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Abstract

We propose and study a class of simple, nonparametric, yet interpretable measures of
conditional dependence, which we call kernel partial correlation (KPC) coefficient, between
two random variables Y and Z given a third variable X, all taking values in general
topological spaces. The population KPC captures the strength of conditional dependence
and it is 0 if and only if Y is conditionally independent of Z given X, and 1 if and only if
Y is a measurable function of Z and X. We describe two consistent methods of estimating
KPC. Our first method is based on the general framework of geometric graphs, including K-
nearest neighbor graphs and minimum spanning trees. A sub-class of these estimators can
be computed in near linear time and converges at a rate that adapts automatically to the
intrinsic dimensionality of the underlying distributions. The second strategy involves direct
estimation of conditional mean embeddings in the RKHS framework. Using these empirical
measures we develop a fully model-free variable selection algorithm, and formally prove the
consistency of the procedure under suitable sparsity assumptions. Extensive simulation
and real-data examples illustrate the superior performance of our methods compared to
existing procedures.

Keywords: Conditional mean embedding, cross-covariance operator, model-free nonlin-
ear variable selection, nearest neighbor methods, reproducing kernel Hilbert spaces

1. Introduction

Conditional independence is an important concept in modeling causal relationships (Dawid,
1979; Pearl, 2000), in graphical models (Lauritzen, 1996; Koller and Friedman, 2009), in eco-
nomics (Chiappori and Salanié, 2000), and in the literature of program evaluations (Heck-
man et al., 1997), among other fields. Measuring conditional dependence has many impor-
tant applications in statistics such as Bayesian network learning (Pearl, 2000; Spirtes et al.,
2000), variable selection (George, 2000; Azadkia and Chatterjee, 2021), dimension reduc-
tion (Cook and Li, 2002; Fukumizu et al., 2003/04; Li, 2018), and conditional independence
testing (Linton and Gozalo, 1997; Bergsma, 2004; Su and White, 2007; Song, 2009; Huang,
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2010; Zhang et al., 2012; Su and White, 2014; Doran et al., 2014; Wang et al., 2015; Patra
et al., 2016; Runge, 2018; Ke and Yin, 2020; Shah and Peters, 2020).

Suppose that (X,Y, Z) ∼ P where P is supported on a subset of some topological space
X ×Y ×Z with marginal distributions PX , PY and PZ on X ,Y and Z respectively. In this
paper, we propose and study a class of simple, nonparametric, yet interpretable measures
ρ2 ≡ ρ2(Y, Z|X) and their empirical counterparts, that capture the strength of conditional
dependence between Y and Z, given X. To explain our motivation, consider the case when
Y = Z = R and (X,Y, Z) is jointly Gaussian, and suppose that we want to measure the
strength of association between Y and Z, with the effect of X removed. In this case a well-
known measure of this conditional dependence is the partial correlation coefficient ρY Z·X .
In particular, the partial correlation squared ρ2Y Z·X is: (i) A deterministic number in [0, 1];
(ii) 0 if and only if Y is conditionally independent of Z given X (i.e., Y ⊥⊥ Z|X); (iii) 1 if
and only if Y is a (linear) function of Z given X. Moreover, any value between 0 and 1 of
ρ2Y Z·X conveys an idea of the strength of the relationship between Y and Z given X.

In this paper we answer the following question in the affirmative: “Is there a nonparamet-
ric generalization of ρ2Y Z·X having the above properties that is applicable to random variables
X,Y, Z taking values in general topological spaces and having any joint distribution?”.

In particular, we define a generalization of ρ2Y Z·X — the kernel partial correlation (KPC)
coefficient — which measures the strength of the conditional dependence between Y and Z
given X, that can deal with any distribution P of (X,Y, Z) and is capable of detecting any
nonlinear relationships between Y and Z (conditional on X). Moreover, given i.i.d. data
from P , we develop and study two different strategies to estimate this population quantity
— one based on geometric graph-based methods (Section 3) and the other based on kernel
methods using cross-covariance operators (Section 4). We conduct a systematic study of the
various computational and statistical properties of these two classes of estimators, including
their consistency and (automatic) adaptive properties. We use these measures to develop a
provably consistent model-free (high-dimensional) variable selection algorithm (Section 5).

1.1 Kernel Partial Correlation (KPC) Coefficient

Our measure of conditional dependence between Y and Z given X is defined using the
framework of reproducing kernel Hilbert spaces (RKHSs, see Section 2.1). Let PY |xz denote
the regular conditional distribution of Y given (X,Z) = (x, z), and PY |x denote the regular
conditional distribution of Y given X = x. We define the kernel partial correlation (KPC)
coefficient ρ2(Y,Z|X) as:

ρ2 ≡ ρ2(Y,Z|X) :=
E[MMD2(PY |XZ , PY |X)]

E[MMD2(δY , PY |X)]
, (1)

where MMD is the maximum mean discrepancy — a distance metric between two probability
distributions depending on a kernel kY(·, ·) on Y ×Y, and δY denotes the Dirac measure at
Y . We show in Theorem 1 that ρ2(Y, Z|X) satisfies the following three properties for any
joint distribution P of (X,Y, Z):

(i) ρ2 ∈ [0, 1]; (ii) ρ2 = 0 if and only if Y ⊥⊥ Z|X;

(iii) ρ2 = 1 if and only if Y is a measurable function of Z and X.
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Further, ρ2(Y,Z|X) monotonically increases as the ‘dependence’ between Y and Z given
X becomes stronger: We illustrate this in Propositions 1 and 2 where we consider different
kinds of dependence between Y and Z (given X). In Proposition 1 we show that ρ2, for a
large class of kernels and Y,Z being scalars, is a monotonic function of ρ2Y Z·X (the squared
partial correlation coefficient), for Gaussian data. Moreover, we show that when the linear
kernel is used (i.e., kY(y, y′) = yy′ for y, y′ ∈ R), ρ2 reduces exactly to ρ2Y Z·X . Thus, our
proposed measure KPC is indeed a generalization of the classical partial correlation and
captures the strength of conditional association.

In Azadkia and Chatterjee (2021) a measure satisfying properties (i)-(iii) was proposed
and studied, when Y is a scalar (and Z and X are Euclidean). We show in Lemma 3
that this measure is a special case of our general framework by taking a specific choice of
the kernel kY(·, ·). The advantage of our general framework is that we no longer require
Y to be a scalar. In fact, (X,Y, Z) ∈ X × Y × Z can even be non-Euclidean, as long as
a kernel function kY can be defined on Y, and X and Z are, for example, metric spaces.
Further, ρ2, as defined in (1), provides a lot of flexibility to the practitioner as there are
a number of kernels known in the literature for different spaces Y (Lebanon and Lafferty,
2002; Fukumizu et al., 2009b; Danafar et al., 2010; Wynne and Duncan, 2020), some of
which may have better properties than others, depending on the application at hand.

In spite of all the above nice properties of ρ2, it is not immediately clear if we can estimate
ρ2 efficiently, given i.i.d. sample {(Xi, Yi, Zi)}ni=1 from P . In the following we introduce two
estimators of ρ2 that are easy to implement and enjoy many desirable statistical properties.

1.2 Estimation of KPC Using Geometric Graph-Based Methods

Our first estimation strategy is based on geometric graphs; e.g., K-nearest neighbor (K-NN)
graphs and minimum spanning trees (MSTs). In Section 3 we describe our method and the

resulting estimator ρ̂2 (see Equation 12). In the following we briefly summarize some of the

key features of ρ̂2:

1. It can be computed for continuous and categorical/discrete data on Euclidean domains
and also for random variables X,Y, Z taking values in general topological spaces, e.g.,
X and X × Z being metric spaces and Y being kernel-endowed would suffice. This
can be particularly useful in functional regression (Morris, 2015; Wynne and Duncan,
2020), real-life machine learning and human actions recognition (Danafar et al., 2010),
dynamical systems (Song et al., 2009), etc.

2. Although ρ̂2 has a simple interpretable form, it is fully nonparametric. No estimation
of conditional densities or distributions (or characteristic functions) is involved.

3. It converges to ρ2 under very mild assumptions, without any smoothness/continuity
conditions on the conditional distributions (Theorem 3).

4. It is Op(n
−1/2) concentrated around a population quantity (Proposition 3), under

mild assumptions on the kernel. We further establish rates of convergence for ρ̂2

(constructed using K-NN graphs) to ρ2 that adapt to the intrinsic dimensionality of
X and (X,Z); see Theorem 4.
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5. It can be calculated in near linear time (up to logarithmic factors) for a broad variety
of metric spaces X and X × Z (including all Euclidean spaces); see Section 3.1.1.

6. It can be used for variable selection in regression where the response and predictors
can take values in general topological spaces. In particular, it provides a stopping
criterion for a forward stepwise variable selection algorithm which we call kernel fea-
ture ordering by conditional independence (KFOCI), inspired by the variable selection
algorithm FOCI in Azadkia and Chatterjee (2021) that automatically determines the
number of predictor variables to choose. We study the properties of KFOCI which
is model-free and is provably consistent even in the high-dimensional regime where
the number of covariates grows exponentially with the sample size, under suitable
sparsity assumptions. By allowing general kernel functions and different geometric
graphs, KFOCI can achieve superior performance when compared to FOCI.

As far as we are aware, our methods are the only procedures that possess all the above
mentioned desirable properties.

1.3 Estimation of KPC Using RKHS-Based Methods

As the population version of the KPC coefficient ρ2 is expressed in terms of MMD, it is
natural to ask if kernel methods can be directly used to estimate ρ2. This is precisely what
we do in our second estimation strategy. Observe that the MMD between two distributions
is the distance between their kernel mean embeddings (see Definition 1). Further, the kernel
mean embedding of a conditional distribution, which is usually called the conditional mean
embedding (CME; see Definition 6), can be expressed in terms of cross-covariance operators
(see Definition 5) between the two RKHSs (see e.g., Baker, 1973; Fukumizu et al., 2003/04;
Song et al., 2009, 2013; Klebanov et al., 2020). As cross-covariance operators can be easily
estimated empirically, we can use a plug-in approach to estimate ρ2, and denote it by
ρ̃2 ≡ ρ̃2(Y, Z|X). We refer to ρ̃2 as the RKHS-based estimator.

We study this estimation strategy in detail in Section 4. In particular, ρ̃2 can be com-
puted as long as Y,X and X ×Z are kernel-endowed, using simple matrix operations of the
corresponding kernel matrices. The computation can also be accelerated using incomplete
Cholesky decomposition. We derive the consistency of this estimator in Theorem 6. In the
process of deriving this result we prove the consistency of the plug-in estimator of the CME;
this answers an open question stated in Klebanov et al. (2020) and may be of independent

interest. Furthermore, ρ̃2 reduces to the empirical (classical) partial correlation squared

when the linear kernel is used. Through extensive simulation studies we show that ρ̃2 has
good finite sample performance in a variety of tasks.

A forward stepwise variable selection algorithm, like KFOCI, can also be devised using
the RKHS-based estimator ρ̃2. However, unlike KFOCI, we need to prespecify the number
of variables to be chosen beforehand. Both variable selection algorithms — the one based
on ρ̃2 and the other on ρ̂2 — perform very well in simulated and real data examples as
illustrated in the thorough finite sample studies in Section 6.

As a consequence of our general RKHS-based estimation strategy, we can also study the
problem of measuring the strength of mutual dependence between Y and Z (when there is
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no X), and estimate it using ρ̃2(Y,Z|∅); see Remark 10. This complements the graph-based
approach of estimating ρ2(Y,Z|∅) as developed in Deb et al. (2020).

Besides having superior performance on Euclidean spaces, the two proposed estimators
are applicable in much more general spaces. In Section 6 we illustrate this by considering
two such typical examples: One where the response Y takes values in the special orthogonal
group SO(3), and the other where we have compositional data (Y taking values in the

simplex Y = {y ∈ Rd : y1 + . . .+ yd = 1, yi ≥ 0}). In addition, ρ̂2 and ρ̃2 can also be easily
applied in the existing model-X framework (Candès et al., 2018) to yield valid tests for
conditional independence and variable selection algorithms with finite sample FDR control.
For model-X testing and FDR control, see our full version on arXiv (Huang et al., 2020).

1.4 Related Works

A plethora of procedures — parametric and nonparametric, applicable to discrete and
continuous data — have been proposed in the literature, over the last 60 years, to detect
conditional dependencies between Y and Z given X (see e.g., Cochran, 1954; Mantel and
Haenszel, 1959; Linton and Gozalo, 1997; Bergsma, 2004; Su and White, 2008; Song, 2009;
Doran et al., 2014; Candès et al., 2018; Neykov et al., 2021) and the references therein.
However none of these methods satisfy property (ii) (as mentioned in Section 1.1). While
these methods are indeed useful in practice, they have one common problem: They are all
designed primarily for testing conditional independence, and not for measuring the strength
of conditional dependence.

In this paper we are interested in nonparametrically measuring the strength of condi-
tional dependence. Measures of conditional dependence such as ICOND (defined as the
Hilbert-Schmidt norm of a normalized conditional cross-covariance operator, Fukumizu
et al., 2008), HSCIC (defined as the Hilbert-Schmidt independence criterion (HSIC) be-
tween PY |X and PZ|X ; see Gretton et al., 2005; Park and Muandet, 2020), conditional
distance covariance CdCov (defined as the distance covariance, as in Székely et al., 2007,
between PY |X and PZ|X ; see Wang et al., 2015) and HSC̈IC (defined as the Hilbert-Schmidt
norm of a conditional cross-covariance operator; see Fukumizu et al., 2003/04; Sheng and
Sriperumbudur, 2019) have the property of always being nonnegative, and they attain the
value 0 if and only if Y ⊥⊥ Z|X. However, they do not satisfy properties (i) and (iii)
(mentioned in Section 1.1). The conditional distance correlation CdCor (Wang et al., 2015)
is normalized between [0, 1], but it is not guaranteed to satisfy property (iii). There are
efforts to extend the notion of partial correlation by proposing a kernel generalization (Oh
et al., 2018) and a local version (Otneim and Tjøstheim, 2021); however, Oh et al. (2018)
is restricted to a regression setting, assuming independent additive noise, whereas Otneim
and Tjøstheim (2021), together with HSCIC (Park and Muandet, 2020) and CdCor (Wang
et al., 2015), are actually a family of measures indexed by the local variable (rather than a
single number). The idea of finding a normalized measure of dependence, like ρ2(Y,Z|X),
has been explored in the recent paper Ke and Yin (2020), but their estimation strategy is
very different from the two class of estimators proposed here.

The most relevant work to this paper, and the main motivation behind our work, is the
recent paper Azadkia and Chatterjee (2021), where a measure satisfying properties (i)-(iii)
was proposed. However, their measure is only applicable to a scalar Y . Our measure KPC
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provides a general framework for measuring conditional dependence that is flexible enough
to allow the user to choose any kernel of their liking and can handle variables taking values
in general topological spaces.

A major application of KPC is variable selection. Common variable selection methods
in statistics often posit a parametric model, e.g., by assuming a linear model (Friedman,
1991; Chen and Donoho, 1994; Breiman, 1995; Tibshirani, 1996; Fan and Li, 2001; Miller,
2002; Efron et al., 2004; Zou and Hastie, 2005; Yuan and Lin, 2006; Zou, 2006; Candès
and Tao, 2007; Hastie et al., 2009; Ravikumar et al., 2009; Barber and Candès, 2015).
These methods are powerful when the underlying parametric assumption holds true, but
could have poor performance when the data generating process is more complicated. In
general nonlinear settings, although there are popular algorithms for feature selection based
on machine learning methods, such as random forests and neural nets (Breiman et al.,
1984; Battiti, 1994; Amit and Geman, 1997; Ho, 1998; Breiman, 2001; Hastie et al., 2009;
Vergara and Estévez, 2014; Speiser et al., 2019), the performance of these algorithms could
depend heavily on how well the machine learning techniques fit the data, and often their
theoretical guarantees are weaker than those of model-based methods. Another class of
modern nonparametric variable selection methods is by means of fitting penalized smoothing
splines (Chen, 1993; Yau et al., 2003; Zhang et al., 2004; Lin and Zhang, 2006; Huang et al.,
2010), but these methods still assume certain additive structure of the model. There are
also model-free methods in the literature of sufficient dimension reduction (SDR) (Cook,
2004; Li et al., 2005; Fukumizu et al., 2009a; Bondell and Li, 2009). However, SDR based
methods are not without limitations: (i) some of these methods require strong assumptions
such as the linearity condition and constant variance condition, which may not hold if the
predictor is not elliptically distributed; (ii) the dimension of the central subspace are often
assumed known.

In this paper, we propose an easily implementable, yet fully model-free variable selection
method that is able to automatically determine the number of variables to select, extending
the idea of the recent paper Azadkia and Chatterjee (2021). We also formally prove the
consistency of our procedure, under suitable assumptions.

1.5 Organization

In Section 2, we introduce and study the population version of the KPC coefficient ρ2(Y,Z|X).
In Section 3, we describe our first method of estimation, based on geometric graphs such as
K-NNs and MSTs. Section 4 describes our second estimation strategy, using a RKHS-based
method. Applications to variable selection, including a consistency theorem for variable se-
lection, are provided in Section 5. A detailed simulation study and real data analyses are
presented in Section 6. Appendix A contains some general discussions that were deferred
from the main text of the paper. In Appendix B we provide the proofs of our results.

2. Kernel Partial Correlation (KPC)

Let X ,Y,Z be topological spaces equipped with Borel probability measures and let X×Y×Z
be the product space. Suppose that (X,Y, Z) ∼ P is a random element on X ×Y ×Z with
marginal distributions PX , PY and PZ , on X , Y and Z, respectively. Let PXZ denote the
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joint distribution of (X,Z). Recall the notation PY |xz, PY |x from the Introduction; we will
assume the existence of these regular conditional distributions.

2.1 Preliminaries

LetHY be an RKHS with kernel kY(·, ·) on the space Y. By a kernel function kY : Y×Y → R
we mean a symmetric and nonnegative definite function such that kY(y, ·) is a (real-valued)
measurable function on Y, for all y ∈ Y. HY is a Hilbert space of real-valued functions on
Y such that, for any f ∈ HY , we have f(y) = 〈f, kY(y, ·)〉HY , for all y ∈ Y; this is usually
referred to as the reproducing property of the kernel kY(·, ·). Let us denote the inner product
and norm on HY by 〈·, ·〉HY and ‖ · ‖HY respectively. For an introduction to the theory of
RKHS and its applications in statistics we refer the reader to Berlinet and Thomas-Agnan
(2004); Steinwart and Christmann (2008). In the following we define two concepts that will
be crucial in defining the KPC coefficient.

Definition 1 (Kernel mean embedding) Suppose that W has a probability distribution
Q on Y such that EQ[

√
kY(W,W )] <∞. There exists a unique µQ ∈ HY satisfying

〈µQ, f〉HY = EQ[f(W )], for all f ∈ HY , (2)

which is called the (kernel) mean embedding of the distribution Q into HY .

Definition 2 (Maximum mean discrepancy) The difference between two probability dis-
tributions Q1 and Q2 on Y can then be conveniently measured by MMD(Q1, Q2) := ‖µQ1 −
µQ2‖HY (here µQi is the mean embedding of Qi, for i = 1, 2) which is called the maximum
mean discrepancy (MMD) between Q1 and Q2. The following alternative representation of
the squared MMD is also known (Gretton et al., 2012, Lemma 6):

MMD2(Q1, Q2) = E[kY(S, S′)] + E[kY(T, T ′)]− 2E[kY(S, T )], (3)

where S, S′
i.i.d.∼ Q1 and T, T ′

i.i.d.∼ Q2.

Let P be the class of all Borel probability distributions on Y. The kernel mean embedding
defines a map from P to HY such that Q 7→ µQ, where Q ∈ P.

Definition 3 (Characteristic kernel) The kernel kY(·, ·) is said to be characteristic if
and only if the kernel mean embedding is injective, i.e., µQ1 = µQ2 =⇒ Q1 = Q2. Note
that the last condition is equivalent to ES∼Q1 [f(S)] = ET∼Q2 [f(T )], for all f ∈ HY =⇒
Q1 = Q2; this implicitly assumes that the associated RKHS is rich enough.

Remark 1 (Examples of characteristic kernels) A number of popular characteristic
kernels have been studied in the literature. Some popular ones in Rd include the Gaussian
kernel (i.e., k(u, v) := exp(−σ‖u − v‖2) with σ > 0) (Sriperumbudur et al., 2011), the
Laplace kernel (i.e., k(u, v) = exp(−σ‖u − v‖1) with σ > 0 where ‖ · ‖1 denotes the L1-
norm) (Sriperumbudur et al., 2011) and the distance kernel (Sejdinovic et al., 2013)

k(u, v) := 2−1
(
‖u‖α + ‖v‖α − ‖u− v‖α

)
, for all u, v ∈ Rd, (4)
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for α ∈ (0, 2). See Fukumizu et al. (2008, 2009b); Danafar et al. (2010); Wynne and
Duncan (2020) for other examples of characteristic kernels on more general topological
spaces. Sufficient conditions for a kernel to be characteristic are discussed in Fukumizu
et al. (2008); Sriperumbudur et al. (2008); Fukumizu et al. (2009b); Sriperumbudur et al.
(2010, 2011); Szabó and Sriperumbudur (2017).

2.2 KPC: The Population Version

We are now ready to formally define and study our measure kernel partial correlation (KPC)
coefficient ρ2 ≡ ρ2(Y, Z|X). Let HY be an RKHS on Y with kernel kY(·, ·). Recall the
definition of ρ2 from (1):

ρ2(Y,Z|X) :=
E[MMD2(PY |XZ , PY |X)]

E[MMD2(δY , PY |X)]
,

where δY denotes the Dirac measure at Y . To study the various properties of ρ2 defined
above we will assume the following regularity conditions:

Assumption 1 kY(·, ·) is characteristic and E[kY(Y, Y )] <∞.

Assumption 2 HY is separable.

Assumption 3 Y is not a measurable function of X; equivalently, Y |X = x is not degen-
erate for almost every (a.e.) x.

Remark 2 (On Assumptions 1–3) Note that E[kY(Y, Y )] <∞ in Assumption 1 is very
common in the kernel literature (see e.g., Baker, 1973; Fukumizu et al., 2007, 2008, 2009a;
Park and Muandet, 2020). See Remark 3 below as to why a characteristic kernel is nec-
essary; see Remark 1 for some examples of characteristic kernels. Assumption 2 is needed
for technical reasons and can be ensured under mild conditions1; see Remark 15 for a de-
tailed discussion. Assumption 3 just ensures that Y is not degenerate given X, so that the
denominator of ρ2(Y,Z|X) is not 0; see Remark 16 for a proof of the equivalence.

We will assume that Assumptions 1–3 hold throughout the paper unless otherwise spec-
ified. The following lemma (proved in Appendix B.1) shows that ρ2(Y,Z|X), as defined
in (1), is well-defined.

Lemma 1 Under Assumptions 1–3, ρ2(Y,Z|X) in (1) is well-defined.

The following lemma (proved in Appendix B.2) gives another alternate form for ρ2 which
will be especially useful to us while constructing estimators of ρ2.

Lemma 2 Suppose that Assumptions 1–3 hold. Then, we have

ρ2(Y, Z|X) =
E [E[kY(Y2, Y

′
2)|X,Z]]− E [E[kY(Y1, Y

′
1)|X]]

E[kY(Y, Y )]− E[E[kY(Y1, Y ′1)|X]]
, (5)

1. For example, if Y is a separable space and kY(·, ·) is continuous, then HY is separable; see e.g., Hein and
Bousquet (2004, Theorem 7), Steinwart and Christmann (2008, Lemma 4.33).
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where in the denominator (X,Y1, Y
′
1) has the following joint distribution:

X ∼ PX , Y1|X ∼ PY |X , Y ′1 |X ∼ PY |X , and Y1 ⊥⊥ Y ′1 |X; (6)

and in the numerator (X,Y2, Y
′
2 , Z) has the following joint distribution:

(X,Z) ∼ PXZ , Y2|X,Z ∼ PY |XZ , Y ′2 |X,Z ∼ PY |XZ , and Y2 ⊥⊥ Y ′2 |X,Z. (7)

Our first main result, Theorem 1 (proved in Appendix B.3), shows that indeed, under the
above assumptions (i.e., Assumptions 1–3), our measure of conditional dependence satisfies
the three desirable properties (i)-(iii) mentioned in the Introduction.

Theorem 1 Under Assumptions 1–3, ρ2(Y,Z|X) in (1) satisfies:
(i) ρ2(Y, Z|X) ∈ [0, 1];

(ii) ρ2(Y, Z|X) = 0 if and only if Y is conditionally independent of Z given X (i.e.,
Y ⊥⊥ Z|X); equivalently, ρ2 = 0 if and only if PY |XZ = PY |X almost surely (a.s.);

(iii) ρ2(Y, Z|X) = 1 if and only if Y is a measurable function of Z and X a.s. (equiv-
alently, Y given X and Z is a degenerate random variable a.s.).

Remark 3 (Characteristic kernel) A close examination of the proof of Theorem 1 (in
Section B.3) reveals that kY(·, ·) being characteristic is used for: (a) Proving ρ2 = 0 implies
Y ⊥⊥ Z|X; (b) proving that ρ2 = 1 implies Y is a function of X and Z (here actually the
weaker assumption that the feature map y 7→ kY(y, ·) is injective would have sufficed); (c)
the denominator of ρ2 is non-zero.

In the following we provide two results that go beyond Theorem 1 and illustrate that
KPC indeed measures conditional association—any value of KPC between 0 and 1 conveys
an idea of the strength of the association between Y and Z, given X. In Proposition 1 below
(proved in Appendix B.4) we show that when the underlying distribution is multivariate
Gaussian, ρ2 is a strictly monotonic function of the classical partial correlation coefficient
squared ρ2Y Z·X (for a large class of kernels), and equals ρ2Y Z·X if the linear kernel (i.e.,
kY(u, v) = u>v for u, v ∈ Rd, d ≥ 1) is used. In the following we will restrict attention to
kernels having the following form:

kY(u, v) = h1(u) + h2(v) + h3(‖u− v‖), for u, v ∈ Rd (8)

where hi (i = 1, 2, 3) are arbitrary real-valued functions, ‖ · ‖ is the usual Euclidean norm
in Rd, and h3 is nonincreasing. Note that the Gaussian and distance kernels in Remark 1
and the linear kernel (and the Laplace kernel when d = 1) are all of this form.

Proposition 1 (Connection to classical partial correlation) Suppose that (Y,Z,X)
are jointly normal with Y and Z (given X) having (classical) partial correlation ρY Z·X .
Suppose the kernel kY(·, ·) has the form in (8) where h3 is assumed to be strictly decreasing.
Then:

(a) ρ2(Y, Z|X) is a strictly increasing function of ρ2Y Z·X , provided Var(Y |X) > 0 is held
fixed (as we change the joint distribution of (Y, Z,X)).

(b) ρ2(Y, Z|X) = 0 (resp. 1) if and only if ρ2Y Z·X = 0 (resp. 1).
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(c) If the distance kernel is used (see Equation 4), ρ2(Y, Z|X) is a strictly increasing
function of ρ2Y Z·X , irrespective of the value of Var(Y |X).

(d) If the linear kernel is used, then ρ2(Y, Z|X) = ρ2Y Z·X .

Next, we consider the two extreme cases: (i) If Y = g(X), then Y ⊥⊥ Z|X; (ii) if
Y = f(X,Z), then Y is a function of Z given X and consequently ρ2 = 1. The following
proposition (proved in Appendix B.5) states that if Y follows a regression model with
noise, and we are somewhere in between the above two extreme cases (i) and (ii), expressed
as a convex combination, then ρ2(Y,Z|X) is monotonic in the weight used in the convex
combination, regardless of how complicated the dependencies g(X) and f(X,Z) are.

Proposition 2 (Monotonicity) Consider the following regression model with Y = R, and
arbitrary measurable functions g : X → Y and f : X × Z → Y, and λ ∈ [0, 1]:

Y = (1− λ)g(X) + λf(X,Z) + ε,

where ε is the noise variable (independent of X and Z) such that for another independent
copy ε′, ε − ε′ is unimodal2. Then ρ2(Y,Z|X) is monotone nondecreasing in λ, when a
kernel of the form (8) is used to define ρ2.

In addition to the properties already described above, ρ2 also possesses important in-
variance and continuity properties; see Appendix A.3 for a detailed discussion on this.

When Y is a scalar, in Azadkia and Chatterjee (2021) a measure T (Y,Z|X), satisfying
properties (i)-(iii) of Theorem 1 was proposed and studied. More specifically,

T (Y, Z|X) :=

∫
E(Var(P(Y ≥ t|Z,X)|X))dPY (t)∫

E(Var(1Y≥t|X))dPY (t)
.

Indeed, as we see in the following result (see Appendix B.7 for a proof), T (Y,Z|X) can
actually be seen as a special case of ρ2, for a suitable choice of the kernel kY(·, ·).

Lemma 3 T (Y,Z|X) = ρ2(Y,Z|X) when we use the kernel kY(y1, y2) :=
∫

1y1≥t1y2≥tdPY (t),
for y1, y2 ∈ R.3 Further, if Y has a continuous cumulative distribution function FY , then
T (Y, Z|X) = ρ2(FY (Y ), Z|X) where we consider the distance kernel, as in (4) with α = 1.

Thus, our measure ρ2 can be thought of as a generalization of T (Y,Z|X) in Azadkia and
Chatterjee (2021), allowing X,Y, Z to take values in more general spaces. In fact, our
framework is more general, as we allow for ‘any’ choice of the kernel kY(·, ·).

Remark 4 (Measuring association between Y and Z) Consider the special case when
there is no X, i.e.,

ρ2(Y,Z|X) = ρ2(Y,Z|∅) =
E[MMD2(PY |Z , PY )]

E[MMD2(PδY , PY )]
.

2. A random variable with distribution function F is unimodal about v if F (x) = pδv(x) + (1− p)F1(x) for
some p ∈ [0, 1], where δv is the distribution function of the Dirac measure at v, and F1 is an absolutely
continuous distribution function with density nondecreasing on (−∞, v] and nonincreasing on [v,∞)
(Purkayastha, 1998). If ε is unimodal, then ε − ε′ is symmetric and unimodal about 0 (Purkayastha,
1998, Theorem 2.2).

3. Note that this kernel is not characteristic, but the distance kernel mentioned later is characteristic.
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Now, ρ2(Y, Z|∅) can be used to measure the unconditional dependence between Y and Z.
This measure ρ2(Y, Z|∅) has been proposed and studied in detail in the recent paper Deb
et al. (2020); also see Ke and Yin (2020, Section 2.4). In particular, as illustrated in Deb
et al. (2020), ρ2(Y,Z|∅) can be effectively estimated using graph-based methods (in near
linear time) and can also be readily used to test the hypothesis of mutual independence
between Y and Z. In Section 4 we also develop an RKHS-based estimator of ρ2(Y,Z|∅).

Let us now discuss some properties of ρ2 when we use the linear kernel (i.e., kY(u, v) =
u>v, for u, v ∈ Y = Rd, with d ≥ 1). Suppose Y = (Y (1), . . . , Y (d))> ∈ Y = Rd. Then,
from (5), we have the following expression for ρ2(Y,Z|X):

ρ2(Y,Z|X) =

∑d
i=1 E

(
Var

[
E(Y (i)|X,Z)|X

])∑d
i=1 E[Var(Y (i)|X)]

. (9)

Remark 5 (Connection to Zhang and Janson, 2020) When d = 1, the numerator
of ρ2(Y, Z|X) is equal to the minimum mean squared error gap (mMSE gap): E

[
(Y −

E[Y |X])2
]
−E

[
(Y − E[Y |X,Z])2

]
, which has been used to quantify the conditional relation-

ship between Y and Z given X in the recent paper Zhang and Janson (2020). Note that
mMSE gap is not invariant under arbitrary scalings of Y , but ρ2(Y,Z|X) (which is equal
to the squared partial correlation ρ2Y Z·X ; see Proposition 1) is. Thus, ρ2(Y, Z|X) can be
viewed as a normalized version of the mMSE gap.

Remark 6 (Linear kernel and Theorem 1) As the linear kernel is not characteristic,
ρ2, defined with the linear kernel, does not satisfy all the three properties in Theorem 1. It
satisfies (i) and (iii): If Y is a function of X and Z, then ρ2 = 1. Conversely, if ρ2 = 1,
then E[Var(Y (i)|X,Z)] = 0 for all i in (9), which implies that Y (i)|X,Z is degenerate for
all i, i.e., Y is a function of X and Z. However, it is not guaranteed to satisfy (ii): If
Y ⊥⊥ Z|X, then indeed ρ2 = 0; but ρ2 = 0 does not necessarily imply that Y ⊥⊥ Z|X.4 This
is because the linear kernel is not characteristic. However, if (Y,X,Z) is jointly normal,
then ρ2 = 0 does imply Y ⊥⊥ Z|X (see Remark 18) and ρ2 satisfies all three properties.

3. Estimating KPC with Geometric Graph-Based Methods

Suppose that {(Xi, Yi, Zi)}ni=1 are i.i.d. observations from P on X ×Y×Z. Here we assume
that X and X × Z are metric spaces and we have a kernel function kY(·, ·) defined on
Y. In fact, X and X × Z can be even more general spaces—with metrics being replaced
by certain semimetrics, “similarity” functions or “divergence” measures (see e.g., Boytsov
and Naidan, 2013; Athitsos et al., 2004; Miranda et al., 2013; Jacobs et al., 2000; Gottlieb
et al., 2017). In this section we propose and study a general framework—using geometric
graphs—to estimate ρ2(Y,Z|X) (as in Equation 1). We will estimate each of the terms

in (1) separately to obtain our final estimator ρ̂2 of ρ2(Y, Z|X). Note that E[kY(Y, Y )]
in (1) can be easily estimated by 1

n

∑n
i=1 kY(Yi, Yi). So we will focus on estimating the two

4. A counter example: Let X,Z,U be i.i.d. having a continuous distribution with mean 0 and let Y :=
X + ZU . Then ρ2 = 0 but Y is not independent of Z given X.
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other terms—E[E[kY(Y1, Y
′
1)|X]] and E[E[kY(Y2, Y

′
2)|X,Z]]; recall the joint distributions of

(X,Y1, Y
′
1) and (X,Z, Y2, Y

′
2) as mentioned in (6), (7). As our estimation strategy for both

the above terms is similar, let us first focus on estimating T := E[E[kY(Y1, Y
′
1)|X]]. To

motivate our estimator of T , let us consider a simple case, where Xi’s are categorical, i.e.,
take values in a finite set. A natural estimator for T in that case would be

1

n

n∑
i=1

1

#{j : Xj = Xi}
∑

j:Xj=Xi

kY(Yi, Yj), (10)

as in Ke and Yin (2020, Section 3.1). In this section, instead of assumingXi’s are categorical,
we will focus on general distributions for Xi’s, typically continuous.

We will use the notion of geometric graph functionals on X (see Deb et al., 2020; Bhat-
tacharya, 2019). G is said to be a geometric graph functional on X if, given any finite
subset S of X , G(S) defines a graph with vertex set S and corresponding edge set, say
E(G(S)), which is invariant under any permutation of the elements in S. The graph can
be both directed or undirected, and we will restrict ourselves to simple graphs, i.e., graphs
without multiple edges and self loops. Examples of such functionals include minimum
spanning trees (MSTs) and K-nearest neighbor (K-NN) graphs, as described below. Define
Gn := G(X1, . . . , Xn) where G is some graph functional on X .

1. K-NN graph: The directed K-NN graph Gn puts an edge from each node Xi to
its K-NNs among X1, . . . , Xi−1, Xi+1, . . . , Xn (so Xi is excluded from the set of its
K-NNs). Ties will be broken at random if they occur, to ensure the out-degree is
always K. The undirected K-NN graph is obtained by ignoring the edge direction in
the directed K-NN graph and removing multiple edges if they exist.

2. MST: An MST is a subset of edges of an edge-weighted undirected graph connecting
all the vertices with the least possible sum of edge weights and contains no cycles. For
instance, given a set of points X1, . . . , Xn one can construct an MST for the complete
graph with vertices as Xi’s and edge weights being the distances among them.

In order to estimate E[E[kY(Y1, Y
′
1)|X]], ideally we would like to have multiple Yi’s (say

Y ′i ’s) from the conditional distribution PY |Xi , so as to average over all such kY(Yi, Y
′
i ).

However, this is rarely possible in real data (if X1 is continuous, for example). As a result,
our strategy is to find Xj ’s that are “close” to Xi and average over all such kY(Yi, Yj). The
notion of geometric graph functionals comes in rather handy in formalizing this notion. The
key intuition is to define a graph functional G where Xi and Xj are connected (via an edge)
in Gn := G(X1, . . . , Xn) provided they are “close”. Towards this direction, let us define the
following statistic (as in Deb et al., 2020):

Tn(Y,X) ≡ Tn :=
1

n

n∑
i=1

1

di

∑
j:(i,j)∈E(Gn)

kY(Yi, Yj), (11)

where Gn = G(X1, . . . , Xn) for some graph functional G on X , and E(Gn) denotes the set
of (directed/undirected) edges of Gn, i.e., (i, j) ∈ E(Gn) if and only if there is an edge from
i → j if Gn is a directed graph, or an edge between i and j if Gn is an undirected graph.
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Here di := |{j : (i, j) ∈ E(Gn)}| denotes the degree (or out-degree in a directed graph) of
Xi in Gn. Note that when Gn is undirected, (i, j) ∈ E(Gn) if and only if (j, i) ∈ E(Gn).

The next natural question is: “Does Tn, as defined in (11), consistently estimate T?”.
The following result in Deb et al. (2020, Theorem 3.1) answers this question in the affirma-
tive, under appropriate assumptions on the graph functional.

Theorem 2 (Deb et al., 2020, Theorem 3.1) Suppose Gn satisfies Assumptions 10–12
(detailed in Appendix A.5) and HY is separable. For θ > 0, let Mθ

kY
(Y) be the collection of

all Borel probability measures Q over Y such that EQ
[
kθY(Y, Y )

]
< ∞. If PY ∈ M2+ε

kY
(Y)

for some fixed ε > 0, then Tn
p→ T . If PY ∈M4+ε

kY
(Y) for some fixed ε > 0, then Tn

a.s.−→ T .

Note that Assumptions 10–12 required on the graph functional Gn for the above result were
made in Deb et al. (2020, Theorem 3.1); see Deb et al. (2020, Section 3) for a detailed
discussion on these assumptions. It can be further shown that for the K-NN graph and
the MST, these assumptions are satisfied under mild assumptions. For example, in the Eu-
clidean space, they hold for K-NN graph when ‖X1−X2‖ has a continuous distribution and
K = o(n/ log n). For the MST these assumptions are satisfied when X1 has an absolutely
continuous distribution (Deb et al., 2020, Proposition 3.2).

Remark 7 (K-NN graph versus MST) In practice, a K-NN graph is recommended as
a primary choice of the geometric graph over MST. This is because of the following reasons.
Firstly, in order to ensure connectivity, MST sometimes has to place an edge between two
distant points, which is not desirable for an accurate estimation of ρ2. Secondly, the MST in
practice often achieves similar performance as a 2-NN graph (note that the average degree

of an MST is 2 − 2
n), and K-NN graphs offer more flexibility. When using ρ̂2 to estimate

ρ2, we recommend using a small K since a K-NN, for a large K, can be far from the
point under consideration, especially in high dimensions. However, for testing and variable
selection, a larger K is seen to be beneficial; see Section 6 for more simulation evidence.
Thirdly, MST has higher computational complexity when compared to a K-NN graph.

3.1 Estimation of ρ̂2

In the previous subsection we constructed a very general geometric graph-based consistent
estimator T for E[E[kY(Y1, Y

′
1)|X]]. We will use a similar strategy to estimate the other

term E[E[kY(Y2, Y
′
2)|X,Z]], i.e., we define a geometric graph functional on the space X ×Z

and construct an estimator like Tn in (11), but now the geometric graph is defined on X ×Z
with the data points {(Xi, Zi)}ni=1.

For simplicity of notation, we let Ẍ := (X,Z) and Ẍ := X × Z. Let GXn (resp. GẌn ) be

the graph constructed based on {Xi}ni=1 (resp. {Ẍi ≡ (Xi, Zi)}ni=1). Let dXi (resp. dẌi ) be

the degree of Xi (resp. Ẍi) in GXn (resp. GẌn ), for i = 1, . . . , n. We are now ready to define
our graph-based estimator of ρ2:

ρ̂2 ≡ ρ̂2(Y, Z|X) :=

1
n

n∑
i=1

1

dẌi

∑
j:(i,j)∈E(GẌn )

kY(Yi, Yj)− 1
n

n∑
i=1

1
dXi

∑
j:(i,j)∈E(GXn )

kY(Yi, Yj)

1
n

n∑
i=1

kY(Yi, Yi)− 1
n

n∑
i=1

1
dXi

∑
j:(i,j)∈E(GXn )

kY(Yi, Yj)

. (12)
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The estimator ρ̂2 is consistent for ρ2; this follows easily5 from Theorem 2. We formalize
this in the next result.

Theorem 3 (Consistency) Suppose that Assumptions 10–12 (see Appendix A.5) hold for

both GXn and GẌn . If PY ∈M2+ε
kY

(Y) (as in Theorem 2) for some ε > 0, then ρ̂2(Y, Z|X)
p→

ρ2(Y,Z|X). If PY ∈M4+ε
kY

(Y) for some ε > 0, then ρ̂2(Y, Z|X)
a.s.−→ ρ2(Y, Z|X).

A salient aspect of Theorem 3 is that consistency of ρ̂2(Y,Z|X) does not need any continuity
assumptions of the conditional distributions PY |x and PY |xz, as x ∈ X and z ∈ Z vary.
Our approach leverages Lusin’s Theorem (Lusin, 1912), which states that any measurable
function agrees with a continuous function on a “large” set. This is a generalization of the
technique used in Azadkia and Chatterjee (2021) and Chatterjee (2021).

The following result (see Appendix B.8 for a proof) provides a concentration bound

for Tn and states that ρ̂2 is Op(n
−1/2)-concentrated around a population quantity, if the

underlying kernel is bounded.

Proposition 3 (Concentration) Under the same assumptions as in Theorem 3 (except

Assumption 10) on the two graphs GXn and GẌn , and provided supy∈Y kY(y, y) ≤M for some
M > 0, there exists a fixed positive constant C∗ (free of n and t), such that for any t > 0,
the following holds:

P

∣∣∣∣ 1n
n∑
i=1

1

dXi

∑
j:(i,j)∈E(GXn )

kY(Yi, Yj)− E[kY(Y1, YN(1))]

∣∣∣∣ ≥ t
 ≤ 2 exp(−C∗nt2), (13)

where N(1) is a uniformly sampled index from the neighbors (or out-neighbors in a di-
rected graph) of X1 in GXn . A similar sub-Gaussian concentration bound also holds for the

term 1
n

n∑
i=1

1

dẌi

∑
j:(i,j)∈E(GẌn )

kY(Yi, Yj), when centered around E[kY(Y1, YN̈(1))]; here N̈(1) is a

uniformly sampled neighbor of (X1, Z1) in GẌn . Consequently,

√
n

(
ρ̂2 −

E[kY(Y1, YN̈(1))]− E[kY(Y1, YN(1))]

E[kY(Y1, Y1)]− E[kY(Y1, YN(1))]

)
= Op(1).

The above result shows that ρ̂2 has a rate of convergence n−1/2 around a limit which is
not necessarily ρ2. Further, by Proposition 3, it is clear that the rate of convergence of ρ̂2

to ρ2 will be chiefly governed by the rates at which E[kY(Y1, YN(1))] and E[kY(Y1, YN̈(1))]

converge to E[kY(Y1, Y
′
1)] and E[kY(Y2, Y

′
2)] respectively. As it turns out this rate of con-

vergence is heavily dependent on the underlying graph functional G. In Section 3.2 we will
focus on K-NN graphs and provide an upper bound on this rate of convergence.

5. By the strong law of large numbers, 1
n

∑n
i=1 kY(Yi, Yi)

a.s.−→ E[kY(Y, Y )]. The result now follows from
Theorem 2 and the continuous mapping theorem.
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3.1.1 Computational Complexity of ρ̂2

Observe that, when using the Euclidean K-NN graph, the computation of ρ̂2(Y,Z|X) takes
O(Kn log n) time. This is because the K-NN graph can be found in O(Kn log n) time (e.g.,
using the k-d tree; see Bentley, 1975) and the K-NN graph has O(Kn) edges6 (thus, we just
have to sum overO(Kn) terms in computing each of the two main quantities in Equation 12).
The computational complexity of computing Euclidean MSTs is O(n log n) in Rd when d = 1

or 2 (Shamos and Hoey, 1975; Buchin and Mulzer, 2011), and O(n2−2
−(d+1)

(log n)1−2
−(d+1)

)
when d ≥ 3 (Yao, 1982). As an MST has just n − 1 edges, the computational complexity

for computing ρ̂2, using the MST, is of the same order as that of finding the MST. Thus,
in Euclidean settings, with K = O(logγ n), γ ≥ 0, for K-NN graph (or d = 1, 2 for MST),

ρ̂2 can be computed in near linear time (up to logarithmic factors).
Several authors have proposed tree-based data structures to speed up K-NN graph

construction. Examples include ball-trees (Omohundro, 1989) and cover-trees (Beygelzimer
et al., 2006). In Beygelzimer et al. (2006) the authors study K-NN graphs in general metric
spaces and show that if the data set has a bounded expansion constant (which is a measure
of its intrinsic dimensionality) the cover-tree data structure can be constructed in O(n log n)
time for bounded K.

3.2 Rate of Convergence of ρ̂2

In this subsection, we will assume that the geometric graph functionals GXn and GẌn belong to
the family of K-NN graphs (directed or undirected) on the spaces X and Ẍ (assumed to be
general metric spaces equipped with metrics ρX and ρẌ ) respectively. Our main result in this

subsection, Theorem 4, shows that ρ̂2 converges to ρ2, at a rate that depends on the intrinsic
dimensions of X and Ẍ, as opposed to the ambient dimensions of X and Ẍ . This highlights
the adaptive nature of the estimator ρ̂2. Let us first define the intrinsic dimensionality of a
random variable, which is a relaxation of the Assouad dimension (Robinson, 2011, Section
9). Recall that by a cover of a subset A ⊂ (X , ρX ), we mean a collection of subsets of X
whose union contains A. Denote by B(x∗, r) ⊂ X the closed ball centered at x∗ ∈ X with
radius r > 0, and by supp(X) the support of the random variable X.

Definition 4 (Intrinsic dimension of X) Let X be a random variable taking values in
a metric space X . X is said to have intrinsic dimension at most d, with constant C > 0
at x∗ ∈ X , if for any t > 0, B(x∗, t) ∩ supp(X) can be covered with at most C(t/ε)d closed
balls of radius ε in X , for any ε ∈ (0, t].

This notion of the intrinsic dimensionality of X extends the usual notion of dimension of
a Euclidean set; see e.g., Chen and Shah (2018, Definition 3.3.1) and Deb et al. (2020,
Definition 5.1). For example, any probability measure on Rd has intrinsic dimension at
most d. Moreover, if X is supported on a d0-dimensional hyperplane (where d0 ≤ d), then
X has intrinsic dimension at most d0. Further, if X is supported on a d0-dimensional
manifold which is bi-Lipschitz7 to some Ω ⊂ Rd0 , then X has intrinsic dimension at most

6. For a directed graph, there are exactly Kn edges; for an undirected graph, there are no more than Kn
edges, but each edge will be used twice in the summation.

7. A manifoldM with metric ρM is said to be bi-Lipschitz to Ω ⊂ Rd0 if there exists L > 0 and a bijection
ϕ : Ω→ (M, ρM) satisfying L−1‖x1 − x2‖ ≤ ρM(ϕ(x1), ϕ(x2)) ≤ L‖x1 − x2‖, for all x1, x2 ∈ Ω.
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d0 (Robinson, 2011, Lemma 9.3). Note that the intrinsic dimensions in the above examples
are valid at every x∗ ∈ supp(X), but Theorem 4 only requires its validity at one x∗. The
intrinsic dimension need not be an integer, and can be defined on any metric space.

Let X1, . . . , Xn
i.i.d.∼ PX , and let GXn be the Kn-NN (here {Kn}n≥1 is assumed to be a

fixed sequence). We will assume the following conditions:

Assumption 4 ρX (X1, X2) has a continuous distribution.

Assumption 5 X has intrinsic dimension at most d with constant C1 at x∗ ∈ X .

Assumption 6 Let sn be the number of points having X1 as a Kn-NN. Suppose that sn
Kn
≤

C2 a.s., for some constant C2 > 0 and all n ≥ 1.

Assumption 7 There exist α,C3, C4 > 0 such that P (ρX (X1, x
∗) ≥ t) ≤ C3 exp(−C4t

α)
for all t > 0, where x∗ ∈ X is defined in Assumption 5.

Assumption 8 Set g(x) := E[kY(Y, ·)|X = x] for x ∈ X . There exist β1 ≥ 0, β2 ∈ (0, 1],
C5 > 0 such that for any x1, x2, x̃1, x̃2 ∈ X ,∣∣〈g(x1), g(x2)〉HY − 〈g(x̃1), g(x̃2)〉HY

∣∣ ≤ C5

(
1 + ρX (x∗, x1)

β1 + ρX (x∗, x2)
β1

+ρX (x∗, x̃1)
β1 + ρX (x∗, x̃2)

β1
) (
ρX (x1, x̃1)

β2 + ρX (x2, x̃2)
β2
)
,

where x∗ ∈ X is defined in Assumption 5.

Remark 8 (On the assumptions) Assumption 4 guarantees that the Kn-NN graph is
uniquely defined. If X is a Euclidean space, Assumption 6 is satisfied because the number
of points having X1 as a K-NN is bounded by KC(d), where C(d) is a constant depending
only on the dimension d of X (Yukich, 1998, Lemma 8.4). Assumption 7 just says that
X1 satisfies a tail decay condition that can be even slower than sub-exponential. Assump-
tion 8 is a technical condition on the smoothness of conditional expectation. Without such
an assumption, the rate of convergence of ρ̂2 to ρ2 may be arbitrarily slow (Azadkia and
Chatterjee, 2021). See Deb et al. (2020, Proposition 5.1) for sufficient conditions under
which Assumption 8 holds. Note that similar assumptions were also made in Azadkia and
Chatterjee (2021); in fact our assumptions are less stringent in the sense that they allow for:
(a) Any general metric space X , (b) tail decay rates of X slower than sub-exponential, and
(c) β2 to vary in (0, 1]. g(·) is also called the conditional mean embedding (see Definition 6).

The following result (see Appendix B.9 for a proof) gives an upper bound on the rate

of convergence of ρ̂2. In particular, it shows that, if d > 2 is an upper bound on the
intrinsic dimensions of X and (X,Z) then ρ̂2 converges to ρ2 at the rate Op

(
n−β2/d

)
,

up to a logarithmic factor (provided Kn grows no faster than a power of log n). Note
that in certain situations, while the actual dimension of X (resp. Ẍ ) may be large, the
intrinsic dimensionality of X (resp. Ẍ) may be much smaller—the rate of convergence of

ρ̂2 automatically adapts to the unknown intrinsic dimensions of X and Ẍ.
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Theorem 4 (Adaptive rate of convergence) Suppose kY(Y1, Y1) has sub-exponential tail8.
Let Kn = o(n (log n)−1). Suppose that Assumptions 4–8 hold for (Y,X) and also for (Y, Ẍ)
(i.e., by replacing X with Ẍ in each of the Assumptions 4–8) with the same constants α
and β2 (in Assumptions 7 and 8). Define

νn :=


(logn)2

n + Kn
n (log n)2β2/d+2β2/α if d < 2β2,

(logn)2

n + Kn
n (log n)2+d/α if d = 2β2,

(logn)2

n +
(
Kn
n

)2β2/d
(log n)2β2/d+2β2/α if d > 2β2,

where d is the maximum of the intrinsic dimensions of X and Ẍ (in Assumption 5). Then

ρ̂2(Y,Z|X) = ρ2(Y,Z|X) +Op (
√
νn) .

Although Theorem 4 has many similarities with Azadkia and Chatterjee (2021, Theorem
4.1), our result is more general on various fronts: (a) We can handle X , Y, Z taking values
in general metric spaces; (b) our upper bound νn depends on the intrinsic dimensions of X
and Ẍ as opposed to their ambient dimensions; (c) our assumptions are less stringent (as
discussed in Remark 8); (d) our upper bound νn is also sharper in the logarithmic factor.
A similar result, as Theorem 4, can be found in Deb et al. (2020) for estimating ρ2(Y,Z|∅).

4. Estimating KPC Using RKHS Methods

As the population version of KPC ρ2 is expressed in terms of MMD, it is natural to ask if
the RKHS framework can be directly used to estimate ρ2. This is precisely what we do in
our second estimation strategy. In this section, we further assume that X and Ẍ = X × Z
are equipped with separable RKHSs HX and HẌ respectively, with kernels kX and kẌ . Let

Ẍ = (X,Z) ∼ PXZ . We also assume that E[kX (X,X)] <∞ and E[kẌ (Ẍ, Ẍ)] <∞.

In the following we define two concepts—the (cross)-covariance operator and conditional
mean embedding—that will be fundamental in the developments of this section.

Definition 5 (Cross-covariance operator) The cross-covariance operator CXY : HY →
HX is the unique bounded linear operator that satisfies 〈g, CXY f〉HX = Cov(f(Y ), g(X)) for
all f ∈ HY , g ∈ HX .

The existence of the cross-covariance operator follows from the Riesz representation theorem
(Fukumizu et al., 2003/04, Theorem 1). The covariance operator of X, denoted by CX ,
is obtained when the two RKHSs in Definition 5 are the same, namely HX . Note that
the covariance operator CX is bounded, nonnegative, self-adjoint, and trace-class if HX
is separable and E[kX (X,X)] < ∞. We direct readers to Rynne and Youngson (2008)
and Aubin (2011) for basic concepts from functional analysis.

The following explicit representation of the cross-covariance operator CXY will be useful:

CXY = E[kX (·, X)⊗ kY(·, Y )]− E[kX (·, X)]⊗ E[kY(·, Y )] (14)

8. It means P(kY(Y1, Y1) ≥ t) ≤ L1e
−L2t for all t > 0, for some L1, L2 > 0.
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where we have identified the tensor product space HX ⊗ HY with the space of Hilbert-
Schmidt operators from HY to HX , such that kX (·, u) ⊗ kY(·, v)(h) := h(v)kX (·, u), for all
u ∈ X , v ∈ Y and h ∈ HY . See Remark 17 for more details on how (14) is derived.

Definition 6 (Conditional mean embedding, CME) The CME µY |x ∈ HY , for x ∈
X , is defined as the kernel mean embedding of the conditional distribution of Y given X = x,
i.e., µY |x = EY∼PY |x [kY(Y, ·)].

CMEs have proven to be a powerful tool in various machine learning applications, such
as dimension reduction (Fukumizu et al., 2003/04), dynamic systems (Song et al., 2009),
hidden Markov models (Song et al., 2010a), and Bayesian inference (Fukumizu et al., 2013);
see the recent paper Klebanov et al. (2020) for a rigorous treatment. Under certain assump-
tions, cross-covariance operators can be used to provide simpler expressions of CMEs; see
e.g., Klebanov et al. (2020). The following assumption is crucial for this purpose.

Assumption 9 For any g ∈ HY , there exists h ∈ HX such that E[g(Y )|X = ·] − h(·) is
constant PX-a.e.

Lemma 4 (Klebanov et al., 2020, Theorem 4.3) Suppose E[kX (X,X)] and E[kY(Y, Y )]
are finite, and both HX ,HY are separable. Let CXY and CX be the usual cross-covariance
and covariance operators respectively. Further let ranCX denote the range of CX and let
C†X denote the Moore-Penrose inverse (see e.g., Engl et al., 1996, Definition 2.2) of CX .

Suppose further that Assumption 9 holds. Then ranCXY ⊂ ranCX , C†XCXY is a bounded
linear operator, and for PX-a.e. x ∈ X ,

µY |x = µY +
(
C†XCXY

)∗
(kX (x, ·)− µX) (15)

where for a bounded operator A, A∗ is the adjoint of A, and µX and µY are the kernel mean
embeddings of PX and PY respectively (i.e., µX = E[kX (X, ·)] ∈ HX ).

Remark 9 Note that we do not require kX (·, ·) and kY(·, ·) to be characteristic for (15)
to be valid. See Klebanov et al. (2020) for other sufficient conditions, different from As-
sumption 9, that guarantee (15). The CME formula given in (15) is the centered version
which uses the centered (cross)-covariance operators CX and CXY . Uncentered covariance
operators have also been used to define CMEs in the existing literature (see e.g., Song et al.,
2010a,b; Fukumizu et al., 2013); see Appendix A.2 for a discussion. But it is known that
the centered CME formula (15) requires less restrictive assumptions and hence is prefer-
able. Our simulation results also validated this observation, and hence in this paper we
advocate the use of the centered CME formula (as in Equation 15). However in practice,
sufficient conditions for explicit expressions of CMEs in terms of centered and uncentered
(cross)-covariance operators (as Assumption 9) are usually hard to verify (Klebanov et al.,
2020).

The following result (which follows from Lemma 4) shows that ρ2(Y,Z|X) can be ex-
pressed in terms of CMEs, which in turn, can be explicitly simplified in terms of (cross)-
covariance operators under appropriate assumptions (as in Equation 15). This will form
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our basis for estimation of ρ2(Y,Z|X) using the RKHS framework—we will replace each

of the terms in (16) below with their sample counterparts to obtain the estimator ρ̃2 (see
Equation 18 below).

Proposition 4 Suppose that the assumptions in Lemma 4 hold for (Y,X) and (Y, Ẍ) (i.e.
replacing X with Ẍ). Then ρ2(Y, Z|X) in (1) can be simplified as

ρ2 =
E
[
‖µY |XZ − µY |X‖2HY

]
E[‖kY(Y, ·)− µY |X‖2HY ]

=
E
[∥∥(C†

Ẍ
CẌY )∗

(
kẌ (Ẍ, ·)− µẌ

)
− (C†XCXY )∗ (kX (X, ·)− µX)

∥∥2
HY

]
E
[∥∥kY(Y, ·)− µY − (C†XCXY )∗ (kX (X, ·)− µX)

∥∥2
HY

] . (16)

Here, for x ∈ X and z ∈ Z, µY |xz is the CME of Y given X = x and Z = z.

4.1 Estimation of ρ2 by ρ̃2

Suppose that we have i.i.d. data {(Xi, Yi, Zi)}ni=1 from P on X × Y × Z. Let us first
consider the estimation of the covariance operator CX . The empirical covariance operator
ĈX is easily estimated by the sample analogue of (14), i.e., by replacing the expectations
in (14) by their empirical counterparts:

ĈX :=
1

n

n∑
i=1

kX (Xi, ·)⊗ kX (Xi, ·)− µ̂X ⊗ µ̂X (17)

where µ̂X := 1
n

∑n
i=1 kX (Xi, ·) is the estimator of the kernel mean embedding µX =

E[kX (X, ·)]. Similarly, the cross-covariance operator CY X can be estimated by ĈY X :=
1
n

∑n
i=1 kY(Yi, ·)⊗kX (Xi, ·)− µ̂Y ⊗ µ̂X , where µ̂Y := 1

n

∑n
i=1 kY(Yi, ·) is the estimator of the

kernel mean embedding µY = E[kY(Y, ·)]. Further note that ran ĈX is spanned by the set
{kX (Xi, ·) : i = 1, . . . , n}, which implies that ĈX is not invertible in general, since HX is
typically infinite-dimensional. In fact, estimating the inverse of the compact operator CX
is in general an ill-posed inverse problem (Manton and Amblard, 2014, Section 8.6). Hence

the Tikhonov approach is often used for regularization which estimates C†X by (ĈX +εI)−1,
for a tuning parameter ε > 0 (e.g., Song et al., 2010a,b; Fukumizu et al., 2013). Thus,

(C†XCXY )∗ can be estimated by
(
(ĈX + εI)−1ĈXY

)∗
= ĈY X(ĈX + εI)−1. ρ2 in (16) can

therefore be naturally estimated empirically by

ρ̃2 :=

1
n

∑n
i=1 ‖µ̂Y |Ẍi − µ̂Y |Xi‖

2
HY

1
n

∑n
i=1 ‖kY(Yi, ·)− µ̂Y |Xi‖2HY

, (18)

where, for x ∈ X , and ẍ ∈ Ẍ ,

µ̂Y |ẍ := µ̂Y + ĈY Ẍ(ĈẌ + εI)−1
(
kẌ (ẍ, ·)− µ̂Ẍ

)
,

µ̂Y |x := µ̂Y + ĈY X(ĈX + εI)−1
(
kX (x, ·)− µ̂X

)
(19)
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and µ̂Ẍ := 1
n

∑n
i=1 kẌ (Ẍi, ·). Here Ẍi ≡ (Xi, Zi). Note that ρ̃2 is always nonnegative,

but it is not guaranteed to be less than or equal to 1. In practice, since we know that
ρ2 ∈ [0, 1], we can always truncate ρ̃2 at 1 when it exceeds 1. Note that as opposed to the

graph-based estimator ρ̂2, ρ̃2 is always nonrandom. For example, it does not involve tie-
breakings for the K-NN graphs. Although the expression for ρ̃2 in (18) looks complicated,
it can be simplified considerably; see Proposition 5 below (and Appendix B.10 for a proof).
Before we describe the result, let us introduce some notation. We denote by KX , KY

and KẌ the n × n kernel matrices, where for i, j ∈ {1, . . . , n}, (KX)ij = kX (Xi, Xj),

(KY )ij = kY(Yi, Yj), (KẌ)ij = kẌ (Ẍi, Ẍj). LetH := I− 1
n11> be the centering matrix (here

1 = (1, . . . , 1)> ∈ Rn and I ≡ In denotes the n×n identity matrix). Then, K̃X := HKXH,
K̃Y := HKYH, K̃Ẍ := HKẌH are the corresponding centered kernel matrices.

Proposition 5 Fix ε > 0. Let

M := K̃X(K̃X + nεI)−1 − K̃Ẍ(K̃Ẍ + nεI)−1 = nε
(

(K̃Ẍ + nεI)−1 − (K̃X + nεI)−1
)
,

N := I − K̃X(K̃X + nεI)−1 = nε(K̃X + nεI)−1.

Then, ρ̃2 in (18) can be expressed as

ρ̃2 =
Tr(M>K̃YM)

Tr(N>K̃YN)
, (20)

where Tr(·) denotes the trace of a matrix.

A few remarks are now in order.

Remark 10 (Kernel measure of association) If X is not present, then ρ2(Y,Z|∅) yields
a measure of association between the two variables Y and Z. Our estimation strategy readily
yields an empirical estimator of ρ2(Y, Z|∅), namely,

ρ̃2(Y, Z|∅) =
Tr(M>K̃YM)

Tr(N>K̃YN)
, (21)

where M = K̃Z

(
K̃Z + nεI

)−1
, N = I. This estimator can be viewed as the kernel analogue

to the graph-based estimator employed in Deb et al. (2020) to approximate ρ2(Y, Z|∅).

Remark 11 (Uncentered estimates of CMEs) Instead of using the centered estimates

of CMEs, as in (15), to approximate ρ̃2, as in (18), one could use their uncentered analogues;
see Appendix A.2 for a discussion on this where an explicit expression for the corresponding
‘uncentered’ estimator ρ̃2u of ρ2 is derived. In Proposition 7 (in Appendix A.2) we further

show that ρ̃2u has an interesting connection to kernel ridge regression.

Remark 12 (Approximate computation of ρ̃2) The exact computation of ρ̃2 costs O(n3)
time as we will have to invert n × n matrices (see Equation 20). A fast approximation of

ρ̃2 can be done using the method of incomplete Cholesky decomposition (Bach and Jordan,
2003). In particular, if we use incomplete Cholesky decomposition of all the three kernel
matrices—KX ,KY and KẌ—with ranks less than (or equal to) r, then the desired approx-

imation of ρ̃2 can be computed in time O(nr2); see Appendix A.4 for the details.
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An interesting property of ρ̃2 is that it reduces to the empirical classical partial correlation
squared when linear kernels are used and ε → 0; this is stated in Proposition 6 (see Ap-

pendix B.12 for a proof). Thus, ρ̃2 can indeed be seen as a natural generalization of squared
partial correlation.

Proposition 6 Suppose Y = Z = R, X = Rd, with linear kernels used for all the three
spaces Y,X , and Ẍ . If X and Ẍ have nonsingular sample covariance matrices, then ρ̃2

reduces to the classical empirical partial correlation squared as ε→ 0, i.e.,

lim
ε→0

ρ̃2(Y, Z|X) = ρ̂2Y Z·X .

4.2 Consistency Results

We first state a result that shows the consistency of the CME estimator µ̂Y |· in (19). In
particular, we show in Theorem 5 (see Appendix B.13 for a proof) that µ̂Y |· is consistent
in estimating µY |· in the averaged ‖ · ‖2HY -loss. This answers an open question mentioned
in Klebanov et al. (2020, Section 8) and may be of independent interest.

Theorem 5 Suppose the CME formula (15) holds, and the regularization parameter ε ≡
εn → 0+ (as n→∞) at a rate slower than n−1/2 (i.e., εnn

1/2 →∞). Then

1

n

n∑
i=1

‖µ̂Y |Xi − µY |Xi‖
2
HY

p→ 0.

As a consequence of Theorem 5, our RKHS-based estimator ρ̃2 (see Equation 18) is consis-
tent for estimating ρ2 (as in Equation 1). This result is formally stated below in Theorem 6
and proved in Appendix B.13.

Theorem 6 Suppose the CME formula (15) holds for both (Y,X) and (Y, Ẍ). Let the
regularization parameter ε ≡ εn → 0+ (as n→∞) at a rate slower than n−1/2. Then

ρ̃2(Y,Z|X)
p→ ρ2(Y, Z|X).

Remark 13 From the forms of µY |x (see Equation 15) and µ̂Y |x (see Equation 19), one

might conjecture whether ĈY X(ĈX + εnI)−1 could converge to (C†XCXY )∗ in some sense
(e.g., in the Hilbert-Schmidt norm or operator norm), as was explored in Song et al. (2010b).
However, such a convergence is rarely possible. In particular, it does not hold when HX is
infinite-dimensional9.

9. Consider Y = X. Then ‖(C†XCXY )∗ − ĈYX(ĈX + εnI)−1‖op = ‖I − ĈX(ĈX + εnI)−1‖op = ‖εn(ĈX +

εnI)−1‖op ≡ 1. The last equality follows as: (i) ĈX is finite-rank (recall that a finite-rank operator is a
bounded linear operator between Banach spaces whose range is finite-dimensional) having at least one
zero eigenvalue; (ii) any eigenvalue of εn(ĈX+εnI)−1 has the form εn

λ+εn
, where λ is an eigenvalue of ĈX ;

and (iii) taking λ = 0 yields the desired conclusion. Consequently the convergence of Hilbert-Schmidt
norm is also impossible as ‖ · ‖op ≤ ‖ · ‖HS.
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5. Variable Selection Using KPC

Suppose that we have a regression problem with p predictor variables X1, . . . , Xp and a
response variable Y . Here the response Y ∈ Y is allowed to be continuous/categorical,
multivariate and even non-Euclidean (Ramsay and Silverman, 2002; Fukumizu et al., 2008,
2009b; Danafar et al., 2010; Tsagris, 2015; Hron et al., 2016; Petersen and Müller, 2016,
2019), as long as a kernel function can be defined on Y × Y. Similarly, the predictors
X1, . . . , Xp could also be non-Euclidean; we just want each Xi to take values in some metric
space Xi. In regression the goal is to study the effect of the predictors on the response Y .
We can postulate the following general model:

Y = f(X1, . . . , Xp, ε) (22)

where ε (the unobserved error) is independent of (X1, . . . , Xp) and f is an unknown function.
The problem of variable selection is to select a subset of predictive variables from

X1, . . . , Xp to explain the response Y in the simplest possible way. For S ⊂ {1, . . . , p},
let us write XS := (Xj)j∈S . Our goal is to find an S ⊂ {1, . . . , p} such that

Y ⊥⊥ XSc |XS . (23)

Such an S (satisfying 23) is called a sufficient subset (Vergara and Estévez, 2014; Azadkia
and Chatterjee, 2021). Ideally, we would want to select a sufficient subset S that has the
smallest cardinality, so that we can write Y = E[f(X1, . . . , Xp, ε)|XS , ε] =: g(XS , ε) in (22).

The main idea is to use our proposed KPC ρ2 to detect conditional independence in (23)
(note that ρ2 is 0 if and only if conditional independence holds). In the following two
subsections we propose two model-free variable selection algorithms—one based on our
graph-based estimator ρ̂2 and the other on the RKHS-based framework ρ̃2. Our procedures
do not make any parametric model assumptions, are easily implementable and have strong
theoretical guarantees. They provide a more general framework for feature selection (when
compared to Azadkia and Chatterjee, 2021) that can handle any kernel function kY(·, ·)
any geometric graph (including K-NN graphs for any K ≥ 1). Further, we only require
Y to be kernel-endowed, and the predictor variables Xi’s can take values in metric spaces
(for our graph-based estimators) and general kernel-endowed spaces (for our RKHS-based
estimators). These flexibilities indeed yield more powerful variable selection algorithms,
having better finite sample performance (see Section 6.1.2).

5.1 Variable Selection with Graph-Based Estimator (KFOCI)

We introduce below the algorithm Kernel Feature Ordering by Conditional Independence
(KFOCI) which is a model-free forward stepwise variable selection algorithm. The proposed
algorithm has an automatic stopping criterion and yields a provably consistently variable
selection method (i.e., it selects a sufficient subset of predictors with high probability) even
in the high-dimensional regime under suitable assumptions; see Theorem 7 below.

Let us describe the algorithm KFOCI. Suppose that predictors Xj1 , . . . , Xjk , for k ≥ 0,
have already been selected by KFOCI. Quite naturally, we would like to find Xjk+1

that
maximizes ρ2(Y,Xjk+1

|Xj1 , . . . , Xjk). To this end define

T (S) := E[E[kY(Y, Y ′)|XS ]], (24)
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where we first draw XS , and then draw Y, Y ′ i.i.d. from the conditional distribution of
Y given XS . A closer look of the expression of ρ2 in (5) reveals that finding Xjk+1

that maximizes ρ2(Y,Xjk+1
|Xj1 , . . . , Xjk) is equivalent to finding Xjk+1

that maximizes
T ({X1, . . . , Xjk+1

}) in (24), for jk+1 ∈ {1, . . . , p} \ {j1, . . . , jk}. Note that T (S) satisfies

T (S′) ≥ T (S) whenever S′ ⊃ S,

since the numerator of ρ2(Y,XS′\S |XS) in (5) is always greater than (or equal to) 0. If S0
is a sufficient subset, then T (S0) = T ({1, . . . , p}) ≥ T (S), for all S ⊂ {1, . . . , p}. Therefore,
T (S) can be viewed as measuring the importance of S in predicting Y .

For our implementation, we propose the use of the estimator Tn (in 11) instead of the
unknown T (in 24). Note that Theorem 2 shows that Tn(S) ≡ Tn(Y,XS) is a consistent
estimator of T (S), for every S ⊂ {1, . . . , p}. What is even more interesting is that the use of
Tn(·) automatically yields a stopping rule—we stop our algorithm when adding any variable
does not increase our objective function, i.e., Tn(Ŝ∪{`}) < Tn(Ŝ), for any ` ∈ {1, . . . , p}\ Ŝ
where Ŝ is the current sufficient subset. Algorithm 1 gives the pseudocode.

Algorithm 1: KFOCI: a forward stepwise variable selection algorithm

Data: (Yi, X1i, . . . , Xpi), for i = 1, . . . , n
Initialization: k = −1, Ŝ ← ∅, {j0} = ∅, Tn(∅) = −∞;
do

1. k ← k + 1;

2. Ŝ ← Ŝ ∪ {jk};
3. Choose jk+1 ∈ {1, . . . , p} \ Ŝ such that Tn(Ŝ ∪ {jk+1}) is maximized, i.e.,

jk+1 := arg max
`∈{1,...,p}\Ŝ

Tn({j1, . . . , jk, `});

while Tn(Ŝ ∪ {jk+1}) ≥ Tn(Ŝ) and k < p;

Output: Ŝ

At each step, we are actually selecting Xjk+1
to maximize ρ̂2(Y,Xjk+1

|Xj1 , . . . , Xjk), and

the stopping criterion corresponds to the case when ρ̂2(Y,Xjk+1
|Xj1 , . . . , Xjk) < 0 for all

jk+1 ∈ {1, . . . , p}\{j1, . . . , jk}. Our method therefore has substantial difference to marginal
screening methods. Xjk+1

will be selected only if it contains information that has not been
explained by X1, . . . , Xjk , instead of being marginally strongly correlated to the response.
The following result shows the variable selection consistency of KFOCI.

Theorem 7 Suppose the following assumptions hold:

(a) There exists δ > 0 such that for any insufficient subset S ⊂ {1, . . . , p}, there is some
j such that T (S ∪ {j}) ≥ T (S) + δ.

(b) Suppose that kernel satisfies supy∈Y kY(y, y) ≤M <∞. Let κ := bMδ + 1c.
(c) Suppose that the Kn-NN graph is used as the geometric graph in (11) (with Kn ≤

C6(log n)γ for some C6 > 0, γ ≥ 0). For every S ⊂ {1, . . . , p} of size less than or
equal to κ, we suppose that Assumptions 4-8 hold with X replaced by XS, with the
same constants d, {Ci}5i=1, α, β1, β2 (uniformly over all subsets S) in Assumptions 5-8.
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Then there exist L1, L2 > 0 depending only on α, β1, β2, γ, {Ci}6i=1, d,M, δ such that

P(Ŝ is sufficient) ≥ 1− L1p
κe−L2n.

See Section B.14 for a proof. Suppose the above algorithm selects Ŝ. Then Theorem 7
shows that if n� log p, then the algorithm selects a sufficient subset with high probability.
In particular, in the low dimensional setting (where p is fixed), the algorithm selects a
sufficient subset with probability that goes to 1 exponentially fast. Theorem 7 is in the
same spirit as Azadkia and Chatterjee (2021, Theorem 6.1), but allows for the predictors
and response variable to be metric-space valued, and offers the flexibility of using any
kernel and a general K-NN graph functional (note that the FOCI algorithm in Azadkia
and Chatterjee, 2021 used the 1-NN graph). This flexibility leads to better finite sample
performance for KFOCI, when compared with FOCI (Azadkia and Chatterjee, 2021). Even
in parametric settings, our performance is comparable to (and sometimes even better than)
classical methods such as the Lasso (Tibshirani, 1996) and the Dantzig selector (Candès
and Tao, 2007); see Section 6.1.2 for the detailed simulation studies.

Algorithm 2: Forward stepwise variable selection algorithm using ρ̃2

Input: The number of variables p0 ≤ p to select; a kernel function kY(·, ·) on
Y × Y; a kernel kS for each XS , S ⊂ {1, . . . , p} with |S| ≤ p0, and

regularization parameter ε > 0 for computing ρ̃2.
Data: (Yi, X1i, . . . , Xpi), for i = 1, . . . , n
Initialization: k = −1, S̃ ← ∅, {j0} = ∅;
do

1. k ← k + 1;

2. S̃ ← S̃ ∪ {jk};
3. Choose the next jk+1 ∈ {1, . . . , p} \ S̃ such that ρ̃2(Y,Xjk+1

|S̃) is maximized, i.e.,

jk+1 := arg max
`∈{1,...,p}\S̃

ρ̃2(Y,Xjk+1
|Xj1 , . . . , Xjk);

while k < p0;

Output: S̃

Remark 14 (On our assumptions) (a) is essentially a sparsity assumption, which is
also assumed in Azadkia and Chatterjee (2021, Theorem 6.1). Note that as the kernel kY is
bounded by M (by Assumption b), T (S) = E[E[kY(Y, Y ′)|XS ]] is also bounded by M . Thus
(a) implies that there exists a sufficient subset of size less than bMδ +1c. Another implication
of (a) is a lower bound assumption on the signal strength of important predictors, indicating
that we can expect an improvement of δ > 0 in terms of T (·) for each iteration of KFOCI.
Condition (c) can be viewed as a uniform version of Assumptions 4-8, in the sense that those
assumptions need to hold with the same constants uniformly over all subsets of {1, . . . , p}
with cardinality no larger than κ. Similar to Remark 8 Assumption (c) is less stringent
when compared to the assumptions made in Azadkia and Chatterjee (2021, Theorem 6.1)
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in the sense that it allows for: (i) any general metric space XS (recall XS takes values in
XS), (ii) tail decay rates of XS slower than sub-exponential, and (iii) β2 to vary in (0, 1].

5.2 Variable Selection Using the RKHS-Based Estimator

As in Section 5.1, we can also develop a similar model-free forward stepwise variable se-
lection algorithm using the RKHS-based estimator ρ̃2 (instead of ρ̂2). Algorithm 2 gives

the pseudocode of the proposed procedure. As ρ̃2 is always nonnegative (see Equation 18
and 20) one can no longer specify an automatic stopping criterion as in Algorithm 1. Thus,
in Algorithm 2 we have to prespecify the number of variables p0 ≤ p to be chosen a pri-
ori. Note that to use Algorithm 2 one must also specify a kernel function kS , for every
S ⊂ {1, . . . , p} with cardinality |S| ≤ p0. For the most common case where all the Xi’s
are real-valued and are suitably normalized (e.g., all Xi’s have mean 0 and variance 1), an
automatic choice of kS can be the Gaussian kernel with empirically chosen bandwidth10. In
our numerical studies we see that Algorithm 2 can also detect complex nonlinear conditional
dependencies and has good finite sample performance; see Section 6.1.2 for the details.

6. Finite Sample Performance of Our Methods

In this section, we report the finite sample performance of ρ̂2, ρ̃2 and the related variable
selection algorithms, on both simulated and real data examples. We consider both Euclidean
and non-Euclidean responses Y in our examples. Even when restricted to Euclidean settings,
our algorithms achieve superior performance compared to existing methods. All results are
reproducible using our R package KPC (Huang, 2021) available on CRAN.

6.1 Examples with Simulated Data

6.1.1 Consistency of ρ̂2 and ρ̃2

Here we examine the consistency of our two empirical estimators ρ̂2 and ρ̃2. As has been
mentioned earlier, the consistency of ρ̂2 requires only very weak moment assumptions on
the kernel (see Theorem 3), whereas the consistency of ρ̃2 depends on the validity of the
CME formula (in Equation 15) which in turn depends on the hard to verify Assumption 9.
We first restrict ourselves to the Euclidean setting and consider the following models:

– Model I: X,Z i.i.d. N(0, 1), Y = X + Z +N(1, 1).
– Model II: X,Z i.i.d. N(0, 1), Y ∼ Bernoulli(e−Z

2/2).
– Model III: X,Z i.i.d. Uniform[0, 1], Y = X + Z (mod 1).

Model I: Here we let k, kX and kẌ be linear kernels. As we are in a Gaussian setting,

both our estimators ρ̂2 and ρ̃2 are consistent11. One can check that ρ2(Y, Z|X) = 0.5. For

the graph-based estimator ρ̂2, we use directed 1-NN, 2-NN graphs and MST. For ρ̃2, we set

10. For example, for x, x′ ∈ R|S|, kS(x, x′) := exp
(
−‖x− x′‖2/(2s2)

)
, where s is the median of pairwise

distances {‖(XS)i − (XS)j‖}i<j .
11. Note that the assumptions in Theorem 3 hold in this setting and thus the graph-based estimator ρ̂2 is

consistent. Further, Assumption 9 holds which implies that ρ̃2 is also consistent (by Theorem 6). To
check that Assumption 9 holds, we notice that the RKHS associated with the linear kernel kX is HX =
{f(x) = a>x|a ∈ X}—the space of all linear functions on X = R. So E[a>Y |X] = a>(X + 1) ∈ HX +R.
Note that Assumption 9 also holds for (Y, Ẍ) by the same argument. For the RKHS-based estimator
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Figure 1: The performance of different estimators of ρ2 as the sample increases. The solid
lines show the mean for each estimator; the dashed lines are the corresponding
2.5% and 97.5% quantiles. Here ‘MST’, ‘1NN’, ‘2NN’ denote the graph-based esti-
mators constructed using MST, 1-NN, 2-NN graphs respectively, ‘RKHS’ denotes
ρ̃2, ‘pcor sq’ denotes the squared partial correlation, and ‘uncentered’ denotes the
RKHS-based estimator constructed using the uncentered CME. The left, middle
and right panels correspond to models I, II, and III respectively.

εn = 10−3 · n−0.4 for all the three models considered here (which satisfies the condition for
consistency in Theorem 6). Although the linear kernel is not characteristic, as (Y,Z,X) is
jointly normal, all the desired properties of ρ2(Y, Z|X) in Theorem 1 hold (see Remark 6);
and ρ2 is equal to the squared partial correlation coefficient (see Proposition 1-d). The left
panel of Figure 1 shows, for different sample sizes n, the mean and 2.5%, 97.5% quantiles
of the various estimators of ρ2 (obtained from 1000 replications). It can be seen that
all the estimators except the RKHS-based estimator using the uncentered CME formula
(see Remark 11; also see Appendix A.2) are consistent, converging to the true value ρ2 = 0.5.

As expected, ρ̂2 constructed from the 1-NN graph has less bias but higher variance compared
to ρ̂2 constructed using the 2-NN graph. Note that ρ̃2 achieves almost the same statistical
performance as the squared partial correlation coefficient; a consequence of Proposition 6.
As model I describes a Gaussian setting, the classical partial correlation coefficient (and

ρ̃2) has the best performance. Notice that ρ̂2, in spite of being fully nonparametric, also
achieves good performance.

Model II: We let kY(y1, y2) := 1{y1 = y2} be the discrete kernel. In this case, ρ2 =
2
√
6+2
√
3−3
√
2−3

3 ≈ 0.37. As the kernel kY(·, ·) is bounded, ρ̂2 is automatically consis-

tent (see Theorem 3). To compute the RKHS-based estimator ρ̃2 we take kX (x1, x2) =

e−|x1−x2|
2/2 (a Gaussian kernel) and kẌ ((x1, z1), (x2, z2)) =

(
e−|x1−x2|

2/2 + 1
)
e−|z1−z2|

2/2

(a product kernel). One can also check that Assumption 9 holds in this case, and thus ρ̃2

is consistent (by Theorem 6). The behavior of all the estimators, as the sample size in-

using the uncentered CME (see Remark 11), the analogous sufficient condition (like Assumption 9; see
Remark 19) does not hold, since for a 6= 0, a>x+ a /∈ HX .
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Figure 2: The performance of ρ̂2 (constructed using 1-NN, 2-NN graphs and MST) as sam-
ple increases. The solid lines show the mean and the confidence bands show the
corresponding 2.5% and 97.5% quantiles as a function of the sample size n. The
left (resp. right) panel corresponds to model IV (resp. V).

creases, is shown in the middle panel of Figure 1. Note that the classical partial correlation
coefficient fails to capture the conditional dependence and is almost 0.

Model III: We let k, kX , and kẌ be Gaussian kernels (see Equation 1) with different
bandwidths12. This model has also been considered in Azadkia and Chatterjee (2021). Note

that here ρ2(Y,Z|X) = 1 since Y is a measurable function of X and Z. Here ρ̂2 (constructed
using 1-NN, 2-NN graphs and MST) is consistent as the Gaussian kernel is bounded (which
is a sufficient condition for Theorem 3 to hold). From the right panel of Figure 1 we see
that both of the graph-based estimators are very close to 1. Assumption 9 for the CME
formula holds with (Y,X) (since Y and X are independent) but it does not hold for (Y, Ẍ)13.

Therefore, Theorem 6 does not hold and ρ̃2 cannot be guaranteed to be consistent. As can
be seen from the right panel of Figure 1, ρ̃2 does not seem to converge to 1. However,
compared to the classical partial correlation, which is almost 0, both ρ̂2 and ρ̃2 provide
evidence that Y is highly dependent on Z, conditional on X.

A non-Euclidean example: Next, we consider the case where Y is the special orthog-
onal group SO(3), the space consisting of 3 × 3 orthogonal matrices with determinant 1.
SO(3) has been used to characterize the rotation of tectonic plates in geophysics (Hanna
and Chang, 2000) as well as in the studies of human kinematics and robotics (Stavdahl
et al., 2005). We use the following characteristic kernel on SO(3) (Fukumizu et al., 2009b):

kY(A,B) :=
πθ(π − θ)
8 sin(θ)

, (25)

12. Here kY(·, ·) = kX (·, ·) = exp(−5| · − · |2) and kẌ (·, ·) = exp(−2‖ · − · ‖2). These bandwidths are just
arbitrary choices that approximately fit to the scale of the data.

13. Note that as kẌ is continuous on Ẍ ×Ẍ with Ẍ compact, all the functions in HẌ are continuous (Cucker
and Smale, 2002, Chapter 3, Theorem 2). But for any g ∈ HY , and h ∈ HẌ (which is continuous), we
have E[g(Y )|Ẍ = ẍ]− h(ẍ) = g(Y (ẍ))− h(ẍ) which is discontinuous and cannot be a constant PẌ -a.e.
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Table 1: ρ̃2 for n = 1000 observations with different ε’s.
Estimands Estimators ε = 10−3 10−4 10−5 10−6 10−7 10−8 10−9

ρ2(Y1, Z|X) = 1 ρ̃2(Y1, Z|X) 0.427 0.548 0.620 0.665 0.697 0.724 0.747

ρ2(Y2, Z|X) = 0 ρ̃2(Y2, Z|X) 0.027 0.038 0.052 0.067 0.080 0.093 0.106

where e±
√
−1θ (0 ≤ θ ≤ π) are the eigenvalues of B−1A, i.e., cos θ = Tr(B−1A)−1

2 . Define the
rotation around x- and z-axis as R1, R3 : R→ SO(3), defined by (for x, z ∈ R)

R1(x) :=

1 0 0
0 cos(x) − sin(x)
0 sin(x) cos(x)

 , R3(z) :=

cos(z) − sin(z) 0
sin(z) cos(z) 0

0 0 1

 .

Let X,Z
i.i.d.∼ N(0, 1). Consider the two models:

– Model IV: Y1 = R1(X)R3(Z). Here Y1 is a function of X and Z. ρ2(Y1, Z|X) = 1.
– Model V: Y2 = R1(X)R3(ε), for an independent ε ∼ N(0, 1). In this model, Y2 ⊥⊥
Z|X, and thus ρ2(Y2, Z|X) = 0.

Figure 2 shows the means and 95% confidence bands for ρ̂2(Y1, Z|X) and ρ̂2(Y2, Z|X) con-
structed using 1-NN, 2-NN graphs and MST from 5000 replications. It can be seen that as
n increases, ρ̂2(Y1, Z|X) gets very close to 1 (which provides evidence that Y1 is a function

of Z given X), and ρ̂2(Y2, Z|X) comes very close to 0 (suggesting that Y2 is conditionally
independent of Z given X).

We did not plot ρ̃2 as it is not consistent and also quite sensitive to the choice of the
regularization parameter ε; see Table 1 where we report ρ̃2 for models IV and V when
n = 1000, kX (x, x′) = exp(−|x − x′|2), and kẌ (x, x′) = exp(−‖x − x′‖2/2). However,

ρ̃2(Y1, Z|X) is always much larger than ρ̃2(Y2, Z|X), indicating the conditional association
between Y1 and Z is much stronger than that between Y2 and Z when controlling for X.

Summary: In all the simulation examples we see that the graph-based estimator ρ̂2

has very good performance. It is able to capture different kinds of nonlinear conditional
dependencies, under minimal assumptions. The RKHS-based estimator ρ̃2 also performs
quite well, although it need not be consistent always (as Assumption 9 may not hold in

certain applications). Further, as both ρ̂2 and ρ̃2 can handle non-Euclidean responses, we
believe that they are useful tools for detecting conditional dependencies in any application.

6.1.2 Variable Selection

In this subsection we examine the performance of our proposed variable selection procedures—
KFOCI (Algorithm 1) and Algorithm 2—in a variety of settings. Our examples include both
low-dimensional and high-dimensional models. Note that KFOCI can automatically deter-
mine the number of variables to select, while Algorithm 2 requires prespecifying the number
of variables to be chosen.

We consider the following models with X = (X1, . . . , Xp) ∼ N(0, Ip) ∈ Rp:
– LM (linear model): Y = 3X1 + 2X2 −X3 +N(0, 1).
– GAM (generalized additive model): Y = sin(X1) + 2 cos(X2) + eX3 +N(0, 1).
– Nonlin1 (nonlinear model in Azadkia and Chatterjee, 2021): Y = X1X2 + sin(X1X3).
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– Nonlin2 (heavy-tailed): Y =
2 log(X2

1+X
4
2 )

cos(X1)+sin(X3)
+ ε where ε ∼ t1, the t-distribution with

1 degree of freedom.
– Nonlin3 (non-additive noise): Y = |X1 + U |sin(X2−X3), where U ∼ Uniform[0, 1].
– SO(3) (non-Euclidean response): Y = R1(X1)R3(X2X3) ∈ SO(3).

In all the examples, the noise variable is assumed to be independent of X. The above
models cover different kinds of linear and nonlinear relationships between Y and X.

Low dimensional setting: We first consider the low-dimensional setting n = 200,
p = 10 and compare the performance of KFOCI with other competing methods which
themselves determine the number of variables to select. We implement the KFOCI algo-
rithm with the directed 1-NN, 2-NN, 10-NN graphs and MST using Algorithm 1 (denoted
by ‘1-NN’, ‘2-NN’, ‘10-NN’, ‘MST’ in Table 2). For all the models except when the response
takes values in SO(3), we use the Gaussian kernel with empirically chosen bandwidth, i.e.,

kY(y, y′) = exp
(
−|y−y′|2

2s2

)
, where s is the median of pairwise distances {|yi−yj |}i<j . When

Y = SO(3), we use the kernel in (25). A natural competitor of KFOCI is FOCI (Azad-
kia and Chatterjee, 2021), implemented in the R package FOCI (Azadkia et al., 2020). We
also compare KFOCI with ‘ols’ which is the forward stepwise variable selection algorithm
in linear regression (where a variable with the smallest p-value less than 0.01 enters the
model at every stage), implemented using the function ols step forward p in the R pack-
age olsrr (Hebbali, 2018). We also consider ‘VSURF’, variable selection using random
forests, implemented using the R package VSURF14 (Genuer et al., 2019). Note that for all
the considered models, X1, X2, X3 are the “correct” variables. In the first tabula of Table 2
we report: (i) The proportion of times {X1, X2, X3} is exactly selected, (ii) the proportion
of times {X1, X2, X3} is selected with possibly other variables, and (iii) the average number
of variables selected, by the different methods in 100 replications. It can be seen from Ta-
ble 2 that KFOCI achieves the best performance in all the nonlinear settings considered; in
particular, KFOCI with the 10-NN graph selects exactly {X1, X2, X3} more than 90% of
the times in all the nonlinear examples and also has good performance in the linear setting.
Although FOCI uses the 1-NN graph in its algorithm, it has inferior performance compared
to KFOCI with 1-NN; this indicates that the Gaussian kernel may be better at detecting
various conditional associations than the special kernel used in FOCI (see Lemma 3). MST
achieves similar (often slightly worse) performance as 2-NN, and their performance is be-
tween 1-NN and 10-NN. Note that the choice of the number of neighbors K = 10 has not
been optimized, which can be seen from Figure 3, where the proportion of exact selection
and the proportion of selecting {X1, X2, X3} are plotted against different K and n under
the above setting. We believe that the optimal value of K should grow sub-linearly with n.
But for samples with up to a few hundred observations, K ≈ 5% ·n may be a good heuristic
choice, as marked by the grey lines in Figure 3.

Next, we consider the case where the number of variables to select is set by the oracle
as 3. For KFOCI, we still use 1,2,10-NN graphs and MST as before, but without imposing
the automatic stopping criterion. For Algorithm 2 denoted by ‘KPC (RKHS)’, we set the
kernel on Y as the same kernel for the methods ‘1-NN’/‘10-NN’; the kernel on XS is taken

as kXS (x, x′) = exp
(
−‖x− x′‖2R|S|/|S|

)
, and ε = 10−3. We compare our methods with

14. For VSURF, we take the variables obtained at the “interpretation step”, which aims to select all variables
related to the response for interpretation purpose.
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Table 2: Performance of the various variable selection algorithms in low-dimensional (n =
200, p = 10) and high-dimensional (n = 200, p = 1000) settings. In the case
where the number of variable to select is unspecified, the reported numbers are:
The proportion of times {X1, X2, X3} is exactly selected / the proportion of times
{X1, X2, X3} is selected possibly with other variables / the average number of
variables selected. In the case where the number of variables to be selected is set
by the oracle as 3, the reported numbers are: The proportion of times {X1, X2, X3}
is exactly selected / the average number of correct variables among the 3 selected
variables (i.e. |Ŝ ∩ {X1, X2, X3}|). The method with the best performance is
highlighted in bold. ‘—’ means the method cannot deal with responses in SO(3).

Low dimension, not specifying the number of variables to select

Models LM GAM Nonlin1 Nonlin2 Nonlin3 SO3
1-NN 0.87/0.98/3.09 0.39/0.74/3.28 0.88/0.95/2.98 0.41/0.79/3.36 0.53/0.82/3.16 1.00/1.00/3.00
MST 0.96/0.97/2.99 0.43/0.79/2.99 0.96/0.99/3.01 0.52/0.84/3.23 0.70/0.89/3.11 0.99/0.99/2.98
2-NN 0.99/0.99/2.99 0.63/0.90/3.21 0.96/1.00/3.05 0.65/0.89/3.18 0.84/0.97/3.10 1.00/1.00/3.00
10-NN 0.81/0.81/2.81 0.92/0.93/2.94 1.00/1.00/3.00 0.93/0.97/3.01 1.00/1.00/3.00 0.97/0.97/2.94
FOCI 0.57/0.87/3.25 0.15/0.64/3.62 0.56/0.72/2.87 0.22/0.53/2.93 0.28/0.52/2.74 —
ols 0.95/1.00/3.05 0.03/0.04/2.03 0.00/0.00/1.06 0.00/0.00/1.04 0.00/0.00/1.07 —

VSURF 0.82/0.82/2.82 0.71/0.71/2.68 0.21/0.21/2.21 0.00/0.03/2.67 0.06/0.23/2.90 —

Low dimension, specifying 3 variables to select

Models LM GAM Nonlin1 Nonlin2 Nonlin3 SO(3)
1-NN 1.00/3.00 0.78/2.78 0.88/2.86 0.64/2.54 0.68/2.57 1.00/3.00
MST 0.99/2.99 0.84/2.84 0.96/2.95 0.79/2.72 0.80/2.75 1.00/3.00
2-NN 1.00/3.00 0.92/2.92 0.96/2.95 0.78/2.75 0.90/2.89 1.00/3.00
10-NN 1.00/3.00 0.99/2.99 1.00/3.00 1.00/3.00 1.00/3.00 1.00/3.00

KPC (RKHS) 1.00/3.00 1.00/3.00 1.00/3.00 0.99/2.99 1.00/3.00 1.00/3.00
FOCI 0.93/2.93 0.54/2.52 0.60/2.24 0.40/2.18 0.46/1.93 —

FWDselect 1.00/3.00 1.00/3.00 0.05/1.67 0.02/1.15 0.10/1.69 —
varimp 1.00/3.00 0.97/2.97 0.66/2.66 0.00/1.11 0.47/2.33 —

High dimension, not specifying the number of variables to select

Models LM GAM Nonlin1 Nonlin2 Nonlin3 SO(3)
1-NN 0.23/0.90/3.72 0.01/0.21/3.83 0.21/0.49/3.77 0.00/0.03/3.48 0.00/0.03/3.21 0.82/0.83/2.84
MST 0.41/0.93/3.51 0.01/0.47/4.00 0.55/0.73/3.57 0.02/0.15/4.65 0.03/0.20/4.05 0.99/0.99/2.99
2-NN 0.70/0.98/3.28 0.03/0.60/4.13 0.49/0.77/3.32 0.02/0.23/4.64 0.08/0.28/3.58 0.97/0.97/2.97
10-NN 0.82/0.82/2.82 0.76/0.92/3.14 0.99/1.00/3.01 0.38/0.78/8.82 0.87/0.94/3.50 0.95/0.95/2.90
FOCI 0.02/0.53/3.99 0.00/0.05/4.14 0.01/0.03/3.43 0.00/0.00/3.31 0.00/0.01/3.30 —
Lasso 0.66/1.00/4.19 0.00/0.00/1.17 0.00/0.00/0.02 0.00/0.00/0.00 0.00/0.00/0.00 —

Dantzig 0.01/1.00/29.63 0.00/0.00/2.39 0.00/0.00/0.00 0.00/0.00/0.00 0.00/0.00/0.00 —

High dimension, specifying 3 variables to select

Models LM GAM Nonlin1 Nonlin2 Nonlin3 SO(3)
1-NN 0.88/2.88 0.14/1.81 0.24/1.18 0.02/0.26 0.02/0.28 0.83/2.75
MST 0.93/2.93 0.37/2.28 0.57/2.04 0.13/0.77 0.15/0.88 0.99/2.99
2-NN 0.97/2.97 0.53/2.49 0.49/2.04 0.15/0.79 0.16/0.99 0.97/2.97
10-NN 1.00/3.00 0.96/2.96 0.99/2.99 0.72/2.42 0.89/2.79 1.00/3.00

KPC (RKHS) 1.00/3.00 0.98/2.98 1.00/3.00 0.92/2.88 1.00/3.00 1.00/3.00
FOCI 0.42/2.42 0.02/1.09 0.02/0.11 0.00/0.10 0.01/0.07 —
LARS 1.00/3.00 0.01/1.82 0.00/0.11 0.00/0.02 0.00/0.24 —
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Figure 3: The proportion of times {X1, X2, X3} is exactly selected and the proportion of times
{X1, X2, X3} is selected (possibly with other variables) with different K-NN graphs and
the number of samples n.

‘FWDselect (GAM)’, the forward stepwise variable selection algorithm for general additive
models, using the function selection in the R package FWDselect (Sestelo et al., 2015).
We also compare with varimp, which selects three variables with the highest importance
scores in the random forest model, implemented by the function varimp in the R package
party (Hothorn et al., 2015) (using default settings). In the second tabula of Table 2 we
report: (i) The proportion of times {X1, X2, X3} is exactly selected, and (ii) the average
number of correct variables among the 3 selected variables Ŝ (i.e., |Ŝ ∩ {X1, X2, X3}|), by
the different methods (in 100 replications). It can be seen that our methods achieve superior
performance compared to the other algorithms. In particular, ‘10-NN’ and ‘KPC (RKHS)’
select exactly X1, X2, X3 more than 99% of the times, in all the models.

High-dimensional setting: To study the performance of the methods in the high-
dimensional setting we increase p from 10 to 1000 keeping n = 200 and consider the same
models as in the beginning of Section 6.1.2. We first compare our method KFOCI with pop-
ular high-dimensional variable selection algorithms which themselves determine the number
of variables to select, such as Lasso (Tibshirani, 1996) and Dantzig selector (Candès and Tao,
2007). Lasso was implemented using the R package glmnet (Friedman et al., 2010) and the
Dantzig selector was implemented using the package hdme (Sorensen, 2019); in both cases
the tuning parameters were chosen as “lambda.1se”15 obtained from 5-fold cross-validation.
Their performances are reported in the third tabula of Table 2 as in the low-dimensional

15. “lambda.1se”, as proposed in Hastie et al. (2009), is the largest value of lambda such that the mean
cross-validated error is within 1 standard error of the minimum.

31



Huang, Deb, and Sen

setting. It can be seen that our method KFOCI (‘10-NN’) still selects the correct variables
most of the times in the high-dimensional setting and outperforms all other competitors
in all models except in the linear model (LM). Even in the linear model, if the goal is to
exactly select {X1, X2, X3}, then KFOCI (‘10-NN’) also outperforms Lasso and the Dantzig
selector that are designed specifically for this setting. In the nonlinear models, all the other
methods are essentially never able to select the correct set of predictors.

We now fix the number of covariates to be selected to 3 to examine how well Algorithm
2 performs in the high-dimensional setting. We compare our methods with least angle
regression (LARS) (Efron et al., 2004) implemented in the R package lars (Hastie and
Efron, 2013). We use the first 3 variables selected by LARS; and in our examples it almost
always selected the first 3 variables entering the Lasso path before any of the variables left
the active set. With the same choices of the kernel and ε as before, in the fourth tabula
of Table 2 we report the same numbers as in the low dimensional setting. Besides ‘10-
NN’, KPC (RKHS) performs very well in the high-dimensional regime, exactly selecting
{X1, X2, X3} more than 90% of the times and achieving the best performance among all
the methods in all the considered models. It can also be seen that the performance (exact
selecting proportion) of KFOCI improves for all graphs when compared to the case when
the number of predictors was not prespecified.

Summary: The comparison with the various variable selection methods reveal that
KFOCI and Algorithm 2 (with the Gaussian kernel) have excellent performance, both in
the low- and high-dimensional regimes, in linear and nonlinear models. Further, KFOCI
has a stopping criterion that can automatically determine the number of variables to select.
Even in the high-dimensional linear regression setting, our model-free approach KFOCI
yields comparable, and sometimes better results than the Lasso and the Dantzig selector.

6.2 Real Data Examples

In this subsection we study the performance of our proposed methods on real data. The real
data sets considered involve continuous, discrete, and non-Euclidean response variables. We
also compare and contrast the performance of our methods with a number of existing and
useful alternatives. In the following, unless otherwise specified, for the kernels k, kX , kẌ , we

use the Gaussian kernel with empirically chosen bandwidth, i.e., kY(x, x′) = exp
(
−‖x−x′‖2

2s2

)
,

where s is the median (or the mean if the median is 0) of the pairwise distances {‖xi −
xj‖}i<j . We also normalize each real-valued variable to have mean 0 and variance 1. The
MST on real data is often not unique, and we will first randomly permute the data before
applying KFOCI() in KPC.

Surgical data: The surgical data, available in the R package olsrr (Hebbali, 2018),
consists of survival data for n = 54 patients undergoing liver operation along with 8 co-
variates16. The response Y is the survival time. Investigators have found that a linear
model taking log(Y ) as response and 4 out of the 8 covariates as predictors describe the
data well (Kutner et al., 2004, Section 9.4, Section 10.6). In particular, this linear model

16. The 8 covariates are: bcs (blood clotting score), pindex (prognostic index), enzyme test (enzyme function
test score), liver test (liver function test score), age, gender, indicator variable for gender, alc mod
(indicator variable for history of alcohol use), and alc heavy (indicator for history of alcohol use).
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Table 3: The variables selected by different methods for the surgical data set.
Methods # variables selected Selected variables
Stepwise forward regression 4/8 enzyme test, pindex, alc heavy, bcs
Best subset (BIC, PRESSp) 4/8 enzyme test, pindex, alc heavy, bcs
KFOCI (1,2,3-NN, MST) 4/8 enzyme test, pindex, liver test, alc heavy
KPC (RKHS, first 3 variables) 3/8 enzyme test, pindex, bcs
VSURF (interpretation step) 4/8 enzyme test, liver test, pindex, alc heavy
VSURF (prediction step) 3/8 enzyme test, liver test, pindex
FOCI 3/8 enzyme test, liver test, alc heavy
npvarselec 4/8 pindex, enzyme test, liver test, alc heavy
MMPC 4/8 pindex, enzyme test, liver test, alc heavy

can be obtained by stepwise forward regression with any penter ∈ [0.001, 0.1]17, and it is
also the best submodel in terms of BIC and PRESSp (Kutner et al., 2004, Section 9.4).
We also work with the transformed response log(Y ). We compare this linear model with
our KFOCI and other variable selection methods such as FOCI (Azadkia and Chatterjee,
2021), VSURF (Genuer et al., 2019), npvarselec (Zambom and Akritas, 2017), and MMPC

(Lagani et al., 2017) (all using their default settings). The selected variables, obtained by
the different methods, are shown in Table 3. It can be seen the variables selected by KFOCI
(with MST, 1-NN, 2-NN, 3-NN graphs) and Algorithm 2 are very similar to those selected
by the carefully analyzed linear regression approach18. Further, KFOCI selects the same set
of variables as many well-implemented variable selection algorithms such as VSURF (Genuer
et al., 2019), npvarselec (Zambom and Akritas, 2017), and MMPC (Lagani et al., 2017).

Spambase data: This data set is available from the UCI Machine Learning Repository
(Dua and Graff, 2017), consisting of a response denoting whether an e-mail is spam or not,
along with 57 covariates (this example has also been studied in Azadkia and Chatterjee,
2021). The number of instances is n = 4601. We first use KFOCI to select a subset of
variables. Directed 1,2,10-NN graphs and MST are considered. Since there is randomness
in breaking ties for K-NN graphs, and in permuting the data for MST, we show in the
histogram in Figure 4 the number of variables selected by different methods in 200 repe-
titions. We then assign each data point with probability 0.8 (0.2) to training (test) set,
and fit a random forest model (implemented in the R package randomForest (Liaw and
Wiener, 2002) using default settings) with only the selected covariates. The mean squared
error (MSE) on the test set is reported on the right panel of Figure 4. Note that as there is
randomness in breaking ties, splitting the training/test sets, as well as fitting the random
forest, we repeat the whole procedure 200 times and present the box-plot for the MSEs. It
can be seen that in terms of MSE, ‘1-NN’ is better than FOCI, and ‘2-NN’ and ‘10-NN’ are
better than ‘1-NN’. The random forest fit on the whole set of covariates achieves the best
performance in prediction as expected. However, our methods use only about 1/3 of the
57 covariates to achieve a prediction performance which is not much worse than that of the
random forest fit with all the covariates.

17. The variable with the smallest p-value less than ‘penter’ enters the model at every stage.
18. The ‘bcs’ selected by the final linear model in Kutner et al. (2004) is replaced by ‘liver test’ by KFOCI

(MST,1,2,3-NN). The first 3 variables selected by Algorithm 2 are also among the 4 predictors of the
final linear model.
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Figure 4: Left: Histogram of the number of selected variables (from 200 replications). The
dashed lines show the mean for each group. Right: MSE after fitting random
forest on test set for different methods (using 200 replications). For FOCI and
KFOCI (‘1-NN’,‘2-NN’,‘10-NN’,‘MST’), the random forests were fit on the se-
lected covariates. ‘full RF’ fits random forest with the entire set of covariates.

Election data (histogram-valued response): Consider the 2017 Korean presidential
election data collected by https://github.com/OhmyNews/2017-Election, which has been
analyzed in the recent paper Jeon and Park (2020). The data consist of the voting results
earned by the top five candidates from 250 electoral districts in Korea. Since the top three
candidates from three major parties representing progressivism, conservatism and centrism
earned most of the votes, we will focus on the proportion of votes earned by each of these
three candidates among them, i.e., Y = (Y1, Y2, Y3) with Y1, Y2, Y3 ≥ 0 and Y1 + Y2 +
Y3 = 1. The demographic information average age (X1), average years of education (X2),
average housing price per square meter (X3) and average paid national health insurance
premium (X4) are available for each electoral district. Note that Y can be viewed as a
histogram-valued variable for which the following two characteristic kernels on [0,∞)3 are

available (Fukumizu et al., 2009b): k1(a, b) =
∏3
i=1(ai + bi + 1)−1, k2(a, b) = e−

∑3
i=1

√
ai+bi ,

where a = (a1, a2, a3) and b = (b1, b2, b3). Since Y ∈ R3, we can also use a Gaussian kernel.
Note that Y , taking values in the probability simplex, is an example of compositional data.
Besides political science, such data are prevalent in many other fields such as sedimentology
(Hijazi and Jernigan, 2009; Aitchison, 1986), hydrochemistry (Otero et al., 2005), economics
(Morais et al., 2018), and bioinformatics (Xia et al., 2013; Chen and Li, 2016; Shi et al.,
2016). Regression methods have been developed with compositional data as covariates (Shi
et al., 2016; Lin et al., 2014; Susin et al., 2020), as response (Aitchison, 1986; Iyengar and
Dey, 2002; Hijazi and Jernigan, 2009; Glahn and Hron, 2012; Tsagris, 2015; Tsagris et al.,
2020), or as both covariates and response (Chen et al., 2017). But few variable selection
methods have been proposed for data with compositional response and Euclidean covariates,
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Table 4: The selected variables with different kernels and different graphs.
Kernels 1-NN 2-NN MST 3-NN 4-NN 5-NN

Gaussian 1 2 3 4 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 1 2 4
k1 1 2 1 2 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4
k2 1 2 1 2 1 2 4 3 2 1 4 3 1 2 4 3 1 2 4

Table 5: The estimates of ρ2(Y,Xi|X−i) with different graphs and regularizers.
Estimators 1-NN 2-NN MST 3-NN 4-NN 5-NN

ρ̂2(Y,X1|X−1) 0.07 0.15 0.13 0.17 0.14 0.13

ρ̂2(Y,X2|X−2) 0.19 0.15 0.16 0.09 0.05 0.04

ρ̂2(Y,X3|X−3) 0.10 0.06 0.02 0.01 -0.02 -0.02

ρ̂2(Y,X4|X−4) 0.07 0.07 0.06 0.04 0.03 0.01
Estimators ε = 10−3 ε = 10−3.5 ε = 10−4 ε = 10−4.5 ε = 10−5 ε = 10−5.5

ρ̃2(Y,X1|X−1) 0.08 0.12 0.15 0.17 0.19 0.21

ρ̃2(Y,X2|X−2) 0.03 0.06 0.07 0.09 0.11 0.14

ρ̃2(Y,X3|X−3) 0.04 0.05 0.06 0.08 0.10 0.12

ρ̃2(Y,X4|X−4) 0.03 0.04 0.05 0.07 0.08 0.10

as in our case here. Since our method tackles random variables taking values in general
topological spaces, it readily yields a variable selection method for this case.

The variables selected by KFOCI with different kernels and graphs are given in Table 4.
It can be seen that in all cases, X1 and X2 are selected, indicating that they may be more
relevant for predicting Y than X3, X4. This agrees with Jeon and Park (2020, Figure 3),
where an additive regression was fit to the election data. It was also found that as people
are more educated, from ‘low’ to ‘medium’ educational level, their political orientation
becomes more conservative, but interestingly it is reversed for people as they move from
‘medium’ to ‘high’ educational level (Jeon and Park, 2020). This nonlinear relationship is
also captured by KPC, as X2 is always selected. Note that X3 and X4 are both measures
of wealth. It is natural to conjecture if one of them, say X4 alone, would be enough in
predicting Y . We can answer this by examining how large ρ2(Y,X3|X−3) is: If the estimate
of ρ2(Y,X3|X−3) is close to 0 it provides evidence that Y is conditionally independent of
X3 given X−3 = {X1, X2, X4}. The estimates of ρ2(Y,Xi|X−i) are given in Table 5. It can
be seen that for i = 3, 4, the conditional association of Y and Xi given all other variables
is weaker than that of i = 1, 2; this agrees with the intuition that X3 and X4 are both
capturing the same latent factor—wealth. In Table 5 we also give values of ρ̃2 as we change
ε. For a suitably chosen ε, say ε = 10−4, ρ̃2 is similar to ρ̂2.

Appendix A. Some General Discussions

In this section we elaborate on some parts of the main text that were initially deferred so
as not to impede the flow of the paper.
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A.1 Some Remarks

Remark 15 (About Assumption 2) Assumption 2 is needed to ensure following: (a)
The feature map y 7→ kY(y, ·) is measurable19; (b) any Borel measurable function g : Y →
HY is strongly measurable20 and the Bochner integral (see e.g., Cohn, 2013, Appendix E for
its formal definition) E[g(Y )] is well-defined whenever E‖g(Y )‖HY <∞21; (c) the relevant
cross-covariance operators are Hilbert-Schmidt. Thus, for simplicity, we assume the more
natural Assumption 2 rather than the conditions (a)-(c) above.

Remark 16 Observe that if for almost every x, Y |X = x is degenerate, then Y is almost
surely a measurable function of X. To see this, let Q(x, ·) be a regular conditional distribu-
tion of Y given X = x. Then there exists A ⊂ X of probability 1 such that Q(x, ·)—the tran-
sition kernel—is degenerate for all x ∈ A. Let f(x) ∈ Y be the support (which is a single el-
ement in Y) of Q(x, ·) if x ∈ A, and some fixed y0 ∈ Y if x ∈ Ac. Then f : X → Y is a mea-
surable function because for any measurable B ⊂ Y, f−1(B) = {x ∈ X : Q(x,B) = 1}∩A if
y0 /∈ B and f−1(B) = ({x ∈ X : Q(x,B) = 1} ∩ A) ∪ Ac if y0 ∈ B. In either case, f−1(B)
is a measurable set. Note that Y = f(X) a.s. so Y is a measurable function of X.

Remark 17 (Cross-covariance operator in tensor-product space) Here we show that
(14) holds. We will use the isometric isomorphism Φ : HX ⊗ HY → HS(HY ,HX ) which
satisfies 〈f,Φ(a)g〉HX = 〈a, f ⊗ g〉HX×HY for a ∈ HX ⊗HY , f ∈ HX , g ∈ HY . Denote the
right-hand side of (14) by C. Then

〈f, Cg〉HX = 〈C, f ⊗ g〉HX⊗HY
= 〈E [kX (X, ·)⊗ kY(Y, ·)] , f ⊗ g〉HX⊗HY − 〈E [kX (X, ·)] , f〉HX 〈E [kY(Y, ·)] , g〉HY
= E

[
〈kX (X, ·)⊗ kY(Y, ·), f ⊗ g〉HX⊗HY

]
− E [〈kX (X, ·), f〉HX ] · E

[
〈kY(Y, ·), g〉HY

]
= E [f(X)g(Y )]− E[f(X)]E[g(Y )].

In the third line we used the fact that if X ∈ X is Bochner integrable, then Eϕ(X) = ϕ(EX)
for any bounded linear functional ϕ ∈ X ∗ (see e.g., Cohn, 2013, Appendix E).

Remark 18 Here we show that suppose (Y,X,Z) is jointly Gaussian. Then, when using
the linear kernel, ρ2(Y, Z|X) = 0 implies Y ⊥⊥ Z|X.

For Gaussian distribution, the conditional distribution (Y, Z)|X is Gaussian with con-
ditional variance and covariance not depending on the value of X. Suppose:

(Y (i), Z)>|X = x ∼ N
((

µi(x)
µz(x)

)
,

(
σ2i β>i
βi Σz

))
19. Note that the canonical feature map y 7→ kY(y, ·) is measurable if HY is separable (Steinwart and

Christmann, 2008, Lemma 4.25).
20. A function is strongly measurable if it is Borel measurable and has a separable range.

21. Thus, if E
√
kY(Y, Y ) < ∞, µY := EkY(Y, ·) is well-defined as a Bochner integral. As for any bounded

linear functional T : HY → R, we have E [T (g(Y ))] = T (E[g(Y )]), we can write 〈µY , f〉HY =
〈E[kY(Y, ·)], f〉HY = E[〈kY(Y, ·), f〉HY ] = Ef(Y ).
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where µi(·) and µz(·) are linear functions. By (9),

ρ2(Y,Z|X) =

∑d
i=1 E(Var[E(Y (i)|X,Z)|X])

E
[∑d

i=1 Var(Y (i)|X)
] =

∑d
i=1 E(Var[µi(X) + β>i Σ−1z (Z − µz(X))|X])

E[
∑d

i=1 σ
2
i ]

=

∑d
i=1 β

>
i Σ−1z ΣzΣ

−1
z βi∑d

i=1 σ
2
i

=

∑d
i=1 β

>
i Σ−1z βi∑d

i=1 σ
2
i

.

Here Σ−1z is regarded as the generalized inverse or Moore-Penrose inverse of Σz. We can
suppose Z is non-degenerate, otherwise Y ⊥⊥ Z|X is trivial. Without loss of generality,
we may further suppose Σz to be invertible, since otherwise we can perform a bijective
linear transformation to reduce the dimensionality of Z. Now Σ−1z is positive-definite and
ρ2(Y,Z|X) = 0 implies βi = 0 for all i, which further indicates Y ⊥⊥ Z|X by the property
of multivariate Gaussian distribution.

A.2 Uncentered CME Estimators

We used the ‘centered’ CMEs (15) to derive an expression for the estimator of ρ2 since that
requires less restrictive assumptions (Klebanov et al., 2020). But using ‘uncentered CMEs’,
i.e., using uncentered (cross)-covariance operators to construct an expression of the CME is
also possible. Under appropriate assumptions, the uncentered (cross)-covariance operators
yield the following uncentered CME formula (Klebanov et al., 2020, Theorem 5.3):

µY |X=x =
(
uC†X

uCXY

)∗
kX (x, ·), (26)

where uCXY (resp. uCX) is the uncentered cross-covariance (resp. covariance) operator
defined as 〈f, uCXY g〉 = E [f(X)g(Y )]. The same methodology as in Section 4.1 shows that
one can simply replace every occurence K̃ by the corresponding K (e.g., K̃X by KX) to

obtain the following simplified formula: ρ̃2u = Tr(M>KYM)
Tr(N>KY N)

, where M = KX (KX + εnI)−1−
KẌ

(
KẌ + εnI

)−1
and N = I −KX (KX + εnI)−1.

We see that the centered estimator ρ̃2 (in Equation 18) can be obtained by putting

a ‘tilde’ on all the kernel matrices (i.e., KX ,KY ,KẌ) in ρ̃2u, and this can be viewed as
performing a ‘centralization’ of the feature maps of the corresponding kernel, i.e., if K =
ΦΦ>, then K̃ = HKH = HΦΦ>H = ΦcΦ

>
c , with Φc := HΦ being the centralized feature.

Remark 19 (Sufficient conditions for uncentered CME) A sufficient condition for
(26) to be valid is: For any g ∈ HY , a version of E[g(Y )|X = ·] ∈ HX . In the case
when X and Y are independent, E[g(Y )|X = ·] is a constant (PX-a.e.). But it is well-
known that the RKHS with the Gaussian kernel does not contain nonzero constant functions
whenever X has non-empty interior (Minh, 2010). This provides an example where the
CME is not guaranteed to be expressed using uncentered (cross)-covariance operators as
in (26). Note that Assumption 9 always holds when X and Y are independent. However,
in general, sufficient conditions for explicit expressions of CMEs in terms of centered and
uncentered (cross)-covariance operators are usually restrictive and hard to verify (Klebanov
et al., 2020).
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The following result (see Section B.11 for a proof) shows that ρ̃2u has an interesting
connection to kernel ridge regression.

Proposition 7 Suppose Y = R is equipped with the linear kernel kY(u, v) = uv. Then,

ρ̃2u = ‖Ŷx−Ŷxz‖2

‖Ŷx−Y‖2
, where Y = (Y1, . . . , Yn), Ŷx is the kernel ridge regression estimator when

regressing Y on X and Ŷxz is the kernel ridge regression estimator when regressing Y on
Ẍ, both with regularization parameter nε.

A.3 Invariance and Continuity

Informally, invariance means that the measure should be unaffected under a “suitable” class
of transformations and continuity means that whenever a sequence of measures Pn converges
to P (in an “appropriate” sense), the sequence of values of the dependence measure for Pn’s
should converge to that of P . We show, in the following result (proved in Appendix B.6)
that ρ2 satisfies these properties for a class of kernels.

Proposition 8 The following two properties hold for ρ2(Y,Z|X):
1. Invariance. ρ2(Y,Z|X) is invariant to any bijective transformation of X, and any

bijective transformation of Z. If Y = Rd and the kernel is of the form (8) then ρ2 is
also invariant to orthogonal transformations and translations of Y .

2. Continuity. Let Y be a separable metric space and let (Xn, Yn, Zn) ∼ Pn. Let
(Yn,1, Y

′
n,1), (Yn,2, Y

′
n,2) be generated from the distribution of (Xn, Yn, Zn) as described

in (6) and (7). If (Xn, Yn, Zn, Yn,1, Y
′
n,1, Yn,2, Y

′
n,2)

d→ (X,Y, Z, Y1, Y
′
1 , Y2, Y

′
2) where

(X,Y, Z) ∼ P , and lim supn→∞ E[k1+εY (Yn,i, Y
′
n,i)] < ∞ for i = 1, 2, and for some

ε > 0, lim supn→∞ E[k1+εY (Yn, Yn)] <∞, then ρ2(Yn, Zn|Xn)→ ρ2(Y, Z|X) as n→∞.

For the estimators ρ̂2, ρ̃2, it is also easy to see that if X ,Y,X ×Z are Euclidean, and both
the geometric graph and kernels kY , kX , kẌ only depend on the inter-point distance, then
ρ̂2(Y,Z|X) and ρ̃2(Y,Z|X) are invariant to any orthogonal transformation of X or Y or Z.

A.4 Approximate Computation of ρ̃2 Using Incomplete Cholesky
Decomposition

For fast computation, we can approximate each of the kernel matrices by incomplete Cholesky
decomposition. For example, we can approximate KX ≈ L1L

>
1 where L1 ∈ Rn×d1 is the

incomplete Cholesky decomposition of the kernel matrix22 KX which can be computed in
O(nd21) time (here d1 ≤ n) without the need to compute and store the full gram matrix
KX (Bach and Jordan, 2003). Let L̃1 := HL1 denote the centralized feature matrix (recall
that H := I − 1

n11>). Then K̃X ≈ L̃1L̃
>
1 . Similarly, we can approximate each of the

centralized kernel matrices K̃Ẍ ≈ L̃2L̃
>
2 , K̃Y ≈ L̃3L̃

>
3 , where Li ∈ Rn×di for i = 2, 3.

To compute the numerator of ρ̃2 (see Equation 20), by the Woodbury matrix identity, we
can approximate (K̃X+nεI)−1 by (L̃1L̃

>
1 +nεIn)−1 = 1

nεIn−
1
nε L̃1(nεId1 +L̃>1 L̃1)

−1L̃>1 . The

same strategy applied to (K̃Ẍ +nεI)−1 shows M can be approximated by M̌ := L̃1(nεId1 +

22. Note that if the linear kernel is used and Xi ∈ Rd1 , then the decomposition KX = XX> (here X :=
[X1, . . . , Xn]> is the data matrix of the Xi’s) is straight-forward and exact.
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L̃>1 L̃1)
−1L̃>1 − L̃2(nεId2 + L̃>2 L̃2)

−1L̃>2 . Thus Tr(M>K̃YM) ≈ Tr(M̌>L̃3L̃
>
3 M̌) = ‖L̃>3 M̌‖2F ,

where ‖ · ‖F denotes the Frobenius norm.

For the denominator of ρ̃2, note thatN = nε(K̃X+nεI)−1 ≈ In−L̃1(nεId1+L̃>1 L̃1)
−1L̃>1 =:

Ň . Thus, Tr(N>K̃YN) ≈ ‖L̃>3 Ň‖2F . Combining the calculations above, we see that the

approximate version of ρ̃2 can be computed in O
(
nmax1≤i≤3 d

2
i

)
time.

A.5 Assumptions on the Geometric Graph

We will use the following assumptions on the graph functional G; these assumptions were
also made in Deb et al. (2020, Section 3).

Assumption 10 Given the graph Gn, let N(i) be a uniformly sampled index from among
the (out-)neighbors of Xi in Gn, i.e., {j : (Xi, Xj) ∈ E(Gn)}. Assume that X is a metric

space with metric ρX , and that ρX (X1, XN(1))
p→ 0, as n→∞.

Assumption 11 Assume that there exists a deterministic positive sequence rn ≥ 1 (may
or may not be bounded), such that min1≤i≤n di ≥ rn almost surely. Let Gn,i denote the
graph obtained from Gn by replacing Xi with an i.i.d. random element X ′i. Assume that
there exists a deterministic positive sequence qn (may or may not be bounded), such that

max
1≤i≤n

max{|E(Gn) \ E(Gn,i)|, |E(Gn,i) \ E(Gn)|} ≤ qn a.s. and
qn
rn

= O(1).

Assumption 12 There exists a deterministic sequence {tn}n≥1 (may or may not be bounded)
such that the vertex degree (including both in- and out-degrees for directed graphs) of every
point Xi (for i = 1, . . . , n) is bounded by tn, and tn

rn
= O(1).

Appendix B. Proofs

B.1 Proof of Lemma 1

First observe that by Assumption 1, E
[
‖kY(Y1, ·)‖2HY

]
= E [kY(Y, Y )] <∞. By the Cauchy-

Schwarz’s inequality, E[E[kY(Y1, Y
′
1)|X]] is upper bounded by

E
[
E[‖kY(Y1, ·)‖HY · ‖kY(Y ′1 , ·)‖HY |X]

]
≤ E

[
E
[‖kY(Y1, ·)‖2HY + ‖kY(Y ′1 , ·)‖2HY

2

∣∣X]] <∞.
Similarly, E [E[kY(Y2, Y

′
2)|X,Z]] < ∞. Hence the numerator of ρ2(Y,Z|X) in (5) is finite.

The denominator is also finite by Assumption 1.
Next we show that E[MMD2(δY , PY |X)] 6= 0. If E[MMD2(δY , PY |X)] = 0, then equiva-

lently E‖kY(Y, ·)−E[kY(Y, ·)|X]‖2HY = 0. So, conditional onX = x, kY(Y, ·) = E[kY(Y, ·)|X =
x] for PX -a.e. x. Since kY is characteristic, y 7→ kY(y, ·) is injective, which implies that
Y |X = x is degenerate for PX -a.e. x. This is a contradiction to Assumption 3. �

B.2 Proof of Lemma 2

Let us first try to explain the notation in definition (1). From the definition of the MMD,

ρ2 in (1) can be re-expressed as: ρ2 =
E
[
‖µPY |XZ−µPY |X ‖

2
HY

]
E
[
‖µδY −µPY |X ‖

2
HY

] where the mean embeddings
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above have the following expressions: µδY (·) = kY(·, Y ), µPY |X (·) = EY1∼Y |X [kY(·, Y1)] =
E[kY(·, Y )|X], µPY |XZ (·) = EY2∼Y |XZ [kY(·, Y2)] = E[kY(·, Y )|X,Z], where the expectations
should be understood as Bochner integrals (see e.g., Diestel and Faires, 1974; Dinculeanu,
2011). Using the notation in the statement of the lemma, we have

E
[
‖µδY − µPY |X‖

2
HY

]
= E

[
‖µδY ‖

2
HY

]
+ E

[
‖µPY |X‖

2
HY

]
− 2E

[
〈µδY , µPY |X 〉HY

]
= E[kY(Y, Y )] + EX

[
E[kY(Y1, Y

′
1)|X]

]
− 2EY,X [E[kY(Y, Y1)|X]]

= E[kY(Y, Y )]− E
[
E[kY(Y1, Y

′
1)|X]

]
,

where Y1, Y
′
1 |X = x

i.i.d.∼ PY |x, Y1, Y are conditionally independent given X, and the second
equality follows from the observations: ‖µPY |X‖2HY = E[kY(Y1, Y

′
1)|X], and 〈µδY , µPY |X 〉HY =

E[kY(Y, Y1)|X]. Similarly, we can show that MMD2(PY |XZ , PY |X) equals

E
[
‖E[kY(Y, ·)|X,Z]− E[kY(Y, ·)|X]‖2HY

]
= E

[
E[kY(Y2, Y

′
2)|X,Z]

]
+ E

[
E[kY(Y1, Y

′
1)|X]

]
− 2E

[
EY1∼Y |X,Y2∼Y |X,ZkY(Y1, Y2)

]
= E

[
E[kY(Y2, Y

′
2)|X,Z]

]
− E

[
E[kY(Y1, Y

′
1)|X]

]
.

This proves the result. �

B.3 Proof of Theorem 1

The proof is divided into three parts.
Step 1. We will first show that ρ2(Y,Z|X) ∈ [0, 1]. Observe that ρ2 ≥ 0 is clear. To show
that ρ2 ≤ 1, we will use the following result—a version of Jensen’s inequality (Perlman,
1974, Theorems 3.6 and 3.8).

Lemma 5 (Jensen’s inequality) Let W be a real Banach space, W be a Bochner inte-
grable random variable taking value inW, and g :W → R be a lower-semicontinuous convex
function such that g(W ) is integrable. Then g(EW ) ≤ Eg(W ). If g is strictly convex23 and
P(W = EW ) < 1, then g(EW ) < Eg(W ).

Now, observe that,

E[MMD2(δY , PY |X)] = E‖kY(Y, ·)− E[kY(Y, ·)|X]‖2HY
= E

[
E[‖kY(Y, ·)− E(kY(Y, ·)|X)‖2HY |X,Z]

]
≥ E

[
‖E[kY(Y, ·)− E(kY(Y, ·)|X)|X,Z]‖2HY

]
= E

[
‖E(kY(Y, ·)|X,Z)− E(kY(Y, ·)|X)‖2HY

]
= E[MMD2(PY |XZ , PY |X)].

where we have applied the above Jensen’s inequality to the function g : f 7→ ‖f‖2HY and

W := kY(Y, ·)− E[kY(Y, ·)|X]. Hence ρ2 ≤ 1.
Step 2. Next we show that ρ2 = 1 if and only if Y is a measurable function of Z and X.

If ρ2 = 1, then for a.e. x, z, the above Jensen’s inequality attains equality, which means
that (Lemma 5): P

(
kY(Y, ·) = EY |X=x,Z=zkY(Y, ·)

∣∣X = x, Z = z
)

= 1. Hence Y is degener-
ate given (X,Z) = (x, z), and thus a measurable function of X,Z (Remark 16).

23. By strictly convexity we mean: g(λx+ (1− λ)y) < λg(x) + (1− λ)g(y), ∀x 6= y, λ ∈ (0, 1).
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Conversely, if Y = f(X,Z) for some measurable function f , then

E[MMD2(PY |XZ , PY |X)] = E[MMD2(δf(X,Z), PY |X)] = E[MMD2(δY , PY |X)],

and so ρ2(Y, Z|X) = 1.
Step 3. Now we have to show that ρ2(Y,Z|X) = 0 if and only if PY |XZ = PY |X a.s.

If PY |XZ = PY |X a.s., then E[MMD2(PY |XZ , PY |X)] = 0, and thus ρ2(Y,Z|X) = 0.
Conversely, if ρ2(Y,Z|X) = 0, since kY is characteristic, PY |XZ = PY |X almost surely. �

B.4 Proof of Proposition 1

For notational clarity, write r ≡ ρY Z·X . By assumption, there exist µ1, µ2, σ1, σ2 such that:

(Y, Z)>|X ∼ N
((

µ1
µ2

)
,

(
σ21 rσ1σ2

rσ1σ2 σ22

))
.

Further, Y |X,Z ∼ N
(
µ1 + r σ1σ2 (Z − µ2), (1− r2)σ21

)
. Letting ξ ∼ N(0, 2σ21), ρ2(Y,Z|X)

can be simplified to:

ρ2(Y,Z|X) =
E[h3(

√
1− r2|ξ|)]− E[h3(|ξ|)]
h3(0)− E[h3(|ξ|)]

,

which is strictly increasing in r2 (as h3 is strictly decreasing), if σ21 = Var(Y |X) is fixed.
Note that ρ2(Y,Z|X) = 0 if and only if r = 0, and ρ2(Y, Z|X) = 1 if and only if r2 = 1.

For the linear kernel, h3(u) = −u2/2 (here u ≥ 0), and therefore ρ2(Y, Z|X) = r2. �

B.5 Proof of Proposition 2

Lemma 6 Suppose Y
d
= −Y and ξ is an independent noise which is symmetric and uni-

modal about 0. Fix c ≥ 0, P (|λY + ξ| ≤ c) is a nonincreasing function of λ, for λ ∈ [0,∞).

Proof It suffices to show that for any c ≥ 0, (a) P(|ξ| ≤ c) ≥ P (|Y + ξ| ≤ c), and (b) for
λ > 1, P (|λY + ξ| ≤ c) ≤ P (|Y + ξ| ≤ c). Note that

P (|Y + ξ| ≤ c) = P(Y = 0)P(ξ ∈ [−c, c]) + 2

∫
(0,∞)

P(ξ ∈ [y − c, y + c])dPY (y),

where we have used the fact P(ξ ∈ [−y − c,−y + c]) = P(ξ ∈ [y − c, y + c]), and that Y has
a symmetric distribution. Note that h(y) := P(ξ ∈ [y− c, y+ c]) is a nonincreasing function
on [0,∞). Hence,

P (|Y + ξ| ≤ c) = P(Y = 0)P(ξ ∈ [−c, c]) + 2E[h(Y )1Y >0]

≥ P(Y = 0)P(ξ ∈ [−c, c]) + 2E[h(λY )1Y >0] = P (|λY + ξ| ≤ c) .

Also, P (|Y + ξ| ≤ c) ≤ P(Y = 0)P(ξ ∈ [−c, c])+2E[h(0)1Y >0] = P(|ξ| ≤ c). These complete
the proof of the lemma.
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Now let us prove Proposition 2. Recall the notation ξ ∼ ε − ε′. Under the assumption
of Proposition 2,

ρ2(Y,Z|X) =
E[h3(|ξ|)]− E [E[h3 (|λ[f(X,Z1)− f(X,Z2)] + ξ|) |X]]

h3(0)− E [E[h3 (|λ[f(X,Z1)− f(X,Z2)] + ξ|) |X]]
,

By Lemma 6 applied to Y = f(X,Z1)−f(X,Z2), we know that conditional onX, |λ1[f(X,Z1)−
f(X,Z2)] + ξ| is stochastically less than |λ2[f(X,Z1) − f(X,Z2)] + ξ| whenever λ1 ≤ λ2.
Since h3 is a decreasing function, E [E[h3 (|λ[f(X,Z1)− f(X,Z2)] + ξ|) |X]] is decreasing in
λ, and hence ρ2(Y,Z|X) is increasing in λ. �

B.6 Proof of Proposition 8

From the form of ρ2(Y, Z|X) in Lemma 2 we see that ρ2(Y, Z|X) does not change by
bijectively transforming X and Z.

With the kernel given in (8) and using the notation in Lemma 2,

ρ2(Y,Z|X) =
Eh3(‖Y2 − Y ′2‖)− Eh3(‖Y1 − Y ′1‖)

h3(0)− Eh3(‖Y1 − Y ′1‖)
.

Hence replacing Yi, Y
′
i , for i = 1, 2, by OYi + b,OY ′i + b, where O is an orthogonal matrix

and b is a vector, does not change ρ2(Y,Z|X). This shows the desired invariance.
Next we show the continuity result. By Skorokhod’s representation theorem, we can

assume the convergence in distribution is actually a.s. convergence. The boundedness of
1 + ε moments in our assumption implies uniform integrability for large n. Together with
the a.s. convergence, we have L1 convergence, so ρ2(Yn, Zn|Xn)→ ρ2(Y, Z|X) follows. �

B.7 Proof of Lemma 3

We first show the general case, where kY(y1, y2) :=
∫

1y1≥t1y2≥tdPY (t), y1, y2 ∈ R. We use
the equivalent formulation (5) to calculate ρ2. For Y2, Y

′
2 as in (7),

E
[
E[kY(Y2, Y

′
2)|X,Z]

]
= E

[
E
[∫

1Y2≥t1Y ′2≥tdPY (t)
∣∣∣X,Z]] = E

[∫
P (Y ≥ t|X,Z)2 dPY (t)

]
.

(27)

Likewise, E [E[kY(Y1, Y
′
1)|X]] = E

[∫
P (Y ≥ t|X)2 dPY (t)

]
. For t ∈ R, let gt(X,Z) :=

P (Y ≥ t|X,Z). Then, we have,

E
[
E[kY(Y2, Y

′
2)|X,Z]

]
− E

[
E[kY(Y1, Y

′
1)|X]

]
=

∫
E
[
gt(X,Z)2 − (E[gt(X,Z)|X])2

]
dPY (t)

=

∫
E [Var(gt(X,Z)|X)] dPY (t) =

∫
E [Var(P(Y ≥ t|X,Z)|X)] dPY (t),

which is exactly the numerator of T (Y,Z|X). The denominator of ρ2 in (5) is

E[kY(Y, Y )]− E[E[kY(Y1, Y
′
1)|X]] = E

[∫
12Y≥tdPY (t)

]
− E

[∫
P (Y ≥ t|X)2 dPY (t)

]
=

∫
E
[
12Y≥t − P (Y ≥ t|X)2

]
dPY (t) =

∫
E [Var(1Y≥t|X)] dPY (t),
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which coincides with the denominator of T (Y,Z|X).
Now, suppose Y is continuous, and kY(y, y′) := 1

2 (|y|+ |y′| − |y − y′|) = min{y, y′} =∫ 1
0 1y≥t1y′≥tdt for all y, y′ ∈ [0, 1]. The right-inverse F−1Y (t) := inf{y : FY (y) ≥ t} is non-

decreasing and satisfies F−1Y (FY (Y ))
a.s.
= Y . Let Y ′ be an independent copy of Y . Then,

E
[
E[kY(FY (Y2), FY (Y ′2))|X,Z]

]
= E

[
E
[∫ 1

0
1FY (Y2)≥t1FY (Y ′2)≥tdt

∣∣∣X,Z]]
= E

[∫ 1

0
P (FY (Y ) ≥ t|X,Z)2 dt

]
= E

[
P
(
FY (Y ) ≥ FY (Y ′)|X,Z

)2]
= E

[
P
(
Y ≥ Y ′|X,Z

)2]
= E

[∫
P (Y ≥ t|X,Z)2 dPY (t)

]
.

The rest of the proof is the same as that after (27). �

B.8 Proof of Proposition 3

By Deb et al. (2020, Proposition 3.1), both
√
n

(
1
n

∑
i

∑
(i,j)∈E(GẌn )

kY (Yi,Yj)

dẌi
− EkY(Y1, YN̈(1))

)
and
√
n
(

1
n

∑
i

∑
(i,j)∈E(GXn )

kY (Yi,Yj)

dXi
− EkY(Y1, YN(1))

)
are Op(1).

Since we also have
√
n
(
1
n

∑n
i=1 kY(Yi, Yi)− EkY(Y1, Y1)

)
= Op(1), the following holds:

√
n

(
ρ̂2(Y,Z|X)−

EkY(Y1, YN̈(1))− EkY(Y1, YN(1))

EkY(Y1, Y1)− EkY(Y1, YN(1))

)
= Op(1).

�

B.9 Proof of Theorem 4

Let

Qn :=
1

n

n∑
i=1

∑
(i,j)∈E(GẌn )

kY(Yi, Yj)

dẌi
− 1

n

n∑
i=1

∑
(i,j)∈E(GXn )

kY(Yi, Yj)

dXi
,

Sn :=
1

n

n∑
i=1

kY(Yi, Yi)−
1

n

n∑
i=1

∑
(i,j)∈E(GXn )

kY(Yi, Yj)

dXi
,

and their population limits be

Q := E
[
E[kY(Y2, Y

′
2)|X,Z]

]
−E

[
E[kY(Y1, Y

′
1)|X]

]
, S := E[kY(Y, Y )]−E[E[kY(Y1, Y

′
1)|X]].

Then ρ̂2(Y, Z|X) = Qn
Sn

, and ρ2(Y, Z|X) = Q
S . From the proof of Deb et al. (2020, Theorem

5.1) and Deb et al. (2020, Corollary 5.1)24,

1

n

∑
i

∑
(i,j)∈E(GẌn )

kY(Yi, Yj)

dẌi
and

1

n

∑
i

∑
(i,j)∈E(GXn )

kY(Yi, Yj)

dXi

24. Note that with the notation in Deb et al. (2020), by Assumption 5 on the intrinsic dimensionality of X,
we have N(µX , B(x∗, t), ε, 0) ≤ C1(t/ε)d, and tn/Kn being bounded is implied by Assumption 6. Hence
the same argument in Deb et al. (2020, Section 5.1) works through.
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are within Op
(√
νn
)

distance of their theoretical limits. Since 1
n

∑n
i=1 kY(Yi, Yi) is also

within Op(n
−1/2) . Op

(√
νn
)

distance from its theoretical limit, Qn (resp. Sn) is within
Op
(√
νn
)

distance to Q (resp. S). Hence:∣∣∣ρ̂2(Y,Z|X)− ρ2(Y,Z|X)
∣∣∣ =

∣∣∣∣S ·Qn −Q · SnS · Sn

∣∣∣∣ =

∣∣∣∣∣S ·Op
(√
νn
)
−Q ·Op

(√
νn
)

S · Sn

∣∣∣∣∣ = Op (
√
νn) .

The last equality follows as S > 0. �

B.10 Proof of Proposition 5

We use the same notation as in Sheng and Sriperumbudur (2019). Define SX : HX → Rn
such that SX : f 7→ (f(X1), . . . , f(Xn))>. Then, for α = (α1, . . . , αn) ∈ Rn, 〈SXf, α〉Rn =∑

i αif(Xi) = 〈f, S∗Xα〉HX where we have S∗X : Rn → HX given by S∗X : α 7→
∑

i αikX (Xi, ·).
Similarly define SY , S

∗
Y , SZ and S∗Z . For f ∈ HX ,

ĈY Xf =
1

n

n∑
i=1

kY(Yi, ·)f(Xi)−

(
1

n

n∑
i=1

kY(Yi, ·)

)(
1

n

n∑
i=1

f(Xi)

)

=
1

n
S∗Y SXf −

1

n2
S∗Y 11>SXf =

1

n
S∗Y (I − 1

n
11>)SXf =

1

n
S∗YHSXf.

Hence ĈY X = 1
nS
∗
YHSX . Similarly, we have ĈY Ẍ = 1

nS
∗
YHSẌ , ĈX = 1

nS
∗
XHSX , ĈẌ =

1
nS
∗
Ẍ
HSẌ . Note that for all α ∈ Rn, SXS

∗
Xα =

∑n
i=1 αiSXkX (Xi, ·) = KXα, where KX is

the kernel matrix with (KX)ij = kX (Xi, Xj). Hence SXS
∗
X = KX . Letting ei denote the

i-th unit vector in Rn, for i = 1, . . . , n, we have

ĈY X(ĈX + εI)−1(kX (Xi, ·)− µ̂X) = ĈY X(ĈX + εI)−1S∗X(ei −
1

n
1)

=
1

n
S∗YHSX

(
1

n
S∗XHSX + εI

)−1
S∗XHei =

1

n
S∗YHSXS

∗
X

(
1

n
HSXS

∗
X + εI

)−1
Hei

where we have used the fact that, for operators A and B, (BA+ εI)−1B = B(AB + εI)−1,
which holds by direct verification. Now, using KX = SXS

∗
X , we can show that the right

side of the above display equals

S∗YHKX (HKX + nεI)−1Hei = S∗YHKX

(
H2KX + nεI

)−1
Hei

= S∗YHKXH (HKXH + nεI)−1 ei = S∗Y K̃X

(
K̃X + nεI

)−1
ei,

where K̃X := HKXH is the centered kernel matrix. Similarly, we have

ĈY Ẍ(ĈẌ + εI)−1
(
kẌ (Ẍi, ·)− µ̂Ẍ

)
= S∗Y K̃Ẍ

(
K̃Ẍ + nεI

)−1
ei.

Recalling that M = K̃X

(
K̃X +nεI

)−1− K̃Ẍ

(
K̃Ẍ +nεI

)−1
, the numerator of ρ̃2 reduces to∑n

i=1 ‖S∗YMei‖2HY . Note that, for α ∈ Rn, ‖S∗Y α‖2HY = 〈
∑

i αikY(Yi, ·),
∑

j αjkY(Yj , ·)〉HY =∑n
i,j=1 αiαjkY(Yi, Yj) = α>KY α. Thus,

n∑
i=1

‖S∗YMei‖2HY =

n∑
i=1

e>i M
>KYMei = Tr(M>KYM) = Tr(M>K̃YM),
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where we have used the fact that H2 = H. Now the denominator of ρ̃2 can be simpli-

fied as
∑n

i=1 ‖S∗YHei − S∗Y K̃X

(
K̃X + nεI

)−1
ei‖2HY , where we have used the fact that

kY(Yi, ·) − µ̂Y = S∗YHei. Letting N0 := H − K̃X

(
K̃X + nεI

)−1
, and recalling that

N = I − K̃X

(
K̃X + nεI

)−1
, the above display can be expressed as

n∑
i=1

‖S∗YN0ei‖2HY =
n∑
i=1

e>i N
>
0 KYN0ei = Tr(N>0 KYN0) = Tr(N>K̃YN).

This proves the desired result. �

B.11 Proof of Proposition 7

By assumption we have KY = YY>. As M,N are symmetric matrices,

ρ̃2u =
Tr(M>YY>M)

Tr(N>YY>N)
=
‖MY‖2

‖NY‖2
=

∥∥KX(KX + nεI)−1Y −KẌ(KẌ + nεI)−1Y
∥∥2

‖Y −KX(KX + nεI)−1Y‖2
. (28)

Kernel ridge regression yields Ŷ = K(K + λI)−1Y for a generic kernel matrix and reg-
ularization parameter λ (see e.g., Kung, 2014, Section 7.3.4). Hence (28) reduces to

ρ̃2u = ‖Ŷx−Ŷxz‖2

‖Ŷx−Y‖2
, with the regularization parameter ρ = nε. �

B.12 Proof of Proposition 6

The same argument as (28) shows that the centered estimator ρ̃2 can be expressed as

∥∥K̃X(K̃X + nεI)−1HY − K̃Ẍ(K̃Ẍ + nεI)−1HY
∥∥2

‖HY − K̃X(K̃X + nεI)−1HY‖2
=

∥∥∥[(K̃X + nε)−1 − (K̃Ẍ + nεI)−1
]
HY

∥∥∥2
‖(K̃X + nεI)−1HY‖2

.

With linear kernels, KX = XX> and KẌ = ẌẌ>. Let Yc = HY, Xc = HX, Ẍc = HẌ be

the centered versions of Y, X, Ẍ by subtracting the mean from all columns. The empirical
classical partial correlation first fits two linear regressions of Y on X and Z on X (an
intercept term is added so the design matrix is [1n X]), and then outputs the correlation
of the two resulting residuals rY , rZ . Therefore, the partial correlation remains unchanged
when we replace Y,Z by Yc,Zc. Without loss of generality, suppose Y = Yc, Z = Zc have
been centered. By the matrix identity (XcX

>
c + nεI)−1 = 1

nεI −
1
nεXc(nεI + X>c Xc)

−1X>c
we have

ρ̂2(Y,Z|X) =

∥∥∥[(XcX
>
c + nε)−1 − (ẌcẌ

>
c + nεI)−1

]
Yc

∥∥∥2
‖(XcX>c + nεI)−1Yc‖2

=

∥∥∥[Xc(nεI + X>c Xc)
−1X>c − Ẍc(nεI + Ẍ>c Ẍc)

−1Ẍ>c

]
Yc

∥∥∥2
‖(I −Xc(nεI + X>c Xc)−1X>c )Yc‖2

ε→0−→
‖ProjXc

Yc − ProjẌc
Yc‖2

‖Yc − ProjXc
Yc‖2

,

where ProjXc
Yc is the projection of Yc onto the column space of Xc. Note that rZ is in the

column space of Ẍc and is orthogonal to the column space of Xc, and Yc−ProjXc
Yc = rY .

45



Huang, Deb, and Sen

Hence Cor(rY , rZ) = Cor(Yc−ProjXc
Yc, rZ) = Cor(Yc−ProjXc

Yc,ProjẌc
Yc−ProjXc

Yc).

Note that
(
Yc − ProjXc

Yc

)
−
(

ProjẌc
Yc − ProjXc

Yc

)
is orthogonal to ProjẌc

Yc−ProjXc
Yc.

Hence Cor(rY , rZ)2 = Cor(Yc−ProjXc
Yc,ProjẌc

Yc−ProjXc
Yc)

2 =
‖ProjXcYc−ProjẌcYc‖2

‖Yc−ProjXcYc‖2 .

�

B.13 Proofs of Theorems 5 and 6

We start with some preliminaries. The following result (Fukumizu et al., 2007, Lemma 5)
are known that the cross-covariance operator CY X and its sample version are close in the
Hilbert-Schmidt norm and are consequently close in the operator norm, since ‖·‖op ≤ ‖·‖HS.

Lemma 7 Suppose that E[kX (X,X)] < ∞ and E[kY(Y, Y )] < ∞, and HX ,HY are both
separable. Then ‖ĈY X − CY X‖HS = Op(n

−1/2).

We divide the proof into several steps. Recall that the operator norm of a linear map
A : V → W (for two given normed vector spaces V and W) is defined as ‖A‖op := inf{c ≥
0 : ‖Av‖ ≤ c‖v‖ for all v ∈ V}. For notational simplicity, ‖ · ‖ will denote either the norm
in an RKHS or the operator norm.

Step 1. E
[
‖[(C†XCXY )∗ − CY X(CX + εI)−1](kX (X, ·)− µX)‖2HY

]
→ 0 as ε→ 0+.

Denote by A := C†XCXY , which is a bounded linear operator by Lemma 4. Further,

ranCXY ⊂ ranCX and CXC
†
XCX = CX imply CXA = CXY . Hence

E
[∥∥[(C†XCXY )∗ − CY X(CX + εI)−1](kX (X, ·)− µX)

∥∥2]
= E

[
‖[A∗ −A∗CX(CX + εI)−1](kX (X, ·)− µX)‖2

]
≤ ‖A∗‖ · E

[
‖[I − CX(CX + εI)−1](kX (X, ·)− µX)‖2

]
where in the last display we have used the definition of the operator norm. Let {ej}j≥1
be an eigenbasis of CX with corresponding eigenvalues {λj}j≥1. Since CX is trace-class25,∑

j λj <∞. Then, I−CX(CX+εI)−1 has eigenbasis {ej}j≥1 with corresponding eigenvalues

{ε(ε+ λj)
−1}j≥1. Thus,

E
[∥∥[I − CX(CX + εI)−1](kX (X, ·)− µX)

∥∥2] = E

∥∥∥∑
j

ε

ε+ λj
〈kX (X, ·)− µX , ej〉ej

∥∥∥2


= E

∑
j

ε2〈kX (X, ·)− µX , ej〉2

(ε+ λj)2

 =
∑
j

ε2Var(ej(X))

(ε+ λj)2
=
∑
j

ε2λj
(ε+ λj)2

.

It is easily seen that the above quantity converges to 0 as ε→ 0+.
Step 2. 1

n

∑n
i=1

∥∥[(C†XCXY )∗ − CY X(CX + εI)−1](kX (Xi, ·)− µX)
∥∥2 p→ 0 as ε→ 0+.

This is a direct consequence of Step 1 and Markov’s inequality.
Step 3. 1

n

∑n
i=1

∥∥[ĈY X(ĈX + εnI)−1 − CY X(CX + εnI)−1](kX (Xi, ·)− µ̂X)
∥∥2 p→ 0.

This is the only step where we use εnn
1/2 →∞. We will use the following simple result.

25.
∑
i〈CXei, ei〉HX =

∑
i Var(ei(X)) ≤

∑
i E[ei(X)2] =

∑
i E
[
〈ei, kX (X, ·)〉2HX

]
= E[‖kX (X, ·)‖2HX ] < ∞.

The last equality follows from Parseval’s identity.
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Lemma 8 Suppose that {U (n)
i : 1 ≤ i ≤ n}n≥1 and {V (n)

i : 1 ≤ i ≤ n}n≥1 are random

elements taking values in a Hilbert space with norm ‖ · ‖. If 1
n

∑n
i=1 ‖U

(n)
i −V

(n)
i ‖2

p→ 0 and
1
n

∑n
i=1 ‖U

(n)
i ‖2

p→ U , then 1
n

∑n
i=1 ‖V

(n)
i ‖2

p→ U .

Proof Since

‖V (n)
i ‖

2 ≤ ‖U (n)
i ‖

2 + 2‖U (n)
i ‖ · ‖U

(n)
i − V (n)

i ‖+ ‖U (n)
i − V (n)

i ‖
2,

‖V (n)
i ‖

2 ≥ ‖U (n)
i ‖

2 − 2‖U (n)
i ‖ · ‖U

(n)
i − V (n)

i ‖+ ‖U (n)
i − V (n)

i ‖
2,

it suffices to show that 1
n

∑n
i=1 2‖U (n)

i ‖ · ‖U
(n)
i − V (n)

i ‖
p→ 0. Let δ > 0.

1

n

n∑
i=1

2‖U (n)
i ‖ · ‖U

(n)
i − V (n)

i ‖ ≤
1

n

n∑
i=1

[
δ‖U (n)

i ‖
2 +

1

δ
‖U (n)

i − V (n)
i ‖

2

]
p→ δU.

Since δ > 0 is arbitrary, this concludes the proof.

For i = 1, . . . , n, let

V
(n)
i :=

[
ĈY X(ĈX + εnI)−1 − CY X(CX + εnI)−1

]
(kX (Xi, ·)− µ̂X)

=
[
(ĈY X − CY X)(ĈX + εnI)−1 + CY X

(
(ĈX + εnI)−1 − (CX + εI)−1

)]
(kX (Xi, ·)− µ̂X).

Letting U
(n)
i := (ĈY X − CY X)(ĈX + εnI)−1(kX (Xi, ·)− µ̂X), for i = 1, . . . , n, note that

1

n

n∑
i=1

‖U (n)
i ‖

2 =
1

n

n∑
i=1

∥∥(ĈY X − CY X)(ĈX + εnI)−1(kX (Xi, ·)− µ̂X)
∥∥2

≤ 1

n

n∑
i=1

‖ĈY X − CY X‖2 · ‖(ĈX + εnI)−1‖2 · ‖kX (Xi, ·)− µ̂X‖2

≤ Op
(

1

n

)
· 1

ε2n
· 1

n

n∑
i=1

‖kX (Xi, ·)− µ̂X‖2 = Op

(
1

nε2n

)
= op(1),

where we have used Lemma 7, ‖(ĈX + εn)−1‖ ≤ 1
εn

(since if ĈX has eigenvalues λ̂i, then

(ĈX + εn)−1 has eigenvalues 1
λ̂i+εn

≤ 1
εn

), and that nε2n →∞.

Thus, in view of Lemma 8, we only need to show that

1

n

n∑
i=1

‖V (n)
i −U (n)

i ‖
2 =

1

n

n∑
i=1

∥∥∥CY X((ĈX + εnI)−1− (CX + εnI)−1
)
(kX (Xi, ·)− µ̂X)

∥∥∥2 p→ 0.

Using B−1 − C−1 = C−1(C −B)B−1, and A = C†XCXY , CY X = A∗CX as before,∥∥∥CY X((ĈX + εnI)−1 − (CX + εnI)−1
)∥∥∥ =

∥∥CY X(CX + εnI)−1(CX − ĈX)(ĈX + εnI)−1
∥∥

≤
∥∥A∗CX(CX + εnI)−1‖ · ‖CX − ĈX‖ · ‖(ĈX + εnI)−1

∥∥
≤ ‖A∗‖ · ‖CX(CX + εnI)−1‖ ·Op(n−1/2) ·

1

εn
= Op

(
1

εn
√
n

)
= op(1).
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This implies that

1

n

n∑
i=1

‖V (n)
i −U (n)

i ‖
2 ≤

∥∥∥CY X((ĈX+εnI)−1−(CX+εnI)−1
)∥∥∥ · 1

n

n∑
i=1

‖kX (Xi, ·)−µ̂X‖2
p→ 0.

Now this step follows from Lemma 8.
Step 4. 1

n

∑n
i=1

∥∥CY X(CX+εnI)−1(kX (Xi, ·)−µ̂X)−CY X(CX+εnI)−1(kX (Xi, ·)−µX)
∥∥2 p→

0.
This follows as

1

n

n∑
i=1

‖CY X(CX + εnI)−1(kX (Xi, ·)− µ̂X)− CY X(CX + εnI)−1(kX (Xi, ·)− µX)‖2

=
1

n

n∑
i=1

‖CY X(CX + εnI)−1(µ̂X − µX)‖2 ≤ ‖A∗‖ · ‖CX(CX + εnI)−1‖ · 1

n

n∑
i=1

‖µ̂X − µX‖2

≤ ‖A∗‖ · 1 · ‖µ̂X − µX‖2
a.s.−→ 0,

by the strong law of large numbers (Hoffmann-Jørgensen and Pisier, 1976).
Now let us show Theorem 5. By successive applications of Lemma 8,

lim
n→∞

1

n

n∑
i=1

‖µY |Xi − µ̂Y |Xi‖
2
HY

= lim
n→∞

1

n

n∑
i=1

‖µY + (C†XCXY )∗ (kY(Xi, ·)− µX)− µ̂Y − ĈY X(ĈX + εnI)−1 (kY(Xi, ·)− µ̂X) ‖2HY

= lim
n→∞

1

n

n∑
i=1

‖(C†XCXY )∗ (kY(Xi, ·)− µX)− ĈY X(ĈX + εnI)−1 (kY(Xi, ·)− µ̂X) ‖2HY

Step 3
= lim

n→∞

1

n

n∑
i=1

‖(C†XCXY )∗ (kY(Xi, ·)− µX)− CY X(CX + εnI)−1 (kY(Xi, ·)− µ̂X) ‖2HY

Step 4
= lim

n→∞

1

n

n∑
i=1

‖(C†XCXY )∗ (kY(Xi, ·)− µX)− CY X(CX + εnI)−1 (kY(Xi, ·)− µX) ‖2HY

Step 2
= 0,

where the limit is in probability, and in the second equality we have used 1
n

∑n
i=1 ‖µY −

µ̂Y ‖2HY = ‖µY − µ̂Y ‖2HY
p→ 0.

Then we can use Theorem 5 and Lemma 8 to show Theorem 6. By the expression of ρ̃2

in (18), we see that the numerator

lim
n→∞

1

n

n∑
i=1

‖µ̂Y |Ẍi − µ̂Y |Xi‖
2
HY = lim

n→∞

1

n

n∑
i=1

‖µY |Ẍi − µY |Xi‖
2
HY = E[‖µY |Ẍ − µY |X‖

2
HY ],

and the denominator

lim
n→∞

1

n

n∑
i=1

‖kY(Yi, ·)−µ̂Y |Xi‖
2
HY = lim

n→∞

1

n

n∑
i=1

‖kY(Yi, ·)−µY |Xi‖
2
HY = E[‖kY(Y, ·)−µY |X‖2HY ].
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Both limits are in probability, and they are exactly the numerator and denominator of
ρ2(Y,Z|X) respectively. �

B.14 Proof of Theorem 7

The proof is similar to that of Azadkia and Chatterjee (2021, Theorem 6.1). Let j1, . . . , jp
be the complete ordering of all variables produced by the algorithm without imposing the
stopping rule. Let Sk := {j1, . . . , jk} for 1 ≤ k ≤ p, S0 := ∅, Sk := Sp for k > p, and recall
that κ = bMδ + 1c. Let ε1, ε2 > 0 be small such that ((1 − ε2)δ − 2ε1)bMδ + 1c > M and
(1 − ε2)δ + 2ε1 < δ. Note that ε1, ε2 only depend on δ and M . Define: Event E0: Sκ is
sufficient. Event E: |Tn(Sk)− T (Sk)| ≤ ε1 for 1 ≤ k ≤ κ. We will show that E implies the
selected subset is sufficient and P(E) is large.

Lemma 9 Suppose E happens, and for some 1 ≤ k ≤ κ

Tn(Sk)− Tn(Sk−1) ≤ (1− ε2)δ. (29)

Then Sk−1 is sufficient.

Proof If k > p, then there is nothing to prove. Suppose k ≤ p. Since the algorithm
chooses jk ∈ {1, . . . p}\Sk−1 to maximize Tn(Sk−1∪{j}), we have for all j ∈ {1, . . . p}\Sk−1:
T (Sk−1 ∪ {j})− T (Sk−1) ≤ Tn(Sk−1 ∪ {j})− Tn(Sk−1) + 2ε1 ≤ Tn(Sk)− Tn(Sk−1) + 2ε1 ≤
(1− ε2)δ + 2ε1 < δ. By the definition of δ, Sk−1 is sufficient.

Lemma 10 Event E implies E0.

Proof Suppose E holds. If (29) holds for some 1 ≤ k ≤ κ, then by Lemma 9, Sk−1 is
sufficient and E0 holds. Suppose (29) is violated for all 1 ≤ k ≤ κ. Then T (Sk)−T (Sk−1) ≥
Tn(Sk)−Tn(Sk−1)−2ε1 > (1−ε2)δ−2ε1. Hence, T (Sκ) =

∑κ
k=1(T (Sk)−T (Sk−1))+T (S0) ≥

κ · ((1− ε2)δ − 2ε1) + 0 > M , by the constuction of ε1, ε2. This yields a contradiction since
T (Sκ) cannot be greater than M , the bound of the kernel.

Lemma 11 Event E implies that Ŝ is sufficient.

Proof If the algorithm stopped after κ, then Sκ ⊂ Ŝ. By Lemma 10, E happens implies E0

happens, i.e., Sκ is sufficient. Hence Ŝ is also sufficient. If the algorithm stopped at k < κ,
by the stopping rule Tn(Sk+1) < Tn(Sk), so (29) holds, and by Lemma 9, Sk is sufficient.

Lemma 12 There exist L1, L2 depending only on α, β1, β2, γ, {Ci}6i=1, d,M, δ such that
P(E) ≥ 1− L1p

κe−L2n.

Proof By Deb et al. (2020, Equation C.38) with the notation therein and Deb et al. (2020,
Section 5.1), there exists ξ1, ξ2, ξ3 > 0 depending on α, β1, β2, γ, {Ci}6i=1, d,M such that for
any S of size ≤ κ

|ETn(S)− T (S)| ≤ ξ1
(
εβ2n +

√
ν1,n

)
≤ ξ1

(log n)ξ2

nξ3
.
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By Deb et al. (2020, Proposition 3.1), there exists C∗ depending on C2 and M such that
for any S of size ≤ κ, P (|Tn(S)− ET (S)| ≥ t) ≤ 2 exp

(
−C∗nt2

)
. Hence,

P
(
|Tn(S)− T (S)| ≥ ξ1

(log n)ξ2

nξ3
+ t

)
≤ 2e−C

∗nt2 .

By a union bound:

P

 ⋃
|S|≤κ

{
|Tn(S)− T (S)| ≥ ξ1

(log n)ξ2

nξ3
+ t
} ≤ 2pκe−C

∗nt2 .

Let t = ε1
2 . For large n, say n ≥ n0, ξ1 (logn)

ξ2

nξ3
< ε1

2 so P(E) ≥ 1− 2pκe−L2n. We can adjust

the constant 2 (again depending only on α, β1, β2, γ, {Ci}6i=1, d,M, δ) so that the above in-
equality also holds for small n.

Combining the previous two lemmas we obtain the proof of Theorem 7. �
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