w1 (F1) > 1/6. Additionally, these lemmas
are useful to complete the proof of Lemma 24 in Appendix B.1.2.

The following lemma establishes bounds on the expectations of cosine terms. It is
adapted from Lemma 31 in Chewi et al. (2021).

Lemma 21 Fiz £ ~ N(0,1) and constants a,b € R. Then we have
(a) |E[cos(a + b§)]| < exp (—%),
(b) |E[¢ cos(a + b€)]| < [b] exp (_%>

(c) |E[¢?cos(a +bE)]| < [b? — 1| exp (_%)

Proof Let Re(-) denote the real part of a complex number. Since E[e/¢] = e‘étg, for any
integer £ > 0, we have

E[¢’ cos(a + b¢)] = E[Re(¢ e’ )]
= Re <emE [g‘fe“’fD

¢
= Re (emi_éIE d—eitg

dt?

. dz t2
= Re (emz’_ee_2

)
o

Three results now follow from taking ¢ = 0,1, 2. |

dtt

Next we analyze several expectations under the perturbed Gaussian distribution using
Lemma 21. The first three statements in Lemma 21 are adapted from Lemma 32 in Chewi
et al. (2021).

Lemma 22 Let ( € (1/5,1/4),d > 2048 and L > 0. Consider the one-dimensional

distribution m(z) = % exp (—%1‘2 + Wg(cos(dCLéx)), where the normalization constant

Z = [pexp (—%aﬂ + 2(1%@ COS(dCL%ZL‘)) dx. We have
(a) |3/%F — 1| < 44+ a- % exp (3%,
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(b) Epr[La?] —1 < d™4¢.

(¢)

By [cos(dSL32)] — id_%) < La1,

(d)

Proof

E,or [L%a; sin (dCL%mm < La,

(a) The normalizing constant Z is

_ L, 1 Cr1/2
Z_/Rexp< 5% +2d2€cos(dL x) | dx
01 ey Lo
= \/Z/Rexp< 2{ + 52 cos(d°€)

27 1
= \/ZE&VN(OJ) [exp (2d2< COS(dC§)>:|
(#) 1 +
27 1

where step (i) uses the transformation ¢ = v/Lz and step (i) introduces the remainder

term R; = exp (w%c cos(d*€)) —1— Qd%C cos(d*¢). By Lemma 21, the second term in
the last line satisfies

d=% exp <—%)
2

1
'nggng\/(o,l) [COS(dcf)H <

Since 1 4z < exp(r) < 1+ 2 + 22 for x € [~1,1], we have 0 < Ry < 1/(4d*). We
obtain

L
' Ly

The result now follows by 1/(1—z) < 1+2z and 1/(14+x) > 1—22 when z € (0,1/2).
(b) We write the expectation as

1 L 1
21 _ & 2 L2 C11/2
Epmr[L2?] 7 /RLQZ exp( 5% + 53¢ cos(d°L x)) dx
iy 1 /2w 9 1
= E fEwa(O,l) |:§ exp (2dQC COS(dgg)
@) 1 2w 1
= E ng'\/N(O,l) |:§2 (1 + 2d72< COS(dC&.) + R2>:|
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1 /2n
AN <1 * 2d2cE£~N (0.1) [5 COS(d%)} e [R2]>

where step (i) uses the transformation ¢ = v/La and step (i) introduces Ry as the
remainder term. Lemma 21 guarantees that the second term satisfies

Eenr0,1)[€ cos(d°€)]/(2d%¢) < exp (—d?¢/2) /2. The remainder term satisfies

E¢nro,1)[R2] < d=¢ /4 because exp(z) < 1+ z + 22 for € [~1,1]. Using the above
estimates and part (a), we obtain

1 _ 1 1 1 1 _
Eyr [La?] < (1 + 5d 4 d X exp (—2d2<>> <1 + 5 exp <—2d2<> + Zd 44)

1 1 1 1

< (12 z2g% L — g6 14+ —g 4 L g4

_<+2d +16d +32d —|—4d

<1+d7%,

where we use exp(x/2) > 1622 for > 20 with 2 = d%.
(c) Using a similar strategy as above, we obtain

Egr[cos(dC L2 )]

1 L 1
P Crl/2 _= - Crl/2
7 / cos(d°L*/“x) exp < 290 + 5% cos(d° L )) dx

@ 1 27 1

= - ngwN(O,l) [cos(dgf) exp <d2§ COS(dcg)ﬂ

@ 1 il ) cos(d°€) + ! cos?(d°€) + R
7 L E~N(0,1) 242¢ 3

- Z\/Z(EgNN(O 1) [cos(dcf)] 4d2€ + mE§~N(0,1) [cos(zd%)}
+ Een(0,1) [R3]>7

where step (i) uses the transformation ¢ = v/Lz and step (ii) introduces R3 as the re-
mainder term. We have |E¢.pr(o,1)[cos(d*€)| < exp(—d* /2) and |E¢.pr(0,1)[cos(2d5€)]|
< exp(—2d?¢) by Lemma 21. The remainder term satisfies ’E§~N(0,1)[R3]| < d=*/4
again because 1+z < exp(z) < 1+x+ 22 for z € [—1,1]. Plugging in these estimates
and using part (a), we obtain

1
Eyrr[cos(d LY ?z)] — Zd‘QC
1 1 1 1 1 1
14 —d™ +d7% ——d* ~d7% 4 —d7 4 2exp(—=d®) ) — Zd*¢
(+2 + exp | — 1 +4 +exp(2 ) 1
1 1 1 1 1
< Lomae L gooc) (Tgac  Lmac  1gmac) _ Lo
= ( MR 14Tt Ty 4
L
< —
= 5
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(d) We have
Ein [L%:): sin <dCL%$)}
1 L 1
=7 /RLéx sin (dCL%x> exp <—2$2 =+ 24% cos <dCLé:c>> dx

= ;\/?ngj\/(o,l) [«S cos(d°€) exp (2;% COS(d%))]

1 /2
— o\ B | eos(d€) + o cosla 9 + €

1 /2m 3
=\ <E§~N(0,1) [5 COS(dC@} + Een(o,1) |:4d2< COS(QdCf)] + Eeno,1) [ERS]> .

Applying Lemma 21 again, we obtain

-

’E&N(OJ) [5 COS(Qdcf)] ’ < 2d° exp (—2d2<>
2 p211/2 d—*
‘EfNN(OJ)[ER?’]l < EENN(O,I)K R3] < T

Plugging these estimates and using part (a), we obtain

Epor [L%xsin (ch%xH )
1+ ld_‘lc +d % exp —}d2< ds exp —ld2< + 2dS exp (—2d2<) + 1d_4<
2 2 2 4

1 1 1 1 1
<14 2d 4+ 2d77) (Zd* + —d ™4+ ~a %
= ( T3 G 6 " 96 1

1

2

where the last two steps use exp(z?2/2) > 62° for x > 5 with z = d°.

Finally we provide constant probability bounds for each term in the definition of F} in
Equation (75) using Lemma 22.

Lemma 23 Fiz ¢ € (é, 1),d > 2048 and L > 0. Assume that the d-dimensional random

variable x follows the distribution 7(x) o exp <§ 2?21 x[Qi] - 20%% Zle cos(dCL%m[i])>, we
have

(a)
P, {maxmxm > 4¢1ongd>] <
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(b)
Py [L 2]l > d + d* =% + 5\/&} <0.14
(c)
d 1 1 )
Py —cos(dS L2z ) > —=d' % + Zd' % 1 242 | < 0.14
Lz; cos( T)) > 1 +2 +2d2| <0
(d)
d 1 1 1 1
Pyor —cos(2dSLazy) + —d' %] > g 4 £ 242 | <0.28
[; s L) g =3 taer) s
(e)
d 1 1 ]_ 1
Py Lizsin(dsLza)| > —d % +2d2 | <0.2
[ZZ:; 23:[118111( 2.%[1]) =5 +2d2| <0.26
Proof

(a) See Lemma 33 in Chewi et al. (2021).

(b) By Lemma 22-(b), Epr[L ||z]|3] < d4d'~*. Note that = is L/2-strongly log-concave,
we deduce that for a random variable z drawn from 7,  — E[z] is a sub-Gaussian
random vector with parameter 1/2/L (see Proof of Lemma 1 in Dwivedi et al. (2019)).
Since @ +— V'L |||, is V'L Lipschitz, V'L ||z|l, — E[VL ||z|,] is a sub-Gaussian with
parameter v/2. Applying the Chernoff bound (see for example, Equation 2.9 in Wain-
wright (2019)), we have

Pove [VE ol > EIVE el +1] < exp (- ).

Take ¢t = 2 and use E[VL |z|,] < E[L Hx||§]%, we obtain
Pyr [L 2|2 > d + d' % + 5\/&} < exp(—2) < 0.14
(c) By Lemma 22-(c), Egr [— 25:1 cos(dCLl/zx[i])] < —d'72%¢ /4 +d'~%¢ /2. Each cosine

term is bounded in [—1,1]. Applying Hoeffding bound (see for example, Proposition
2.1 in Wainwright (2019)), we have
- t2d
exp|—— .
= exp 9

d d
Prr [— Z cos(dCLl/%v[i]) >E [— Z cos(dCLl/me)

i=1 i=1

+td

Take t = 2d~/2, we obtain

d
1, 1, 1
Pom [_ > cos(d L 2ap) > —2d' 72 + Sd T+ 2d3 | < exp(—2) < 0.14

i=1
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(d) The proof is the same as (c) using a two-sided Hoeffding bound.

(e) By Lemma 22-(d),

Epmn [Z?Zl L%x[i] sin (dgL%mm)} ‘ < d'=4¢/2. We also have

Var

d d
3 Liaysin (dCL%g;m)] <Ly Ea? <d+d %
i=1 i=1

Applying Chebyshev’s inequality, we obtain

d d1—4§
<4 996

Pyr
v 4d

d
> Lbag sin (dLiay) > %d1—4< +2d>
=1

B.1.2 HIGH PROBABILITY UPPER BOUND ON THE ACCEPTANCE RATE

In this section we bound each of the seven terms in Equation (76) with high probability,
which implies an high probability upper bound on the acceptance rate for MALA applied
m1. Before we do so, we first state the following two forms of the Bernstein’s inequality
(see Propostion 2.14 in Wainwright (2019) and Lemma 14.9 in Bithlmann and Van De Geer
(2011)) which we frequently use in the proof of the following lemma.

Let Xi,..., Xy be i.i.d. random variables satisfying |X; — E[X;]| < K. Then for any
€>0,

62

_2 (Z?:l Var[X;] + %KG) ()

d
P [ (Xi —E[X]) = 6] < exp
=1

Let X1,..., X, beiid. random variables satisfying E[| X — E[X]|] < (1K*~2/2, V¢ > 2.
Then for any € > 0,

d
P [Z (X; — E[X]) > d(Ke+ V2¢)| < exp(—de). (78)

=1

Lemma 24 Assume

1 1
0 (0 ),L>0,d9>max{210gd+6,10},h> (79)

720 Ld%*SG'

Given any fixred x € Fy defined in Equation (75). Let A;j(z,y) (1 <i < 7) be the decomposed

terms from the exponent of the acceptance rate in Equation (76), in which y ~ N(z —
hV f(x),2hly) and g =y —x + hV f(x). We have

! 1
E Az(x7y) < _7d49
; 32
=1
: g 40
with probability at least 1 — 10 exp (—d /16384).
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Proof Recall that ( = 1/4 — 6. All high probability bounds in the proof are stated with
respect to § := (y — x + hV f(x)) /vV2h ~ N(0,1;). Now we bound each A; separately.

(1) We write A; as

d

1 1 1 1
Ay = fp(z) — fr(y) = ; 5% cos(d L2 ay)) + 2d% cos(d°Lzyp) .
A1, A?rzb

By the definition of F} in Equation (75), we have

d 1 1 ,
Do Auyi € —gd T g d TN
=1

1 1
< _7d174< 7d174c
<3 + ol (80)
where we use the assumption (79) in the last line. Since y;) = 23 —hV f () +V 2k},
we have
M 1 O
% ) 2L ac
E (A2 < 5 exp (~Lhd®) < —=d
(i) 1
2
Var [ALQ’J S E [ALQ’Z'] S 4ch
(iv) 1
|A12] < 52¢

Inequality (i) follows from Lemma 21-(a). Inequality (ii) follows from the assump-
tion (79). (iii) and (iv) simply bounds cousine by 1.

With the above bounds for individual terms, applying Bernstein’s inequality (77) with
e = d'74¢ /128, we obtain

d
1 a4
Ao, > —d774| < - 81
; 120 = 64 = P T6384 (81)

P

Combine Equation (80) and (81), we have that for fixed = € Fy, the following bound
3

Ay < —=d 2

V< —d (52)

holds with probability at least 1 — exp(—d'~¢/16384).

(2) From the definition of F} in Equation (75), we have

Lllz|? < d+d"* + 5dz.

Since ||€||5 is Chi-square with d-degree of freedom, standard Chi-square tail bound
(Lemma 1 in Laurent and Massart (2000)) shows that

P2 < d— —d% e
<d-— —d'=%| < - :
Ielly < d =& ] = XP < 16384)
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Given that g = v2h&, we obtian

L*h* LK
de= (BB jaig - B 1o

L2 2 L2
< L7 (d +d 4 5d%) h <2hd - 32hd1—2<>

-2 4

< — — P

L2h2d1 2¢ + 1 L2h2d172ﬁ
128

| /\

32

5
— L2 2 11-2¢
LA (83)

holds with probability at least 1 — exp (—al1_4C / 16384). The last line makes use of
the assumption (79).

Since <L1/2:c,§> is HL1/2$H2—LipSChitZ with respect to &, it is sub-Gaussian with the

same Lipschitz constant. Using the tail bound for Lipschitz function of sub-Gaussian
random variables, we have

P “<L1/2 §>‘ > 1 dlﬂ <2e X <2e < d1_4c>
z,§)| = — <2exp | ————5 | <2exp | — ,
64 P R102L |22 P\ 16384

where we use the definition of F; and the assumption (79) to get L ||z||3 < 2d in the
last step. Now given that [A] < 3 <L%h% + L%h%> ‘<L%m,§>

, we have

Ba] < 5= (Lzhz +LEnE) X

1
<|-—Lh —LQhQ —I3n?) 4% 84
= <128 * 956 128 (84)

with probability at least 1 — 2exp (—d1_4< / 16384).
For (Vfp(x),g), from the definition of F} in Equation (75), we have

d
L
||pr($)H§ = Z 4d2€ sin (d LQIL‘[])
i=1
d
L
= Z 1% (1 - cos(2dCL2x[ })>

=1

Lra- x4 Ld 24( 16d1 2<+8d1 4<+2d2>

| /\

e
64 ’

| /\

4
1
2
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where the last step uses the assumption (79). Since (Vfp(x),g) is V2h ||V fp(z)||5-
Lipschitz with respect to &, it is sub-Gaussian with the same Lipschitz constant. We
have

i 3¢ B LdQ—GC/642 <_ d1—4§>
P (Ve (), g)] > VIR }szexp( o) =220 (-5
(85)

For <pr(y),g>, we have

d
B Sl (acrd
(Vir(y).9) = VIh ;1: TR (a<Lyy)

Ay

Applying Lemma 21, we can bound the moments of Ay 2 ; as follows

IE[Ag2:]] < Mexp( LthC) \ﬁd 2¢

E ||Ag2,; — E[A4,2,z']|q <E [QZ_l (\A4 2 i|€ +|E [A4,2,i]| )}

&l
<2t ( \% +|E[A4,2,i”€>
@, ((e_nu <1>5>
<2 — t|{ 5

22 2e
< o2
-2

Step (i) uses the assumption (79). Step (ii) uses the expected moments of the normal
distribution for the first term, and applies z exp(—x2) < (2¢)~V/2 for 2 = v/Lh to
bound the second term. Applying Bernstein’s inequality (78) with K = 2 and € =
d~% /12800, we have

dl—4{
Lhdl 2¢ / dl 5¢ dl*?)( < .
* (6400 30 =P\ 712800

(86)

P (VI > g

Combining (85) and (86), we obtain
1+ L?h? 1+ Lh
Ay = ‘< ( 5 >9> - <pr(y)7 5 g>‘
1 1
< o (L L202) VLhd' = 4+ = (1 + Lh)Lhd" ™2

6
1 1

14+ Lh) VLh | ———d" % 4 —d'~¢
T+ L) ( 12800 160

(i)
< i(1 + L*n?) < 4d 4 ¢ iLhd1_2C> -

i(1 + Lh)Lhd*=%

128 512
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1 1—a¢ , 1 1-2¢
+ g (1+Lh) <4d + g Lhd

I 1212 ) g4 —L —LQQ —L33 1-2¢
<16+32 th32 h>d el T asel Tt )4

(87)
with probability at least 1 — 3 exp (—al1_4C / 12800) Step (7) uses the assumption (79).
(5) By the definition of F in (75),

d 1
Lz
(Vip(@).2)| = | > 57w sin(d Lzay)
1=1
1 1-4¢ 1
< dT 2 (88)
We write (Vfp(y),x) as
d Ll
(VIp(y)o) =D ooei sin(dL2yp)

i=1

As;
By the definition of F} and the assumption (79),

1
L2 |ay| > ! 1
| < ! _ ¢) <« —¢ _ 2\ <« —2¢
E|Asil < 5 exp( Lhd )_2(10g(8d))2d exp( Lhd )_512d
L
Var [As ;] < 4d2cx[ll < 4 (log(8d)) d >

|As4] < 2 (log(8d))? d~°

Applying Bernstein’s inequality (77) with e = d'=2¢/512, we have

(101 2 o] <o (<50 )

Combining Equation (88) and (89), we get

8o = (Virta, (55 -5 ) 2) = (Vse. B 2~ L)

< (iL2h2d1—4C+L2h2d%> + (iL3h3d1—4C+L3h3d%>

1 1
grg Lhd T 4 g LA na
" 256 T 512

—
\/\@-
=

64L2h2d1 2<+6 L3K3d-2% 4

1 1
2 Lhd % 212412
556 hd + 13 hed

5
9
= —Lh+ ——L2h? L3h3 ) d' =%

(256 512 +64 (90)

with probability at least 1 — exp (—dl_4C / 4096) Step (7) uses the assumption (79).
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(6) By Definition of Fy (75), we have

9 L2 2
—Lh* ||V fp(x ||2 e ZSIH <dCL2x )

L%h? ¢
=gz Z (1 — €oS (Qd L2x[z])>
1 1 1 1
< —*L2h2d1_2< o 7L2h2d1_4< 7L2h2d1_6< 7L2h2d——2§
8 128 T 6 e
L o991 2¢ L o014 L 9,0 1 9¢
< = - i
8Lhd 128Lhd +512Lhd (91)
where the last step follows from the assumption (79).

(7) We decompose A7 into three parts.

I(1 = Lh)V fp(z) + Vip(y)l3 = (1 — Lh)? |V fp(x)|3 + 2(1 — Lh) (Vfp(x), Vfp(y))
+ VI3

Similar to previous analysis of |V fp(z)||3, we have

d d
L L 1
— IV fp(@)|? = —ZM% sin?(d'Laag) ==Y oz (1 —cos(ZdCLZxM))
=1 =1
1
Lpa-ac — Lpgroacy Ly e Ld"QC
T4 o1 * 32 *
1
L 1-2¢ L 1-4¢ 7[4 1—2C‘ )
d LA+ o Ld (92)

By Lemma 21 and the definition of F;, we have

d

(Vp(a), Vipl)) = 3 e sin(d Liayg) sin(d Loy)
=1

A7,

3
L2 ) L 2 , .
E|A71,4] < 1 ’x[¢]| exp (—Ld Ch) < L (log(8d))2 d=¢ exp (—Ld Ch) < ﬁLd ¢
L’ 2 -2
= 16d2<;:”[z} < LPd~* log(84d)
|A714] < L (log(8d))2 d¢

Var[Am’l-] <

Applying Bernstein’s inequality (77) with e = Ld'~%¢/1024, we have

1-4¢
P ||V 100, V) > s < o (- Sy ) (93)
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Similarly, we have

J d
L L 3
i= 1 i=1
A72;
L L 2¢ 1 —4¢
. — < a0
‘E[A7’2”] 102 | = ¢ exp (—2Lhd*) < 128
L2
A
Var[AZ, ] < 16d%<
L
|A7 94| < 12

Applying Bernstein’s inequality (77) with e = Ld'~%¢/128, we have

d1—4C
|19 e )l > gL+ frd ] e (1) o

From these three estimates (92), (93) and (94), we have

h
Ar = =71 = L)V fp(z) + VP)l3
< —iLhu — Lh)2d'=% — %Lh( — Lh)2d* + ——Lh(1 — Lh)?d*~2¢

2048
1 1
Lh(l+L 1-2¢ 1-2¢ 4 & ppal=4¢
+—1024 h(1+4 Lh)d TgLhd " + 5o Lhd
(=25 phtpen? - 2T ) a2y (g Lopaps) g
2048 8 2048 128 256

with probability at least 1 — 2exp (—d'~*¢/16384).
Finally, combining seven bounds in Equation (82), (83), (84), (87), (90), (91) and (95),

we obtain

7
1
_ LK 2,2 313\ 71-2¢
Z: + 5018 (=217Lh +136L°h> — T5L°h%) d

1
Lh L2h2 — 3R ) 4%
(32 D) 256
Q1 17
= 32 512

1
——Jt%
- 32 (96)

(1 — Lh)*d"%

with probability at least 1 — 10exp (—d'=1¢/16384) for y ~ N(z — hV f(z),2hl,). Step
(i) uses Lhd'™4¢ < d'~% /32 and L2h*d'~* < (Lhd'~* + L3h3d'~2) /64 by the assump-
tion (79), and throws all the other negative terms. [ |
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B.2 Proof of Lemma 15

We calculate the integral explicitly as follows.

[ ) gy [y () e (gt ()
1 m3h2 2
T VIrmeE P <2<1 +m2h2>>

/ 1+m2h2 1—|—m2h2< _ 1-—mh :E)Q P
\/ YT mene Y

3h2 2
Vi +m2h2 P (2(1 + m2h2)> ‘

Take Fh = {z : 2z € (—1/y/m,1/y/m)}, then my(Fs) € (1/2,3/4). We have

m2(y)Q2(y, v) m
/R27r2(i)dy < exp <§$2) <2, Vze€F;. (97)
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