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Abstract

In this paper, we study the power iteration algorithm for the asymmetric spiked tensor
model, as introduced in Richard and Montanari (2014). We give necessary and sufficient
conditions for the convergence of the power iteration algorithm. When the power iteration
algorithm converges, for the rank one spiked tensor model, we show the estimators for
the spike strength and linear functionals of the signal are asymptotically Gaussian; for the
multi-rank spiked tensor model, we show the estimators are asymptotically mixtures of
Gaussian. This new phenomenon is different from the spiked matrix model. Using these
asymptotic results of our estimators, we construct valid and efficient confidence intervals
for spike strengths and linear functionals of the signals.
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1. Introduction

High order arrays, or tensors have been actively considered in neuroimaging analysis,
topic modeling, signal processing and recommendation system Frolov and Oseledets (2017);
Comon (2014); Hackbusch (2012); Karatzoglou et al. (2010); Rendle and Schmidt-Thieme
(2010); Zhou et al. (2013); Simony et al. (2016); Cichocki et al. (2015); Sidiropoulos et al.
(2017). Setting the stage, imagine that the signal is in the form of a large symmetric
low-rank k-th order tensor

X∗ =

r∑
j=1

βjv
⊗k
j ∈ ⊗kRn, (1)

where r (r � n) represents the rank and βj are the strength of the signals. Such low-rank
tensor components appear in various applications, e.g. community detection Anandku-
mar et al. (2014a); Jing et al. (2020), moments estimation for latent variable models Hsu
and Kakade (2013); Anandkumar et al. (2014b) and hypergraph matching Duchenne et al.
(2011). Suppose that we do not have access to perfect measurements about the entries
of this signal tensor. The observations X = X∗ + Z are contaminated by a substantial
amount of random noise (reflected by the random tensor Z which has i.i.d. Gaussian entries
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with mean 0 and variance 1/n.). The aim is to perform reliable estimation and inference
on the unseen signal tensor X∗. In literature, this is the spiked tensor model, introduced
in Richard and Montanari (2014).

In the special case, when k = 2, the above model reduces to the well-known “spiked
matrix model” Johnstone (2001). In this setting it is known that there is an order 1 critical
signal-to-noise ratio βc, such that below βc, it is information-theoretical impossible to detect
the spikes, and above βc, it is possible to detect the spikes by Principal Component Analysis
(PCA). A body of work has quantified the behavior of PCA in this setting Johnstone
(2001); Baik et al. (2005); Baik and Silverstein (2006); Paul (2007); Benaych-Georges and
Nadakuditi (2012); Bai and Yao (2012); Johnstone and Lu (2009); Birnbaum et al. (2013);
Cai et al. (2013); Ma et al. (2013); Vu et al. (2013); Cai et al. (2015); El Karoui et al. (2008);
Ledoit et al. (2012); Donoho et al. (2018). We refer readers to the review articles Johnstone
and Paul (2018) for more discussion and references to this and related lines of work

Tensor problems are far more than an extension of matrices. Not only the more involved
structures and high-dimensionality, many concepts are not well defined Kolda and Bader
(2009), e.g. eigenvalues and eigenvectors, and most tensor problems are NP-hard Hillar
and Lim (2013). Despite a large body of work tackling the spiked tensor model, there are
several fundamental yet unaddressed challenges that deserve further attention.

Computational Hardness. The same as the spiked matrix model, for spiked tensor
model, there is an order 1 critical signal-to-noise ratio βk (depending on the order k). Below
βk, it is information-theoretical impossible to detect the spikes, and above βk, the maximum
likelihood estimator is a distinguishing statistics Chen et al. (2019, 2018a); Lesieur et al.
(2017); Perry et al. (2020); Jagannath et al. (2018). In the matrix setting the maximum
likelihood estimator is the top eigenvector, which can be computed in polynomial time by,
e.g., power iteration. However, for order k > 3 tensor, computing the maximum likelihood
estimator is NP-hard in generic setting. In this setting, it is widely believed that there
is a regime of signal-to-noise ratios for which it is information theoretically possible to
recover the signal but there is no known algorithm to efficiently approximate it. In the
pioneering work Richard and Montanari (2014), the algorithmic aspects of this model have
been studied under the special setting when the rank r = 1 and the signal-to-noise-ratio is
β. They showed that tensor power iteration with random initialization recovers the signal
provided β & n(k−1)/2, and tensor unfolding recovers the signal provided β & n(dk/2e−1)/2.
Based on heuristic arguments, they predicted that the necessary and sufficient condition
for power iteration to succeed is β & n(k−2)/2, and for tensor unfolding is β & n(k−2)/4.
Langevin dynamics and gradient descent were studied in Arous et al. (2020), and shown
to recover the signal provided β & n(k−2)/2. Later the sharp threshold β & n(k−2)/4 was
achieved using Sum-of-Squares algorithms Hopkins et al. (2015, 2016); Kim et al. (2017) and
sophisticated iteration algorithms Luo et al. (2020); Zhang and Xia (2018); Han et al. (2020).
The necessary part of this threshold still remains open, and its relation with hypergraphic
planted clique problem was discussed in Luo and Zhang (2020a,b).

Statistical inferences. In many applications, it is often the case that the ultimate
goal is not to characterize the L2 or “bulk” behavior (e.g. the mean squared estimation
error) of the signals, but rather to reason about the signals along a few preconceived yet
important directions. In the example of community detecting for hypergraphs, the entries
of the vector v can represent different community memberships. The testing of whether
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any two nodes belong to the same community is reduced to the hypothesis testing problem
of whether the corresponding entries of v are equal. These problems can be formulated as
estimation and inference for linear functionals of a signal, namely, quantities of the form
〈a,vj〉, 1 6 j 6 r with a prescribed vector a. A natural starting point is to plug in an
estimator v̂j of vj , i.e. the estimator 〈a, v̂j〉. However, most prior works Richard and
Montanari (2014); Hopkins et al. (2015, 2016); Kim et al. (2017); Luo et al. (2020); Zhang
and Xia (2018) on spiked tensor models focuses on the L2 risk analysis, which is often too
coarse to give tight uncertainty bound for the plug-in estimator. To further complicate
matters, there is often a bias issue surrounding the plug-in estimator. Addressing these
issues calls for refined risk analysis of the algorithms.

1.1 Our Contributions

We consider the power iteration algorithm given by the following recursion

u0 = u, ut+1 =
X[u

⊗(k−1)
t ]

‖X[u
⊗(k−1)
t ]‖2

(2)

where u ∈ Rn with ‖u‖2 = 1 is the initial vector, and X[v⊗(k−1)] ∈ Rn is the vector with
i-th entry given by 〈X, ei ⊗ v⊗(k−1)〉. The estimators are given by

v̂ = uT , β̂ = 〈X, v̂⊗k〉. (3)

for some large T . In the worst case scenario, i.e. with random initialization, power iteration
algorithm underperforms tensor unfolding. However, if extra information about the signals
vj is available, power iteration algorithm with a warm start can be used to obtain a much
better estimator. In fact this approach is commonly used to obtain refined estimators. In
this paper, we study the convergence and statistical inference aspects of the power iteration
algorithm. The main contributions of this paper are summarized below,

Convergence criterion. We give necessary and sufficient conditions for the conver-
gence of the power iteration algorithm in finite time. In the rank one case r = 1, we show
that the power iteration algorithm converges to the true signal v in finite time, provided
|β〈u,v〉k−2| � 1 where u is the initialization vector. In the complementary setting, if
|β〈u,v〉k−2| � 1, the output of the power iteration algorithm behaves like random Gaus-
sian vectors, and has no correlations with the signal. With random initialization, i.e. u is
a uniformly random vector on the unit sphere, our results assert that the power iteration
algorithm converges in finite time, if and only if β & n(k−2)/2, which verifies the prediction
in Richard and Montanari (2014). This is analogous to the PCA of spiked matrix model,
where power iteration recovers the top eigenvalue. However, the multi-rank spiked tensor
model, i.e. r > 2, is different from multi-rank spiked matrix. The power iteration algorithm
for multi-rank spiked tensor model is more sensitive to the initialization, i.e. the power
iteration algorithm converges if maxj |βj〈u,vj〉k−2| � 1. In this case, it converges to vj∗
with j∗ = argmaxj |βj〈u,vj〉k−2|.

Statistical inference We consider the statistical inference problem for the spiked tensor
model. We develop the limiting distributions of the above power iteration estimators. In
the rank one case, above the threshold |β〈u,v〉k−2| � 1, we show that our estimator 〈a, v̂〉
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(modulo some global sign) admits the following first order approximation

〈a, v̂〉 ≈
(

1− 1

2β2

)
〈a,v〉+

〈a⊥, ξ〉
β

,

where a⊥ = a − 〈a,v〉v, and ξ = Z[v⊗(k−1)], is an n-dim vector, with each entry i.i.d.
N (0, 1/n) Gaussian random variables. For multi-rank spiked tensor model, the output of
power iteration algorithm depends on the angle between the initialization u and the signals
vj . We consider the case that the initialization u is a uniformly random vector on the unit
sphere. For such initialization, very interestingly, our estimator 〈a, v̂〉 is asymptotically a
mixture of Gaussian, with modes at 〈a,vj〉 and mixture weights depending on the signal
strength βj . Using these asymptotic results of our estimators, we construct valid and effi-
cient confidence intervals for the linear functionals 〈a,vj〉. In a concurrent work, Xia et al.
(2020) studied the statistical inference for several low rank tensor models, and asymptotic
distributions were established under some essential conditions on the signal-to-noise ratio.

1.2 Notations:

For a vector v ∈ Rn, we denote its i-th coordinate as v(i). We equate k-th order tensors in
⊗kRn with vectors of dimension nk, i.e. τ = (τi1i2···ik)16i1,i2,··· ,ik6n. For any two k-th order
tensors τ ,η ∈ ⊗kRn, we denote their inner product as 〈τ ,η〉 :=

∑
16i1,i2,··· ,ik6n τi1i2···ikηi1i2···ik .

A k-th order tensor can act on a (k − 1)-th order tensor, and return a vector: τ ∈ ⊗kRn
and η ∈ ⊗k−1Rn

τ [η] ∈ Rn, τ [η](i) = 〈τ , ei ⊗ η〉 =
∑

16i1,··· ,ik−16n

τii1i2···ik−1
ηi1i2···ik−1

.

We denote the L2 norm of a vector v as ‖v‖. We use
d
= for the equality in law, and

d−→ for the convergence in law. We denote the index sets [[a, b]] = {a, a + 1, a + 2, · · · , b}
and [[n]] = {1, 2, 3, · · · , n}. We use C to represent large universal constant, and c a small
universal constant, which may be different from line by line. We write that X = O(Y ) or
X . Y , if there exists some universal constant such that |X| 6 CY . We write X = o(Y ),
or X � Y if the ratio |X|/Y → 0 as n goes to infinity. We write X & Y , if there exists a
universal constant such that X > C|Y |. We write X � Y if there exist universal constants
such that cY 6 |X| 6 CY . We say an event holds with high probability, if for there exists
c > 0, and n large enough, the event holds with probability at least 1− n−c logn.

An outline of the paper is given as follows. In Section 2.1, we state our main results for
the rank-one spiked tensor model. In particular, with general initialization a distributional
result for the power iteration algorithm is developed. Section 2.2 investigates the general
rank-r spiked tensor model. A similar distributional result is established with general
initialization as in Section 2.1. While with uniformly distributed initialization over the unit
sphere, we obtain a multinoimal distribution which yields a mixture Gaussian. Numerical
simulations are presented in Section 3. All proofs and technical details are deferred to the
appendix.
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2. Main Results

2.1 Rank one spiked tensor model

In this section, we state our main results for the rank-one spiked tensor model (corresponding
to r = 1 in (1)):

X = βv⊗k +Z,

where

• X ∈ ⊗kRn is the k-th order tensor observation.

• Z ∈ ⊗kRn is a noise tensor. The entries of Z are i.i.d. standard N (0, 1/n) Gaussian
random variables.

• β ∈ R is the signal size.

• v ∈ Rn is an unknown unit vector to be recovered.

We obtain a distributional result for the power iteration algorithm (2) with general
initialization u: when |β| is above certain threshold, ut converges to v, and the error is
asymptotically Gaussian; when |β| is below the same threshold, the algorithm does not
converge.

Theorem 1 Fix the initialization u ∈ Rn with ‖u‖2 = 1 and 〈u,v〉 & 1/
√
n. If |β〈u,v〉k−2| >

nε with arbitrarily small ε > 0, then for any fixed unit vector a ∈ Rn, and

T > 1 +
1

ε

(
1

2
+

2 log |β|
log n

)
,

with probability 1−O(n−c(logn)2), the power iteration estimator (β̂, v̂) = (X[u⊗kT ],uT ) from
(3) satisfies

1. If k is odd, and β > 0, then (β̂, v̂) recovers (β,v) in the following sense,

〈a, v̂〉 = 〈a,uT 〉 =

(
1− 1

2β2

)
〈a,v〉+

〈a, ξ〉 − 〈a,v〉〈v, ξ〉
β

+ O

(
log n

β2
√
n

+
(log n)3/2

β3/2n3/4
+
|〈a,v〉|
β4

)
,

(4)

where ξ = Z[v⊗(k−1)], is an n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian
random variable. And

β̂ = X[u⊗kT ] = β + 〈ξ,v〉 − k/2− 1

β
+ O

(
log n

|β|
√
n

+
(log n)3/2

|β|1/2n3/4
+

1

|β|3

)
. (5)

2. If k is odd, and β < 0 then (β̂, v̂) recovers (−β,−v), in the sense of (4) and (5) with
(β,v) replaced by (−β,−v)
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3. If k is even, and β > 0, then (β̂, v̂)) recovers (β, sgn(〈u,v〉)v), in the sense of (4)
and (5) with (β,v) replaced by (β, sgn(〈u,v〉)v);

4. If k is even, and β < 0, then (β̂, v̂)) recovers (β, (−1)T sgn(〈u,v〉)v), in the sense of
(4) and (5) with (β,v) replaced by (β, (−1)T sgn(〈u,v〉)v).

Theorem 2 Fix the initialization u ∈ Rn with ‖u‖2 = 1. If |β| > nε and |β〈u,v〉k−2| 6
n−ε with arbitrarily small ε > 0, then ut does not converge to ±v, and ut behaves like a
random Gaussian vector. For

T > 1 +
1

ε

(
1

2
− log |β|

(k − 2) log n

)
with probability 1−O(n−c(logn)2), it holds

v̂ = uT =
ξ̃

‖ξ̃‖2
+ O

(
|β|
(

log n√
n

)k−1
)
,

where ξ̃ is the standard Gaussian vector in Rn, the error term is a vector of length bounded
by |β|(log n/

√
n)k−1.

In Theorem 1, we assume that 〈u,v〉 & 1/
√
n, which is generic and is true for a random

u. Moreover, if the initial vector u is random, then |〈u,v〉| � n−1/2. Notably, Theorems
1 and 2 together state that power iteration recovers v if |β| � n(k−2)/2 and fails if |β| �
n(k−2)/2. This gives a rigorous proof of the prediction in Richard and Montanari (2014)
that the necessary and sufficient condition for the convergence is given by |β| & n(k−2)/2. In
practice, it may be possible to use domain knowledge to choose better initialization points.
For example, in the classical topic modeling applications Anandkumar et al. (2014b), the
unknown vectors v are related to the topic word distributions, and many documents may
be primarily composed of words from just single topic. Therefore, good initialization points
can be derived from these single-topic documents.

The special case for k = 2, i.e. the spiked matrix model, has been intensively studied
since the pioneering work of Johnstone Johnstone (2001). In this setting it is known [30]
that there is an order O(1) critical signal-to-noise ratio, such that below the threshold,
it is information-theoretically impossible to recover v, and above the threshold, the PCA
(partially) recovers the unseen eigenvector v Péché (2006); Abbe et al. (2020); O’Rourke
et al. (2018); Vu (2011); Zhong (2017); Chen et al. (2018b); Zhang et al. (2018); Cheng
et al. (2020). The special case of our results Theorem 1, i.e. the power iteration recovers
the eigenvector v when β > nε, recovers some abovementioned results.

As a consequence of Theorem 1, we have the following central limit theorem for our
estimators.

Corollary 3 (Central Limit Theorem) Fix the initialization u ∈ Rn with ‖u‖2 = 1 and
|〈u,v〉| & 1/

√
n. If |β〈u,v〉k−2| > nε with arbitrarily small ε > 0, in Case 1 of Theorem 1,

for any fixed unit vector a ∈ Rn obeying

|〈a,v〉| = o

(
β3

√
n

)
, (6)
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and time

T > 1 +
1

ε

(
1

2
+

2 log |β|
log n

)
.

the estimators v̂ = uT , and β̂ = X[v̂⊗k] satisfies

√
nβ̂√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,v〉
]

d−→ N (0, 1), (7)

as n tends to infinity. We have similar results for Cases 2, 3, 4, by simply changing (β,v)
in (7) to the corresponding limit.

We remark that in Corollary 3, we assume that |〈a,v〉| = o
(
β3/
√
n
)
, which is generic. For

example, if v is delocalized, and a is supported on finitely many entries, we will have that
|〈a,v〉| . 1/

√
n, and (6) is satisfied.

With the central limit theorem for our estimators in Corollary 3, we can easily write
down the confidence interval for our estimators.

Corollary 4 (Prediction Interval) Given the asymptotic significance level α, and let zα =
Φ(1 − α/2) where Φ(·) is the CDF of a standard Gaussian. If |β〈u,v〉k−2| > nε with
arbitrarily small ε > 0, in Case 1 of Theorem 1, for any fixed unit vector a ∈ Rn obeying

|〈a,v〉| = o

(
β3

√
n

)
, (8)

and time

T > 1 +
1

ε

(
1

2
+

2 log |β|
log n

)
,

let v̂ = uT , and β̂ = X[v̂⊗k]. The asymptotic confidence interval of 〈a,v〉 is given by

1

1− 1/(2β̂2)

[
〈a, v̂〉 − zα

√
〈a, (In − v̂v̂>)a〉

√
nβ̂

, 〈a, v̂〉+ zα

√
〈a, (In − v̂v̂>)a〉

√
nβ̂

]
. (9)

We have similar results for Cases 2, 3, 4, by simply changing (β,v) in (9) to the corre-
sponding limit.

2.2 General Results: rank-r spiked tensor model

In this section, we state our main results for the general case, the rank-r spiked tensor
model (1):

X =

r∑
j=1

βjv
⊗k
j ∈ ⊗kRn +Z (10)

where
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• X ∈ ⊗kRn is the k-th order tensor observation.

• Z ∈ ⊗kRn is a noise tensor. The entries of Z are i.i.d. standard N (0, 1/n) Gaussian
random variables.

• |β1| > |β2| > · · · > |βr| are the signal sizes.

• v1,v2, · · · ,vr ∈ Rn are unknown orthonormal vectors to be recovered.

In (10), we assumed that the signals v1,v2, · · · ,vr are orthonormal. The orthogonally de-
composable tensor has been widely studied as a benchmark setting for tensor decomposition
in the literature Kolda (2001); Chen and Saad (2009); Robeva (2016); Belkin et al. (2018);
Auddy and Yuan (2020). Before stating our main results, we need to introduce some more
notations and assumptions.

Assumption 5 We assume that the initialization does not distinguish v1,v2, · · · ,vr, such
that there exists some large constant κ > 0

1/κ 6

∣∣∣∣ 〈u,vi〉〈u,vj〉

∣∣∣∣ 6 κ,

for all 1 6 i, j 6 r.

If we take the uniform initialization, i.e. u0 = u is a uniformly distributed vector in Sn−1.
Then with probability 1−O(r/

√
κ) we will have 1/

√
κn 6 |〈u,vi〉| 6

√
κ/n for 1 6 i 6 r,

and Assumption 5 holds.

The same as in the rank-1 case, the quantities |βj〈u,vj〉k−2| play a crucial role in our
power iteration algorithm. We need to make the following technical assumption:

Assumption 6 Let j∗ = argmaxj |βj〈u,vj〉k−2|. We assume that there exists some large
constant κ > 0

(1− 1/κ)|βj∗〈u,vj∗〉k−2| > |βj〈u,vj〉k−2|,

for all 1 6 j 6 r and j 6= j∗.

It turns out under Assumptions 5 and 6, the power iteration converges to vj∗ . Moreover,
if we simply take the uniform initialization, i.e. u0 = u is a uniformly distributed vector in
Sn−1. Assumption 6 holds for some 1 6 j∗ 6 r with probability 1−O(1/κ).

Theorem 7 Fix the initialization u ∈ Rn with ‖u‖2 = 1 and |〈u,vj〉| & 1/
√
n, for 1 6 j 6

r. Let j∗ = argmaxj |βj〈u,vj〉k−2|. Under Assumptions 5 and 6, if |βj∗〈u,vj∗〉k−2| > nε

with arbitrarily small ε > 0, then for any fixed unit vector a ∈ Rn, and

T > 1 +
1

ε

(
1

2
+

2 log |β1|
log n

)
+

log log(
√
n|β1|)

log(k − 1)
,

with probability 1−O(n−c(logn)2), the power iteration estimator (β̂, v̂) = (X[u⊗kT ],uT ) from
(3) satisfies
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1. If k is odd, and βj∗ > 0, then (β̂, v̂) recovers (βj∗ ,vj∗) in the following sense,

〈a, v̂〉 = 〈a,uT 〉 =

(
1− 1

2β2
j∗

)
〈a,vj∗〉+

〈a, ξ〉 − 〈a,vj∗〉〈vj∗ , ξ〉
βj∗

+ OP

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

|β1|2
√
n

+
(log n)3/2

|β1|3/2n3/4
+

1

|β1|4

)
,

(11)

where ξ = Z[v
⊗(k−1)
j∗

], is an n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian
random variable. And

β̂ = X[u⊗kT ] = βj∗ + 〈ξ,vj∗〉 −
k/2− 1

βj∗

+ OP

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

|β1|
√
n

+
(log n)3/2

|β1|1/2n3/4
+

1

|β1|3

)
.

(12)

2. If k is odd, and βj∗ < 0 then (β̂, v̂) recovers (−βj∗ ,−vj∗), in the sense of (11) and
(12) with (βj∗ ,vj∗) replaced by (−βj∗ ,−vj∗)

3. If k is even, and βj∗ > 0, then (β̂, v̂)) recovers (βj∗ , sgn(〈u,vj∗〉)vj∗), in the sense of
(11) and (12) with (βj∗ ,vj∗) replaced by (βj∗ , sgn(〈u,vj∗〉)vj∗);

4. If k is even, and βj∗ < 0, then (β̂, v̂)) recovers (βj∗ , (−1)T sgn(〈u,vj∗〉)vj∗), in the
sense of (11) and (12) with (βj∗ ,vj∗) replaced by (βj∗ , (−1)T sgn(〈u,vj∗〉)vj∗).

In Theorem 7, we assume that |〈u,vj〉| & 1/
√
n for 1 6 j 6 r. This is generic and is true for

a random initialization u. Similarly to Theorem 2, if |βj∗〈u,vj∗〉k−2| 6 n−ε, the iteration
does not converge, and ut behaves like a random Gaussian vector for any fixed time t.

We want to remark that for multi-rank spiked tensor model, the senarios for k = 2,
i.e. the spiked matrix model, and k > 3 are very different. For the spiked matrix model,
in Theorem 7, we always have that j∗ = argmaxj |βj | = 1, and power iteration algorithm
always converges to the eigenvector corresponding to the largest eigenvalue. However, for
rank k > 3, the power iteration algorithm may converge to any vector vj provided that
the initialization u is sufficiently close to vj . As a consequence of Theorem 7, we have the
following central limit theorem for our estimators.

Corollary 8 Fix the initialization u ∈ Rn with ‖u‖2 = 1 and |〈u,vj〉| & 1/
√
n for 1 6 j 6

r. We assume |β〈u,vj∗〉k−2| > nε with arbitrarily small ε > 0, and Assumptions 5 and 6.
In Case 1 of Theorem 7, for any fixed unit vector a ∈ Rn, for any fixed unit vector a ∈ Rn
obeying

|〈a,vj∗〉| = o

(
|β1|3√
n

)
, (13)

and time

T > 1 +
1

ε

(
1

2
+

2 log |β1|
log n

)
,

9
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the estimators v̂ = uT , and β̂ = X[u⊗kT ] satisfy

√
nβ̂j∗√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2
j∗

)−1〈a, v̂〉 − 〈a,vj∗〉

]
d−→ N (0, 1). (14)

We have similar results for Cases 2, 3, 4, by simply changing (βj∗ ,vj∗) in (14) to the
corresponding limit.

In the following we take u to be a random vector uniformly distributed over the unit
sphere. The power iteration algorithm can be easily understood in this setting, thanks to
Theorem 7. More precisely if j∗ = argmaxj |βj〈u,vj〉k−2| and the initialization u satisfies

Assumptions 5 and 6, then the power iteration estimator (v̂, β̂) recovers (vj∗ , βj∗). From
the discussions below, for a random vector u uniformly distributed over the unit sphere,
Assumptiosn 5 and 6 holds with probability 1 − O(1/

√
κ). We can compute explicitly the

probability that index i achieves argmaxj |βj〈u,vj〉k−2|:

pi := P(i = argmaxj |βj〈u,vj〉k−2|)

=

∫ ∞
0

√
2

π
e−x

2/2

∏
` 6=i

∫ (
|βi|
|β`|

) 1
k−2 x

0

√
2

π
e−y

2/2dy

dx,
(15)

for any 1 6 i 6 r. For spiked matrix model, i.e. k = 2, we always have 1 = argmaxj |βj〈u,vj〉k−2|,
and p1 = 1, p2 = p3 = · · · = 0. For spiked tensor models with k > 3, all those pi are non-
negative and p1 > p2 > p3 > · · · > 0. When there exists a large gap between the first signal
and the remaining signals, namely |β1| >M |β2| for some large constant M > 0, then

p1 >
∫ ∞

0

√
2

π
e−x

2/2

∏
6̀=i

∫ M
1

k−2 x

0

√
2

π
e−y

2/2dy

 dx

>
∫ ∞

0

√
2

π
e−x

2/2

(
1− e−M

2
k−2 x2/2

)r−1

dx

>
∫ ∞

0

√
2

π
e−x

2/2

(
1− (r − 1)e−M

2
k−2 x2/2

)
dx > 1− (r − 1)

M
2

k−2 + 1
= 1−O

(
M−

2
k−2

)
,

where in the second line we used the lower bound for the error function. In other words,
we can recover the top signal v1 with probability 1− δ, provided |β1|/|β2| > Cδ−(k−2)/2.

Theorem 9 Fix large κ > 0 and recall pi as defined (15). If u is uniformly distributed
over the unit sphere, and |β1| > n(k−2)/2+ε with arbitrarily small ε > 0, then for any fixed
unit vector a ∈ Rn, any 1 6 i 6 r, and

T > 1 +
1

ε

(
1

2
+

2 log |β1|
log n

)
+

log log(
√
n|β1|)

log(k − 1)
,

the power iteration estimator (β̂, v̂) = (X[u⊗kT ],uT ) from (3) satisfies

10
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1. If k is odd, and βi > 0 then with probability pi + O(1/
√
κ), (β̂, v̂) recovers (βi,vi), in

the sense

〈a, v̂〉 = 〈a,uT 〉 =

(
1− 1

2β2
i

)
〈a,vi〉+

〈a, ξ〉 − 〈a,vi〉〈vi, ξ〉
βi

+ OP

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

|β1|2
√
n

+
(log n)3/2

|β1|3/2n3/4
+

1

|β1|4

)
,

(16)

where ξ = Z[v
⊗(k−1)
i ], is an n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian

random variable. And

β̂ = X[u⊗kT ] = βi + 〈ξ,vi〉 −
k/2− 1

βi

+ OP

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

|β1|
√
n

+
(log n)3/2

|β1|1/2n3/4
+

1

|β1|3

)
.

(17)

2. If k is odd, and βi < 0 then with probability pi + O(1/
√
κ), (β̂, v̂) recovers (−βi,−vi);

3. If k is even, and βi > 0 or βi < 0, then with probability pi/2 + O(1/
√
κ), (β̂, v̂)

recovers (βi,+vi), and with probability pi/2 + O(1/
√
κ), (β̂, v̂) recovers (βi,−vi).

We want to emphasize here that the senario for k = 2, i.e. the spiked matrix model,
and k > 3 are very different. For spiked matrix model, i.e. k = 2, we always have
that p1 = 0, p2 = p3 = · · · = 0. The power iteration algorithm always converges to the
eigenvector corresponding to the largest eigenvalue. We can only recover (β1,v1) no matter
how many times we repeat the algorithm. However, for spiked tensor models with k > 3,
all those pi are nonnegative, p1 > p2 > p3 > · · · > 0. By repeating the power iteration
algorithm for sufficiently many times, it recovers (βi,vi) with probability roughly pi.

Similar to the rank one case in Section 2.1, we are also able to establish the asymp-
totic distribution and confidence interval for multi-rank spiked tensor model with uniformly
distributed initialization u.

Corollary 10 Fix k > 3, assume u to be a random vector uniformly distributed over the
unit sphere and |β1| > n(k−2)/2+ε with arbitrarily small ε > 0. In Case 1 of Theorem 9, for
any fixed unit vector a ∈ Rn, and time

T > 1 +
1

ε

(
1

2
+

2 log |β1|
log n

)
+

log log(
√
n|β1|)

log(k − 1)
,

for any 1 6 i 6 r, with probability pi + O(1/
√
κ), the estimators v̂ = uT and β̂ = X[u⊗kT ]

satisfy √
nβ̂√

〈a, (In − v̂v̂>)a〉

[
〈a, v̂〉 −

(
1− 1

2β̂2

)
〈a,vi〉

]
d−→ N (0, 1). (18)

And

√
n

(
βi − β̂ −

k/2− 1

β̂

)
d−→ N (0, 1). (19)

11
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We have similar results for Cases 2, 3, 4, by simply changing (βi,vi) above to the corre-
sponding limit.

We want to emphasize the difference between Corollary 3 and Corollary 10. In the rank
one case, the estimators β̂ and 〈a, v̂〉 are asymptotically Gaussian. In the multi-rank spiked
tensor model with k > 3, those estimators β̂ and 〈a, v̂〉 are no longer Gaussian. Instead,
they are asymptotically a mixture Gaussian with mixture weights p1 > p2 > p3 > · · · .

Corollary 11 Given the asymptotic significance level α, and let zα = Φ(1 − α/2) where
Φ(·) is the CDF of a standard Gaussian. Under the conditions in Corollary 10, in Case 1
of Theorem 9, we can find the asymptotic confidence interval of 〈a,vi〉 as

1

1− 1/(2β̂2)

[
〈a, v̂〉 − zα

√
〈a, (In − v̂v̂>)a〉

√
nβ̂

, 〈a, v̂〉+ zα

√
〈a, (In − v̂v̂>)a〉

√
nβ̂

]
and the asymptotic confidence interval of βi as[

β̂ +
k/2− 1

β̂
− zα√

n
, β̂ +

k/2− 1

β̂
+

zα√
n

]
.

We have similar results for Cases 2, 3, 4, by changing (βi,vi) above to the corresponding
limit.

2.3 Proof Sketch

In this section, we outline the proof of Theorem 1. The detailed proofs are given in Appendix
A. To analyze the power iteration algorithm (2), we construct an auxiliary iteration, y0 = u

and yt+1 = X[y
⊗(k−1)
t ]. This gives us a sequence of vectors y0,y1,y2, · · · ,yt, · · · . To

analyze yt+1, we condition on y0,y1, · · · ,yt, then Lemma 12 implies a decomposition of the
Gaussian tensor Z = Zfixed +Zrand given by a deterministic part and a random part. This
can be used to give a decomposition of yt+1

yt+1 = β〈v,yt〉k−1v +Zfixed[y
⊗(k−1)
t ] +Zrand[y

⊗(k−1)
t ]

=: at+1v + bt+1wt+1 + ct+1ξt+1,
(20)

where the first term is the projection in the signal direction and ξt+1 is a random unit
vector. The relation (20) induces a recursion for the coefficients {at, bt, ct}. Although
the recursion is complicated, it can be analyzed using Gaussian concentration estimates.
Under the Assumption of Theorem 1 and |β〈u,v〉k−2| > nε, we show that eventually at will
dominate. More precisely, for

t > 1 +
1

ε

(
1

2
+

2 log |β|
log n

)
,

we have

yt = atv +
at
β
ξ + small error, (21)

where ξ = Z[v⊗(k−1)] behaves like a Gaussian vector. The claims of Theorem 1 then follows
from (21).

12
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3. Numerical Study

In this section, we conduct numerical experiments on synthetic data to demonstrate our
distributional results provided in Sections 2.1 and 2.2. We fix the dimension n = 600 and
rank k = 3.

3.1 Rank one spiked tensor model

We begin with numerical experiments on rank one case. This section is devoted to nu-
merically studying the efficiency of our estimators for the strength of signals and linear
functionals of the signals. We take the signal v a random vector sampled from the unit
sphere in Rn, and the vector

a =
1√
3

(en/3 + e2n/3 + en)

For the setting without prior information of the signal, we take the initialization of our
power iteration algorithm u a random vector sampled from the unit sphere in Rn, and the
strength of signal β = n(k−2)/2 ≈ 24.495. We plot in Figure 1 our estimators for the strength
of signals after normalization

β̂ +
k/2− 1

β̂
− β (22)

and our estimators for the linear functionals of the signals
√
nβ̂√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,v〉
]

(23)

as in Corollary 3.
For the setting that there is prior information of the signal, we take the initilization

of our power iteration algorithm u = (v + w)/‖v + w‖2, where v is a random vector
sampled from the unit sphere in Rn. We plot our estimators for the strength of signals
after normalization (22) and our estimators for the linear functionals of the signals (23) for
β = 5 in Figure 2, and for β = 10 in Figure 3. Although our Theorem 1 and Corollary 3
requires |β〈u,v〉k−2| > nε � 1, Figures 2 and 3 indicate that our estimators β̂ and 〈a, v̂〉
are asymptotically Gaussian even with small β, i.e. β = 5, 10. Theorem 1 also indicates
that error term in Corollary (3), i.e. the error term in (7), is of order 1/|β|. This matches
with our simulation. In Figures 2 and 3, the the difference between the Gaussian fit of our
empirical density and the density of N (0, 1) decreases as β increases from 5 to 10.

In Figure 4, we test the threshold signal-to-noise ratio for the power iteration algorithm.
Our Theorems 1 and 2 state that for |β〈u0,v〉k−2| � 1 tensor power iteration recovers the
signal v, and fails when |β〈u0,v〉k−2| � 1. Especially for random initialization, we have
that |〈u0,v〉| � 1/

√
n. Our Theorems state that for |β| � n(k−2)/2 tensor power iteration

recovers the signal v, and fails when |β| � n(k−2)/2. Take k = 3. In the left panel of
Figure 4, we test tensor power iteration with random initialization for various dimensions
n ∈ {200, 300, 400, 500, 600} and signal strength β/

√
n ∈ (0, 2]. In the right panel of Figure

4, we test tensor power iteration with fixed small β = 3 and informative initialization
β〈u0,v〉 ∈ (0, 2] for various dimensions n ∈ {200, 300, 400, 500, 600}. The outputs 〈v̂,v〉 are
averaged over 60 independent trials.
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Figure 1: The empirical density of normalized β̂ as in (22) (left panel), and normalized
〈a, v̂〉 as in (23). The results are reported over 2000 independent trials where the
initialization of our power iteration algorithm u a random vector sampled from
the unit sphere in Rn, and the strength of signal β = n(k−2)/2 ≈ 24.495.

Figure 2: The empirical density of normalized β̂ as in (22) (left panel), and normalized
〈a, v̂〉 as in (23). The results are reported over 2000 independent trials where the
initialization of our power iteration algorithm u a random vector sampled from
the unit sphere in Rn, and the strength of signal β = 5.

14
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Figure 3: The empirical density of normalized β̂ as in (22) (left panel), and normalized
〈a, v̂〉 as in (23). The results are reported over 2000 independent trials where the
initialization of our power iteration algorithm u a random vector sampled from
the unit sphere in Rn, and the strength of signal β = 10.

Figure 4: Output of tensor power iteration with random initialization for various signal
strength β/

√
n ∈ (0, 2] (left panel), and tensor power iteration with fixed small

β = 3 and informative initialization β〈u0,v〉 ∈ (0, 2].

15
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Figure 5: Scatter plot of (β̂, 〈a, v̂〉) (first panel), the normalized (β̂, 〈a, v̂〉) as in (24) for the
cluster corresponding to (β1, 〈a,v1〉) (second panel), the normalized (β̂, 〈a, v̂〉)
as in (25) for the cluster corresponding to (β2, 〈a,v2〉). The contour plot is a
standard 2-dim Gaussian distribution, at 1, 2, 3 standard deviation. The results
are reported over 5000 independent trials where the initialization of our power
iteration algorithm u a random vector sampled from the unit sphere in Rn.

3.2 Rank-r spiked tensor model

In this section, we conduct numerical experiments to demonstrate our distributional results
for the multi-rank spiked tensor model. We consider the simplest case that there are two
spikes with signals v1,v2, such that they are uniformly sampled from the unit sphere in Rn
and orthogonal to each other 〈v1,v2〉 = 0, and the vector

a =
1√
3

(en/3 + e2n/3 + en).

We test the setting that there is no prior information of the signal. We take the strength
of signals β1 = 1.2× n(k−2)/2 ≈ 29.394 and β2 = n(k−2)/2 ≈ 24.495 and the initialization of
our power iteration algorithm u a random vector sampled from the unit sphere in Rn. We
scatter plot in Figure 6 our estimator β̂ for the strength of signals, and our estimator 〈a, v̂〉
for the linear functionals of the signals over 5000 independent trials. As seen in the first panel
of Figure 6, our estimators (β̂, 〈a, v̂〉) form two clusters, centered around (β1, 〈a,v1〉) ≈
(29.394, 0.000) and (β2, 〈a,v2〉) ≈ (24.495, 0.039). In the second and third panels, we zoom
in, and scatter plot for the cluster corresponding to (β1, 〈a, v̂1〉) ≈ (29.394, 0.000)

β̂ +
k/2− 1

β̂
− β,

√
nβ̂1√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,v1〉
]
, (24)

and scatter plot for the cluster corresponding to (β2, 〈a, v̂2〉) ≈ (24.495, 0.039)

β̂ +
k/2− 1

β̂
− β2,

√
nβ̂√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,v2〉
]
. (25)
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Figure 6: The empirical density of the normalized (β̂, 〈a, v̂〉) as in (24) for the cluster cor-
responding to (β1, 〈a,v1〉) (second panel), the normalized (β̂, 〈a, v̂〉) as in (25)
for the cluster corresponding to (β2, 〈a,v2〉). The results are reported over 5000
independent trials where the initialization of our power iteration algorithm u a
random vector sampled from the unit sphere in Rn.

As predicted by our Theorem 9, both clusters are asymptotically Gaussian, and the nor-
malized estimators matches pretty well with the contour plot of standard 2-dim Gaussian
distribution, at 1, 2, 3 standard deviation.

We plot in Figure 6 our estimators for the strength of signals and the linear functionals
of the signals after normalization, for the first cluster (24), and for the second cluster (25).

In Table (1), for each n ∈ {50, 100, 200, 400, 600} and k = 3, we take the strength of
signals β1 = 10n(k−2)/2 and β2 = 12 × n(k−2)/2. Over 1500 independent trials for power
iteration with random initialization for each n, we estimate the percentage p̂1 of estimators
converging to β1, and the percentage p̂2 of estimators converging to β2. Our theoretical
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n = 50 n = 100 n = 200 n = 400 n = 600

p̂1 0.421 0.421 0.439 0.446 0.445

p̂2 0.579 0.579 0.561 0.554 0.555

signal β1 0.932 0.956 0.948 0.961 0.957

linear form 〈a,v1〉 0.965 0.929 0.959 0.945 0.952

signal β2 0.944 0.944 0.946 0.953 0.949

linear form 〈a,v2〉 0.950 0.950 0.937 0.949 0.941

Table 1: Estimated p̂1, p̂2 over 1500 independent trials for dimension n ∈
{50, 100, 200, 400, 600} (top two rows), and numerical coverage rates for
our 95% confidence intervals over 1500 independent trials for dimension
n ∈ {50, 100, 200, 400, 600} (last four rows).

values are

p1 = P(|β1〈u,v1〉| > |β2〈u,v2〉|) ≈ 0.44,

p2 = P(|β1〈u,v1〉| < |β2〈u,v2〉|) ≈ 0.56.

We also examine the numerical coverage rates for our 95% confidence intervals over 1500
independent trials.
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Appendix A. Proof of main theorems

A.1 Proof of Theorems 1 and 2

The following lemma on the conditioning of Gaussian tensors will be repeatedly use in the
remaining of this section.

Lemma 12 Let Z ∈ ⊗kRn be a random Gaussian tensor. The entries of Z are i.i.d.
standard N (0, 1/n) Gaussian random variables. Fix τ1, τ2, · · · , τt ∈ ⊗k−1Rn orthonormal
(k − 1)-th order tensors, i.e. 〈τi, τj〉 = δij, and vectors ξ1, ξ2, · · · , ξt ∈ Rn. Then the
distribution of Z[τ ] conditioned on Z[τs] = ξs for 1 6 s 6 t is

Z[τ ]
d
=

t∑
s=1

〈τs, τ 〉ξs + Z̃

[
τ −

t∑
s=1

〈τs, τ 〉τs

]
,

where Z̃ is an independent copy of Z.

Proof [Proof of Lemma 12] For any (k− 1)-th order tensor τ , viewed as a vector in Rnk−1
,

we can decompose it as the projection on the span of τ1, τ2, · · · , τt and the orthogonal part

τ =
t∑

s=1

〈τs, τ 〉τs +

(
τ −

t∑
s=1

〈τs, τ 〉τs

)
. (26)

Using the above decomposition and Z[τs] = ξs, we can write Z[τ ] as

Z[τ ]
d
=

t∑
s=1

〈τs, τ 〉ξs +Z

[
τ −

t∑
s=1

〈τs, τ 〉τs

]
, (27)

and the first sum and the second term on the righthand side of (27) are independent. The
claim (26) follows.

Proof [Proof of Theorem 1] We define an auxiliary iteration, y0 = u and

yt+1 = X[y
⊗(k−1)
t ]. (28)

Then with yt, our original power iteration (2) is given by ut = yt/‖yt‖2.
Let ξ = Z[v⊗(k−1)] ∈ Rn. Then the entries of ξ are given by

ξ(i) = Z[v⊗(k−1)](i) = 〈Z, ei ⊗ v⊗(k−1)〉 =
∑

i1,i2,··· ,ik−1∈[[1,n]]

Zii1i2···ik−1
v(i1)v(i2) · · ·v(ik−1).

From the expression, ξ(i) is a linear combination of Gaussian random variables, itself is also
a Gaussian. Moreover, these entries ξ(i) are i.i.d. Gaussian variables with mean zero and
variance 1/n:

E[ξ(i)2] =
∑

i1,i2,··· ,ik−1∈[[1,n]]

E[Z2
ii1i2···ik−1

]v(i1)2v(i2)2 · · ·v(ik−1)2 =
1

n
.
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We can compute yt iteratively: y1 is given by

y1 = X[y
⊗(k−1)
0 ] = β〈y0,v〉k−1v +Z[y

⊗(k−1)
0 ]. (29)

For the last term on the righthand side of (29), we can decompose y
⊗(k−1)
0 as a projection

on v⊗(k−1) and its orthogonal part:

y
⊗(k−1)
0 = 〈y0,v〉k−1v⊗(k−1) +

√
1− 〈y0,v〉2(k−1)τ0,

where τ0 ∈ ⊗(k−1)Rn and 〈v⊗(k−1), τ0〉 = 0, 〈τ0, τ0〉 = 1. Thanks to Lemma 12, conditioning
on ξ = Z[v⊗(k−1)], ξ1 = Z[τ0] has the same law as Z̃[τ0], where Z̃ is an independent copy
of Z. Since 〈τ0, τ0〉 = 1, ξ1 is a Gaussian vector with each entry N (0, 1/n). With those
notations we can rewrite the expression (29) of y1 as

y1 = β〈y0,v〉k−1v + 〈y0,v〉k−1ξ +
√

1− 〈y0,v〉2(k−1)ξ1. (30)

In the following we show that:

Claim 13 We can compute y1,y2,y3, · · · ,yt inductively. The Gram-Schmidt orthonor-

malization procedure gives an orthogonal base of v⊗(k−1),y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 as:

v⊗(k−1), τ0, τ1, · · · , τt−1. (31)

Let ξs+1 = Z[τs] for 0 6 s 6 t− 1. Conditioning on ξ = Z[v⊗(k−1)] and ξs+1 = Z[τs] for
0 6 s 6 t− 2, ξt = Z[τt−1] is an independent Gaussian vector, with each entry N (0, 1/n).
Then yt is in the following form

yt = atv + btwt + ctξt, btwt = bt0ξ + bt1ξ1 + · · ·+ btt−1ξt−1, (32)

where ‖wt‖2 = 1.

Proof [Proof of Claim 13] The Claim 13 for t = 1 follows from (30). In the following,
assuming Claim 13 holds for t, we prove it for t+ 1.

Let v⊗(k−1), τ0, τ1, · · · , τt be an orthogonal base for v⊗(k−1),y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t ,
obtained by the Gram-Schmidt orthonormalization procedure. More precisely, given those
tensors v⊗(k−1), τ0, τ1, · · · , τt−1, we denote

b(t+1)0 = 〈y⊗(k−1)
t ,v⊗(k−1)〉, ct+1 = 〈y⊗(k−1)

t , τt〉,

b(t+1)(s+1) = 〈y⊗(k−1)
t , τs〉, 0 6 s 6 t− 1.

then b(t+1)0v
⊗(k−1) + b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1 is the projection of y

⊗(k−1)
t on the

span of v⊗(k−1),y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 . With those notations, we can write y
⊗(k−1)
t

as

y
⊗(k−1)
t = b(t+1)0v

⊗(k−1) + b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1 + ct+1τt, (33)
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Using (32) and (33), we notice that

〈βv⊗k−1,y
⊗(k−1)
t 〉 = β(at + bt〈wt,v〉+ ct〈ξt,v〉)k−1v,

and the iteration (28) implies that

yt+1 = β(at + bt〈wt,v〉+ ct〈ξt,v〉)k−1v + bt+1wt+1 + ct+1Z[τt], (34)

where

bt+1wt+1 = Z[b(t+1)0v
⊗(k−1) + b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1]

= b(t+1)0ξ + b(t+1)1ξ1 + b(t+1)2ξ2 + · · · b(t+1)tξt.

Since τt is orthogonal to v⊗(k−1), τ0, τ1, · · · , τt−1, Lemma 12 implies that conditioning on
ξ = Z[v⊗(k−1)] and ξs+1 = Z[τs] for 0 6 s 6 t−1, ξt+1 = Z[τt] is an independent Gaussian
vector, with each entry N (0, 1/n). The above discussion gives us that

yt+1 = at+1v + bt+1wt+1 + ct+1ξt+1, at+1 = β(at + bt〈wt,v〉+ ct〈ξt,v〉)k−1. (35)

In this way, for any t > 0, yt is given in the form (32).

In the following, We study the case that 〈u,v〉 > 0. The case 〈u,v〉 < 0 can be proven in
exactly the same way, by simply changing (β,v) with ((−1)kβ,−v). We prove by induction

Claim 14 For any fixed time t, with probability at least 1 − O(e−c(logN)2) the following
holds: for any s 6 t,

|as| & |β|(|bs0|+ |bs1|+ · · ·+ |bs(s−1)|),

|as| & nε max{1(k > 3)|cs/β1/(k−2)|, |cs/
√
n|}.

(36)

and

‖ξ‖, ‖ξs‖2 = 1 + O(log n/
√
n), |〈v, ξ〉|, |〈a, ξ〉|, |〈a, ξs〉|,

‖ProjSpan{v,ξ,ξ1,··· ,··· ,ξs−1}(ξs)‖2 . log n/
√
n.

(37)

Proof [Proof of Claim 14] From (30), y1 = β〈u,v〉k−1v+ 〈u,v〉k−1ξ+
√

1− 〈u,v〉2(k−1)ξ1.
We have a1 = β〈u,v〉k−1, b10 = 〈u,v〉k−1, b1w1 = 〈u,v〉k−1ξ and c1 =

√
1− 〈u,v〉2(k−1).

Since ξ is a Gaussian vector with each entry mean zero and variance 1/n, the concentration
for chi-square distribution implies that

‖ξ‖2 =

√√√√ n∑
i=1

ξ(i)2 = 1 + O(log n/
√
n)

with probability 1 − ec(logn)2 . We can directly check that |a1| = |βb10|, |β1/(k−2)a1| =
|β〈u,v〉k−2|(k−1)/(k−2) & n(k−1)ε/(k−2) > nε|c1|, and |

√
na1| = |β〈u,v〉k−2||

√
n〈u,v〉| &

nε > nε|c1|. Moreover, conditioning on Z[v⊗(k−1)] = ξ, Lemma 12 implies that ξ1 = Z[τ0]
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is an independent Gaussian random vector with each entry N (0, 1/n). By the standard
concentration inequality, it holds that with probability 1−ec(logn)2 , ‖ξ1‖2 = 1+O(log n/

√
n),

|〈a, ξ1〉| and the projection of ξ1 on the span of {v, ξ} is bounded by log n/
√
n. So far we

have proved that (36) and (37) for t = 1.

In the following, we assume that (36) holds for t, and prove it for t+ 1. We recall from
(32) and (35) that

at+1 = β(at + bt〈wt,v〉+ ct〈ξt,v〉)k−1, btwt = bt0ξ + bt1ξ1 + · · ·+ btt−1ξt−1 (38)

By our induction hypothesis, we have that

|bt〈wt,v〉| . |bt0〈ξ,v〉|+ |bt1〈ξ1,v〉|+ · · ·+ |bt(t−1)〈ξt−1,v〉| . (log n/
√
n)|at|/|β|, (39)

and

|ct〈ξt,v〉| . (log n/
√
n)|ct| . (log n)|at|/nε. (40)

It follows from plugging (39) and (40) into (38), we get

at+1 = β(at + O(log n|at|/nε))k−1 = (1 + O(log n/nε))βak−1
t . (41)

We recall from (33), the coefficients b(t+1)0, b(t+1)1, · · · , b(t+1)t are determined from the

projection of y
⊗(k−1)
t on v⊗(k−1), τ0, τ1, · · · , τt−1

y
⊗(k−1)
t = b(t+1)0v

⊗(k−1) + b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1 + ct+1τt.

We also recall that v⊗(k−1), τ0, τ1, · · · , τt−1 are obtained from v⊗(k−1),y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1

by the Gram-Schmidt orthonormalization procedure. So we have that the span of vec-
tors (viewed as vectors) v⊗(k−1), τ0, τ1, · · · , τt−1 is the same as the span of the tensors

v⊗(k−1),y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 , which is contained in the span of {v,wt,y0, · · · ,yt−1}⊗(k−1).
Moreover from the relation (32), one can see that the span of {v,wt,y0, · · · ,yt−1} is the
same as the span of {v, ξ, ξ1, · · · , ξt−1}. It follows that√

b2(t+1)0 + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t

= ‖ProjSpan{v⊗(k−1),τ0,τ1,··· ,τt−1}(atv + btwt + ctξt)
⊗(k−1)‖2

6 ‖ProjSpan{v,wt,y0,··· ,yt−1}⊗(k−1)(atv + btwt + ctξt)
⊗(k−1)‖2

6 ‖ProjSpan{v,wt,y0,··· ,yt−1}(atv + btwt + ctξt)‖k−1
2

= ‖atv + btwt + ctProjSpan{v,ξ,ξ1,··· ,ξt−1}(ξt)‖
k−1
2

.

(
|at|+ |bt|+

log n|ct|√
n

)k−1

. |at|k−1 . |at+1|/|β|,

(42)

where in the last line we used our induction hypothesis that ‖ProjSpan{v,ξ,ξ1,··· ,ξt−1}(ξt)‖2 .
log n/

√
n.
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Finally we estimate ct+1. We recall from (33), the coefficient ct+1 is the remainder of

y
⊗(k−1)
t after projecting on v⊗(k−1), τ0, τ1, · · · , τt−1. It is bounded by the remainder of

y
⊗(k−1)
t after projecting on v⊗(k−1),

|ct+1| 6 ‖y⊗(k−1)
t − ak−1

t v⊗(k−1)‖2 = ‖(atv + btwt + ctξt)
⊗(k−1) − ak−1

t v⊗(k−1)‖2.

The difference (atv + btwt + ctξt)
⊗(k−1) − ak−1

t v⊗(k−1) is a sum of terms in the following
form,

η1 ⊗ η2 ⊗ · · · ⊗ ηk−1, (43)

where vectors η1,η2, · · · ,ηk−1 ∈ {atv, btwt+ctξt}, and at least one of them is btwt+ctξt. We
notice that by our induction hypothesis, ‖btwt + ctξt‖2 . |bt|‖wt‖2 + |ct|‖ξt‖2 . |bt|+ |ct|.
For the L2 norm of (43), each copy of atv contributes at and each copy of btwt + ctξt
contributes a factor |bt|+ |ct|. We conclude that

|ct+1| 6 ‖(atv + btwt + ctξt)
⊗(k−1) − ak−1

t v⊗(k−1)‖2 .
k−1∑
r=1

|at|k−1−r(|bt|+ |ct|)r. (44)

Combining the above estimate with (41) that |at+1| � |β||at|k−1, we divide both sides of
(44) by |β||at|k−1,

|ct+1|
|at+1|

.
1

|β|

k−1∑
r=1

(
|bt|
|at|

+
|ct|
|at|

)r
.

1

|β|

k−1∑
r=1

(
1

|β|
+
|ct|
|at|

)r
, (45)

where we used our induction hypothesis that |at| & |β||bt|. There are three cases:

1. If |ct|/|at| > 1, then

|ct+1|
|at+1|

.
1

|β|

k−1∑
r=1

(
1

|β|
+
|ct|
|at|

)r
.

1

|β|

(
|ct|
|at|

)k−1

.

If k = 2, then our assumption |β〈u,v〉k−2| = |β| > nε, implies that |ct+1|/|at+1| .
(|ct|/|at|)/nε. If k > 2, by our induction hypothesis |ct|/|at| . β1/(k−2)/nε. This
implies (|ct|/|at|)k−2/|β| . 1/nε, and we still get that |ct+1|/|at+1| . (|ct|/|at|)/nε.

2. If 1/|β| . |ct|/|at| 6 1, then

|ct+1|
|at+1|

.
1

|β|

k−1∑
r=1

(
1

|β|
+
|ct|
|at|

)r
.

1

|β|

(
|ct|
|at|

)
.

1

nε

(
|ct|
|at|

)
,

where we used that |β| > |β〈u,v〉k−2| > nε.

3. Finally for |ct|/|at| . 1/|β|, we will have

|ct+1|
|at+1|

.
1

|β|

k−1∑
r=1

(
1

|β|
+
|ct|
|at|

)r
.

1

|β|

(
1

|β|

)
.

1

|β|2
.
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In all these cases if |ct|/|at| . min{
√
n,1(k > 3)|β|1/(k−2)}/nε, we have |ct+1|/|at+1| .

min{
√
n,1(k > 3)|β|1/(k−2)}/nε. This finishes the proof of the induction (36).

For (37), since τt is orthogonal to v⊗(k−1), τ0, τ1, · · · , τt−1, Lemma 12 implies that con-
ditioning on ξ = Z[v⊗(k−1)] and ξs+1 = Z[τs] for 0 6 s 6 t − 1, ξt+1 = Z[τt] is an
independent Gaussian vector, with each entry N (0, 1/n). By the standard concentration
inequality, it holds that with probability 1−ec(logn)2 , ‖ξt+1‖2 = 1+O(log n/

√
n), |〈a, ξt+1〉|

and the projection of ξt+1 on the span of {v, ξ, ξ1, · · · , ξt} is bounded by log n/
√
n. This

finishes the proof of the induction (37).

Next, using (36) and (37) in Claim 14 as input, we prove that for

t > 1 +
1

ε

(
1

2
+

2 log |β|
log n

)
, (46)

with probability 1− ec(logn)2 we have

yt = atv + bt0ξ + bt1ξ1 + · · ·+ btt−1ξt−1 + ctξt, (47)

such that

bt0 =
at
β

+ O

(
log n|at|
|β|2
√
n

)
|bt1|, |bt2|, · · · , |bt(t−1)| .

(log n)1/2|at|
|β|3/2n1/4

, |ct| . |at|/β2. (48)

Let xt = |ct/at| � |β|1/(k−2), then (45) implies

xt+1 .
1

|β|

k−1∑
r=1

(
1

|β|
+ xt

)r
,

from the discussion after (45), we have that either xt+1 . 1/β2, or xt+1 . xt/n
ε. Since

x1 = |c1/a1| . n1/2−ε, we conclude that it holds

xt = |ct/at| . 1/β2, when t >
1

ε

(
1

2
+

2 log |β|
log n

)
. (49)

To derive the upper bound of bt1, bt2, · · · , bt(t−1), we use (42).

b2(t+1)0 + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t

6 ‖atv + btwt + ctProjSpan{v,ξ,ξ1,··· ,ξt−1}(ξt)‖
2(k−1)
2

=

(
a2
t + O

(
|at| (|bt|+ |ct|)

log n√
n

+

(
|bt|+ |ct|

log n√
n

)2
))k−1

,

(50)

where we used our induction (37) that |〈ξ,v〉|, |〈ξ1,v〉|, · · · , |〈ξt,v〉| . log n/
√
n and the

projection ‖ProjSpan{v, ξ, ξ1, · · · , ξt−1}(ξt)‖2 . log n/
√
n. Moreover, the first term b(t+1)0

is the projection of y
⊗(k−1)
t on v⊗(k−1),

b(t+1)0 = 〈atv + btwt + ctξt,v〉k−1 =

(
at + O

(
log n(|bt|+ |ct|)√

n

))k−1

, (51)
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where we used (37) that |〈ξ,v〉|, |〈ξ1,v〉|, · · · , |〈ξt,v〉| . log n/
√
n. Now we can take dif-

ference of (50) and (51), and use that |bt| . |at|/|β| from (36) and |ct| . |at|/|β| from
(49),

b(t+1)0 = ak−1
t + O

(
|at|k−1 log n

|β|
√
n

)
, b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t . a

2(k−1)
t

log n

|β|
√
n
.

(52)

From (38) and (41), we have that

at+1 = βb(t+1)0 � βak−1
t . (53)

Using the above relation, we can simplify (52) as

b(t+1)0 =
at+1

β
+ O

(
log n|at+1|
|β|2
√
n

)
, |b(t+1)1|, |b(t+1)2|, · · · |b(t+1)t| .

(log n)1/2|at+1|
|β|3/2n1/4

.

This finishes the proof of (48).

With the expression (48), we can process to prove our main results (4) and (5). Thanks
to (37), for t satisfies (46), we have that with probability at least 1−O(e−c(logN)2)

‖yt‖22 = a2
t

(
1 +

1

β2
+

2〈v, ξ〉
β

+ O

(
log n

β2
√
n

+
(log n)3/2

|β|3/2n3/4
+

1

β4

))
. (54)

By rearranging it we get

1/‖yt‖2 =
1

|at|

(
1− 1

2β2
− 〈v, ξ〉

β
+ O

(
log n

β2
√
n

+
(log n)3/2

|β|3/2n3/4
+

1

β4

))
. (55)

We can take the inner product 〈a,yt〉 using (47) and (48), and multiply (55)

〈a,ut〉 =
〈a,yt〉
‖yt‖2

= sgn(at)

((
1− 1

2β2

)
〈a,v〉+

〈a, ξ〉 − 〈a,v〉〈v, ξ〉
β

)
+ OP

(
log n

β2
√
n

+
(log n)3/2

|β|3/2n3/4
+
|〈a,v〉|
β4

)
,

(56)

where we used (37) that with high probability |〈a, ξ〉|, |〈a, ξs〉| for 1 6 s 6 t are bounded
by log n/

√
n. This finishes the proof of (4). For β̂ in (5), we have

X[u⊗kt ] =
X[y⊗kt ]

‖yt‖k2
=
〈yt,X[y

⊗(k−1)
t ]〉

‖yt‖k2
=
〈yt,yt+1〉
‖yt‖k2

. (57)

Thanks to (49), (35) and (37), for t satisfies (46), with probability at least 1−O(e−c(logN)2),
we have

yt+1 = at+1v + b(t+1)0ξ + b(t+1)1ξ1 + · · ·+ b(t+1)tξt + ct+1ξt+1,
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where |ct+1| . |at|k−1/β2,

at+1 = β(at + bt0〈ξ,v〉+ bt1〈ξ1,v〉+ · · ·+ bt(t−1)〈ξt−1,v〉+ ct〈ξt,v〉)k−1

= βak−1
t

(
1 +
〈ξ,v〉
β

+ O

(
log n

β2
√
n

+
(log n)3/2

|β|3/2n3/4

))k−1

,
(58)

and

b(t+1)0 = ak−1
t

(
1 + O

(
log n

|β|
√
n

))
, |b(t+1)1|, |b(t+1)2|+ · · ·+ |b(t+1)t| . ak−1

t

(log n)1/2

|β|1/2n1/4
.

From the discussion above, combining with (47) and (48) with straightforward computation,
we have

〈yt,yt+1〉 = βakt

(
1 +

1

β2
+

(k + 1)〈ξ,v〉
β

+ O

(
log n

β2
√
n

+
(log n)3/2

|β|3/2n3/4

))
. (59)

By plugging (55) and (59) into (57), we get

X[u⊗kt ] = sgn(at)
k

(
β + 〈ξ,v〉 − k/2− 1

β

)
+ O

(
log n

|β|
√
n

+
(log n)3/2

|β|1/2n3/4
+

1

|β|3

)

Since by our assumption, in Case 1 we have that β > 0. Thanks to (58) at+1 = βak−1
t (1 +

o(1)), especially at+1 and at are of the same sign. In the case 〈u,v〉 > 0, we have a1 =
β〈u,v〉k−1 > 0. We conclude that at > 0. Therefore sgn(X[u⊗kt ]) = sgn(at)

k = +, and it
follows that

X[u⊗kt ] = β + 〈ξ,v〉 − k/2− 1

β
+ O

(
log n

|β|
√
n

+
(log n)3/2

|β|1/2n3/4
+

1

|β|3

)

This finishes the proof of (5). The Cases 2, 3, 4 follow by simply changing (β,v) in the
righthand side of (4) and (5) to the corresponding limit.

Proof [Proof of Theorem 2]
We use the same notations as in the proof of Theorem 1. If |β| > nε and |β〈u,v〉k−2| 6

n−ε, then we first prove by induction that for any fixed time t, with probability at least
1−O(e−c(logN)2) the following holds: for any s 6 t,

|bs0|, |bs1|, · · · , |bs(s−1)| . max{|cs|/|β|(k−1)/(k−2), (log n)k−1|cs|/n(k−1)/2},

|cs| > nεβ1/(k−2)|as|,
(60)

and

‖ξ‖, ‖ξs‖2 = 1 + O(log n/
√
n),

|〈v, ξ〉|, ‖ProjSpan{v,ξ,ξ1,··· ,··· ,ξs−1}(ξs)‖2 . log n/
√
n.

(61)
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From (30), a1 = β〈u,v〉k−1, b10 = 〈u,v〉k−1 and c1 =
√

1− 〈u,v〉2(k−1). Since |β| > nε

and |β〈u,v〉k−2| 6 n−ε, we have that |〈u,v〉| 6 n−2ε/(k−2) � 1 and therefore |c1| � 1. We
can check that |β1/(k−2)a1| = |β〈u,v〉k−2|(k−1)/(k−2) 6 n−ε . n−ε|c1| and |b10| = |a1/β| .
n−ε|c1/β

(k−1)/(k−2)|. Moreover, conditioning on Z[v⊗(k−1)] = ξ, Lemma 12 implies that
ξ1 = Z[τ0] is an independent Gaussian random vector with each entry N (0, 1/n). By
the standard concentration inequality, it holds that with probability 1 − ec(logn)2 , ‖ξ1‖2 =
1 + O(log n/

√
n), and the projection of ξ1 on the span of {v, ξ} is bounded by log n/

√
n.

So far we have proved (60) and (61) for t = 1.
In the following, assuming the statements (60) and (61) hold for t, we prove them for

t+ 1. From (38), using (38) and (39), we have

|at+1| =
∣∣∣β(at + bt〈wt,v〉+ ct〈ξt,v〉)k−1

∣∣∣
. |β|

(
|at|+

log n(|bt0|+ |bt1|+ · · ·+ |bt(t−1)|)√
n

+
log n|ct|√

n

)k−1

. |β|
(
|at|+

log n|ct|√
n

)k−1

. |β|
(

|ct|
nε|β|1/(k−2)

+
log n|ct|√

n

)k−1

. |β||ct|k−1

(
1

nε|β|1/(k−2)
+

log n√
n

)k−1

.
|ct|k−1

nε|β|1/(k−2)
,

(62)

where in the third line we used our induction hypothesis that |bt0|+|bt1|+· · ·+|bt(t−1)| . |ct|,
and n−ε > |β||〈u,v〉|k−2 & |β|/n(k−2)/2.

For b(t+1)0, b(t+1)1, · · · , b(t+1)t, from (42) we have√
b2(t+1)0 + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t .

(
|at|+ |bt|+

log n|ct|√
n

)k−1

.

(
|at|+

log n|ct|√
n

)k−1

.

(
|ct|

nε|β|1/(k−2)
+

log n|ct|√
n

)k−1

. |ct|k−1

(
1

nε|β|1/(k−2)
+

log n√
n

)k−1

.

(63)

Finally we estimate ct+1. We recall from (33), the coefficient ct+1 is the remainder of

y
⊗(k−1)
t after projecting on v⊗(k−1), τ0, τ1, · · · , τt−1. We have the following lower bound for
ct+1

|ct+1|2 = ‖(atv + btwt + ctξt)
⊗(k−1)‖22 − (b2(t+1)0 + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t)

> ‖atv + btwt + ctξt‖2(k−1)
2 −O

(
|ct|2(k−1)

(
1

nε|β|1/(k−2)
+

log n√
n

)2(k−1)
)
.

(64)

For the first term on the righthand side of (64), using our induction hypothesis (60) and
(61) that |at| . |ct|, we have

‖atv + btwt + ctξt‖22 = a2
t + b2t + c2

t ‖ξt‖22 + 2atbt〈v,wt〉+ 2atct〈v, ξt〉+ 2btct〈wt, ξt〉

=

(
1 + O

(
log n√
n

+
1

n2εβ2/(k−2)

))
c2
t .

(65)
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We get the following lower for ct+1 by plugging (65) into (64), and rearranging

|ct+1| >
(

1 + O

(
log n√
n

+
1

n2εβ2/(k−2)

))
|ct|k−1 (66)

The claim that |b(t+1)0|, |b(t+1)1|, · · · , |b(t+1)t| . max{|ct+1|/|β|(k−1)/(k−2), (log n)k−1|ct+1|/n(k−1)/2}
follows from combining (63) and (66). The claim that |ct+1| > nεβ1/(k−2)|at+1| follows from
combining (62) and (66).

For (61), since τt is orthogonal to v⊗(k−1), τ0, τ1, · · · , τt−1, Lemma 12 implies that con-
ditioning on ξ = Z[v⊗(k−1)] and ξs+1 = Z[τs] for 0 6 s 6 t − 1, ξt+1 = Z[τt] is an
independent Gaussian vector, with each entry N (0, 1/n). By the standard concentration
inequality, it holds that with probability 1− ec(logn)2 , ‖ξt+1‖2 = 1 + O(log n/

√
n), and the

projection of ξt+1 on the span of {v, ξ, ξ1, · · · , ξt} is bounded by log n/
√
n. This finishes

the proof of the induction (61).

Next, using (36) and (37) as input, we prove that for

t > 1 +
1

ε

(
1

2
− log |β|

(k − 2) log n

)
, (67)

we have

yt = atv + bt0ξ + bt1ξ1 + · · ·+ bt(t−1)ξt−1 + ctξt, (68)

such that

|at|, |bt0|, |bt1|, · · · , |bt(t−1)| . |ct||β|
(

log n√
n

)k−1

. (69)

Let xt = |at/ct|, then (60) implies that xt 6 1/(nε|β|1/(k−2)). By taking the ratio of
(62) and (66), we get

xt+1 . |β|
(

log n√
n

+ xt

)k−1

. (70)

there are two cases,

1. if log n/
√
n . xt 6 1/(nε|β|1/(k−2)), then

xt+1 . |β|xk−1
t = xt(|β|1/(k−2)xt)

k−2 6 xt/n
ε;

2. If xt . log n/
√
n, then |xt+1| . |β|(log n/

√
n)k−1.

Since x1 = |a1/c1| . 1/(nε|β|1/(k−2)), we conclude that

xt = |at/ct| . |β|(log n/
√
n)k−1, when t >

1

ε

(
1

2
− log |β|

(k − 2) log n

)
. (71)
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In this regime, (63) implies that

|b(t+1)0|, |b(t+1)1|, |b(t+1)2|, · · · , |b(t+1)t| . |β||ct|k−1

(
|at|
|ct|

+
log n√
n

)k−1

. |β||ct|k−1

(
log n√
n

)k−1

. |ct+1||β|
(

log n√
n

)k−1

,

where we used (66) in the last inequality. This finishes the proof of (69). Using (69), we
can compute ut,

ut =
yt
‖yt‖

=
ξt
‖ξt‖2

+ OP

(
|β|
(

log n√
n

)k−1
)
,

where the error term is a vector of length bounded by |β|(log n/
√
n)k−1. This finishes the

proof of Theorem 1.

A.2 Proof of Corollarys 3 and 4

Proof [Proof of Corollary 3] According to the definition of ξ in (4) of Theorem 1, i.e.
ξ = Z[v⊗(k−1)], is an n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian random
variable. We see that

〈ξ,v〉 d= N (0, 1/n) .

Especially with high probability we will have that |〈ξ,v〉| . log n/
√
n. Then we conclude

from (5), with high probability it holds

β̂ = β + O

(
1

β
+

log n√
n

)
. (72)

With the bound (112), we can replace 〈a,v〉/(2β2) on the righthand side of (4) by 〈a,v〉/(2β̂2),
which gives an error∣∣∣∣〈a,v〉2β2

− 〈a,v〉
2β̂2

∣∣∣∣ = O

(
|〈a,v〉|

(
1

|β|4
+

log n

|β|3
√
n

))
.

Combining the above discussion together, we can rewrite (4) as

〈a, v̂〉 −
(

1− 1

2β̂2

)
〈a,v〉 =

〈a, ξ〉 − 〈a,v〉〈v, ξ〉
β

+ O

(
log n

β2
√
n

+
(log n)3/2

β3/2n3/4
+
|〈a,v〉|
β4

)
(73)

with high probability.
Again thanks to the definition of ξ in (4) of Theorem 1, i.e. ξ = Z[v⊗(k−1)], is an n-dim

vector, with each entry i.i.d. N (0, 1/n) Gaussian random variable, we see that

〈a, ξ〉 − 〈a,v〉〈v, ξ〉 = 〈a− 〈a,v〉v, ξ〉,
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is a Gaussian random variable, with mean zero and variance

E[〈a− 〈a,v〉v, ξ〉2] =
1

n
‖a− 〈a,v〉v‖22 =

1

n
〈a, (In − vv>)a〉 =

1 + o(1)

n
〈a, (In − v̂v̂>)a〉.

This together with (112), (113) as well as our assumption (6)

√
nβ̂√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,v〉
]

d−→ N (0, 1). (74)

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing
(β,v) in the righthand side of (4) and (5) to the corresponding expression.

Proof [Proof of Corollary 4] Given the significance level α, the asymptotic confidence in-
tervals in Corollary 4 can be calculated from Corollary 3 by bounding the absolute values
of the left hand sides of (7) at zα.

A.3 Proof of Theorem 7

Proof [Proof of Theorem 7] We define an auxiliary iteration, y0 = u and

yt+1 = X[y
⊗(k−1)
t ]. (75)

Then we have that ut = yt/‖yt‖2.
For index j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1. Let ξj = Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

]. Its
entries

ξj(i) =
∑

i1,i2,··· ,ik−1∈[[1,n]]

Zii1i2···ik−1
vj1(i1)vj2(i2) · · ·vjk−1

(ik−1),

are linear combination of Gaussian random variables, which is also Gaussian. These entries
are i.i.d. Gaussian variables with mean zero and variance 1/n,

E[ξj(i)
2] =

∑
i1,i2,··· ,ik−1∈[[1,n]]

E[Z2
ii1i2···ik−1

]vj1(i1)2vj2(i2)2 · · ·vjk−1
(ik−1)2 =

1

n
.

We can compute yt iteratively:

y1 = X[y
⊗(k−1)
0 ] =

r∑
j=1

βj〈y0,vj〉k−1vj +Z[y
⊗(k−1)
0 ]. (76)

For the last term on the righthand side of (76), we can decompose y
⊗(k−1)
0 as a projection

on vj1 ⊗ vj2 · · · ⊗ vjk−1
for j ∈ [[1, r]]k−1, and its orthogonal part:

y
⊗(k−1)
0 =

∑
j

k−1∏
s=1

〈y0,vjs〉vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
+

√√√√√1−

 r∑
j=1

〈y0,vj〉2

(k−1)

τ0,
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where the sum is over j ∈ [[1, r]]k−1, τ0 ∈ ⊗kRn and ‖τ0‖2 = 1. Let ξ1 = Z[τ0]. By
our construction vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

for any j ∈ [[1, r]]k−1 and τ0 are othorgonal to
each other. Thanks to Lemma 12, conditioning on ξj := Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

] for

index j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1, ξ1 = Z[τ0] has the same law as Z̃[τ0], where Z̃
is an independent copy of Z. Since 〈τ0, τ0〉 = 1, ξ1 is a Gaussian vector with each entry
N (0, 1/n). With those notations we can rewrite y1 as

y1 =
r∑
j=1

βj〈y0,vj〉k−1vj +
∑
j

k−1∏
s=1

〈y0,vjs〉ξj +

√√√√√1−

 r∑
j=1

〈y0,vj〉2

(k−1)

ξ1. (77)

In the following we show that:

Claim 15 We can compute y2,y3, · · · ,yt inductively. The Gram-Schmidt orthonormal-
ization procedure gives an orthogonal base of vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

for j ∈ [[1, r]]k−1 and

y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 as:

{vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1. (78)

Let ξj = Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
] for j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1, and ξs+1 = Z[τs]

for 0 6 s 6 t−1. Conditioning on ξj = Z[vj1⊗vj2⊗· · ·⊗vjk−1
] for j = (j1, j2, · · · , jk−1) ∈

[[1, r]]k−1 and ξs+1 = Z[τs] for 0 6 s 6 t − 2, ξt = Z[τt−1] is an independent Gaussian
vector, with each entry N (0, 1/n). Then yt is in the following form

yt = atvt + btwt + ctξt, (79)

where

atvt = at1v1 + at2v2 + · · ·+ atrvr, btwt =
∑
j

btjξj + bt1ξ1 + · · ·+ btt−1ξt−1, (80)

and ‖v1‖2, ‖v2‖2, · · · , ‖vr‖2, ‖wt‖2 = 1.

Proof [Proof of Claim 15] The Claim 15 for t = 1 follows from (77). In the following,
assuming Claim 15 holds for t, we prove it for t+ 1.

Conditioning on ξj = Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
] for index j = (j1, j2, · · · , jk−1) ∈

[[1, r]]k−1 and Z[τs] = ξs+1 for 0 6 s 6 t − 2, Lemma 12 implies that ξt = Z[τt−1] has
the same law as Z̃[τt−1], where Z̃ is an independent copy of Z. Since τt−1 is orthogonal
to vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

for index j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1 and Z[τs] = ξs+1 for
0 6 s 6 t− 2, ξt is an independent Gaussian random vector with each entry N (0, 1/n).

Let {vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt be an orthogonal base for vj1 ⊗

vj2 ⊗ · · ·⊗vjk−1
for j ∈ [[1, r]]k−1 and y

⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t , obtained by the Gram-
Schmidt orthonormalization procedure. More precisely, given those tensors {vj1 ⊗ vj2 ⊗
· · · ⊗ vjk−1

}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1, we denote

b(t+1)j = 〈y⊗(k−1)
t ,vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

〉, j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1,

b(t+1)s = 〈y⊗(k−1)
s , τs−1〉, 1 6 s 6 t, ct+1 = 〈y⊗(k−1)

t , τt〉
(81)
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and
∑
j b(t+1)jvj1 ⊗vj2 ⊗ · · · ⊗vjk−1

+ b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1 is the projection

of y
⊗(k−1)
t on the span of {vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

}j∈[[1,r]]k−1 ,y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 .

Then we can write y
⊗(k−1)
t in terms of the base (78)

y
⊗(k−1)
t =

∑
j

b(t+1)jvj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
+ b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1 + ct+1τt.

The recursion (75) implies that

yt+1 =
r∑
j=1

βj(atj + bt〈wt,vj〉+ ct〈ξt,vj〉)k−1vj + bt+1wt+1 + ct+1Z[τt] (82)

where

bt+1wt+1 = Z[
∑
j

b(t+1)jvj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
+ b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1]

=
∑
j

b(t+1)jξj + b(t+1)1ξ1 + b(t+1)2ξ2 + · · · b(t+1)tξt.

(83)

Since τt is orthogonal to {vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1, Lemma 12

implies that conditioning on ξj = Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
] for j = (j1, j2, · · · , jk−1) ∈

[[1, r]]k−1 and ξs+1 = Z[τs] for 0 6 s 6 t − 1, ξt+1 = Z[τt] is an independent Gaussian
vector, with each entry N (0, 1/n). The above discussion gives us that

yt+1 = at+1vt+1 + bt+1wt+1 + ct+1ξt+1, at+1 =
√
a2

(t+1)1 + a2
(t+1)2 + · · ·+ a2

(t+1)r.

and

a(t+1)j = βj(atj + bt〈wt,vj〉+ ct〈ξt,vj〉)k−1, 1 6 j 6 r. (84)

We recall that by our Assumption 5, that

1/κ 6

∣∣∣∣ 〈u,vi〉〈u,vj〉

∣∣∣∣ 6 κ,

for all 1 6 i, j 6 r. If j∗ = argmaxj βj〈u,vj〉k−2, it is necessary that βj∗ & β1, where the
implicit constant depends on κ.

In the following, we study the case that 〈u,vj∗〉 > 0. The case 〈u,vj∗〉 < 0 can be
proven in exactly the same way, by simply changing (β,vj∗) with ((−1)kβ,−vj∗). We prove
by induction
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Claim 16 For any fixed time t, with probability at least 1 − O(e−c(logn)2) the following
holds: for any s 6 t,

|asj∗ | > |asj |, |as| & |β1|(
∑
j

|bsj |+ |bs1|+ · · ·+ |bs(s−1)|),

|as| & nε max{1(k > 3)|cs/β1/(k−2)
1 |, |cs/

√
n|},

(85)

and for j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1

‖ξj‖, ‖ξs‖2 = 1 + O(log n/
√
n), |〈vj , ξj〉|, |〈a, ξj〉|, |〈a, ξs〉| . log n/

√
n.

‖ProjSpan{v1,v2,··· ,vr,{ξj}j∈[[1,r]]k−1 ,ξ1,··· ,··· ,ξs−1}(ξs)‖2 . log n/
√
n.

(86)

Proof [Proof of Claim 16] From (77), we have

y1 =
r∑
j=1

βj〈y0,vj〉k−1vj +
∑
j

k−1∏
s=1

〈y0,vjs〉ξj +

√√√√√1−

 r∑
j=1

〈y0,vj〉2

(k−1)

ξ1

=
r∑
j=1

a1jvj +
∑
j

b1jξj + c1ξ1,

where a1j = βj〈u,vj〉k−1 for 1 6 j 6 r, b1j =
∏k−1
s=1〈u,vjs〉 for any index j = (j1, j2, · · · , jk−1)

and c1 =

√
1−

(∑r
j=1〈u,vj〉2

)(k−1)
. Since ξj are independent Gaussian vectors with each

entry mean zero and variance 1/n, the concentration for chi-square distribution implies that
‖ξj‖2 = 1 + O(log n/

√
n) with probability 1− ec(logn)2 . Since j∗ = argmaxj |βj〈u,vj〉k−2|,

combining with our Assumption 5, it gives that |a1j∗ | > |a1j |/κ. As a consequence, we also
have that |a1| =

√
a2

11 + a2
12 + · · ·+ a2

1r � |a1j∗ |. Again using our Assumption 5

∑
j

|b1j | .

 r∑
j=1

|〈u,vj〉|

k−1

.
r∑
j=1

|〈u,vj〉|k−1 . |a1j∗ |/βj∗ . |a1|/β1.

We can check that |β1/(k−2)
1 a1| � |β1/(k−2)

j∗
a1j∗ | = |βj∗〈u,vj∗〉k−2|(k−1)/(k−2) > nε > nε|c1|,

and |
√
na1| � |

√
na1j∗ | = |βj∗〈u,vj∗〉k−2||

√
n〈u,vj∗〉| & nε > nε|c1|. Moreover, condi-

tioning on ξj = Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
] for j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1, Lemma

12 implies that ξ1 = Z[τ0] is an independent Gaussian random vector with each en-
try N (0, 1/n). By the standard concentration inequality, it holds that with probability
1 − ec(logn)2 , ‖ξ1‖2 = 1 + O(log n/

√
n), |〈a, ξ1〉| and the projection of ξ1 on the span of

{v1,v2, · · · ,vr, {ξj}j∈[[1,r]]k−1} is bounded by log n/
√
n. So far we have proved that (36)

and (37) hold for t = 1.
In the following, we assume that (85) and (86) hold for t, and prove it for t + 1. We

recall from (80) and (84) that

a(t+1)j = βj(atj + bt〈wt,vj〉+ ct〈ξt,vj〉)k−1, btwt =
∑
j

btjξj + bt1ξ1 + · · ·+ btt−1ξt−1.

(87)
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By our induction hypothesis, we have

|bt〈wt,vj〉| .
∑
j

|btj〈ξj ,vj〉|+ |bt1〈ξ1,vj〉|+ · · ·+ |bt(t−1)〈ξt−1,vj〉| . (log n/
√
n)|at|/|β1|,

(88)

and

|ct〈ξt,vj〉| . (log n/
√
n)|ct| . (log n)|at|/nε. (89)

It follows from plugging (88) and (89) into (87), we get

a(t+1)j = βj(atj + bt〈wt,vj〉+ ct〈ξt,vj〉)k−1 = βj(atj + O(log n|at|/nε))k . βj |at|k−1,

and especially

a(t+1)j∗ = βj∗(atj∗ + O(log n|atj∗ |/nε))k = (1 + O(log n/nε))βj∗a
k−1
tj∗

.

Therefore, we conclude that

|at+1j∗ | � |βj∗ak−1
tj∗
| � |βak−1

t |, (90)

and

|a(t+1)j | . βj |at|k−1 . βj∗ |atj∗ |k−1 . |at+1j∗ |.

We recall from (81),
∑
j b(t+1)jvj1⊗vj2⊗· · ·⊗vjk−1

+b(t+1)1τ0+b(t+1)2τ1+· · · b(t+1)tτt−1 is

the projection of y
⊗(k−1)
t on the span of {vj1⊗vj2⊗· · ·⊗vjk−1

}j∈[[1,r]]k−1 ,y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 .
We also recall that {vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1 are obtained from

{vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
}j∈[[1,r]]k−1 , ,y

⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 by the Gram-Schmidt or-
thonormalization procedure. So we have that the span of vectors {vj1 ⊗ vj2 ⊗ · · · ⊗
vjk−1

}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1 is the same as the span of the tensors {vj1 ⊗ vj2 ⊗ · · · ⊗
vjk−1

}j∈[[1,r]]k−1 ,y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 , which is contained in the span of the ten-

sors {v1,v2, · · · ,vr,wt,y0, · · · ,yt−1}⊗(k−1). Moreover from the relation (79) and (80),
one can see that the span of {v1,v2, · · · ,vr,wt,y0, · · · ,yt−1} is the same as the span of
{v1,v2, · · · ,vr, {ξj}j∈[[1,r]]k−1 , ξ1, · · · , ξt−1}. It follows that

|bt+1| .
√∑

j

b2(t+1)j + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t

= ‖ProjSpan{{vj1⊗vj2⊗···⊗vjk−1
}
j∈[[1,r]]k−1 ,τ0,τ1,··· ,τt−1}(atvt + btwt + ctξt)

⊗(k−1)‖2

6 ‖ProjSpan{v1,v2,··· ,vr,wt,y0,··· ,yt−1}⊗(k−1)(atvt + btwt + ctξt)
⊗(k−1)‖2

6 ‖ProjSpan{v,wt,y0,··· ,yt−1}(atvt + btwt + ctξt)‖k−1
2

= ‖atvt + btwt + ctProjSpan{v1,v2,··· ,vr,{ξj}j∈[[1,r]]k−1 ,ξ1,··· ,ξt−1}(ξt)‖
k−1
2

.

(
|at|+ |bt|+

log n|ct|√
n

)k−1

. |at|k−1 . |at+1|/β1,

(91)
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where in the first line we used (83), and in the last line of (91) we used our induction
hypothesis that ‖ProjSpan{v1,v2,··· ,vr,{ξj}j∈[[1,r]]k−1 ,ξ1,··· ,ξt−1}(ξt)‖2 . log n/

√
n.

Finally we estimate ct+1. We recall from (81), the coefficient ct+1 is the remainder of

y
⊗(k−1)
t after projecting on {vj1 ⊗vj2 ⊗· · ·⊗vjk−1

}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1. It is bounded

by the remainder of y
⊗(k−1)
t after projecting on {vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

}j∈[[1,r]]k−1 ,

|ct+1| 6 ‖y⊗(k−1)
t − ak−1

t v
⊗(k−1)
t ‖2 = ‖(atvt + btwt + ctξt)

⊗(k−1) − ak−1
t v

⊗(k−1)
t ‖2.

The difference (atvt + btwt + ctξt)
⊗(k−1) − ak−1

t v
⊗(k−1)
t is a sum of terms in the following

form,

η1 ⊗ η2 ⊗ · · · ⊗ ηk−1, (92)

where η1,η2, · · · ,ηk−1 ∈ {atvt, btwt + ctξt}, and at least one of them is btwt + ctξt. We
notice that by our induction hypothesis, ‖btwt + ctξt‖2 . |bt|‖wt‖2 + |ct|‖ξt‖2 . |bt|+ |ct|.
For the L2 norm of (92), each copy of atvt contributes at and each copy of btwt + ctξt
contributes a factor |bt|+ |ct|. We conclude that

|ct+1| 6 ‖(atvt + btwt + ctξt)
⊗(k−1) − ak−1

t v
⊗(k−1)
t ‖2 .

k−1∑
r=1

|at|k−1−r(|bt|+ |ct|)r. (93)

Combining with (90) that |at+1| � |β1||at|k−1, we divide both sides of (93) by |β1||at|k−1,

|ct+1|
|at+1|

.
1

|β1|

k−1∑
r=1

(
|bt|
|at|

+
|ct|
|at|

)r
.

1

|β1|

k−1∑
r=1

(
1

|β1|
+
|ct|
|at|

)r
(94)

There are three cases:

1. If |ct|/|at| > 1, then

|ct+1|
|at+1|

.
1

|β1|

k−1∑
r=1

(
1

|β1|
+
|ct|
|at|

)r
.

1

|β1|

(
|ct|
|at|

)k−1

.

If k = 2, then |ct+1|/|at+1| . (|ct|/|at|)/nε. If k > 2, by our induction hypothe-

sis |ct|/|at| . β
1/(k−2)
1 /nε. Especially, (|ct|/|at|)k−2/|β1| . 1/nε. We still get that

|ct+1|/|at+1| . (|ct|/|at|)/nε.

2. If 1/|β1| . |ct|/|at| 6 1, then

|ct+1|
|at+1|

.
1

|β1|

k−1∑
r=1

(
1

|β1|
+
|ct|
|at|

)r
.

1

|β1|

(
|ct|
|at|

)
.

1

nε

(
|ct|
|at|

)
.

3. Finally for |ct|/|at| . 1/|β1|, we will have

|ct+1|
|at+1|

.
1

|β1|

k−1∑
r=1

(
1

|β1|
+
|ct|
|at|

)r
.

1

|β1|

(
1

|β1|

)
.

1

|β1|2
.
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In all these cases we have |ct+1|/|at+1| . min{
√
n,1(k > 3)|β1|1/(k−2)}/nε. This finishes

the proof of the induction (85).

For (86), since τt is orthogonal to {vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1,

Lemma 12 implies that conditioning on ξj = Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
] for index j =

(j1, j2, · · · , jk−1) ∈ [[1, r]]k−1 and ξs+1 = Z[τs] for 0 6 s 6 t− 1, ξt+1 = Z[τt] is an indepen-
dent Gaussian vector, with each entry N (0, 1/n). By the standard concentration inequality,
it holds that with probability 1 − ec(logn)2 , ‖ξt+1‖2 = 1 + O(log n/

√
n), |〈a, ξt+1〉| and the

projection of ξt+1 on the span of {v1,v2, · · · ,vr, {ξj}j∈[[1,r]]k−1 , ξ1, · · · , ξt−1} is bounded by
log n/

√
n. This finishes the proof of the induction (86).

Next, using (85) and (86) as input, we prove that for

t > 1 +
1

ε

(
1

2
+

2 log |β1|
log n

)
+

log log(
√
n|β1|)

log(k − 1)
(95)

we have

yt =
r∑
j=1

atjvj +
∑
j

btjξj + bt1ξ1 + · · ·+ btt−1ξt−1 + ctξt, (96)

such that

|atj | .
(

log n√
n

1

|β1|

)k−1

|atj∗ |, j 6= j∗,

bt(j∗,j∗,··· ,j∗) =
atj∗
βj∗

+ O

(
log n|at|
|β1|2
√
n

)
, |b(t+1)j∗ | .

log n√
n|β1|2

|atj∗ |, j∗ = (j∗, j∗, · · · , j∗),

|bt1|, |bt2|, · · · , |bt(t−1)| .
(log n)1/2|at|
|β1|3/2n1/4

, |ct| . |at|/β2
1

(97)

Let xt = |ct/at| 6 n−ε|β|1/(k−2), and rt = maxj 6=j∗(β
1/(k−2)
j atj)/(β

1/(k−2)
j∗

atj∗). For
t = 1, our Assumption 6 implies that

β
1/(k−2)
j a1j 6 (βj〈u,vj〉k−2)(k−1)/(k−2)

6 ((1− 1/κ)βj∗〈u,vj∗〉k−2)(k−1)/(k−2) 6 (1− 1/κ)β
1/(k−2)
j∗

a1j∗ .

Thus we have that r1 6 (1− 1/κ). We recall from (87)

β
1/(k−2)
j a(t+1)j =

(
β

1/k−2
j (atj + bt〈wt,vj〉+ ct〈ξt,vj〉)

)k−1

=

(
β

1/k−2
j (atj + O

(
|at|

log n(1/|β1|+ xt)√
n

))k−1

,
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where we used (85) and (86). Thus it follows that

rt+1 = max
j 6=j∗

(
β

1/k−2
j (atj + O (|at| log n(1/|β1|+ xt)/

√
n)

β
1/k−2
j∗

(atj∗ + O (|at| log n(1/|β1|+ xt)/
√
n)

)k−1

6

(
rt + O (log n(1/|β1|+ xt)/

√
n)

1 + O (log n(1/|β1|+ xt)/
√
n)

)k−1
(98)

For xt, (94) implies

xt+1 .
1

|β1|

k−1∑
r=1

(
1

|β1|
+ xt

)r
, (99)

from the discussion after (94), we have that either xt+1 . 1/|β1|2, or xt+1 . xt/n
ε. Since

x1 = |c1/a1| . n1/2−ε, and r1 6 (1− 1/κ) we conclude from (98) and (99) that

xt = |ct/at| . 1/β2
1 , rt . (log n/(|β1|

√
n))k−1, (100)

when

t >
1

ε

(
1

2
+

2 log |β1|
log n

)
+

log log(
√
n|β1|)

log(k − 1)
.

To derive the upper bound of bt1, bt2, · · · , bt(t−1), we use (91).∑
j

b2(t+1)j + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t

6 ‖atvt + btwt + ctProjSpan{v1,v2,··· ,vr,{ξj}j∈[[1,r]]k−1 ,ξ1,··· ,ξt−1}(ξt)‖
2(k−1)
2

=

(
a2
t + O

(
|at| (|bt|+ |ct|)

log n√
n

+

(
|bt|+ |ct|

log n√
n

)2
))k−1

,

(101)

where we used (86). The first term b(t+1)j is the projection of y
⊗(k−1)
t on vj1⊗vj2⊗· · ·⊗vjk−1

,

b(t+1)j =
k−1∏
s=1

〈atvt + btwt + ctξt,vjs〉 =
k−1∏
s=1

(
atjs + O

(
log n(|bt|+ |ct|)√

n

))
, (102)

and

∑
j

b2(t+1)j =

(
k−1∑
s=1

|〈atvt + btwt + ctξt,vjs〉|2
)k

=

(
a2
t + O

(
|at| (|bt|+ |ct|)

log n√
n

+

(
|bt|+ |ct|

log n√
n

)2
))k−1

,

(103)
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where we used (37) that |〈ξj ,vj〉|, |〈ξ1,vj〉|, · · · , |〈ξt,vj〉| . log n/
√
n. Now we can take

difference of (101) and (103), and use that |bt| . |at|/|β1| from (85) and |ct| . |at|/|β1|2
from (100),

b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t . a
2(k−1)
t

log n

|β|
√
n
. (104)

Using (102) and (100), we get that

b(t+1)j∗ = ak−1
tj∗

(
1 + O

(
log n√
n|β1|

))
, j∗ = (j∗, j∗, · · · , j∗)

|b(t+1)j | .
log n√
n|β1|

|atj∗ |k−1, j 6= j∗.

(105)

From (87), (90) and (100), we have that

a(t+1)j∗ = βj∗b(t+1)j∗ = βj∗a
k−1
tj∗

(
1 + O

(
log n√
n|β1|

))
,

|a(t+1)j | .
(

log n√
n|β1|

)k−1

|a(t+1)j∗ |, j 6= j∗.

(106)

Using the above relation, we can simplify (104) and (105) as

|b(t+1)1|, |b(t+1)2|, · · · |b(t+1)t| .
(log n)1/2|at+1|
|β1|3/2n1/4

.

and

b(t+1)j∗ =
a(t+1)j∗

βj∗

(
1 + O

(
log n√
n|β1|

))
,

|b(t+1)j | .
log n√
n|β1|2

|a(t+1)j∗ |, j 6= j∗.

This finishes the proof of (97).

With the expression (97), we can process to prove our main results (11) and (12). Thanks
to (86) and (96), for t satisfies (95), we have that with probability at least 1−O(e−c(logn)2)

‖yt‖22 = a2
tj∗

(
1 +

1

β2
j∗

+
2〈vj∗ , ξj∗〉

βj∗
+ O

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

β2
1

√
n

+
(log n)3/2

|β1|3/2n3/4
+

1

β4
1

))
(107)

where j∗ = (j∗, j∗, · · · , j∗). By rearranging it we get

1/‖yt‖2 = a2
tj∗

(
1− 1

2β2
j∗

−
2〈vj∗ , ξj∗〉

βj∗
+ O

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

β2
1

√
n

+
(log n)3/2

|β1|3/2n3/4
+

1

β4
1

))
(108)
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We can take the inner product 〈a,yt〉, and multiply (108)

〈a,ut〉 =
〈a,yt〉
‖yt‖2

= sgn(atj∗)

((
1− 1

2β2
j∗

)
〈a,vj∗〉+

〈a, ξj∗〉 − 〈a,vj∗〉〈vj∗ , ξj∗〉
β

)

+ OP

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

β2
1

√
n

+
(log n)3/2

|β1|3/2n3/4
+

1

β4
1

)
,

where we used (37) that with high probability |〈a, ξj〉|, |〈a, ξs〉| for 1 6 s 6 t are bounded

by log n/
√
n. This finishes the proof of (11). For β̂ in (12), we have that

X[u⊗kt ] =
X[y⊗kt ]

‖yt‖k2
=
〈yt,X[y

⊗(k−1)
t ]〉

‖yt‖k2
=
〈yt,yt+1〉
‖yt‖k2

. (109)

Thanks to (100), (106) and (86), for t satisfies (95), with probability at least 1 −
O(e−c(logn)2), we can write the first term on the righthand side of (57), we have

yt+1 =
∑
j

a(t+1)jvj +
∑
j

b(t+1)jξj + b(t+1)1ξ1 + · · ·+ b(t+1)tξt + ct+1ξt+1,

where |ct+1| . |at|k−1/β2,

a(t+1)j∗ = βj∗b(t+1)j∗ = βj∗a
k−1
tj∗

(
1 + O

(
log n√
n|β1|

))
,

|a(t+1)j | .
(

log n√
n|β1|

)k−1

|a(t+1)j∗ |, j 6= j∗

and

b(t+1)j∗ =
a(t+1)j∗

βj∗

(
1 + O

(
log n√
n|β1|

))
,

|b(t+1)j | .
log n√
n|β1|2

|a(t+1)j∗ |, j 6= j∗,

|b(t+1)1|, |b(t+1)2|+ · · ·+ |b(t+1)t| . ak−1
t

(log n)1/2

|β|1/2n1/4
.

From the discussion above, combining with (96) and (97) with straightforward computation,
we have

〈yt,yt+1〉 = βj∗a
k
tj∗

(
1 +

1

β2
j∗

+
(k + 1)〈ξj∗ ,vj∗〉

βj∗
+ O

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

β2
1

√
n

+
(log n)3/2

|β1|3/2n3/4

))
.

(110)

By plugging (108) and (110) into (109), we get

X[u⊗kt ] = sgn(aktj∗)

(
βj∗ + 〈ξj∗ ,vj∗〉 −

k/2− 1

βj∗

)
+ O

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

|β1|
√
n

+
(log n)3/2

|β1|1/2n3/4
+

1

|β1|3

)
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Since by our assumption, in Case 1 we have that βj∗ > 0. Thanks to (106) at+1j∗ =
βak−1

tj∗
(1 + o(1)), especially at+1j∗ and atj∗ are of the same sign. In the case 〈u,vj∗〉 > 0,

we have a1j∗ = β〈u,vj∗〉k−1 > 0. We conclude that atj∗ > 0. Therefore sgn(X[u⊗kt ]) =
sgn(atj∗)

k = +, and it follows that

X[u⊗kt ] = βj∗ + 〈ξj∗ ,vj∗〉 −
k/2− 1

βj∗

+ O

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

|β1|
√
n

+
(log n)3/2

|β1|1/2n3/4
+

1

|β1|3

)

This finishes the proof of (12). The Cases 2, 3, 4, by simply changing (βj∗ ,vj∗) in the
righthand side of (11) and (12) to the corresponding limit.

A.4 Proof of Theorem 9

Proof [Proof of Theorem 9] We first prove (15). If u is uniformly distributed over the unit
sphere, then it has the same law as η/‖η‖2, where η is an n-dim standard Gaussian vector,
with each entry N (0, 1). With this notation

|βj〈u,vj〉k−2| = |βj〈η,vj〉k−2|/‖η‖k−2
2 , (111)

and we can rewrite P(i = argmaxj |βj〈u,vj〉k−2|) as

P(i = argmaxj |βj〈u,vj〉k−2|) = P(i = argmaxj |βj〈η,vj〉k−2|).

Since v1,v2, · · · ,vr are orthonormal vectors, 〈v1,η〉, 〈v2,η〉, · · · , 〈vr,η〉 are independent
standard Gaussian random variables. Then we have

pi = P(i = argmaxj |βj〈η,vj〉k−2|) = P(|βi/β`|1/k−2〈η,vi〉| > |〈η,v`〉|, for all i 6= `)

=

∫ ∞
0

√
2

π
e−x

2/2

∏
6̀=i

∫ (
|βi|
|β`|

) 1
k−2 x

0

√
2

π
e−y

2/2dy

 dx.

This gives (15). Using the fact we can rewrite u as η/‖η‖2, we have that with probability
1−O(1/

√
κ),

1/
√
κn 6 |〈u,vi〉| 6

√
κ/n,

for all 1 6 i 6 r. Thus Assumption (5) holds, and especially,

max
j
|βj〈u,vj〉k−2| > |β1〈u,v1〉k−2| > |β1(1/

√
κn)k−2| & nε.

Theorem 9 then follows directly from Theorem 7.
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A.5 Proof of Corollaries 8, 10 and 11

Proof [Proof of Corollary 8] According to the definition of ξ in (11) of Theorem 7, i.e.

ξ = Z[v
⊗(k−1)
j∗

], is an n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian random
variable. We see that

〈ξ,v〉 d= N (0, 1/n) .

Especially with high probability we will have that |〈ξ,v〉| . log n/
√
n. Then we conclude

from (12), with high probability it holds

β̂ = βj∗ + O

(
1

βj∗
+

log n√
n

)
. (112)

With the bound (112), we can replace 〈a,v〉/(2β2) on the righthand side of (11) by
〈a,v〉/(2β̂2), which gives an error∣∣∣∣∣〈a,v〉2β2

j∗

− 〈a,v〉
2β̂2

∣∣∣∣∣ = O

(
|〈a,v〉|

(
1

|βj∗ |4
+

log n

|βj∗ |3
√
n

))
.

Combining the above discussion together, we can rewrite (11) as

〈a, v̂〉 −
(

1− 1

2β̂2

)
〈a,v〉 =

〈a, ξ〉 − 〈a,vj∗〉〈vj∗ , ξ〉
βj∗

+ OP

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

|β1|2
√
n

+
(log n)3/2

|β1|3/2n3/4
+

1

|β1|4

)
,

(113)

with high probability, where we used that |βj∗ | & |β1|.
Again thanks to the definition of ξ in (11) of Theorem 1, i.e. ξ = Z[v⊗(k−1)], is an

n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian random variable, we see that

〈a, ξ〉 − 〈a,vj∗〉〈vj∗ , ξ〉 = 〈a− 〈a,vj∗〉vj∗ , ξ〉,

is a Gaussian random variable, with mean zero and variance

E[〈a− 〈a,vj∗〉vj∗ , ξ〉2] =
1

n
‖a− 〈a,vj∗〉vj∗‖22 =

1

n
〈a, (In − vj∗v>j∗)a〉

=
1 + o(1)

n
〈a, (In − v̂j∗ v̂>j∗)a〉.

This together with (112), (113) as well as our assumption (13)

√
nβ̂√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,vj∗〉
]

d−→ N (0, 1). (114)

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing
(βj∗ ,vj∗) in the righthand side of (4) and (5) to the corresponding expression.
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Proof [Proof of Corollary 10] For k > 3 and |β1| > n(k−2)/2+ε, the assumption 13 holds

trivially. The claim (18) follows from (14). For (19), we recall that in (17), ξ = Z[v
⊗(k−1)
i ],

is an n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian random variable. We see that

〈ξ,vi〉
d
= N (0, 1/n) .

Especially with high probability we will have that |〈ξ,v〉| . log n/
√
n. Then we conclude

from (17), with high probability it holds

β̂ = βi + O

(
1

βi
+

log n√
n

)
. (115)

With the bound (115), we can replace (k/2− 1)/βi on the righthand side of (17) by (k/2−
1)/β̂, which gives an error∣∣∣∣k/2− 1

βi
− k/2− 1

β̂

∣∣∣∣ = O

(
1

|β1|2
+

log n

|β1|
√
n

)
,

where we used that |βi| & |β1|. Combining the above discussion together, we can rewrite
(17) as

βi = β̂ +
k/2− 1

β̂
− 〈ξ,vi〉+ OP

(
log n√
n

(
log n√
n|β1|

)k−1

+
log n

|β1|
√
n

+
(log n)3/2

|β1|1/2n3/4
+

1

|β1|2

)
.

(116)

Since 〈ξ,vi〉
d
= N (0, 1/n), and the error term in (116) is much smaller than 1/

√
n. We

conclude from (116)

√
n

(
βi − β̂ +

k/2− 1

β̂

)
d−→ N (0, 1).

This finishes the proof of (19).

Proof [Proof of Corollary 11] Given the significance level α, the asymptotic confidence in-
tervals in Corollary 11 can be calculated from Corollary 10 by bounding the absolute values
of the left hand sides of (18) and (19) at zα.
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