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Abstract

We present tntorch, a tensor learning framework that supports multiple decompositions
(including CANDECOMP/PARAFAC, Tucker, and Tensor Train) under a unified interface.
With our library, the user can learn and handle low-rank tensors with automatic differen-
tiation, seamless GPU support, and the convenience of PyTorch’s API. Besides decompo-
sition algorithms, tntorch implements differentiable tensor algebra, rank truncation, cross-
approximation, batch processing, comprehensive tensor arithmetics, and more.
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1. Introduction

In many machine learning and data analysis tasks one is faced with multi-dimensional data
arrays. Tensors are a powerful tool to represent and handle such data, but often constitute
a bottleneck in terms of storage and computation. Tensor decompositions expand a tensor
into a set of separable terms. If the tensor has low rank (i.e., there are much fewer degrees
of freedom than tensor elements), then such a decomposition can dramatically reduce the
representation size (Kolda and Bader, 2009; Cichocki et al., 2016; Khrulkov et al., 2019).

Tensor decompositions play an increasingly important role in machine learning: they
are used to factorize neural network weights (Novikov et al., 2015; Gusak et al., 2019; Wang
et al., 2020; Idelbayev and Carreira-Perpinan, 2020; Kossaifi et al., 2020), to accelerate
learning and inference (Ma et al., 2019; Hrinchuk et al., 2019; Usvyatsov et al., 2021), to
impose priors that improve accuracy (Kuznetsov et al., 2019; He et al., 2022) and robust-
ness (Kolbeinsson et al., 2021), etc. For more applications of tensors in machine learning
see (Panagakis et al., 2021). Importantly, the distinction between the different classical de-
composition schemes has become blurred, as newer types of low-rank constraints and tensor
indexing schemes have gained popularity (Novikov et al., 2015; Khrulkov et al., 2019; Ci-
chocki et al., 2016; Usvyatsov et al., 2021). There exist multiple frameworks (Novikov
et al., 2020; Kossaifi et al., 2019) with emphasis on different aspects. We believe that more
than ever, tensor software must be flexible regarding the underlying tensor formats, while
exposing a natural and accessible interface to the user.

To this end, we introduce tntorch (github.com/rballester/tntorch), an open-source
Python package that abstracts the choice of format, while providing a wide range of
tools for tensor learning, manipulation, and analysis. Compared to similar recent libraries
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T3F (Novikov et al., 2020), TensorLy (Kossaifi et al., 2019), TedNet (Pan et al., 2021), Ten-
sorD (Hao et al., 2018), TensorNetwork (Roberts et al., 2019), and tt-pytorch (Khrulkov
et al., 2019), tntorch emphasizes an easy-to-use, decomposition-independent interface inher-
ited from PyTorch!. The package’s API is fully documented and features a score of tutorial
Jupyter notebooks (tntorch.readthedocs.io) across a variety of use cases.

2. Supported Tensor Formats

tntorch supports several decomposition models that are important in the context of machine
learning, including CANDEDOMP/PARAFAC (CP, Harshman, 1970), the Tucker decompo-
sition! (de Lathauwer et al., 2000), and the tensor train (TT, Oseledets, 2011). These
formats are encapsulated into a single class Tensor and share a common interface for all
supported operations, which in turn replicate the API of PyTorch as closely as possible.
Internally, the decomposition is stored as a low-rank tensor network: a graph whose nodes
are low-dimensional tensors and whose edges are tensor dimensions that may be contracted
together (Cichocki et al., 2016) by performing the corresponding operation (e.g., a matrix-
vector product). Tensors in tntorch can mix more than one format, e.g., one may attach
Tucker factors to TT cores, interleave CP and TT cores, or even blend all three formats in
various ways. See Fig. 1 for illustrative examples.
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Figure 1: Examples of tensor networks that can be assembled in tntorch. A square represents
a matrix, as used for CP factors, Tucker factors, and for the first and last cores of a TT}; a
circle is a 3D tensor and is used for internal TT cores; a dot is a 3D copy tensor (Biamonte,
2019), i.e., a super-diagonal tensor with ones along the diagonal.

In tntorch, every decomposition consists of a sequence of cores and, optionally, one or
more factors. All nodes of the resulting tensor network may also be accessed directly if
the user desires low-level control. By virtue of this abstraction, other tensor formats such
as INDSCAL, CANDELINC, DEDICOM, and PARATUCK2 (Kolda and Bader, 2009) can be
represented as Tensor objects, too. See documentation for details.

1. tntorch can be installed conveniently via the PyPI package manager (command: pip install tntorch)

2. The Tucker tensor is represented as a TT with arbitrary ranks, which has equal expressive power.
Furthermore, Tucker factors are implemented as standard unconstrained matrices, in contrast to other
implementations that often implement them as unitary/orthogonal matrices.
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3. Features and Operations

Learning Tensors. Given a data tensor, tntorch can fit a decomposition in multiple ways.
E.g., gradient descent is available out-of-the-box, thanks to PyTorch’s automatic differenti-
ation and the numerous optimizers it provides. It is very general, as it can be used to learn
incomplete tensors, tensors with constraints, or to add various loss terms. For the case
of learning TT tensors, a cross-approximation routine is provided that performs adaptive
sampling (Oseledets and Tyrtyshnikov, 2010). Other methods include TT-SVD (Oseledets,
2011), higher-order SVD and alternating least squares (Kolda and Bader, 2009) for the T'T,
Tucker and CP formats, respectively.

Tensor Arithmetics. The library supports tensorxmatrix and tensorxvector products,
element-wise operations, dot products, convolution, concatenation, mode reordering, padding,
orthogonalization, rank truncation, and more. These are useful for common use cases in ma-
chine learning: tensor completion; learning low-rank layers or compressing/approximating
existing layers; applying multi-linear operators; dimensionality reduction; etc. Advanced
element-wise functions such as /, exp, and tanh can be approximately computed via cross-
approximation (currently available for TT tensors). Besides these features, tntorch also
implements further, miscellaneous tools, such as: sensitivity analysis; Boolean algebra op-
erations; statistical moments; a smart reduction operator; sampling from TT-compressed
distributions; multi-linear polynomial expansions; etc.

Slicing and Indexing. Any Tensor may be accessed in several ways:

- Basic indexing via slices in the format start:stop:step and variants, as in t [: : -1].

- Fancy indexing via handcrafted, possibly irregular slices, e.g. by passing a list of
indices as in t[:, (0, 3, 4)].

- Indexing by NumPy arrays. For example, accessing an N-dimensional tensor by an
M x N NumPy matrix returns a 1D tensor with M elements.

- Insertion of dummy dimensions, as in t[None, :], or ellipsis, as in t[..., 3].

- Broadcasting is supported, i.e., operations will be repeated along one or more dimen-
sions when their sizes do not match. For example, if t is a 1D tensor, then t[:,
None] + t[None, :] is a square matrix.

Such read operations match the behavior of PyTorch tensors almost exactly®. They are
performed in the compressed domain and return a compressed Tensor. Moreover, tensors
can be edited using the expected syntax, as in al:, 0, :] = 2 * b[0, :, :] or t[(0,
2), ..., -1, ::3] += 1. All read/write operations preserve differentiability, a behavior
at present unique to tntorch, to the best of our knowledge.

Batched Tensors. Batch processing is an important capability to increase the efficiency
of tensor-based learning. Besides being differentiable and GPU-ready, decomposition and
arithmetic operations in tntorch work on batches of tensors in any format; internally, a batch
is represented as an extra dimension in every node of the tensor network. As an example,
we can decompose multiple tensors into TT cores at once using the TT-SVD algorithm (Os-
eledets, 2011), with linear algebra operations applied in batches. See Sec. 4 for a benchmark.

Tensor Train Matrices. The TT matrix decomposition has recently become a partic-
ularly relevant format, because it is, among others, well-suited to compress neural weight

1. Interleaving fancy and basic indices is not supported, as it is in general computationally expensive.
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Figure 2: Runtimes of four operations with varying tensor sizes (average time per processed
object, over 10 runs). The batch size is set to B = 32.

layers (Novikov et al., 2015). Unlike standard tensors, a T'T matrix has a different indexing
scheme, with two sets of row and column indices. As a consequence, T'T matrices come
with a distinct set of computation rules for standard operations such as matrixxvector
multiplication. Therefore, they have their own class TTMatrix, with a separate API.

4. Performance

We benchmark tntorch’s running times across four representative operations: TT decom-
position using the TT-SVD algorithm, cross-approximation, and two arithmetic operations
that can be achieved by direct manipulation of TT cores (Oseledets, 2011). We test four
modalities: CPU vs. GPU, and in both cases for loop vs. vectorized batch processing. As a
baseline, we also compare with the Python library ttpy (Oseledets, 2015), which is written
in NumPy and FORTRAN and also implements these four operations. All experiments use
randomly initialized tensors of TT-rank R = 20, physical dimension sizes I = 15,...,45,
and number of dimensions N = 8 (except for the TT-SVD experiment, where N = 4).
We used PyTorch 1.13.0a0+git87148f2 (compiled from source) and NumPy 1.22.4 on an
Intel(R) Core(TM) i7-7700K CPU with 64Gb RAM and an NVIDIA GeForce RTX 3090
GPU.

Results are reported in Fig. 2. Note that the GPU is more performant on both batch and
non-batch modes. Also, tntorch scales better (or similarly, for cross-approximation) than
the baseline w.r.t. the tensor size, and is thus a good fit for data-intensive ML applications.

5. Conclusions

We have introduced tntorch, a PyTorch-powered library that unifies multiple efficient tensor
formats under the same interface, together with a rich suite of learning and analysis routines.
The library comes with many standard features of modern machine learning frameworks,
including auto-differentiation, GPU and batch processing, and advanced indexing. tntorch
imitates the look and feel of standard PyTorch tensors, while making the power of low-rank
tensor decompositions accessible for machine learning.
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