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Sparse factorization of a large matrix is fundamental in modern statistical learning. In particular,
the sparse singular value decomposition has been utilized in many multivariate regression meth-
ods. The appeal of this factorization is owing to its power in discovering a highly-interpretable
latent association network. However, many existing methods are either ad hoc without a general
performance guarantee, or are computationally intensive. We formulate the statistical problem as
a sparse factor regression and tackle it with a two-stage “deflation + stagewise learning” approach.
In the first stage, we consider both sequential and parallel approaches for simplifying the task into
a set of co-sparse unit-rank estimation (CURE) problems, and establish the statistical underpin-
nings of these commonly-adopted and yet poorly understood deflation methods. In the second
stage, we innovate a contended stagewise learning technique, consisting of a sequence of simple
incremental updates, to efficiently trace out the whole solution paths of CURE. Our algorithm
achieves a much lower computational complexity than alternating convex search, and it enables
a flexible and principled tradeoff between statistical accuracy and computational efficiency. Our
work is among the first to enable stagewise learning for non-convex problems, and the idea can
be applicable in many multi-convex problems. Extensive simulation studies and an application in
genetics demonstrate the effectiveness and scalability of our approach.
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KuN CHEN, RUIPENG DONG, WANWAN XU, AND ZEMIN ZHENG

1. Introduction

Matrix factorization/decomposition is fundamental in many statistical learning techniques, in-
cluding both unsupervised learning methods such as principal component analysis and matrix
completion, and supervised learning methods such as partial least squares and reduced-rank re-
gression. In particular, singular value decomposition (SVD) and its various generalizations and
extensions have been applied or utilized for matrix/tensor data dimensionality reduction, feature
extraction, anomaly detection, data visualization, among others. Such tasks are nowadays rou-
tinely encountered in various fields, and some modern applications include latent semantic analysis
in natural language processing (Landauer et al., 1998), collaborative filtering in recommender sys-
tems (Adomavicius and Tuzhilin, 2005), bi-clustering analysis with high-throughput genomic data
(Lee et al., 2010; Vounou et al., 2010), association network learning in expression quantitative trait
loci (eQTLs) mapping analysis (Uematsu et al., 2019), efficient parameterization and stabilization
in the training of deep neural networks (Sun et al., 2017), and analyzing large-scale genetic and
phenotypic data from UK Biobank (Bycroft et al., 2018; Qian et al., 2022).

It is now well understood that classical SVD and its associated multivariate techniques have
poor statistical properties in high dimensional problems, as the noise accumulation due to a large
number of irrelevant variables and/or irrelevant latent subspace directions could disguise the signal
of interest to the extent that the estimation becomes entirely distorted. To break such “curses
of dimensionality”, structural low-dimensional assumptions such as low-rankness and sparsity are
often imposed on the matrix/tensor objects, and correspondingly regularization techniques are
then called to the rescue. There is no free lunch though: matrix factorization is often expensive in
terms of computational complexity and memory usage, and for large-scale problems the computa-
tional burdens emerging from regularized estimation become even more amplified. The required
regularized estimation can be computationally intensive and burdensome due to various reasons:
the optimization often requires iterative SVD operations, and the data-driven estimation of the
regularization parameters often requires a spectrum of models with varying complexities being
fitted.

To alleviate the computational burden of sparse matrix factorization, many related methods
have been proposed as repeatedly fitting regularized rank-one models; see, e.g., Witten et al.
(2009), Lee et al. (2010), Allen et al. (2014), and Ahn et al. (2015). In particular, Chen et al.
(2012) proposed the exclusive extraction algorithm which isolates the estimation of each rank-
one component by removing the signals of the other components from the response matrix based
on an initial estimator of the matrix factorization. Alternatively, Mishra et al. (2017) suggested
extracting unit-rank factorization one by one in a sequential fashion, each time with the previously
extracted components removed from the current response matrix. Both of them adapted the
alternating convex search (ACS) method to solve the unit-rank estimation problems. Despite
their proven effectiveness in various applications, the properties of these deflation strategies are
not well understood in a general high-dimensional setup. Moreover, for each unit-rank problem,
the optimization needs to be repeated for a grid of tuning parameters for locating the optimal
factorization along the paths, and even with a warm-start strategy, it can still lead to skyrocketing
computational costs especially for large-scale problems.

In parallel to the aforementioned learning scheme of “regularization + optimization” in solving
the unit-rank problems, there has been a revival of interest into the so-called stagewise learning
(Efron et al., 2004; Zhao and Yu, 2013; Tibshirani, 2015; He et al., 2018). Unlike regularized
estimation, a stagewise procedure builds a model from scratch, and gradually increases the model
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complexity in a sequence of simple learning steps. For instance, in stagewise linear regression (Efron
et al., 2004; Hastie et al., 2008), a forward step searches for the best predictor to explain the current
residual and updates its coefficient by a small increment (in magnitude), and a backward step may
decrease the coefficient (in magnitude) of a previously selected predictor to correct for greedy
selection. This process is repeated until a model with a desirable complexity level is reached
or the model becomes excessively large and ceases to be identifiable. Thus far, fast stagewise
learning algorithms and frameworks have been developed mainly for convex problems, which are
not applicable for non-convex problems. A comprehensive review of stagewise learning can be
found in Tibshirani (2015), in which its connections and differences with various optimization and
machine learning approaches such as steepest descend, boosting, and path-following algorithms
were discussed.

In this paper, we formulate the statistical problem of sparse factorization of large matrices as
a sparse factor regression and tackle it with a novel two-stage approach. In the first stage, we
consider both sequential and parallel approaches for simplifying the task into a set of co-sparse
unit-rank estimation (CURE) problems and establish the statistical underpinnings of these com-
monly adopted and yet poorly understood deflation methods. In the second stage, we innovate a
contended stagewise learning technique, consisting of a sequence of simple incremental updates,
to efficiently trace out the whole solution paths of CURE. Our algorithm has a much lower com-
putational complexity than ACS and the choice of the step size enables a flexible and principled
tradeoff between statistical accuracy and computational efficiency. Our work is among the first
to enable stagewise learning for non-convex problems, and the idea can be applicable in many
bi-convex problems including sparse factorization of a tensor. Extensive simulation studies and an
application in genetics demonstrate the effectiveness and scalability of our approach.

The rest of the paper is organized as follows. In Section 2, we present a general statistical
setup with a sparse SVD formulation, and provide the deflation strategies for reducing the general
problem into a set of simpler CURE problems with comprehensive theoretical properties. Section
3 provides detailed derivations of the stagewise estimation algorithm for tracing out the solution
paths of CURE. Algorithmic convergence and computational complexity analysis are also shown in
Section 3. In Section 4, extensive simulation studies demonstrate the effectiveness and scalability
of our approach. An application in genetics is presented in Section 5. Section 6 concludes with
possible future work. All technical details are relegated to the Appendix.

2. A Statistical Framework for Sparse Factorization

Throughout the paper, we use the bold uppercase letter to denote the matrix and the bold lowercase
letter to denote the column vector. For any matrix M = (m;;), denote by |M||r = (E” m?j)l/2
IM[[1 =3, ; Imi;], and [[M[|oc = max; ; [m;| the Frobenius norm, entrywise £1-norm, and entry-
wise {oo-norm, respectively. We also denote by || - ||2 the induced matrix norm (operator norm),

which becomes the ¢ norm for vectors.

i

2.1 Co-Sparse Factor Regression

We start with the population model for the multivariate reduced-rank regression problem (Ander-
son, 1951; Reinsel and Velu, 1998) to motivate our study,

y=CTx +e,
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where y € R? is the multivariate response vector, x € RP is the multivariate predictor vector,
C* € RP*4 is the coefficient matrix that is assumed to be of low-rank, i.e., rank(C*) = r* with r* <
min(p, q), and e € R? is the random error vector of zero mean. With a proper parameterization,
this model possesses a supervised factor analysis interpretation. To see this, consider the random
design and denote cov(x) = I'. Write C* = U*VT for some U* € RP*™ and V € R”"" . Then
U*Tx can be interpreted as a set of “supervised latent factors”, as some linear combinations of the
components of x; to avoid redundancy, it is desirable to make these factors uncorrelated, which
leads to the constraint that cov(U*Tx) = U*TT'U* = I,». Similar to the factor analysis, we could
write V. = V*D* with V*TV* =T and D* a diagonal matrix to ensure parameter identifiability.
This leads to a generalized SVD factorization C* = U*D*V*T, where U*TTU* = V*TV* = I,..

With n independent observations, let Y = [y1,...,¥4 = [¥1,--,¥n]T € R"*? be the response
matrix, and X = [X1,...,%Xp] = [X1,...,X,]T € R™P be the predictor matrix. We consider the
sample-version of the multivariate reduced-rank regression model,

Y = XC* +E, (1)

where E € R"*? is the random error matrix. Throughout the paper, we consider the fixed design
case and assume that each column of X is normalized to have 5 norm y/n. Motivated by the
parameterization in the population model, we assume C* admits the following factorization:

1 1
Vn Vn

where U* = [uf,...,ul] € RP™ V* = [vi,...,vi] € R and D* = diag{d}; k= 1,...,7*} €
R™*"" is a diagonal matrix. Here (1/y/n)Xuj, k = 1,...,7* can be regarded a set of orthogonal
factors, each of which is constructed as a linear combination of the p predictors. Furthermore,
when both U* and V* are assumed to be sparse, we say that C* admits a (generalized) co-sparse
SVD structure and call the resulting model as a co-sparse factor regression (Mishra et al., 2017).
The interpretation is very appealing in statistical modeling: the g outcomes are related to the p
features only through r* distinct pathways, each of which may only involve small subsets of the
outcomes and the features.

For convenience, we denote Cj = d;;u,’;v;;T for k =1,...,r*, where uj, vy are the kth column
of U*, V* respectively and dj is the kth diagonal element of D*. In addition, let P = n I1XTX.
Then we call C; as the kth layer P-orthogonal SVD of C* (Zheng et al., 2019). We stress
that the factorization in (1) is a generalized SVD of C*, not its regular SVD. In fact, besides
the motivation from factor analysis and reduced-rank regression, this factorization can also be
regarded as arising from performing the SVD of the scaled regression component (1/,/n)XC*.
That is, (1/y/n)XC* = (1/y/n)XU*D*V*T where (1/,/n)XU* and V* are the left and right
singular matrices of (1/4/n)XC*, respectively. Notice that when setting X as the n x n identity
matrix, the above general model subsumes the matrix approximation problem in the unsupervised
learning scenario. Further, if Y is partially observed, the model connects to the matrix completion
problem and the trace regression (Hastie et al., 2015).

Our main focus is then the recovery of the P-orthogonal SVD of C* under the co-sparse factor
model as specified in (1) and (2). We stress that we desire the elements of the matrix factorization,
e.g., the left and right singular vectors, to be entrywisely sparse, rather than only making C* to be
sparse. A matrix with sparse singular vectors could be sparse itself, but not vice versa in general.
The many appealing features of the sparse SVD factorization have been well demonstrated in

C*=U'D*V*T, st (—=XUT(—=XU*) = V*TV* = 1., (2)
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various scientific applications (Vounou et al., 2010; Chen et al., 2014; Ma et al., 2014; Qian et al.,
2022).

2.2 Unit-Rank Deflation

The simultaneous presence of the low rank and the co-sparsity structure makes the sparse SVD
recovery challenging. A joint estimation of all the sparse singular vectors may necessarily involve
identifiability constraints such as orthogonality (Vounou et al., 2010; Uematsu et al., 2019), which
makes the optimization computationally intensive. Motivated by the power method for computing
SVD (Golub and Van Loan, 1996), we take a deflation approach to tackle the problem. The main
idea is to estimate the unit-rank components of XC* one by one, thus reducing the problem into
a set of much simpler unit-rank problems.

We first present the “division” that we desire for the estimation of the co-sparse factor model
in (1) and (2). That is, we aim to simplify the multi-rank factorization problem into a set of
unit-rank problems of the following form:

Cgﬁé?m {L(C;Tn) + p(C; N}, s.t. rank(C) < 1, (3)

where T, = {(yi,%;);i = 1,...,n} denotes the observed data, L(C;T,) = (2n) 7!||Y —XC||% is the
sum of squares loss function, and p(C; \) = A||C||; is the ¢; penalty term with tuning parameter
A > 0. Intuitively, this criterion targets on the best sparse unit-rank approximation of Y in the

column space of X. Intriguingly, due to the unit-rank constraint, the problem can be equivalently
expressed as a co-sparse unit-rank regression (CURE),

CIlnin {L(duVTﬂ;) + )\HduvTHl} , st.d> 0,072 Xully =1, ||v]2 = 1. (4)
Su,v
The penalty term is multiplicative in that ||C||; = [|duv™||; = d|ju||1||v|]1, conveniently producing

a co-sparse factorization. This is not really surprising, because the sparsity of a unit-rank matrix
directly leads to the sparsity in both its left and right singular vectors. Therefore, formulating the
problem in term of the unit-rank matrix enables CURE to use a single penalty term to achieve
co-sparse factorization.

We now consider two general deflation approaches, in order to reach the desired simplification
in (3), or equivalently, in (4). The first approach is termed “parallel pursuit”, which is motivated by
the exclusive extraction algorithm proposed in Chen et al. (2012). This approach requires an initial
estimator of the elements of the matrix factorization of C*; the method then isolates the estimation
of each rank-one component Cj by removing from the response 1 matrix Y the signals of the other
components based on the initial estimator. To be specific, let C = Zk 1 Ck = Zk 1 dkukvk be
the initial estimator of C* and its P-orthogonal SVD as in (2). Then the parallel pursuit solves
the problems

Cj, = arg mci:n L(C+ Z éj; Tn) +p(C;A) », s.t. rank(C) <1, (5)
J#k
for k =1,...,r, which can be implemented in parallel. See Figure 1 for an illustration.

The second deflation approach is “sequential pursuit”, which was proposed by Mishra et al.
(2017). This method extracts unit-rank factorization one by one in a sequential fashion, each time
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~ ~ CURE on X ~
(111.11V1F Y-X Z]le dkung d11.11V1F

~_ ~ - CURE X ~
dalia vy Y-X Zk;&g dr vy — dolia V]

CUREon X -~
o dstisv T

dzuzvy Y - XYy V)

Figure 1: An illustration of the parallel pursuit.

with the previously extracted components removed from the current response matrix. Specifically,
the procedure sequentially solves

E

-1
Cj, = arg mén L(C+ (A}j;%) +p(C;A) ¢, s.t. rank(C) <1, (6)
J

Il
=)

fork=1,...r, where 60 =0, and (Ajk = Jkﬁka is the selected unit-rank solution (through tuning)
in the kth step. See Figure 2 for an illustration.

~ = CURE on X ~
dolio9T = 0 1Y) = Y — Xdyiioo] | on 3,97
< CURE on X ~
Y2 = Y1 — Xdlulv? } dQUQVg‘
~ CURE on X ~
Y; =Yy — Xdatigv] } ds3lisvy

Figure 2: An illustration of the sequential pursuit.

Both deflation approaches are intuitive. The parallel pursuit uses an initial estimator to isolate
the estimation of the unit-rank components, and refines the estimation of each component around
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the vicinity of its initial estimator. Sequential pursuit, on the other hand, keeps extracting unit-
rank components from the current residuals until no signal is left; the idea is related to a well-known
fact derived from Eckart-Young Theorem (Eckart and Young, 1936) in matrix approximation and
reduced-rank regression, that is, the solution of ming [|[Y — XC|% s.t. rank(C) < r can be exactly
recovered by sequentially fitting r unit-rank problems with the residuals from the previous step.
But apparently, such exact correspondence would break down with additional sparse regularization.

Indeed, many matrix decomposition related methods have been proposed as repeatedly fitting
rank-one models; see, e.g., Witten et al. (2009), Lee et al. (2010), and Ahn et al. (2015). Despite
their proven effectiveness, many properties of these deflation strategies are yet to be explored. For
example, what is the role of the initial estimator in parallel pursuit? Can parallel pursuit lead
to substantially improved statistical performance (in terms of lowered error bound) comparing to
that of the initial estimator? If Eckart-Young Theorem no longer applies, can sequential pursuit
still work in the presence of regularization? What is the impact of “noise accumulation” since the
subsequent estimation depends on the previous steps? How do the two deflation methods compare?
We attempt to fill these gaps by performing a rigorous theoretical analysis, to be presented in the
next section.

2.3 Unveiling the Mystery of Deflation

We now analyze the statistical properties of the deflation-based estimators of the sparse SVD
components, i.e., Cg, k =1,...,r, from either the parallel pursuit in (5) or the sequential pursuit
in (6). Our treatment on the computation and the tuning of the CURE problem in (3) will be
deferred to Section 3, as the second stage of our strategy. For now, we first concern theoretical

analysis assuming CURE is solved globally, and then generalize our results to any computable local
optimizer of CURE.

2.3.1 TECHNICAL CONDITIONS

For any p by ¢ nonzero matrix A, denote by Ay the corresponding matrix of the same dimension
that keeps the entries of A with indices in set J while sets the others to be zero. We need the
following regularity conditions.

Condition 2.1 The random noise vectors are independently and identically distributed as e; ~
N(0,X), i =1,...,n. Denote the jth diagonal entry of ¥ as 0]2-; we assume 02, = Maxi<;j<p O'j2-

is bounded from above.

Condition 2.2 For 1 < k < r*, the gaps between the successive singular values are positive, i.e.,
p = dy —dp 1 >0, where di, > 0 is the kth singular value of n~Y2XC*.

Condition 2.3 There exists certain sparsity level s with a positive constant p; such that

- [XAl%
mf{ <5 1Al <31As0 L > o
A L n(|AsFV(|Asl2)

where A e is formed by keeping the s entries of A je with largest absolute values and setting the
others to be zero.
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Condition 2.4 There exists certain sparsity level s with a positive constant ¢, such that

sup

A

| T2 |XTXA || max
nl|AJlF

DI < s Al < 3\AJII1} < Gu.

Condition 2.1 assumes the random errors in model (1) are Gaussian for simplicity. In fact,
our technical argument still applies as long as the tail probability bound of the noise decays
exponentially; see the inequality (25) in the proof of Lemma 2. Condition 2.2 is imposed to ensure
the identifiability of the r* latent factors (singular vectors). Otherwise, the targeted unit rank
matrices would not be distinguishable. Similar assumptions can be found in Mishra et al. (2017) ,
Zheng et al. (2021), and Zheng et al. (2019), among others.

Condition 2.3 is a matrix version of the restricted eigenvalue (RE) condition proposed in Bickel
et al. (2009), which is typically imposed in ¢i-penalization to restrict the correlations between
the columns of X within certain sparsity level, thus guaranteeing the identifiability of the true
regression coefficients. The only difference is that we consider the estimation of coefficient matrices
here instead of vectors. Since the Frobenius norm of a matrix can be regarded as the ¢3-norm of
the stacked vector consisting of the columns of the matrix, Condition 2.3 is equivalent to the RE
condition in the univariate response setting. The integer s here acts as a theoretical upper bound
on the sparsity level of the true coefficient matrices, the requirement on which will be shown to be
different in the two deflation approaches.

Similar to Condition 2.3, Condition 2.4 is a matrix version of the cone invertibility factor (Ye
and Zhang, 2010) type of condition. It allows us to control the entrywise estimation error by assum-
ing that n~!|XTXA|/max can be bounded by some multiple of the averaged error ||A | x/|.J|*/?
when A is restricted in the cone. In this way, the impact of the estimation error of the initial lasso
estimate can spread out on the support instead of massing at one component.

2.3.2 MAIN RESULTS

Now we are ready to present the main results. Denote by s, = [[Ci|lo for 1 < k& < r* and

so = ||C*[|o. Denote Ay, = Cy — C;, for k =1,...,r*. The following theorem characterizes the
estimation accuracy in different layers of the sequential pursuit.

Theorem 1 (Convergence rates of the sequential pursuit) Suppose Conditions 2.1-2.4 hold
with the sparsity level s > maxj<g<,+ si. Choose A\i = 20max+/2alog(pq)/n for some constant
a > 1 and M\ = H?;ll(l + ne)A1.  The following results hold uniformly over 1 < k < r* with
probability at least 1 — (pq)'~*
| Akl = Okv/sEe) = O(wbi/sx log(pg) /).
|Akll = OkseAr) = O(wbisiv/log(pa) /n),

where 0, = dj. /65, N = cby with constant ¢ = 24¢upl_1, and v = le;ll(l + ng) with v = 1.

)

Theorem 1 presents the estimation error bounds in terms of both Frobenius and ¢; norms for the
co-sparse unit rank matrix estimators in sequential pursuit under mild and reasonable conditions.
This is nontrivial since the subsequent layers play the role of extra noises in the estimation of
each unit-rank matrix. We address this issue by showing that its impact is secondary due to the
orthogonality between different layers, as demonstrated in Lemma 1. The results hold uniformly
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over all true layers with a significant probability that approaches one in polynomial orders of the
product of the two dimensions p and gq.

The regularization parameter A\, reflects the minimum penalization level needed to suppress
the noise in the kth layer, which consists of two parts. One is from the random noise accompanied
with the original response variables, while the other is due to the accumulation of the estimation
errors from all previous layers. The latter is of a larger magnitude than the former one such
that the penalization level increases almost exponentially with k. This can be inevitable in the
sequential procedure since the kth layer estimator is based on the residual response matrix after
extracting the previous layers. Hopefully, the estimation consistency is generally guaranteed for
all the significant unit-rank matrices as long as the true regression coefficient matrix C* is of
sufficiently low rank.

When the singular values are well separated such that the magnitudes of the eigengaps J; are
about the same as that of the eigenvalues, 05 and 7, will be around a constant level. Then for the
first few layers, the estimation accuracy is about O(4/si log(pg)/n), which is close to the optimal
rate O(+/(sy + 8) log(p V q)/n) for the estimation of C* established in Ma et al. (2020). When
the true rank is one, the main difference between the two rates lies in the sparsity factors, where
(su-+Sy) is a sum of the sparsity levels of the left and right singular vectors, while our sparsity factor
is the product of them. However, the optimal rate is typically attained through some nonconvex
algorithms (Ma et al., 2020; Yu et al., 2020; Uematsu et al., 2019) that search the optimal solution
in a neighborhood of C*. In contrast, our CURE algorithm enjoys better computational efficiency
and stability.

Last but not least, in view of the correlation constraint on the design matrix X, that is,
s > maxXj<k<r* Sk, the sequential pursuit is valid as long as the number of nonzero entries in
each layer Cj is within the sparsity level s imposed in Conditions 2.3 and 2.4. It means that in
practice, the sequential deflation strategy can recover some complex networks layer by layer, which
is not shared by either the parallel pursuit or other methods that directly target on estimating the
multi-rank coefficient matrix.

We then turn our attention to the statistical properties of the parallel pursuit. The key point
of this deflation strategy is to find a relatively accurate initial estimator such that the signals
from the other layers/components except the targeted one can be approximately removed. The
reduced-rank regression estimator may not be a good choice under high dimensions, since it does
not guarantee the estimation consistency due to the lack of sparsity constraint. Similar to Uematsu
et al. (2019), we mainly adopt the following lasso initial estimator,

€ = argmin (2n) 'Y = XC|% + Ao[[C]1.
C

which can be efficiently solved by various algorithms (Friedman et al., 2010). Under the same
RE condition (Condition 2.3) as the sequential pursuit on the design matrix X with a tolerated
sparsity level s > sg, where sg indicates the number of nonzero entries in C*, we show that this
lasso initial estimator is consistent with the convergence rate of O(y/solog(pg)/n) in Lemma 3.
Based on 6, we can obtain the initial unit rank estimates 62 for different layers through a
P-orthogonal SVD. However, these unit rank estimates are not guaranteed to be sparse even if the
lasso estimator C is a sparse one, which causes additional difficulties in high dimensions. Thus, to
facilitate the theoretical analysis, our initial kth layer estimate Cy, takes the s largest components
of Cg in terms of absolute values while sets the others to be zero, where s is the upper bound
on the sparsity level defined in Conditions 2.3 and 2.4. We will show that these s-sparse initial
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estimates (~3k can maintain the estimation accuracy of the initial unit-rank estimates 62 without
imposing any signal assumption, regardless of the thresholding procedure. In practice, we can use
the SVD estimates directly as the impact of fairly small entries is negligible.

Theorem 2 (Convergence rates of the parallel pursuit) Suppose Conditions 2.1-2.4 hold
with the sparsity level s > maxo<g<,* Sg. Choose Ao = 20maxy/2alog(pq)/n with constant o > 1
for the initial Lasso estimator (~3, and N\, = 2CYi+/log(pq)/n for some positive constant C. The
following results hold uniformly over 1 < k < r* with probability at least 1 — (pg)'~®

|AL]r = O(/5kMk) = O(vi/si log(pg) /n),
|AL]1 = O(sphe) = O(Wrs\/log(pg) /n),

where Yy, = did}/(dy min[d;_,,0;]) with d the largest singular value of C*.

)

Based on the lasso initial estimator, Theorem 2 demonstrates that the parallel pursuit achieves
accurate estimation of different layers and reduces the sparsity factor in the convergence rates from
so to sg, where the sparsity level sy of the entire regression coefficient matrix can be about r* times
of si. Moreover, as there is no accumulated noises in the parallel estimation of different layers,
we do not see an accumulation factor «; here such that the penalization parameters keep around
a uniform magnitude. The eigen-factor ¢ plays a similar role as 5 in the convergence rates
for sequential pursuit in Theorem 1, both of which can typically be bounded from above under
the low-rank and sparse structures. Thus, the estimation accuracy of all the significant unit-rank
matrices is about the same as that of the first layer in the sequential pursuit, which reveals the
potential superiority of the parallel pursuit.

In view of the technical assumptions, the sequential and the parallel pursuits are very similar,
while the main difference lies in the requirement on the sparsity level s. As discussed after Condition
2.3, the integer s constrains the correlations between the columns of X to ensure the identifiability
of the true supports, thus can be regarded as fixed for a given design matrix. Since the parallel
pursuit requires not only the sparsity level s; of each individual layer but also the overall sparsity
level sg to be no larger than s, it puts a stricter constraint on correlations among the predictors.
In other words, when the true coefficient matrix C* is not sufficiently sparse, the lasso initial
estimator may not be accurate enough to facilitate the subsequent parallel estimation, in which
case the sequential pursuit could enjoy some advantage.

Our theoretical results mainly concern the convergence rate of estimating each unit-rank layer
C;, by the estimator (/jk, for 1 < k < r*, where r* is not required to be known when establishing
the convergence rate of each (Ajk When k > r*, there is no signal left in the residual matrix and
the singular vectors v; and u; become unidentifiable due to the repeated zero singular values. In
practice, the rank of the overall coefficient matrix can be naturally reduced or determined when
some sparse unit-rank components are estimated to be zero by tuning A via cross validation or
some information criterion. In fact, * can also be detected before solving the CURE problems.
Specifically, since r* corresponds to the SVD of the regression component XC*, tuning the optimal
rank from the sequence of SVD components of Y by some information criterion has been shown
to enjoy consistency guarantee under reasonable signal conditions (Zheng et al., 2022). Thus, we
can identify the rank correspondingly before conducting the deflation strategies to help prevent
overfitting from the residual matrix.

10
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The previous two theorems guarantee the statistical properties of the global optimizers of the
CURE problems from the two different deflation strategies, respectively. It is worth noticing that
once the rates of convergence of Cj are established, the estimation errors of the left and the right
singular vectors, as well as the singular values, can be shown to be around the same order since
they are bounded from above by that of Cj. Then the rates of convergence for D*, U*, and V*
will be no more than the aggregation of the estimation errors from the top r* layers.

On the other hand, although the CURE problem adopts a bi-convex form, it is generally not
convex such that the computational solution is usually a local optimizer rather than a global one.
Fortunately, it has been proved in univariate response settings that any two sparse local optimizers
can be close to each other under mild regularity conditions (Zhang and Zhang, 2012; Fan and Lv,
2014). Therefore, when the global minimizer is also sparse, the computational solution will share
similar asymptotic properties. We illustrate this phenomenon in multi-response settings through
the following theorem.

Theorem 3 Foranyk, 1 <k <r*, let (Ajé be a computable local optimizer which satisfies H(AjﬁHg =
O(s) and n™ | X" (Yr — XCf)llmax = O(Ak), MiDji=1,|~]0<Css n~V2||Xylly > ko for some
positive constant ko and sufficiently large positive constant C, and ||Cgllo = O(sg). Then under

the same assumptions of Theorem 1 (Theorem 2), éé achieves the same estimation error bounds
as the global optimizer.

The regularity conditions on the computable local optimizer and the design matrix are basically
the same as those in Fan and Lv (2014). The assumption on the sparsity of the global optimizer is
generally easy to satisfy as we adopt the ¢;-penalization, which was shown in Bickel et al. (2009)
to generate a sparse model of size O(¢™**s) under certain regularity conditions, where ¢™** is the
largest eigenvalue of the Gram matrix and s is the true sparsity level. For the local minimizer
C’,;J, the sparsity holds naturally because we update the solution restricted in an active set, where
the number of nonzeros in the algorithm can be exactly controlled. Furthermore, the correlation
between the predictors and the residuals is an assumption that we expect the solution from the
algorithm can fit the responses well. In Lemma 5 and Theorem 6, we will show that the algorithmic
solution can converges to ACS’s with small enough stepsize. Thus, in view of Theorem 3, the sparse
computational solutions we obtain in practice can satisfy the desirable statistical properties.

3. Contended Stagewise Learning

3.1 Stagewise CURE

It remains to solve the CURE problem in (3) or (4). The alternating convex search (ACS) al-
gorithm, i.e., block coordinate descent (Minasian et al., 2014), is natural and commonly-used for
solving (4), in which the objective function is alternately optimized with respect to a (overlapping)
block of parameters, (d,u) or (d,v), with the rest held fixed. Since the objective is a function
of (d,u) or (d,v) only through the products du or dv, the norm constraints are avoided in the
sub-routines which then become exactly lasso problems. Mishra et al. (2017) showed that ACS
converges to a coordinate-wise minimum point of (4) and the sequence of solutions along the it-
erations is uniformly bounded. With such a typical approach, however, the optimization needs to
be repeated for a grid of A values, and even with a warm-start strategy, the computation can still
be expensive.

11
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Inspired by the stagewise learning paradigm (Efron et al., 2004; Zhao and Yu, 2013; Tibshi-
rani, 2015), we innovate a contended stagewise learning strategy to trace out the entire solution
paths of CURE. Before we dive into details of our proposed algorithms, it is helpful to have an
overview on the main ideas and the potential benefits of stagewise learning. Roughly speaking,
stagewise learning is a slow-brewing process for model building. A stagewise procedure starts with
a null model and takes simple, incremental steps to gradually update the parameters to enrich the
model, in which each incremental update is determined by minimizing certain loss function over a
simplified, restricted parameter space resulting from constraining either the form of the potential
update or the size of the potential increase in some model complexity measure. As such, a carefully
crafted stagewise procedure can efficiently trace out a whole spectrum of potential models with
repetitive simple calculations. Stagewise learning has several prominent features that makes it
very attractive in dealing with large-scale problems. First, it allows for a flexible trade-off between
statistical accuracy and computational efficiency by the choice of the step size. Second, its learn-
ing process can stop early whenever a desirable model complexity is reached which avoids fitting
overly complex models. Last but not the least, it admits a principled connection with regularized
estimation, i.e., it has been shown for several problems that we can design a stagewise procedure
to approximately trace out the solution paths of a corresponding regularized estimation problem,
and the convergence of the paths could be exact when the step size goes to zero. However, thur
far, stagewise learning is still largely heuristic and mainly limited to convex problems such as lasso,
group lasso or nuclear norm penalized regression (Tibshirani, 2015; Vaughan et al., 2017).

Although CURE is non-convex, we come to realize that efficient and principled stagewise
learning remains possible. Our idea is simple yet elegant: when determining the update at each
stagewise step, all the proposals from the subproblems of the potential blockwise updates have to
compete with each other, and only the winner gets executed. This is in contrast to the classical
setup, where in each update there is only a single proposal that is determined in a global fashion.

We now present in detail our proposed stagewise procedure for CURE. For improving the
estimation stability and facilitate calculations in practice, we consider a more general CURE
problem with an added ¢ penalty term and adopt an alternative set of normalization constraints,

CIlnin Q(duv™; \) = {L(duvT) + )\p(duvT)} , st.d>0,|ulh =1,|v|1 =1, (7)
u,v

where L(duvT) = (2n)7Y|Y — dXuv?t||% + (1/2)||duv?t||% and p(duv?®) = Ad|ju|)1]|v|j1. This is
the same as using a strictly convex elastic net penalty on C = duv! whenever x> 0 (Zou and
Hastie, 2005). Here we consider u as a pre-specified fixed constant, and our goal remains to trace
out the solution paths with respect to varying A. In Theorem 6, we show that the /o term can
asymptotically vanish, so the CURE problems with or without the ¢ penalty are asymptotically
equivalent. Since the objective is a function of duv™, the normalization of u and v can be arbitrary
and can always be absorbed to d; we thus use /1 normalization here, and the solution can be easily

re-normalized to satisfy the original set of constraints in (4), corresponding to the P-orthogonal
SVD.

In what follows, we first present the general structure of the contended stagewise learning al-
gorithm, and then provide the resulting simple problems/solutions for the incremental updates.
The detailed derivations are given in Appendix D.
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(I) Initialization. Set ¢ = 0. This step is based on searching for the initial non-zero entry of C
as follows:

(3, k,5) = arg " ]?)qiriieL(duvT) s.t. dujor, = s,ujvp = 0,Y5" # 4,k # k;

—arg min L(s1;1});
Jmin | L(sLAE) .

=15 V0 = sgn(s )L;JO =g
1 ~0~
= {7} B° = (kA" = {L(0) - L(d"u’%")}.
€
Here 1; (1) is an p x 1 (¢ x 1) standard basis vector with all zeros except for a one in its jth

(kth) coordinate. The A° and BY are the initial row and column active sets of non-zero indices,
respectively.

(IT) Backward Update. The update is about searching for the best row or column index to
move “backward” within the current active sets in a blockwise fashion. At the (¢4 1)th step, there
are two options:

j = arg miﬁ L(duv?') s.t. (du) = (du)t — sgn(uf)el;, v = v';
JE

(du)™! = (du)! — sgn(uﬁ.)el« dtt = H(du)tHHl; u't! = (qu)t/d v = v (scaling)

AL — At i b +1 £0; A = A — () if ut t+1 0: B+ = Bt
AL\
or
k = arg Hélé% L(duv?) s.t. (dv) = (dv)! — sgn(v})ely,u = u’;
(dv)™! = (dv)' — sgn(vp)elg;d™ = H(dV)tHHh = (dv) T d T = (10)
AHL— AL B — Bt i v%—l—l £0, B4 = Bt — (&) if Ut+1 —0:
AL —
The penalty term will be decreased by a fixed amount Ae (as ||u'l|; = ||v!|y = 1); the option

with a lower L value wins the bid. To ensure the objective in (4) is reduced, the winning option
is executed only if L(dH u! T viH1T) — L(d'utviT) < Me—¢, where € = o(e) > 0 is a tolerance level.

(IIT) Forward Update. When the backward update can no longer proceed, a forward update is
carried out, which searches for the best row or column index to move “forward” over all indices,
again, in a blockwise fashion. At the (¢ + 1)th step, the update chooses between two proposals:

7.3) = arg min L(duv?) s.t. (du) = (du)! + s1;, v = v’
(J,%) g ( j» ;

Jis==e€

() 7 = )+ 855 = ) = ) =
AtJrl — At U] BtJrl — Bt,
)\t+1 _ mln()\t {L(dt t tT) L(dt+1ut+1vt+1T) . f}/e),

(11)
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or
(k,h) = arg kII?iI:lI: L(duv?) s.t. (dv) = (dv)' 4 hlj,u = u’;
(dv)t+1 _ (dv)t +/H1E7 dttt = H(dv)tJrlHl;VtJrl _ (dv)t+1/dt+1; uttt = ut;
AT = A B = B U E;

AFL = min(\, {L(dtalv?T) — L(dH eV — g} /e).

(12)

As p(dFtuttiviHT) — p(dtulviT) = ¢, the option that can decrease L more is executed.

The structure of the proposed stagewise learning procedure is summarized in Algorithm 1. It
is intuitive how this procedure works. A forward update is taken only when backward updates can
no longer proceed, i.e., the regularized loss at A’ can no longer be reduced by searching over the
“backward directions” in a blockwise fashion within the current active sets. When a forward step
is taken, the search expends to all possible blockwise directions, and the parameter A\ gets reduced
only when the corresponding regularized loss can not be further reduced by any incremental update
on any block of parameters. Indeed, we show in Section 3.2 that when e and £ = o(¢€) go to zero
at the time A gets reduced to A'*!, a coordinatewise minimum point of the regularized loss with
A can be reached.

Algorithm 1 Contended Stagewise Learning for CURE (Pseudo code)
Initialization step: based on searching for the first nonzero entries in u and v by (8). Set €
and £. Set t = 0.
repeat
Backward step: compare the proposals of blockwise updates within the current active sets,
and choose the one that induces the least increment in L (or the most reduction):

e Proposal 1: update (d,u), A+ and X! by (9).
e Proposal 2: update (d,v), B! and A+ by (10).

if the induced increment in L is less than \e — &, then
Execute the chosen proposal of backward update.
else

Forward step: compare the proposals of blockwise updates over all row/column indices,
choose the one that reduces the loss L the most:

e Proposal 1: update (d,u), A"t and X' by (11).
e Proposal 2: update (d,v), Bt and A+ by (12).

t—1t+ 1.
until \; <0.

The computations involved in the contended stagewise learning can be implemented in a very
efficient way. Define the current residual matrix as B! =Y —d!Xutv!T and denote its kth column
as €. Recall that X; and yj, are the jth and kth column of X and Y, respectively, as defined in
Section 2. Then, the initialization step boils down to the following,

G:B) = argmin {(2n) %13 —n KT}, S = e e (13)
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The problem of the (¢ + 1)th backward step is

jzargﬁlin (2n) el %5311V I3 + n~ sgn(uf)X B — pd' ug[[v*]3,
JE€

- (14)
F = argmin n~lsgn(o})utTXT&, — pud[of | u’ 3.
keBt
The problem of the (¢ + 1)th forward step is
j = argmax [n X EV — pd'uj v — (2n) 7 ell35113 v 113:
J
5= sgn(n_liATEtvt - dt@ﬁ.Hth%)e,

(15)

??‘)

= argmax [n”'u'TXTe], — pd'vf[[u’[[3];
k

~

h =sgn(n~ utTXTNt - udtvéﬂutﬂg)e.

Lastly, for choosing between updating du or dv or between proceeding with backward or forward
update, the change in the loss function are computed as

~

2
t T ttytT 2ot _ SeTwtot . Mooy 62 gttt ]2
L ( [(d) +315)v') = L{duv'T) = 531V - SRIEN + Devt 3 + psdt v,
L(ut [(av) +71y] ) - Lidutv'®) = 2qut\P_ﬁuthTauLGZHutuh htot||u |2
% m 27, % 9 2 T H P 2-

To streamline the main ideas, we haven’t discussed much on the handling of missing values. In
fact, our stagewise methods can conveniently handle missing values in the response matrix, which
makes it applicable for large-scale matrix completion (Candés and Recht, 2009; Candes and Plan,
2010). Here we briefly describe the setup. Let H be the index set of all observed values in Y, i.e.,
M ={(4,7);yij is observed,i =1,...,n,j =1,...,q}. Define Py : R"*? — R"*7 be the projection
operator onto H, so that for any matrix Z € R"*?  the entries of Py(Z) equal to those of Z on
‘H and otherwise equal to zero. Then, corresponding to the complete data case in (7), the CURE
problem with incomplete data can be expressed as

1
min (2n) [ Py(Y) = Pr(dXuv )7 + S llduv® |7 + Ad|ufi[|v]:

d,u,v

st.d>0,|ulp =1, [|v]: =1

We can show that the proposed methods still work with slight modification and maintain compu-
tational efficiency; the only change is to replace the residual matrix E! with its projection Py (E!)
during the iterations.

We have implemented all the proposed computational methods in a user-friendly R package
with RCpp (R Core Team, 2021).

3.2 Computational Complexity and Convergence

Theorem 4 presents the computational complexity of the proposed stagewise procedure.

Theorem 4 Consider the (t + 1)th step of Algorithm 1 for contended stagewise learning of (7).
Let A = a® and B! = b'. The computational complexity of the update is O(a'ng + binp).
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The results show that the stagewise learning can be much more efficient than the ACS approach.
ACS needs to be run for a grid of A values; for each fixed A, the algorithm alternates between two
lasso problems with computational complexity O(npq) (Friedman et al., 2010) until convergence.
In contrast, our method costs O(npq) operations in the initialization step and O(a’ng + binp)
operations in the subsequent steps, and the solution paths are traced out in a single run.

We now attempt to quantify the proximity between the stagewise approximated solution and
that from fully optimizing the regularized loss function through ACS.

Lemma 5 Consider Algorithm 1 for the contended stagewise learning of (7). When At < XY,
that is, whenever X! gets reduced during the stagewise learning, we have

* * Me
max [[|(dw) v — duv'T |, [[ut(dv)*T — dutv'T | ] < 245 (m " i) |

where M is a constant, and

(du)™* = arg Irdlin Q(duv'™; \Y), (dv)!* = arg Irdlin Q(ul(dv)™; \h).
u v

Lemma 5 attempts to quantify and bound the distance between any stagewise solution along
the path (for any A\! when it gets reduced) and the corresponding coordinate-wise minimum point
for the optimization problem in (7) with A = \!; the latter can be achieved by ACS. Due to the
bi-convex nature of the problem, the bound is given in a “bi-directional” or coordinate-wise fashion
with respect to either du’ or dv’. The most important finding is on the order of the difference,
which provides guidelines on the choices of €, & and . Specifically, let B(d'ufv'™; 2@[% + é])

be a (pg — 1)-dimensional ball with center d‘u’v‘T and radius 2\/171[];4—; + %] By Lemma 5,
the center will converge to the corresponding solution of ACS when the radius converges to zero,
because (du)*v!T and u’(dv)™*T are always in the ball. In addition, the inequality in Lemma 5
holds for any ¢ > 0, so we can directly obtain the pathwise convergence as shown in the following

theorem.

Theorem 6 Consider Algorithm 1 for the contended stagewise learning of (7). When € — 0 and
& = o(e€), the solution paths of the stagewise learning converge to those of the ACS uniformly.
Moreover, the results remain hold when p — 0, € = o(u) and & = o(ep).

3.3 Tuning & Early Stopping

In practice, it is often required to identify the optimal solution along the paths. The K-fold cross
validation can be used to evaluate the models, for which the stagewise learning procedure has to
be run multiple times. Alternatively, selecting tuning parameters by information criterion can be
more efficient. In our implementation, the default choice is to use the generalized information
criterion (GIC) (Fan and Tang, 2013):

logl 1 ~
GIC(\') = log|[Y — d'Xu'v/T |3 + =% Og(zq; o8(P4) G )

where df (\') = |[u![o+ ||v![lo—1, is the estimated degrees of freedom for the stagewise model. GIC
is shown to perform well in our numerical studies. Other implemented criteria including AIC, BIC,
and out-of-sample prediction error (when additional testing samples are available) are optional.
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Due to the nature of stagewise learning, an early stopping mechanism can be implemented based
on monitoring the information criterion during the learning process. As the model complexity
gradually increases during the stagewise learning, the information criterion, which balances model
fitting and model complexity, is expected to first decrease and then increase. As such, the stagewise
learning can be terminated early if such a convex pattern of the information criterion is detected.
In our implementation, the default is to stop the stagewise learning if the information criterion has
not being decreasing for 300 consecutive steps. This strategy avoids the fitting of overly-complex
models, and neither specifying nor tuning the iteration number is required.

4. Simulation

4.1 Setups

We conduct simulation studies with data generated from the co-sparse factor regression model as
specified in (1). We consider three simulation setups, which differ mainly on the generation of the
true coefficient matrix C* = U*D*V*T € RPX4 where U* = [uf,...,u’], V* = [v},..., V%], and
D* = diag{d; ..., d}}.

Model I is a unit-rank model mainly for analyzing the properties of CURE, in which we set

u] = uy/||uy||2 where uy = [10,—-10,8, —8,5, —5,rep(3,5), rep(—3,5),rep(0, p — 16)]T,
vi = v1/||¥1]2 where ¥; = [10,-9,8, 7,6, —5,4, —3,rep(2, 17), rep(0, ¢ — 25)]"

and dj = 20, where rep(a, b) represent a 1 x b vector with all entries equaling to a.
Models IT and IIT are multi-rank models. In Model II, the singular values and singular vectors
are generated as follows,

= uy/||ug|l2 where ux = [rep(0, k — 1), unif(Q,, sy,), rep(0,p — s, — k + 1)]T,

A
¥ =V /||Vell2 where v = [rep(0, k — 1), unif(Q,, s,), rep(0, ¢ — s, — k + 1)] %,
* +5(r* —k+1),

fork=1,...,r* where s, = 3, s, = 4, and unif(Q, s) denotes a vector of length s whose entries are
i.i.d. uniformly distributed on the set Q; here we set Q, = {1,—1} and Q, = [—1,—0.3] U [0.3, 1]
and adopt an additional Gram-Schmidt orthogonalization on v, to ensure the orthogonality. Model
III is similar to Model II, and the only difference is that we generate t; and vj by

uy, = [rep(0, sy (k — 1)), unif(Q,, sy,),rep(0,p — k:su)]T,
Vi, = [rep(0, sy (k — 1)), unif(Q,, s,), rep(0, ¢ — ksv)]T.

In view of C* = 22:1 ZUZVZTv the coefficient matrix in Model II is more sparse than that in
Model III due to the overlap of nonzero components in different unit-rank matrices.

We then generate the design matrix X, following the same procedure as in Mishra et al. (2017).
Specifically, let x ~ N(0,T"), where I' = (;;)pxp with v;; = 0.51"7J1. Given U* = [uj,...,uk], we
can find U* € RP*(P~") guch that P = [U*,U*] € RP*? and rank(P) = p. Denote x; = U*Tx
and xo = UjTX. We first generate a matrix X; € R™*"" whose entries are from N(0,I,~) and then
we generate Xy € R™(P~"") by drawing n random samples from the conditional distribution of
xg given x7. The predictor matrix is then set as X = [Xy, X3] P~! so that the setup corresponds
to (2). The rows of the error matrix E are generated as i.i.d. samples from N(0,02A) where
A = (0;5)gxq With 055 = p|i*j|. The response Y is then generate by Y = XC* + E. We set ¢ to
control the signal-to-noise ratio (SNR), defined as SNR = ||} Xui.viL |2/ ||E| #.

u
\4

d
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Figure 3: Stagewsie paths of di and dv for different step sizes. Stagewise paths are shown as black
solid lines, and the exact solution paths from ACS are shown in red dashed lines.

4.2 Path Convergence of Stagewise CURE

We demonstrate that the stagewise paths of CURE closely mimic the solutions of ACS as the step
size becomes sufficiently small. We use Model I, with n = p = ¢ = 200, p = 0.3 and SNR = 0.25.
Figure 3 shows the solution paths of dd and dv with varying € values. Indeed, the stagewise paths
approximately trace out the solution paths of ACS, and their discrepancies vanish as the step size
gets smaller.

4.3 Estimation Performance

We compare the estimation accuracy of our proposed approaches to several competing regularized
regression methods, including reduced-rank regression (RRR), row-sparse reduced rank regression
via adaptive group lasso (SRRR) (Chen and Huang, 2012), sparse orthogonal factor regression (SO-
FAR) (Uematsu et al., 2019). For the two deflation based methods, we try both stagewise learning
(STL) and ACS for solving CURE, resulting in sequential pursuit with stagewise learning (Se-
qSTL), sequential pursuit with ACS (SeqACS), parallel pursuit with stagewise learning initialized
by lasso (ParSTL(L)), parallel pursuit with stagewise learning initialized by RRR (ParSTL(R)),
parallel pursuit with ACS initialized by lasso (ParACS(L)), and parallel pursuit with ACS ini-
tialized by RRR (ParACS(R)). The ParACS(R) and SeqACS are essentially corresponding to the
reduced-rank regression with a sparse singular value decomposition (RSSVD) proposed by Chen
et al. (2012) and the sequential co-sparse factor regression (SeFAR) proposed by Mishra et al.
(2017), respectively.
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Models II and IIT are considered here with n = ¢ = 100, p € {100, 200,400}, r* € {3,6},
SNR € {0.25,0.5,1}, p = 0.3 and € = 0.5 x 1072, The experiment under each setting is repeated
200 times. The estimation accuracy is measured by Er(C) = HC C*||%/(pq) and Er(XC) =
IX(C —C)|2 7/(ngq). The variable selection performance is characterized by the false positive rate
(FPR) and false negative rate (FNR) in recovering the sparsity patterns of the SVD structure,
where FPR = FP/(TN + FP) and FNR = FN/(TP + FN). Here, TP, FP, TN, and FN are the
numbers of true nonzeros, false nonzeros, true zeros, and false zeros of U and V respectively.
Table 1 reports the results for Model IT with SNR = 0.5 and p € {200,400}, and Table 2 reports
the results for Model IIT under the same settings.

First of all, the stagewise methods are much faster than the other methods, and the efficiency
gain in computation can be dramatic for models of large dimensions; more results regarding com-
putation time can be found in Section 4.5. In general the estimation and prediction performance
of stagewise method are better or comparable to the other competing methods. RRR performs
the worst, as it does not consider sparse estimation at all. SOFAR may perform unsatisfactorily
because its optimization is highly non-convex and it targets on the sparsity pattern in the SVD of
C* rather than its P—orthogonal SVD. SRRR considers row-wise sparsity in C* only. In terms of
the ACS solutions for CURE, with a more sparse C*, parallel pursuit usually performs better than
sequential pursuit, which is consistent with our theoretical results. When C* becomes less sparse,
the difference between parallel and sequential methods becomes negligible. It is also interesting to
notice that stagewise methods may even slightly outperform their ACS counterparts. This may be
due to the additional regularization effects of the stagewise approximation.

4.4 Impact of Step Size

We investigate the impact of the step size € in stagewise learning on the performance of the proposed
methods. The data are simulated from Model IIT with p = 600, ¢ = n = 200, r* = 3 and p = 0.3.
We consider different step sizes, i.e., € in {0.125,0.25,0.375,0.5,0.625} x 10~2. The experiment is
replicated 200 times. Figure 4 shows the boxplots of the estimation error, prediction error, and
computation time. The performance of the stagewise methods is stabilized when € is small enough,
i.e., € < 0.25 x 1072 in this example. But the computational cost will increase if € is too small
and it is clear that there is a tradeoff between stepsize and accuracy. In practice, we suggest to
conduct some pilot numerical analysis to identify a proper step size.

4.5 Computational Efficiency

We report the computational time of our proposed methods as functions of p, ¢ and n separately.
The data are simulated from Model IIT with SNR = 0.25, r* = 3 and p = 0.3. In each setup, we
let one of the three model dimensions, i.e., the sample size n, the number of predictors p, and the
number of responses ¢, to vary from 200 to 2000, while holding the other two at a constant value
of 200. The experiment is repeated 100 times under each setting. Figure 5 reports the average
computation times as functions of p, ¢ and n in three panels from the left to the right, respectively.
It is evident that our proposed approaches are scalable to large-scale problems, and the gain over
the ACS-based approaches is dramatic.
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Table 1: Results for Model IT with SNR = 0.5, p € {100, 200,400} and r* € {3,6}; here Er(C) and
Er(XC) are rescaled by multiplying 103.

Method Er(C) Er(XC) FPR (%) FNR (%) Time (s) Er(C) Er(XC) FPR (%) FNR (%) Time (s)
p =100 p =100
RRR 4478.89  246.22  100.00 0.00 0.08 4788.37 478.79  100.00 0.00 0.09
SRRR 1.66 139.64 57.32 0.00 5.28 4.09  302.34 56.12 0.00 7.26
SOFAR 6.44  202.75 24.59 4.83 10.70 20.85  855.91 22.83 7.75 22.13
SeqACS 1.34 85.83 0.96 4.54 0.50 483  289.24 2.45 9.01 1.56
ParACS(L)  0.97 70.50 2.10 3.56 8.08 6.02  402.34 4.82 6.50 8.55
ParACS(R)  1.54 92.22 3.24 5.92 7.00 4.71 269.37 8.38 6.11 7.45
SeqSTL 0.65 42.58 0.85 4.52 0.38 3.76  215.73 2.37 10.90 0.76
ParSTL(L)  0.70 52.01 1.12 3.94 1.07 5.83  380.29 3.19 8.87 1.17
ParSTL(R)  0.75 46.16 1.06 3.96 0.15 3.57  188.62 3.17 8.03 0.13
p = 200 p = 200
RRR 1899  247.89  100.00 0.00 0.12 91.45  472.36  100.00 0.00 0.11
SRRR 0.85 160.50 64.31 0.00 6.98 1.70  287.74 65.43 0.00 14.38
SOFAR 3.45 142.55 29.23 3.87 13.51 20.80  744.53 21.12 7.25 25.80
SeqACS 0.78 99.79 0.67 4.46 1.68 2.87  340.08 1.56 10.45 5.17
ParACS(L)  0.55 80.38 1.58 3.33 8.84 242  316.90 3.58 6.79 9.50
ParACS(R)  0.77 95.32 2.03 8.71 8.08 225  273.33 4.51 8.90 8.45
SeqSTL 0.41 50.72 0.59 4.12 0.47 225  250.90 1.53 12.55 1.01
ParSTL(L)  0.42 61.85 0.79 3.77 1.03 2.45  306.59 2.14 9.33 1.11
ParSTL(R)  0.46 54.22 0.75 3.85 0.17 246  244.62 2.18 8.96 0.18
p = 400 p =400
RRR 13.86  243.25  100.00 0.00 0.47 66.92  478.95  100.00 0.00 0.43
SRRR 0.49 194.07 50.02 0.00 21.94 0.99  355.65 57.26 0.00 40.66
SOFAR 5.61 158.58 32.99 3.27 30.08 29.44  554.55 26.58 7.45 10.38
SeqACS 0.46 115.37 0.44 5.17 12.47 1.80  404.84 0.92 10.43 30.04
ParACS(L)  0.31 87.26 1.13 4.12 12.41 1.22  305.48 2.42 7.29 12.99
ParACS(R)  0.46 106.39 1.22 6.40 12.83 1.43  306.86 2.68 9.18 14.19
SeqSTL 0.24 57.48 0.37 4.87 1.03 1.42  281.50 0.94 12.76 1.77
ParSTL(L)  0.24 67.41 0.50 4.48 1.41 1.57  349.37 1.36 9.97 1.66
ParSTL(R)  0.26 61.04 0.45 4.67 0.51 1.56 27845 1.36 9.49 0.54
(a) SNR=0.5,7=3 (b) SNR=0.5,r=6
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Table 2: Results for Model IIT with SNR = 0.5, p € {100, 200,400} and r* € {3,6}; here Er(C)
and Er(XC) are rescaled by multiplying 103.

Method Er(C) Er(XC) FPR (%) FNR (%) Time (s) Er(C) Er(XC) FPR (%) FNR (%) Time (s)
p =100 p =100
RRR 5628.05  241.69 100.00 0.00 0.08 10574.61  472.34 100.00 0.00 0.08
SRRR 1.86 148.12 62.70 0.00 4.82 5.76 365.04 66.86 0.00 6.63
SOFAR 3.88 150.65 23.48 0.00 11.27 12.38 538.21 16.28 0.25 20.74
SeqACS 1.15 76.76 1.07 0.31 0.38 5.13 334.67 2.60 1.85 0.88
ParACS(L) 1.17 73.86 4.12 0.00 8.11 5.36 331.75 12.05 0.27 8.61
ParACS(R) 2.05 115.89 9.37 0.64 7.05 7.7 380.04 23.52 2.74 7.64
SeqSTL 0.64 43.43 1.23 0.57 0.35 3.87 246.22 3.42 17.39 0.88
ParSTL(L) 0.94 61.82 2.65 0.26 1.13 5.33 336.18 8.73 5.58 1.15
ParSTL(R) 0.90 57.82 3.22 1.12 0.15 4.34 230.55 10.15 4.70 0.13
» =200 » =200
RRR 18.05 246.27 100.00 0.00 0.12 83.35 479.98 100.00 0.00 0.11
SRRR 0.98 166.66 66.31 0.00 6.54 2.42 328.58 71.09 0.00 10.14
SOFAR 1.82 114.63 27.10 0.00 12.91 5.92 401.01 15.58 0.00 27.03
SeqACS 0.62 83.42 0.73 0.62 1.15 2.87 365.76 1.72 2.81 2.64
ParACS(L) 0.64 80.90 2.87 0.00 9.02 2.96 317.90 8.30 0.06 9.25
ParACS(R) 0.62 75.61 2.81 0.00 8.25 2.23 224.24 8.33 0.00 8.37
SeqSTL 0.36 47.35 0.67 0.67 0.43 2.09 258.97 2.09 17.87 1.12
ParSTL(L) 0.53 66.74 1.71 1.10 0.94 3.00 319.34 5.64 7.87 1.17
ParSTL(R) 0.56 67.50 2.09 0.76 0.17 2.85 272.97 6.75 5.62 0.20
» = 400 » = 400
RRR 13.53 247.87 100.00 0.00 0.46 64.31 478.36 100.00 0.00 0.45
SRRR 0.58 205.47 51.19 0.00 20.32 1.48 384.30 59.62 0.00 31.72
SOFAR 4.09 158.56 31.15 0.26 31.04 15.87 504.32 22.85 5.14 10.49
SeqACS 0.35 95.23 0.40 0.33 7.20 1.54 396.73 1.01 2.49 19.71
ParACS(L) 0.37 94.57 1.73 0.00 12.67 1.73 337.57 5.16 0.05 12.67
ParACS(R) 0.37 89.29 1.89 0.00 12.65 1.54 270.46 6.17 0.00 13.25
SeqSTL 0.20 52.19 0.36 0.67 0.96 1.12 276.18 1.12 15.96 1.80
ParSTL(L) 0.29 75.08 0.92 0.50 1.33 1.84 358.94 3.25 8.52 1.66
ParSTL(R) 0.32 75.86 1.16 0.81 0.53 1.87 316.16 4.02 6.83 0.59
(a) SNR = 0.5, r = 3 (b) SNR = 0.5, 7 = 6
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Figure 4: Impact of the step size € on the performance of the stagewise learning methods.The three
colors, dark, medium and light grey correspond to ParSTL(L), ParSTL(R), and SeqSTL
respectively.
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Figure 5: Simulation: Computation cost with increasing p, ¢ and n.

5. Yeast eQTL Mapping Analysis

In an expression quantitative trait loci (eQTLs) mapping analysis, the main objective is to examine
the association between the eQTLs, i.e., regions of the genome containing DNA sequence variants,
and the expression levels of the genes in certain signaling pathways. Biochemical evidence often
suggests that there exist a few functionally distinct signaling pathways of genes, each of which may
involve only a subset of genes and correspondingly a subset of eQTLs. Therefore, the recovery of
such association structure can be formulated as a sparse factor regression problem, with the gene
expressions being the responses and the eQTLs being the predictors. Here, we analyze the yeast
eQTL data set described by Brem and Kruglyak (2005) and Storey et al. (2005), to illustrate the
power and scalability of the proposed approaches for estimating the associations between p = 3244
genetic markers and ¢ = 54 genes that belong to the yeast Mitogen-activated protein kinases
(MAPKSs) signaling pathway (Kanehisa et al., 2009), with data collected from n = 112 yeast
samples.

Uematsu et al. (2019) used the same data set to showcase their SOFAR method. In their
work, a marginal screening approach was first used to reduce the number of marker locations from
p = 3244 to p = 605, which greatly alleviated the computational burden. However, since our
proposed approaches are more scalable, it is worth trying to include all the markers for a joint
regression. We thus try both approaches in this analysis.

Under either setting, i.e., with or without marginal screening, we perform a random splitting
procedure to compare the performance of different methods. To make the comparison fair, all the
methods have the same pre-specified rank, which is selected from RRR via 10-fold cross validation.
Specifically, each time the data set is randomly split into 80% for model fitting and 20% for
computing the out-sample mean squared error (MSE) of the fitted model. Also recorded are the
computation time (in seconds), the number of nonzero entries in U (||Ul|o), the number of nonzero
rows in U (||[AJ'H2,0), the number of nonzero entries in V (H\A/‘HO), and the number of nonzero rows
inV (H\A/'Hgo) The procedure is repeated 100 times, and to make a robust comparison we compute
the 10% trimmed means and standard deviations of the above performance measures.

Table 3 reports the results for the setting with marginal screening. All the methods that
pursue sparse and low rank structures outperform the benchmark RRR in term of out-of-sample
prediction performance; the ParSTL(R) method performs the best, although the improvement
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Table 3: Yeast eQTL mapping analysis: Results with marginal screening.

Method ITllo 10][2,0 V1o V2.0 MSE Time(s)
RRR 1815 (0) 605 (0) 162 (0) 54 (0)  0.34(0.03) 0.52 (0.11)
SOFAR 128.09 (23.85) 44.26 (7.64)  43.5 (7.38) 14.96 (1.41) 0.26 (0.03) 85.35 (18.55)
RSSVD 61.39 (10.94) 5849 (10.52) 6.74 (2.13) 6.2 (1.16) 0.3 (0.03) 38.14 (13.93)
SRRR 522.45 (18.28) 174.15 (6.09) 162 (0) 54 (0)  0.24 (0.02) 76.67 (13.78)
SeqACS 38.61 (3.34) 386 (3.35) 14.51 (1.44) 11.11 (0.93) 0.26 (0.02) 29.84 (10.16)
SeqSTL 67.42 (8.03)  64.49 (7.52) 31.64 (4.28) 19.06 (1.9) 0.23 (0.02)  3.26 (0.82)
ParSTL(L)  59.92 (9.39)  45.85 (6.21) 20.43 (2.61) 13.5 (1.66) 0.29 (0.1)  1.34 (0.33)
ParSTL(R) 7271 (8.84)  69.62 (8.17) 34.50 (4.68) 21.25 (1.92) 0.21 (0.02) 1.12 (0.21)

Table 4: Yeast eQTL mapping analysis: Results with full data (without marginal screening).

Method 1Tl [U12.0 Vo V2.0 MSE Time(s)
RRR 9732 (1788.02) 3244 (0) 162 (29.76) 54 (0) 044 (0.04) 3235 (2.60)
SOFAR 156.62 (84.95)  61.1 (25.4)  40.09 (13.07) 16.02 (2.54) 0.28 (0.03) 283.51 (102.01)
RSSVD 52 (9.4) 51.09 (9.17) 54 (0.7)  5.35(0.62) 0.3 (0.02) 1330.67 (541.91)
SRRR 1332.09 (359.29) 437.06 (44.94) 162 (29.76) 54 (0)  0.24 (0.02)  900.95 (248.2)
SeqACS 38.74 (3.7) 38.67 (3.74)  13.29 (1.35) 10.31 (0.91) 0.26 (0.02) 1378.98 (415.3)
SeqSTL 57.56 (9.09) 56.46 (8.5)  24.18 (5.37) 15.65 (2.37) 0.24 (0.02) 16 (5.04)
ParSTL(L)  57.69 (12.03)  43.67 (5.58)  19.21 (3.34) 12.36 (1.5) 0.31 (0.12) 5.41 (1.7)
ParSTL(R)  67.46 (13.01) 64 (8.35) 30.91 (7.85)  19.25 (2.7) 0.22 (0.02)  36.02 (3.16)

is not substantial comparing to other close competitors. Our proposed methods are no doubt
the most computationally efficient among all the sparse and low-rank methods. The gain in
computational efficiency is even more revealing and dramatic in the setting of p = 3244 without
marginal screening, for which the results are reported in Table 4. For example, ParSTL can be
more than 100 times faster than competitors such as RSSVD (similar to ParACS(R)) or SeqACS.
It is also interesting to see that the predictive performance of all methods becomes slightly worse
comparing to the setting with marginal screening. The performance of RRR deteriorates the most
since it lacks the power of eliminating noise variables. The results suggest that in this particular
application the potential benefit of jointly considering all the markers is exceeded by the loss due
to noise accumulation. Nevertheless, we see that the proposed methods are still able to perform
competitively in such a high-dimensional problem with excellent scalability.

Lastly, we examine the genes selected in the estimated pathways (low-rank components or
layers) using our proposed methods with the full data set. Since each v vector is normalized to
have unit ¢; norm, we define top genes to be those with entries larger than 1/¢ in magnitude.
The selected genes are summarized in Table 5, in which the results in Uematsu et al. (2019)
are reproduced for each of comparison. Figure 6 shows the scatterplots of the latent responses
YV}, versus the latent predictors XU, from the three stagewise methods fitted on the full data.
The results from the three proposed methods are mostly consistent with Uematsu et al. (2019).
The patterns recovered by the three methods are similar, except that ParSTL(L) appears to
reveal a slight different association comparing to the other two methods. As explained in Gustin
et al. (1998), pheromone induces mating and nitrogen starvation induces filamentation are two
pathways in yeast cells. The identified genes STE2, STE3 and GPA1 are receptors required for
mating pheromone, which bind the cognate lipopeptide pheromones (MFA2, MFA1 etc). Besides,
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Table 5: Yeast eQTL mapping analysis: Top genes in the estimated pathways.
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The first row

reproduces the results of Uematsu et al. (2019). The first panel is for the setting with
marginal screening, and the second panel is for the setting with full data.

Method Layer 1 Layer 2 Layer 3
With marginal screening (p = 605)
SOFAR STE3, STE2, MFA2, MFA1 CTT1, SLN1, SLT2, MSN4, GLO1 FUSI1, FARI1, STE2, STE3, GPA1, FUS3, STE12
STE3, STE2, MFA2, MFA1, FUS1, FAR1, STE2, GPA1, FUS3, STE3, TEC1,
SeqSTL CTTL. PUSE CTTL FUSL MSN4, GLOL SLNL o 0" (o) "\’ ey
PasTL(R) STES STE2 MFA2, MFAL, CTT1, FUSI, MSN4, STE3, GLO1,  FUSL, FARI, STE2, GPAL, FUS3, STE3, TECI,
ar CTT1, FUSL, TEC1 SLN1, MFA2 CTT1, SLN1, STE12
ParSTL(L) ETT%’; Sﬁg MFA2, MFAL . ppy | pUST, MSN4, GLO1 CTT1, MSN4, STE2
Full data (p = 3244)
STE3, STE2, MFA2, MFA1, FUSI1, CTT1, FARI1, SLN1, STE2,
Szl CTT1, FUS1 MFA2, GPA1 el
PasTL(R) STES STE2 MFA2, MFAL  CTTL, FUSI, MSN4, GLOL, MFA2, FUSI, FARL, STE2, STE3, GPAL FUS3,
ar CTT1, FUSL, TEC1, WSC2 STES3, SLN1 TEC1, CTT1
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Figure 6: Yeast eQTL mapping analysis: Scatter plots of the estimated latent responses and latent

predictors.
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another top gene FUS3 is used to phosphorylate several downstream targets, including FAR1 which
mediates various responses required for successful mating. Interestingly, our analysis identified an
additional gene, TEC1, that was not reported in previous analysis. TECI, as the transcription
factor specific to the filamentation pathway, has been shown to have FUS3-dependent degradation
induced by pheromone signaling (Bao et al., 2004).

6. Discussion

We have proposed a statistically guided stagewise learning approach for sparse factorization of
large matrix. Both sequential and parallel deflation strategies are analyzed with corresponding
statistical underpinnings. Moreover, a contended stagewise learning technique is developed to
efficiently trace out the whole solution paths, which enjoys a much lower computational complexity
than the alternating convex search. Our work is among the first to enable stagewise learning for
non-convex problems, and extensive numerical studies demonstrate the effectiveness and scalability
of our approach. There are several future research directions. Our stagewise learning algorithm
applies to the CURE problem where the penalty on the unit-rank coefficient matrix is in the
form of the elastic net (Zou and Hastie, 2005); although the ¢ term is considered as fixed in this
work, tuning it may lead to improved predictive performance. It is also interesting to explore
other shrinkage and sparsity-inducing penalty forms in the CURE problem. Our approach can
be applicable in many multi-convex problems such as multi-modal data and tensor data analysis,
and it can also be extended to more general model settings such as generalized linear models and
mixture models. Building upon the architecture of the contended stagewise learning procedure, it
is hopeful that a general framework of non-convex stagewise learning can be developed. Besides
deflation methods, we will also explore other scalable alternatives for the sparse factor regression
problem. In particular, a “lazy sparse reduced rank regression” strategy as described in Qian et al.
(2022) could be promising, where the first step obtains an initial estimator of C*, and the second
step takes the initial estimator as the input to perform the sparse SVD. To make it work in our
setting, we may extend the existing fast sparse SVD solvers (Yang et al., 2014) to the generalized
P-orthogonal SVD setup.
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Appendix

We present the proofs of the theoretical results in this section. For matrices A and B, (A, B)
means the Frobenius inner product of A and B, ||A[|r is the Forbenius norm of A, and [|Al}; =
Zz}j |A;j|. Moreover, denote by Jj, the support set of C; and A, = Cj, — Cj, with Cj, the kth
layer estimator of Cj in either sequential or parallel pursuit.

A. Proof for the sequential pursuit

Recall that the sequential pursuit with lasso penalty sequentially solves

(dy, Ty, Vi) = arg mi)n (2n) MY, — dXuvT || + Al duvT ||y
d,u,v

st. d>0,n Tu'XTXu=vlv =1, (16)

where Y, =Y — X Z]Z;()l (A}g, Co = 0 and 6[ = cjgﬁgﬂr. We need two lemmas before showing the
main theorem.

A.1 Lemma 1 and its proof
Lemma 1 Under Condition 2.2, for any k, 1 < k < r* —1, it holds that

IX A7
2|2 )k (XCF, XCy)

Zwk_l > 1,

where wy, = 1 — 65 /dy, > 0.

Proof [Proof of Lemma 1| Since the following argument applies to any k, 1 < k < r* — 1, we
consider a fixed k here. First of all, there exists the following decomposition for X1, and v that

r*4+1 r*41
1

1
Xuy = a;—Xuj, V= b;vy, (17)

where ﬁXuj* 41 and v | are some unit length vectors orthogonal to the sets of unit length or-

thogonal vectors {ﬁXu}‘ };;1 and {V;‘ }9*:1, respectively, so that the coefficients satisfy Z;:{l a? =
SR =
j=1 "j :

If ap, = 1 or by = 1, it is a relatively trivial case. So we consider cases where ay < 1 and by < 1.
Based on decomposition (17), direct calculation yields that

n Y XALE = & — 2dydiagbe + di2,

r* r*
nt YT (XCLXCy) = Y didgab;.
j=k+1 j=k+1
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It gives
X A% 72 9% apby + 1
230 (XC5,XCy) 27 z] pt (d3/dp)ajbj|
T — 2abg + 7, " S 1 — apby,
2 S (A2 /dR)aghs] |3y (dr/df)agbs|

where 7, = c/l\k/d’,g > 0 and we make use of the fact that 7, + ?,;1 > 2.
Then by Condition 2.2, we have

k+flﬂ<%§r*d [di = diyr/dy, = (di — ) /dy = 1 = 6 /df, = wp, < 1.

Denote by w; = dj /dj. It follows that

(1= axbs)? (1 — agbp)?
(Z§=k+1 wja;b;)? (Z§:k+1 @jaﬁ)(ﬂzkﬂ ajb?)
(1 — apby)? (I—abr)®

- r* Z > wk- .
WA i1 02 (C g 02) ~ wi(l—ap) (1 - b})

Thus, it yields

~ 1o B
. | XAk % I 1 afbk* Sl 1,
2| ZZ:k-H (XCj, XCy)| | Zj:k-i-l (dj /dr.)a;b;|
which concludes the results of Lemma 1. [ |

A.2 Lemma 2 and its proof
Lemma 2 Under Conditions 2.1-2.3 with s > s1 and A1 = 20maxy/2alog(pq)/n for some constant

11—«

a > 1, we have with probability at least 1 — (pq)'~¢,

|As]lr = O(V5iM) = O (61v/s11og(pa) /)
1&4]11 = O(s17) = O (B151v/log(pa) /)
where 61 = (1 —wq) ™t = d}/0}.
Proof [Proof of Lemma 2| Because (31, up, V1) is the optimal solution of (16) for k = 1, we have
(2n) MY = XCul[f + MIC1l < (20) MY = XC{E + M| Cillr,

where C; = LﬂﬁlVlT and C} = djuivil. After some simplification, the above inequality gives that

*

(2n) XA |7 + Ml[Cill < 0 HXTE, A) + 12 (XC}, XC1) + At [[Ci1.
k=2
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Applying Lemma 1, we get
(2n) 7M1 — w1)[|XA % + M|[Cillh < 0 M XTE, Ay) + M |[C
< 7YX E|maxl| Al + M|IC 1, (18)

where the last inequality holds because of the Holder’s inequality. Then on event A = {n ™| XTE||pax <
A1/2}, by inequality (18), we have

~ A~ .
MlICill < TN Al + MG

It yields that R R
A gl < 3[[An L (19)

Therefore, by Condition 2.3, we can get

plALIE V1A, IIF) <07 XA, (20)

1,51

where A TS is the submatrix of A ge as defined in Condition 2.3. Our discussion will be condi-
tioning on the event A hereafter.
On the other hand, combining inequalities (18) and (19) yields that

(1 —wi)(2n) " HIXA3 < 3M/2)[| Al < 6M]|AL |-

Together with (20), we have

1—(4)1

a1 An 5V A, 1) < (1 —w)@n) IXALE < 6M A1 < 6MyE| Ay e (21)

It follows that
1A 117 < 12(p — prwn) " A1y/51. (22)
Note that the kth largest component of A J¢ In terms of absolute value is bounded from above
by [|Ajel[1/k, then we have
pg—s1
1Az IE< Do IAxIE/F < st Ak
k=s14+1

where A Je is a submatrix of A J¢ consisting of the components excluding those with the s
S1

largest absolute values. Then by inequalities (19) and (22), we get

-1

185 e < s 21Ag ] < 35y A I < B A5 e < 3600 — pwon) " Aav/sL (23)

In view of inequalities (21) and (22), we can also get

1A, e < {1200 (o — pron) VTl A 32 < 12000 = pron) ™" M/sn. (24)

Finally, combining (22) , (23) and (24), we have
1Al < 1Bl + 185 e+ 18, |l <5Mys = 001/siA) = O (61+/s110g(pa)/n)
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where M7 = 12(p; — pjw1) ™t and 61 = (1 —w;)~ L. For #; loss bound, from inequalities (19) and
(22), we directly get

AL < 4|As 1 <4VEi|AL P < AMisid = O(01510) = O (9151 10g(m)/n> :

At last, we will derive the probability of event A. First, it follows from the union bound that
P g
P{n Y XTE||max > M1 /2} < Z > P{n N xlej| > M /2).
i=1 j=1

Since Var(xe;) = 02HX1||2 < no2,., under Condition 2.1, applying the tail probability bound of
Gaussian dlstrlbutlon we get

)\2
82

max

P{n_lHXTEHmaX > \1/2} < 2pgexp{— }. (25)

Therefore, when )\ = 8ac?,.n tlog(pq), we know that event A holds with probability at least
1—2(pg)t—2. It Completes the proof of Lemma 2. [ |

A.3 Proof of Theorem 1

When k = 1, the results of Theorem 1 are established in Lemma 2. Now we do some preparation
before showing the results for k£ > 1. Note that

k—1 k—1
1Y — dXuvT [ = Y = XY Cp—dXuv’|F =Y, - > XA, - dXuv" |}
=0 £=0

k—1
= Y — dXuv" [} +2) " (dXuv’, XA,) +
£=0

where Y}, = Xzzzk C,+E, A, = 65 C;and T = —22 <XA@,Y]€> Because T doesn’t
change with the triple (d, u,v), the optimlzatlon problem (16) is equlvalent to

(dy, Tp, Vi) = argmin (2n) [ Y — dXuvT |2 + 01y (dXuvT, XA))
d,u,v 0

o
—_

~
Il

+ M| duvT]|;.

Because (c?k, Uy, Vi) is the optimal solution of (26), we have
_ k—1
(2n) MYy — XCil[F + 071D (XCp, XAy) + M| Ceels
£=0
_ k—1
< (2n) 7Yk = XCilfF +n ) (XCL XA + Al|C -
(=0

29



KuN CHEN, RUIPENG DONG, WANWAN XU, AND ZEMIN ZHENG

Plugging in ?k - X(Ajk = ?k - XCj, — X&k, direct calculation yields that

k—1
2n) XA + 07 Y (XA XA + Al Clh
=0

¥

XA, E) + 0! Z (XAk, XC;) + Ml Ci -
{=k+1

Utilizing Lemma 1, we can derive that for k =2,...,r",

k—1
(20) 71 (1 = wi) [ XA[lF 407 Z (XAg, XAg) + Ae[[Cklln
=0
< n’1<XAk, E) + A\||Cill1

Hereafter, our discussion will be conditioning on the following event
A= {n_1||XTE||max < A1/2},

which has been shown to hold with a significant probability in the proof of Lemma 2.

We then prove the results for £ > 1 by mathematical induction. Assume that

1Al < 3[[ Ayl [[AgllF < Me/sede,
1A e s lr < 3Mev/sehes ([ Aggs |l < Me/sede

hold for 1 < ¢ <k — 1, where My, = 12(p; — piwe) 1, AJZC,SZ is the submatrix of Ajec as defined in
Condition 2.3, and A Je.s, is the submatrix of A Jg consisting of the components excluding those

with the sy largest absolute values.
First of all, by Condition 2.4, we get

— ~ —12
2 X XA max < 5, 2 0ull A, | < duMede,

where the last inequality holds because of ||A LllF < Myy/s¢\;. Define the kth regularization
parameter inductively as

k—1 k—1 k—1
Me=227"N + by D Medg) = M +20,M D Ohe =M+ Y nede, (28)
/=1 /=1 /=1

where M = 12p;1, Op= (1 —wp) ! = d; /oy, and 1, = 24¢up;105 = cfy with ¢ = 24¢upf1. Then
by the same argument as inequalities (18) and (19) in the proof of Lemma 2, we can get

1Azl < 3[Azlh- (29)
Further applying Condition 2.3 gives

Pl A IE V1A g s F) < n7HIXALE.
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Then by inequality (27) and the same argument as inequality (21), we have
_ ~ 3. 1R ~ ~
(2n) 711 = wi) [ XA[E < Ml Akl < 6Akl A [l < 6Aky/skl| A, F-

Combining these two inequalities yields that
1A lr < 12(p0 = preow) ™ VoA = Mi/si . (30)
Then by the same argument as inequalities (23) and (24), we can get
R —1/21 R —1/2| R R
185 e < s P18l <35, 1Al < 3180,
1A e < {12000 — o)~ VaRI A |32,
It yields that R
1AGe lF < 36(p — prwr) sk = 3M/sE A,
Sk
1A lr < 12(p1 — prow) " VEEAE = Miy/S5Mp-
k,sp

Therefore, we can derive that inequalities (29)—(31) hold for 2 < k& < r* by mathematical induction.
By the same argument as that in the proof of Lemma 2, inequalities (29)—(31) give

1AKIF < IAZlF+ 1A s llF+ 1A, |p < 5Miy/sph, = O(0hy/35 M),
k kSk
1Akl < 4] Au 1 < 4VEElI A |7 < AMgsidr = O(BksiAr)-

Finally, we derive an explicit form of the regularization parameter \; defined in (28). By
definition, we have

(31)

k1 k=2
Me =AM+ Y mde, A1 =M+ Y oA
=1 =1

It yields that
Ak = Ak—1 = Mk—1Ak—1,
which gives
M= (1 +nk—1)Ag-1.
Thus, we can derive A\ = H]gz_ll(l + 1¢)A1 by mathematical induction, which concludes the proof
of Theorem 1.

B. Proof for the parallel pursuit

Recall that the parallel pursuit is as follows

(dy, Uy, Vi) = argmin (2n) Y, — dXuv”’||% + Al duv” ||y
(du,v) (32)
st. d>0,n "u"XTXu=vlv=1.

where Y, =Y — X Z#k ég with the initial fth layer estimator 6@ that by definition takes the s
largest components of 62 in terms of absolute values while sets the others to be zero. Here 62 is
fthe unit rank matrix of the initial Lasso estimator C, which is generated from

C= argmin (2n) "' [[Y = XCl[f + Xol|Cllx. (33)

We need two lemmas before showing the main results of the parallel pursuit.
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B.1 Lemma 3 and its proof

Lemma 3 When Conditions 2.1 and 2.5 hold with the sparsity level s > so, Ao = 20maxy/2alog(pq)/n
for some constant a > 1, we have with probability at least 1 — (pq)'=?, the initial Lasso estimator

C satisfies
IA]F = O(V/s0log(pg)/n), n~ /2| XA|r = O(y/s0log(pg) /n),
where sg = ||C*||o and A = C — C*.
Proof [Proof of Lemma 3| By the optimality of (~3, we have
(2n) M IXA[E + MlClli < (A, XTE) + Xo[|C|1.

Applying the same argument as inequalities (18) and (19) in the proof of Lemma 2, conditioning
on the event A = {||XTE||max < Ao/2}, we can get

1Al < 3|1 Ayl
Combining these two inequalities gives that
nTHIXAR < 3Nl Al < 12X0[|A 11 < 12500l A - (34)
On the other hand, by Condition 2.3, we have
a7V [ A I17) < n VXA (35)
Therefore, together with (34), it yields

1A ][F < 120, '/50h0, ([ Age [Ir < 1207 v/500.
0

By the same argument as that in the proof of Lemma 2, when Ao = 20ax\/2alog(pg)/n, the
following results hold with probability at least 1 — (pg)! =%,

|AllF = O(Vs0Ma), n~2|XA|p = O(ys0M).

It concludes the proof of Lemma 3. |

B.2 Lemma 4 and its proof
Lemma 4 When \g = 20max+/2alog(pq)/n for some constant o > 1, Conditions 2.1-2.3 hold

with the sparsity level s > sq , then there exists some positive constant M such that with probability
at least 1 — (pq)'=%, the following inequality holds uniformly over 1 < k < r*,

IC) — Cillr < Mt/s0log(pg)/n,

where vy, = djd}/(dj min[6}_,0;]) with d} the largest singular value of C*.
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Proof [Proof of Lemma 4]
Note that vj and v} are also the unit length right Slngular vectors of XC and XC*, respectively,
vk v > 0, and we have dkuk = Cvk and dyu;, = C*vy. It follows that

—~0 T~ =T T ford T T~ T
Ci — Cr. = dyupvy, — dpugvy = dpug (v — vi)© + (dpug — dpug) vy,

= gl (v —vi)T + [C* = vi) + (C - c*m} VT
Thus, we have

I = Cillr < dillwill2l¥k = villa + [C* (Vi = vi)ll2 + [(C — C*)¥ill2
< dillugll2llvi = vill2 + dellvie = vill2 + [|C = Clr (36)
< 2d;|[Vi = vil2 + [[C = C*|F,
where d is the largest singular value of C* and the last inequality makes use of the fact that
di|lugll2 < d} for any k, 1 < k < r*, due to the following inequality
u; Chvy*

" < max u'C*'v=d.
[ull2 lull2=v]l2=1

dillagll2 =
Moreover, applying Yu et al. (2014, Theorem 3), we get

28/2(2d} + n~ 2| XA p)n” 2| XAl p

: *2 *2 %2 *2
min(d2 | — di*, di* — di,)

[V = vill2 <

for any k, 1 < k < r* with djj = +00. By Condition 2.2, we have
42y — di? = (dp_y + d)(diy — df) = (df_y + di) iy > didiy,
& — diZy = (df, + diy) (di — digy) = (df, + diy)8; > didy,

which yields
min(di2; — &, i — %) > dj min[6;_y, 6;].

Then together with the results of Lemma 3, it follows that

0 —1/2IX A
XAy 50 1og(0a)/7). (37)

Vi = vill2 = O{ df min[6f_,, 67

uniformly over 1 < k < r*, where ¢, = di/(d; min[0}_4,6;]). Combining inequalities (36) and (37)
and Lemma 3 entails

ICY = Cillr < 2d;[|[Vi = vill2 + |IC = C7[|r < My/50log(pg) /n

for some positive constant M, uniformly over 1 < k < r*, where ¢, = did}/(df min[6}_,,5;]). It
concludes the proof of Lemma, 4. |
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B.3 Proof of Theorem 2

Proof Since (c/l\k, Uy, Vi) is the optimal solution of (32), we have
(2n) X Ak|F + el Clls < nH(Ag, XT (Y5 = XC) + Ml|Cills (38)

with Yj, = Y — XC + XC;. Our proof will be conditioning on the event A = {n | XTE|nax <
Mo/2}, which holds with probability at least 1 — (pg)!~® as demonstrated in Lemma 3.

The key part of this proof is to derive the upper bound on n™!||XT(Yy — XC})|max. On the
one hand, by the KKT condition of optimization (33), we have

n X (Y — XC)lmax € Ao = 20maxy/2a log(pg) /n. (39)

On the other hand, Lemma 4 gives

IC) — Cillr < My/s0log(pg)/n.

Denote by S the index set consisting of the indices of the s largest components of C in terms of

absolute values. By definition, our initial kth layer estimator Ck takes the components of C0 on
Sy, while sets the other components to be zero.
First of all, we claim that

IC;, jyse 7 < 2Mi/so0log(pa) /n. (40)

If this is not true, then ||C;} " mSCHF > 2M1pi+/so log(pq) /n. We can deduce that

~0
||Ck,kaskC”F HCk JenSS CZ JeNSS + Ck i msC”F
> HCk,kasg”F Hck JekNSS T CZ,JmSkCHF

0
> |G}y selle = 162 = Cillr > Miey/s0l0a(pa) /.
On the other hand, since J; is the support of Cj,, we have

[[eh IC}

k,SkNJC P = k,JuNSE C* k,SkNJC + CZ,skakc Fa

< HC k,Sk mJCHF + ”Ck SpnJC CZ,SkakCHF

< ICspnsellr + ICR — Cillr < Muy/s0log(pg) /n.
In view of these two inequalities, we get

HC k,J, msCHF > HCk SkaC||F

This is a contraction since by the definition of Sy, the set Ji N S’,? contains s}, — ¢ elements with

t = |Ji N Sk|, each of which in 62 should be no larger than any of the s — ¢ components indexed
by Sk N JkC , and s — ¢ is no less than s;, — t. Therefore, we know that inequality (40) should be
true. It follows that

ICk = Cillr < ICh,s = Crs,llr +1Cy e llr

~ * (41)
<16 — Cillr +11C} e 17 < 38M /5010 (pa) /.
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Moreover, since ||Cyllo = s and |Csllo = si. < s, we have
1Akllo = 1Cx = Cillo < [Ckllo + [ICillo = s + s} < 2s.

Denote by jk the index set consisting of the indices of the s largest components of Ak in terms of
absolute values. It is clear that [[Az[l1 < [|Ajz |1 Thus, by Condition 2.4, we get
k

D XX A lmax < GullAg |7/v5 < dull Axllr/Vs. (42)
As s > sp, combining inequalities (41) and (42) gives
n X XA lmax < 3M¢uibr\/log(pg) /1.
Together with (39), we can derive that
X (Y g = XC) a7 HXT(Y = XO)flma + 11X X A lmax < Coopv/og(pg) /.

for some positive constant C' independent of k.

Therefore, when \;, = 2C;+/log(pq)/n, by the same argument as inequality (29), we get
[A sl < 3[[Aglh- (43)
Similarly, it follows from inequality (38) that
n XAk < 3N Akl < 1206 A, [l < 1220/5k]1 A | -
Applying Condition 2.3, we have
Pl AT VI A s 7)) < nTHIXARNE < 1200/50] Ay, | F- (44)
Finally, by the same argument as that in the proof of Lemma 2, we can get
|AklE < ARl E + A sl + 1A e o, |17 = Okv/58), (45)
1Akl = 1Al + Al < 4Ag < 4vsel Ay lle = O(wsk).

Since the above argument applies to any fixed k, 1 < k < r*, and the corresponding constants
are independent of k, we know that the estimation error bounds in (45) hold uniformly over k. It
concludes the proof of Theorem 2. |

C. Proof of Theorem 3

Note that (A]k is the global minimizer of the corresponding CURE problem and (Ajé is a local
minimizer that satisfies the conditions in Theorem 3. Since the following argument applies to any
fixed k, 1 < k < r*, we omit the subscript & and write them as C and CT for simplicity. We will
show that |Allr = 0(52/2)%) and ||All; = O(spA;) with A = CL — C such that CE enjoys the
same asymptotic properties as C in terms of estimation error bounds.
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Our proof will be conditioning on the event A (defined in Lemma 2 for the sequential pursuit
and defined in Lemma 3 for the parallel pursuit), which holds with probability at least 1 — (pg)t—e.
First of all, by the KKT condition, the global minimizer C satisfies

n71||XT(Yk - Xé)”max < Ak
Together with n{|XT (Y}, — XCL)||lmax = O(\¢) imposed in Theorem 3, we get
”_IHXTXAHmaX < n_1||XT(Yk - Xa)”max + Tl_1||XT(Yk - XGL)HmaX = O(Ag)-

Denote by A; = supp(A;) with A; being the jth column of A. It follows that

nT X, Xy Al < 07 1A I X, A llmax < 07114 ]IXT X, A [lmax

=04 IXTXA max < 071|451 XTXAlmax = O( 452 A0),

where X 4. (Ay;) is the submatrix (subvector) of X (A;) consisting of columns (components) in
A;.

Moreover, by the assumptions ||Cllo = O(sy,) and ||CF|lg = O(s), there exists some positive
constant C' such that

q
D14 < (IC]lo + ICH o < Csy..
j=1

Therefore, it follows from the assumption min|j|j,—1,[jy/jo<Csx n~1/2||X~||z > ko in Theorem 3 that
the smallest singular value of n=/2X 4; is bounded from below by rg. It yields

Kl Al < n 7 IXE X, A, 2 = O(A;Y20).

Since | A% =31 14,13 = 9, |44, [13, we finally get
q
IA[F = O 145]) = O(siAp).
j=1

It follows immediately that ||A|F = O(s,lg/Q/\k) and [|A|[1 = O(sgAk), which concludes the proof.

D. Proof of Stagewise CURE

D.1 Derivations of contended stagewise learning

Before presenting the derivations, we first recall some notations for the sake of clarity. Denote
X = [X1,.., %] = [x1,--,%n)" €ERPP and Y = [y1,...,¥4 = [y1,---,¥n]" € R?¥9 then let
X; and yj, be the jth and kth columns of X and Y, respectively. In addition, let Ef be equal to
Y — d'XuvtT and €, denotes the kth column of E.

(I) Initialization. Recall that the optimization in the initialization is as follow

(37/]57 :9\) = argmin L(Sljlg)
(4.k);s=+e
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By the expansion of the loss function, we have

L(s1;1}) = (2n) 1Y = sX1;10 |5 + & H 1,15 (|%

= (2n)"YY|% + (2n 71621TXTX1 —nts1TX Ty, + 362
F J J J 2
Thus the original problem is equivalent to
(G, k) = arg min (2n) el )13 — X Ykl 5 = sen(X] i )e.
J?

(IT) Backward update. At the (¢ 4 1)th step, the two updating options are as follows,

j=arg m}? L(duv?) s.t. (du) = (du)’ — sgn(u?)elj,v =,
Jje

k = arg mlél L(duv?) s.t. (dv) = (dv)! — sgn(v})ely,u = u’.
ke

Note that, either updating du or dv will decrease the penalty term by a fixed amount A'e. For
example, assuming that we update du, then

p(dtJrlutJertJrlT) (dt t tT) H(du)t —sgn(
= [[(du)" — sgn(

It follows that we only need to compare the value of the loss function to decide whether to update
du or dv.
Focusing on du, the loss function can be written as

L ([(du)t - sgn(uz»)elj} VtT) = (2n)_1||Y - X [(du)t — Sgn(ug»)elj] VtT||%—|—
CIV' I3l (dw)" = sen (a1, |3

Jel5 |1Vl = d' a1 [[v]ly

uk
J
ub)els s — [ (du)' = -

46
= (2n) 1?3 ||Vt||2+n fsgn(uf)ex; E'v! 1o
— ped' |G |V'3 + 2HVtHz + L(da'v'™),
where E! = Y — d'Xu'v!T, and x; is the jth column of X. For dv, with similar argument, we
have
£ (u @) —smnehers]" ) = n~ s X e —ped el + B

+(2n) 7' Xu' |5 + L(d'u'v'T),

where 'éz is the kth column of E!. Therefore, the two proposals in the backward step are equivalent
to

u)

rggﬂn (2n) el 3V 113 + n~tsgn(ul)x BNV — pd [l || v*]3,
7€ (48)
thT~t

k = argmin n~'sgn(v) pd" [og |13

keBt

(IIT) Forward update. When the backward update can no longer proceed, a forward update is
carried out. Let’s focus on du; the problem is

argmin L ([(du)’ + s1;] VtT) =2n)7 Y -X [(du)" + s1;] v* Tz +L H(du) + 5143V |13
j,s==e
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We have that
L ([(dw)' + 515] v'T) = (2n) 1%, 31! 3 — n 5% B
+ SNV + psd'ul V'3 + L(d'a'v'T).

Similarly, for dv, we have

T h
£ ([ 0] ™) = S — T Bt 4 o + L),
Therefore, minimizing the loss functlon is equlvalent to
argmin (2n) ~'e?||%5 (I3[ V'3 — s(n T X EY — pd'uf]|v*]3),
7,8==e€

argmin h(udol|[ut]]3 — n tu!TXTEL).

)

Then it follows that

(49)

o~

J = argmin (2n) el X V[ — InTIRTEY — pd'ufllv* 3],
J

k=argmin — [n~'u!TXTel — pdtol|[ut|3,
k

and
TEt t_

5=sgn(n'x dtuz-Hth%)e for updating du;

h = sgn(n~ tatTXTel — pdiol ||ul||2)e for updating dv.

(IV) Computational complexity. Assume that the ¢th step is completed, and the cardinalities
of active sets A! and B! are a' and b, respectively. In the (t + 1)th step, we need to update the
current residual matrix Ef = Y — d!Xu’v!T. The complexity for updating E’ is O(a'n + b'n)
because we only need to calculate the coordinates in the active sets.

With the given E!, updating ijTEtvt requires O(b'n) by only calculating the coordinates cor-
responding to the active set. Similarly, the complexity of updating u’fTXTAéfC is O(a'n). The
complexity of computing [[u’||3 or ||[v!||3 is O(a’) or O(b'), respectively. Comparing (48) with (49),
the complexity of (48) is negligible because it only searches j and k in the active sets. By the
expansion of loss function, the complexity for comparing the value of loss function is also negligible
in terms of (49). Therefore, with E!, the complexity of backward and forward step in the (¢ +1)th
step is O(a'ng + b'np). Combing the complexity for updating Ef, the complexity in the (¢ + 1)th
step is still of the order O(a‘ng + b'np).

D.2 Proof of Lemma 5

Lemma 5 Let Q(-) be the objective function defined in (7) of the main paper.
1. For any , if there exist j and k such that Q(h1;1};X) < Q(0; \) where |h| = €, it must be true
that A < \0.
2. For any t, we have Q(d T ulTIviHIT, XtH1) < Q(dtulv!T; Xi+1) — ¢.
3. For € >0 and any t such that \'Tt < X', we have
Q(dt t tT ) 5 < Q ((dtut + Glj)VtT;At) 7
Q(dt t tT ) 5 < Q( (dtvt + Elk)T;)\t) ’
where 1 < j<pandl <k<gq.
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The first statement in Lemma 5 ensures the validity of the initialization step. The second statement
in Lemma 5 ensures that, for each Af, the algorithm performs coordinate descent whenever \! =
A1, The third statement implies that A* gets reduced only when the penalized loss at A’ can not
be further reduced even by searching over all possible coordinate descent directions.

Proof [Proof of Lemma 5| 1. By the assumption, we have L(0) — L(h1;1}) > Ap(h1;1T) = e,

which yields

A< HL0) = L0 < 2[L0) = min L(A1,AT)] = XO.

€ € j,k,s==+e

2. In the backward step, we have that A't1 = X L(dTlulTivitiT) < L(dlulvtT) + Ae — &,
and the penalty term is always decreased by a fixed amount Ae. So Q(d/flulTlviH1T, \i+1) <
Q(dMaviT; X — ¢ holds.

It remains to consider the forward step when \'T1 = X!, If

Q(dt+1 t+1 t+1T At+1) >Q(dt t tT )\t+l) €

we have

L(dtutvtT) _ L(dt+1ut+1vt+1T) _f < )\t-‘rl[p(dt-i-lut-i-lvt-i-l) (dt t tT)] — )\t-i-l6

which yields that
t+1 (dt t tT) (dt+1ut+1vt+1T) _5
A

€

This contradicts with the formula for computing A+,
3. The ! can only be reduced in the forward step. So when A1 < \f, we have
L(dtutvtT) _ L(dt+1ut+lvt+1T) _g

I

)\t-i—l —_

€
and € = p(dHu v — p(dlu’v!T). Tt follows that
)\t—l—l[p(dt-i-lut—i-lvt-i-lT) _ p(dtutvtT)] — L(dtutvtT) o L(dt+1ut+1vt+1T) . 6

That is, Q(dt“utﬂthT; )\t+1) = Q(d'ut viT. )\t+1) .
We then have that

Q(dt+1ut+lvt+1T;)\t+l)+()\t_)\t+l) (dt t tT) Q(dt tT At) 57 (50)
and
)\t-l—lp(dt—l-lut—i-lvt—l-lT) (A _)\t+1) (dtutVtT)
— AL (@t Iy ITY (A ) (@t Tt LT (51)

— )\tp(dt—i-lut—l—lvt—l-lT) +€()\t+1 _ )\t) < A p(dt—ﬁ-lut—ﬁ-lvt—f—lT).

Combining (50) and (51), we have

Q(dt tT /\t) f < Q(dt+1ut+1vt+1T; >\t+1) + ()\t _ )\t+1)p(dt+1ut+lvt+1’l‘)
— Q(dtJrlutJrlthrlT. )\t)

= min{Q((d'u’ + €1;)v!T; \'), Q((u’(d'v' + e1;)"; \)}.
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This completes the proof. |

Now we prove Lemma 5. Recall that for A\!, the corresponding objective function is
Q(duv’) = L(duv™) + N'd|ul[1[|v]1,

where L(duv?) = (2n)7 Y — dXuv?'||% + pfduv?(|%/2. In the (¢ + 1)th step, the objective
function is strongly convex when either u’ or v’ is fixed. Thus, with any given X and Y, there
exists a constant M such that

p| V3T < V2, L < M1, pljut||21 < V3,1 < MI,

where I is the identity matrix, and V3 L and V3 L are the second derivatives of the loss function
with respect to du and dv, respectively. Define
(du)™* = argmin Q(duv'™) with fixed v;
du
(dv)™* = argmin Q(u’(dv)T?) with fixed u'.
dv

We now derive the upper bound of ||dtu® — (du)™*||y. (With similar argument, we can get the
upper bound of ||d'v! — (dv)™*||5.) With fixed v', Taylor expansion of the objective function gives

Q ((dw)*) = Q ((dw)") + [VauL ((du)!) + N3] ((dw)™ — (du)")

+ 5 ((dw)" = (du)’) ViuL ((da)™ = (du)),
where § is a p-dimensional vector and we use ||[v!| = 1. The jth entry of §, §;, is subject to
10;] < 1 and §; = sgn(u;) if u; # 0. Here for convenience, we have rewritten dtu s (du)! and

omitted v! in the expressions. With the boundedness of the Hessian matrix and the fact that
Q ((dw)™) < Q ((du)?), it follows that

Vt 2
AV ) — ()13 <~ [V () + X0 ()" — ()
IV anL () + X'l ()" — (du)]

IN

Therefore,

I(dw)™ — (du)'|l2 < A2 IVauL ((du)) + X'6][2-

pllv tl

It remains to derive the upper bound of ||VguL ((du)') + A'é|l2. To do this, let’s examine the
upper bound of each entry of Vg, L ((du)t) + A8, By the third statement in Lemma 5, for u§ #0,
we have

L ((du)" £ sgn(u )el;) £ Ae > L ((du)') — &, (53)

when M1 < X!, On the other hand, with Taylor expansion, we have

I ((du)t 4 sgn(u§'>€1j) =L ((du)t) + sgn(ué-)evduL ((du)t)T lj

e T2
+ §1j Viaull;
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Combing (53) and (54) yields

2 2

€ Me
1/ V5, L1+ ¢ < -t

F [sgn(u?)evduL ((du)t)T 1+ )\te} < )

where the last inequality is due to the boundedness of the Hessian matrix. We have that

|V aguL ((du)t)T 1, + sgn(u?))ﬂ = |sgn(u§-)VduL ((du)t)T 1+ M|

M (55)
§J+§ for ut # 0.
2 € J

When ué = 0, by the third statement of Lemma 5, we have that
L ((du)’ + sgn(u?)elj) + e > L((du)') —¢. (56)
Similarly, combining (54) and (56), we have that

Fsgn(u})eVauL ((du)’ )11, <&+ Me+ —1TvduL1
M 2
<E+Met Te

which yields

M
|V guL ((du)t)T 1, - A< 76 + g for ut = 0. (57)

Then, combining (55) and (57), we get
T Me € )
VauL ((du)’) " 15+ 0,0 < == + Sforj=1....p

Note that we can choose §; appropriately from —1 to 1 when v’

; = 0. Therefore, we get the bound

that
I(dw)™ — (du)’2 < I tHQHVdu ((dw)’) + X6l
20/p (Me ¢ (58)
Sqome \o T o)
Vg \ 20t e
By similar argument, we can get the bound that
2\/q (Me ¢
dv)* 2 < ( + ) 59
) = (@v'le < b (56 + 2 (50)
Then, with 1 = |Ju’||; < ,/p[[u’|]2 and 1 = |[v!]|; < \/g||v!||2, combining (58) and (59) yields
max [H(du)t*vtT . dtutVtTHF, ”ut(dv)t*T _ dt tTHF] < 9 < § >
“ €
where we make use of the fact that ||xyT|z = ||x||2]|y|l2 for any column vectors x and y. This

completes the proof.
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