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Abstract
There has been a surge of works bridging MCMC sampling and optimization, with a specific
focus on translating non-asymptotic convergence guarantees for optimization problems
into the analysis of Langevin algorithms in MCMC sampling. A conspicuous distinction
between the convergence analysis of Langevin sampling and that of optimization is that
all known convergence rates for Langevin algorithms depend on the dimensionality of the
problem, whereas the convergence rates for optimization are dimension-free for convex
problems. Whether a dimension independent convergence rate can be achieved by the
Langevin algorithm is thus a long-standing open problem. This paper provides an affirmative
answer to this problem for the case of either Lipschitz or smooth convex functions with
normal priors. By viewing Langevin algorithm as composite optimization, we develop a new
analysis technique that leads to dimension independent convergence rates for such problems.
Keywords: (Stochastic gradient) Langevin algorithm, convergence rates, Markov chain
Monte Carlo, composite optimization, stochastic optimization

1. Introduction

Two of the major themes in machine learning are point prediction and uncertainty quantifica-
tion. Computationally, they manifest in two types of algorithms: optimization and Markov
chain Monte Carlo (MCMC). While both strategies have developed relatively separately
for decades, there is a recent trend in relating both strands of research and translating
nonasymptotic convergence guarantees in gradient based optimization methods to those in
MCMC (Dalalyan, 2017; Dalalyan and Karagulyan, 2017; Wibisono, 2018; Mangoubi and
Smith, 2017; Mangoubi and Vishnoi, 2018; Bou-Rabee et al., 2018; Ma et al., 2021). In
particular, the Langevin sampling algorithm (Rossky et al., 1978; Roberts and Stramer,
2002) has been shown to be a form of gradient descent on the space of probabilities (Jordan
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et al., 1998; Wibisono, 2018; Bernton, 2018; Durmus et al., 2019). Many convergence rates
on Langevin algorithm have emerged thenceforward, based on different assumptions on the
posterior distribution (e.g., Durmus and Moulines, 2017; Cheng and Bartlett, 2018; Dwivedi
et al., 2018; Durmus and Moulines, 2019; Vempala and Wibisono, 2019; Ma et al., 2019;
Cheng et al., 2018a; Chatterji et al., 2018; Zou and Gu, 2019, to list a few). Because of the
high dimensional nature of machine learning problems, a common focus of the previous works
is the dimension dependence of the convergence rates. A number of works have focused on
designing more involved algorithms to improve the dimension dependence of the MCMC
convergence rates (Cheng et al., 2018b; Dalalyan and Riou-Durand, 2018; Ma et al., 2021;
Shen and Lee, 2019; Mou et al., 2021; Lee et al., 2018), as discussed in detail in Section 3.

Despite the extensive effort, a conspicuous distinction between the convergence analysis
of Langevin sampling and that of gradient descent still remains: all known convergence
rates for Langevin algorithms depend on the dimensionality of the problem, whereas the
convergence rates for gradient descent are dimension-free for convex problems. This prompts
us to ask:

Can Langevin algorithm achieve dimension independent convergence rate under the usual
convex assumptions?

In order to answer this question formally, we make two assumptions on the negative
log-likelihood function. One is that the negative log-likelihood is convex. Another is that the
negative log-likelihood is either Lipschitz continuous or smooth. Such convexity and regularity
assumptions on the negative log-likelihood function correspond to a number of problems
arising from application, including regression tasks such as learning Bayesian generalized
linear models (McCullagh and Nelder, 1989; Box and Tiao, 1992), as well as classification
tasks such as inference with Bayesian logistic regression (Gelman et al., 2004), one-layered
Bayesian neural network (Neal, 1996), or Bayesian support vector machine (Sollich, 2002).
We also employ a known and tractable prior distribution that is strongly log-concave—often
times taken to be a normal distribution—to serve as a parallel to the L2 regularizer in
gradient descent.

Under such assumptions, we answer the above highlighted question in the affirmative. In
particular, we prove that a Langevin algorithm converges similarly as convex optimization
for this class of problems. In the analysis, we observe that the number of gradient queries
required for the algorithm to converge does not depend on the dimensionality of the problem
for either the Lipschitz continuous log-likelihood or the smooth log-likelihood equipped with
a ridge separable structure.

To obtain this result, we first follow recent works (Durmus et al. (2019) in particular)
and formulate the posterior sampling problem as optimizing over the Kullback-Leibler (KL)
divergence, which is composed of two terms: (regularized) entropy and cross entropy. We then
decompose the Langevin algorithm into two steps, each optimizing one part of the objective
function. With a strongly convex and tractable prior, we explicitly integrate the diffusion
along the prior distribution, optimizing the regularized entropy; whereas gradient descent over
the convex negative log-likelihood optimizes the cross entropy. Via analyzing an intermediate
quantity in this composite optimization procedure, we achieve a tight convergence bound
that corresponds to the gradient descent’s convergence for convex optimization on the
Euclidean space. This dimension independent convergence rates for Lipschitz continuous
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log-likelihood and smooth log-likelihood endowed with a ridge separable structure carry over
to the stochastic versions of the Langevin algorithm.

2. Preliminaries

2.1 Two Problem Classes

We consider sampling from a posterior distribution over parameter w ∈ Rd, given the data
set z:

p(w|z) ∝ p(z|w)π(w) ∝ exp (−U(w)) ,

where the potential function U decomposes into two parts: U(w) = β−1 (f(w) + g(w)).
While the formulation is general, in the machine learning setting, f(w) usually corresponds

to the negative log-likelihood, and g(w) corresponds to the negative log-prior. The parameter
β is the temperature, which often takes the value of 1/n in machine learning, where n is
the number of training data. The key motivation to consider this decomposition is that we
assume that g is “simple” so that an SDE involving g can be solved to high precision. We
will take advantage of this assumption in our algorithm design.

Assumption on function g

A0 We assume that function g is m-strongly convex (g(w)− m
2 ‖w‖

2 is convex) 1 and can
be explicitly integrated.

Assumption on function f We assume that function f is convex (Assumption A1) and
consider two cases regarding its regularity.

• In the first case, we assume that function f is G-Lipschitz continuous (Assumption A2L).

• In the second case, we assume that function f is L-smooth (Assumption A2S). We then
instantiate the result by endowing it with a ridge separable structure (Assumptions R1
and R2).

The first case stems from Bayesian classification problems, where one has a simple strongly
log-concave prior and a log-concave and log-Lipschitz likelihood that encodes the complexity
of the data. Examples include Bayesian neural networks for classification tasks (Neal, 1996),
Bayesian logistic regression (Gelman et al., 2004), as well as other Bayesian classification
problems (Sollich, 2002) with Gaussian or Bayesian elastic net priors. In optimization
literature, this setting corresponds to the smooth-continuous composition and is frequently
examined in the stochastic composite optimization context (Lan, 2012; Duchi and Ruan, 2018).
The second case corresponds to the regression type problems, where the entire posterior is
strongly log-concave and log-smooth. In this case, one can separate the negative log-posterior
into two parts: β−1g(w) = β−1m

2 ‖w‖2 and β−1f(w) =
(
− log p(w|z)− β−1m

2 ‖w‖2
)
, which

is convex and β−1L-smooth. We therefore directly let g(w) = m
2 ‖w‖

2 in Section 6.

1. We also say that the density proportional to exp
(
−β−1g(w)

)
is β−1m-strongly log-concave in this case.
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2.2 Objective Functional and Convergence Criteria

We take the KL divergence β−1Q(p) to be our objective functional and solve the following
optimization problem:

p∗ = arg min
p
Q(p), (1)

Q (p) =

∫
p(w) ln

p(w)

p(w|z)
dw = Ew∼p [f(w) + g(w) + β ln p(w)] .

The minimizer that solves the optimization problem (1) is the posterior distribution:

p∗(w) ∝ exp
(
−β−1(f(w) + g(w))

)
. (2)

We further define the entropy functional as

H(p) = β Ew∼p ln p(w),

so that the objective functional decomposes into the regularized entropy plus cross entropy:

Q(p) =
(
H(p) + Ew∼p [g(w)]

)
+ Ew∼p [f(w)] .

With this definition of the objective function, we state that the difference in Q leads to the
KL divergence.

Proposition 1 Let p be the solution of (1), and p′ be another distribution on w. We have

KL(p′‖p) = β−1[Q(p′)−Q(p)].

This result establishes that the convergence in the objective β−1Q(p′) is equivalent to the
convergence in KL-divergence. Therefore our analysis will focus on the convergence of
β−1Q(p′).

We also define the 2-Wasserstein distance between two distributions that will become
useful in our analysis.

Definition 2 Given two probability distributions p(x) and p′(y) on Rd, and let Π(p, p′) be the
class of distributions q(x, y) on Rd × Rd so that the marginals q(x) = p(x) and q(y) = p′(y).
The W2 Wasserstein distance of p and p′ is defined as

W2(p, p′)2 = min
q∈Π(p,p′)

E(x,y)∼q‖x− y‖22.

A celebrated relationship between the KL-divergence and the 2-Wasserstein distance is known
as the Talagrand transport-entropy inequality (Otto and Villani, 2000).

Proposition 3 Assume that probability density p∗ is m̂-strongly log-concave, and p′ defines
another distribution on Rd. Then p∗ satisfies the log-Sobolev inequality with constant m̂/2 2,
and yields the following Talagrand inequality:

W 2
2 (p∗, p

′) ≤ m̂−1KL(p∗‖p′).

2. This fact follows from the Bakry-Emery criterion (Bakry and Emery, 1985).
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Reference Convergence Criterion Iteration Complexity

(Durmus et al., 2019) W2(p̃T , p)
2 ≤ ε Ω̃

(
dM+Ĝ2

m̂2ε2

)
(Chatterji et al., 2020) W2(p̃T , p)

2 ≤ ε Ω̃
(
d(M+Ĝ2)

m̂2ε

)
This work (Theorem 4) W2(p̃T , p)

2 ≤ 1
mKL(p̃T ||p) ≤ ε Ω

(
Ĝ2

m̂2ε

)
(Cheng and Bartlett, 2018) KL(p̃T ||p) ≤ ε Ω̃

(
L̂2

m̂2
d
ε

)
This work (Theorem 12) KL(p̃T ||p) ≤ ε Ω

(
L̂trace(Ĥ)

m̂2ε
+ U(0)

ε

)
Table 1: Comparison with Previous Results on overdamped Langevin algorithm: d is the

parameter dimension,M is smoothness parameter of β−1g(w), m̂ is strong convexity
parameter of β−1g(w), Ĝ is the Lipschitz parameter of β−1f(w), L̂ is the smoothness
parameter of β−1f(w), and Ĥ is an upper bound of the Hessian matrix of β−1f(w).
The first three rows correspond to the Ĝ-Lipschitz continuous likelihood whereas
the last two rows correspond to the L̂-smooth likelihood.

3. Related Works

We compare our results to those in previous work in Table 1. Some previous works have aimed
to sample from posteriors of the similar kind and obtain convergence in the KL divergence
or the squared 2-Wasserstein distance.

In the Lipschitz continuous case, where the negative log-likelihood is convex and Ĝ-
Lipschitz continuous, composed with an m̂-strongly convex and M -smooth negative log-prior,
the convergence rate to achieve W 2

2 (p̃T , p∗) ≤ ε is Ω̃
(
dM+Ĝ2

m̂2ε2

)
(Corollary 22 of Durmus et al.,

2019). Similarly, (Chatterji et al., 2020) uses Gaussian smoothing to obtain a convergence rate
of Ω̃

(
d(M+Ĝ2)

m̂2ε

)
(in Theorem 3.4), which improves the dependence on accuracy ε. In (Mou

et al., 2019), the Metropolis-adjusted Langevin algorithm is levaraged with a proximal
sampling oracle to remove the polynomial dependence on the accuracy ε (in total variation
distance) and achieve a Ω̃

(
d log(1

ε )
)
convergence rate for a related composite posterior

distribution. Unfortunately, an additional dimension dependent factor is always introduced
into the overall convergence rate. This work demonstrates that if the m-strongly convex
regularizer is explicitly integrable, then the convergence rate for the Langevin algorithm to
achieve KL(p̃T ‖p∗) ≤ ε is dimension independent: T = Ω

(
Ĝ2

m̂ε

)
. This is proven in Theorem 4

for the full gradient Langevin algorithm, and in Theorem 8 for the stochastic gradient
Langevin algorithm. Using Proposition 3, the result implies a bound of T = Ω

(
Ĝ2

m̂2ε

)
to

achieve W 2
2 (p̃T , p∗) ≤ ε.

In the smooth case, where the negative log-posterior U is m̂-strongly convex and L̂-
smooth, the overdamped Langevin algorithm has been shown to converge in Ω̃

(
L̂2

m̂2
d
ε

)
number

of gradient queries (Dalalyan, 2017; Dalalyan and Karagulyan, 2017; Cheng and Bartlett,
2018; Durmus and Moulines, 2019; Durmus et al., 2019), while the underdamped Langevin
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algorithm converges in Ω̃

(
L̂3/2

m̂2

√
d
ε

)
gradient queries (Cheng et al., 2018b; Ma et al., 2021;

Dalalyan and Riou-Durand, 2018), to ensure that KL(p̃T ‖p∗) ≤ ε and W 2
2 (p̃T , p∗) ≤ ε.

Using a randomized midpoint integration method for the underdamped Langevin dynamics,
this convergence rate can be reduced to Ω̃

(
L̂

m̂4/3

(
d
ε

)1/3) for convergence in squared 2-
Wasserstein distance (Shen and Lee, 2019). This paper establishes that for overdamped
Langevin algorithm, the convergence rate can be sharpened to Ω

(
L̂·trace(Ĥ)

m̂2ε

)
to achieve

KL(p̃T ‖p∗) ≤ ε, where matrix Ĥ is an upper bound for the Hessian of function U .
Previous works have also focused on the ridge separable potential functions studied in

this work. There is a literature that requires incoherence conditions on the data vectors
and/or high-order smoothness conditions on the component functions to achieve a Ω̃

((
d
ε

)1/4)
convergence rate for W 2

2 (p̃T , p∗) ≤ ε using Hamiltonian Monte Carlo methods (Mangoubi
and Smith, 2017; Mangoubi and Vishnoi, 2018). Making further assumptions that the
differential equation of the Hamiltonian dynamics is close to the span of a small number
of basis functions, this bound can be improved to polynomial in log(d) (Lee et al., 2018).
Another thread of work alleviates these assumptions and achieves the Ω̃

((
d
ε

)1/4) convergence
rate for the general ridge separable potential functions via higher order Langevin dynamics
and integration schemes (Mou et al., 2021). We follow this general ridge separable setting and
assume that each individual log-likelihood is smooth. Under this assumption, we demonstrate
in this paper, by instantiating the bound for the general smooth case, that the Langevin
algorithm converges in Ω

(
1
ε

)
number of gradient queries to achieve KL(p̃T ‖p∗) ≤ ε (see

Corollary 13 and Corollary 17).

4. Langevin Algorithms

We consider the following variant of the Langevin Algorithm 1.
Algorithm 1: Langevin Algorithm with Prior Diffusion
Input: Initial distribution p0 on Rd, stepsize ηt, β = 1

1 Draw w0 from p0

2 for t = 1, 2, . . . , T do
3 Sample w̃t from w̃t(ηt) with the following SDE on Rd and initial value

w̃t(0) = wt−1

w̃t(ηt) = wt−1 −
∫ ηt

0
∇g(w̃t(s))ds+

√
2β

∫ ηt

0
dBs, (3)

where dBs is the standard Brownian motion on Rd.
4 Let

wt = w̃t − η̃t∇f(w̃t) (4)

5 end
6 return w̃T

In this method, we assume that the prior diffusion equation (3) can be solved efficiently.
When the prior distribution is a standard normal distribution where g(w) = m

2 ‖w‖
2
2 on Rd,
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we can instantiate equation (3) to be:

Sample w̃t(ηt) ∼ N
(
e−mηtwt−1,

1− e−2mηt

m
βI

)
. (5)

In general, the diffusion equation (3) can also be solved numerically for separable g(w) of
the form

g(w) =

d∑
j=1

gj(wj),

where w = [w1, . . . , wd]. In this case, we only need to solve d one-dimensional problems,
which are relatively simple. For example, this includes the L1 − L2 regularization arising
from the Bayesian elastic net (Li and Lin, 2010),

g(w) =
m

2
‖w‖22 + α‖w‖1,

among other priors that decompose coordinate-wise.
We will also consider the stochastic version of Algorithm 1, the stochastic gradient

Langevin dynamics (SGLD) method, with a strongly convex function g(w). Assume that
function f decomposes into f(w) = 1

n

∑n
i=1 `(w, zi). Let D be the distribution over the

dataset Ω such that expectation over it provides the unbiased estimate of the full gradient:
Ez∼D∇w`(w, z) = ∇f(w). Then the new algorithm takes the following form and can be
instantiated in the same way as Algorithm 1.
Algorithm 2: Stochastic Gradient Langevin Algorithm with Prior Diffusion
Input: Initial distribution p0 on Rd, stepsize ηt, β = 1/n

1 Draw w0 from p0

2 for t = 1, 2, . . . , T do
3 Sample w̃t from w̃t(ηt) with the following SDE on Rd and initial value

w̃t(0) = wt−1

w̃t(ηt) = wt−1 −
∫ ηt

0
∇g(w̃t(s))ds+

√
2β

∫ ηt

0
dBs, (6)

where dBs is the standard Brownian motion on Rd.
4 Draw minibatch S where each zi ∈ S are i.i.d. draws: zi ∼ D. Let

wt = w̃t − η̃t
1

|S|
∑
zi∈S
∇w`(w̃t, zi). (7)

5 end
6 return w̃T

This algorithm becomes the streaming SGLD method where in each iteration we take
one data point z ∼ D.

In the analysis of Algorithm 1, we will use pt−1 to denote the distribution of wt−1, and
p̃t to denote the distribution of w̃t, where the randomness include all random sampling in
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the algorithm. When using samples along the Markov chain to estimate expectations over
function φ(·), we take a weighted average, so that

φ̂(p) =
1∑T
s=1 ηs

T∑
t=1

ηtφ(w̃t),

which is equivalent to the expectation with respect to the weighted averaged distribution:

p̄T =
1∑T
s=1 ηs

T∑
t=1

ηtp̃t.

Similar to stochastic optimization (Polyak and Juditsky, 1992), we prove in what follows
the convergence of weighted average of the distributions p̃t along the updates of (3) and (4)
towards the posterior distribution (2).

5. Langevin Algorithms in Lipschitz Convex Case

For the posterior p(w|z) ∝
(
−β−1(f(w) + g(w))

)
, we assume that function f satisfies the

following two conditions common to convex analysis.

Assumptions for the Lipschitz Convex Case:

A1 Function f : Rd → R is convex.

A2L Function f is G-Lipschitz continuous on Rd: ‖∇f(w)‖2 ≤ G.

We also assume that function g : Rd → R is m-strongly convex. Note that we have assumed
that the gradient of function f exists but have not assumed that function f is smooth.

5.1 Full Gradient Langevin Algorithm Convergence in Lipschitz Convex Case

Our main result for Full Gradient Langevin Algorithm in the case that f is Lipshitz can be
stated as follows.

Theorem 4 Assume that function f satisfies the convex and Lipschitz continuous Assump-
tions A1 and A2L. Further assume that function g(w) satisfies Assumption A0. Then for p̃T
following the Langevin Algorithm 1, it satisfies ( for η̃t = (1− e−mηt) /m = 2/ (m(t+ 2))):

T∑
t=1

1 + 0.5t

T + 0.25T (T + 1)
β−1[Q(p̃t)−Q(p∗)] ≤

5G2

βmT
.

By the convexity of the KL divergence, β−1Q, this leads to the convergence rate of

T =
5G2

βmε
,

for the averaged distribution p̄T =
∑T

t=1
1+0.5t

T+0.25T (T+1) p̃t to convergence to ε accuracy in the
KL-divergence.
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We devote the rest of this section to prove Theorem 4.
Proof [Proof of Theorem 4] We take a composite optimization approach and analyze the
convergence of the Langevin algorithm in two steps. First we characterize the decrease of
the regularized entropy Ew∼p [g(w) +H(p)] along the diffusion step (3).

Lemma 5 (For Regularized Entropy) We generalize Lemma 5 of (Durmus et al., 2019)
and have for p̃t being the density of w̃t following equation (3) and p being another probability
density,

2

m
(1−e−mηt)

(
Ew∼p̃t [g(w) +H(p̃t)]− Ew∼p[g(w) +H(p)]

)
≤ e−mηtW 2

2 (pt−1, p)−W 2
2 (p̃t, p),

where m is the strong convexity of g(w).

We then capture the decrease of the cross entropy Ew∼p [f(w)] along the gradient descent
step (4). This result follows and parallels the standard convergence analysis of gradient
descent (see Zinkevich, 2003; Zhang, 2004, for example).

Lemma 6 Given probability density p on Rd. Define

f(p) = Ew∼pf(w),

then we have for pt being the density of wt following equation (4):

2η̃t[f(p̃t)− f(p)] ≤W 2
2 (p̃t, p)−W 2

2 (pt, p) + η̃2
tG

2.

We then combine the two steps to prove the overall convergence rate for the Langevin
algorithm. It is worth noting that by aligning the diffusion step (3) and the gradient descent
step (4) at p̃t, we combine Ew∼p̃t [g(w) +H(p̃t)] with f(p̃t) and cancel out W 2

2 (p̃t, p) perfectly
and achieve the same convergence rate as that of stochastic gradient descent in optimization.

Proposition 7 Set η̃t = (1 − e−mηt)/m = τ · (τ/η̃0 + mt)−1 for some τ ≥ 1 and η̃0 > 0.
Then

T∑
t=1

η̃1−τ
t [Q(p̃t)−Q(p)] ≤ η̃−τ0 W 2

2 (p0, p) +G2
T∑
t=1

η̃2−τ
t .

Choosing τ = 2 and p = p∗, we have

T∑
t=1

1 + 0.5t

T + 0.25T (T + 1)
β−1[Q(p̃t)−Q(p∗)] ≤

4

βmη̃2
0T (T + 1)

W 2
2 (p0, p∗) +

4G2

βm(T + 1)
. (8)

The learning rate schedule of ηt = 1/mt (with τ = 1) was introduced to SGD analysis for
strongly convex objectives in (Shalev-Shwartz et al., 2011), which leads to a similar rate as
that of Proposition 7, but with an extra log(T ) term than (8). The use of τ > 1 has been
adopted in more recent literature of SGD analysis, as an effort to avoid the log(T ) term (for
example, see (Lacoste-Julien et al., 2012)). The resulting bound in the SGD analysis becomes
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identical to that of Proposition 7, and this rate is optimal for nonsmooth strongly convex
optimization (Rakhlin et al., 2012). In addition, it is possible to implement for Langevin
algorithm a similar scheme using moving averaging, as discussed in (Shamir and Zhang,
2013).

It can be observed that taking a large step size η̃0 will grant rapid convergence. The
largest one can take is to choose η0 = +∞ and consequently η̃0 = 1/m, leading to a
learning rate schedule of η̃t = 2/(m · (t + 2)). In this case, we are effectively initializing
from p̃1 ∝ exp

(
−β−1g(w)

)
. Choosing the same p0 ∝ exp

(
−β−1g(w)

)
, we can bound the

initial error W 2
2 (p0, p∗) via the Talagrand inequality in Proposition 1 and the log-Sobolev

inequality (Bakry and Emery, 1985; Ledoux, 2000) for the β−1m-strongly log-concave
distribution p∗:

W 2
2 (p0, p∗) ≤

β

m
KL(p∗‖p0) ≤ β2

2m2
Ep∗

[∥∥∥∥∇ log
p∗
p0

∥∥∥∥2
]
≤ G2

2m2
,

since
∥∥∥∇ log p∗

p0
(w)
∥∥∥ =

∥∥β−1∇f(w)
∥∥ ≤ β−1G. Plugging this bound and η̃0 = 1/m into

equation (8), and noting that T ≥ 1, we arrive at our result that

T∑
t=1

1 + 0.5t

T + 0.25T (T + 1)
β−1[Q(p̃t)−Q(p∗)] ≤

5G2

βmT
.

Proof [Proof of Proposition 7] We can add the inequalities in Lemma 5 and Lemma 6 to
obtain:

η̃t[Q(p̃t)−Q(p)] ≤ e−mηtW2(pt−1, p)
2 −W2(pt, p)

2 + η̃2
tG

2.

This is equivalent to

η̃1−τ
t [Q(p̃t)−Q(p)] ≤ (1−mη̃t)η̃−τt W2(pt−1, p)

2 − η̃−τt W2(pt, p)
2 + η̃2−τ

t G2. (9)

We first show that
(1−mη̃t)η̃−τt ≤ η̃−τt−1. (10)

Let s = t + τ/(mη̃0) ≥ 1 for t ≥ 1, η̃t = τ/(ms) and η̃t = τ/(m(s − 1)). Therefore (10) is
equivalent to

(1− τ/s)sτ ≤ (s− 1)τ .

This inequality follows from the fact that for z = 1/s ∈ [0, 1] and τ ≥ 1: ψ(z) = (1− z)τ is
convex in z, and thus (1− τz) = ψ(0) + ψ′(0)z ≤ ψ(z) = (1− z)τ .

By combining (9) and (10), we obtain

η̃1−τ
t [Q(p̃t)−Q(p)] ≤ η̃−τt−1W2(pt−1, p)

2 − η̃−τt W2(pt, p)
2 + η̃2−τ

t G2.

By summing over t = 1 to t = T , we obtain the bound.
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5.2 Streaming SGLD Convergence in Lipschitz Convex Case

To analyze the streaming stochastic gradient Langevin algorithm, we assume that function f
decomposes:

f(w) =
1

n

n∑
i=1

`(w, zi) = Ez∼D[`(w, z)],

where D is the distribution over the data samples. In this case, we modify Assumption A2L

and assume that the individual log-likelihood satisfies the Lipschitz condition.

Assumptions on individual loss `

A2SG
L Function ` is G`-Lipschitz continuous on Rd: ‖∇`(w, z)‖2 ≤ G`, ∀z ∈ Ω.

In the case that `(w, z) is Lipschitz, our main result for SGLD is the following counterpart
of Theorem 4.

Theorem 8 Assume that function f satisfies the convex assumption A1 and the Lipschitz
continuous assumption for the individual log-likelihood A2SG

L . Further assume that function
g(w) satisfies Assumption A0. Then for p̃T following the streaming SGLD Algorithm 2, it
satisfies ( for η̃t = (1− e−mηt) /m = 2/ (m(t+ 2))):

T∑
t=1

1 + 0.5t

T + 0.25T (T + 1)
β−1[Q(p̃t)−Q(p∗)] ≤

5G2
`

βmT
.

leading to the convergence rate of

T =
5G2

`

βmε
,

for the averaged distribution p̄T =
∑T

t=1
1+0.5t

T+0.25T (T+1) p̃t to convergence to ε accuracy in the
KL-divergence.

This result corresponds to the convergence behavior of stochastic strongly convex optimization
with a bounded gradient oracle (Hazan and Kale, 2014; Agarwal et al., 2012). We devote the
rest of this section to prove Theorem 8.
Proof [Proof of Theorem 8] Same as in the previous section, convergence of the regularized
entropy Ew∼p [g(w)] +H(p) along equation (6) follows Lemma 5.

For the convergence of the cross entropy Ew∼p [f(w)] along equation (7), the following
Lemma follows the standard analysis of SGD.

Lemma 9 Adopt Assumption A2SG
L that `(w, z) is G`-Lipschitz for all z ∈ Ω. Also adopt

Assumption A1 that f(w) = Ez∼D`(w, z) is convex. We have for all w ∈ Rd:

2η̃tEz∼D[`(w̃t, z)− `(w, z)] ≤ ‖w̃t − w‖22 − Ewt|w̃t
‖wt − w‖22 + η̃2

tG
2
` . (11)

It implies the following bound, which modifies Lemma 6.

11
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Lemma 10 Given any probability density q on Rd. Define

`(q) = Ew∼qEz∼D`(w, z),

then we have
2η̃t[`(p̃t)− `(p)] ≤W2(p̃t, p)

2 −W2(pt, p)
2 + η̃2

tG
2
` .

Initializing from the prior distribution, we can follow the same proof as in Proposition 7
and obtain a similar convergence rate as in the non-stochastic case.

Proposition 11 Set η̃t = (1 − e−mηt)/m = τ · (τ/η̃0 +mt)−1 for some τ ≥ 1 and η̃0 > 0.
Then

T∑
t=1

η̃1−τ
t [Q(p̃t)−Q(p)] ≤ η−τ0 W2(p0, p)

2 +G2
`

T∑
t=1

η̃2−τ
t .

We can choose τ = 2, and then for p = p∗, we have

T∑
t=1

1 + 0.5t

T + 0.25T (T + 1)
β−1[Q(p̃t)−Q(p∗)] ≤

4

βmη̃2
0T (T + 1)

W2(p0, p∗)
2 +

4G2
`

βm(T + 1)
. (12)

Following the same steps as in the full gradient case, we arrive at the result.

6. Langevin Algorithms in Smooth Convex Case

For the posterior p(w|z) ∝
(
−β−1(f(w) + g(w))

)
, we make the following assumptions on

function f .

Assumptions for the smooth convex case:

A1 Function f : Rd → R is convex and positive.

A2S Function f is L-Smooth on Rd: ‖∇f(w)−∇f(w′)‖2 ≤ L‖w − w′‖2.

We also assume that function g : Rd → R is m-strongly convex. Note that this is equivalent
to the cases where we simply assume the entire negative log-posterior to be β−1m-strongly
convex and

(
β−1(L+m)

)
-smooth: one can separate the negative log-posterior into two

parts: β−1m
2 ‖w‖2 and

(
− log p(w|z)− β−1m

2 ‖w‖2
)
, which is convex and β−1L-smooth. We

therefore directly let g(w) = m
2 ‖w‖

2 in what follows.

12
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6.1 Full Gradient Langevin Algorithm Convergence in Smooth Convex Case

Our main result for Full Gradient Langevin Algorithm in the case that f is smooth can
be stated as follows. Compared to Theorem 4, the result of Theorem 12 is useful for loss
functions such as least squares loss that are smooth but not Lipschitz continuous.

Theorem 12 Assume that function f satisfies the convex and smooth Assumptions A1
and A2S. Also assume that ∇2f(w) � H. Further let function g(w) = m

2 ‖w‖
2, and set

η̃t = (1− e−mηt) /m = 2 ·((8L+mt)−1 with η̃0 = 1/(4L). Then for p̃T following Algorithm 1
and initializing from p0 ∝ exp(−β−1g), it satisfies:

T∑
t=1

(4L/m) + t/2

(4L/m)T + T (T + 1)/4
β−1[Q(p̃t)−Q(p∗)]

≤ 64L2

m2T (T + 1)
·
(
L

m2
trace (H) + 2U(0)

)
+

16

T + 1
·
(
L

m2
trace (H) + 2U(0)

)
.

leading to the convergence rate of

T = 64 ·max

{
L · trace (H)

m2ε
,
2U(0)

ε

}
,

for the averaged distribution p̄T =
∑T

t=1
(4L/m)+0.5t

(4L/m)T+0.25T (T+1) p̃t to convergence to ε ≤ 1 accuracy
in the KL-divergence.

Note that in the worst case, trace (H) can have dimension dependence. We discuss in the
following the ridge separable case where trace (H) does not depend on the dimension d of
the problem.

Ridge Separable Case Assume that function f decomposes into the following ridge-
separable form:

f(w) =
1

n

n∑
i=1

si(w
>zi), (13)

We make some assumptions on the activation function si and the data points zi.

Assumptions in ridge separable case

R1 ∀i ∈ {1, . . . , n}, the one dimensional activation function si(·) has a bounded second
derivative: |s′′i (x)| ≤ Ls, for any x ∈ R.

R2 ∀i ∈ {1, . . . , n}, data point zi ∈ Rd has a bounded norm: ‖zi‖2 ≤ Rz.

Assumptions R1 and R2 combines to give a smoothness constant of LsRz for the individual
log-likelihood.

Corollary 13 We make the convexity Assumption A1 on function f and let it take the
ridge-separable form (13) (also let function g(w) = m

2 ‖w‖
2). Further adopt Assumptions R1

and R2 on the activation functions and the data points, respectively. Then the convergence

13
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rate of Algorithm 1 initializing from p0 ∝ exp(−β−1g) (with step size η̃t = (1− e−mηt) /m =
2 (8LsRz +mt)−1) is

T = 64 ·max

{
L2
sR

2
z

m2ε
,
2U(0)

ε

}
,

for the averaged distribution to convergence to ε accuracy in the KL-divergence β−1Q.

Proof We first compute using the form of f that ∇2f(w) = 1
n

∑n
i=1 s

′′
i (w

>zi)ziz
>
i . From

Assumptions R1 and R2, we know that ∇2f(w) � 1
nLsZZ

> = H, where we denote matrix
Z = (z1, . . . , zn).

Hence the Lipschitz constant L ≤ ‖H‖2 ≤ LsRz, and

trace (H) = Ls ·
1

n
trace

(
ZZ>

)
≤ LsRz.

These two facts lead to the conclusion that L · trace (H) ≤ L2
sR

2
z. Plugging the bound into

Theorem 12 yields the convergence rate of

T = 64 ·max

{
L2
sR

2
z

m2ε
,
2U(0)

ε

}
.

We devote the rest of this section to the proof of Theorem 12.
Proof [Proof of Theorem 12] Same as in Section 5.1, convergence of the regularized entropy
Ew∼p [g(w)] +H(p) along equation (6) follows Lemma 5.

For the decrease of the cross entropy Ew∼p [f(w)] along the gradient descent step (4),
we use the following derivation for L-smooth f . For pt being the density of wt following
equation (4) and for p being another probability density,

2η̃t[Ew∼p̃tf(w)− Ew′∼pf(w′)] (14)

≤[W2(p̃t, p)
2 −W2(pt, p)

2] + η2
tEw∼p̃t‖∇f(w)‖22

≤[W2(p̃t, p)
2 −W2(pt, p)

2] + 2η̃2
tE(w,w′)∼γt‖∇f(w)−∇f(w′)‖22 + 2η̃2

tEw′∼p‖∇f(w′)‖22,

where γt ∈ Γopt(p̃t, p) is the optimal coupling between distributions with densities p̃t and p.
With η̃t = (1− e−mηt)/m, we have

2η̃t[Q(p̃t)−Q(p)] ≤ (1−mη̃t)W2(p̃t−1, p)
2 −W2(pt, p)

2

+ 2η̃2
tE(w,w′)∼γt‖∇f(w)−∇f(w′)‖22 + 2η̃2

tEw′∼p‖∇f(w′)‖22. (15)

We also have the following lemma.

Lemma 14 Let γt ∈ Γopt(p̃t, p) be the optimal coupling of p̃t and p, and let p the solution
of (1). Then we have

E(w,w′)∼γt‖∇f(w)−∇f(w′)‖22 ≤ 2L[Q(p̃t)−Q(p)].

14
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We note that Lemma 14 and equation (15) imply that

2η̃t(1− 2Lη̃t)[Q(p̃t)−Q(p∗)]

≤(1−mη̃t)W2(pt−1, p∗)
2 −W2(pt, p∗)

2 + 2η̃2
tEw∼p∗‖∇f(w)‖22, (16)

where p∗ satisfies (2).
Next we bound the last term of equation (16) at p∗: Ew∼p∗‖∇f(w)‖22.

Lemma 15 Assume that

∇2f(w) � H, g(w) =
m

2
‖w‖22.

Let
w∗ = arg min

w
[f(w) + g(w)] ,

and p∗ ∝ exp(−β−1(f(w) + g(w))) satisfy equation (2). Then

Ew∼p∗ ‖∇f(w)‖2 ≤ 2βL

m
trace(H) + 2m2 ‖w∗‖2 .

With these lemmas, we are ready to prove the convergence rate of the Langevin algorithm 1.

We note that similar to (10), the shrinking step size scheduling of η̃t = τ ·
(
τ
η̃0

+mt
)−1

satisfies:
(1−mη̃t) ≤

η̃τt
η̃τt−1

.

Using this inequality and combining Lemma 15 and equation (16) at p = p∗, we obtain that

2η̃1−τ
t (1− 2Lη̃t) [Q(p̃t)−Q(p∗)]

≤η̃−τt−1W2(pt−1, p∗)
2 − η̃−τt W2(pt, p∗)

2 + 4η̃2−τ
t

[
(βL/m) trace (H) +m2 ‖w∗‖2

]
.

Summing over t = 1, . . . , T ,

2

T∑
t=1

η̃1−τ
t (1− 2Lη̃t) [Q(p̃t)−Q(p∗)]

≤η̃−τ0 W2(p0, p∗)
2 + 4

[
(βL/m) trace (H) +m2 ‖w∗‖2

] T∑
t=1

η̃2−τ
t .

Denote ∆ = 4
[
(βL/m) trace (H) +m2 ‖w∗‖2

]
and take η̃t = τ ·

(
τ
η̃0

+mt
)−1

. Since 1 −
2η̃tL ≥ 1− 2η̃0L ≥ 0.5, we have for τ = 2,

m

T∑
t=1

(1/ (mη̃0) + t/2) [Q(p̃t)−Q(p∗)] ≤
1

η̃2
0

W2(p0, p∗)
2 + ∆ · T,

15
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or

T∑
t=1

1/ (mη̃0) + t/2

T/ (mη̃0) + T (T + 1)/4
[Q(p̃t)−Q(p∗)] ≤

4

mη̃2
0T (T + 1)

W2(p0, p∗)
2 +

4∆

m(T + 1)
. (17)

Inspired by the Lipschitz continuous case, we take p0(w) ∝ exp
(
−β−1g(w)

)
. Then by the

Talagrand and log-Sobolev inequalities,

W2(p0, p∗)
2 ≤ β

m
KL (p∗‖p0) ≤ β2

2m2
Ep∗

[∥∥∥∥∇ log
p∗
p0

∥∥∥∥2
]

=
β2

2m2
Ep∗

[∥∥β−1∇f(w)
∥∥2
]
.

Applying Lemma 15 to the above inequality, we obtain that

W2(p0, p∗)
2 ≤ 1

m2

(
(βL/m) trace (H) +m2 ‖w∗‖2

)
.

Then taking η̃0 = 1
4

1
L , we obtain that the weighted-averaged KL divergence is upper bounded:

T∑
t=1

1/ (mη̃0) + t/2

T/ (mη̃0) + T (T + 1)/4
β−1[Q(p̃t)−Q(p∗)]

≤ 64L2

m2T (T + 1)
·
(
L

m2
trace (H) + β−1m ‖w∗‖2

)
+

16

T + 1
·
(
L

m2
trace (H) + β−1m ‖w∗‖2

)
.

Since L ≤ trace (H), ∀ε ≤ 1, the weighted-averaged KL divergence

T∑
t=1

1/ (mη̃0) + t/2

T/ (mη̃0) + T (T + 1)/4
β−1[Q(p̃t)−Q(p∗)] ≤ ε,

when we set

T ≥ 64 ·max

{
L · trace (H)

m2ε
,
β−1m ‖w∗‖2

ε

}
.

Plugging in the bound that m ‖w∗‖2 ≤ 2f(0) = 2βU(0) gives the final result.

6.2 SGLD Convergence in Smooth Convex Case

Similar to the Lipschitz continuous case, we assume that function f decomposes:

f(w) =
1

n

n∑
i=1

`(w, zi) = Ez∼D[`(w, z)],

where D is the distribution over the data samples. Making the following assumption, which
modifies Assumption A2S, that the individual log-likelihood satisfies the smooth condition
yields the convergence rate for the SGLD method.
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Assumptions on individual loss `

A2SG
S Function ` is L`-smooth on Rd: ∀z ∈ Ω,

`(y, z) ≥ `(x, z) +∇`(x, z)>(y − x) +
1

2L`
‖∇`(y, z)−∇`(x, z)‖2 .

A3SG
S The stochastic gradient variance at the mode w∗ is bounded:

Ez∼D
[
‖∇`(w∗, z)−∇f(w∗)‖2

]
≤ b2.

Assumption A2SG
S ensures that the stochastic estimates of f are L` smooth.

Under the above assumptions, we obtain in what follows the convergence rate for the
SGLD method with minibatch size |S|. This result is the counterpart of its full gradient
version in Theorem 12.

Theorem 16 We make the convexity Assumptions A1 on function f and the regularity
Assumptions A2SG

S and A3SG
S on its components `. Also assume that ∇2f(w) � H. Let

function g(w) = m
2 ‖w‖

2. Then taking η̃t = (1− e−mηt) /m = 2 · (8LsRz +mt)−1, the
convergence rate of the SGLD Algorithm 2 initializing from p0 ∝ exp(−β−1g) is

T = Ω

(
max

{
L`trace(H)

m2ε
,
U(0)

ε
,

1

|S|
b2

βmε

})
,

to achieve an accuracy of

T∑
t=1

1/ (mη̃0) + t/2

T/ (mη̃0) + T (T + 1)/4
β−1[Q(p̃t)−Q(p∗)] ≤ ε.

Comparing with the full gradient case, the last term corresponds to the strongly convex
stochastic optimization with unbounded gradient oracle (Ghadimi and Lan, 2012).

Ridge Separable Case Assume that the individual component ` take the following form
so that function f becomes ridge-separable:

`(w, zi) = si(w
>zi). (18)

To ensure bounded stochastic gradient variance at the mode of the posterior, we additionally
assume that at the mode w∗, the derivatives of the activation functions are bounded.

Assumption in ridge separable case on bounded variance

R3SG ∃bs > 0, so that
∣∣s′i(w>∗ zi)∣∣ ≤ bs, ∀i ∈ {1, . . . , n}, where w∗ = arg minw [f(w) + g(w)].

Assumption R3SG ensures that the stochastic gradient variance is bounded at the mode.
Then we have the following corollary instantiating Theorem 16.

17
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Corollary 17 We make the convexity Assumption A1 on function f and let it take the
ridge-separable form (13) (also let function g(w) = m

2 ‖w‖
2). Further adopt Assumptions R1,

R2, and R3SG. Then taking η̃t = (1− e−mηt) /m = 2 · (8LsRz +mt)−1, the convergence rate
of Algorithm 2 initializing from p0 ∝ exp(−β−1g) is

T = Ω

(
max

{
L2
sR

2
z

m2ε
,
U(0)

ε
,
n

|S|
Rzb

2
s

mε

})
,

to achieve an accuracy of

T∑
t=1

1/ (mη̃0) + t/2

T/ (mη̃0) + T (T + 1)/4
β−1[Q(p̃t)−Q(p∗)] ≤ ε.

Proof [Proof of Corollary 17] Since function ` takes form (18), we can compute that
∇2`(w, zi) = si(w

>zi)ziz
>
i . Using Assumptions R1 and R2, the smoothness L` = LsRz.

Same as in Corollary 13, we know that ∇2f(w) � 1
nLsZZ

> = H. Therefore,

trace (H) = Ls ·
1

n
trace

(
ZZ>

)
≤ LsRz,

leading to the fact that L` · trace (H) ≤ L2
sR

2
z.

For the stochastic gradient bound b at w∗, we apply Assumptions R2 and R3SG to obtain

‖∇`(w∗, zi)−∇`(w∗, zj)‖ =
∥∥∥s′i(w>∗ zi)zi − s′j(w>∗ zj)zj∥∥∥ ≤ 2

√
Rzbs.

We thus have

‖∇`(w∗, z)−∇f(w∗)‖ =
∥∥∥∇`(w, zi)− 1

n

n∑
j=1

∇`(w, zj)
∥∥∥ ≤ 2

√
Rzbs,

leading to the fact that

Ez∼D
[
‖∇`(w∗, z)−∇f(w∗)‖2

]
≤ 4Rzb

2
s.

Therefore, the stochastic gradient variance bound in Assumption A3SG
S , b = 2

√
Rzbs. Plugging

these bounds into Theorem 16 proves the corollary.

We devote the rest of this section to the proof of Theorem 16.
Proof [Proof of Theorem 16] We first note that because each `(·, zi) is L`-smooth, the
stochastic estimate of function f ,

f̃(w,S) =
1

|S|
∑
zi∈S

`(w, zi) (19)
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is L`-smooth:∥∥∥∥∥∥ 1

|S|
∑
zi∈S
∇`(y, zi)−∇`(x, zi)

∥∥∥∥∥∥
2

≤ 1

|S|2

∑
zi∈S
‖∇`(y, zi)−∇`(x, zi)‖

2

≤ 1

|S|
∑
zi∈S
‖∇`(y, zi)−∇`(x, zi)‖2

≤ 2L`
|S|

∑
zi∈S

(
`(y, zi)− `(x, zi)−∇`(x, zi)>(y − x)

)
= 2L`

(
f̃(y)− f̃(x)−∇f̃(x)>(y − x)

)
.

We thereby invoke the next lemma.

Lemma 18 Assume that function f is convex, and that its stochastic estimate f̃ is L`-smooth.
Then

W 2
2 (pt, p) ≤W 2

2 (p̃t, p)− 2η̃t (f(p̃t)− f(p))

+ η̃2
t

(
4L`[Q(p̃t)−Q(p)] + 2E(w̃t,w′)∼γt

[
ES
∥∥∥∇f̃(w′,S)

∥∥∥2
])

,

where f(q) = Ew∼qf(w), and γt ∈ Γopt(p̃t, p) is the optimal coupling between p̃t and p.

Taking η̃t = (1− e−mηt) /m and combining Lemma 5 and Lemma 18, we obtain that

2η̃t (1− 2η̃tL`) (Q(p̃t)−Q(p))

≤e−mηtW 2
2 (pt−1, p)−W 2

2 (pt, p) + 2η̃2
tE(w̃t,w′)∼γt

[
ES
∥∥∥∇f̃(w′,S)

∥∥∥2
]
. (20)

We then adapt Lemma 15 to the stochastic gradient method.

Lemma 19 (Stochastic Gradient Counterpart of Lemma 15) Assume that

∇2f(w) � H, g(w) =
m

2
‖w‖22.

Let
w∗ = arg min

w
[f(w) + g(w)] ,

and p be the solution of (2). Then for L`-smooth function f̃ defined in (19), at p = p∗ and
consequently γt ∈ Γopt(p̃t, p∗),

E(w̃t,w′)∼γt

[
ES
∥∥∥∇f̃(w′,S)

∥∥∥2
]

≤2βL`
m

trace(H) + 2m2 ‖w∗‖2 + 2ES
∥∥∥∇f̃(w∗,S)−∇f(w∗)

∥∥∥2
.
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For the last piece of information, we establish the variance of the stochastic gradient at

the mode, ES
∥∥∥∇f̃(w∗,S)−∇f(w∗)

∥∥∥2

2
. For samples zi that are i.i.d. draws from the data

set and are unbiased estimators of ∇f(w∗) = 1
n

∑n
j=1∇`(w∗, zj), we have

ES

∥∥∥∥∥∥
∑
zi∈S

∇`(w∗, zi)− 1

n

n∑
j=1

∇`(w∗, zj)

∥∥∥∥∥∥
2

=|S| · Ez∼D

∥∥∥∥∥∥∇`(w∗, z)− 1

n

n∑
j=1

∇`(w∗, zj)

∥∥∥∥∥∥
2 ≤ |S| · b2,

Leading to the bound that

ES
∥∥∥∇f̃(w∗,S)−∇f(w∗)

∥∥∥2

2
=

1

|S|2
ES

∥∥∥∥∥∥
∑
zi∈S

∇`(w∗, zi)− 1

n

n∑
j=1

∇`(w∗, zj)

∥∥∥∥∥∥
2 ≤ b2

|S|
.

Plugging this result and Lemma 19 into equation (20) at p = p∗, we obtain the final
bound that

2η̃t (1− 2η̃tLsRz) (Q(p̃t)−Q(p∗)) ≤ (1−mη̃t)W 2
2 (pt−1, p∗)−W 2

2 (pt, p∗)

+ 4η̃2
t

(
β
L`
m

trace(H) +m2 ‖w∗‖2 +
b2

|S|

)
.

This leads to a convergence rate, similar to the full gradient case, of

T = Ω

(
max

(
L`trace(H)

m2ε
,
β−1m ‖w∗‖2

ε
,
β−1

|S|
b2

mε

))
,

so that the weighted-averaged KL divergence:
T∑
t=1

1/ (mη̃0) + t/2

T/ (mη̃0) + T (T + 1)/4
β−1[Q(p̃t)−Q(p∗)] ≤ ε.

Since m ‖w∗‖2 ≤ 2f(0) = 2βU(0),

T = Ω

(
max

(
L`trace(H)

m2ε
,
U(0)

ε
,

1

|S|
b2

βmε

))
.

We compare our analysis with some of the existing works in the smooth case to shed light
on the intuition of our approach. In many previous works (e.g., Dalalyan, 2017; Dalalyan
and Karagulyan, 2017; Durmus and Moulines, 2019; Cheng and Bartlett, 2018; Ma et al.,
2019), the Langevin algorithm updates according to

wt = wt−1 − ηt∇U(wt−1) +
√

2Bηt

= wt−1 −
∫ ηt

0
∇U(wt−1)ds+

√
2

∫ ηt

0
dBs, (21)
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where we denote U(w) = β−1 (f(w) + g(w)). It is analyzed via comparing against the
following continuous diffusion process

wt(ηt) = wt−1 −
∫ ηt

0
∇U(wt(s))ds+

√
2

∫ ηt

0
dBs; wt(0) = wt−1 (22)

during the t-th update. The diffusion process (22) converges exponentially, while the
Langevin algorithm (21) contains discretization error, posing restriction on the step sizes.
This discretization error is caused by the gradient ∇f being evaluated at different positions (at
wt−1 in equation (21) versus at wt(s) in equation (22)). The discrepancy leads to the following
bound in the smooth case: E ‖∇U(wt(s))−∇U(wt−1)‖2 ≤ L2/β2 · E ‖wt(s)− wt−1‖2. One
can observe that the difference E ‖wt(s)− wt−1‖2 contains a component E ‖Bs‖2 that is the
variance of a standard normal random variable, contributing to the dimension dependence
arising from the existing analyses.

From a gradient flow perspective, the Langevin algorithm (21) dictates that the dis-
tribution ps of random variable wt(s) follows the transport of probability mass along the
vector flow: −∇ ln ps(wt(s))

p∗(wt−1) , when ∇ ln ps(w)
p∗(w) is the strong subdifferential of the KL divergence,

KL(ps‖p∗) = β−1Q(ps). It can be observed that the numerator and the denominator of the
strong subdifferential of KL(ps‖p∗) are evaluated at two different positions, wt(s) and wt−1.
This discrepancy of gradient evaluation suggests that we should split the objective functional
Q into two parts and employ a composite optimization perspective. In this approach, the
tight analysis hinges upon aligning the left-hand-side of both Lemma 5 and equation (14)
(or Lemma 6 in the Lipschitz continuous case) at the same intermediate variable w̃t and its
associated probability p̃t. If we only focus on the output of the algorithm, wt, the two terms
Ew∼p [g(w) +H(p)] and Ew∼p [f(w)] will be evaluated at different distributions. This leads
to an extra suboptimal dimension dependent term for every iteration.

7. Conclusion

This paper investigated the convergence of Langevin algorithms with strongly log-concave
posteriors. We assume that the strongly log-concave posterior can be decomposed into two
parts, with one part being simple and explicitly integrable with respect to the underlying SDE.
This is analogous to the situation of proximal gradient methods in convex optimization. Using
a new analysis technique which mimics the corresponding analysis of convex optimization,
we obtain convergence results for Langenvin algorithms that are independent of dimension,
both for Lipschitz and for a large class of smooth convex problems in machine learning. Our
result addresses a long-standing puzzle with respect to the convergence of the Langevin
algorithms. We note that the current work focused on the standard Langevin algorithm,
and the resulting convergence rate in terms of ε dependency is inferior to the best known
results leveraging underdamped or even higher order Langevin dynamics such as (Cheng
et al., 2018b; Dalalyan and Riou-Durand, 2018; Shen and Lee, 2019; Ma et al., 2021; Mou
et al., 2021), which corresponds to accelerated methods in optimization. It thus remains
open to investigate whether dimension independent bounds can be combined with these
accelerated methods to improve ε dependence as well as condition number dependence.
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8. Proofs of the Supporting Lemmas

8.1 Proofs of Lemmas in the Lipschitz Continuous Case

8.1.1 Proof of Lemma 5

Before proving Lemma 5, we first state a result in (Theorem 23.9 of Villani, 2009) that
establishes the strong subdifferential of the Wasserstein-2 distance.

Lemma 20 Assume that µt, µ̂t solve the following continuity equations

∂µt
∂t

+∇ · (ξtµt) = 0,
∂µ̂t
∂t

+∇ · (ξ̂tµ̂t) = 0.

Then
1

2

d

dt
W 2

2 (µt, µ̂t) = −
∫ 〈
∇̃ψt, ξt

〉
dµt −

∫ 〈
∇̃ψ̂t, ξ̂t

〉
dµ̂t,

where ψt and ψ̂t are the optimal transport vector fields:

exp(∇̃ψt)#µt = µ̂t, exp(∇̃ψ̂t)#µ̂t = µt.

Writing pt and p̂t as the density functions of µt and µ̂t, we take ξt = −β∇ log pt −∇g and
ξ̂t = 0 so that µt follows the Fokker-Planck equation equation associated with process (3)
and µ̂t = ν is a constant measure. This leads to the following equation

1

2

d

ds
W 2

2 (µs, ν) =

∫ 〈
β∇ log ps +∇g, (∇̃ψ)νµs

〉
dµs.

For µ being the probability measure associated with its density p, define relative entropy
β−1F (µ), where F (µ) = Ew∼p [g(w)] + H(p). We can then use the fact that the relative
entropy β−1F is β−1m-geodesically strongly convex (see Proposition 9.3.2 of (Ambrosio
et al., 2008)) to prove the following Lemma.

Lemma 21 For p being the density of µ,

F (ν)− F (µ)− m

2
W 2

2 (µ, ν) ≥
∫ 〈

β∇ log p+∇g, (∇̃ψ)νµ

〉
dµ.

Proof Let µt be the geodesic between µ and ν. β−1m-geodesic strong convexity of β−1F
states that (see Proposition 9.3.2 of (Ambrosio et al., 2008)):

β−1F (µt) ≤ tβ−1F (ν) + (1− t)β−1F (µ)− β−1m

2
t(1− t)W 2

2 (µ, ν),

and consequently

F (µt)− F (µ)

t
≤ F (ν)− F (µ)− m

2
(1− t)W 2

2 (µ, ν).

By the definition of subdifferential (c.f. Villani, 2009, Theorem 23.14) we also have along the
diffusion process defined by equation (3):

lim inf
t↓0

F (µt)− F (µ)

t
≥
∫ 〈

β∇ log p+∇g, (∇̃ψ)νµ

〉
dµ.
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Taking the limit of t→ 0, we obtain the result.

Proof [Proof of Lemma 5] Combining Lemma 20 and 21, we obtain that

1

2

d

ds
W 2

2 (µs, ν) =

∫ 〈
β∇ log ps +∇g, (∇̃ψ)νµs

〉
dµs ≤ F (ν)− F (µs)−

m

2
W 2

2 (µs, ν). (23)

Along the Fokker-Planck equation associated with process (3), d
dsF (µs) = −Eps

[
‖β∇ log ps +∇g‖22

]
≤

0, meaning that F (µs) is monotonically decreasing. We obtain from equation (23) for s ∈ [0, t],

1

2

d

ds
W 2

2 (µs, ν) ≤ sup
s∈[0,t]

[F (ν)− F (µs)]−
m

2
W 2

2 (µs, ν) = F (ν)− F (µt)−
m

2
W 2

2 (µs, ν).

Applying the Gronwall’s inequality, we arrive at the conclusion that

2

m

(
1− e−m∆t

)
(F (µt)− F (ν)) ≤ e−m∆tW 2

2 (µ0, ν)−W 2
2 (µt, ν).

Taking dµt = p̃tdx, dµ0 = pt−1dx, dν = pdx, and ∆t = ηt finishes the proof.

8.1.2 Proof of Lemma 6

Proof [Proof of Lemma 6] We first state a point-wise result along the gradient descent
step (4):

2ηt (f(w̃t)− f(w)) ≤ ‖w̃t − w‖22 − ‖wt − w‖
2
2 + η2

tG
2. (24)

This is because

‖wt − w‖22 = ‖w̃t − ηt∇f(w̃t)− w‖22
= ‖w̃t − w‖22 − 2ηt 〈∇f(w̃t), w̃t − w〉+ η2

t ‖∇f(w̃t)‖22
≤ ‖w̃t − w‖22 − 2ηt (f(w̃t)− f(w)) + η2

tG
2,

where the last step follows from the convexity and Lipschitz continuity of f .
We then denote the measures corresponding to random variables wt and w̃t to be: wt ∼ µt

and w̃t ∼ µ̃t. From the definitions, we know that they have densities pt and p̃t.
Denote an optimal coupling between µ̃t and µ (where measure µ has density p, which is

the stationary distribution) to be γ ∈ Γopt(µ̃t, µ). We then take expectations over γ(w̃t, w)
on both sides of equation (24):

2ηt (f(p̃t)− f(p)) = 2ηtE(w̃t,w)∼γ [f(w̃t)− f(w)]

≤ E(w̃t,w)∼γ
[
‖w̃t − w‖22

]
− E(w̃t,w)∼γ

[
‖wt − w‖22

]
+ η2

tG
2

= W 2
2 (p̃t, p)− E(w̃t,w)∼γ

[
‖wt − w‖22

]
+ η2

tG
2.

23



Freund, Ma and Zhang

From the relationship wt = w̃t − ηt∇f(w̃t), we know that the joint distribution of (wt, w) is
(id− ηt∇f, id)# γ. Note that γ̃ = (id− ηt∇f, id)# γ also defines a coupling, and therefore

E(w̃t,w)∼γ
[
‖wt − w‖22

]
= E(wt,w)∼γ̃

[
‖wt − w‖22

]
≥ inf

γ̂∈Γ(µt,µ)
E(wt,w)∼γ̂

[
‖wt − w‖22

]
= W 2

2 (pt, p).

Therefore,

2ηt (f(p̃t)− f(p)) ≤W 2
2 (p̃t, p)−W 2

2 (pt, p) + η2
tG

2.

8.1.3 Proofs of Lemma 9 and 10 for the streaming SGLD algorithm 2

Proof [Proof of Lemma 9] By the definitions of wt and w̃t,

‖wt − w‖22 = ‖w̃t − ηt∇`(w̃t, zt)− w‖22
= ‖w̃t − w‖22 − 2ηt 〈∇`(w̃t, zt), w̃t − w〉+ η2

t ‖∇`(w̃t, zt)‖
2
2 .

We now take expectation with respect to zt, conditioned on w̃t, to obtain

Ezt|w̃t
‖wt − w‖22 ≤ ‖w̃t − w‖

2
2 − 2ηt 〈∇f(w̃t), w̃t − w〉+ η2

tG
2
`

≤ ‖w̃t − w‖22 − 2ηt (f(w̃t)− f(w)) + η2
tG

2
` .

The last step follows from the convexity of f . Therefore, the desired bound follows.

Proof [Proof of Lemma 10] We first denote the measures corresponding to random variables
wt and w̃t to be: wt ∼ µt and w̃t ∼ µ̃t. From the definitions, we know that they have
densities pt and p̃t.

Denote an optimal coupling between µ̃t and µ (where measure µ has density p, which is
the stationary distribution) to be γ ∈ Γopt(µ̃t, µ). We then take expectations over γ(w̃t, w)
on both sides of Eq. (11), ∀z ∈ Ω:

2ηtE(w̃t,w)∼γ [Ez [`(w̃t, z)− `(w, z)]]
≤ E(w̃t,w)∼γ

[
‖w̃t − w‖22

]
− E(w̃t,w)∼γ

[
Ewt

[
‖wt − w‖22|w̃t

]]
+ η2

tG
2
`

= W 2
2 (p̃t, p)− E(w̃t,w)∼γ

[
Ewt

[
‖wt − w‖22|w̃t

]]
+ η2

tG
2
` .

From the relationship wt = w̃t − ηt∇`(w̃t, zt), we know that conditional on zt, the joint
distribution of (wt, w) is (id− ηt∇`, id)# γ. Note that γ̃ = (id− ηt∇`, id)# γ also defines a
coupling, and therefore

E(w̃t,w)∼γ
[
Ewt

[
‖wt − w‖22|w̃t

]]
= Ezt

[
E(w̃t,w)∼γ

[
Ewt

[
‖wt − w‖22|w̃t, zt

]]]
= Ezt

[
E(wt,w)∼γ̃

[
‖wt − w‖22|zt

]]
≥ inf

γ̂∈Γ(µt,µ)
E(wt,w)∼γ̂

[
‖wt − w‖22

]
= W 2

2 (pt, p).
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Plugging this result and the Lipschitz assumption on ` in, we obtain that

2η̃t[`(p̃t)− `(p)] ≤W2(p̃t, p)
2 −W2(pt, p)

2 + η̃2
tG

2
` .

8.2 Proofs of Lemmas in the Lipschitz Smooth Case

8.2.1 Proofs of Lemmas 14 and 15 for the full gradient Langevin
algorithm 1

Proof [Proof of Lemma 14] By the geodesic convexity of the entropy function H(p) =
βEw∼p [ln p(w)],

H(p̃t)−H(p) ≥ β
∫ 〈
∇ ln p(w′),

(
T pp′ − id

)
(w′)

〉
p(w′) dw′.

where T p̃tp is the optimal transport from p to p̃t. Using optimal coupling µt ∈ Π(p̃, p),

H(p̃t)−H(p) ≥ βEw,w′∼µt
[〈
∇ ln p(w′), w − w′

〉]
.

In addition, convexity of f and g implies that

Ew,w′∼µt [g(w)− g(w′)] ≥ Ew,w′∼µt
[〈
∇g(w′), w − w′

〉]
and

Ew,w′∼µt [f(w)− f(w′)] ≥ Ew,w′∼µt
[〈
∇f(w′), w − w′

〉]
.

Adding the above three inequalities, and note that the following holds point-wise

β∇ ln p(w′) +∇g(w′) +∇f(w′) = 0,

we obtain that

H(p̃t)−H(p) + Ew,w′∼µt [g(w)− g(w′)] ≥ −Ew,w′∼µt
[〈
∇f(w′), w − w′

〉]
,

and that

Q(p̃t)−Q(p) ≥ Ew,w′∼µt [f(w)− f(w′)]− Ew,w′∼µt
[〈
∇f(w′), w − w′

〉]
. (25)

Since the potential function f(w) is convex and L-smooth,

f(w) ≥ f(w′) +∇f(w′)>(w − w′) +
1

2L
‖∇f(w′)−∇f(w)‖22. (26)

Combining equations (25) and (26), we obtain the desired bound.

25



Freund, Ma and Zhang

Proof [Proof of Lemma 15] From smoothness and convexity, we have

‖∇f(w)‖2 ≤ 2 ‖∇f(w)−∇f(w∗)‖2 + 2 ‖∇f(w∗)‖2

≤ 4L
[
f(w)− f(w∗)−∇f(w∗)

>(w − w∗)
]

+ 2 ‖∇f(w∗)‖2 .

Taking expectation over w on both sides, we obtain that

Ew∼p∗ ‖∇f(w)‖2 ≤ 4L · Ew∼p∗
[
f(w)− f(w∗)−∇f(w∗)

>(w − w∗)
]

+ 2 ‖∇f(w∗)‖2 . (27)

We now upper bound Ew∼p∗
[
f(w)− f(w∗)−∇f(w∗)

>(w − w∗)
]
. Let p0 be the normal

distribution N(w∗, (β/m)I), and define

∆f(w) = f(w)− f(w∗)−∇f(w∗)
>(w − w∗),

∆g(w) = g(w)− g(w∗)−∇g(w∗)
>(w − w∗),

then p∗ can be expressed as

p∗(w) ∝ exp(−β−1(∆f(w) + ∆g(w)))

∝ exp(−β−1∆f(w) + ln p0(w)),

which is the solution of

p∗ = arg min
p

Ew∼p
[
∆f(w) + β ln

p(w)

p0(w)

]
.

Therefore

Ew∼p∗∆f(w) ≤ Ew∼p∗
[
∆f(w) + β ln

p∗(w)

p0(w)

]
(i)
= −β lnEw∼p0 exp(−β−1∆f(w))

≤ −β lnEw∼p0 exp(−0.5β−1(w − w∗)>H(w − w∗))
= 0.5β ln |I +H/m| ≤ 0.5βtrace(H/m), (28)

where equality (i) follows from the fact that both sides equal to −β lnZ, where Z is the
normalization constant of exp

(
−β−1∆f(w)

)
.

We then upper bound ‖∇f(w∗)‖2. Since w∗ is the minimum of f + g, ∇f(w∗) =
−∇g(w∗) = −mw∗. Hence

‖∇f(w∗)‖2 ≤ m2 ‖w∗‖2 . (29)

Plugging inequalities (28) and (29) into inequality (27) proves the desired result that

Ew∼p∗ ‖∇f(w)‖2 ≤ 2βL

m
trace(H) + 2m2 ‖w∗‖2 .
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8.2.2 Proofs of Lemma 18 and 19 for the SGLD algorithm 2

Proof [Proof of Lemma 18] By the definitions of wt and w̃t,

‖wt − w‖22 =
∥∥∥w̃t − ηt∇f̃(w̃t,S)− w

∥∥∥2

2

= ‖w̃t − w‖22 − 2ηt

〈
∇f̃(w̃t,S), w̃t − w

〉
+ η2

t

∥∥∥∇f̃(w̃t,S)
∥∥∥2

2
.

We now take expectation with respect to S, to obtain

Ewt|w̃t
‖wt − w‖22 = ‖w̃t − w‖22 − 2ηt 〈∇f(w̃t), w̃t − w〉+ η2

tES
∥∥∥∇f̃(w̃t,S)

∥∥∥2

2

≤ ‖w̃t − w‖22 − 2ηt (f(w̃t)− f(w)) + η2
tES

∥∥∥∇f̃(w̃t,S)
∥∥∥2

2
. (30)

We then upper bound ES
∥∥∥∇f̃(w̃t,S)

∥∥∥2

2
by introducing variable w′ that is distributed

according to p and couples optimally with the law of w̃t:

ES
∥∥∥∇f̃(w̃t,S)

∥∥∥2

2
≤ 2ES

∥∥∥∇f̃(w̃t,S)−∇f̃(w′,S)
∥∥∥2

+ 2ES
∥∥∥∇f̃(w′,S)

∥∥∥2
. (31)

For function f̃ being L`-smooth,

f̃(w̃t,S) ≥ f̃(w′,S) +∇f̃(w′,S)>(w − w′) +
1

2L`
‖∇f̃(w′,S)−∇f̃(w̃t,S)‖22.

Taking expectation over the randomness of minibatch assignment S on both sides leads to
the fact that

f(w̃t) ≥ f(w′) +∇f(w′)>(w − w′) +
1

2L`
ES‖∇f̃(w′,S)−∇f̃(w̃t,S)‖22.

Combining this equation with equation (25), we adapt Lemma 14 to the stochastic gradient
method:

E(w̃t,w′)∼µt

[
ES‖∇f̃(w′,S)−∇f̃(w̃t,S)‖22

]
≤ 2L`[Q(p̃t)−Q(p)].

Applying this result to equation (31) and taking expectation of (w̃t, w
′) ∼ µt on both

sides, we obtain:

Ew̃t∼p̃t

[
ES
∥∥∥∇f̃(w̃t,S)

∥∥∥2

2

]
≤ 4L`[Q(p̃t)−Q(p)] + 2E(w̃t,w′)∼µt

[
ES
∥∥∥∇f̃(w′,S)

∥∥∥2
]
.

Therefore,

E(w̃t,w′)∼µt

[
Ewt|w̃t

‖wt − w‖22
]
≤ E(w̃t,w′)∼µt

[
‖w̃t − w‖22

]
− 2ηt (f(p̃t)− f(p))

+ η2
t

(
4L`[Q(p̃t)−Q(p)] + 2E(w̃t,w′)∼µt

[
ES
∥∥∥∇f̃(w′,S)

∥∥∥2
])

,

27



Freund, Ma and Zhang

leading to the final result that

W 2
2 (pt, p) ≤ E(w̃t,w′)∼µt

[
Ewt|w̃t

‖wt − w‖22
]

≤W 2
2 (p̃t, p)− 2ηt (f(p̃t)− f(p))

+ η2
t

(
4L`[Q(p̃t)−Q(p)] + 2E(w̃t,w′)∼µt

[
ES
∥∥∥∇f̃(w′,S)

∥∥∥2
])

.

Proof [Proof of Lemma 19] Similar to the proof of Lemma 15, we have

ES
∥∥∥∇f̃(w′,S)

∥∥∥2
≤2ES‖∇f̃(w′,S)−∇f̃(w∗,S)‖22 + 2ES‖∇f̃(w∗,S)‖22

≤4L`

[
f(w)− f(w∗)−∇f(w∗)

>(w − w∗)
]

+ 2ES‖∇f̃(w∗,S)‖22.

Taking expectation on both sides, we obtain that

E(w̃t,w′)∼µt

[
ES
∥∥∥∇f̃(w′,S)

∥∥∥2
]
≤ 4L`Ew∼p

[
f(w)− f(w∗)−∇f(w∗)

>(w − w∗)
]

+ 2ES
∥∥∥∇f̃(w∗,S)

∥∥∥2
. (32)

We now upper bound Ew∼p
[
f(w)− f(w∗)−∇f(w∗)

>(w − w∗)
]
. Let p0 be the normal

distribution N(w∗, (β/m)I), and define

∆f(w) = f(w)− f(w∗)−∇f(w∗)
>(w − w∗), (33)

∆g(w) = g(w)− g(w∗)−∇g(w∗)
>(w − w∗), (34)

then p can be expressed as

p ∝ exp(−β−1(∆f(w) + ∆g(w))),

which is the solution of

p = arg min
p

Ew∼p
[
∆f(w) + β ln

p(w)

p0(w)

]
.

Therefore

Ew∼p∆f(w) ≤Ew∼p
[
∆f(w) + β ln

p(w)

p0(w)

]
=− β lnEw∼p0 exp(−β−1∆f(w))

≤− β lnEw∼p0 exp(−0.5β−1(w − w∗)>H(w − w∗))
=0.5β ln |I +H/m| ≤ 0.5βtrace(H/m). (35)

Since ES∇f̃(w∗,S) = ∇f(w∗), we can decompose ES
∥∥∥∇f̃(w∗,S)

∥∥∥2
as follows:

ES
∥∥∥∇f̃(w∗,S)

∥∥∥2
= ‖∇f(w∗)‖2 + ES

∥∥∥∇f(w∗)−∇f̃(w∗,S)
∥∥∥2
.
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Since w∗ is the minimum of f + g, ∇f(w∗) = −∇g(w∗) = −mw∗. Hence

ES
∥∥∥∇f̃(w∗,S)

∥∥∥2
= m2 ‖w∗‖2 + ES

∥∥∥∇f(w∗)−∇f̃(w∗,S)
∥∥∥2
. (36)

Plugging inequalities (35) and (36) into inequality (32) proves the desired result that

E(w̃t,w′)∼µt

[
ES
∥∥∥∇f̃(w′,S)

∥∥∥2
]

≤2βL`
m

trace(H) + 2m2 ‖w∗‖2 + 2ES
∥∥∥∇f(w∗)−∇f̃(w∗,S)

∥∥∥2
.
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