
Journal of Machine Learning Research 23 (2022) 1-37 Submitted 12/21; Revised 8/22; Published 9/22

Jump Gaussian Process Model for Estimating Piecewise
Continuous Regression Functions

Chiwoo Park cpark5@fsu.edu

Department of Industrial and Manufacturing Engineering

Florida State University

2525 Pottsdamer St., Tallahassee, FL 32310-6046, USA.

Editor: Matthias Seeger

Abstract

This paper presents a Gaussian process (GP) model for estimating piecewise continuous
regression functions. In many scientific and engineering applications of regression analysis,
the underlying regression functions are often piecewise continuous in that data follow dif-
ferent continuous regression models for different input regions with discontinuities across
regions. However, many conventional GP regression approaches are not designed for piece-
wise regression analysis. There are piecewise GP models to use explicit domain partitioning
and pose independent GP models over partitioned regions. They are not flexible enough to
model real datasets where data domains are divided by complex and curvy jump boundaries.
We propose a new GP modeling approach to estimate an unknown piecewise continuous
regression function. The new GP model seeks a local GP estimate of an unknown regression
function at each test location, using local data neighboring the test location. Considering
the possibilities of the local data being from different regions, the proposed approach parti-
tions the local data into pieces by a local data partitioning function. It uses only the local
data likely from the same region as the test location for the regression estimate. Since we
do not know which local data points come from the relevant region, we propose a data-
driven approach to split and subset local data by a local partitioning function. We discuss
several modeling choices of the local data partitioning function, including a locally linear
function and a locally polynomial function. We also investigate an optimization problem
to jointly optimize the partitioning function and other covariance parameters using a like-
lihood maximization criterion. Several advantages of using the proposed approach over the
conventional GP and piecewise GP modeling approaches are shown by various simulated
experiments and real data studies.

Keywords: Piecewise Regression, Jump Regression, Gaussian Process Regression, Local
Data Selection, Local Data Partitioning

1. Introduction

In many engineering and scientific studies, a response variable of interest suddenly jumps or
sharply changes for a small perturbation of input variables. For example, in geostatistics,
sensing responses from rock strata show sharp changes around sediment layers where rock
types change from one to another (Kim et al., 2005). In materials science, the phases of
materials suddenly change where phase transitions occur (Park et al., 2021). In economet-
rics, the responses from participants in social programs significantly differ under a bit of
change in treatments (Kang et al., 2019). In environmental ecology, the degree of human-

c©2022 Chiwoo Park.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-1472.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-1472.html

Park

induced disturbances to nature abruptly changes around environmental thresholds (Toms
and Lesperance, 2003).

The input-response relations in these examples show a piecewise continuous nature, i.e.,
continuous everywhere in a domain but discontinuous across some boundary regions where
responses jump. Under these cases, data across boundaries are independent, and only data
within the same homogeneous region are correlated. Stationary Gaussian process (GP) re-
gression models are inappropriate for capturing these piecewise continuous input-response
relations. The nature of the stationary GP covariance modeling poses high correlations be-
tween closely located data points (Rasmussen and Williams, 2006). Thus it promotes more
continuity and smoothness. Nonstationary GP modelings may better handle the piecewise
nature, locally adjusting covariance parameters (Sampson and Guttorp, 1992). However,
the nonstationary GP modeling does not solve the issue completely, because data across
boundaries are still correlated under the nonstationary setting. The conventional GP mod-
els would only be appropriate for continuous and smooth input-output dynamics. Applying
these conventional approaches to data from piecewise continuous response surfaces would
give an inadequate representation of the underlying regression function, incurring signifi-
cant estimation biases. This paper presents a new GP modeling for estimating piecewise
continuous regression functions.

A few studies in the GP literature potentially work for piecewise continuous regression
functions. By these methods, the input domain is first partitioned into multiple regions,
and then the data from each region is modeled as an independent GP model. Therefore,
the data are correlated within regions and independent across regions. The best-known
examples include piecewise GPs with a tessellation-based domain partitioning (Kim et al.,
2005; Heaton et al., 2017; Pope et al., 2021; Luo et al., 2021), binary splitting of the spatial
axes (Konomi et al., 2014), and Bayesian treed GP (Gramacy and Lee, 2008; Taddy et al.,
2011). Kim et al. (2005) use the Voronoi tessellation to partition an input domain into
triangular regions and use an independent and stationary GP to model a response surface
within each triangular region. The number and locations of the triangular regions are jointly
estimated with the stationary GP models, using a Bayesian sampling procedure. Luo et al.
(2021) partitioned a spatial adjacency graph constructed by the Delaunay triangulation.
Pope et al. (2021) discuss active learning of the piecewise regression model. One major
issue with the tessellation-based methods is that the Voronoi tessellation is practical only
in a spatial domain and computationally expensive in three or more dimensions.

A Bayesian treed GP is another piecewise GP approach. Gramacy and Lee (2008) uses
a dyadic treed partitioning for splitting an input domain by axis-aligned directions and
fits a stationary GP model to data from each leaf of the tree. Konomi et al. (2014) used
the Bayesian CART tree to split an input domain. These tree partitioning and piecewise
GP models are jointly estimated using the Markov Chain Monte Carlo sampling, which
is computationally slow. Dynamic tree model (Taddy et al., 2011) is simpler and more
computationally feasible, but it is limited to piecewise constant or linear models. Similar
treed regression modelings have been used with non-GP models (Malloy and Nowak, 2014).

There are other partitioned GP models (Park and Huang, 2016; Park and Apley, 2018;
Cortes et al., 2019), but they work when the domain partitioning is known as a priori,
or the partition can be easily estimated by a simple clustering. These approaches mainly
exploits data partitioning to address a big-N issue of the GP. There are many non-GP

2

Jump Gaussian Process Regression

regression models that can potentially model piecewise continuous regression functions,
including jump regression analysis (Park et al., 2021; Qiu, 2009; Kang et al., 2021). These
non-Bayesian approaches only provide mean estimates, but not variance estimates that are
useful to understand the prediction uncertainty. In addition, they are developed from two-
dimensional (2D) input domains, so their application for higher-dimensional input spaces is
limited. Their main applications are 2D image denoising and enhancements (Gijbels et al.,
2006).

Some major shortcomings of the existing piecewise GP models are that their partitioning
schemes such as axis-aligned partitions or triangulation are too restrictive to model real
datasets where the response jumps occur across complex and curvy boundaries. Forcing
their use for the real cases would lead to overly partitioned models with few data points per
region or under-partitioned models that poorly represent response jumps across boundaries.
Accordingly, their predictions are no better than the conventional GP, which is shown
by Park et al. (2021) and is also reported in Section 5. By the nature of their domain
partitioning, the existing piecewise GP models are more appropriate for spatial domains.
They are not easy to extend for higher dimensions.

We believe that a local regression modeling (versus the existing global-scale modelings)
would be a more natural choice to adapt to local features like jumps and discontinuities.
This paper will develop a new local GP model to estimate piecewise continuous regression
surfaces. Our GP model seeks a local GP estimate of an unknown regression function at
a test location, using local data neighboring to the test location. Since the local data may
come from heterogeneous regions, the proposed method partitions the local data into pieces
and takes only a piece of the local data belonging to the same region as the test location for
the regression estimate. Since we do not know which local data belongs to the region, we
consider several parametric forms of a local data partitioning function and then develop a
likelihood maximization formulation to jointly optimize the parameters of the partitioning
function with other covariance hyperparameters. The proposed method is referred to as the
Jump GP or shortly JGP.

The proposed approach has many major advantages over the existing piecewise GP
approaches. First, the local data partitioning applied in JGP is a lot simpler and more flex-
ible than the global-level partitioning used in the existing piecewise GP. Complex and curvy
boundaries dividing a regression domain can be effectively approximated at a local level by
simpler geometries such as locally linear or polynomial boundaries, while the complexities
are too substantial to be handled at a global level. We have many numerical illustrations
to support this argument in Section 3. Second, compared to many existing approaches
that only deal with spatial domains, the proposed approach works for higher dimensions.
We have tested at least up to 10 dimensions numerically in Section 4. Last, the proposed
approach as a variant of the local GP works for a large N , but many treed GP approaches
using expensive MCMC do not.

We also articulate that like the local GP, the proposed approach produces the pointwise
estimates of a regression function with pointwise means and variances. However, it does
not provide an explicit form of a regression function, which could limit the applicability of
the proposed method for a few GP applications requiring an explicit form of a regression
function. The proposed method can be used for a vast majority of GP applications which

3

Park

just need pointwise means and variances, e.g., regression, Bayesian optimization, surrogate
modeling, model calibration, uncertainty quantification, and etc.

We organize the remainder of this paper as follows. Section 2 proposes a new GP regres-
sion approach, discussing the limitation of conventional local GP approaches. That section
explains many modeling choices, such as local data partitioning functions and implemen-
tation details for model parameter estimation with some numerical illustrations. Section
3 presents a numerical analysis of the proposed approach with designed simulation experi-
ments with two-dimensional input domains. The main purpose of the section is to visually
illustrate how the proposed work for several settings of a noise level, a training data size,
a local data size, and different jump boundary configurations. In Section 4, we extend the
simulation study with high dimensional problems to see how the proposed approach works
for different input dimensions. Section 5 presents numerical analysis with three benchmark
datasets, comparing the proposed approach with conventional local GP approaches and two
existing piecewise GP models. We conclude this paper in Section 6.

2. Jump Gaussian Process (JGP)

Let X denote a domain of a function in Rd. We consider a problem of estimating an unknown
regression function f : X → R that relates inputs x ∈ X to a real response variable. We
assume that the regression function is piecewise continuous in the form of

f(x) =
K∑
k=1

fk(x)1Xk
(x), (1)

where X1,X2, . . . ,XK are a partition of X (i.e. disjoint subsets which union is equal to X),
1Xk

(x) is an indicator function that determines whether x belongs to region Xk, and fk(x)
is a continuous function that represents the regression model on region Xk. Each function
fk(x) is assumed a random realization of GP with a constant mean µk ∈ R and stationary
covariance function ck(·, ·), and we assume mutual independence among the functions,

Independence: fk is independent of fj for j 6= k. (2)

Here, the ‘independence’ implies a zero correlation between two data points across regions.
For a concise development of the proposed idea, we may restrict the covariance function ck to
a parametric family, {c(·, ·; θ); θ ∈ Θ}, but one can easily extend the proposed idea for other
general covariance forms. Let θk ∈ Θ denote the region-dependent covariance parameter
for region Xk, so we have ck(·, ·) equal to c(·, ·; θk). We assume mean heterogeneity across
regions,

Heterogeneity: µj 6= µk ∀ j 6= k. (3)

The covariance parameters can be different across regions, θj 6= θk, or they can be same.

The modeling assumptions (1), (2) and (3) comprises the underlying regression model
f . We want to estimate f at a test location x∗ ∈ X , using N noisy observations of the
unknown function, where an observation at x is assumed

y = f(x) + ε(x), (4)

4

Jump Gaussian Process Regression

and independent noises ε(x) ∼ N (0, σ2(x)). The noise variance σ2(x) is assumed to change
very smoothly within the same region (but can be significantly different for different regions),
so σ2(x) is approximately constant around a small neighborhood of x within the region.
Here, all fk(x)’s are unknown, and the partition {Xk, k = 1, . . . ,K} are unknown, and
even the region number K is unknown. One may seek to explicitly model and estimate
the partition, multiple regression models and K with data as in the existing piecewise GP
approaches (Gramacy and Lee, 2008; Kim et al., 2005). However, their explicit modeling of
the domain partition are not flexible enough to accommodate complex and curvy boundaries
between continuous regions. Forcing the explicit modeling of these complexities would lead
to overly partitioned models with few data points per sub-region or poorly partitioned
models that do not representing intensity jumps across complex boundaries.

We believe that a local and transductive learning approach (Vapnik, 2013) would be a
more natural choice to adapt to the local nature of jumps and discontinuities around test
points. Here we investigate local GP modeling approaches to take a local GP estimate
of f for each test location x∗ ∈ X without explicit estimation of fk(x) and Xk. We first
summarize the conventional local GP approach and discuss its limitation in estimating the
regression model (1) to motivate a new approach in Section 2.1. Then, we propose our
JGP in Section 2.2, followed by two statistical inference algorithms in Sections 2.3 and 2.4.
Sections 2.5 and 2.6 detail the model developments with specific modeling choices.

2.1 Limitation of the Conventional Local GP in Estimating the model (1)

In the conventional local GP, a small subset of training data nearing a test location x∗ is
first chosen, e.g., choosing the n-nearest neighborhood of x∗ or exploiting the existing local
data selection criterion (Gramacy and Apley, 2015). Let us denote the local data by

Dn = {(xi, yi) : i = 1, . . . , n}, (5)

where xi and yi represent the input vector and the response value of the ith local data.
Please note that Dn is dependent on x∗. For notational brevity, we use the notation Dn

instead of Dn(x∗).
The conventional local GP model fits a stationary GP model to the local data. Locally,

f is assumed a realization of a Gaussian process with a constant mean µ and covariance
function c(·, ·; θ), and yi is a noisy observation of f at xi with the Gaussian noise and noise
variance σ2. This can be expressed as

yi|f(xi) ∼ N (f(xi), σ
2)

f(xi) ∼ N (µ, c(xi,xi; θ))

Cov(f(xi), f(xj)) = c(xi,xj ; θ).

It gives the posterior predictive distribution of f at a test location x∗ as the Gaussian
distribution with

mean: µ(x∗) = µ+ cTn (σ2In +Cn)−1(yn − µ1n), and
variance: s(x∗) = c(x∗,x∗; θ)− cTn (σ2In +Cn)−1cn,

(6)

where cn = [c(xi,x∗; θ) : i = 1, ..., n] is a n× 1 vector of the covariance values between the
local data and the test location, Cn = [c(xi,xj ; θ) : i, j = 1, ..., n] is a n× n matrix of the

5

Park

covariance values evaluated for all pairs of the local data, 1n is a n × 1 vector of ones, In
represents a n× n identity matrix, and yn = [yi : i = 1, ..., n]. The hyperparameters µ and
θ of the Gaussian process prior are optimized by maximizing the likelihood. The estimate
of µ is µ̄∗ = 1TnC

−1
n yn/1

T
nC
−1
n 1n (Mu et al., 2017). The estimate µ̄∗ can be written as a

weighted average of the local responses in the form of
∑n

i=1 αiyi for some positive weights
{αi, i = 1, ..., n} satisfying

∑n
i=1 αi = 1. One can easily show that the bias of the local GP

estimate µ(x∗) is given as

Bias[µ(x∗)] = E[µ(x∗)− f(x∗)]

= E[µ̄∗ + cTn (σ2In +Cn)−1(yn − µ̄∗1n)]− E[f(x∗)]

= E[µ̄∗]− E[f(x∗)] + cTn (σ2In +Cn)−1(E[yn]− E[µ̄∗]1n).

(7)

Theorem 1 The conventional local GP estimate µ(x∗) is unbiased almost everywhere if
and only if E[yi] = E[f(x∗)] for every i = 1, . . . , n.

The proof is simple as follows. If the condition holds, E[µ̄∗]−E[f(x∗)] = 0, and E[yn]−
E[µ̄∗]1n becomes a zero vector. Therefore, the last line of (7) would be zero for all possible
cases of the training inputs (xi, i = 1, . . . , n). So, the condition stated in the theorem should
be a sufficient condition for the unbiasedness. We use proof by contrapositive to show that
the condition is also a necessary condition. Suppose that I± = {i : E[yi] 6= E[f(x∗)]} is not
empty. The expectation of the estimate µ̄∗ can be written as

E[µ̄∗]− E[f(x∗)] =
n∑
i=1

αi(E[yi]− E[f(x∗)]) =
∑
i∈I±

αi(E[yi]− E[f(x∗)]).

The term goes to zero only if (xi, i ∈ I±) are placed such that the associated (αi, i ∈ I±)
belongs to the null space of (E[yi] − E[f(x∗)], i ∈ I±). Since the null space has a zero
Lebesgue measure in R|I±|, we can say that the term above is non-zero almost everywhere.
Similarly, the term E[yn] − E[µ̄∗]1 would be non-zero almost everywhere, so Bias[µ(x∗)]
could be non-zero almost everywhere. Therefore, the condition stated in the theorem is also
a necessary condition.

2.2 Jump GP: New GP Estimate with Local Data Selection

To mitigate the bias, we propose to partition local data Dn into two parts: a group of the
local data that belong to the same region as a test location x∗ and the remainder. Since
the second group of the local data is independent of f(x∗) due to independence (2), we
define a new local GP estimate of f(x∗) using only the first part of the local data. Since
the new estimate satisfies the unbiasedness condition in Theorem 1, it should be unbiased.
A major challenge in realizing this idea is that we do not know which local data belong to
the same region as the test location. Here we propose a data-driven approach to identify
which local data points belong to the region of the test location. The bias of the proposed
estimate would be dependent on the accuracy of the local data selection.

We acknowledge similarities between the proposed approach and the local approximate
Gaussian process regression (Gramacy and Apley, 2015, shortly referred to as the laGP
hereafter). Both produce local GP estimates, and they all select local data points with

6

Jump Gaussian Process Regression

particular criteria. The major difference is that the proposed approach exploits the response
values of training data to select local data points, while the laGP does not. The laGP selects
local data points, starting with a small nearest neighbors and adding additional local data
points incrementally. The incremental step does not exploit the response variable values
of training data, so it cannot take account of the response jumps. Unsurprisingly, the
performance of the laGP remains comparable to the conventional local GP for piecewise
continuous regression, as we show later in Section 5.

We start by introducing a binary latent variable Zi ∈ {0, 1} to represent whether a local
data point x belongs to the same region as the test location x∗ as

Zi =

{
1 if xi,x∗ belong to the same region
0 otherwise.

When the latent variable values are known, we can use the latent variables to divide the
local data Dn into two groups:

Do = {(xi, yi) : Zi = 0} and

D∗ = {(xi, yi) : Zi = 1}.
(8)

Please note that the local data D∗ and the test location x∗ belong to the same region.
According to our modeling proposition (1), they should be governed by one common sta-
tionary GP model. If x∗ ∈ Xk, the governing GP model would be fk that has constant
mean function µk and covariance function c(·, ·; θk). Since we do not know which region
x∗ belongs to, we denote the governing GP model by f∗ with a constant mean m∗ and
a covariance function c(·, ·; θ∗); if x∗ ∈ Xk, f∗, m∗, and θ∗ actually refer to fk, mk, and
θk, respectively. Accordingly, conditioned on Zi = 1, we model yi as a noisy output of an
unknown f∗(xi),

p(yi|Zi = 1, f∗,i) = N1(yi|f∗,i, σ2)

f∗ ∼ GP (m∗, c(·, ·; θ∗)),
(9)

where we use a short notation f∗,i to represent f∗(xi), and N1(·|f∗,i, σ2) represents an
univariate normal density function with mean f∗,i and variance σ2. The other local data
Do really do not affect f∗, because they are independent of f∗. We use a simple dummy
likelihood for Do, which is defined as a uniform density,

p(yi|Zi = 0) = U (10)

for a positive constant U . The constant value is related to how much deviations of yi from
the model (9) are tolerable to declare Zi = 1 (i.e. whether yi and f∗,i are from the same GP
realization). Intuitively, if Zi = 1, they are correlated through covariance function c(·, ·; θ∗),
so their values become close. Otherwise, they are statistically independent so become more
distinct with high possibilities. The constant U determines how much deviation of yi from
fi,∗ is sufficient to declare the independence. If yi deviates from f∗,i to the degree for
inducing p(yi|Zi = 1, f∗,i) < U , so the data is likely classified as Zi = 0. Due to the
Gaussianity of the model p(yi|Zi = 1, f∗,i), we propose to set

U = φ (c · σ) ,

7

Park

where φ(·) is a standard normal density function. With the choice, data deviating from
f∗,i by more than cσ gives p(yi|Zi = 1, f∗,i) < U , so the data is likely classified as Zi = 0.
Typically, data outside ±3 sigma range from the normal are considered outliers in literature,
e.g., 3σ limit in quality control (Goh and Xie, 2003), so a practical choice of c would be
2 or 3. We use c = 2.5 for all numerical examples. We admit that this choice may not
be optimal. We consider it a practical choice, given that considering it as another model
parameter may cause a model non-identifiability issue.

The uncertainty over the latent variable Zi is modeled by a sigmoid function π of an
unknown partitioning function g(x,ω),

p(Zi = 1|xi,ω) = π(g(xi,ω)), (11)

where the partitioning function g(x,ω) is parameterized by a parameter ω. The partitioning
function determines whether xi belongs to Do or D∗. When g(xi,ω) ≥ 0, p(Zi = 1|xi,x∗,ω)
is greater than p(Zi = 0|xi,ω), so xi is likely classified as a data point in D∗. Otherwise,
it is likely to be classified as a data point in Do. The form of the function g influences the
boundary dividing Do and D∗. For example, if g is chosen as a linear function ωT [1,x], we
have a linear dividing boundary. One can use a non-linear form ωT [1,ψ(x)] with a choice
of non-linear basis functions, ψ(x) = (ψ`(x); ` = 1, . . . , L). Another option would be to use
another layer of GP modeling for g(x,ω), which will constitute a deep GP model with two
GP layers. The model estimations would be more complicated. For a concise representation
of the overall idea, we will use a non-GP parametric model,

g(x,ω) = ωT [1,ψ(x)].

The function should satisfy one constraint

g(x∗,ω) ≥ 0 (12)

to constrain that D∗ and x∗ are on the same side of the boundary.
We need to estimate a set of latent variables, Z = (Zi, i = 1, . . . , n) and f∗ = (f∗,i, i =

1, . . . , n), as well as unknown model parameters, Θ = {ω,m∗, θ∗, σ2}. One natural choice
for the mixture model may be to use the expectation maximization (EM), which iterates an
E-step (taking the expectation of the joint log density with respect to the latent variables)
and an M-step (maximizing the expectation with respect to the model parameters). The
major difficulty here is that obtaining the joint posterior distribution of Z and f∗ is not
tractable, which creates complications in the E-step. To avoid that complication, we can
use EM variants such as the classification EM (Bryant and Williamson, 1978; Gupta and
Chen, 2010), Monte Carlo EM (Levine and Casella, 2001), and variational EM (Bishop,
2006). We realized that the Monte Carlo EM is too computationally slow. Here we describe
inference steps for the other two EM variants.

2.3 JGP-CEM: Classification EM Inference for Jump GP

Here we describe the statistical inference of JGP with the classification EM (Bryant and
Williamson, 1978; Gupta and Chen, 2010), which replaces the E-step with a pointwise
maximum a posteriori (MAP) estimation of latent variables.

8

Jump Gaussian Process Regression

To describe the steps, we first write priors and likelihood. From (11), the prior for Z is

p(Z|ω) =
n∏
i=1

π(g(xi,ω))Zi(1− π(g(xi,ω)))1−Zi .

From the Gaussian process prior (9),

p(f∗|m∗, θ∗) = Nn(f∗|m∗1n,Cn),

where Nn(·|µ,Σ) represents a n-variate normal density with mean µ ∈ Rn and a n × n
covariance Σ, and Cn = [c(xi,xj ; θ∗) : i, j = 1, ..., n] is a square matrix of the covariance
values evaluated for all pairs of the local data. The conditional distribution of all local data
yn given the latent variables is

p(yn|f∗,Z, σ2) =

n∏
i=1

N1(yi|f∗,i, σ2)ZiU1−Zi . (13)

The classification EM algorithm iterates the following E-step and M-step to estimate
the model parameter Θ:

• E-step: Given the parameter estimates Θ(t) = {m(t)
∗ , θ

(t)
∗ ,ω

(t), σ2(t)} from the past it-
eration, take the MAP estimate of Z and f∗ by minimizing the negative log posterior
distribution,

(Z(t+1),f
(t+1)
∗) = argmin

Z,f∗

− log{p(Z|ω(t))p(f∗|m
(t)
∗ , θ

(t)
∗)p(yn|f∗,Z, σ2(t))} (14)

We use the block coordinate descent algorithm to solve the problem (14), which minimizes
the objective function along with one coordinate direction at a time. The coordinate direc-
tion to be optimized can be chosen cyclically or randomly. Below we describe coordinate-
wise update steps. Conditioned on f∗, the posterior density of Zi = 1 is given by

P (Zi = 1|yn,f∗,Θ(t))

=
π(g(x,ω(t)))N1(yi|f∗,i, σ2(t))

π(g(x,ω(t)))N1(yi|f∗,i, σ2(t))) + {1− π(g(x,ω(t)))}U
.

(15)

We set Zi to its posterior mode,

Zi =

{
1 if P (Zi = 1|yn,f∗,Θ(t)) ≥ 0.5

0 if P (Zi = 1|yn,f∗,Θ(t)) < 0.5.
(16)

Based on Zi, we can classify the local data indices into In,∗ = {i = 1, . . . , n : Zi = 1} and
In,o = {i = 1, . . . , n : Zi = 0}. Let y∗ = (yi, i ∈ In,∗), and let n∗ denote the number of the
elements in In,∗. Given In,∗, we can find the posterior mode of f∗ in the closed form:

f∗ = m
(t)
∗ 1n +C

(t)
n∗(σ

2(t)I +C
(t)
∗∗)−1(y∗ −m

(t)
∗ 1n∗), (17)

9

Park

where C
(t)
n∗ = [c(xi,xj ; θ

(t)
∗) : i = 1, . . . , n, j ∈ In,∗] is a n × n∗ matrix of the covariance

values between yn and y∗, and C
(t)
∗∗ = [c(xi,xj ; θ

(t)
∗) : i, j ∈ In,∗] is a square matrix of

the covariance values evaluated for all pairs of the elements in y∗. The block coordinate
descent iteration converges because it satisfies a sufficient condition for the convergence
(Beck and Tetruashvili, 2013), i.e., the objective function is block-wise convex, and its

gradient is block-coordinatewise Lipschitz continuous. Let f
(t+1)
∗ and Z(t+1) represent the

latent variable values at the convergence.

• M-step: Fixing f
(t+1)
∗ and Z(t+1), the M-step finds Θ that minimizes the negative log

complete likelihood,

Minimize
Θ

− log(p(Z(t+1)|ω)p(f
(t+1)
∗ |m∗, θ∗)p(yn|f

(t+1)
∗ ,Z(t+1), σ2)).

The solutions for m∗ and σ2 are given in the following closed form expressions:

m
(t+1)
∗ =

1Tn (C
(t)
n)−1f

(t+1)
∗

1Tn (C
(t)
n)−11n

, and

σ2(t+1) =

∑n
i=1 Z

(t+1)
i (yi − f (t+1)

∗,i)2∑n
i=1 Z

(t+1)
i

,

(18)

where f
(t+1)
∗,i and Z

(t+1)
i are the ith elements of f

(t+1)
∗ and Z(t+1), respectively, and C

(t)
n

represents Cn evaluated with covariance parameter θ
(t)
∗ . The optimal values for the other

parameters should be achieved numerically using gradient algorithms. By the additive
nature of the objective function, optimization of ω and covariance hyperparameters θ∗ can
be solved independently. To optimize ω, we solve

Minimize
ω

− log p(Z(t+1)|ω)

subject to g(x∗,ω) ≥ 0.
(19)

Putting the parametric form of g(xi,ω) into the expression, we will write problem (19) as

Minimize
ω

−
n∑
i=1

[log(1 + exp{−ωT [1,ψ(xi)]})− (1− Z(t+1)
i)ωT [1,ψ(xi)]]

subject to ωT [1,ψ(x∗)] ≥ 0.

(20)

The constraint optimization with a linear constraint can be easily solved by the Lagrangian
dual method (Boyd et al., 2004, Chapter 5). Optimizing the covariance hyper parameters
θ∗ is equivalent to the marginal likelihood maximization,

Minimize
θ∗

− logNn(f
(t+1)
∗ |m(t+1)

∗ 1,Cn). (21)

• Convergence: Check if ρ(t) − ρ(t+1) is greater than a threshold ε, where

ρ(t+1) = − log(p(Z(t+1)|ω(t+1))p(f
(t+1)
∗ |m(t+1)

∗ , θ
(t+1)
∗)p(yn|f

(t+1)
∗ ,Z(t+1), σ2(t+1))). (22)

10

Jump Gaussian Process Regression

After the convergence, we would have the parameter estimates of Θ. Given the parame-
ter estimates, the posterior predictive distribution of f∗(x) at a test location x∗ is described
as the Gaussian distribution with

mean: µ1(x∗) = m∗ + cT∗ (σ2In∗ +C∗∗)
−1(y∗ −m∗1n∗), and

variance: s1(x∗) = c(x∗,x∗; θ∗)− cT∗ (σ2In∗ +C∗∗)
−1c∗,

(23)

where c∗ = [c(xi,x∗; θ∗) : i ∈ In,∗] is a column vector of the covariance values between
the local data y∗ and the test location. If the estimate Z(t) is correct, the mean estimate
µ1(x∗) would satisfy the condition in Theorem 1, so it should be unbiased. The overall
bias of the estimate is largely influenced by the accuracy of the estimate Z(t). We refer to
this GP estimate as Jump Gaussian Process Regression by the classification EM or shortly
JGP-CEM.

• Initialization: For JGP-CEM, we should run the coordinate-wise optimization algo-
rithm to estimate the model parameters. It is crucial to feed good initial estimates of the
parameters as an initial solution to the optimization algorithm. This section describes our
approach to get an initial solution.

For an initial estimate of ω, we propose to use a local kernel estimate. We approximate
the local response surface of f(x) by a partitioning function ωT [1,ψ(x)] around a test
location x∗ that minimizes the following local fit error,

ω(1) = argmin
ω∈RL+1

n∑
i=1

Kh(xi,x∗)
{
yi − ωT [1,ψ(xi)]

}2
, (24)

where Kh(xi,x∗) = φ
(
||xi−x∗||

h

)
is the Gaussian kernel weight with the choice of bandwidth

h; here we choose h = maxi=1,...,n ||xi − x∗||. The fitted partitioning function (ω(1))Tψ(x)
now serves as a local surrogate to f(x) around a test location x∗, and thresholding the
local surrogate value (ω(1))T [1,ψ(xi)] by a threshold ω0 would give a division of the local
data into two groups distinguished by yi values. Hence, the fitted (ω(1))T [1,ψ(xi)] would
serve a good partitioning function of the local data. We propose to use the local kernel
estimate ω(1) as an initial solution of ω after adjusting it with ω0. The adjusted estimates
of a partitioning function are given to

ĝ(x) = (ω(1))T [1,ψ(x)]− ω0 = 0, (25)

where ω0 is chosen to minimize the within-region variance, calculated as the sample variance
of {yi : ĝ(xi) ≥ 0} plus the sample variance of {yi : ĝ(xi) < 0}. The corresponding estimate
of ω is (ω(1))T − [ω0,0

T
L−1]T , where 0L−1 is the L− 1 dimensional vector of zeros.

The initial estimate of Zi can be obtained by applying the partitioning function estimate,

Z
(1)
i =

{
1 if (ω(1))T [1,ψ(xi)] ≥ 0
0 otherwise.

(26)

With the initial estimates ω(1) and Z(1), we can solve problem (21) to estimate θ∗ and
then use (17) to estimate the remainder. The step-by-step of JGP-CEM with the initial
estimation is summarized in Algorithm 1.

11

Park

Algorithm 1: Jump Gaussian Process Regression by the Classification EM (JGP-CEM)

Input. local training data Dn, a test location x∗ ∈ X , basis functions ψ(x), a small
tolerance ε > 0
Output. predictive mean µ1(x∗), predictive variance σ1(x∗)
Initialization:

Set Z(1), f
(1)
∗ and Θ(1), using (24) and (26).

Set ρ(0) =∞ and calculate ρ(1) using (22).
Set t = 1.

[Perform the classification EM algorithm.]

While ρ(t−1) − ρ(t) > ε
E-step:

[Iterate the two steps below until convergence or can take only one iteration.]

Calculate Z(t+1), using (16).

Calculate f
(t+1)
∗ , using (17).

M-step:

Calculate m
(t+1)
∗ and σ2(t+1), using (18).

Calculate ω(t+1) using (20).

Calculate θ
(t+1)
∗ , using (21).

Calculate ρ(t+1) and increase t by one.
End While

2.4 JGP-VEM: Variational EM Inference for Jump GP

This section describes the variational EM (Bishop, 2006) to estimate Z, f∗ and Θ.

• E-step: Given the parameter estimates Θ(t) = {m(t)
∗ , θ

(t)
∗ ,ω

(t), σ2(t)} from the past it-
eration, take a factorization approximation q(Z)q(f∗) to the joint posterior distribution
of Z and f∗. The factorization approximation q(Z)q(f∗) are obtained so as to minimize
the Kullback-Leibler divergence between the factorized approximation and the true joint
posterior distribution. We can easily show that q(Z) =

∏N
i=1 q(Zi) with q(Zi = 1) given as

γi =

π(g(x,ω(t))) exp
{
−Var[f∗,i]

2σ2(t)

}
N1(yi|E[f∗,i], σ

2(t))

π(g(x,ω(t))) exp
{
−Var[f∗,i]

2σ2(t)

}
N1(yi|E[f∗,i], σ2(t)) + {1− π(g(x,ω(t)))}U

,
(27)

and q(f∗) is the multivariate Gaussian density function with mean µ̃ and covariance Σ̃,

µ̃ = Σ̃
{

(σ2(t))−1D−1
Z y +m

(t)
∗ (C(t)

n)−11
}

Σ̃ =
{

(σ2(t))−1D−1
Z + (C(t)

n)−1
}−1

,
(28)

whereDZ is a n×n diagonal matrix with 1/E[Zi] as its ith diagonal element. Here, achieving
q(Z) requires E[f∗,i] and Var[f∗,i], while achieving q(f∗) requires E[Zi]. Numerically, E[f∗,i]
and Var[f∗,i] can be estimated from q(f∗), and E[Zi] can be estimated from q(Z). Each of

12

Jump Gaussian Process Regression

q(Z) and q(f∗) can be updated iteratively while fixing another until the iteration reaches
to convergence. The convergence is guaranteed because the Kullback-Leibler divergence is

convex with respect to each of the factor distributions (Bishop, 2006). Let γ
(t+1)
i , µ̃(t+1)

and Σ̃
(t+1)

represent the values of γi, µ̃ and Σ̃ at the convergence. Let D
(t+1)
γ represent

a n × n diagonal matrix with 1/γ
(t+1)
i as its ith diagonal element. In the E-step, we take

an expectation of the complete log likelihood log{p(Z|ω)p(f∗|m∗, θ∗)p(yn|f∗,Z, σ2)} with
respect to q(Z)q(f∗), which forms

L(Θ) =
n∑
i=1

[
γ

(t+1)
i log π(g(xi,ω)) + (1− γ(t+1)

i) {log(1− π(g(xi,ω))) + logU}
]

− 1

2
log |σ2D(t+1)

γ | − 1

2
log |Cn|

− 1

2
tr
[
(σ−2(D(t+1)

γ)−1 +C−1
n)(µ̃(t+1)(µ̃(t+1))T + Σ̃

(t+1)
)
]

+ (µ̃(t+1))T (σ−2(D(t+1)
γ)−1y +m∗C

−1
n 1)− 1

2σ2
yT (D(t+1)

γ)−1y − m2
∗

2
1TC−1

n 1.

• M-step: We maximizes L(Θ) with respect to Θ, and the optimal solutions of σ2 and
ω can be achieved independently of the other parameters. The optimal solution of σ2 is
achieved in the closed forms,

σ2(t+1) =
tr
[
(D

(t+1)
γ)−1

{
Σ̃

(t+1)
+ (y − µ̃(t+1))(y − µ̃(t+1))T

}]
n

.
(29)

The parameter ω is only dependent on the first two terms of L(Θ), so the optimal solution
for ω can be achieved, using the following optimization

ω(t+1) = argmin
ω

−
n∑
i=1

[γ
(t+1)
i log π(g(xi,ω)) + (1− γ(t+1)

i) log(1− π(g(xi,ω)))]

subject to ωT [1,ψ(x∗)] ≥ 0.

(30)

Optimizing the covariance hyper parameters θ∗ and m∗ is equivalent to the marginal like-
lihood maximization,

(m
(t+1)
∗ , θ

(t+1)
∗)

= argmin
m∗,θ∗

1

2
log |Cn|+

1

2
(µ̃(t+1) −m∗1)TC−1

n (µ̃(t+1) −m∗1) +
1

2
tr
[
C−1
n Σ̃

(t+1)
]
.

(31)

After the convergence of the variational EM algorithm, we would have the parameter
estimates of Θ and corresponding posterior distribution q(f∗). Given them, the posterior
predictive distribution of f∗(x) at a test location x∗ can be achieved as

q(f∗(x)) =

∫
p(f∗(x)|f∗)q(f∗)df∗. (32)

We can easily see that the predictive distribution is a normal distribution with

mean: µ2(x∗) = m∗ + cT∗C
−1
n (µ̃−m∗1n∗), and

variance: s2(x∗) = c(x∗,x∗; θ∗)− cT∗ (C−1
n −C−1

n Σ̃C−1
n)c∗.

(33)

13

Park

Algorithm 2: Jump Gaussian Process Regression with Variation EM (JGP-VEM)

Input. local training data Dn, a test location x∗ ∈ X , basis functions ψ(x), a small
tolerance ε > 0
Output. predictive mean µ2(x∗), predictive variance σ2(x∗)
Initialization:

Initialize Θ(1) as in Algorithm 1.

Fixing Θ(1), initialize γ
(1)
i , µ̃(1) and Σ̃

(1)
, using (27) and (28).

Set ρ(0) =∞ and calculate ρ(1) = −L(Θ(1))
Set t = 1.

[Perform the variational EM algorithm.]

While ρ(t−1) − ρ(t) > ε
E-step:

[You can iterate the two steps below until convergence.]

Calculate γ
(t+1)
i and D

(t+1)
γ , using (27).

Calculate µ̃(t+1) and Σ̃
(t+1)

, using (28).
M-step:

Calculate σ2(t+1), using (29).

Calculate ω(t+1) using (30).

Calculate θ
(t+1)
∗ , using (31).

Calculate ρ(t+1) = −L(Θ(t+1)) and increase t by one.
End While

We refer to this GP estimate as Jump Gaussian Process Regression with Variation EM or
shortly JGP-VEM. The initial solution of the iterative algorithm can be achieved as in the
JGP-CEM. The step-by-step of JGP-VEM is summarized in Algorithm 2.

2.5 Local Design Selection with a Linear Partitioning Function

In this section, we use toy examples to illustrate how JGP works with a linear partitioning
function, i.e., g(x,ω) = ωT [1,x] and discuss potential issues with it for motivating a higher-
order model. With the linear form, the local data is split into two parts by a linear boundary
g(x,ω) = 0. We will use several synthetic examples to show that the linear split is simple
and good enough. In particular, when a regional boundary nearing a test location is smooth
with continuous boundary derivatives, the first-order Taylor approximation to the boundary
works well, as illustrated in Figure 1.

We use five toy examples. For an effective visualization, we use a two-dimensional
rectangular domain [−0.5, 0.5]2, which is partitioned into two or more regions, and the
response function for each region is randomly drawn from an independent GP with different
constant mean functions and a square exponential covariance function parameterized by
θk = (θk1, θk2),

mk(x) = 0 or 27

c(x,x′; θk) = θk1 exp

{
− 1

θk2
(x− x′)T (x− x′)

}
.

14

Jump Gaussian Process Regression

𝑋𝑋1

𝑋𝑋2

𝑛𝑛-nearest
neighborhood
𝐷𝐷𝑛𝑛

𝒙𝒙∗
𝒙𝒙1

𝒙𝒙2
𝒙𝒙3

𝒙𝒙5

𝒙𝒙6

𝑋𝑋1𝑋𝑋3

𝑋𝑋2

𝑛𝑛-nearest
neighborhood
𝐷𝐷𝑛𝑛

𝒙𝒙∗
𝒙𝒙1

𝒙𝒙2
𝒙𝒙3

𝒙𝒙5

𝒙𝒙6

𝑔𝑔 𝒙𝒙,𝜔𝜔 = 0

(a) (b)

𝑋𝑋3

𝑔𝑔 𝒙𝒙,𝜔𝜔 = 0

Figure 1: A linear partitioning function g(x,ω) = 0 would work when (a) a test location
x∗ is deeply interior of one homogeneous region. In this case, g(x,ω) is formed such that
all local data are selected and used for a local estimate, and (b) the boundary dividing the
region of a test location x∗ and other neighboring regions are locally smooth. In that case,
the smooth boundary can be well approximated linearly at a local level.

We used θk1 = 9 and θk2 = 200, and µk ∼ Uniform({0, 27}). Both of µk and θk are
assumed unknown during the training stage, and they are estimated with training data.
For the first three examples, the domain is divided into two regions by a linear boundary in
the first synthetic example (Figure 2-(a)), by a quadratic boundary in the second example
(Figure 2-(b)), and by a triangular boundary with a sharp corner in the third example
(Figure 2-(c)). For the fourth and fifth examples, the domain is divided into more than two
regions, as illustrated in Figure 2-(d) and 2-(e). The fifth example is most challenging with
many sharp and narrow regions.

We randomly generate training datasets of different sizes (N = 600, 1200, 2500). Each
training input xi is randomly drawn from the uniform distribution over the input domain.
The noisy response variable is from the ground-truth response plus Gaussian noise with zero
mean and variance σ2. We varied σ2 over {1, 4, 9}, which correspond to the signal-to-noise
ratio, 14 decibel (dB), 8 dB and 4.4 dB respectively. The 4.4 dB is considered a very noisy
scenario. The test set consists of 2,601 ground truth responses over [51× 51] grid locations
of the input domain. We used the training set to fit the proposed local GP model and the
conventional local GP model. We choose local data using the n-nearest neighborhood for
both of the models. We tried different n values, n ∈ {25, 35, 50}.

We evaluate the fitted models at various test locations. Figures 3 and 4 show how
the partitioning function g(x,ω) and latent variables Z are estimated for the first two toy
datasets. When test locations are interior of a region and all of the n-nearest neighbors
belong to one homogeneous region, the fitted linear partitioning functions locate far outside
the n-nearest neighborhood, so all local data are used to fit JGP, which is desirable; see the
last columns of Figure 3 and Figure 4. When test locations are near regional boundaries,

15

Park

(a) Linear

-0.5 0 0.5
first input

-0.5

0

0.5

se
co

nd
 in

pu
t

(b) Round

-0.5 0 0.5

-0.5

0

0.5

(c) Sharp

-0.5 0 0.5

-0.5

0

0.5

(d) Phantom

-0.5 0 0.5

-0.5

0

0.5

(e) Star

-0.5 0 0.5

-0.5

0

0.5

Figure 2: Noisy regression functions of five toy examples on two-dimensional input domains.
The x and y axes represent the first and second inputs of the domains, and the grayscale
intensities represent the regression function values over the domains.

the linear partitioning functions are approximately tangential to the regional boundaries.
Therefore, g(x,ω) accurately splits local data into homogeneous groups.

Figures 5 and 6 show the results with the third and fourth toy examples. The third toy
example contains a non-smooth regional boundary at a sharp tip. As we expected, the JGP
with a linear partitioning function does not work perfectly when a test location is near the
sharp tip (that corresponds to the third column of Figure 5). Around the tip, the boundary
is non-differentiable, so the first-order Taylor approximation of the boundary may not work.
In such cases, a linear hyperplane is less effective in splitting local data into homogeneous
regions. The fourth toy example is a more extreme case, where a domain consists of eight
regions. Some test locations are on narrow canals of a dark region, sandwiched by two other
white regions, as illustrated in the first column of Figure 6. The local data around such
test locations may contain data points from more than two regions. A linear partitioning
function cannot effectively separate the local data. As illustrated in the first column of
Figure 6, the local data selected by JGP still contains many data points from the two white
region regions. Therefore, the JGP with a linear partitioning function would not work well
for predicting f at these test locations.

16

Jump Gaussian Process Regression

-0.5 0 0.5
x1

-0.5

0

0.5

x2

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

(a) JPG-CEM

(b) JPG-VEM

Figure 3: JGP with a linear partitioning function for the 1st toy example (σ2 = 22, n = 50).
The input locations of 50 local data around each test location are described as green boxes
for those with Ẑi = 1 and red crosses for those with Ẑi = 0.

-0.5 0 0.5
x1

-0.5

0

0.5

x2

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

(a) JPG-CEM

(b) JPG-VEM

Figure 4: JGP with a linear partitioning function for the 2nd toy example (σ2 = 22, n = 50).
The input locations of 50 local data around each test location are described as green boxes
for those with Ẑi = 1 and red crosses for those with Ẑi = 0.

17

Park

-0.5 0 0.5
x1

-0.5

0

0.5

x2

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

(a) JPG-CEM

(b) JPG-VEM

Figure 5: JGP with a linear partitioning function for the 3rd toy example (σ2 = 22, n = 50).
The input locations of 50 local data around each test location are described as green boxes
for those with Ẑi = 1 and red crosses for those with Ẑi = 0.

-0.5 0 0.5
x1

-0.5

0

0.5

x2

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

(a) JPG-CEM

(b) JPG-VEM

Figure 6: JGP with a linear partitioning function for the 4th toy example (σ2 = 22, n = 50).
The input locations of 50 local data around each test location are described as green boxes
for those with Ẑi = 1 and red crosses for those with Ẑi = 0.

18

Jump Gaussian Process Regression

Figure 7 presents the JGP predictions at test locations over a dense grid of [−0.5, 0.5]×
[−0.5, 0.5] for the first four toy examples. The predictions for the fourth toy example have
some discrepancies from the ground truth. In particular, the discrepancy was more severe
in test locations in a dark region sandwiched by inner and outer white regions. That is
because a simple linear partitioning function cannot split local data around these locations
into homogeneous regions effectively, as we illustrated before in Figure 6. To resolve this
issue, one needs to use a partitioning function composed of higher-order polynomial terms.
We will explore this possibility in the next section. We also have comparisons of two JGP
variants: JGP-CEM (top panels) versus JGP-VEM (bottom panels). The predictions from
JGP-CEM are more accurate. Later, in Section 3.1, we will show that it is attributed to
difference in the Ziestimates from the two variants

(a) (b) (c) (d)

Figure 7: JGP estimates of f with a linear partitioning function. The panels show the
JGP estimates at 2,601 grid locations over [−0.5, 0.5]× [−0.5, 0.5]. The first row shows the
results from JGP-CEM, in contrast with the second row from JGP-VEM. Here we used the
setting n = 50 and σ2 = 4.

2.6 Local Data Selection with a Nonlinear Partitioning Function

As we have shown in Section 2.5, the JGP with a linear partitioning function is not good
enough for some complicated scenarios. Here we investigate the JGP with a nonlinear form
of a partitioning function,

g(x,ω) = ωT [1,ψ(x)].

Given a small number of local data, the number of the basis functions should not be very
large. A practical choice for the nonlinear basis ψ(x) could be quadratic polynomial func-
tions or cubic polynomial functions. Here we present a numerical study with quadratic
polynomial basis functions, comprising

1, {xi, i = 1, . . . , p}, {xixj , i = 1, . . . , p, j = 1, . . . , p},

19

Park

where xi is the ith dimension of a p-dimensional input vector x. We found that the quadratic
basis is flexible enough for most tested cases.

Figure 8 shows how quadratic g(x,ω) are Z are estimated for various test locations
in the fourth toy example. JGP with a linear g(x,ω) was not very successful for the toy
example. The quadratic g(x,ω) works well for all of the test cases of the fourth toy example.
As shown in Figure 8, the fitted quadratic g(x,ω) form curvy boundaries that effectively
split local data into homogeneous regions. When linear splits are good enough, the fitted
quadratic g(x,ω) becomes closer to linear boundaries; see the second panel of Figure 8.
This means that the partition functions from JGP do not overfit.

-0.5 0 0.5
x1

-0.5

0

0.5

x2

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

(a) JPG-CEM

(b) JPG-VEM

Figure 8: JGP with a quadratic partitioning function for the 4th toy example (σ2 = 22,
n = 50). The input locations of 50 local data around each test location are described as
green boxes for those with Ẑi = 1 and red crosses for those with Ẑi = 0.

We also tested the quadratic g(x,ω) for a more complicated case with the fifth toy
example, where a domain is still [−0.5, 0.5]2 and is partitioned to several regions as shown
in Figure 9. There are many thin regions with sharp corners. We tested JGP with a
quadratic g(x,ω) for various test locations of the toy example. As shown in the first column
of Figure 9, a quadratic partitioning function works well for thin white regions. The second
and fourth columns of the figure show that the quadratic model also works well on sharp
corners. We may have more complicated scenarios, but we believe what we emulated may
be more complicated than what we see from real datasets. For most real cases, a quadratic
partitioning function would be good enough.

Figure 10 shows the JGP estimates (with quadratic g(x,ω)) of f at 2,601 grid locations
over [−0.5, 0.5]× [−0.5, 0.5] for the fourth and fifth toy examples. The estimates are compa-
rable to the ground truth for the two examples except for a few test locations around sharp

20

Jump Gaussian Process Regression

-0.5 0 0.5
x1

-0.5

0

0.5

x2

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5
-0.5 0 0.5

-0.5

0

0.5

(a) JPG-CEM

(b) JPG-VEM

Figure 9: JGP with a quadratic partitioning function for the 5th toy example (σ2 = 4,
n = 50). The input locations of 50 local data around each test location are described as
green boxes for those with Ẑi = 1 and red crosses for those with Ẑi = 0.

(a) JGP-CEM with the 4th toy example (b) JGP-VEM with the 4th toy example

(c) JGP-CEM with the 5th toy example (d) JGP-VEM with the 5th toy example

Figure 10: JGP estimates with a quadratic partitioning function. The four panels show the
JGP estimates of f at 2,601 grid locations over [−0.5, 0.5] × [−0.5, 0.5]. Here we used the
setting n = 50 and σ2 = 4.

21

Park

corners in the star-shape frame of the fifth toy example. We also have comparisons of two
JGP variants: JGP-CEM (top panels) versus JGP-VEM (bottom panels). The predictions
from JGP-CEM are more accurate. Later, in Section 3.1, we will show that it is attributed
to difference in the Ziestimates from the two variants. Compared to the conventional local
GP predictors, the prediction results are much better. We will provide some quantitative
comparison later in Section 3 to support this argument.

Remark 2 Consideration of Higher-order Partitioning Function. One may per-
haps consider higher-order models for a partitioning function g(x,ω) to handle more com-
plex scenarios, e.g., cubic polynomial functions and nonlinear functions. Extending the pro-
posed approach for higher-order partitioning functions is straightforward as changing basis
functions ψ(x). We still recommend the quadratic model because it performed satisfactorily
for all our benchmark examples in Sections 3 and 5. In the simulated benchmark datasets
of Section 3, individual regional boundaries are various, from linear (the first toy example),
quadratic (second and fourth toy examples), and piecewise linear (third and fifth toy exam-
ples). In addition, a composition of regional boundaries makes more complicated patterns
locally, e.g., around the eyes of phantoms in the fourth toy example or around sharp corners
of a star shell in the fifth toy example. The real datasets used in Section 5 have simpler
regional boundaries than the simulated scenarios. The Taylor series approximation the-
ory supports the sufficiency of a quadratic model. A high-order polynomial boundary (even
non-polynomial smooth boundaries) can be locally approximated by a quadratic polynomial
boundary reasonably well up to some degrees.

3. Performance Analysis of JGP with 2D Toy Examples

This section uses various simulated examples to illustrate how the proposed JGP works
compared to the conventional local GP model. We use the five toy examples in Figure 2.
To simulate various scenarios, we varied the training data size N over {600, 1200, 2500}.
Each training input xi is randomly drawn from the uniform distribution over the input
domain. We also varied the noise σ2 over {1, 4, 9}, which correspond to the signal-to-noise
ratio, 14 decibel (dB), 8 dB and 4.4 dB respectively. For a model fit, we use the n-nearest
neighborhood as local data, where the value of n varies over {25, 35, 50}. We have 27
simulation configurations with different values of the three simulation inputs. For each
configuration, we performed ten replicated experiments. The fitted models are evaluated at
test sites of 2,601 grid locations over [−0.5, 0.5]× [−0.5, 0.5].

3.1 Accuracy of Zi Estimates

Per Theorem 1, the bias of the JGP estimate is highly dependent on the accuracy of Zi
estimates. In this section, we evaluate the estimation accuracy for the simulated configu-
rations. We match the estimates with the Zi values used for generating training data. We
measure the percent of correct matches.

Figure 11 shows the estimation accuracy for five toy examples. For the first three toy
examples with simple regional boundaries, the JGP-CEM and JGP-VEM work comparably.
The JGP-VEM is only marginally better. For the other two with more complex regional
boundaries, the JGP-CEM has shown better accuracy. The JGP-CEM with a quadratic

22

Jump Gaussian Process Regression

partitioning function provides more than 95% accuracy for most test scenarios. There is a
relatively small variation in the percent due to noise levels and data sizes. From now on,
we investigate only the JGP-CEM model numerically as a suggested JGP model. We use
shortnamings JGP-L and JGP-Q to represent JGP-CEM with a linear partitioning function
and JGP-CEM with a quadratic partitioning function, respectively.

JGP-CEM(L) JGP-CEM(Q) JGP-VEM(L) JGP-VEM(Q)
80

85

90

95

100

A
cc

ur
ac

y
(%

)

(a) Linear

JGP-CEM(L) JGP-CEM(Q) JGP-VEM(L) JGP-VEM(Q)
80

85

90

95

100

A
cc

ur
ac

y
(%

)

(b) Round

JGP-CEM(L) JGP-CEM(Q) JGP-VEM(L) JGP-VEM(Q)
80

85

90

95

100

A
cc

ur
ac

y
(%

)

(c) Sharp

JGP-CEM(L) JGP-CEM(Q) JGP-VEM(L) JGP-VEM(Q)
80

85

90

95

100
A

cc
ur

ac
y

(%
)

(d) Phantom

JGP-CEM(L) JGP-CEM(Q) JGP-VEM(L) JGP-VEM(Q)
80

85

90

95

100

A
cc

ur
ac

y
(%

)

(e) Star

Figure 11: Accuracy of Zi estimates for five toy examples with various simulation config-
urations. The ’(L)’ and ’(Q)’ in the x labels represent linear and quadratic partitioning
functions, respectively.

Figure 12 shows the trend of the estimation accuracy over training data sizes. We can
see the upward trend of the accuracy as N increases for all test scenarios. This desirable
numerical result shows numerically statistical consistency of the proposed estimator.

23

Park

N=600 N=1200 N=2500
80

85

90

95

100
A

cc
ur

ac
y

(%
)

N=600 N=1200 N=2500
80

85

90

95

100

A
cc

ur
ac

y
(%

)
Figure 12: Accuracy of Zi estimates for different training data sizes N . Here we illustrate
the accuracy for JGP-Q, i.e., JGP-CEM with a quadratic partitioning function.

3.2 Prediction Accuracy of JGP Estimates

We use the training data to fit the proposed JGP and the conventional local GP. For the
model fit, we use the n-nearest neighborhood as local data, where the value of n varies
over {25, 35, 50}. The fitted models are evaluated at test sites of 2,601 grid locations over
[−0.5, 0.5]× [−0.5, 0.5]. We compare the evaluations with the ground truth response values
in terms of three performance metrics: the mean square prediction error (MSE), the negative
log posterior density (NLPD), and the average 0− 1 loss

MSE =
1

Nt

Nt∑
t=1

(ŷt − yt)2

NLPD =
1

Nt

Nt∑
t=1

− log φ

(
ŷt − yt
st

)
,

(34)

where Nt is the number of the test sites, ŷt and yt are the posterior predictive mean estimate
and the ground truth of f at the tth test site respectively, st is the posterior predictive
standard deviation estimate at the tth test site, and φ(·) is a standard normal density
function. The MSE measures the overall error of the posterior mean estimates. The NLPD
is the negative logarithm of the posterior predictive density evaluated at test data yt, which
quantifies how the posterior predictive distributions fit the test data.

We expect the performance gap between JGP and the local GP to be substantial at test
locations near boundaries dividing homogeneous regions. Therefore, we report the perfor-
mance metrics for two separate groups of test locations: a group of test locations within a
short distance (0.05) from the nearest region boundary and a group of test locations outside
the distance. Figure 13 shows the summary statistics of the performance metrics for the first
group. For the first three toy examples, the MSE and NLPD values of JGP-L and JGP-Q

24

Jump Gaussian Process Regression

Local GP JGP-L JGP-Q

50

100

150

M
S

E

(a) Linear

Local GP JGP-L JGP-Q

2

4

6

N
LP

D

Local GP JGP-L JGP-Q

50

100

150

M
S

E

(b) Round

Local GP JGP-L JGP-Q

2

4

6

N
LP

D

Local GP JGP-L JGP-Q

50

100

150

M
S

E

(c) Sharp

Local GP JGP-L JGP-Q

2

4

6

N
LP

D

Local GP JGP-L JGP-Q

50

100

150

M
S

E

(d) Phantom

Local GP JGP-L JGP-Q

2

4

6

N
LP

D

Local GP JGP-L JGP-Q

50

100

150

M
S

E

(e) Star

Local GP JGP-L JGP-Q

2

4

6

N
LP

D

Figure 13: MSE and NLPD metrics of local GP, JGP-CEM with a linear partitioning
function (JGP-L), and JGP-CEM with a quadratic partitioning function (JGP-Q) at test
locations near regional boundaries for five toy examples. In the box plots above, the red
center mark, top-side, and bottom-side of a box represent the median, 25th, and 75th
percentiles of the metrics over 27 simulated scenarios with ten replicated experiments. The
upper and lower black bars represent the median ± 1.5 (75th percentile - 25th percentile).
Red crosses represent the outliers outside the upper and lower bars.

25

Park

Local GP JGP-L JGP-Q

10

20

30

40

50

M
S

E

(a) Linear

Local GP JGP-L JGP-Q

2

4

6

8

10

N
LP

D

Local GP JGP-L JGP-Q

10

20

30

40

50

M
S

E

(b) Round

Local GP JGP-L JGP-Q

1.5

2

2.5

3

N
LP

D

Local GP JGP-L JGP-Q

10

20

30

40

50

M
S

E

(c) Sharp

Local GP JGP-L JGP-Q

2

4

6

8

10
N

LP
D

Local GP JGP-L JGP-Q

10

20

30

40

50

M
S

E

(d) Phantom

Local GP JGP-L JGP-Q

5

10

15

20

N
LP

D

Local GP JGP-L JGP-Q

10

20

30

40

50

M
S

E

(e) Star

Local GP JGP-L JGP-Q
0

50

100

N
LP

D

Figure 14: MSE and NLPD metrics of local GP, JGP-CEM with a linear partitioning
function (JGP-L), and JGP-CEM with a quadratic partitioning function (JGP-Q) at test
locations interior homogeneous regions for five toy examples. In the box plots above, the
red center mark, top-side, and bottom-side of a box represent the median, 25th, and 75th
percentiles of the metrics over 27 simulated scenarios with ten replicated experiments. The
upper and lower black bars represent the median ± 1.5 (75th percentile - 25th percentile).
Red crosses represent the outliers outside the upper and lower bars.

26

Jump Gaussian Process Regression

are significantly better than those of the conventional local GP. The JGP-Q and JGP-L are
comparable for the first three examples, while the MSE of JGP-Q is twice better than the
MSE of JGP-L for the last two examples. The results clearly show that our proposed local
data partitioning is effective for piecewise regression, and a quadratic partitioning function
works better than a linear partitioning function for complicated scenarios by a significant
performance gain.

We also report the performance metrics for test locations interior homogeneous regions
(distance from the nearest regional boundary more than 0.05) to look at how the JGP
estimates compare to the conventional local GP estimates for interior test locations. Figure
14 shows the summary statistics of the performance metrics. All the three compared GP
methods perform comparably for all the five toy examples. That implies that the JGP
performs like the conventional local GP when test locations are interior one homogeneous
region and local data only contain data from the same region. As we illustrated in Figure 5
(first panel) and Figure 9 (fourth panel), a partitioning function g(x,ω) is formed to select
all local data for these interior test points. Therefore, the JGP works as the conventional
local GP for these test locations. The result is desirable because the JGP does not take out
some useful local data erroneously.

3.3 Performance versus noise level σ2

We report how the JGP and local GP work for different noise levels. We only present the
trend of MSE versus σ2, because the trend of NLPD is similar. The trends of MSE are
similar for the first to third toy examples, and they are similar for the fourth and fifth
examples. Figure 15 shows the trends of MSE for two representative toy examples: the
second and fourth ones. For the second toy example, the average MSE values of the JGP
estimates are comparable to the noise level σ2, which are the lowest MSE achievable. The
local GP’s MSE values are significantly higher than σ2. For the fourth toy example, the
MSE levels of the JGP with linear g(x,ω) are significantly elevated. That is because a
linear partitioning function is inflexible to split local data into homogeneous regions for
this example, as we illustrated in Figure 6 (first three panels). When we use a quadratic
partitioning function, the MSE levels are reduced comparably to the noise level σ2.

3.4 Effect of local data size n and training data size N

We also investigate the effect of training data size N and local data size n on JGP estimates
to make recommendations on the choice of n. We use JGP-CEM with quadratic g(x,ω)
for the investigation. Figure 16 shows trend of MSE as n and N change. According to
the medians and variances of MSE, the choice of n between 15 and 35 achieves the best
performance for N = 600 and N = 1200. Smaller or larger choices would increase MSE.
When data are very dense, as in N = 2500 (for which the distance from a test location
to the closest training data point is only 0.02), the MSE tends to keep decreasing as n
decreases further. However, if n goes below 15, the variance of MSE increases for most
tested scenarios. The choice n = 25 balances the MSE and variances, so our suggestion
based on the numerical study is n = 25.

27

Park

M
S

E
(a) Local GP: 2nd Toy Data (b) Linear JGP: 2nd Toy Data (c) Quad JGP: 2nd Toy Data

M
S

E

(d) Local GP: 4th Toy Data (e) Linear JGP: 4th Toy Data (f) Quad JGP: 4th Toy Data

Figure 15: Effect of noise level σ2 on Local GP, JGP-L, and JGP-Q at test locations near
regional boundaries for the second and fourth toy datasets.

M
S

E

(a) N=600 (b) N=1200 (c) N=2500

Figure 16: Effect of training data size N and local data size n on the MSE of JGP-Q. The
trends are similar for JGP-L.

4. Performance Analysis of JGP with Higher Input Dimensions

We extend our simulated scenarios to study how JGP performs with higher input dimen-
sions. We consider a d-dimensional input domain [−0.5, 0.5]d, and the domain is partitioned

28

Jump Gaussian Process Regression

into multiple domains by (d+ 1) partitioning functions,

g0(x) =

d∑
i=1

x2
i − 0.42

gj(x) =
d∑
i=1

x2
i − x2

j + (xj + rj0.5)2 − 0.32 for j = 1, . . . , d.

where xi represents the ith coordinate of an input vector x, and rj is randomly sampled
with 50% for +1 and 50% for -1 for each j = 1, . . . , d. The input domain can be bisected by
each gj into Xj,+ = {x ∈ [−0.5, 0.5]d : gj(x) ≥ 0} and Xj,− = {x ∈ [−0.5, 0.5]d : gj(x) < 0}.
A combination of the bisections determines the domain partitioning. The region index for
an input location x is determined by

region(x) =
d∑
j=0

2jIXj,+(x).

In total, N training inputs, {xi, i = 1, . . . , N}, are randomly drawn uniformly over
the input domain, and the corresponding responses are randomly drawn from GP with
region dependent means and co variances. Responses from region k are randomly sampled
from a GP with a constant mean function µk and a square exponential covariance function
parameterized by θk = (θk1, θk2),

c(x,x′; θk) = θk1 exp

{
− 1

θk2
(x− x′)T (x− x′)

}
. (35)

-0.5 0 0.5
x1

-0.5

0

0.5

x2

-0.5 0 0.5
x1

-0.5

0

0.5

x2

Figure 17: Two random realizations of simulated response surfaces on a 2D domain
[−0.5, 0.5]2 are presented here for illustration purposes. We also simulated similar datasets
for higher dimensional domains.

29

Park

Dimension (d) JGP-L JGP-Q JGP-Q / JGP-L

2 4.0179 3.4779 1.15
5 1234.1183 935.1615 1.31

Table 1: MSE for a test case with two regions separated by a linear regional boundary,
x1 + . . .+ xd = 0. We applied N = 10, 000, and n = 25. The results reported here are the
averages over ten replicated experiments.

The mean µk is randomly selected from a uniform distribution over a set {−13.5k,+13.5k},
and we used θk1 = 9 and θk2 = 200. Both of µk and θk are assumed unknown during
training, and they are estimated with training data. The prior mean function values for
different regions are quite distinct so create discontinuities across regions. We added zero-
mean Gaussian noises with variance 4 to the sampled responses for emulating noisy data. We
also generated Nt test data similarly but without noise additions. The test input locations
are chosen within 0.05 distance from regional boundaries, because we realized from Section
3 that the performance of JGP and local GP are comparable for test locations deeply inside
homogeneous regions.

We varied the input dimension d from 2 to 10 and the training data size N over
{1000, 3000, 5000, 10000, 20000, 30000}, while we fixed Nt = 150 and chose the local neigh-
borhood size n = 25, as suggested from our simulation study in Section 3. We have 54
different configurations with different choices of d and N . For each configuration, we run
the randomized experiments 100 times for replicated experiments. Figure 18 shows the
summary statistics of the results with the medians, quantiles of the MSE values for differ-
ent N and d. Figure 19 presents how the median MSE values trend for different N and d.
The JGP’s MSE trends down as N increases and d decreases. As shown in Figure 19(b),
the median MSE values are proportional to Nd. This JGP’s MSE trend is very similar to
the MSE trend of a stationary GP for stationary data (Park et al., 2022). That is, JGP
provides a good solution to high dimensional piecewise regression problems.

We also acknowledge the issue of overfitting with JGP-Q for high-dimensional cases.
The JGP-Q model has d2 + d + 1 degrees of freedom. As d increases, the degrees increase
significantly relative to the local data size n. It can cause a model overfit. To illustrate this
issue, we carefully designed a simulated experiment with the d-dimensional input domain
[−0.5, 0.5]d, and the domain is partitioned into two regions by a linear boundary

∑d
i=1 xi =

0. The response surface for the first region is sampled from the Gaussian process with
mean -13.5 and covariance function (35), while the one for the second region is from the
Gaussian process with mean 13.5 and covariance function (35). We set the training data
size N = 10, 000 and the local neighborhood size n = 5(d2 + d+ 1). We learned JGP-L and
JGP-Q with the training dataset, and the trained models are tested and compared against
a test dataset of size 200. Table 1 compares the test MSE for JGP-L and JGP-Q. As seen
in the table, the MSE of JGP-Q degrades quicker than JGP-L, which illustrates the overfit
issue with JGP-Q. The experiment result suggests the use of JGP-L for high dimensional
cases (d > 3), while JGP-Q would serve better low dimensional cases with complex regional
boundaries.

30

Jump Gaussian Process Regression

N=1k N= 3k N = 5k N = 10k N=20k N=30k

0

100

200

300

400

500
M

S
E

(a) d = 2

N=1k N= 3k N = 5k N = 10k N=20k N=30k

0

500

1000

1500

2000

2500

3000

3500

4000

M
S

E

(b) d = 4

N=1k N= 3k N = 5k N = 10k N=20k N=30k

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

M
S

E

(c) d = 6

N=1k N= 3k N = 5k N = 10k N=20k N=30k

0

2000

4000

6000

8000

10000

12000

14000

16000

M
S

E

(d) d = 8

Figure 18: Effect of training data size N and input dimensions d on JGP-Q.

2 4 6 8 10
d

0

1000

2000

3000

4000

5000

6000

M
S

E

(a) MSE for different N and d

N= 3k
N = 5k
N = 10k
N=20k
N=30k

100 1050

Nd

100

101

102

103

104

105

M
S

E

(b) MSE versus Nd

Fitted Trend Line
Experimental Data

Figure 19: MSE of JGP-Q versus training data size N and input dimensions d.

31

Park

5. Real Data Study

We perform a numerical comparison of the proposed JGP to three benchmarks, local GP,
laGP with MSPE criterion (Gramacy and Apley, 2015), Bayesian Treed GP (Gramacy
and Lee, 2008, TGP) and the Dynamic Tree Model (Taddy et al., 2011, DynaTree). We
use the R implementations of laGP, TGP and DynaTree from the authors. We use three
real datasets. The first dataset contains 10,153 corrosion sensor readings collected under
various environmental conditions comprising air temperature, surface temperature, relative
humidity, and effective humidity. The sensor readings measure a corrosion current flowing
on a metal specimen, which has shown abrupt changes around unknown threshold conditions
(Park et al., 2022). We randomly split the dataset into 90% training dataset and 10% test
dataset. We use the training dataset to fit the proposed model and the three benchmarks,
and we evaluate the trained models using the test dataset in terms of MSE. The second
dataset contains a compressive sensing (CS) result of nanoparticle agglomerates. The inputs
are (x, y) coordinates of sensing locations, and the corresponding responses are the electron
microscope intensities at the input locations. The microscope intensities suddenly jump
around the boundaries between nanoparticle agglomerates and substrate materials. There
are 17,519 sensing locations selected by an adaptive sensing algorithm (Park et al., 2021).
We randomly split the data points into 90% training data and 10% test data. We use them
for training and testing the compared methods in the same manner as the first dataset for
evaluating the MSE. The third dataset contains 52 carbon nanotube yields collected for
52 different carbon nanotube growth conditions described by a reaction temperature and
a log ratio of two reactants. Nanotube yields are almost zero for some growth conditions,
and they suddenly jump around the conditions where chemical catalysts are activated. The
conditions vary significantly depending on the reaction temperature. Since the dataset size
is quite small, we use a leave-one-out cross-validation scheme instead of the conventional
train and test data split. We report the average leave-one-out cross-validation error.

Dataset N d JGP-L JGP-Q Local GP laGP TGP DynaTree

Corrosion 10153 4 0.623 0.636 0.972 0.983 1.157 1.188
Comp. Sensing 17519 2 0.150 0.156 0.195 1.289 0.224 2.711

Nanotube 52 2 0.894 1.052 1.540 1.109 1.013 1.062

Table 2: MSE Comparison of the proposed JGP with a linear partitioning function (JGP-L),
JGP with a quadratic partitioning function (JGP-Q), Local GP, laGP with MSPE criterion,
Bayesian Treed GP (TGP) and Dynamic Treed Regression (DynaTree) for three benchmark
datasets.

Table 2 summarizes the numerical comparison. Among the six compared methods, the
two treed methods (TGP and DynaTree) use global-scale domain partitioning schemes,
either a treed partitioning or a tessellation. The JGP-L and JGP-Q use local-scale domain
partitioning schemes. The Local GP and the laGP do not perform any data partitioning.
As shown in the summary table, the MSEs of the localized methods are 12%-50% smaller
than those of the global-scaled approaches. The differences signify as the training data
size N increases. We also note that the two global-scale approaches are not better than
the local GP for the first two benchmark cases. As we discussed in the introduction and

32

Jump Gaussian Process Regression

literature review, the global-scale domain partitioning schemes adopted by the two global
approaches are too restrictive. From the two benchmark datasets, we observe that the
response jumps and discontinuity occur over curvy and complex boundaries, which are not
effectively modeled by the restrictive global-scale partitioning. The wrong partitioning is the
main cause of their prediction inaccuracies around regional boundaries, as also illustrated
in Figure 20.

(a) Groundtruth

-1 0 1

x1

-1

-0.5

0

0.5

1

1.5

x2

(b) JGP-L

-1 0 1

-1

-0.5

0

0.5

1

1.5

(c) TGP

-1 0 1

-1

-0.5

0

0.5

1

1.5

(d) DynaTree

-1 0 1

-1

-0.5

0

0.5

1

1.5

Figure 20: Predictive means of three compared methods for the Compressive Sensing
dataset. The test locations are selected densely over a 2D image grid.

Figure 20 illustrates the predictive means of the JGP-L, TGP, and DynaTree for the
Compressive Sensing dataset. This dataset has a two-dimensional input domain, so it is
easy to visualize the outcomes. The dataset comes with a full-scan microscope image data.
The training data for this example corresponds to a small subset (about 5%) of the full-
scan data. We select the test locations over the 2D grid locations of the full-scan data,
so the prediction over the test locations would serve as an estimate of the full-scan data.
We can cross-check the estimation with the full-scan data for visual inspection. As seen in
Figure 20(b), the prediction from JGP-L is visually comparable to the ground truth. The

33

Park

prediction from TGP is also reasonable, but the predictions around regional boundaries are
inaccurate, as evidenced by the visually smoothed response jumps around the boundaries.
That is mainly because the TGP could not properly partition the input domain; from the
figure, the TGP partitions the 2D domain into four regions along the first input dimension.
The DynaTree did not work very well for this case. It generates many tiny partitions around
the first input dimension.

The ineffectiveness of the global partitioning motivated us to develop our proposed JGP
method. Among the three localized approaches, the JGP-L and JGP-Q have a significant
performance gain over the Local GP by 29%-42% percent. It shows that the local data
partitioning idea of the JGP is effective. The laGP approach is comparable to the local
GP approach. On the other hand, for the third benchmark case, the two global approaches
outperform the Local GP significantly. The result is mainly due to a small training data
size. We should admit that we cannot collect more than 50 data points due to experimental
costs. I believe that the same applies to a majority of experimental datasets. The proposed
JGP is still better than the global approaches significantly. This example shows that the
proposed JGP also works for small N cases.

One last point noted is that the JGP-L is slightly better than the JGP-Q for all three
benchmarks. The boundaries dividing homogeneous regions in the real datasets may be less
complex than the fourth and fifth toy examples we used for the simulation study, so a linear
partitioning function of the JGP-L would suffice to analyze many real datasets. We expect
a quadratic partitioning function of JGP-Q be just sufficient for most real scenarios.

6. Conclusion

There are many regression problems where the underlying regression functions are piece-
wise continuous, i.e., continuous within regions of a domain and discontinuous at regional
boundaries. We proposed a Jump Gaussian process (JGP) model that accurately estimates
an unknown piecewise continuous regression function. The proposed approach uses the
local data neighboring to a test location to predict the unknown regression function value
at the test location. Unlike the conventional local GP approach, the proposed approach
considers the possibilities of the local data being from different continuous regions. In the
proposed approach, the local data is partitioned into pieces by a local data partitioning
function. Only the piece of the local data belonging to the same region as the test location
is used for the regression estimate. We proposed a parametric form of the local partitioning
function and developed a likelihood-maximization algorithm to optimize the parameters
of the partitioning function jointly with other GP hyperparameters. The local data split
idea has two significant advantages over the existing piecewise GP models that partition
the entire input domain globally in pieces and pose independent regression functions for
different areas of the input domain. First, the local split is simpler than the global split.
While continuous regions divided by complex and curvy regional boundaries are difficult
to model at a global level, the complex boundaries can be effectively approximated at a
local level by simple linear or polynomial boundaries. Therefore, simple partitioning mod-
els can perform the local data split effectively. Second, due to the simplicity, the model
estimation of the proposed GP approach is simpler and faster than the approaches based
on the global domain split. We showed the two advantages using simulated scenarios and

34

Jump Gaussian Process Regression

three real benchmark datasets. Piecewise continuous regression modeling finds many other
applications, e.g., experimental analysis of material behaviors with sudden regime changes,
spatial data analysis with spatial heterogeneity, and social study that naturally handles sur-
vey data with different heterogeneity. The proposed JGP approach significantly advances a
study of regression modeling and analysis with the critical applications to these engineering
problems.

Acknowledgment

We acknowledge support for this work from the Air Force Office of Scientific Research
(FA9550-18-1-0144) and the National Science Foundation (NSF-2152655/NSF-2152679).

References

Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent type
methods. SIAM Journal on Optimization, 23(4):2037–2060, 2013.

Christopher M Bishop. Pattern Recognition and Machine Learning. Springer Science and
Business Media, New York, NY, 2006.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, Cambridge UK, 2004.

Peter Bryant and John A Williamson. Asymptotic behaviour of classification maximum
likelihood estimates. Biometrika, 65(2):273–281, 1978.

Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, and Ningshan Zhang.
Region-based active learning. In Proceedings of the Twenty-Second International Confer-
ence on Artificial Intelligence and Statistics, volume 89, pages 2801–2809, Naha, Okinawa,
Japan, 2019. PMLR.

Irene Gijbels, Alexandre Lambert, and Peihua Qiu. Edge-preserving image denoising and es-
timation of discontinuous surfaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(7):1075–1087, 2006.

Thong Ngee Goh and Min Xie. Statistical control of a six sigma process. Quality Engineer-
ing, 15(4):587–592, 2003.

Robert B Gramacy and Daniel W Apley. Local Gaussian process approximation for large
computer experiments. Journal of Computational and Graphical Statistics, 24(2):561–578,
2015.

Robert B Gramacy and Herbert K H Lee. Bayesian treed Gaussian process models with an
application to computer modeling. Journal of the American Statistical Association, 103
(483):1119–1130, 2008.

Maya R Gupta and Yihua Chen. Theory and use of the EM algorithm. Foundations and
Trends in Signal Processing, 4(3):223–296, 2010.

35

Park

Matthew J Heaton, William F Christensen, and Maria A Terres. Nonstationary Gaussian
process models using spatial hierarchical clustering from finite differences. Technometrics,
59(1):93–101, 2017.

Yicheng Kang, Xiaodong Gong, Jiti Gao, and Peihua Qiu. Errors-in-variables jump regres-
sion using local clustering. Statistics in Medicine, 38(19):3642–3655, 2019.

Yicheng Kang, Yueyong Shi, Yuling Jiao, Wendong Li, and Dongdong Xiang. Fitting jump
additive models. Computational Statistics & Data Analysis, 162:107266, 2021.

Hyoung-Moon Kim, Bani K Mallick, and CC Holmes. Analyzing nonstationary spatial data
using piecewise Gaussian processes. Journal of the American Statistical Association, 100
(470):653–668, 2005.

Bledar A. Konomi, Huiyan Sang, and Bani K. Mallick. Adaptive Bayesian nonstationary
modeling for large spatial datasets using covariance approximations. Journal of Compu-
tational and Graphical Statistics, 23(3):802–829, 2014.

Richard A Levine and George Casella. Implementations of the Monte Carlo EM algorithm.
Journal of Computational and Graphical Statistics, 10(3):422–439, 2001.

Z Luo, Huiyan Sang, and Bani Mallick. A Bayesian contiguous partitioning method for
learning clustered latent variables. Journal of Machine Learning Research, 22(37):1–52,
2021.

Matthew L Malloy and Robert D Nowak. Near-optimal adaptive compressed sensing. IEEE
Transactions on Information Theory, 60(7):4001–4012, 2014.

Rongji Mu, Lixiang Dai, and Jin Xu. Sequential design for response surface model fit
in computer experiments using derivative information. Communications in Statistics-
Simulation and Computation, 46(2):1148–1155, 2017.

Chiwoo Park and Daniel W Apley. Patchwork kriging for large-scale Gaussian process
regression. Journal of Machine Learning Research, 19(7):1–43, 2018.

Chiwoo Park and Jianhua Z. Huang. Efficient computation of Gaussian process regression
for large spatial data sets by patching local Gaussian processes. Journal of Machine
Learning Research, 17(174):1–29, 2016.

Chiwoo Park, Peihua Qiu, Jennifer Carpena-Núñez, Rahul Rao, Michael Susner, and Benji
Maruyama. Sequential adaptive design for jump regression estimation. IISE Transactions,
0(0):1–18, 2021. doi: 10.1080/24725854.2021.1988770.

Chiwoo Park, David J. Borth, Nicholas S. Wilson, and Chad N. Hunter. Variable selection
for Gaussian process regression through a sparse projection. IISE Transactions, 54(7):
699–712, 2022.

Christopher A Pope, John Paul Gosling, Stuart Barber, Jill S Johnson, Takanobu Yam-
aguchi, Graham Feingold, and Paul G Blackwell. Gaussian process modeling of het-
erogeneity and discontinuities using Voronoi tessellations. Technometrics, 63(1):53–63,
2021.

36

Jump Gaussian Process Regression

Peihua Qiu. Jump-preserving surface reconstruction from noisy data. Annals of the Institute
of Statistical Mathematics, 61(3):715–751, 2009.

Carl E Rasmussen and Christopher K.I. Williams. Gaussian Processes for Machine Learn-
ing. The MIT Press, Cambridge, MA, 2006.

Paul D Sampson and Peter Guttorp. Nonparametric estimation of nonstationary spatial
covariance structure. Journal of the American Statistical Association, 87(417):108–119,
1992.

Matthew A Taddy, Robert B Gramacy, and Nicholas G Polson. Dynamic trees for learning
and design. Journal of the American Statistical Association, 106(493):109–123, 2011.

Judith D Toms and Mary L Lesperance. Piecewise regression: a tool for identifying ecolog-
ical thresholds. Ecology, 84(8):2034–2041, 2003.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer Science & Business
Media, New York, NY, 2013.

37

	Introduction
	Jump Gaussian Process (JGP)
	Limitation of the Conventional Local GP in Estimating the model (1)
	Jump GP: New GP Estimate with Local Data Selection
	JGP-CEM: Classification EM Inference for Jump GP
	JGP-VEM: Variational EM Inference for Jump GP
	Local Design Selection with a Linear Partitioning Function
	Local Data Selection with a Nonlinear Partitioning Function

	Performance Analysis of JGP with 2D Toy Examples
	Accuracy of Zi Estimates
	Prediction Accuracy of JGP Estimates
	Performance versus noise level 2
	Effect of local data size n and training data size N

	Performance Analysis of JGP with Higher Input Dimensions
	Real Data Study
	Conclusion

