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Abstract

It is well-known that given a smooth, bounded-from-below, and possibly nonconvex func-
tion, standard gradient-based methods can find ε-stationary points (with gradient norm
less than ε) in O(1/ε2) iterations. However, many important nonconvex optimization prob-
lems, such as those associated with training modern neural networks, are inherently not
smooth, making these results inapplicable. In this paper, we study nonsmooth nonconvex
optimization from an oracle complexity viewpoint, where the algorithm is assumed to be
given access only to local information about the function at various points. We provide
two main results: First, we consider the problem of getting near ε-stationary points. This
is perhaps the most natural relaxation of finding ε-stationary points, which is impossible
in the nonsmooth nonconvex case. We prove that this relaxed goal cannot be achieved
efficiently, for any distance and ε smaller than some constants. Our second result deals
with the possibility of tackling nonsmooth nonconvex optimization by reduction to smooth
optimization: Namely, applying smooth optimization methods on a smooth approximation
of the objective function. For this approach, we prove under a mild assumption an inherent
trade-off between oracle complexity and smoothness: On the one hand, smoothing a non-
smooth nonconvex function can be done very efficiently (e.g., by randomized smoothing),
but with dimension-dependent factors in the smoothness parameter, which can strongly
affect iteration complexity when plugging into standard smooth optimization methods. On
the other hand, these dimension factors can be eliminated with suitable smoothing meth-
ods, but only by making the oracle complexity of the smoothing process exponentially
large.

Keywords: nonconvex nonsmooth optimization, optimization theory, oracle complexity,
smoothing

1. Introduction

We consider optimization problems associated with functions f : Rd → R, where f(·) is
Lipschitz continuous and bounded from below, but otherwise satisfies no special structure,
such as convexity. Clearly, in high dimensions, it is generally impossible to efficiently
find a global minimum of a nonconvex function. However, if we relax our goal to finding
(approximate) stationary points, then the nonconvexity is no longer an issue. In particular,
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it is known that if f(·) is smooth – namely, differentiable and with a Lipschitz continuous
gradient – then for any ε > 0, simple gradient-based algorithms can find x such that
‖∇f(x)‖ ≤ ε, using only O(1/ε2) gradient computations, independent of the dimension (see
for example Nesterov 2012; Jin et al. 2017; Carmon et al. 2019).

Unfortunately, many optimization problems of interest are inherently not smooth. For
example, when training modern neural networks, involving max operations and rectified
linear units, the associated optimization problem is virtually always nonconvex as well
as nonsmooth. Thus, the positive results above, which crucially rely on smoothness, are
inapplicable. Although there are positive results even for nonconvex nonsmooth functions,
they tend to be either purely asymptotic in nature (e.g., Benäım et al. 2005; Kiwiel 2007;
Zhang and Chen 2009; Davis et al. 2018; Majewski et al. 2018), depend on the internal
structure and representation of the objective function, or require additional assumptions
which many problems of interest do not satisfy, such as weak convexity or some separation
between nonconvex and nonsmooth components1 (e.g., Cartis et al. 2011; Chen 2012; Duchi
and Ruan 2018; Bolte et al. 2018; Davis and Drusvyatskiy 2019; Drusvyatskiy and Paquette
2019; Beck and Hallak 2020). This leads to the interesting question of developing black-box
algorithms with non-asymptotic guarantees for nonsmooth nonconvex functions, without
assuming any special structure.

In this paper, we study this question via the well-known framework of oracle complexity
(Nemirovski and Yudin, 1983): Given a class of functions F , we associate with each f ∈ F
an oracle, which for any x in the domain of f(·), returns local information about f(·) at x
(such as its value and gradient).2 We consider iterative algorithms which can be described
via an interaction with such an oracle: At every iteration t, the algorithm chooses an iterate
xt, and receives from the oracle local information about f(·) at xt, which is then used to
choose the next iterate xt+1. This framework captures essentially all iterative algorithms for
black-box optimization. In this framework, we fix some iteration budget T , and ask what
properties can be guaranteed for the iterates x1, . . . ,xT , as a function of T and uniformly
over all functions in F (for example, how close to optimal they are, whether they contain
an approximately-stationary point, etc.). Unfortunately, as recently pointed out in Zhang
et al. (2020), neither small optimization error (in terms of the function value) nor small
gradients can be obtained for nonsmooth nonconvex functions with such local-information
algorithms: Indeed, approximately-stationary points can be easily “hidden” inside some
arbitrarily small neighborhood, which cannot be found in a bounded number of iterations.

Instead, we consider here two alternative approaches to tackle nonsmooth nonconvex
optimization, and provide new oracle complexity results for each. We note that Zhang et al.
(2020) recently proposed another promising approach, by defining a certain relaxation of
approximate stationarity (so-called (δ, ε)-stationarity), and remarkably, prove that points
satisfying this relaxed goal can be found via simple iterative algorithms with provable
guarantees. However, there exist cases where their definition does not resemble a stationary
point in any intuitive case, and thus it remains to be seen whether it is the most appropriate
one. We further discuss the pros and cons of their approach in Appendix A.

1. A trivial example arising in deep learning, which does not satisfy most such structural assumptions, is
the negative of the ReLU function, x 7→ −max{0, x}.

2. For non-differentiable functions, we use a standard generalization of gradients following Clarke (1990),
see Sec. 2 for details.
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In our first contribution, we consider relaxing the goal of finding approximately-stationary
points, to that of finding near -approximately-stationary points: Namely, getting δ-close to
a point x with a (generalized) gradient of norm at most ε. This is arguably the most natural
way to relax the goal of finding ε-stationary points, while hopefully still getting meaningful
algorithmic guarantees. Moreover, approaching stationary points is feasible in an asymp-
totic sense (see for instance Drusvyatskiy and Paquette 2019). Unfortunately, we formally
prove that this relaxation already sets the bar too high: For any possibly randomized algo-
rithm interacting with a local oracle, it is impossible to find near-approximately-stationary
point with efficient worst-case guarantees, for small enough constant δ, ε.

In our second contribution, we consider tackling nonsmooth nonconvex optimization by
reduction to smooth optimization: Given the target function f(·), we first find a smooth
function f̃(·) (with Lipschitz gradients) which uniformly approximates it up to some ar-
bitrarily small parameter ε, and then apply a smooth optimization method on f̃(·). Such
reductions are common in convex optimization (e.g., Nesterov 2005; Beck and Teboulle 2012;
Allen-Zhu and Hazan 2016), and intuitively, should usually lead to points with meaningful
properties with respect to the original function f(·), at least when ε is small enough. For
example, it is known that stationary points of f(·) are the limit of approximately-stationary
points of appropriate smoothings of f(·), as ε → 0 (Rockafellar and Wets, 2009, Theorem
9.67).

This naturally leads to the question of how we can find a smooth approximation of a
Lipschitz function f(·). Inspecting existing approaches for smoothing nonconvex functions,
we notice an interesting trade-off between computational efficiency and the smoothness
of the approximating function: On the one hand, there exist optimization-based methods
from the functional analysis literature (in particular, Lasry-Lions regularization (Lasry and
Lions, 1986)) which yield essentially optimal gradient Lipschitz parameters, but are not
computationally efficient. On the other hand, there exist simple, computationally tractable
methods (such as randomized smoothing Duchi et al., 2012), which unfortunately lead to
much worse gradient Lipschitz parameters, with strong scaling in the input dimension. This
in turn leads to larger iteration complexity, when plugging into standard smooth optimiza-
tion methods. Is this kind of trade-off between computational efficiency and smoothness
necessary?

Considering this question from an oracle complexity viewpoint, we prove that this trade-
off is indeed necessary under mild assumptions: If we want a smoothing method whose oracle
complexity is polynomial in the problem parameters, we must accept that the gradient
Lipschitz parameter may be no better than that obtained with randomized smoothing (up
to logarithmic factors). Thus, in a sense, randomized smoothing is an optimal nonconvex
smoothing method among computationally efficient ones.

It is important to stress that although we formalize our results for general Lipschitz
functions, all of our results readily apply to more restricted classes of Lipschitz functions
which are often studied in the optimization literature such as Hadamard semi-differentiable,
Whitney-stratifiable and semi-algebraic functions. We further discuss this in Remark 2.

Overall, we hope that our work motivates additional research into black-box algorithms
for nonconvex, nonsmooth optimization problems, with rigorous finite-time guarantees.

Our paper is structured as follows. In Sec. 2, we formally introduce the notations and
terminology that we use. In Sec. 3, we present our results for getting near approximately
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stationary points. In Sec. 4, we present our results for smoothing nonsmooth nonconvex
functions. In Sec. 5, we provide full proofs. We conclude in Sec. 6 with a discussion of
open questions. Our paper also contains a few appendices, which beside technical proofs
and lemmas, include further discussion of the notion of (δ, ε)-stationarity from Zhang et al.
(2020) (Appendix A), and a proof that the dimension-dependency arising from randomized
smoothing provably affects the iteration complexity of vanilla gradient descent (Appendix
B).

2. Preliminaries

Notation. We let bold-face letters (e.g., x) denote vectors. 0 is the zero vector in Rd (where
d is clear from context), and e1, e2, . . . are the standard basis vectors. Given a vector
x, xi denotes its i-th coordinate, and x̄ denotes the normalized vector x/‖x‖ (assuming
x 6= 0). 〈·, ·〉, ‖ · ‖ denote the standard Euclidean dot product and its induced norm
over Rd, respectively. For any real number x, we denote [x]+ := max{x, 0}. Given two
functions f(·), g(·) on the same domain X , we define ‖f − g‖∞ = supx∈X |f(x)− g(x)|. We
denote by Sd−1 :=

{
x ∈ Rd

∣∣ ‖x‖ = 1
}

the unit sphere. For any natural N , we abbreviate
[N ] := {1, . . . , N}. We occasionally use standard big-O asymptotic notation: For functions
f, g : X → [0,∞) we write f = O(g) if there exists c > 0 such that f(x) ≤ c ·g(x); f = Ω(g)
if g = O(f); f = Θ(g) if f = O(g) and g = O(f). We occasionally hide logarithmic factors
by writing f = Õ(g) if f = O(g log(g + 1)), or f = Ω̃(g) if g = Õ(f), and also denote by
poly(·) polynomial factors.

Gradients and generalized gradients. If a function f : Rd → R is differentiable
at x, we denote its gradient by ∇f(x). For possibly non-differentiable functions, we let
∂f(x) denote the set of generalized gradients (following Clarke 1990), arguably the most
standard extension of gradients to certain classes of nonsmooth nonconvex functions. For
Lipschitz functions (which are almost everywhere differentiable by Rademacher’s theorem),
one simple way to define it is

∂f(x) := conv{u : u = lim
k→∞

∇f(xk),xk → x}

(namely, the convex hull of all limit points of ∇f(xk), over all sequences x1,x2, . . . of
differentiable points of f(·) which converge to x). With this definition, a stationary point
with respect to f(·) is a point x satisfying 0 ∈ ∂f(x). Also, given some ε ≥ 0, we say
that x is an ε-stationary point with respect to f(·), if there is some u ∈ ∂f(x) such that
‖u‖ ≤ ε. Furthermore, when some small δ, ε will be clear from context, we will say that x
is a near-approximately-stationary point if ‖x− x′‖ < δ for some ε-stationary point x′.

Local oracles. We consider oracles that given a function f(·) and a point x, return
some quantity Of (x) which conveys local information about the function near that point.
Formally (following Braun et al. 2017), we call an oracle local if for any x and any two
functions f, g that are equal over some neighborhood of x, it holds that Of (x) = Og(x).
An important example is the first order oracle Of (x) = (f(x), ∂f(x)), but one can consider
more sophisticated oracles such as those which return all high order derivative information,
wherever they exist. We choose to work in this generality since our results hold for any local
oracle whatsoever, although we note that in the nonconvex-nonsmooth setting, it remains
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to be seen whether in the general Lipschitz setting discussed in this paper there is any use
for any local information which is not first order.

3. Hardness of Getting Near Approximately-Stationary Points

In this section, we present our first main result, which establishes the hardness of getting
near approximately-stationary points.

To avoid trivialities, and following Zhang et al. (2020), we will focus on functions f(·)
which are Lipschitz and bounded from below. In particular, we will assume that f(0) −
infx f(x) is upper bounded by a constant. We note that this is without loss of generality,
as 0 can be replaced by any other fixed reference point. We consider possibly randomized
algorithms which interact with some local oracle. Such an algorithm first produces x1

possibly at random, receives Of (x1) for some local oracle Of , and for every t > 1 produces
xt possibly at random based on previously observed responses. Our main result in this
section is the following:

Theorem 1 There exist absolute constants c, C > 0 such that for any algorithm A inter-
acting with a local oracle, and any T ∈ N, d ≥ 2, there is a function f(·) on Rd such
that

• f(·) is C-Lipschitz, f(0)− infx f(x) ≤ C, inf {‖x‖ | ∂f(x) = {0}} ≤ C .

• With probability at least 1−CT exp(−cd) over the algorithm’s randomness, the iterates
x1, . . . ,xT produced by the algorithm satisfy

inf
x∈Σ

min
t∈[T ]
‖xt − x‖ ≥ c ,

where Σ is the set of c-stationary points of f(·).

The theorem implies that it is impossible to obtain worst-case guarantees for finding
near-approximately-stationary points of Lipschitz, bounded-from-below functions unless T
has exponential dependence on d. Note that if an exponential dimension dependence is
allowed, then under the theorem’s assumptions, one can trivially produce points close to a
stationary point (or to any point, for that matter) using an exhaustive grid search. The
theorem implies that no oracle-based algorithm will be significantly more efficient than this
trivial strategy. Further notice that since every deterministic algorithm can be viewed as
a randomized algorithm with a trivial distribution over its decisions, the theorem above
readily holds for deterministic algorithms as well. That being the case, the lower bound
described in the second bullet holds deterministically.

Remark 2 (More assumptions on f(·)) The Lipschitz functions f(·) used to prove the
theorem are based on a composition of affine functions, orthogonal projections, the Euclidean
norm function x 7→ ‖x‖, and the max function. Thus, the result also holds for more specific
families of functions considered in the literature, which satisfy additional regularity proper-
ties, as long as they contain any Lipschitz functions composed as above. These include, for
example, Hadamard semi-differentiable functions (Zhang et al., 2020), Whitney-stratifiable
functions (Bolte et al., 2007; Davis et al., 2018) and semi-algebraic functions.
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Figure 1: Illustration of the function used in the proof of Thm. 1.

The formal proof of the theorem appears in Sec. 5, but can be informally described
as follows: First, we construct an algorithm-dependent one dimensional “hard” Lipschitz
function h : R → R that has large derivatives everywhere except for a single point x∗. By
“hard”, we mean that after any finite number of steps of the algorithm, we can provide
some small neighborhood of x∗ which the algorithm is likely not to enter. Based on h, we
construct a Lipschitz function on Rd, specified by a small vector w ∈ span{e1, . . . , ed−1},
which resembles the function x 7→ ‖(x1, . . . , xd−1)‖2 + h(xd) in “most” of Rd, but with a
“channel” leading away from a small neighborhood of x∗ · ed in the direction of w, and
reaching a completely flat region (see Fig. 1). In high dimensions, the channel and the
flat region contain a vanishingly small portion of Rd. This function has the property of
having ε-stationary points only in the flat region which is in the direction of x∗ · ed + w,
even though the function appears in most places like a function which does not depend
on w. As a result, any oracle-based algorithm that doesn’t get to close to x∗ in the d’th
coordinate and doesn’t know w, is unlikely to hit the vanishingly small region where the
function differs from x 7→ ‖(x1, . . . , xd−1)‖2 +h(xd), receiving no information about w, and
thus cannot determine where the ε-stationary points lie. As a result, such an algorithm
cannot return near-approximately-stationary points.

4. Smoothing Nonsmooth Nonconvex Functions

In this section, we turn to our second main contribution, examining the possibility of re-
ducing nonsmooth nonconvex optimization to smooth nonconvex optimization, by running
a smooth optimization method on a smooth approximation of the objective function. This
longstanding approach for nonsmooth nonconvex optimization has been examined by many
works, initially driven by practical applications (Blake and Zisserman, 1987; Wu, 1996)
complemented by further theoretical analyses (Mobahi and Fisher III, 2015; Hazan et al.,
2016). In what follows, we focus our discussion on 1-Lipschitz functions: This is without
loss of generality, since if our objective is L-Lipschitz, we can simply rescale it by L (and a
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Lipschitz assumption is always necessary if we wish to obtain a Lipschitz-gradient smooth
approximation). Also, we focus on smoothing functions over all of Rd for simplicity, but
our results and proofs easily extend to the case where we are only interested in smoothing
over some bounded domain on which the function is Lipschitz.

For a nonsmooth convex function f(·), a well-known smoothing approach is proxi-
mal smoothing (also known as the Moreau envelope or Moreau-Yosida regularization, see
Moreau, 1965; Bauschke et al., 2011) defined as Pδ(f) where

Pδ(f)(x) := min
y

(
f(y) +

1

2δ
‖y − x‖2

)
. (1)

By picking δ appropriately, Pδ(f) is an arbitrarily good smooth approximation of f ; more
formally, if f is 1-Lipschitz, then for any ε > 0, there exists a choice of δ = Θ(ε) such
that ‖Pδ(f)− f‖∞ ≤ ε, with the gradients of Pδ(f) being 1

ε -Lipschitz (Beck and Teboulle,
2012, Section 4.2). This is essentially optimal, as no ε-approximation can attain a gradient
Lipschitz parameter better than Ω(1/ε) (see Lemma 30 in Appendix D for a formal proof).
Finally, computing gradients of Pδ(f) (which can then be fed into a gradient-based smooth
optimization method) is feasible, given a solution to Eq. (1), which is a convex optimization
problem and hence efficiently solvable in general.

Unfortunately, for nonconvex functions, proximal smoothing (or other smoothing meth-
ods from convex optimization) generally fails in producing smooth approximations. How-
ever, it turns out that similar guarantees can be obtained with a slightly more complicated
procedure, known as Lasry-Lions regularization in the functional analysis literature (Lasry
and Lions, 1986; Attouch and Aze, 1993), which is essentially a double application of prox-
imal smoothing combined with function flipping. One way to define it is as follows:

Pδ,ν(f)(x) := − Pδ(−Pν(f))(x) = max
y

min
z

(
f(z) +

1

2ν
‖z− y‖2 − 1

2δ
‖y − x‖2

)
.

Once more, if f is 1-Lipschitz, then choosing δ, ν = Θ(ε) appropriately, we get an ε-accurate
approximation of f , with gradients which are c

ε -Lipschitz for some absolute constant c.
However, unlike the convex case, implementing this smoothing involves solving a non-convex
optimization problem, which may not be computationally tractable.

Alternatively, a very simple smoothing approach, which works equally well on convex
and non-convex problems, is randomized smoothing, or equivalently, convolving the objec-
tive function with a smoothness-inducing density function. Formally, given the objective
function f and a distribution P , we define f̃(x) := Ey∼P [f(x + y)]. In particular, letting
P be a uniform distribution on an origin-centered ball of radius ε, the resulting function

is an ε-approximation of f(·), and its gradient Lipschitz parameter is c
√
d
ε , where c is an

absolute constant and d is the input dimension (Duchi et al., 2012, Lemma 8). Moreover,
given access to values and gradients of f(·), computing unbiased stochastic estimates of the
values or gradients of f̃(·) is computationally very easy: We just sample a single y ∼ P ,
and return f(x + y) or ∇f(x + y).3 These stochastic estimates can then be plugged into
stochastic methods for smooth optimization (see Duchi et al. 2012; Ghadimi and Lan 2013).

3. Recall that by Rademacher’s theorem, f is differentiable almost everywhere hence ∇f(x + y) exists
almost surely.
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Comparing these two approaches, we see an interesting potential trade-off between the
smoothness obtained and computational efficiency, summarized in the following table:

∇f̃ Lipschitz param. Computationally Efficient?

Randomized Smoothing c ·
√
d/ε X

Lasry-Lions Regularization c/ε ×

In words, randomized smoothing is computationally efficient (unlike Lasry-Lions regular-
ization), but at the cost of a much larger gradient Lipschitz parameter. Since the iteration
complexity of smooth optimization methods strongly depend on this Lipschitz parameter, it
follows that in high-dimensional problems, we pay a high price for computational tractabil-
ity in reducing nonsmooth to smooth problems. As we demonstrate in Appendix B, this is
a real phenomenon and not just an artifact of iteration complexity analysis, at least for gra-
dient descent. Roughly speaking, we prove in Proposition 24 that when gradient descent is
combined with randomized smoothing, it is impossible to guarantee getting to ε-stationary
points of the smoothed function within Ω(

√
d/ε) iterations.

This discussion leads to a natural question: Is this trade-off necessary, or perhaps there
exist computationally efficient methods which can improve on randomized smoothing, in
terms of the gradient Lipschitz parameter? Using an oracle complexity framework, we
prove that this trade-off is indeed necessary (under mild assumptions), and that randomized
smoothing is essentially an optimal method under the constraint of black-box access to the
objective f(·), and a reasonable oracle complexity. We note that Duchi et al. (2012) proved
that the Lipschitz constant cannot be improved by simple randomized smoothing schemes,
but here we consider a much larger class of possible methods.

4.1 Smoothing Algorithms

Before presenting our main result for this section, we need to carefully formalize what we
mean by an efficient smoothing method, since “returning” a smooth approximating func-
tion over Rd is not algorithmically well-defined. Recalling the motivation to our problem,
we want a method that given a nonsmooth objective function f(·), allows us to estimate
values and gradients of a smooth approximation f̃(·) at arbitrary points, which can then
be fed into standard black-box methods for smooth optimization (hence, we need a uni-
form approximation property). Moreover, for black-box optimization, it is desirable that
this smoothing method operates in an oracle complexity framework, where it only requires
local information about f(·) at various points. Finally, we are interested in controlling
various parameters of the smoothing procedure, such as the degree of approximation, the
smoothness of the resulting function, and the complexity of the procedure. In light of these
considerations, a natural way to formalize smoothing methods is the following:

Definition 3 An algorithm S is an (L, ε, T,M, r)-smoother if for any 1-Lipschitz function
f on Rd, there exists a differentiable function f̃ on Rd with the following properties:

1. ‖f − f̃‖∞ ≤ ε, and ∇f̃ is L-Lipschitz.

2. Given any x ∈ Rd, the algorithm produces a (possibly randomized) query sequence
{x1, . . . ,xT } ⊂ {y : ‖y − x‖ ≤ r}, of the form xi+1 = S(i) (ξ,x,Of (x1) , . . . ,Of (xi)),
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where S(i) maps all the previous information gathered by the queries of some local oracle
Of to a new query, possibly based on a draw of some random variable ξ.4 Finally, the
algorithm produces a vector

S (f,x) := S(out) (ξ,x,Of (x1) , . . . ,Of (xT )) ,

where S(out) is some mapping to Rd, such that∥∥∥Eξ [S(f,x)]−∇f̃(x)
∥∥∥ ≤ ε and Pr

ξ
[‖S(f,x)‖ ≤M ] = 1 . (2)

Some comments about this definition are in order. First, the definition is only with
respect to the ability of the algorithm to approximate gradients of f̃(·): It is quite possible
that the algorithm also has additional output (such as an approximation of the value of
f̃(·)), but this is not required for our results. Second, we do not require the algorithm
to return ∇f̃(x): It is enough that the expectation of the vector output is close to it
(up to ε). This formulation captures both deterministic optimization-type methods (such
as Lasry-Lions regularization, where in general we can only hope to solve the auxiliary
optimization problem up to some finite precision) as well as stochastic methods (such as
randomized smoothing, which returns ∇f̃(x) in expectation). Third, we assume that the
queries returned by the algorithm lie at a bounded distance r from the input point x. In
the context of randomized smoothing, this corresponds (for example) to using a uniform
distribution over a ball of radius r centered on x. As we discuss later on, some assumption on
the magnitude of the queries is necessary for our proof technique. However, requiring almost-
sure boundedness is merely for simplicity, and it can be replaced by a high-probability bound
with appropriate tail assumptions (e.g., if we are performing randomized smoothing with a
Gaussian distribution), at the cost of making the analysis a bit more complicated.

Remark 4 We are mostly interested (though do not limit our results) to the following
parameter regimes:

• T = poly
(
d, L, ε−1

)
, essentially meaning that a single call to S is computable in a

reasonable amount of time.

• M = poly (L). As we formally prove in Lemma 31 in Appendix D, if we require f̃ to
approximate f and also have L-Lipschitz gradients, we must have ‖∇f̃ (x) ‖ = O(L).
In particular, whenever M is sufficiently larger than L, Eq. (2) is interchangeable with

the seemingly more natural condition Prξ

[
‖S(f,x)−∇f̃ (x) ‖ ≤M

]
= 1.

• r = O (ε). If we are interested in smoothing a 1-Lipschitz, nonconvex function up to an
accuracy ε around a given point x, we generally expect that only its O(ε)-neighborhood
will convey useful information for the smoothing process. We note that this regime
is indeed satisfied by randomized smoothing (with a uniform distribution around a
radius-ε ball, or with high probability if we use a Gaussian distribution), as well as
Lasry-Lions regularization (in the sense that the smooth approximation at x does not
change if we alter the function arbitrarily outside an O(ε)-neighborhood of x).

4. We assume nothing about ξ, allowing the algorithm to utilize an arbitrary amount of randomness.
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We consider all three of the above to be quite permissive. In particular, notice that random-
ized smoothing over a ball satisfies the much stronger T = 1, M = 1, r = ε.5

Our result will require the assumption that the smoothing algorithm S is translation
invariant with respect to constant functions, in the sense that it treats all constant functions
and regions of the input space in the same manner. We formalize our desired translation-
invariance property as follows:

Definition 5 A smoothing algorithm S satisfies TICF (translation invariance w.r.t. con-
stant functions) if for any two constant functions f, g, any x ∈ Rd and i ∈ [T ], and any
realization of ξ,

S(i) (ξ,x,Of (x1) , . . . ,Of (xi)) = S(i) (ξ,0,Og (x1 − x) , . . . ,Og (xi − x)) + x , (3)

and

S(out) (ξ,x,Of (x1) , . . . ,Of (xT )) = S(out) (ξ,0,Og (x1 − x) , . . . ,Og (x1 − x)) .

In other words, if instead of a constant function f and an input point x, we pick some other
constant function g and the origin, the distribution of the algorithm’s sequence of queries
remain the same (up to a shift by −x), and the gradient estimate returned by the algorithm
remains the same. We consider this to be a mild and natural assumption, which is clearly
satisfied by standard smoothing techniques.

4.2 Main result

With these definitions in hand, we are finally ready to present our main result for this
section, which is the following:

Theorem 6 Let S be an (L, ε, T,M, r)-smoother which satisfies TICF. Then

L
√

log ((M + 1) (T + 1)) ≥ c1 ·
√
d

r
(c2 − ε) (4)

for some absolute constants c1, c2 > 0.

This theorem holds for general values of the parameters L, ε, T,M, r. Concretely, for
parameter regimes of interest (see Remark 4) we have the following corollary:

Corollary 7 Suppose that the accuracy parameter satisfies ε ≤ c2/2. Then any smoothing
algorithm which makes at most T = poly(d, L, ε−1) queries at a distance at most r =
O(ε) from the input point, and returns vectors of norm at most M = poly(d, L, ε−1), must
correspond to a smooth approximation f̃(·) with Lipschitz gradient parameter at least L =
Ω̃(
√
d/ε).

5. Indeed, S(f,x) := ∇f(x+z) where z ∼ Unif(εSd−1) requires only a single query (namely T = 1) at x+z
which is of distance at most ε away from x (hence r = ε) and satisfies ‖S(f,x)‖ ≤ 1 due to Lipschitzness
(hence M = 1).

10
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Figure 2: Illustration of g(x), where ∆ = {0, δ1, . . . , δK} ⊂ [0, 1].

We note that the lower bound on L in this corollary matches (up to logarithmic factors)
the upper bound attained by randomized smoothing. This implies that at least under
our framework and assumptions, randomized smoothing is an essentially optimal efficient
smoothing method.

Another implication of Thm. 6 is that even if we relax our assumption that r = O(ε),
then as long as r does not scale with the dimension d, the gradient Lipschitz parameter of
any efficient smoothing algorithm must scale with the dimension (even though there exist
dimension-free smooth approximations, as evidenced by Lasry-Lions regularization):

Corollary 8 Fix any accuracy parameter ε ≤ c2/2, and any r > 0. Then as long as the
number of queries is T = poly(d) and the output is of size M = poly(d), we must have
L ≥ Ω̃(

√
d).

A third corollary of our theorem is that (perhaps unsurprisingly), there is no way to
implement Lasry-Lions regularization efficiently in an oracle complexity framework:

Corollary 9 If ε ≤ c2/2 and M = poly(d), then any smoothing algorithm for which f̃(·)
corresponds to the Lasry-Lions regularization (which satisfies L = O(1)) must use a number
of queries T = exp(Ω̃(d)).

Remark 10 (Dependence on M) Our definition of a smoothing algorithm focuses on
the expectation of the algorithm’s output. This leads to a logarithmic dependence on M (an
upper bound on the algorithm’s output) in Thm. 6, since in the proof we need to bound the
influence of exponentially-small-probability events on the expectation. It is plausible that the
dependence on M can be eliminated altogether, by changing the definition of a smoothing
algorithm to focus on the expectation of its output, conditioned on all but highly-improbably
events. However, that would complicate the definition and our proof.

Before presenting the formal proof of Thm. 6 in the next section, we outline the main
proof idea. Consider a one dimensional monotonically increasing function g, which is locally
constant at a Ω(1/

√
d) neighborhood of a grid ∆ = {0, δ1, . . . , δK} of points in [0, 1], with K

11
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roughly of order
√
d (see Fig. 2). We define f (x) = g(w>x), where w ∈ Sd−1 is a uniformly

random unit vector. We note that f is a simple function, easily implemented by (say) a
one-hidden layer ReLU neural network, and that it belongs to all of the restricted classes
discussed in Remark 2.

We now proceed to analyze what happens when a smoothing algorithm is given points of
the form δiw, for δi ∈ ∆. Since w is random, and the algorithm is assumed to be translation
invariant, it can be shown (via a concentration of measure argument) that the algorithm is
overwhelmingly likely to produce queries in directions which all have Õ(1/

√
d) correlation

with w, as long as the number of queries is polynomial. Consequently, with high probability,
the queries all lie in a region where the function f(·) is flat, and the algorithm cannot
distinguish between it and a constant function. By the translation-invariance property, this
implies that the gradient estimates ∇f̃(δiw) must be of small norm, uniformly for all δiw.
Combining the observation that ∇f̃(·) is small along order-of-

√
d-many points between 0

and the unit vector w, together with the fact that ∇f̃(·) is L-Lipschitz, we can derive
an upper bound on how much f̃(·) can increase along the line segment between 0 and w,
roughly on the order of L/

√
d. On the other hand, f̃(·) is an approximation of f , which has

a constant increase between 0 and w. Overall this allows us to deduce a lower bound on L
scaling as

√
d, which results in the theorem.

5. Proofs

5.1 Proof of Thm. 1

We start by claiming that when optimizing a one dimensional Lipschitz function that has
large derivatives everywhere apart from it’s global minimum, no algorithm can guarantee
this minimum can be exactly found with some positive probability within any finite time.
The following proposition formalizes this claim.

Proposition 11 For any algorithm A interacting with a local oracle, any T ∈ N and any
δ > 0, there exists a function h : R→ [0,∞) and ρ(T, δ) > 0 such that

• h is 2-Lipschitz, with a single global minimum x∗ ∈ (0, 1), and h(0) = 1.

• ∀x 6= x∗, ∀g ∈ ∂h(x) : |g| ≥ 1.

• The first T iterates produced by A(h): x
A(h)
1 , . . . , x

A(h)
T , satisfy PrA[mint∈[T ] |xt−x∗| <

ρ] < δ.

Remark 12 The quantity ρ(T, δ) given by Proposition 11 depends only on T, δ. In partic-
ular, it is worth noticing that it is uniform over any algorithm A.

The proof of Proposition 11 is inspired by a classic lower bound construction for convex
optimization due to Nemirovski (Nemirovski, 1995, Lemma 1.1.1). The basic idea is to con-
struct two functions that are identical outside some segment, in which their distinct minima
lie at distance 2ρ one from another. Any algorithm that queries only outside that segment
throughout it’s first T − 1 iterates cannot distinguish between the two functions, thus has
probability at least 1

2 to produce it’s next iterate at least ρ away from the minimum of the

12
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function it is actually optimizing (see Fig. 5 in Appendix C for an illustration). By looking
at smaller and smaller segments, this idea can be generalized to any number of queries.
Unfortunately, the gradient size of Nemirovski’s original construction shrinks exponentially
with T , therefore cannot be applied to our setting as it does not satisfy the second bullet of
Proposition 11, which is crucial to the rest of our proof. Nonetheless, we were able to pro-
vide a nonconvex construction similar in spirit which satisfies our desired qualities. Due to
the substantial length and technicality of the proof, we defer it to Appendix C. We continue
by showing that given Proposition 11, this claim generalizes to any dimension.

Lemma 13 For any algorithm A interacting with a local oracle, any T ∈ N, d ≥ 2 and any
δ > 0, there exists a function h : R→ [0,∞) and ρ(T, δ) > 0 such that

• h is 2-Lipschitz, with a single global minimum x∗ ∈ (0, 1), and h(0) = 1.

• ∀x 6= x∗, ∀g ∈ ∂h(x) : |g| ≥ 1.

• If we define f̄h(x1, . . . , xd) := h(xd)+ 1
4

√∑d−1
i=1 x

2
i , then the first T iterates produced by

A(f̄h): x
A(f̄h)
1 , . . . ,x

A(f̄h)
T , satisfy PrA

[
mint∈[T ] ‖x

A(f̄h)
t − x∗‖ < ρ

]
< δ, where x∗ :=

(0, . . . , 0, x∗).

Proof
Since our goal is to provide a lower bound ρ for optimizing f̄h with the algorithm A, we

can assume without loss of generality that A interacts with an even stronger oracle which
provides more than just local information about f̄h. Specifically, suppose A has access to
an oracle of the form

Of̄h
(x) =

({
((z1, . . . , zd−1, xd), f̄h(z1, . . . , zd−1, xd))

∣∣∣(z1, . . . , zd−1) ∈ Rd−1
}
,Oh(xd)

)
for some local oracle O. Namely, a full global description of the function f̄h over the affine
subspace {z| zd = xd}, coupled with local information with respect to the last coordinate.
Note that by definition of f̄h(x), changing xd only affects h(xd), thus all the information
about xd is indeed conveyed through h(xd).

Assuming A interacts with the described O, we turn to describe another algorithm A′,
which given local oracle access to a one dimensional function h works as follows:

• A′ simulates A and receives it’s first iterate x1. It then produces the first iterate
(x1)d.

• Given A’s current iterate xt, A′ queries Oh((xt)d). Then, A′ feeds into A({
((z1, . . . , zd−1, (xt)d), f̄h(z1, . . . , zd−1, (xt)d)

∣∣∣(z1, . . . , zd−1) ∈ Rd−1
}
,Oh((xt)d)

)
,

and receives from A it’s next iterate xt+1. A′ then produces it’s next iterate (xt+1)d.

It is clear that A′ is indeed a well defined algorithm which interacts with a local oracle.
Hence, let h(·), ρ(T, δ) be the function and the positive parameter given by Proposition 11
for A′, T, δ. We will show these h, ρ satisfy all three bullets in the lemma. The first two
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bullets are immediate, thus it only remains to prove the third. To that end, note that by
construction of A′, A′’s iterates when applied to h are exactly the d’th coordinates of A
when applied to f̄ . That is, (x

A(f̄)
t )d = x

A′(h)
t . Consequently,

Pr
A

[
min
t∈[T ]
‖xA(f̄)

t − x∗‖ < ρ

]
≤ Pr
A

[
min
t∈[T ]
|(xA(f̄)

t )d − (x∗)d| < ρ

]
= Pr
A′

[
min
t∈[T ]
|xA

′(h)
t − x∗| < ρ

]
< δ ,

where the last inequality follows by definition of h, ρ.

From now on, we fix some algorithm A interacting with a local oracle, T ∈ N, d ≥ 2
and set δ = T exp(−d/36). We denote by h(·), ρ > 0, x∗ ∈ Rd their associated function,
positive parameter and point given by Lemma 13. Given any nonzero vector w ∈ Rd such
that wd = 0, we define

fw(x1, . . . , xd) := h(xd + x∗) +
1

4

√√√√d−1∑
i=1

x2
i −

[
〈w,x + w〉 − 1

2
‖x + w‖

]
+

,

where w := w/‖w‖. This function looks like the “hard” function given by Lemma 13 (up
to a shift along the d’th axis) as long as x is not highly correlated with w, which makes the
ReLU term vanish. However, unlike the hard function which has a stationary point, the
ReLU term adds at that point a large gradient component in the w direction, preventing it
from being even ε-stationary. Moreover, the following lemma shows that this function has
no ε-stationary points for small ε.

Lemma 14 For any nonzero w ∈ Rd such that wd = 0, fw is 15
4 -Lipschitz and has no

ε-stationary points for any ε < 1
4
√

2
.

Proof Throughout the proof we omit the w subscript and refer to fw(·) as f(·).
The functions x 7→ h(xd + x∗), x 7→ 1

4

√∑d−1
i=1 x

2
i , x 7→ 〈w,w + x〉, x 7→ 1

2‖x + w‖ and

x 7→ [x]+ are 2-Lipschitz, 1
4 -Lipschitz, 1-Lipschitz, 1

2 -Lipschitz and 1-Lipschitz respectively,
from which it follows that f is 2 + 1

4 + 1 + 1
2 = 15

4 -Lipschitz.
In order to prove that no point x is ε-stationary for any ε < 1

4
√

2
, we will use the facts

that ∂(g1 + g2) ⊆ ∂g1 + ∂g2, and that if g1 is univariate, ∂(g1 ◦ g2)(x) ⊆ conv{r1r2 :
r1 ∈ ∂g1(g2(x)), r2 ∈ ∂g2(x)} (see Clarke, 1990, Proposition 2.3.3 and Theorem 2.3.9). We
examine six exhaustive cases:

• xd 6= 0. In this case we have

∂f(x) ⊆
{
t · ed +

1

4
u− s

(
w − 1

2
v

)∣∣∣∣ |t| ≥ 1, ud = 0, s ∈ [0, 1], ‖v‖ ≤ 1

}
.

For any g ∈ ∂f(x) corresponding to some t,u, s,v, using the fact that ud = wd = 0
we get

‖g‖ ≥ 〈g, sign(t) · ed〉 ≥ |t| −
1

2
≥ 1

2
>

1

4
√

2
.
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• x = 0. In this case we have

∂f(x) ⊆

{
t · ed +

1

4
u−w +

1

2
w

∣∣∣∣∣ t ∈ [−2, 2],

d−1∑
i=1

u2
i ≤ 1, ud = 0

}
.

For any vector in ∂f(x) corresponding to some t,u, we use the fact that projecting
any vector onto span{e1, . . . , ed−1} cannot increase it’s norm, in order to get∥∥∥∥t · ed +

1

4
u− 1

2
w

∥∥∥∥ ≥ ∥∥∥∥1

4
u− 1

2
w

∥∥∥∥ =

∥∥∥∥1

2
w − 1

4
u

∥∥∥∥ ≥ 1

2
− 1

4
>

1

4
√

2
.

• x = −w. In this case we have

∂f(x) ⊆
{
t · ed −

1

4
w − s

(
w − 1

2
u

)∣∣∣∣ t ∈ [−2, 2], s ∈ [0, 1], ‖u‖ ≤ 1

}
.

For any g ∈ ∂f(x) corresponding to some t, s,u, using the fact that wd = 0 we get

‖g‖ ≥ 〈g,−w〉 =

〈
−1

4
w,−w

〉
+ 〈−sw,−w〉+

〈s
2
u,−w

〉
=

1

4
+ s− s

2
〈u,w〉 ≥ 1

4
+ s− s

2
≥ 1

4
>

1

4
√

2
.

• xd = 0, x /∈ {0,−w}, 〈w,x + w〉 < 1
2 . Note that

〈w,x + w〉 < 1

2
=⇒ 〈w,x + w〉 − 1

2
‖x + w‖ < 0 ,

and that the set
{
x
∣∣ 〈w,x + w〉 < 1

2

}
\ {0,−w} is an open set in Rd. Thus for every

such point, the function x 7→ f(x) is locally identical to x 7→ h(xd+x∗)+ 1
4

√∑d−1
i=1 x

2
i ,

which in particular implies that their gradient sets are identical. Furthermore, com-
bining the assumptions xd = 0,x 6= 0 reveals that x1, . . . , xd−1 are not all zeroes.
Consequently, we get

∂f(x) ⊆
{
t · ed +

1

4
x

∣∣∣∣ t ∈ [−2, 2]

}
.

For any g ∈ ∂f(x) corresponding to some t, we get

‖g‖ ≥ 〈g,x〉 =
1

4
>

1

4
√

2
.

• xd = 0, x /∈ {0,−w}, 〈w,x + w〉 > 1
2 . Note that

〈w,x + w〉 > 1

2
=⇒ 〈w,x + w〉 − 1

2
‖x + w‖ > 0 ,
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and that the set
{
x
∣∣ 〈w,x + w〉 > 1

2

}
\ {0,−w} is an open set in Rd. Thus for every

such point, the function x 7→ f(x) is locally identical to

x 7→ h(xd + x∗) +
1

4

√√√√d−1∑
i=1

x2
i − 〈w,x + w〉+

1

2
‖x + w‖ ,

which in particular implies that their gradient sets are identical. Furthermore, com-
bining the assumptions xd = 0,x 6= 0 reveals that x1, . . . , xd−1 are not all zeroes.
Consequently, we get

∂f(x) ⊆
{
t · ed +

1

4
x−w +

1

2
(x + w)

∣∣∣∣ t ∈ [−2, 2]

}
.

For any g ∈ ∂f(x) corresponding to some t, using the fact that wd = 0 we get

‖g‖ ≥ 〈g,−w〉 =
1

4
〈x,−w〉+ 〈−w,−w〉+

1

2
〈x + w,−w〉

≥ −1

4
+ 1− 1

2
>

1

4
√

2
.

• xd = 0, x /∈ {0,−w}, 〈w,x + w〉 = 1
2 . In this case we have

∂f(x) ⊆
{
t · ed +

1

4
x− s

(
w − 1

2
(x + w)

)∣∣∣∣ t ∈ [−2, 2], s ∈ [0, 1]

}
(5)

=

{(
1

4‖x‖
+

s

2‖x + w‖

)
x +

(
s

2‖x + w‖
− s

‖w‖

)
w + t · ed

∣∣∣∣ t ∈ [−2, 2], s ∈ [0, 1]

}
.

Denote x = x| + x⊥ where x⊥ = (I − w̄w̄T )x is the orthogonal projection of x onto

span(w)⊥, and x| ∈ span(w). For any g ∈ ∂f(x) corresponding to some t, s, using
the fact that xd = wd = 0 we get for some scalar α:

‖g‖ ≥
∥∥∥∥( 1

4‖x‖
+

s

2‖x + w‖

)
x +

(
s

2‖x + w‖
− s

‖w‖

)
w

∥∥∥∥
=

∥∥∥∥( 1

4‖x‖
+

s

2‖x + w‖

)
x⊥ + α ·w

∥∥∥∥
≥
(

1

4‖x‖
+

s

2‖x + w‖

)
‖x⊥‖

≥ 1

4‖x‖
· ‖x⊥‖ .

Since (I − w̄w̄T ) is an orthogonal projection, in particular symmetric, we also have

‖x⊥‖2 = 〈x, (I − w̄w̄T )2x〉 = 〈x, (I − w̄w̄T )x〉 = ‖x‖2−〈w,x〉2 = ‖x‖2(1−〈w,x〉2) .

Plugging into the above, it follows that ‖g‖ is at least 1
4

√
1− 〈w,x〉2. Assuming that

there exists such g ∈ ∂f(x) with norm at most ε, it follows that

1

4

√
1− 〈w,x〉2 ≤ ε . (6)
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However, we will show that for any ε < 1
4
√

2
, we must arrive at a contradiction. To

that end, let us consider two cases:

– If 〈w,x〉 > 0, then by rearranging Eq. (6), we have 〈w,x〉 ≥
√

1− 16ε2. Hence,

〈w,x+w〉 ≥ ‖x‖
√

1− 16ε2+‖w‖ ≥ (‖x‖+‖w‖)
√

1− 16ε2 ≥ ‖x+w‖
√

1− 16ε2 .

However, dividing both sides by ‖x + w‖, we get that 〈w,x + w〉 ≥
√

1− 16ε2.
If ε < 1

4
√

2
, we get that 〈w,x + w〉 > 1

2 , contradicting our assumption on x.

– If 〈w,x〉 ≤ 0, then by Eq. (6), we must have 〈w,x〉 ≤ −
√

1− 16ε2. But then, by
recalling that wd = 0, we use Eq. (5) and our assumption that 〈w,x + w〉 = 1

2
in order to obtain

−‖g‖ ≤ 〈w,g〉 =
1

4
〈w,x〉 − s

(
1− 1

2
· 1

2

)
≤ −1

4

√
1− 16ε2 − 3

4
s

≤ −1

4

√
1− 16ε2 .

This implies that 1
4

√
1− 16ε2 ≤ ‖g‖ ≤ ε, which does not hold for any ε < 1

4
√

2
.

Finally, given some nonzero w ∈ Rd such that wd = 0, we are ready to consider the
function

Fw(x1, . . . , xd) := max {−1, fw(x− x∗)}

= max

−1, h(xd) +
1

4

√√√√d−1∑
i=1

x2
i −

[
〈w,x− x∗ + w〉 − 1

2
‖x− x∗ + w‖

]
+

 .

Lemma 15 The following hold:

• Fw(·) is 15
4 -Lipschitz, Fw(0)− infx Fw(x) ≤ 2 and inf {‖x‖ | ∂Fw(x) = {0}} ≤ 13.

• Any ε-stationary point x for ε < 1
4
√

2
satisfies Fw(x) = −1.

• There exists a choice of w, such that if we run A on Fw(·), then with probability at least
1−2T exp(−d/36) the algorithm’s iterates xFw

1 , . . . ,xFw
T satisfy mint∈[T ] Fw(xFw

t ) > 0.

Proof First, recall that fw(·) is 15
4 -Lipschitz by Lemma 14. Combining this with the

fact that x 7→ x − x∗, z 7→ max{−1, z} are both 1-Lipschitz yields the desired Lipschitz
bound. Moreover, we see that infx Fw(x) ≥ −1, and by definition of Fw(·) and Lemma 13:
Fw(0) ≤ h(0) = 1. Combining the two observations gives

Fw(0)− inf
x
Fw(x) ≤ 1 + 1 = 2 .

For the remaining claim in the first bullet, consider v = 12w + x∗. By Lemma 13 we have
‖v‖ ≤ 12+1 = 13, thus it is enough to show that v is a stationary point of Fw. In particular,
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it is enough to show that fw(v − x∗) < −1, since by the continuity of fw this will imply
that Fw ≡ −1 in a neighborhood of v. Indeed, using the facts that v − x∗ = 12w, wd = 0
we get

fw(v − x∗) = h(x∗) +
1

4
· 12‖w‖ −

[
〈w, 12w + w〉 − 1

2
‖12w + w‖

]
+

< h(0) + 3− 1

2
‖12w + w‖ < 1 + 3− 1

2
· 12 < −1 .

As to the second bullet, suppose x is an ε-stationary point for some ε < 1
4
√

2
. Namely, there

exists g ∈ ∂Fw(x) such that ‖g‖ ≤ ε. Assume by contradiction that Fw(x) > −1. Since
the set {y| Fw(y) > −1} is an open set, it follows that for all y in some neighborhood of
x: Fw(y) > −1. Hence, for all y in some neighborhood of x: Fw(y) = fw(y − x∗), which
in particular implies that ∂Fw(x) = ∂fw(x− x∗). We conclude that g ∈ ∂fw(x− x∗) and
satisfies ‖g‖ < 1

4
√

2
. Thus (x−x∗) is an ε-stationary point of fw(·) for some ε < 1

4
√

2
, which

is a contradiction to Lemma 14.
In order to prove the third bullet, we start by noticing that

x ∈
{

x : 〈w,x− x∗ + w〉 ≤ 1

2

}
∪ {x∗ −w} =⇒ 〈w,x− x∗ + w〉 − 1

2
‖x− x∗ + w‖ ≤ 0 ,

from which it follows that

∀x ∈
{

x : 〈w,x− x∗ + w〉 ≤ 1

2

}
∪ {x∗ −w} : Fw(x) = f̄(x) := h(xd) +

1

4

√√√√d−1∑
i=1

x2
i . (7)

Indeed, for any such x the ReLU term in the definition of Fw(·) vanishes, and the remain-
ing function (which is non-negative) is greater than −1. We continue by showing that
Eq. (7) holds over a set of more convenient form. In order to do that, fix some x such that
〈w,x− x∗ + w〉 > 1

2 (i.e. the opposite condition). Multiplying by ‖x− x∗ + w‖ gives

〈w,x− x∗〉+ ‖w‖ = 〈w,x− x∗ + w〉 > 1

2
‖x− x∗ + w‖ ≥ 1

2
(‖x− x∗‖ − ‖w‖) .

For x = x∗ the inequality above is trivially satisfied. For x 6= x∗, dividing by ‖x− x∗‖ and
rearranging yields

〈w,x− x∗〉 > 1

2
− 3‖w‖

2‖x− x∗‖
.

The contrapositive allows us to deduce that any x which does not satisfy the condition
above belongs to {x : 〈w,x− x∗ + w〉 ≤ 1

2} ∪ {x
∗ −w}, so we get by Eq. (7):

∀x 6= x∗ : 〈w,x− x∗〉 ≤ 1

2
− 3‖w‖

2‖x− x∗‖
=⇒ Fw(x) = f̄(x) := h(xd) +

1

4

√√√√d−1∑
i=1

x2
i . (8)

With this equation in hand, we turn to describe how w should be set in order to establish
the third bullet. Consider a random vector w ∈ Rd which is distributed as follows:

(w1, . . . , wd−1) ∼ Unif
( ρ

99
· Sd−2

)
, Pr[wd = 0] = 1 , (9)
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where ρ
99 ·S

d−2 := {(y1, . . . , yd−1)|
∑d−1

i=1 y
2
i = ρ

99} is the (d−2)-dimensional sphere of radius
ρ
99 . Note that ‖w‖ = ρ

99 , which by plugging into Eq. (8) gives

∀x 6= x∗ : 〈w,x− x∗〉 ≤ 1

2
− ρ

66‖x− x∗‖
=⇒ Fw(x) = f̄(x) := h(xd) +

1

4

√√√√d−1∑
i=1

x2
i . (10)

Let xf̄1 , . . . ,x
f̄
T be the (possibly random) iterates produced by A when ran on f̄(·). Note

that if (
min
t∈[T ]
‖xf̄t − x∗‖ ≥ ρ > 0

)
∧
(

max
t∈[T ]
〈w, (xf̄t − x∗)〉 < 1

3

)
(11)

then for all t ∈ [T ] :

〈w, (xf̄t − x∗)〉 < 1

3
<

1

2
− ρ

66ρ
≤ 1

2
− ρ

66‖xf̄t − x∗‖
,

as well as xf̄t 6= x∗. Thus, by Eq. (10), this means that Eq. (11) implies that Fw(xf̄t ) = f̄(xf̄t )

for all t ∈ [T ]. Moreover, using the fact that xf̄t is bounded away from x∗, it is easily verified

that the condition in Eq. (10) also holds for all x in some neighborhood of xf̄t , so actually
Fw(·) is identical to f̄(·) on these neighborhoods, implying the same local oracle response.
Hence, assuming the event in Eq. (11) occurs, if we run the algorithm on Fw(·) rather than

f̄(·), then the produced iterates xFw
1 , . . . ,xFw

T are identical to xf̄1 , . . . ,x
f̄
T . That being the

case, we would get

min
t∈[T ]

Fw(xFw
t ) = min

t∈[T ]
Fw(xf̄t ) = min

t∈[T ]
f̄(xf̄t ) > 0 ,

where the last inequality utilizes the fact that ‖xf̄t − x∗‖ > 0. Overall we see that(
min
t∈[T ]
‖xf̄t − x∗‖ ≥ ρ

)
∧
(

max
t∈[T ]
〈w, (xf̄t − x∗)〉 < 1

3

)
=⇒ min

t∈[T ]
Fw(xFw

t ) > 0 .

Thus, in order to finish the proof, it is enough to show that there exists w, such that

Pr
A

[(
min
t∈[T ]
‖xf̄t − x∗‖ ≥ ρ

)
∧
(

max
t∈[T ]
〈w, (xf̄t − x∗)〉 < 1

3

)]
≥ 1− 2T exp(−d/36) . (12)

In order to prove this claim, we observe that:

1. By Lemma 13 we know that PrA[mint∈[T ] ‖x
f̄
t −x∗‖ ≥ ρ] ≥ 1− δ = 1−T exp(−d/36).

2. If we fix some vectors u1, . . . ,uT in Rd−1 such that ∀t : ‖ut‖ ≤ 1, and pick a unit vector
u ∈ Rd−1 uniformly at random, then by a union bound and a standard concentration of
measure on the sphere argument (e.g., Ball et al., 1997, Lemma 2.2), Pr(maxt〈u,ut〉 ≥
α) ≤ T ·Pr(〈u,u1〉 ≥ α) ≤ T exp(−(d−1)α2/2). For any realization of A’s randomness

such that such that for all t ∈ [T ] : ‖xf̄t − x∗‖ ≥ ρ, by setting

α = 1/3, u = (w1, . . . , wd−1), ut =
1

‖xf̄t − x∗‖
((xf̄t − x∗)1, . . . , (x

f̄
t − x∗)d−1) ,
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while noticing that 〈u,ut〉 = 〈w, (xf̄t − x∗)〉 since wd = 0, we get

Pr
w

[
max
t∈[T ]
〈w, (xf̄t − x∗)〉 ≥ 1/3

]
≤ T exp(−d/36) .

Combining the two observations in a formal manner results in

Pr
A

[
Pr
w

[EA,w|A] ≥ 1− T exp(−d/36)
]
≥ 1− T exp(−d/36) , (13)

where

EA,w :=

(
min
t∈[T ]
‖xf̄t − x∗‖ ≥ ρ

)
∧
(

max
t∈[T ]
〈w, (xf̄t − x∗)〉 < 1

3

)
.

Finally, using the law of total expectation and Eq. (13) we get

Pr
A,w

[EA,w] = EA[Pr
w

[EA,w|A]]

≥ EA
[
Pr
w

[
EA,w|A : Pr

w
[EA,w|A] ≥ 1− T exp(−d/36)

]
· Pr
A

[
Pr
w

[EA,w|A] ≥ 1− T exp(−d/36)
]]

≥ EA [(1− T exp(−d/36) · (1− T exp(−d/36)]

≥ (1− T exp(−d/36))2

≥ 1− 2T exp(−d/36) .

Consequently, by the probabilistic method, there exists some fixed choice of w such that

Pr
A

[EA,w] ≥ 1− 2T exp(−d/36) ,

which is exactly Eq. (12), finishing the proof.

The theorem is an immediate corollary of the previous lemma: With the specified high
probability, mint Fw(xt) > 0, even though all ε-stationary points (for any ε < 1

4
√

2
) have a

value of −1. Since Fw is also 15
4 -Lipschitz, we get that the distance of any xt from an ε-

stationary point must be at least 0−(−1)
15
4

= 4
15 . Simplifying the numerical terms by choosing

a large enough constant C and a small enough constant c, and relabeling Fw as f , the
theorem follows.

5.2 Proof of Thm. 6

We start the proof by showing that without loss of generality we can impose certain assump-
tions on the parameters of interest. First, if ε ≥ 1 then the right hand side of Eq. (4) is neg-
ative for any c2 < 1, which makes the theorem trivial. Consequently, we can assume ε < 1.
Using Lemma 30 in Appendix D, this also implies that L ≥ 1

8 since otherwise an L-smooth
ε-approximation does not exist in the first place in case of 1-Lipschitz function x 7→ |x1| (in
particular, no such smoother exists). Therefore, if

√
log ((M + 1) (T + 1)) ≥

√
d

32r then

L
√

log ((M + 1) (T + 1)) ≥ 1

8
·
√
d

32r
>

1

256
·
√
d

r
(1− ε) ,
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which proves the theorem. Thus we can assume throughout the proof that

√
log ((M + 1) (T + 1)) <

√
d

32r
=⇒ 1

16r

√
d

log ((M + 1) (T + 1))
> 2 . (14)

Our strategy is to define a distribution over a family of “hard” 1-Lipschitz functions
over Rd, for which we will show that Eq. (4) must hold for some function supported by this
distribution. Before we turn to do so, we will show that when a smoother which satisfies
TICF acts on a constant function, it returns a gradient estimate of small norm. This will be
crucial later on, since we will construct a function which looks “locally constant” at many
points of interest, thus deceiving the smoother.

Lemma 16 If S is an (L, ε, T,M, r)-smoother satisfying TICF, then for any constant func-
tion f and any x ∈ Rd : ‖E [S (f,x)]‖ ≤ ε.

Proof Denote v := E [S (f,x)], and note that by the TICF property v does not depend on
x. Let f̃ be the ε-approximation of f implicitly computed by S, then by the definition of a
smoothing algorithm, we have for all x ∈ Rd:∥∥∥v −∇f̃ (x)

∥∥∥ ≤ ε
=⇒ ‖v‖2 −

〈
∇f̃ (x) ,v

〉
=
〈
v −∇f̃ (x) ,v

〉
≤
∥∥∥v −∇f̃ (x)

∥∥∥ · ‖v‖ ≤ ε‖v‖
=⇒

〈
∇f̃ (x) ,v

〉
≥ ‖v‖2 − ε‖v‖ .

Define the one dimensional projected function f̃v(t) := f̃(t · v). Then for all t ≥ 0,

f̃v (t)− f̃v (0) =

∫ t

0
f̃ ′v(z)dz =

∫ t

0

〈
∇f̃ (z · v) ,v

〉
dz

≥
∫ t

0

(
‖v‖2 − ε‖v‖

)
dz = t

(
‖v‖2 − ε‖v‖

)
= t‖v‖ (‖v‖ − ε) . (15)

On the other hand, f̃v(t), f̃v(0) are both ε-approximations of the same constant, since f is
a constant function. Thus, |f̃v(t)− f̃v(0)| ≤ 2ε. Combining this with Eq. (15) yields for all
t ≥ 0 : 2ε ≥ t‖v‖ (‖v‖ − ε). This can hold for all t ≥ 0 only if (‖v‖− ε) ≤ 0, implying the
lemma.

We are now ready to define a family of functions, with the rest of the proof devoted to
analyze how a smoother acts on them. Relying on Eq. (14) we can define the set

∆ :=

{
16r

√
log ((M + 1) (T + 1))

d
· k

∣∣∣∣∣ k = 0, 1, . . . ,

⌊
1

16r

√
d

log ((M + 1) (T + 1))

⌋}
.
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That is, a grid on [0, 1] which consists of points of distance 16r

√
log((M+1)(T+1))

d one from

another. We further define the “inflation” of ∆ by 4r

√
log((M+1)(T+1))

d around every point:6

∆ :=

{
x ∈ R

∣∣∣∣∣ ∃p ∈ ∆ : |p− x| ≤ 4r

√
log ((M + 1) (T + 1))

d

}
.

Now we define the function g : R → R as the unique continuous function which satisfies
(see Fig. 2 for an illustration)

g(0) = 0

g′ (x) =

{
1 , x /∈ ∆

0 , x ∈ ∆
.

Finally, we are ready to consider

fw (x) = g (〈x,w〉) ,

where w ∈ Sd−1 is drawn uniformly from the unit sphere. The distribution over w specifies
a distribution over the functions fw. We start by claiming that these functions are indeed
in our function class of interest:

Lemma 17 For all w ∈ Sd−1, fw(·) is 1-Lipschitz.

Proof It is clear by construction that g is 1-Lipschitz. Thus

|f (x)− f (y)| = |g (〈x,w〉)− g (〈y,w〉)| ≤ |〈x,w〉 − 〈y,w〉| = |〈x− y,w〉| ≤ ‖x− y‖ .

The following lemma is the key lemma of the proof. It will show that there exists a function
supported by the distribution we defined, such that many points mislead the smoother by
appearing as if the function is constant - hence, the the smoother returns gradient estimates
of small norm. Formally:

Lemma 18 There exists w ∈ Sd−1 such that for all δ ∈ ∆ : Eξ [‖S (fw, δw)‖] ≤ ε+ 1
32 .

Proof Let x
(w)
1 , . . . ,x

(w)
T be the (possibly randomized) queries produced by S (fw,0).

Consider the event Ew, in which for all i ∈ [T ] :
∣∣∣〈x(w)

i ,w〉
∣∣∣ < 4r

√
log((M+1)(T+1))

d . Note

that if Ew occurs then for all δ ∈ ∆, i ∈ [T ],v ∈ Rd:

fw

(
x

(w)
i + δw + v

)
= g

(〈
x

(w)
i + δw + v,w

〉)
= g

(
δ +

〈
x

(w)
i ,w

〉
+ 〈v,w〉

)
. (16)

6. Note we use the quantities T + 1,M + 1 instead of the seemingly more natural T,M , since otherwise the
logarithmic term in Eq. (4) can vanish, resulting in an invalid theorem. This would have occurred for
randomized smoothing, where T = M = 1.
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In particular, as long as ‖v‖ < 4r

√
log((M+1)(T+1))

d −
∣∣∣〈x

(w)
i ,w

〉∣∣∣, which by Cauchy-Schwarz

implies ∣∣∣〈x
(w)
i ,w

〉
+ 〈v,w〉

∣∣∣ < 4r

√
log ((M + 1) (T + 1))

d
,

we get by construction of g and Eq. (16) that

fw

(
x

(w)
i + δw + v

)
= g (δ) .

In other words, if Ew occurs then inside some neighborhood of x
(w)
i +δw, the function fw is

identical to the constant function g (δ). Therefore, if Ew occurs the local oracle O satisfies
for any δ ∈ ∆, i ∈ [T ]:

Ofw

(
x

(w)
i + δw

)
= Ox 7→g(δ)

(
x

(w)
i + δw

)
. (17)

Fix some δ0 ∈ ∆, and let x̃
(w)
1 , . . . , x̃

(w)
T be the (possibly randomized) queries produced by

S (fw, δ0w). We will now show that conditioned on Ew, for all i ∈ [T ]:

x̃
(w)
i = x

(w)
i + δ0w , (18)

in the sense that for every realization of S ′’s randomness ξ they are equal. We show this
by induction on i. For i = 1, using TICF:

x̃
(w)
1 = S(1) (ξ, δ0w) = S(1) (ξ,0) + δ0w = x

(w)
1 + δ0w .

Assuming this is true up until i, then by the induction hypothesis, Eq. (17) and TICF:

x̃
(w)
i+1 = S(i)

(
ξ, δ0w,Ofw

(
x̃

(w)
1

)
, . . . ,Ofw

(
x̃

(w)
i

))
= S(i)

(
ξ, δ0w,Ofw

(
x

(w)
1 + δ0w

)
, . . . ,Ofw

(
x

(w)
i + δ0w

))
= S(i)

(
ξ, δ0w,Ox 7→g(δ0)

(
x

(w)
1 + δ0w

)
, . . . ,Ox7→g(δ0)

(
x

(w)
i + δ0w

))
= S(i)

(
ξ,0,Ox 7→g(0)

(
x

(w)
1

)
, . . . ,Ox 7→g(0)

(
x

(w)
1

))
+ δ0w

= S(i)
(
ξ,0,Ofw

(
x

(w)
1

)
, . . . ,Ofw

(
x

(w)
i

))
+ δ0w

= x
(w)
i+1 + δ0w .

Having established Eq. (18) for any δ ∈ ∆, we turn to show that for all δ ∈ ∆:

Eξ [S (fw, δw)|Ew] = Eξ [S (x 7→ 0,0)|Ew] . (19)

Indeed, by Eq. (18), Eq. (17) and TICF:

Eξ [S (fw, δw)|Ew] = Eξ
[
S(out)

(
ξ, δw,Ofw

(
x̃

(w)
1

)
, . . . ,Ofw

(
x̃

(w)
T

))∣∣∣Ew

]
= Eξ

[
S(out)

(
ξ, δw,Ofw

(
x

(w)
1 + δw

)
, . . . ,Ofw

(
x

(w)
T + δw

))∣∣∣Ew

]
= Eξ

[
S(out)

(
ξ, δw,Ox 7→g(δ)

(
x

(w)
1 + δw

)
, . . . ,Ox 7→g(δ)

(
x

(w)
T + δw

))∣∣∣Ew

]
= Eξ

[
S(out)

(
ξ,0,Ox 7→0

(
x

(w)
1

)
, . . . ,Ox 7→0

(
x

(w)
T

))∣∣∣Ew

]
= Eξ [S (x 7→ 0,0)|Ew] .
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We now turn to show that Ew is likely to occur. Fix some realization of S’s randomness ξ,
and let qξ1, . . . ,q

ξ
T be the (deterministic) queries produced by S (y 7→ 0,0). We claim that

if for all i ∈ [T ] :
∣∣∣〈qξi ,w〉∣∣∣ < 4r

√
log((M+1)(T+1))

d then
(
qξ1, . . . ,q

ξ
T

)
=
(
x

(w)
1 , . . . ,x

(w)
T

)
independently of w. We show this by induction on i. For i = 1:

qξ1 = S(1) (ξ,0) = x
(w)
1 .

Assuming true up until i, then

qξi+1 = S(i)
(
ξ,0,Ox 7→0

(
qξ1

)
, . . . ,Ox 7→0

(
qξi

))
= S(i)

(
ξ,0,Ofw

(
qξ1

)
, . . . ,Ofw

(
qξi

))
= S(i)

(
ξ,0,Ofw

(
x

(w)
1

)
, . . . ,Ofw

(
x

(w)
i

))
= x

(w)
i+1 ,

where we used the assumption on qξi and the induction hypothesis. Recall that by assump-

tion on the algorithm
∥∥∥qξi∥∥∥ ≤ r for all i ∈ [T ]. Using the union bound and concentration of

measure on the sphere (e.g., Ball et al., 1997, Lemma 2.2) we can bound the probability of
the complementary event

Pr
w

[Ecw | ξ] = Pr
w

[
∃i ∈ [T ] :

∣∣∣〈qξi ,w〉∣∣∣ ≥ 4r

√
log ((M + 1) (T + 1))

d

]

= Pr
w

[
∃i ∈ [T ] :

∣∣∣∣〈1

r
qξi ,w

〉∣∣∣∣ ≥ 4

√
log ((M + 1) (T + 1))

d

]

≤T · 2 exp

−
d ·
(

4

√
log((M+1)(T+1))

d

)2

2


=

2T

(M + 1)8 (T + 1)8 ≤
2

(M + 1)8 (T + 1)7 .

This inequality holds for any realization of S’s randomness ξ, hence by the law of total
probability

Pr
ξ,w

[Ecw] ≤ 2

(M + 1)8 (T + 1)7 .

In particular, since Prξ,w [Ecw] = Ew [Prξ [Ecw|w]], there exists w ∈ Sd−1 such that

Pr
ξ

[Ecw] ≤ 2

(M + 1)8 (T + 1)7 . (20)
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For this fixed w, we have for all δ ∈ ∆ by the law of total expectation and the triangle
inequality:

‖Eξ [S (fw, δw)]‖ ≤

∥∥∥∥∥∥∥∥∥Eξ [S (fw, δw)|Ew] · Pr
ξ

[Ew]︸ ︷︷ ︸
(∗)

∥∥∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥∥∥Eξ [S (fw, δw)|Ecw] · Pr
ξ

[Ecw]︸ ︷︷ ︸
(∗∗)

∥∥∥∥∥∥∥∥∥ . (21)

On one hand, by Eq. (19):

(∗) = Eξ [S (x 7→ 0,0)|Ew] · Pr
ξ

[Ew] = Eξ [S (x 7→ 0,0)]− Eξ [S (x 7→ 0,0)|Ecw] · Pr
ξ

[Ecw] .

Using Lemma 16, and by incorporating the definition of M in Eq. (2) and Eq. (20) we get

‖(∗)‖ ≤ ε+M · 2

(M + 1)8 (T + 1)7 ≤ ε+
2

(M + 1)7 (T + 1)7 . (22)

On the other hand, by Eq. (2) and Eq. (20) again we have

‖(∗∗)‖ ≤ ‖Eξ [S (fw, δw)|Ecw]‖ · Pr
ξ

[Ecw] ≤M · 2

(M + 1)8 (T + 1)7 ≤
2

(M + 1)7 (T + 1)7 .

(23)
Overall, plugging Eq. (22) and Eq. (23) into Eq. (21), gives

‖Eξ [S (fw, δw)]‖ ≤ ε+
4

(M + 1)7 (T + 1)7 ≤ ε+
1

32
,

where the last inequality simply follows from the fact that M > 0, T ≥ 1.

From now on, we fix w ∈ Sd−1 which is given by the previous lemma and denote f = fw.
Denote by f̃ the ε-approximation of f with L-Lipschitz gradients implicitly computed by
S. We turn our focus to the directional projection:

ϕ : [0, 1]→ R
ϕ(t) = f̃ (t ·w) .

Note that by assumption on f̃ , ϕ is differentiable, and ϕ′ is L-Lipschitz. Lemma 18 ensures
us that ϕ′ is relatively close to zero on the grid ∆, as showed in the following lemma.

Lemma 19 ∀δ ∈ ∆ : |ϕ′ (δ)| ≤ 2ε+ 1
32

Proof By Cauchy-Schwarz, Lemma 18 and the definition of a smoother, we get that for
all δ ∈ ∆: ∣∣ϕ′ (δ)∣∣ =

∣∣∣〈∇f̃ (δw) ,w
〉∣∣∣ ≤ ∥∥∥∇f̃ (δw)

∥∥∥ · ‖w‖ =
∥∥∥∇f̃ (δw)

∥∥∥
≤
∥∥∥E [S (f, δw)]−∇f̃ (δw)

∥∥∥+ ‖E [S (f, δw)]‖ ≤ ε+ ε+
1

32
.

By combining the fact that ϕ′ has small values along the grid ∆, with the fact that ϕ′ is
L-Lipschitz, we can bound the oscillation of ϕ along the unit interval.
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Figure 3: Illustration of l(t)

Lemma 20 |ϕ (1)− ϕ (0)| ≤ 2ε+ 1
32 +

4Lr
√

log((M+1)(T+1))√
d

.

Proof Denote δi = 16r

√
log((M+1)(T+1))

d ·i, and note that for all i ∈
[⌊

1
16r

√
d

log((M+1)(T+1))

⌋]
:

δi ∈ ∆. Then

|ϕ (1)− ϕ (0)| =
∣∣∣∣∫ 1

0
ϕ′ (t) dt

∣∣∣∣ ≤ ∫ 1

0

∣∣ϕ′ (t)∣∣ dt =

⌊
1

16r

√
d

log((M+1)(T+1))

⌋
−1∑

i=0

∫ δi+1

δi

∣∣ϕ′ (t)∣∣ dt
≤

(
1

16r

√
d

log ((M + 1) (T + 1))

)
·max

i

∫ δi+1

δi

∣∣ϕ′ (t)∣∣ dt . (24)

By Lemma 19 we have |ϕ′ (δi)| , |ϕ′ (δi+1)| ≤ 2ε+ 1
32 . Recall that ϕ′ is L-Lipschitz, so |ϕ′ (t)|

is majorized on the interval [δi, δi+1] by the piecewise linear function (see Fig. 3)

l (t) =

{
2ε+ 1

32 + L (t− δi) δi ≤ t ≤ δi+δi+1

2

2ε+ 1
32 + L (δi+1 − t) δi+δi+1

2 < t ≤ δi+1

.

Consequently, ∫ δi+1

δi

∣∣ϕ′ (t)∣∣ dt ≤ ∫ δi+1

δi

l (t) dt

=

(
2ε+

1

32

)
· 16r

√
log ((M + 1) (T + 1))

d
+ L

(
8r

√
log ((M + 1) (T + 1))

d

)2

, (25)

where the last equality is a direct calculation. Plugging Eq. (25) into Eq. (24), we get that

|ϕ (1)− ϕ (0)| ≤ 2ε+
1

32
+

4Lr
√

log ((M + 1) (T + 1))√
d

.

We are now ready to finish the proof. Notice that ϕ (0) = f̃ (0) , ϕ (1) = f̃ (w). Additionally,
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a direct calculation shows that f(0) = 0, f(w) ≥ 1
2 . Using the fact that ‖f̃ − f‖∞ ≤ ε,

Lemma 20 reveals

1

2
≤ |f(w)− f(0)| ≤

∣∣∣f̃(w)− f̃(0)
∣∣∣+ 2ε = |ϕ (1)− ϕ (0)|+ 2ε

≤ 4ε+
1

32
+

4Lr
√

log ((M + 1) (T + 1))√
d

=⇒ L
√

log ((M + 1) (T + 1)) ≥
√
d

r

(
15

128
− ε
)
.

6. Discussion

In this paper, we studied the problem of nonconvex, nonsmooth optimization from an oracle
complexity perspective, and provided two main results: One (in Sec. 3) is an impossibility
result for efficiently getting near approximately-stationary points, and the second (in Sec. 4)
proving an inherent trade-off between oracle complexity and the smoothness parameter
when smoothing nonsmooth functions. The second result also establishes the optimality of
randomized smoothing as an efficient smoothing method, under mild assumptions.

Our work leaves open several questions. First, at a more technical level, there is the
question of whether some or all of our assumptions in Sec. 4 can be relaxed. The result cur-
rently requires the algorithm to be translation invariant w.r.t. constant functions, as well as
querying at some bounded distance from the input point x. We conjecture that the trans-
lation invariance assumption can be relaxed, possibly by a suitable reduction that shows
that any smoothing algorithm can be converted to a translation invariant one. However,
how to formally perform this remains unclear at the moment. As to the bounded distance
of the queries, it is currently an essential assumption for our proof technique, which relies
on a function which looks “locally” constant at many different points, but is globally non-
constant, and this can generally be determined by querying far enough away from the input
point (even along some random direction). Thus, relaxing this assumption may necessitate
a different proof technique.

Another open question is whether randomized smoothing can be “derandomized”: Our
results indicate that the gradient Lipschitz parameter of the smooth approximation cannot
be improved, but leave open the possibility of an efficient method returning the actual gra-
dients of some smooth approximation (up to machine precision), in contrast to randomized
smoothing which only provides noisy stochastic estimates of the gradient. These can then
be plugged into smooth optimization methods which assume access to the exact gradients
(rather than noisy stochastic estimates), generally improving the resulting iteration com-
plexity. We note that naively computing the exact gradient of f̃(·) arising from randomized
smoothing is infeasible in general, as it involves a high-dimensional integral.

At a more general level, our work leaves open the question of what is the “right” metric
to study for nonsmooth-nonconvex optimization, where neither minimizing optimization
error nor finding approximately-stationary points is feasible. In this paper, we show that
the goal of getting near approximately stationary points is not feasible, at least in the worst
case, whereas smoothing can be done efficiently, but not in a dimension-free manner. Can we
find other compelling goals to consider? One very appealing notion is the (δ, ε)-stationarity
of Zhang et al. (2020) that we mentioned in the introduction, which comes with clean,

27



Kornowski and Shamir

finite-time and dimension-free guarantees. Our negative result in Thm. 1 provides further
motivation to consider it, by showing that a natural variation of this notion will not work.
However, as we discuss in Appendix A, we need to accept that this stationarity notion can
have unexpected behavior, and there exist cases where it will not resemble a stationary
point in any intuitive sense. In any case, using an oracle complexity framework to study
this and other potential metrics for nonsmooth nonconvex optimization, which combine
computational efficiency and finite-time guarantees, remains an interesting direction for
future research.
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Appendix A. (δ, ε)-Stationarity (Zhang et al., 2020)

In the recent work by Zhang, Lin, Jegelka, Sra and Jadbabaie (Zhang et al., 2020), the
authors prove that for nonconvex nonsmooth functions, finding ε-approximately stationary
points is infeasible in general. Instead, they study the following relaxation (based on the
notion of δ-differential introduced by Goldstein 1977): Letting ∂f(x) denote the generalized
gradient set (as defined in Sec. 2) of f(·) at x, we say that a point x is a (δ, ε)-stationary
point, if

min{‖u‖ : u ∈ conv{∪y:‖y−x‖≤δ ∂f(y)}} ≤ ε , (26)

where conv{·} is the convex hull. In words, there exists a convex combination of gradients at
a δ-neighborhood of x, whose norm is at most ε. Remarkably, the authors then proceed to
provide a dimension-free, gradient-based algorithm for finding (δ, ε)-stationary points, using
O(1/δε3) gradient and value evaluations, as well as study related settings. Subsequently,
several works have continued the study of optimization in terms of (δ, ε)-stationary points
(Davis et al., 2022; Tian et al., 2022).

Although this constitutes a very useful algorithmic contribution to nonsmooth opti-
mization, it is important to note that a (δ, ε)-stationary point x (as defined above) does
not imply that x is δ-close to an ε-stationary point of f(·), nor that x necessarily resembles
a stationary point. Intuitively, this is because the convex hull of the gradients might con-
tain a small vector, without any of the gradients being particular small. This is formally
demonstrated in the following proposition:

Proposition 21 For any δ > 0, there exists a differentiable function f(·) on R2 which is
2π-Lipschitz on a ball of radius 2δ around the origin, and the origin is a (δ, 0)-stationary
point, yet minx:‖x‖≤δ ‖∇f(x)‖ ≥ 1.

Proof Fixing some δ > 0, consider the function

f(u, v) := (2δ + u) sin
( π

2δ
v
)

(see Fig. A for an illustration). This function is differentiable, and its gradient satisfies

∇f(u, v) =
(

sin
( π

2δ
v
)
,
π

2δ
(2δ + u) cos

( π
2δ
v
))

.
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Figure 4: The function used in the proof of Proposition 21, for δ = 1. The origin (which
fulfills the definition of a (1, 0)-stationary point) is marked with a red dot. Best
viewed in color.

First, we note that

1

2

(
∇f(0, δ) +

1

2
∇f(0,−δ)

)
=

1

2
((1, 0) + (−1, 0)) = (0, 0),

which implies that (0, 0) is in the convex hull of the gradients at a distance at most δ from
the origin, hence the origin is a (δ, 0)-stationary point. Second, we have that

‖∇f(u, v)‖2 = sin2
( π

2δ
v
)

+
( π

2δ

)2
(2δ + u)2 cos2

( π
2δ
v
)
. (27)

For any (u, v) of norm at most 2δ, we must have |u| ≤ 2δ, and therefore the above is at
most

sin2
( π

2δ
v
)

+
( π

2δ

)2
(2δ + 2δ)2 cos2

( π
2δ
v
)
≤ 4π2

(
sin2

( π
2δ
v
)

+ cos2
( π

2δ
v
))

= 4π2 ,

which implies that the function is 2π-Lipschitz on a ball of radius 2δ around the origin.
Finally, for any (u, v) of norm at most δ, we have |u| ≤ δ, so Eq. (27) is at least

sin2
( π

2δ
v
)

+
( π

2δ

)2
(2δ − δ)2 cos2

( π
2δ
v
)
≥ sin2

( π
2δ
v
)

+ cos2
( π

2δ
v
)

= 1 .

Remark 22 (Extension to globally Lipschitz functions) Although the function f(·)
in the proof has a constant Lipschitz parameter only close to the origin, it can be easily
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modified to be globally Lipschitz and bounded, for example by considering the function

f̃(x) =

{
f(x) ‖x‖ ≤ 2δ

max
{

0, 2− ‖x‖2δ

}
· f
(

2δ
‖x‖x

)
‖x‖ > 2δ

,

which is identical to f(·) in a ball of radius 2δ around the origin, but decays to 0 for larger
x, and can be verified to be globally bounded and Lipschitz independent of δ.

Remark 23 (Extension to constant distances) The proof of Thm. 1 uses a (more com-
plicated) construction that actually strengthens Proposition 21: It implies that for any δ, ε
smaller than some constants, there is a Lipschitz, bounded-from-below function on Rd, such
that the origin is (δ, 0)-stationary, yet there are no ε-stationary points even at a constant
distance from the origin. In more details, consider the function

ĝw(x) := max{gw(0)− 1 , gw(x)} ,

g(x)w = |xd|+
1

4

√√√√d−1∑
i=1

x2
i −

[
〈w,x + w〉 − 1

2
‖x + w‖

]
+

.

Using exactly the same proof as for Lemma 14, one can show that gw(·) is 15
4 -Lipschitz and

has no ε-stationary points for ε < 1/4
√

2. Therefore, it is easily verified that for any w,
ĝw(·) is 15

4 -Lipschitz, bounded from below, and any ε-stationary point is at a distance of at
least 4/15 from the origin.7 However, we also claim that the origin is a (δ, 0)-stationary
point for any δ ∈ (0, 4/15). To see this, note first that for such δ, by the Lipschitz property of
gw(·), we have ĝw(x) = gw(x) in a δ-neighborhood of the origin. Fix any w such that ‖w‖ =
δ
2 , wd = 0, and let v ∈ {−δ · ed, δ · ed}. It is easily verified that 〈w̄,v + w〉− 1

2‖v + w‖ < 0,
in which case

sign(vd) · ed ∈ ∂gw(v) = ∂ĝw(v) ,

and therefore 1
2 (∇ĝw(v) +∇ĝw(−v)) = 0, where ∇ĝw(v) denotes the subgradient defined

above.

We end by noting that if we drop the the conv{·} operator from the definition of (δ, ε)-
stationarity in Eq. (26), the goal becomes equivalent to finding points which are δ-close
to ε-approximately stationary points – which is exactly the goal we study in Sec. 3, and
for which we show a strong impossibility result. This impossibility result implies that a
natural strengthening of the notion of (δ, ε)-stationarity is already too strong to be feasible
in general.

Appendix B. Runtime of smoothed GD suffers from a dimension
dependency

In this appendix, we formally prove that randomized smoothing can indeed lead to strong
dimension dependencies in the iteration complexity of simple gradient methods – in par-
ticular, vanilla gradient descent with constant step size – even for simple convex functions.

7. The last point follows from the fact that if y is an ε-stationary point of ĝw(·), then we can find a
point x arbitrarily close to y such that ĝw(x) 6= gw(x), hence gw(x) < gw(0) − 1, and as a result
gw(0)− fw(x) > 1. But gw(·) is 15

4
-Lipschitz, hence ‖x‖ > 4/15, and therefore ‖y‖ ≥ 4/15.
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Thus, the dimension dependency arising from applying gradient descent on a randomly-
smoothed function is real and not merely an artifact of the analysis (where the standard
upper bound on the number of iterations scales with the gradient Lipschitz parameter). We
note that we focus on constant step-size gradient descent for simplicity, and a similar anal-
ysis can be performed for other gradient-based methods, such as variable step-size gradient
descent or stochastic gradient descent.

Given a 1-Lipschitz function f : Rd → R, denote the smooth approximation f̃(x) =
E‖v‖≤1[f(x + εv)] where v is distributed uniformly over the unit ball. Let x0 be a point

which is of distance at most 1 to an ε-stationary point of f̃ , and consider vanilla gradient
descent with a constant step size η > 0:

xt+1 = xt − η · ∇f̃ (xt) .

The following proposition shows that for any step size, applying gradient descent to find an
approximately-stationary point of f̃ will necessitate a number of iterations scaling strongly
with the dimension:

Proposition 24 There exists a 1-Lipschitz function f : Rd → R such that the following
holds: For any ε < 1

2 , η > 0, there exists x0 as above such that min{t : ‖∇f̃(xt)‖ ≤ ε} =

Ω
(√

d
ε

)
.

Proof We will show the claim holds for f (x) := |x1|. In a nutshell, the proof is based
on the observation that ∇f̃(x) is close to zero only when |x1| = O(1/

√
d). Thus, gradient

descent must hit an interval of size O(1/
√
d). But in order to guarantee this, and with an

arbitrary bounded starting point, the step size must be small, and hence the number of
iterations required will be large.

Proceeding with the formal proof, note that f̃ (x) = E‖v‖≤1 [|x1 + εv1|], hence

∇f̃ (x) = E‖v‖≤1 [sign (x1 + εv1)] · e1

=

(
Pr
‖v‖≤1

[x1 + εv1 > 0]− Pr
‖v‖≤1

[x1 + εv1 < 0]

)
· e1

=

(
1− 2 · Pr

‖v‖≤1
[x1 + εv1 < 0]

)
· e1

=

(
1− 2 · Pr

‖v‖≤1

[
v1 < −

x1

ε

])
· e1 . (28)

We draw several consequences from Eq. (28). First, if x1 = 0 then Pr‖v‖≤1

[
v1 < −x1

ε

]
= 1

2
due to symmetry around the origin, so in particular

∇f̃ (0) = 0 . (29)

Second, if x1 ≥ ε then Pr‖v‖≤1

[
v1 < −x1

ε

]
= 0, and if x1 ≤ −ε then Pr‖v‖≤1

[
v1 < −x1

ε

]
= 1.

Overall
|x1| ≥ ε =⇒ ∇f̃ (x) = sign(x1) · e1 . (30)

Third, since probabilities are bounded between zero and one, we obtain the global upper
estimate ∥∥∥∇f̃ (x)

∥∥∥ ≤ 1 . (31)
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Lastly, Pr‖v‖≤1

[
v1 < −x1

ε

]
equals to the volume of the intersection of the halfspace {v ∈

Rd | v1 < −x1
ε } with the unit ball, normalized by the unit ball volume. In particular,

since this intersection is a subset of the spherical sector associated with the spherical cap{
v ∈ Sd−1

∣∣ v1 < −x1
ε

}
, its normalized volume is less then the surface area of the cap. By

well known estimates of spherical cap (for example Ball et al., 1997, Lemma 2.2):

Pr
‖v‖≤1

[
v1 < −

x1

ε

]
≤ Pr
‖v‖=1

[
v1 < −

x1

ε

]
≤ exp

(
−dx

2
1

2ε2

)
. (32)

By combining Eq. (28) and Eq. (32) we get

∥∥∥∇f̃ (x)
∥∥∥ ≥ 1− 2 exp

(
−dx

2
1

2ε2

)
.

In particular,

|x1| ≥
√

2 log(10)ε√
d

=⇒
∥∥∥∇f̃ (x)

∥∥∥ ≥ 4

5
. (33)

We are now ready to describe the choice of x0 which will prove the claim, depending on the
value of η.

Case I: η ≤ 5
√

2 log(10)ε

2
√
d

We set x0 = e1. First, x0 is indeed at distance 1 from 0, which by Eq. (29) is a stationary
point. Furthermore, by the definition of gradient descent, Eq. (28) and Eq. (31), for all

t ≤ 2
√
d

5
√

2 log(10)ε
− 2

5 :

(xt+1)1 =

(
x0 − η

(
t∑
i=1

∇f̃ (xi)

))
1

≥ 1−
5
√

2 log(10)ε

2
√
d

· t · 1

≥
√

2 log(10)ε√
d

.

So by Eq. (33), for every t ≤ 2
√
d

5
√

2 log(10)ε
− 2

5 :
∥∥∥∇f̃ (xt)

∥∥∥ ≥ 4
5 . Consequently, the minimal

t for which the gradient norm is less than ε satisfies t > 2
√
d

5
√

2 log(10)ε
− 2

5 = Ω(
√
d
ε ).

Case II:
5
√

2 log(10)ε

2
√
d

< η ≤ 2

In this case, we define the real function

φ (s) := 2s− η
(
∇f̃ (s · e1)

)
1
.
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On on hand, by assumption on η and Eq. (33):

φ

(√
2 log(10)ε√

d

)
=

2
√

2 log(10)ε√
d

− η
(
∇f̃ (s · e1)

)
1

≤
2
√

2 log(10)ε√
d

−
5
√

2 log(10)ε

2
√
d

· 4

5

= 0 .

On the other hand, η
2 >

5
√

2 log(10)ε

4
√
d

>

√
2 log(10)ε√

d
and by Eq. (31):

φ
(η

2

)
= η − η

(
∇f̃

(η
2
· e1

))
1

≥ η − η · 1
= 0 .

Notice that φ is continuous since f̃ is smooth, so by the intermediate value theorem there

exists s∗ ∈
[√

2 log(10)ε√
d

, η2

]
such that φ (s∗) = 0. Equivalently,

s∗ − η
(
∇f̃ (s · e1)

)
1

= −s∗ . (34)

We set x0 = s∗e1. First, x0 is of distance at most η
2 ≤ 1 from 0, which by Eq. (29) is a

stationary point. Furthermore, by the definition of gradient descent and Eq. (34) we get

x1 = s∗e1 − η∇f̃ (s∗e1) = −s∗e1 = −x0 .

Inductively, due to the symmetry of f̃ with respect to the origin, we obtain xt = (−1)tx0.

In particular, since s∗ ≥
√

2 log(10)ε√
d

Eq. (33) ensures that for all t ∈ N :
∥∥∥∇f̃ (xt)

∥∥∥ ≥ 4
5 > ε.

Case III: η > 2

Set x0 = e1, which satisfies the distance assumption as explained in case I. By the definition
of gradient descent and Eq. (30):

x1 = e1 − η∇f̃ (e1) = (1− η) e1 .

Notice that (1− η) < −1, so by invoking Eq. (30) we get

x2 = x1 − η∇f̃ (x1) = (1− η) e1 + ηe1 = x0 .

We deduce that for all t ∈ N : xt+2 = xt, and in particular by Eq. (30):
∥∥∥∇f̃ (xt)

∥∥∥ = 1 > ε.
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Appendix C. Proof of Proposition 11

Denote by H the set of non-negative 2-Lipschitz functions h such that h(0) = 1, x∗ :=
arg minx∈R h(x) ∈ (0, 1) is unique, and ∀x 6= x∗ ∀g ∈ ∂h(x) : |g| ≥ 1. We start by
showing that if the proposition does not hold, then there exists an algorithm that finds the
minimum of any function in H within some finite time, with high probability. We will use
this implication in order to obtain a contradiction.

Assume by contradiction that Proposition 11 does not hold. That is, that there exist
A, T, δ such that for any h ∈ H, ρ > 0,

Pr
A

[
min
t∈[T ]
|xht − x∗| < ρ

]
≥ δ . (35)

Let (ρn)∞n=1 > 0 be a decreasing sequence such that limn→∞ ρn = 0. By continuity of
probability measures with respect to decreasing events, assuming Eq. (35) for any ρ > 0
implies

Pr
A

[
∃t ∈ [T ] : xht = x∗

]
= Pr
A

[
min
t∈[T ]
|xht − x∗| = 0

]
= Pr
A

[ ∞⋂
n=1

min
t∈[T ]
|xht − x∗| < ρn

]

= lim
n→∞

Pr
A

[
min
t∈[T ]
|xht − x∗| < ρn

]
≥ δ . (36)

Namely, there exists some algorithm A that gets to the exact minimum of any function in
H within some finite time T , with some positive probability δ. But note that a classic con-
fidence boosting argument shows that if Eq. (36) holds for some 0 < δ < 1, then it actually
holds for any 0 < δ < 1 (with an appropriate blow up in running time). Indeed, assuming it
is true for some δ0,A0, T0, we define an algorithm A which simulates N independent copies
of A0, and returns the point with the smallest function value over all seen iterates along all
the independent copies. By standard Chernoff-Hoeffding bounds one easily gets that for N
being some function of δ0 and δ, A satisfies Eq. (36) for T = N · T0. Hence,

∀δ < 1 ∃Aδ, Tδ ∀h ∈ H : Pr
Aδ

[
∃t ∈ [T ] : xht = x∗

]
≥ δ . (37)

We fix δ = 1
2 , and let A, T0 be it’s associated algorithm and iteration number. By Yao’s

lemma (Yao, 1977), we can assume A is deterministic and provide a distribution over hard
functions. Namely, in order to arrive at a contradiction it is enough to show that

Pr
σ

[
∃t ∈ [T0] : xhσt = x∗

]
<

1

2
, (38)

for some distribution over σ, such that ∀σ : hσ ∈ H.
Before delving into the technical details, we turn to explain the intuition behind the

construction. We consider functions hNσ indexed by σ ∈ {0, 1}N , N ∈ N. The function h1
σ1

“tilts to the left” if σ1 = 0, and “tilts to the right” if σ1 = 1 (see Fig. 5). Given these
two functions, we define the functions for N = 2, such that σ1 determines an “outer” tilt,
while σ2 determines an “inner” tilt which behaves like h1

σ2 (once again, see Fig. 5). These
functions are such that for any point outside the outer tilted segment, it’s value does not
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depend on the inner tilt - that is, on σ2. We continue this process recursively for any N ∈ N,
such that the larger i is, σi determines finer tilts in smaller segments. The construction
has the property that for all points outside the tilt determined by σi, the function’s values
do not depend on σi+1, . . . , σN . Thus, by setting N large enough relatively to T , we will
be able to ensure that x1, . . . , xT are not likely to depend on σN , therefore missing the
minimum which does depend on it. To that end, we define the following functions:

h1
0 (x) =


1− x x ∈ (−∞, 0)

1− 2x x ∈
[
0, 3

8

]
6
5x−

1
5 x ∈

[
3
8 , 1
]

x x ∈ (1,∞)

, h1
1 (x) =


1− x x ∈ (−∞, 0)

−6
5x+ 1 x ∈

[
0, 5

8

]
2x− 1 x ∈

[
5
8 , 1
]

x x ∈ (1,∞)

.

Next, in a recursive manner, for any σ̂ := (σ2, . . . , σN ) ∈ {0, 1}N−1 we define (see Fig. 5):

hN0,σ̂ (x) =



1− x x ∈ (−∞, 0)

1− 2x x ∈
[
0, 1

4

]
1
4h

(N−1)
σ̂ (4x− 1) + 1

4 x ∈
[

1
4 ,

1
2

]
x x ∈

[
1
2 , 1
]

x x ∈ (1,∞)

,

hN1,σ̂ (x) =



1− x x ∈ (−∞, 0)

1− x x ∈
[
0, 1

2

]
1
4h

(N−1)
σ̂ (4x− 2) + 1

4 x ∈
[

1
2 ,

3
4

]
2x− 1 x ∈

[
3
4 , 1
]

x x ∈ (1,∞)

.

Lemma 25 For any N ∈ N, it holds that for all σ ∈ {0, 1}N : hNσ ∈ H.

Proof The proof is by induction on N . For N = 1 it is easy to verify that h1
0, h

1
1 ∈ H, and

h1
0(1) = h1

1(1) = 1, as well as the fact that h1
0, h

1
1 are both piecewise linear. Assume the claim

is true for some N − 1, and that for all σ̂ ∈ {0, 1}N−1 : hN−1
σ̂ (1) = 1 as well as that they are

all piecewise linear. Consider hN0,σ̂ for some σ̂ ∈ {0, 1}N−1. First, hN0,σ̂(0) = 1− 2 · 0 = 1 as

required. Moreover, it is clear by definition that hN0,σ̂(x) ≥ 0 for all x /∈ [1
4 ,

1
2 ]. For x ∈ [1

4 ,
1
2 ],

we have by the induction hypothesis

hN0,σ̂(x) =
1

4
· hN−1

σ̂ (4x− 1)︸ ︷︷ ︸
≥0

+
1

4
≥ 0 ,

35



Kornowski and Shamir

Figure 5: Plots of the functions hNσ , σ ∈ {0, 1}N , N = 1 (on the left) and N = 2 (on the
right).

which establishes the required non-negativity property. Note that hN0,σ̂ is continuous. In-

deed, it is easy to verify continuity for any x /∈ {1
4 ,

1
2}, and for those two points we have

hN0,σ̂

(
1

4

)
=

1

4
hN−1
σ̂ (0) +

1

4
=

1

4
· 1 +

1

4
=

1

2
= lim

x→ 1
4

(1− 2x)

hN0,σ̂

(
1

2

)
=

1

4
hN−1
σ̂ (1) +

1

4
=

1

4
· 1 +

1

4
=

1

2
= lim

x→ 1
2

(x) .

Using our induction hypothesis we see that hN0,σ̂ is a piecewise linear continuous function.

Thus, in order to prove the remaining properties it is enough to inspect ∂hN0,σ̂. It is easy to

verify that for all x /∈ [1
4 ,

1
2 ] : ∂hN0,σ̂(x) ⊆ {−1,−2, 1}. For x ∈ [1

4 ,
1
2 ], we have

∂hN0,σ̂(x) = ∂

((
z 7→ 1

4
z +

1

4

)
◦
(
y 7→ hN−1

σ̂ (y)
)
◦ (x 7→ 4x− 1)

)
(x)

=

{
1

4
· g · 4

∣∣∣∣ g ∈ ∂hN−1
σ̂ (4x− 1)

}
=
{
g
∣∣∣ g ∈ ∂hN−1

σ̂ (4x− 1)
}
. (39)

By the induction hypothesis, all elements of the set above are of magnitude at most 2,
which establishes the desired Lipschitz property. Furthermore, note that if x ∈ [1

4 ,
1
2 ] then

4x − 1 ∈ [0, 1]. Using the induction hypothesis, let x∗ ∈ [1
4 ,

1
2 ] be the unique number

such that 4x∗ − 1 = arg minhN−1
σ̂ . Then by the induction hypothesis and Eq. (39), for all

x ∈ [1
4 ,

1
2 ] \ {x∗} ∀g ∈ ∂hN0,σ̂(x) : |g| ≥ 1 which is exactly the desired property, assuming

we show that x∗ = arg minhN0,σ̂. Finally, noticing that hN0,σ̂ is decreasing for all x < x∗

and increasing for all x > x∗ (which inside the interval [1
4 ,

1
2 ] follows once again from the
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induction hypothesis and our choice of x∗) finishes the proof for hN0,σ̂. The proof for hN1,σ̂ is
essentially the same.

We define

Iσ1,...,σk :=

[
k∑
i=1

σi + 1

4i
,

k∑
i=1

σi + 1

4i
+

1

4k

]
⊂ R .

Lemma 26 For any l < k and any σ1, . . . , σl, . . . , σk ∈ {0, 1} : Iσ1,...,σl ⊃ Iσ1,...,σl,...,σk .

Proof On one hand,

l∑
i=1

σi + 1

4i
<

l∑
i=1

σi + 1

4i
+

k∑
i=l+1

σi + 1

4i
=

k∑
i=1

σi + 1

4i
.

On the other hand,

k∑
i=1

σi + 1

4i
+

1

4k
=

l∑
i=1

σi + 1

4i
+

k∑
i=l+1

σi + 1

4i
+

1

4k
≤

l∑
i=1

σi + 1

4i
+

k∑
i=l+1

2

4i
+

1

4k

=

l∑
i=1

σi + 1

4i
+

2

3

(
1

4l
− 1

4k

)
+

1

4k
=

l∑
i=1

σi + 1

4i
+

2

3
· 1

4l
+

1

3
· 1

4k

<

l∑
i=1

σi + 1

4i
+

2

3
· 1

4l
+

1

3
· 1

4l
=

l∑
i=1

σi + 1

4i
+

1

4l
.

Lemma 27 If (σ1, . . . , σk−1) 6= (σ′1, . . . , σ
′
k−1) then for all σk, σ

′
k ∈ {0, 1} : Iσ1,...,σk ∩

Iσ′1,...,σ′k = ∅.

Proof Let i0 ≤ k − 1 the the minimal index i for which σi 6= σ′i. Assume without loss of
generality that σi0 = 0, σ′i0 = 1. If x ∈ Iσ1,...,σk then by definition

x ≤
k∑
i=1

σi + 1

4i
+

1

4k

=

i0−1∑
i=1

σi + 1

4i
+
σi0 + 1

4i0
+

k∑
i=i0+1

σi + 1

4i
+

1

4k

≤
i0−1∑
i=1

σ′i + 1

4i
+

1

4i0
+

k∑
i=i0+1

2

4i
+

1

4k

=

i0−1∑
i=1

σ′i + 1

4i
+

1

4i0
+

2

3

(
1

4i0
− 1

4k

)
+

1

4k

=

i0−1∑
i=1

σ′i + 1

4i
+

2

4i0
+

1

3
· 1

4k
− 1

3
· 1

4i0
. (40)
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Using the fact that i0 < k we also get

1

3
· 1

4k
− 1

3
· 1

4i0
<

1

3
· 1

4i0
− 1

3
· 1

4k
=

k∑
i=i0+1

1

4i
≤

k∑
i=i0+1

σ′i + 1

4i
. (41)

Plugging Eq. (41) into Eq. (40) reveals than for any x ∈ Iσ1,...,σk :

x <

i0−1∑
i=1

σ′i + 1

4i
+

2

4i0
+

k∑
i=i0+1

σ′i + 1

4i
=

k∑
i=1

σ′i + 1

4i
.

Hence x /∈ Iσ′1,...,σ′k , which finishes the proof.

Lemma 28 For any N ≥ 2, any 1 ≤ k < N and any local oracle O, it holds that
OhNσ1,...,σN

(x) does not depend on σk+1, . . . , σN for x /∈ Iσ1,...,σk .

Proof First, notice that since R \ Iσ1,...,σk is an open set it is enough to prove that the
function value hNσ1,...,σN (x) does not depend on σk+1, . . . , σN for x /∈ Iσ1,...,σk , which implies
the desired claim about OhNσ1,...,σN

(x) by definition of a local oracle. We will prove the claim

for all natural pairs (N, k) such that k < N , using the following inductive argument:

• For any N ≥ 2, the claim holds for (N, 1).

• If the claim holds for (N − 1, k − 1) then it holds for (N, k).

Combining both bullets proves the claim for any pair (N, k), through the chain of implica-
tions

(N − k + 1, 1) =⇒ (N − k + 2, 2) =⇒ · · · =⇒ (N, k) .

For the first bullet, fix any N ≥ 2. We need to prove that hNσ1,...,σN (x) does not depend

on σ2, . . . , σN for x /∈
[
σ1+1

4 , σ1+1
4 + 1

4

]
. Indeed, if σ1 = 0 then by construction hN0,...,σN (x)

does not depend on σ2, . . . , σN for x /∈
[

1
4 ,

1
2

]
. Similarly, if σ1 = 1 then by construction

hN1,...,σN (x) does not depend on σ2, . . . , σN for x /∈
[

1
2 ,

3
4

]
.

For the second bullet, assume the claim is true for some pair (N−1, k−1). By renaming
the variables σi ← σi+1, the induction hypothesis states that hN−1

σ2,...,σN
(x) does not depend

on σk+1, . . . , σN for x /∈ [
∑k−1

i=1
σi+1+1

4i
,
∑k−1

i=1
σi+1+1

4i
+ 1

4k−1 ]. Thus, hN−1
σ2,...,σN

(4x − 1 − σ1)
does not depend on σk+1, . . . , σN for

(4x− 1− σ1) /∈

[
k−1∑
i=1

σi+1 + 1

4i
,
k−1∑
i=1

σi+1 + 1

4i
+

1

4k−1

]

⇐⇒ x /∈

[
k∑
i=1

σi + 1

4i
,

k∑
i=1

σi + 1

4i
+

1

4k

]
.

Noticing that by definition, hNσ1,σ2,...,σN (x) depends on σ2, . . . , σN only when (4x − 1 − σi)
is fed to hN−1

σ2,...,σN
finishes the proof.
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From now on we fix some N we will specify later, and abbreviate hσ = hNσ . Let
σ ∼ Unif({0, 1}N ), and consider the random sequence x1, x2, . . . produced by A when
applied to hσ (where the randomness comes from the random choice of σ).

Lemma 29 For any t ∈ N, 1 ≤ l < k ≤ N : Prσ [xt+1 ∈ Iσ1,...,σl,...,σk |x1, . . . , xt /∈ Iσ1,...,σl ] ≤
1

2k−l−1 .

Proof If x1, . . . , xt /∈ Iσ1,...,σl , then Lemma 28 tells us that Ohσ(x1), . . . ,Ohσ(xt) do not
depend on σl+1, . . . , σN . Since xt+1 is some deterministic function of Ohσ(x1), . . . ,Ohσ(xt),
which is the information that A obtains along it’s first t iterations, we can deduce that in
this case

1. Conditioning on past information, σl+1, . . . , σN ∼ Unif({0, 1}). In particular we get
(σl+1, . . . , σk−1) ∼ Unif({0, 1}k−l−1).

2. xt+1 is chosen independently of σl+1, . . . , σk−1.

Note that by Lemma 27, Iσ1,...,σl,σl+1,...,σk−1,σk , Iσ1,...,σl,σ′l+1,...,σ
′
k−1,σ

′
k

are disjoint for any

(σl+1, . . . , σk−1) 6= (σ′l+1, . . . , σ
′
k−1), thus the events x ∈ Iσ1,...,σl,σl+1,...,σk−1,σk and x ∈

Iσ1,...,σl,σ′l+1,...,σ
′
k−1,σ

′
k

are disjoint. Since there are 2(k−1)−(l+1)+1 = 2k−l−1 such binary vec-

tors, we obtain 2k−l−1 disjoint events with equal probabilities. Thus, their probability is at
most 1

2k−l−1 , which proves the claim.

Recall that Iσ1 ⊃ Iσ1,σ2 ⊃ · · · ⊃ Iσ1,...,σN by Lemma 26. Combined with the previous
lemma, we get

Pr
σ

[∃t ∈ [T0] : xt = x∗] ≤ Pr
σ

[∃t ∈ [T0] : xt ∈ Iσ1,...,σN ]

≤
T0∑
t=1

Pr
σ

[xt ∈ Iσ1,...,σN ]

≤
T0∑
t=1

Pr
σ

[
∃s ∈ [t], l ∈ [N ] : x1, . . . , xs /∈ Iσ1,...,σl ∧ xs+1 ∈ Iσ1,...,σl+Nt

]
≤

T0∑
t=1

t∑
s=1

N∑
l=1

Pr
σ

[
x1, . . . , xs /∈ Iσ1,...,σl ∧ xs+1 ∈ Iσ1,...,σl+Nt

]
=

T0∑
t=1

t∑
s=1

N∑
l=1

Pr
σ

[
xs+1 ∈ Iσ1,...,σl+Nt

∣∣∣x1, . . . , xs /∈ Iσ1,...,σl
]
· Pr
σ

[x1, . . . , xs /∈ Iσ1,...,σl ]

≤
T0∑
t=1

t∑
s=1

N∑
l=1

1

2
N
t
−1
· 1 =

T0∑
t=1

Nt

2
N
t
−1
≤ T0 ·

NT0

2
N
T0
−1

.

Since N(T0)2

2
N
T0
−1

N→∞−→ 0, there exists some finite N (which depends on T0) such that
NT 2

0

2
N
T0
−1
≤ 1

4 .

With this N , we get

Pr
σ

[∃t ∈ [T0] : xt = x∗] ≤ 1

4
<

1

2
,

proving Eq. (38) and finishing the proof.
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Appendix D. Technical lemmas

Lemma 30 Denote by f(·) the L0-Lipschitz function x 7→ L0|x1|. Assume f̃(·) has L-

Lipschitz gradients, and satisfies
∥∥∥f − f̃∥∥∥

∞
≤ ε. Then L ≥ L0

8ε .

Proof Due to rescaling we can assume without loss of generality that L0 = 1. Denoting
by e1 the first standard basis vector, we have

f̃ (−4ε · e1) ≥ f (−4ε · e1)− ε = 4ε− ε = 3ε ,

f̃ (4ε · e1) ≥ f (4ε · e1)− ε = 4ε− ε = 3ε ,

f̃ (0) ≤ f (0) + ε = ε .

By the mean value theorem, there exist −4ε < t0 < 0, 0 < t1 < 4ε such that

∂

∂x1
f̃ (t0) =

f̃ (0)− f̃ (−4ε · e1)

4ε
≤ ε− 3ε

4ε
= −1

2
,

∂

∂x1
f̃ (t1) =

f̃ (4ε · e1)− f̃ (0)

4ε
≥ 3ε− ε

4ε
=

1

2
.

So by Cauchy-Schwarz and L-smoothness of f̃ :

1 =

∣∣∣∣ ∂∂x1
f̃ (t1)− ∂

∂x1
f̃ (t0)

∣∣∣∣ =
∣∣∣〈∇f̃ (t1 · e1)−∇f̃ (t0 · e1) , e1

〉∣∣∣
≤
∥∥∥∇f̃ (t1 · e1)−∇f̃ (t0 · e1)

∥∥∥ ≤ L |t1 − t0| ≤ L · 8ε .

Lemma 31 If f̃(·) has L-Lipschitz gradients and satisfies ‖f−f̃‖∞ ≤ ε for some 1-Lipschitz
function f(·), then for all x ∈ Rd : ‖∇f̃(x)‖ ≤ 1 + 2ε+ L

2 .

Proof Let x,y ∈ Rd. Denote γ(t) := (1− t) · x + t · y, and notice that

f̃ (y)− f̃ (x) = f̃ (γ (1))− f̃ (γ (0)) =

∫ 1

0

(
f̃ ◦ γ

)′
(t) dt =

∫ 1

0

〈
∇f̃ (γ (t)) , γ′ (t)

〉
dt

=

∫ 1

0

〈
∇f̃ (γ (t)) ,y − x

〉
dt . (42)

Combining Cauchy-Schwarz with the fact that ∇f̃ is L-Lipschitz, we get〈
∇f̃ (x)−∇f̃ (γ (t)) ,y − x

〉
≤
∥∥∥∇f̃ (x)−∇f̃ (γ (t))

∥∥∥ · ‖y − x‖ ≤ L ‖x− γ (t)‖ · ‖y − x‖

=⇒
〈
∇f̃ (γ (t)) ,y − x

〉
≥
〈
∇f̃ (x) ,y − x

〉
− L ‖γ (t)− x‖ · ‖y − x‖ .
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Plugging this into Eq. (42) gives

f̃ (y)− f̃ (x) ≥
∫ 1

0

(〈
∇f̃ (x) ,y − x

〉
− L ‖γ (t)− x‖ · ‖y − x‖

)
dt

=
〈
∇f̃ (x) ,y − x

〉
− L ‖y − x‖ ·

∫ 1

0
‖γ (t)− x‖ dt

=
〈
∇f̃ (x) ,y − x

〉
− L ‖y − x‖ ·

[
1

2
‖γ (1)− x‖2 − 1

2
‖γ (0)− x‖2

]
=
〈
∇f̃ (x) ,y − x

〉
− L

2
‖y − x‖3

=⇒
〈
∇f̃ (x) ,y − x

〉
≤ f̃ (y)− f̃ (x) +

L

2
‖y − x‖3 .

We assume ‖∇f̃(x)‖ 6= 0 since otherwise the desired claim is trivial. In particular, if

y = x + ∇f̃(x)

‖∇f̃(x)‖ then ‖y − x‖ = 1 and inequality above reveals

∥∥∥∇f̃ (x)
∥∥∥ ≤ f̃ (y)− f̃ (x) +

L

2
≤ f (y)− f (x) + 2ε+

L

2
≤ ‖y − x‖+ 2ε+

L

2
= 1 + 2ε+

L

2
,

where we used the fact that ‖f̃ − f‖∞ ≤ ε, and that f is 1-Lipschitz.
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