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Abstract

Rankings and scores are two common data types used by judges to express preferences
and/or perceptions of quality in a collection of objects. Numerous models exist to study
data of each type separately, but no unified statistical model captures both data types
simultaneously without first performing data conversion. We propose the Mallows-Binomial
model to close this gap, which combines a Mallows φ ranking model with Binomial score
models through shared parameters that quantify object quality, a consensus ranking, and
the level of consensus among judges. We propose an efficient tree-search algorithm to
calculate the exact MLE of model parameters, study statistical properties of the model both
analytically and through simulation, and apply our model to real data from an instance
of grant panel review that collected both scores and partial rankings. Furthermore, we
demonstrate how model outputs can be used to rank objects with confidence. The proposed
model is shown to sensibly combine information from both scores and rankings to quantify
object quality and measure consensus with appropriate levels of statistical uncertainty.

Keywords: preference learning, score and ranking aggregation, Mallows model, A* algo-
rithm, peer review

1. Introduction

Preference data is common to our world: Citizens express preferences through voting in
elections, critics rank movies when creating annual top-10 lists, judges score figure skaters
in the Olympics using numerical scales, wine critics use Likert scales with words such as
“mediocre” to rate wines, consumers use stars to convey the quality of a product, and so on.
As can be seen in these examples, preferences appear in different forms: most commonly
as rankings or scores. Rankings denote a relative order of objects from best to worst,
potentially allowing ties; ranks refer to the specific place of each object in the ranking. Scores
are numerical values given to objects to denote their quality. Scores provide more granular
information than rankings through the relative distance between scores and the rankings
they induce. A number of existing models (Mallows, 1957; Fligner and Verducci, 1986;
Rost, 1988) have been studied to model rankings and scores individually. In these models,
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a natural goal is to aggregate preferences into a consensus ranking, which expresses the
overall preferences of those providing the rankings, whom we call judges. Statistical models
may additionally incorporate information regarding the uncertainty of those rankings, or
the level of global or local consensus among the judges.

When both rankings and scores are available, incorporating the additional information
may improve accuracy of preference aggregation. This is partly because rankings and scores
provide distinct types of information. Scores allow judges to express their overall percep-
tions on a numerical scale and make relative comparisons implicitly. However, some judges
may be naturally more lenient or harsh (e.g., one judge’s 5/10 may be another’s 7/10), or
may become cognitively burdened by the number of scores they need to provide and stop
expressing internally consistent scores (Johnson, 2008; Wang and Shah, 2018). For these
reasons, scores have sometimes been described as highly subjective and inconsistent in dif-
ferent bodies of literature (Biernat, 1995; Biernat and Kobrynowicz, 1997; Biernat et al.,
2009; Mallard et al., 2009). On the other hand, rankings are thought to provide objective
comparisons between ranked objects because they require the judge to make explicit com-
parisons that are scale-free (Biernat, 1995). For example, we can be more confident that a
judge truly perceives object A above object B if A is ranked above B, which may not be
true for scores. However, rankings force demarcation even when it does not exist and lack
granularity in comparisons (e.g., first and second place are nearly tied, yet third place is
far behind). As can be seen, scores and rankings provide information that can be thought
of as complementary. Therefore, regardless of the amount of each data type present (or
missing), incorporating both types into a single model has been suggested as a potential
“best of both worlds” approach to solve an existing false dichotomy by incorporating the
benefits of each preference data type (Shah et al., 2018; Ovadia, 2004).

Rankings and scores arise simultaneously in a number of scenarios. For example, in
peer review, judges may score proposals numerically and subsequently rank their top few
favorites. Another example arises during information retrieval when relevancy criteria from
different sources and types—such as from an algorithmic database search for relevant doc-
uments or from human judgment—are available (Hsu and Taksa, 2005). In the former
example, the same judges provide both kinds of information, while in the latter, one system
may provide rankings and another may provide scores. Either way, it is unclear how the
information from each preference data type should be utilized. Renda and Straccia (2003)
suggest that neither ranking or score data is uniformly better than the other when analyzed
alone (in the context of metasearch), and many authors have argued that using both is
better (Belkin et al., 1995; Macdonald and Ounis, 2009; Lee, 1997; Balog et al., 2012). To
incorporate both sources of information, conversion of data from one type to another is com-
mon (Hsu and Taksa, 2005; Bhamidipati and Pal, 2008; Li et al., 2009; Shah et al., 2018).
These methods will be discussed in Section 2. Yet, to the best of our knowledge, there are
no statistical models that combine information from both rankings and scores without data
conversion. Although convenient, data conversion may result in a loss of information or
affect results depending on the chosen conversion process, which is suboptimal.

In this paper, we propose a unified model to capture information from both rankings and
scores when applied to a finite collection of objects. Conditional on the objects’ true under-
lying qualities, Binomial scores and Mallows rankings have independent error distributions
that reflect the distinct tasks of formulating scores and rankings and allow for judges to

2



A Unified Model for Rankings and Scores

be internally inconsistent when expressing different types of preferences. Model parameters
can be used to quantify both the absolute and relative qualities of the objects, identify a
consensus ranking, and measure the strength of consensus using an existing metric in the
literature. We formulate exact and approximate algorithms to find maximum likelihood es-
timators of the model parameters and demonstrate regimes in which each may be useful. In
addition to simulation studies, we apply the model to real data from grant panel review in
which scores and rankings were collected from the same judges. We show how the estimated
parameters can be used to learn the rank ordering of grant proposals and the associated
statistical uncertainty to make funding decisions.

The rest of this paper is organized as follows. After discussing related work in Section 2,
we state our proposed model and describe its statistical properties in Section 3. We propose
exact and approximate frequentist estimation algorithms in Section 4, and compare their
speed and accuracy on simulated data in Section 5. We illustrate the model application
on real ranking and score data collected during a Fall 2020 grant panel review cycle at
the American Institute of Biological Sciences (AIBS) in Section 6. We conclude with a
discussion in Section 7.

2. Related Work

A variety of methods can be used to aggregate ranking data alone, such as the Bradley-Terry,
Plackett-Luce, and Mallows models (Bradley and Terry, 1952; Plackett, 1975; Mallows,
1957). The latter model and its extensions have been particularly well-studied in recent
decades. In a seminal work, Fligner and Verducci (1986) state statistical qualities of the
Mallows θ and φ models, which are based on the correlation coefficients of Spearman (1904)
and Kendall (1938), respectively. The Mallows φ model has received particular attention
as a natural fit in many ranking applications. Henceforth referred to simply as the Mallows
model, it is a location-scale probability distribution that measures distance between rankings
using Kendall’s τ , which can be defined as the minimum number of adjacent swaps between
objects needed to convert one ranking into another, or, equivalently, as the number of
discordant object pairs between two rankings (as defined in Equation 2). Many extensions
exist, such as the Generalized Mallows model which permits unique scale parameters at
each ranking level (Fligner and Verducci, 1988) and the Infinite Generalized Mallows model
which aggregates rankings over infinite collections of objects (Meila and Bao, 2010).

For rankings, we focus on the original Mallows model and its partial-ranking counterpart
(also proposed in Fligner and Verducci, 1986). These distributions can model the following
situation: Suppose a judge scores a collection of J objects and provides a top-R ranking,
R ≤ J . The ranking is called partial when R < J and complete when R = J . We denote
his/her ranking by Π = (π(1), . . . , π(R)), where r ∈ {1, . . . , R} is the rank of object π(r)
(i.e., π(r) is the rth most preferred object). If an object is not ranked, it is assumed to be
perceived worse than any ranked object; any pair of unranked objects cannot be compared.
Then, for fixed R, the probability of observing a specific ranking π of length R under the
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Mallows model with consensus ranking π0 of length J and scale parameter θ is

P [Π = π|π0, θ] =
e−θdR,J (π,π0)

ψR,J(θ)
(1)

dR,J(π, π0) =
∑

1≤j1<j2≤J
I{j1 ≺π j2 and j2 ≺π0 j1} (2)

ψR,J(θ) =

R∏
j=1

1− e−θ(J−j+1)

1− e−θ
, (3)

where dR,J(·, ·) is the Kendall distance between rankings of length R and J , respectively,
assembled over the same set of J objects, and the notation j1 ≺π j2 means that object j1
is ranked strictly better in π than object j2 (pairs of unranked objects do not satisfy this
operator). The model is exponential; the consensus ranking π0 is the modal probability
ranking. When θ is large, the distribution of rankings is concentrated around π0, and as θ
approaches 0, the distribution approaches a uniform over the permutations of length R.

On the other hand, it is rare for scores to be modeled statistically. Instead, simple
summary statistics such as the mean or median are commonly used (Lee et al., 2013; Tay
et al., 2020; National Institutes of Health, 2021). Scores often arise from an ordinal and
equally-spaced set with minimum and maximum allowable values. These qualities make
a number of common univariate probability distributions inappropriate (e.g., continuous
distributions, Poisson, geometric, etc.). In this case, the allowable set of scores can be
linearly transformed into the set of integers {0, 1, . . . ,M}. The Binomial distribution is
therefore a theoretically reasonable and convenient choice as a well-known and unimodal
distribution with a natural mean parameter. We model the score, X, for any given object
using the Binomial(M,p) distribution,

P [X = x|M,p] =

(
M

x

)
px(1− p)M−x, (4)

where we refer to the binomial probability p as the object’s true underlying quality and Mp
as the expected score.

Neither the Mallows nor the Binomial distribution can model rankings and scores to-
gether. In the social and health sciences, the literature on mixed-outcomes includes proposed
methods for combining preference data of different types via conversion, such as converting
rankings into scores or scores into rankings prior to performing a statistical analysis (Thur-
stone, 1927; Salomon, 2003; Kim et al., 2015; Venkatraghavan et al., 2019). The field of
information retrieval within computer science also includes a growing literature on utilizing
both ranking and score data in the context of data fusion (Fagin, 2002; Hsu and Taksa,
2005; Bhamidipati and Pal, 2008; Li et al., 2009). Although some authors have argued that
many data fusion methods can be theoretically justified as probabilistic since they often
estimate likelihoods of relevance during information retrieval (Belkin et al., 1995), most
models are not explicitly considered as such. Across fields, a number of authors suggest
that using both rankings and scores when available is generally better at eliciting accurate
preference aggregation than using any single data type individually (Belkin et al., 1995; Lee,
1997; Renda and Straccia, 2003; Ovadia, 2004; Macdonald and Ounis, 2009; Balog et al.,
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2012; Shah et al., 2018). Despite these sentiments, the existing literature lacks a unified
statistical model for ranking and score preference data. In the next section, we propose the
first such model.

3. A Statistical Model for Rankings and Scores

We now propose the Mallows-Binomial model and then discuss its statistical properties.

3.1 The Mallows-Binomial Model

Suppose a judge assesses J objects using both rankings and scores. We assume that each
object j ∈ {1, . . . , J} has a true underlying quality, pj ∈ [0, 1]. We use the convention that
lower values of pj denote better quality. Let X = [X1 X2 . . . XJ ]T be a vector of integer
scores, where each Xj ∈ {0, 1, . . . ,M} is the score assigned to object j. Let Π be the top-R
ranking of the objects, R ≤ J , such that no ties are allowed. Π is called a partial ranking
when R < J and a complete ranking when R = J . Rankings need not align with the order
of the scores.

We propose a joint probability model for the judge’s ranking Π and scores X,

P
[
Π = π,X = x|p, θ

]
=
e−θdR,J (π,π0)

ψR,J(θ)
×

J∏
j=1

(
M

xj

)
p
xj
j (1− pj)M−xj (5)

p = [p1 . . . pJ ]T ∈ [0,1]J , π0 = Order(p), θ > 0,

X1, . . . , XJ ,Π are all mutually independent,

where dR,J(·, ·) is the Kendall’s τ distance between two rankings and ψR,J(θ) is the normal-
izing constant of a (partial) Mallows model, as seen in Equation 3. We refer to this model
as the Mallows-Binomial(p, θ) distribution.

A key aspect of this model is the incorporation of two distinct types of preference data.
It can be seen directly from Equation 5 that our model corresponds to J + 1 joint obser-
vations per judge, with J scores and one (partial) ranking. The Mallows-Binomial model
incorporates information from both data types without conversion to learn object quality
parameters, pj , j = 1, . . . , J . The joint likelihood ties together the scores and ranking
by assuming that the modal consensus ranking of the Mallows component is the same as
the ranking induced by the Binomial score parameters, pj , j = 1, . . . , J . This formulation
naturally reflects the relationship between scores and rankings given each object’s true un-
derlying quality and the order of all objects induced by their true underlying qualities. The
parameter θ is the consensus scale parameter, which can be interpreted exactly as in the
Mallows model with respect to the rankings: Large values of θ suggest strong ranking con-
sensus among judges. As θ decreases to 0, the model approaches a uniform distribution over
the possible rankings. The Mallows-Binomial model constitutes a proper probability distri-
bution as the product of J + 1 independent component distributions given the parameters
(p, θ).

The Mallows-Binomial model does not assume that each ranking is of the same length,
that the scores and ranking of each judge align, or even that the same judges provide both
rankings and scores. The only assumption is that both rankings and scores reflect the ob-
jects’ true underlying qualities. Inconsistent preferences arise in the peer review context
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considered in Section 6. In our grant peer review data, judges first score objects (grant pro-
posals) and openly share their scores during a panel discussion, and then provide a separate
partial ranking after the discussion of all objects is completed. The partial ranking is made
in private, potentially leading to changes in perception of quality. Inconsistent preferences
may also arise when scores and rankings are provided by different sets of judges. For exam-
ple, in database search or information retrieval, relevancy criteria used by algorithms may
arise from completely separate systems, such as when one system (e.g., a machine learning
algorithm) provides numerical scores and another (e.g., a human judge) ranks the most
relevant objects. Such situations do not affect estimation or interpretation of estimated
parameters; our model can still capture distinct preferences.

3.2 Statistical Properties

3.2.1 Identifiability

We prove that the Mallows-Binomial(p, θ) model is identifiable via Proposition 1.

Proposition 1 Let M , J , and R be fixed and positive integers such that R ≤ J . Then the
Mallows-Binomial(p, θ) model is identifiable.

Proof Let Pθ,p denote the probability distribution of scores x and rankings π under a
Mallows-Binomial(p, θ) model. Let θ1, θ2 > 0 and p1, p2 ∈ [0, 1]J such that Pθ1,p1 = Pθ2,p2 .
Then,

Pθ1,p1 = Pθ2,p2

⇐⇒ e−θ1dR,J (π,Order(p1))

ψR,J(θ1)

J∏
j=1

p
xj
1j (1− p1j)

M−xj =
e−θ2dR,J (π,Order(p2))

ψR,J(θ2)

J∏
j=1

p
xj
2j (1− p2j)

M−xj

⇐⇒ 0 =
(
θ2dR,J(π,Order(p2))− θ1dR,J(π,Order(p1))

)
+ log

ψR,J(θ2)

ψR,J(θ1)
+

J∑
j=1

[
xj log

p1j
p2j

+ (M − xj) log
1− pj1
1− pj2

]
.

For each j = 1, . . . , J , and for any arbitrary xj , the expression xj log
p1j
p2j

+(M−xj) log
1−pj1
1−pj2 =

0 if and only if p1j = p2j . Thus, for any arbitrary collection x1, . . . , xJ , the final sum
is 0 if and only if p1 = p2. Continuing under the assumption that p1 = p2, we have
Order(p1)=Order(p2) and thus,

Pθ1,p1 = Pθ2,p2 ⇐⇒ 0 = dR,J(π,Order(p1))(θ2 − θ1) + log
ψR,J(θ2)

ψR,J(θ1)

which for any arbitrary π is 0 if and only if θ1 = θ2. Therefore, the Mallows-Binomial model
is identifiable.
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3.2.2 Bias and Consistency

Bias and consistency of maximum likelihood estimators (MLE) in the Mallows and Bino-
mial distributions is a natural starting point to examine bias and consistency of the MLE
in the combined model. Tang (2019) demonstrated that in the Mallows model, the MLE
π̂0 of the consensus ranking π0 is consistent whereas its bias is difficult to quantify due to
the categorical nature of the parameter, and θ̂ is biased upward for any number of samples
but consistent as the number of judges, I, increases to infinity. As a univariate exponen-
tial family, p̂ in a Binomial(M,p) distribution with M known is unbiased and consistent.
Therefore, we expect Mallows-Binomial(p, θ) MLEs p̂ and θ̂ to be consistent but potentially
biased.

It is straightforward to prove that θ̂ is biased upward since θ̂ =∞ whenever all rankings
are identical to π̂0 = Order(p̂), which occurs with positive probability for any θ ∈ (0,∞).
However, excluding such situations, bias is difficult to demonstrate. An illustration of
minimal but present bias can be found in Appendix A. On the other hand, Proposition 2
gives consistency of the MLEs (p̂, θ̂) in the Mallows-Binomial model.

Proposition 2 Suppose M , J , and R are known and let θ ∈ (0,∞) and p ∈ (0, 1)J .
Let (X,Π)I denote a sample of I independent and identically distributed samples from a
Mallows-Binomial(p, θ) distribution, and (p̂, θ̂)I be the maximum likelihood estimators based

on that sample. Then, (p̂, θ̂)I
p→ (p, θ).

A technical proof of Proposition 2 is relegated to Appendix B.
Since the magnitude of bias and the rate of convergence are challenging to derive

analytically, we explore these concepts through simulation. We ran simulations for dif-
ferent values of the model constants: the number of judges I ∈ {5, 20, 80}, maximum
integer score M ∈ {10, 20, 40}, number of objects J ∈ {6, 12, 18}, and size of ranking
R ∈ {6, 12, 18|R ≤ J}. Then, for each unique combination of I, M , J , and R, we performed
20 simulations for each value of θ ∈ {1, 2, 3}, where in each simulation we sampled a new
object quality vector p from a Uniform[0, 1]J . After examining results separately for differ-
ent values of I,M, J , and R, we noticed minimal differences based on M or R. Therefore,
we present aggregated results for given I and J in Figure 1.

These simulations indicate that model parameters appear unbiased and consistent in I.
The parameters are at worst minimally biased and exhibit estimation uncertainty similar
in scale to that when estimating Binomial probabilities or Mallows scale parameters in
independent models, even for modest numbers of judges, I.

3.2.3 Standard Errors

We propose estimating standard errors via the nonparametric bootstrap (Efron and Tibshi-
rani, 1994). It can be challenging to prove the asymptotic validity of bootstrap estimators
in a complex setting such as this, and such results will not be provided here. However,
the consistency of the MLEs (p̂, θ̂) in tandem with the asymptotic normality of the estima-
tors p̂ in Binomial models and θ̂ in standard Mallows models (Fligner and Verducci, 1986)
suggests the bootstrap will be valid in the Mallows-Binomial model (Pearce and Erosheva,
2022). Due to the presence of J+1 parameters, we recommend a relatively large number of
bootstrap samples in order to obtain a proper empirical distribution of the estimators. Due
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Figure 1: Simulated bias and consistency of p̂ (left) and θ̂ (right) in Mallows-Binomial model
across different values of I and J . Red dotted lines represent perfect estimation
accuracy. Results are aggregated over M and R; the right panel excludes cases
where all sampled ranking data was uniform (θ̂ =∞).

to the constrained parameter domains, we suggest constructing confidence intervals for p̂
and θ̂ using a percentile-based approach rather than one based on normality assumptions.
As in the case of bias and consistency, analytic results for calculating standard errors are
challenging and beyond the scope of this paper.

Assessing uncertainty in the estimated consensus ranking is paramount to many prefer-
ence aggregation tasks, such as in the grant panel review application in Section 6. However,
bootstrapped confidence intervals for p̂ and θ̂ do not directly provide confidence intervals for
the estimated consensus ranking of objects, π̂0. To create confidence intervals for consensus
rankings, we again propose using the nonparametric bootstrap. Specifically, for each boot-
strap sample and the associated MLE, the order of the estimated object quality parameters
can be treated as one observation in the empirical distribution of the estimated consensus
ranking. We can subsequently form confidence intervals from the empirical distribution in
a straightforward manner. Conveniently, the same bootstrap samples used when creating
confidence intervals for p̂ and θ̂ may be used again here for computational efficiency.

4. Estimation

Analytic solutions for the maximum likelihood estimator (MLE) of a Mallows distribution
do not exist. Even more, finding the MLE is an NP-hard problem (Meila et al., 2012).
Difficulty arises from the discrete consensus ranking, which may be one of J ! unique pos-
sibilities. Although the Mallows-Binomial model contains J + 1 continuous parameters,
(p, θ) ∈ [0, 1]J × R>0, the discrete order of p affects the likelihood. Thus, frequentist esti-
mation of the Mallows-Binomial model is both a continuous and discrete problem.
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The discrete aspect of estimation in the Mallows-Binomial model allows us to leverage
existing Mallows model estimation algorithms. As we will demonstrate, the inclusion of
scores in the proposed model generally speeds up estimation as scores provide information
on the strength of differences in object qualities, beyond their induced ranking. Still, exact
computation of the MLE is difficult, or even intractable, as the number of objects increases.
In this section, after some preliminaries, we propose exact and approximate algorithms to
estimate the Mallows-Binomial MLEs. All algorithms are implemented in the R package
rankrate (Pearce, 2022), which is publicly available on CRAN.

4.1 Preliminaries

Suppose I judges assess a collection of J objects using integer scores in the range {0, 1, . . . ,M}
and rankings of length R, such that R ≤ J , where M , J , and R are all known and fixed
integers. We assume that each judge’s ranking and scores are drawn independently from
the same Mallows-Binomial(p, θ) distribution, where p and θ are unknown and will be esti-
mated via the method of maximum likelihood. Let π0 = Order(p), Π = {Πi}i=1,...,I denote

the judges’ rankings and X = {Xij}j=1,...,J
i=1,...,I denote the judges’ scores.

We begin by stating a useful property of the Kendall distance: For any two specific
rankings π1, π2 of length R and J , respectively, the Kendall distance can be written as

dR,J(π1, π2) =
R∑
j=1

Vj(π1, π2), (6)

where V1(π1, π2) is the number of adjacency swaps needed to place the first object of π1 in
the first position of π2, V2(π1, π2) is the number of additional adjacency swaps needed to
place the second object of π1 in the second position of π2, and so on (Fligner and Verducci,
1986). Note that each Vj ∈ {0, . . . , J − j}.

Then, the joint loglikelihood of the scores X and rankings Π is,

`(p, θ|X = x,Π = π) = log
I∏
i=1

[
e−θ

∑R
j=1 Vj(πi,π0)

ψR,J(θ)

J∏
j=1

(
M

xij

)
p
xij
j (1− pj)M−xij

]

=
I∑
i=1

[
− θ

R∑
j=1

Vj(πi, π0)− logψR,J(θ)

+

J∑
j=1

[
log

(
M

xij

)
+ xij log pj + (M − xij) log(1− pj)

]]
.
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The maximum likelihood estimators, (p̂, θ̂), are therefore,

(p̂, θ̂) = arg max
p,θ

I∑
i=1

[
− θ

R∑
j=1

Vj(πi, π0)− logψR,J(θ)

+
J∑
j=1

[
xij log pj + (M − xij) log(1− pj)

]]

= arg min
p,θ

{
θ

R∑
j=1

V j

}
+

{
logψR,J(θ)

}
+

{
J∑
j=1

xj log
1

pj
+ (M − xj) log

1

1− pj

}
≡ arg min

p,θ
f(p, θ), (7)

where V j = I−1
∑I

i=1 Vj(πi, π0) and xj = I−1
∑I

i=1 xij . As no analytic solution exists, the
function f within Equation 7 will be referred to interchangeably as a “cost” or “objective”
function to be minimized via numerical optimization.

4.2 Exact Algorithms based on A*

The MLE (p̂, θ̂) induces an ordering of the true underlying object qualities, π̂0 = Order(p̂).
To find the MLE, we flip the problem around. Instead of optimizing over p and θ directly,
we first obtain π̂0 and then optimize for p̂ and θ̂ under the constraints implied by π̂0 on p̂.

Mandhani and Meila (2009) and Meila et al. (2012) observed for the Mallows model
that π̂0 could be estimated exactly using an A* algorithm. A* is a standard graph traversal
algorithm developed by Hart et al. (1968). Given a graph, A* finds the shortest path
between a starting node and any terminal node. The algorithm requires a cost function that
measures the exact cost to get from the starting node to any other node, and a heuristic
function that estimates the remaining cost from any node to the nearest terminal node. The
heuristic function is called admissible when it guarantees a lower bound on the remaining
cost. A* provably yields the shortest path when the heuristic is admissible. A trivial,
admissible heuristic always returns 0, but results in an inefficient graph search. Oppositely,
a maximal or near-maximal (“tight”) admissible heuristic may reduce the number of nodes
traversed during the search but be burdensome to compute and slow the overall algorithm.

A* algorithms traditionally define separate cost and heuristic functions but these func-
tions are always used together (Hart et al., 1968). Thus, at each node the algorithm sums
the cost and heuristic functions to lower bound the total cost possible given the current
node. Due to the interdependent nature of the model parameters, we use an equivalent
method of defining a single, admissible total cost heuristic function which outputs a guar-
anteed lower bound on the total cost possible at any node in the graph. In other words,
this single function is the sum of the usual cost and heuristic functions.

We propose two A* algorithms to calculate the exact MLE of the Mallows-Binomial
model. Both algorithms use the same graph as in Mandhani and Meila (2009) and Meila
et al. (2012) but differ based on their admissible total cost heuristic functions; the first is
crude but fast to compute, the second is tight but slow. We compare their overall speed in
Section 5.
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Graph

We define the graph G as a tree that progressively adds one object to the ranking as you
move down its branches. To specify a single starting node, we let the zeroth layer of G be
empty. In the first layer, there is a node for each object in the collection. Traversing to any
specific node in the first layer constrains the corresponding object to have the lowest-valued
quality parameter (but does not specify any relationships among the remaining objects).
For example, at node n = (1) when J = 3, the quality parameters are required to satisfy
p1 ≤ p2 and p1 ≤ p3, but no relationship is specified between p2 and p3. Subsequent layers
are successively formed from each node by adding a unique branch for each object not yet
in the path to the node. Nodes in the (J − 1)th layer are terminal as the last object is
implied. For example, when J = 3 the node n = (3, 2) is terminal as it implies the complete
ordering of objects (3, 2, 1). An example search graph when J = 3 is shown in Figure 2
(adapted from Mandhani and Meila (2009)).

∅

1

1,2 1,3

2

2,1 2,3

3

3,1 3,2

Figure 2: Graph for A* Search Algorithm with J = 3 objects.

Crude Total Cost Heuristic

Before stating our first total cost heuristic, we define a useful quantity based on rankings
only: Let Q be a J × J matrix such that each entry Quv, u, v ∈ {1, . . . , J}, is

Quv =

∑I
i=1 I{object u is ranked strictly higher than object v in πi}

I
(8)

When u = v, it follows that Quv = 0. If a comparison between objects cannot be
deduced from any given ranking (due to partial rankings), we define the corresponding
term in the numerator to be zero but do not change the denominator. Thus, Quv +Qvu = 1
whenever a strict ordering can be deduced between objects u, v for all judges and is less
than one otherwise. We are now ready to define the crude total cost heuristic.

Definition 3 (Crude Total Cost Heuristic) Let n ∈ G such that n = (n1, . . . , nk), 1 ≤
k ≤ J − 1, where n1, . . . , nk indicate unique objects in the collection {1, . . . , J}. Then, the
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crude total cost heuristic, gc(n) : G→ R, is

gc(n) =
{
θ̂nL

}
+
{

logψR,J(θ̂n)
}

+
{ J∑
j=1

xj log
1

p̂nj
+ (M − xj) log

1

1− p̂nj

}
L =

( ∑
v∈{1:k}

u∈{(v+1):J}

Qnunv

)
+
( ∑
u,v∈{(k+1):J}

min(Qnunv , Qnvnu)
)

θ̂n = arg min
θ

[
θL+ logψR,J(θ)

]
p̂n = arg min

p

[ J∑
j=1

xj log
1

pj
+ (M − xj) log

1

1− pj

]
s.t. pn1 ≤ · · · ≤ pnk , pnk ≤ pnl , l > k.

The crude total cost heuristic may be seen as an extension of the quantity L from Meila
et al. (2012). We prove that gc is admissible in Proposition 4.

Proposition 4 Under the conditions of Definition 3,

gc(n) ≤ arg min
p,θ

f(p, θ) such that pn1 ≤ · · · ≤ pnk , pnk ≤ pnl , l > k

and therefore gc(n) is admissible.

Proof gc(n) consists of three terms which can each be mapped to a unique term in f . We
prove the lower bound by proving (a) the first and second terms of g are a lower bound
on the corresponding terms in f , and (b) the third term of g is a lower bound on the
corresponding term in f .

(a) We first prove that L ≤
∑R

j=1 V j . Following closely the logic of Mandhani and Meila
(2009),

L =
∑

v∈{1:k}
u∈{(v+1):k}

Qnunv +
∑

u,v∈{(k+1):J}

min(Qnunv , Qnvnu)

=
∑

j∈{1:k}

V j +
∑

u,v∈{(k+1):J}

min(Qnunv , Qnvnu)

≤
∑

j∈{1:k}

V j +
∑

j∈{(k+1):J}

V j

=

R∑
j=1

V j

The second line above holds by definition of V j and the third line holds since one
of Qnunv , Qnvnu must appear in the expression

∑
j∈{(k+1):J} V j . The fourth and final

line holds since each V j = 0 when j > R definitionally. We complete (a) by again

referencing Mandhani and Meila (2009), who proved that given L, θ̂n lower bounds
the first two terms of f .
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(b) Since p̂n is defined as the arg min over p for the third term of f subject to the bare
minimum constraints imposed by n, the third term of g must lower bound the total
cost. This is because as we traverse down the graph from n, only additional constraints
may be imposed. Each additional constraint cannot lower the objective function,
leading to a lower bound.

Therefore, gc(n) is an admissible total cost heuristic.

Note that gc is suitably called crude because it is not necessarily a tight lower bound.
Instead, the function independently lower bounds components of the likelihood correspond-
ing to the Mallows and Binomial models. However, it is easy and quick to compute L using
matrix algebra, θ̂n via univariate optimization, and p̂n via strictly convex optimization in
a highly-constrained subspace of the J-dimensional unit hypercube.

LP Total Cost Heuristic

In the crude total cost heuristic, it can be seen that the lower bound on the cost correspond-
ing to the scores cannot be improved independently of the rankings, given n. A comparable
statement is not true for the cost corresponding to rankings. The LP total cost heuristic
makes the latter component tighter.

As a brief aside, the MLE of π0 in the Mallows model is also the solution to the Kemeny
ranking problem (Meila et al., 2012). Conitzer et al. (2006) proposed an algorithm to solve
the Kemeny ranking problem based on an LP relaxation of the linear integer program that
returns the minimum weight feedback edge set. Intuitively, the result can be understood
as follows: In the crude lower bound, each pair of objects u, v must be ranked such that u
is before v or v is before u. It does not take into account more complex relationships. For
example, if u is before v and v is before an object w, the lower bound would still illogically
allow w to be before u. The algorithm of Conitzer et al. (2006) removes this possibility.
Mandhani and Meila (2009) applied their result to an A* search algorithm for the Mallows
model. In this paper, we extend this result to the Mallows-Binomial case.

Definition 5 (LP Total Cost Heuristic) Let n ∈ G such that n = (n1, . . . , nk), 1 ≤
k ≤ J − 1, where n1, . . . , nk indicate unique objects in the collection {1, . . . , J}. Then, the
LP Total Cost Heuristic, glp(n) : G→ R, is

glp(n) =
{
θ̂nLLP

}
+
{

logψR,J(θ̂n)
}

+
{ J∑
j=1

xj log
1

p̂nj
+ (M − xj) log

1

1− p̂nj

}
LLP as defined in Conitzer et al. (2006)

θ̂n = arg min
θ

[
θLLP + logψR,J(θ)

]
p̂n = arg min

p

[ J∑
j=1

xj log
1

pj
+ (M − xj) log

1

1− pj

]
s.t. pn1 ≤ · · · ≤ pnk , pnk ≤ pnl , l > k

Note that glp is identical to gc except for the replacement of L with LLP . We prove that
glp is a tighter lower bound than gc and admissible via Proposition 6.
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Proposition 6 Under the conditions of Definition 5,

gc(n) ≤ glp(n)

for all nodes n ∈ G. Furthermore,

glp(n) ≤ arg min
p,θ

f(p, θ) such that pn1 ≤ · · · ≤ pnk , pnk ≤ pnl , l > k

and therefore glp(n) is admissible.

Proof Conitzer et al. (2006) prove that L ≤ LLP . Note that gc and glp are identical besides
the replacement of L with LLP . Thus gc(x) ≤ glp(x).

It was shown in Mandhani and Meila (2009) that LLP ≤
∑

j V j . In tandem with the
proof of Proposition 4, glp is admissible.

4.3 Approximate Algorithms

Exact algorithms to find the MLE of a Mallows model may be intractably slow when J
is large or consensus among judges is weak (Mandhani and Meila, 2009). To deal with
such cases, a number of approximate search algorithms have been proposed (Ali and Meilă,
2012). Here, we extend two simple, fast, and accurate algorithms proposed by Fligner and
Verducci (1988) and Cohen et al. (1999). We also state a third approximate algorithm which
improves the accuracy of the latter algorithm at a computational cost. Each algorithm is
described in turn.

FV Algorithm

Under certain weak conditions, Fligner and Verducci (1988) found that the average ranking
for each object is an unbiased estimator of the true consensus ranking in a Mallows model.
The same paper proposed an approximate search algorithm for the MLE by averaging
each object’s rank position across judges and ordering the averages from best to worst
into an “average ranking”. Then, one calculates the joint density of the data given the
average ranking, as well as given each ranking one Kendall distance unit away from the
average ranking. The ranking with the highest density in this small collection becomes the
approximate MLE.

We propose a simple extension to the Mallows-Binomial model which we call “FV”.
First, the algorithm calculates average rankings based on scores alone and rankings alone.
If a distinct ordering of objects cannot be determined due to ties or partial rankings, all
possible ways to break those ties are included in the set. Second, we calculate the joint
density of the data given each of the average rankings and all rankings within one Kendall
distance unit away from any of the average rankings. The ranking with the highest density
becomes the approximate MLE, π̂0. Then, p̂ and θ̂ are calculated conditional on π̂0.

Greedy Algorithm

Cohen et al. (1999) proposed a greedy algorithm to approximate π̂0. Specifically, their
algorithm iteratively estimates π̂0 by choosing the best available object at each ranking
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level from first to last. Here, “best” means the object which least lowers the joint likelihood
of the data given the current partial ordering. The algorithm is similar to the A* algorithms
from Section 4.2, except there is no side-to-side traversal in the tree, e.g., once an object is
selected for first place, that choice is never reconsidered. θ̂ is calculated conditional on π̂0.
We can apply Cohen et al.’s algorithm to the Mallows-Binomial model using the density
function of the Mallows-Binomial model instead of the Mallows model, in what we call the
“Greedy” algorithm.

Greedy Local Algorithm

The “Greedy Local” algorithm extends the Greedy algorithm with a local search. Specifi-
cally, it runs the Greedy algorithm as stated and subsequently calculates the joint likelihood
of the data given π̂0 and all rankings within one Kendall distance unit away from π̂0. If
no ranking yields a higher likelihood than π̂0, the search stops. Else, π̂0 is updated to be
the ranking with the current highest likelihood and the local search repeats until no better
ranking is found. Then, p̂ and θ̂ are calculated conditional on π̂0.

The Greedy Local algorithm is slower than the Greedy algorithm, but guaranteed to
estimate a π̂0 which yields a likelihood at least as great as that from the Greedy algorithm.
When the Greedy algorithm identifies the exact MLE, the computational expense of per-
forming the Greedy Local algorithm will be minimal as only one round of local search is
performed.

5. Algorithmic Speed and Accuracy Simulation Studies

We now compare the speed and accuracy of estimation algorithms through a simulation
study. We ran 20 unique simulations for each combination of model constants I ∈ {5, 20, 80},
M ∈ {10, 20, 40}, J ∈ {6, 12, 18}, and R ∈ {6, 12, 18|R ≤ J} and parameter θ ∈ {1, 2, 3}.
In each, we sampled p randomly from a Uniform[0, 1]J . Then, estimation was performed
on each data set using each of the 5 algorithms described in Section 4: Crude, LP, FV,
Greedy, and Greedy Local. The first two are exact algorithms while the latter three are
approximate. We now demonstrate results separately based on speed and accuracy of the
algorithms.

5.1 Speed

There are two useful metrics to consider when evaluating speed in graph search algorithms.
The first is overall time, which we measure in seconds. The second is the number of nodes
traversed, which signifies an efficient algorithm with respect to memory. While time may be
a more practically important metric, if the number of nodes traversed is substantially smaller
for a slower algorithm then potential improvements to memory time or code efficiency may
ultimately result in a faster algorithm. We compare algorithm speed in Figure 3 on the
basis of these two metrics.

Among the exact algorithms, the number of nodes traversed is comparable between both
yet computation time is reasonably higher for LP under most regimes. When exact search
is desired, we recommend the Crude algorithm on the basis of these results. Regarding
the approximate algorithms, the FV algorithm is substantially faster than the rest. This
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Figure 3: Speed of algorithms based on time (left) and number of nodes traversed (right)
across different values of J , R, and θ. Results are aggregated over M and I.

difference is by approximately an order of magnitude in all regimes. The Greedy and Greedy
Local algorithms are generally similar in speed to the Crude exact algorithm, a potentially
disappointing result given that Greedy and Greedy Local operate under no guarantee of
providing an exact solution. However, they exhibit consistent speed results, unlike the exact
algorithms which have frequent and extreme high-time outliers.

Overall, we observe that estimation time generally increases as J increases and decreases
as θ increases. These results should not be surprising: For large J , the algorithms can be
slow due to the massive parameter domain. When θ is small, ranking consensus is weak
so search algorithms may be pulled into many distinct subspaces of the parameter domain.
Speed does not change substantially as R increases.

5.2 Accuracy

We measure accuracy of the approximate search algorithms using two metrics: The first
is the proportion of simulations in which each algorithm returns the true MLE. However,
incorrect estimates may be trivially different from the truth, which leads us to our second
metric: The Kendall distance to the true MLE. This measures how far away the estimated
ordering of the object quality parameters are from π̂0. We compare algorithm accuracy in
Figure 4 on the basis of these two metrics.

The proportion correct will be 1 and the Kendall distance to the true MLE will be 0
for both the exact algorithms, by definition. For the approximate algorithms, both metrics
suggest the order of least to most accurate approximate algorithm is FV, Greedy, and
Greedy Local. We point out that even though FV was the fastest algorithm, it exhibits
the worst accuracy overall, especially when θ is small. On the other hand, Greedy Local
is quite often exactly correct. Accuracy generally improves in all approximate algorithms
as R increases, which makes sense given that partial rankings equate to less preference
information.
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Figure 4: Accuracy of algorithms based on the proportion of estimates equal to the true
MLE (left) and Kendall distance to the true MLE (right) across different values
of J , R, and θ. Results are aggregated over M and I.

In sum, this section has provided insights for practitioners when selecting an estimation
algorithm for the Mallows-Binomial model. If exact MLEs are desired, the Crude algorithm
is a good choice. When approximations are satisfactory or required due to computational
cost, especially when J is large or postulated θ is small, we recommend the Greedy Local
algorithm due to its high accuracy or the FV algorithm for a fast and rough approximation
of the consensus ranking.

6. Analysis of Grant Panel Review Data

We now apply our model to a real data set on grant panel review. After providing an
exploratory analysis, we display and interpret estimation results.

6.1 Exploratory Analysis

We consider one specific instance of grant panel review conducted by the American Institute
of Biological Sciences (AIBS) during Fall 2020, where judges provided both scores and
rankings (Gallo, 2020). In the panel, 9 judges discussed 18 proposals. They were allowed to
assign scores between 1.0 and 5.0 in single decimal point increments. Scoring each proposal
in turn after an open discussion, judges were asked to provide top-6 partial rankings in
private. Ranking ties were not allowed. Since judges discussed every proposal, a proposal
not receiving a top-6 ranking was deemed worse than each of the ranked top-6 proposals.
With a few exceptions, all judges scored all proposals and ranked their top 6. One judge
scored only one proposal and did not provide a ranking; another did not provide a ranking,
and a third only provided a top-5 ranking. Based on information from the AIBS, missing
data occurred for reasons independent of any characteristics of the proposals, such as child
care or family responsibilities as panel review discussions occurred remotely during the
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Covid-19 pandemic. Thus, we can assume the missing data to be missing completely at
random. In this case, estimation using all available (partial or complete) rankings and
scores will not be biased (Little and Rubin, 2019). If missingness was due to circumstances
related to object quality, for example, one would have to carry out a different treatment of
missing data (Little and Rubin, 2019). Figure 5 summarizes the data with proposal scores
on the left and partial rankings on the right.

Figure 5: AIBS grant panel review data. Left: Scores by proposal (boxplots in gray; raw
data in black). Right: Proposals by rank.

We observe a variety of scoring and ranking patterns by proposal. For some proposals
all judges gave identical scores, while for others there was wide disagreement among judges.
Additional calculations (shown in Appendix C) indicate that sample variances of scores for
each proposal are roughly centered around the theoretical variances based on Binomial score
models, and differences may be partially explained by the small sample size. Furthermore,
proposals with moderate scores tend to have higher variances than those with generally
high or low scores. These observations suggest that Binomial score models are reasonable
for this data. For rankings, 13 of the 18 proposals were in at least one judge’s top-6 ranking.
However, Figure 5 shows that a smaller subset of proposals were ranked by a majority of the
judges (e.g., proposals 1, 7, and 14). Separately, we also measure the consistency between
rankings and scores at the judge level. If the rankings were to always align with the order
of the scores, for example, the rankings may be thought of as providing little additional
information. To quantify this, we measure the Kendall distance (i.e., the number of pairwise
disagreements) between each judge’s partial ranking and the implied order of his/her scores.
When a judge assigns equal scores to any two proposals or does not rank any two proposals,
we do not count potential inconsistencies between them. We found the Kendall distances
between each judge’s partial ranking and score-implied ranking to be {2, 4, 4, 5, 7, 11, 22}
(ordered from least to greatest). Given that each judge only provided a top-6 ranking of
the proposals, there is substantial discordance between rankings and scores at the judge
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level; no judge was internally consistent. We believe this further motivates the use of a
combined model for rankings and scores for this data set.

The AIBS is principally interested in identifying which proposals should receive fund-
ing. While thematic and other considerations also contribute to funding decisions, funding
agencies rely on peer review to identify which proposals are quality proposals and whether
proposals can be ordered or tied in quality. Thus, both estimating proposal quality param-
eters and identifying a consensus ranking are of interest. Understanding uncertainty in the
estimated consensus ranking is key for understanding if objects are of similar quality.

We fit a Mallows-Binomial model to the data, in which M = 40, I = 9, J = 18, and
R = 6. In doing so, we make note of a few assumptions. First, we assume that each
proposal has a true underlying quality. The underlying qualities imply a true ordering
of the proposals from best to worst, which we seek to estimate. Second, we assume that
the population of judges is homogeneous in its preferences. This may be interpreted as
assuming that all judges use the same criteria when ranking or scoring and that all variation
in scores and rankings is due to random chance, as opposed to true ideological differences.
Third, we assume that all scores and rankings, even those provided by the same judges, are
conditionally independent given the latent true underlying quality of a proposal and the
level of consensus strength.

6.2 Results

We now present the MLE and the associated bootstrapped 90% confidence intervals of the
consensus scale parameter θ and object quality vector p. Confidence intervals are based
on 200 bootstrap samples. Table 1 contains parameter estimates and Figure 6 displays
estimates alongside the data. In the left panel, expected scores and associated confidence
intervals overlay judges’ observed scores. The right panel is a histogram of the Kendall
distance between each judge’s partial ranking and the estimated MLE of the consensus
ranking.

Parameter MLE 90% CI Parameter MLE 90% CI

θ 0.529 (0.421,1.124) p10 0.416 (0.308,0.525)
p1 0.272 (0.239,0.306) p11 0.684 (0.642,0.730)
p2 0.683 (0.626,0.729) p12 0.656 (0.565,0.711)
p3 0.666 (0.544,0.766) p13 0.522 (0.481,0.565)
p4 0.575 (0.553,0.616) p14 0.169 (0.150,0.186)
p5 0.563 (0.511,0.646) p15 0.463 (0.374,0.541)
p6 0.400 (0.325,0.453) p16 0.683 (0.646,0.698)
p7 0.153 (0.103,0.199) p17 0.866 (0.850,0.875)
p8 0.750 (0.711,0.750) p18 0.484 (0.444,0.541)
p9 0.563 (0.526,0.588)

π̂0 = {7, 14, 1, 6, 10, 15, 18, 13, 5, 9, 4, 12, 3, 16, 2, 11, 8, 17}

Table 1: Maximum likelihood estimates of model parameters for the AIBS grant panel
review data.
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Figure 6: Results overlaid on data. Left: Scores by proposal (black) and MLE and 90%
confidence intervals of expected score (red). Expected and observed scores are
provided on their original scale. The order of proposals on the x-axis aligns
with the MLE of the consensus ranking in the Mallows-Binomial model. Right:
Histogram of Kendall distance dR,J between each judge’s partial ranking and π̂0.

As shown in the left panel of Figure 6, the MLEs of the expected scores are approximately
equal to the means of the observed scores. However, confidence bands reflect information
obtained from both scores and rankings. For example, proposals 8 and 16 have lower
confidence limits that are much lower than the minimum score they received, which is
unusual for a measure of the expected (mean) score. This likely occurs since they were each
ranked comparatively better than the scores they received on average. We also notice that
a few proposals share the same MLE of true underlying quality but are strictly ordered
(i.e., not tied) in the consensus ranking. For example, proposals 5 and 9 correspond to
p̂5 = p̂9 = 0.563, but proposal 5 is ranked higher than proposal 9 in π̂0. In this case,
proposal 5 received a marginally worse average score than 9 but was ranked higher. Thus,
the model can capture a difference in ranking while suggesting the true underlying quality is
likely nearly identical. In the right panel, we notice that most judge’s partial ranking mostly
aligned with the MLE of the consensus ranking. The outlier in the right panel of Figure 6
corresponds to a judge who assigned top-6 rankings to three proposals with comparatively
poor scores (proposals 3, 8, and 16).

We display the estimated consensus ranking and associated 90% ranking confidence in-
tervals for each proposal based on the Mallows-Binomial model in Figure 7. Additionally,
we show results that would be obtained under four separate ranking or score aggregation
models. The first model, Converted Scores, uses scores and rankings converted into scores
for each judge such that the first-ranked object receives that judge’s best score, the second-
ranked object receives that judge’s second-best score, etc., as suggested by Li et al. (2009).
Then, the model uses independent Binomial score distributions for each proposal (no rank-
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ings are modeled). The second comparison model, Only Scores, is identical to the first
but excludes all rankings. The third comparison model, Converted Rankings, uses rankings
and scores converted into rankings for each judge by simple ordering (ties are broken at
random). Then, a Mallows distribution is used to model the ranking data. The fourth com-
parison model, Only Rankings, is identical to the third but excludes all scores. We note that
Converted Scores and Converted Rankings use all the available data (after conversion) and
therefore provide the most direct comparison to the Mallows-Binomial, while Only Scores
and Only Rankings are limited by the exclusion of certain preference data; none of the
comparison methods jointly model the original rankings and scores. Confidence intervals
for each model are based on 200 bootstrap samples.

Figure 7: Estimated ranks and 90% confidence intervals for the Mallows-Binomial model
based on scores and partial rankings and four competing models based on: (1)
scores and rankings converted into scores in Binomial models (Converted Scores),
(2) scores in Binomial models that exclude rankings (Only Scores), (3) partial
rankings and scores converted into rankings in a Mallows model (Converted Rank-
ings), and (4) rankings in a Mallows model that excludes scores (Only Rankings).
Confidence intervals for models that exclude data (either rankings or scores, re-
spectively) are represented with dashed lines. The order of proposals on the x-axis
aligns with the MLE of the consensus ranking in the Mallows-Binomial model.

We observe in Figure 7 that the Mallows-Binomial model provides a sensible estimated
ranking for each proposal: Each proposal has a unique point estimate for rank place and the
associated 90% confidence intervals reflect the scores and ranks it received. For example,
proposal 7 was ranked first by 5 of the 7 judges and had the best average score, but
proposal 14 was highly ranked by many judges and received a similarly high average score.
Thus, the 90% confidence intervals of (1,2) for the rank place of proposals 7 and 14 appear
appropriate. On the other hand, proposal 3 received the 13th best average score, which
corresponds to its point estimate for rank place. However, its 90% confidence interval (7,17)
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for rank place is appropriately wide given its wide range of scores (minimum 15, maximum
35) and a single fourth-place ranking, which injects uncertainty into the model. In general,
confidence intervals are narrow when consensus between scores and rankings across judges
is strong and are wider otherwise.

Results from the Mallows-Binomial model improve upon results from the other models in
unique ways. The Converted Scores and Only Scores models provide similar rank place point
estimates to the Mallows-Binomial model but confidence intervals that may be considered
inappropriate. Converted Scores provide narrow intervals that reflect an artificially inflated
sample size (resulting from combining both original and converted scores) but does not
account for uncertainty arising from converting rankings into scores. Using only scores
limits the amount of information on judges’ perception of proposal quality via rankings,
which naturally leads to a loss in precision. However, sometimes the Only Scores model
exhibits narrower confidence intervals than the Mallows-Binomial model when scores are
consistent but rankings are not, which still falsely reflects the true combined preferences of
the judges. The Converted Scores and Only Scores models do not estimate the consensus
scale parameter θ.

Point estimates and confidence intervals from the Converted Rankings and Only Rank-
ings models differ substantially from those of the Mallows-Binomial. Differences are partic-
ularly apparent for proposals ranked in 7th place or worse, as those proposals generally have
less data due to the partial rankings collected. The Converted Rankings model loses preci-
sion compared to the Mallows-Binomial model in the top ranking places, despite having the
same number of observations, since scores converted into rankings via ordering lack infor-
mation on the strength of the difference in quality between proposals. The Only Rankings
model has even less precision, since the complete exclusion of scores and limited information
provided by partial rankings constrains inference on the many proposals that were never or
rarely ranked and leads to uninformative and insensible rankings. For example, proposals
2, 4, 9, 11, and 17 have near-identical and wide confidence bands as they were never ranked,
while proposals 3, 5, 8, 12, 13, 16, and 18 have even wider confidence bands since they were
ranked only by a small number of judges. Furthermore, the Converted Rankings and Only
Rankings models do not estimate the object quality parameter vector p.

Results from the Mallows-Binomial model allow us to compare proposals with confi-
dence. For example, the model suggests that proposals 7 and 14 are of similarly high
quality, but that relative quality is harder to differentiate for proposals 1, 6, and 10. These
types of comparisons may be useful when drawing a funding line at the AIBS. If the AIBS
can fund, for example, only 6 proposals, then using 90% marginal confidence intervals by
proposal they should fund proposals 7, 14, 1, 6 and select two additional proposals between
10, 15, and 13 (perhaps based on point estimates or a random lottery).

7. Discussion

In this paper, we proposed the first unified statistical model for rankings and scores that does
not involve data conversion, the Mallows-Binomial model. We formulated a computationally
efficient algorithm to find the exact maximum likelihood estimators of model parameters
and demonstrated statistical properties of the model such as bias, consistency, and variance
of estimators. This research aligns well with the recommendations from a peer review
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study at the 2016 Neural Information Processing Systems conference that recommended
using both rankings and scores to gain benefits from each data format (Shah et al., 2018).
That study also emphasized the need to design algorithms to efficiently combine scores and
rankings for further guidance on conference submission quality (Shah et al., 2018, p.27).

We applied the Mallows-Binomial model to grant review data which collected both scores
and partial rankings from a panel of judges. The model was used to identify a consensus
ranking based on the scores and partial rankings. The estimated consensus ranking was
different from what would be obtained with comparable models for (converted) scores or
rankings alone. Furthermore, we demonstrated a method to obtain confidence bands of
proposal qualities and/or rank places via the bootstrap that can be used to select proposals
that are preferred by reviewers with statistical confidence. Confidence bands clearly reflect
information from both scores and rankings provided by the judges.

The proposed model is useful whenever both rankings and scores for a collection of
objects are available. Beyond the example presented here, this may occur in a variety of
contexts. For example, relevance of webpages to a search query may be measured from
different systems using either numerical metrics (scores) or ordinal comparisons (rankings).
In this example, the object quality parameters would measure both relative and absolute
relevance to the search query, and the scale parameter would represent consensus among
judges. If scores and rankings arise from the same system, rankings may help break ties
when scores are close; if different systems are used to provide different scores and rankings,
using all available data increases estimation precision. In contrast to methods that convert
rankings and scores into data of a single type, the proposed model removes the potential
introduction of error by using information from both sources directly. Yet, it allows for using
both rankings and scores to express different types of comparison and levels of granularity
in preferences. Furthermore, because both types of data are incorporated in a statistical
model, this allows for uncertainty quantification in the estimation of true underlying quality,
consensus, and strength of consensus when both scores and rankings are present using
standard model-based statistical approaches.

Estimation methods presented in this paper for the Mallows-Binomial model can be im-
proved or extended upon in a number of ways. Computational efficiency of estimation may
be improved via a different heuristic function in the A* algorithm and permit exact estima-
tion of the model in the presence of large numbers of objects. Approximate algorithms may
be improved to increase accuracy and/or speed. In addition, alternative Bayesian estima-
tion methods may be developed by extending the work of Vitelli et al. (2018) on the Mallows
model. Model components may also be generalized: For example, the Generalized Mallows
distribution or Infinite Generalized Mallows distribution proposed by Meila et al. (2012)
may replace the ranking distribution component of our proposed model. The Bradley-
Terry or Plackett-Luce distributions may also replace the ranking distribution component
and allow for additional types of ranking data (such as pairwise or group-wise comparisons
beyond top-R partial rankings), although the downside is that these distributions do not
directly include a consensus ranking parameter. Additionally, the Beta-Binomial or Pois-
son distributions may replace the Binomial score distribution component in our proposed
model if one was interested in accounting for differences in the variance of object scores
among judges or working with score data with no theoretical maximum value, respectively.
Lastly, the model may be considered in a latent class framework to identify the presence of
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and to measure local consensus among heterogeneous preference groups, e.g., by extending
earlier work on the mixture of Mallows distributions (Busse et al., 2007) or Plackett-Luce
distributions (Gormley and Murphy, 2006; Gormley et al., 2009).

Acknowledgments

The authors thank Stephen Gallo and the American Institute of Biological Sciences for
the data used in this article. This material is based upon work supported by the National
Science Foundation under Grant No. 2019901.

Appendix Appendix A. Bias of (p̂, θ̂) in the Mallows-Binomial
distribution

We are interested in estimating the MLEs (p̂, θ̂) using a collection of I independent and
identically distributed samples from a Mallows-Binomial(p, θ) distribution,
(X,Π) = {(X1,Π1), . . . , (XI ,ΠI)}.

Example Demonstrating Bias

Considering the following example: Let I = 1, J = R = 3, and M = 1. Suppose
p0 = [0.1, 0.4, 0.9]T and θ0 = 1. Then, there are 48 unique, possible observations. Specif-
ically, they are the combinations of X1 ∈ {0, 1}, X2 ∈ {0, 1}, X3 ∈ {0, 1}, and Π ∈
{123, 132, 213, 213, 312, 321}.

We do not enumerate all data combinations or their associated likelihoods and MLEs.
However, we state the bias of the MLEs below:

Bias(p̂1) = EPθ0,p0 [p̂1]− p01 ≈ 0.1419− 0.1 = 0.0419

Bias(p̂2) = EPθ0,p0 [p̂2]− p02 ≈ 0.4192− 0.4 = 0.0192

Bias(p̂3) = EPθ0,p0 [p̂3]− p03 ≈ 0.8390− 0.9 = −0.0610

Bias(θ̂) = EPθ0,p0 [θ̂]− θ0 =∞− 1 =∞

Thus, all MLEs in this example are biased. Code to replicate this simulation can be found
in the code repository.

Intuition for Bias

We now provide intuition for why bias exists in the Mallows-Binomial model. We start by
proving that (p̂, θ̂) is biased when π0 is known: Assume π0 is fixed and known. Then,
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(p̂, θ̂)|π0 = arg max
p,θ|Order(p)=π0

I∏
i=1

e−θd(πi,π0)

ψR(θ)

J∏
j=1

p
xij
j (1− pj)M−xij

= arg max
p,θ|Order(p)=π0

− θ
[ I∑
i=1

d(πi, π0)
]
− I logψR(θ)+

J∑
j=1

[ I∑
i=1

xij log pj + (IM −
I∑
i=1

xij) log(1− pj)
]

In the above expression, p and θ factor. Thus,

θ̂|π0 = arg max
θ|π0

− θ
[ I∑
i=1

d(πi, π0)
]
− I logψR(θ)

p̂|π0 = arg max
p|Order(p)=π0

J∑
j=1

[
xj log pj + (M − xj) log(1− pj)

]
Tang (2019) proved that E[θ̂|π0] > θ. So when π0 is known, θ̂ is biased upward.

Regarding p̂, the problem is now precisely an isotonic regression problem for binomial
parameters. It was shown in Ayer et al. (1955) and Barlow and Brunk (1972) that

p̂j |π0 =

{
xj/M x1, . . . , xj−1 ≤ xj ≤ xj+1, . . . , xJ

(
∑

i∈Aj xi)/M, otherwise

where Aj is the intersection of the lower and upper sets of π0 that include j. Robertson
et al. (1988) proved that E[p̂j |π0] 6= pj in generality, i.e., the parameters pj , j = 1, . . . , J
are biased. The direction of the bias may vary between each pj .

Thus, (p̂, θ̂)|π0 is biased. We would now like to prove that the MLEs are biased even
when π0 is not known. This is a substantially more challenging problem due to the inter-
connectedness of p̂ and θ̂ during estimation. A complete proof is left open. However, the
previous counterexample demonstrates that bias is present in at least some situations while
simulations in Section 3.2 demonstrate the bias is often minimal.

Appendix Appendix B. Consistency of (p̂, θ̂) in the Mallows-Binomial
Distribution

Let (X,Π)I denote a collection of I independent and identically distributed observations
from a Mallows-Binomial(p0, θ0) distribution, where (p0, θ0) is unknown and will be esti-
mated via maximum likelihood. Assume that each true p0j , j = 1, . . . , J lie within in the
unit interval and are each bounded away from 0 and 1, and that the true θ0 is less than J
and is bounded greater than 0. We note that the restrictions on p0 ensure each proposal
may receive any integer score between 0 and M with positive probability. Furthermore, the
restrictions on θ0 ensure there is not a complete lack of consensus (as if θ0 were equal to 0)
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and does not substantially impact situations of near-complete consensus (when θ0 ≥ J , it is
near certain that all rankings are identical and match the true π0 regardless of how large θ0
is). Under these assumptions, the unknown parameters live in a compact space. We denote
this space by Θ.

The loglikelihood (less a normalizing constant) of each observation (Xi,Πi), i = 1, . . . , I,
is

`p,θ(Xi,Πi) = −θdR,J(Πi,Order(p))− logψR,J(θ) +

J∑
j=1

[Xij log pj + (M −Xij) log(1− pj)]

It can be seen that dR,J(Πi,Order(p)) ∈ {0, 1, . . . , J(J − 1)/2} and that ψR,J(θ) ∈ (1, J !).
The loglikelihood is not continuous in p. Discontinuities may exist when pj = pk, j 6= k.

We would like to show the consistency of the maximum likelihood estimators (MLE),
(p̂I , θ̂I) to the true parameters, (p0, θ0). We define a few quantities:

MI(p, θ) =
1

I

I∑
i=1

`p,θ(Xi,Πi)

= −θ1

I

I∑
i=1

dR,J(Πi,Order(p))− logψR,J(θ) +
J∑
j=1

[
1

I

I∑
i=1

Xij log pj + (M − 1

I

I∑
i=1

Xij) log(1− pj)]

= −θdR,J(Π,Order(p))− logψR,J(θ) +

J∑
j=1

[Xj log pj + (M −Xj) log(1− pj)]

M(p, θ) = E[`p,θ(X1,Π1)]

= −θ
[ Re−θ

1− e−θ
−

J∑
j=J−R+1

je−jθ

1− e−jθ
]
− logψR,J(θ) +

J∑
j=1

[
Mpj log pj + (M −Mpj) log(1− pj)

]
,

since

E[Xj ] = Mpj , ∀j
V ar[Xj ] = Mpj(1− pj) ∀j

E[dR,J ] =
Re−θ

1− e−θ
−

J∑
j=J−R+1

je−jθ

1− e−jθ

V ar[dR,J ] =
Re−θ

(1− e−θ)2
−

J∑
j=J−R+1

j2e−jθ

(1− e−jθ)2
.

The first and second lines are standard results regarding Binomial random variables and
the third and fourth lines follow directly from Fligner and Verducci (1986).

We now are ready to prove the consistency of the maximum likelihood estimators. We
do so using Theorem 5.7 of Van der Vaart (2000). Specifically, we must prove (1) uniform
consistency of MI(p, θ) to M(p, θ), (2) the true parameter values are well-separated in
M(p, θ), and (3) that MI(p̂I , θ̂I) ≥ MI(p0, θ0) − op(1) as I → ∞. Then, the MLE is
consistent.
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(1) Uniform consistency is proven via Corollary 2.2 of Newey (1991). Specifically, un-
der the assumption that the true parameters live in the compact space Θ, we must
prove that MI converges pointwise to M and that ∀(p, θ), (p′, θ′) ∈ Θ, |MI(p

′, θ′) −
MI(p, θ)| ≤ Op(1)||(p′, θ′), (p, θ)||1.
We start with pointwise convergence: Let (p, θ) ∈ Θ be arbitrary but fixed. Then,

MI(p, θ)−M(p, θ)

= −θ(dR,J − EdR,J)− log
ψ(θ)

ψ(θ)
+

J∑
j=1

log pj(Xj − EXj) + log(1− pj)(EXj −Xj)

= −θop(1) +
J∑
j=1

log pjop(1) + log(1− pj)op(1)

= op(1),

so MI converges pointwise to M . Next, let (p, θ), (p′, θ′) ∈ Θ be arbitrary but fixed.
Then,

|MI(p
′, θ′)−MI(p, θ)|

=
∣∣θ′D(Π,Order(p′))− θD(Π,Order(p′)) + log

ψ(θ′)

ψ(θ)
+

J∑
j=1

Xj log
pj
p′j

+ (M −Xj) log
1− pj
1− p′j

∣∣
(9)

≤
∣∣θ′D(Π,Order(p′))− θD(Π,Order(p′))

∣∣︸ ︷︷ ︸
Term 1

+
∣∣ log

ψ(θ′)

ψ(θ)

∣∣︸ ︷︷ ︸
Term 2

+
J∑
j=1

∣∣Xj log
pj
p′j

+ (M −Xj) log
1− pj
1− p′j

∣∣
︸ ︷︷ ︸

Term 3

(10)

= Op(1)|θ′ − θ|+Op(1)|θ′ − θ|+
J∑
j=1

Op(1)|p′j − pj | (11)

= Op(1)||(p′, θ′), (p, θ)||1,

where line 9 holds by definition, line 10 holds by the triangle inequality, and line 11
is shown for each numbered term below:

Term 1

=
∣∣θ′D(Π,Order(p′))− θD(Π,Order(p′))

∣∣
=
∣∣θ′(D(Π,Order(p′))− E[D(Π,Order(p′))] + E[D(Π,Order(p′))]− E[D(Π,Order(p0))])−
θ(D(Π,Order(p′))− E[D(Π,Order(p′))] + E[D(Π,Order(p′))]− E[D(Π,Order(p0))])+

(θ′ − θ)E[D(Π,Order(p0))]
∣∣

=
∣∣θ′(op(1) +Op(1))− θ(op(1) +Op(1))] + (θ′ − θ)Op(1)

∣∣
=
∣∣(θ′ − θ)∣∣Op(1).
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Next,

Term 2 = | logψ(θ′)− logψ(θ)|
≤ C1|θ′ − θ|
= Op(1)|θ′ − θ|,

since logψ(θ) is a continuous function defined on a compact range (specifically, the
range of θ ∈ Θ) and therefore must have a maximum and minimum slope over that
range. Similarly,

Term 3 =
J∑
j=1

∣∣Xj(log pj − log p′j) + (M −Xj)(log(1− pj)− log(1− p′j))
∣∣

≤
J∑
j=1

XjC2

∣∣pj − p′j∣∣+ (M −Xj)C3

∣∣pj − p′j∣∣
=

J∑
j=1

∣∣p′ − p∣∣Op(1).

since log(pj) and log(1 − pj) are also continuous functions on the compact range of
pj ∈ Θ for each j = 1, . . . , J .

Therefore, the estimator is uniformly consistent.

(2) The well-separation condition on M(p0, θ0) is straightforward to prove using Lemma
2.2 of Newey and McFadden (1994): Since the model is identified (as shown in Propo-
sition 1) and E|`p,θ(X,Π)| <∞ ∀p, θ ∈ Θ due to the constrained domain of each Xij

and Πi regardless of p, θ ∈ Θ, we have the desired result.

(3) The third condition that the sequence (p̂I , θ̂I) as I → ∞ satisfies MI(p̂I , θ̂I) ≥
MI(p0, θ0)− op(1) is a standard property of the MLE.

Thus, according to the conditions of Theorem 5.7 in Van der Vaart (2000), (p̂I , θ̂I) is
consistent for (p0, θ0).

Appendix Appendix C. Additional Mean-Variance Calculations in Grant
Panel Review Scores

Figure 8 displays the relationship between the sample mean and variance of real grant panel
review scores to test the appropriateness of the Binomial score model. Discussion of Figure
8 can be found in Section 6.
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Figure 8: Sample variance of scores vs. sample mean of scores by proposal (black circles);
theoretical relationship between mean and variance in a Binomial distribution
(red dotted line).
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