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Abstract

We propose the family of generalized resubstitution classifier error estimators based on
arbitrary empirical probability measures. These error estimators are computationally
efficient and do not require retraining of classifiers. The plain resubstitution error estimator
corresponds to choosing the standard empirical probability measure. Other choices of
empirical probability measure lead to bolstered, posterior-probability, Gaussian-process, and
Bayesian error estimators; in addition, we propose here bolstered posterior-probability error
estimators, as a new family of generalized resubstitution estimators. In the two-class case, we
show that a generalized resubstitution estimator is consistent and asymptotically unbiased,
regardless of the distribution of the features and label, if the corresponding empirical
probability measure converges uniformly to the standard empirical probability measure
and the classification rule has finite VC dimension. A generalized resubstitution estimator
typically has hyperparameters that can be tuned to control its bias and variance, which adds
flexibility. We conducted extensive numerical experiments with various classification rules
trained on synthetic data, which indicate that the new family of error estimators proposed
here produces the best results overall, except in the case of very complex, overfitting
classifiers, in which semi-bolstered resubstitution should be used instead. In addition,
results of an image classification experiment using the LeNet-5 convolutional neural network
and the MNIST data set show that naive-Bayes bolstered resubstitution with a simple
data-driven calibration procedure produces excellent results, demonstrating the potential of
this class of error estimators in deep learning for computer vision.
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GHANE AND BRAGA-NETO

1. Introduction

Given enough training data, good classification algorithms produce classifiers with small
error rate on future data, which is also known in machine learning as the generalization error.
But a classifier is useful only if its generalization error can be stated with confidence. Hence,
at a fundamental level, one can only speak of the goodness of a classification algorithm
together with an error estimation procedure that produces an accurate assessment of the true
generalization error of the resulting classifier. Error estimation for classification has a long
history and many different error estimation procedures have been proposed (Toussaint, 1974;
Hand, 1986; McLachlan, 1987; Schiavo and Hand, 2000; Braga-Neto and Dougherty, 2015b).
The subject has recently become a topic of concern in the deep learning community (Jiang
et al., 2019). Error estimators based on resampling, such as cross-validation (Lachenbruch
and Mickey, 1968; Cover, 1969; Toussaint and Donaldson, 1970; Stone, 1974), and bootstrap
(Efron, 1979, 1983; Efron and Tibshirani, 1997), have long been popular choices of error
estimation procedures.

However, in contemporary classification applications, particularly in the case of deep
learning, training can be time and resource intensive (Simonyan and Zisserman, 2014). As a
result, error estimators based on resampling are no longer a viable choice, since they require
training tens or hundreds of classifiers on resampled versions of the training data. It has
become instead the norm to use the test-set error, i.e., the error rate on data not used in
training, to benchmark classifiers (Russakovsky et al., 2015). The test-set error estimator is
an unbiased, consistent estimator of the generalization error regardless of the sample size
or distribution of the problem (Braga-Neto and Dougherty, 2015b). However, this is only
true if the test data is truly independent of training, and is not reused in any way (Yousefi
et al., 2011). It has been recognized recently that this has not been always the case in image
classification using popular benchmarks, where the same public test sets are heavily re-used
to measure classification improvement, creating a situation known as “training to the test
data” (Recht et al., 2019). Strictly speaking, true independent test sets are one-way: they
can only be used once. In addition, if training and testing sample sizes are small, the test-set
error estimator can display large variance, and become unreliable. All of this means that
accurate test-set error estimation requires cheap access to plentiful labeled data.

The alternative to resampling and test-set error estimation is testing on the training data.
The error rate on the training data is known as the resubstitution error estimator (Smith, 1947).
This does not require retraining the classifier and is as fast as using a test-set error estimator,
but does not assume any separate independent test data. The resubstitution estimator is
however usually optimistically biased, the more so the more the classification algorithm
overfits the training data. Optimistic bias implies that the difference between resubstitution
estimate and the true error, which has been called the “generalization gap” (Keskar et al.,
2016), is negative with a high probability. It is key therefore to investigate mechanisms to
reduce the bias.

In this paper, we propose and study the family of generalized resubstitution error
estimators, which are defined in terms of arbitrary empirical probability measures. In
addition to plain resubstitution, this family includes well-known error estimators, such as
posterior-probability (Lugosi and Pawlak, 1994), Gaussian-process (Hefny and Atiya, 2010),
bolstered resubstitution (Braga-Neto and Dougherty, 2004c), and Bayesian (Dalton and
Dougherty, 2011a.,b) error estimators. The empirical probability measures used in generalized
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resubstitution generally contain hyperparameters that can be tuned to reduce the bias
and variance of the estimator with respect to plain resubstitution. We summarize our
contributions as follows:

e We propose a completely general and unifying framework to study resubstitution-like
classification error estimators in terms of arbitrary empirical probability measures.

e We provide a criterion for consistency and asymptotic unbiasedness and convergence
of generalized resubstitution estimators in the case of two-class, finite-VC dimension
classification rules (Thm. 1). This criterion is used to establish the consistency and
asymptotic unbiasedness of several generalized resubstitution estimators, including
bolstered resubstitution estimators, for which no such result existed previously (Thm. 2).

e We propose a new family of error estimators, called bolstered posterior-probability
error estimators, which combine bolstered and posterior-probability estimators, and
produced superior results in our experiments with synthetic data.

e We provide multi-class formulations of existing error estimators, namely, the bolstered
and posterior-probability resubstitution error estimators.

e We show empirically that naive-Bayes resubstitution with a simple data-drive calibration
procedure produces excellent results in image classification by convolutional neural
networks on the MNIST data set, which indicates the potential of this class of error
estimators in the computer vision area.

The paper is organized as follows. In Section 2, the necessary concepts about classification
error estimation are reviewed. Section 3 introduces generalized resubstitution error estimators
and provides a criterion for their consistency and asymptotic unbiasedness. Section 4 discusses
the important special case of generalized resubstitution estimators based on smoothing the
standard empirical probability measure; we show that the existing bolstering and posterior
probability error estimators are a member of this family, and propose a new family of error
estimators that combines them. Section 5 covers the additional examples of Bayesian and
Gaussian-Process generalized resubstitution estimators, and discusses briefly the extension of
the proposed framework to cross-validation and test-set error estimators. Section 6 contains
the results of an extensive numerical study based on synthetic and real imaging data to
examine the accuracy of several representative generalized resubstitution error estimators
using a variety of classification rules. Finally, Section 7 presents concluding remarks.

2. Background on Classification Error Estimation

The subject of classification error estimation has a long history and has produced a large
body of literature; four main review papers summarize major advances in the field up to 2000
(Toussaint, 1974; Hand, 1986; McLachlan, 1987; Schiavo and Hand, 2000); recent advances in
error estimation since 2000 include work on model selection (Bartlett et al., 2002), bolstered
error estimation (Braga-Neto and Dougherty, 2004c; Sima et al., 2005b), feature selection
(Sima et al., 2005a; Zhou and Mao, 2006; Xiao et al., 2007; Hanczar et al., 2007), confidence
intervals (Kaariainen and Langford, 2005; Kaariainen, 2005; Xu et al., 2006), model-based
second-order properties (Zollanvari et al., 2011, 2012), and Bayesian error estimators (Dalton
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Figure 1: Deviation distribution showing bias and variance. The error estimator in this
example is optimistically biased.

and Dougherty, 2011a,b). In this section, we provide a brief review of the basic concepts
related to error estimation. A booklength treatment of the topic is provided in (Braga-Neto
and Dougherty, 2015a); see also (McLachlan, 1992; Devroye et al., 1996).

Let the feature vector X € R? and the label Y € R be jointly distributed with corre-
sponding probability measure v, such that v(R? x {0,1,...,c¢—1}) = 1. An event is a Borel
set A C R x {0,1,...,c—1}. A classifier 1 is a Borel-measurable function from R? to
{0,1,...,c—1}. In practice, one collects i.i.d. training data S, = {(X1,Y1),..., (Xpn,Yn)},
where each pair (X;,Y;) is distributed as (X,Y), and designs a classifier v, = ¥, (S,),
by means of a classification rule ¥,,. The quantity of interest is the classification error
probability:

En = V({(X7y) : wn(x) 7& y})7 (1>

where the probability measure v, which is supported on R x {0, 1,...,c—1} is the distribution
of (X,Y).

If one knew the distribution of the features and label, then one could in principle
compute the classification error ¢, by evaluating (1). In practice, such knowledge is rarely
available, so one employs an error estimation rule Z, in order to obtain a classification error
estimator &, = Z,(V,, Sy, ), where £ denote internal random factors (if any) that represent
randomness that is not introduced by the training data S,; if there are no such internal
random factors, the error estimator is said to be nonrandomized, in which case the error
estimate is entirely determined by the training data, otherwise, it is said to be randomized.
For example, the resubstitution error estimator is the proportion of errors committed on
the training data, and is therefore nonrandomized, but the cross-validation error estimator
randomly partitions the data into training and testing folds, trains classifiers on the training
subsets, and evaluates then on the testing subset, which yields a randomized error estimator.

The performance of an error estimator can be assessed by the distribution of &, — &,
called the deviation distribution (Braga-Neto and Dougherty, 2004b). For good performance,
this distribution should be peaked (low-variance) and centered near zero (low-bias). See
Figure 1 for an illustration.
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The bias is defined as the first moment of the deviation distribution:
Bias(é,) = FE[én, —en] = E[én] — Elen) . (2)

The error estimator &, is said to be optimistically biased if Bias(é,) < 0 and pessimistically
biased if Bias(é,) > 0. It is unbiased if Bias(é,,) = 0. The resubstitution error estimator is
usually optimistically biased.

The deviation variance is the variance of the deviation distribution:

Vargey (€,) = Var(é, —e,) = Var(é,) + Var(e,) — 2Cov(ep, &) - (3)

Unlike in classical statistics, where estimators for fixed parameters are sought, here the
quantity being estimated, namely ¢,, is random and thus a “moving target.” This is why
it is appropriate to consider the variance of the difference, Var(é, — e,). However, if
the classification rule is not overfitting, then Var(e,) ~ 0 — in fact, overfitting could be
defined as present if Var(e,) is large, since in that case the classification rule is learning the
changing data and not the fixed underlying feature-label distribution. It follows, from the
Cauchy-Schwartz Inequality that Cov(ey,&,) < y/Var(e,)Var(é,) ~ 0, and thus, from (3),
Var(é, — e,) = Var(é,). If an estimator is randomized, then it has additional internal
variance Vipy = Var(é,|Sy), which measures the variability due only to the internal random
factors, while the full variance Var(é,,) measures the variability due to both the sample S,
and the internal random factors £. The following formula can be easily shown using the
Conditional Variance Formula of probability theory:

Var(é,) = E[Vint] + Var(E[,|Sy]) - (4)

The first term on the right-hand side contains the contribution of the internal variance to
the total variance. For nonrandomized &, Viy, = 0; for randomized &,, E[Viy] > 0.

The root mean-square error is the square root of the second moment of the deviation
distribution:

RMS(¢,) = VE|[(én — €1)?] = /Bias(é,)? + Vargey (én) (5)

The RMS is generally considered the most important error estimation performance metric.
The other performance metrics appear within the computation of the RMS; indeed, all of the
five basic moments — the expectations Ele,| and E[é,], the variances Var(e,,) and Var(é,),
and the covariance Cov(ey,é,) — appear within the RMS.

Finally, an error estimator is said to be consistent if €, — €, in probability as n — oo,
and strongly consistent for almost sure (a.s.) convergence. By an application of Markov’s
Inequality, we have

E ATL_ n2 M An
P(|én*5n| 27-) :P(|€An*€n|2 27'2) < HE € ‘ ] _ (R 8(5 )

2
= ) , forT>0.(6)

T

Hence, if RMS(é,,) — 0, then P(|é,, —e,| > 7) — 0, for any 7 > 0, i.e. the error estimator is
consistent.

Good error estimation performance requires that the bias, deviation variance, and RMS
be as close as possible to zero.
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3. Generalized Resubstitution Error Estimators

In this section, we introduce a general framework for resubstitution-like error estimators
based on arbitrary empirical probability measures, which we call generalized resubstitution
error estimators. These error estimators share with plain resubstitution the fact that training
additional classifiers is not required. Like resubstitution, they are generally fast and low-
variance. They are also nonrandomized, unless Monte-Carlo approximations are required to
compute the estimator.

Definition 1. A generalized resubstitution error estimator &, can be written as:

En = n({(x,y) 1 ¥u(x) #y}), (7)

where 7, is an empirical probability measure, i.e., a random probability measure supported
on R? x {0,1,...,c— 1} that is a function of the sample data.

If 7, is sufficiently close to v, in a suitable sense, then &, is a good estimator of &,,.
However, it is important to note that the criterion of performance is not whether 2, is close
to v, but it is whether &, is close to ¢, i.e., obtaining accurate error estimators is the goal,
rather than performing accurate distribution estimation (which is generally a more difficult
problem).

An important example of empirical probability measure is given next.

Definition 2. The standard empirical probability measure v, is given by:

1 n
= — OxX. v 8
n; XY 0 (8)

where dx, v, is the (random) point measure located at (X;,Y;),
for each event A.

Hence, v,(A) puts discrete mass 1/n on each data point, and thus yields the fraction of
points in S, that are contained in A.

The basic example of generalized resubstitution error estimator is produced by the
standard empirical probability measure.

Definition 3. The standard resubstitution error estimator &, is a generalized resubstitution
error estimator with the standard empirical probability measure v,

&n = val{(%,9) s () # 4}) = wan #Yi). (9)

Notice that v, has no hyperparameters that allow estimator bias and variance to be tuned.
We will consider below further examples of generalized resubstitution error estimators that
do allow bias and variance to be tuned. However, the standard resubstitution is important
as a baseline for performance and for proving theoretical results.
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Next, we consider the natural large-sample question of whether a generalized resubstitution
error estimator approaches the true classification error as the training sample size increases
to infinity. In particular, we are interested in the questions of consistency, i.e., whether
€n — &, a.s. as well as asymptotic unbiasedness, i.e., whether E[é,] — E[e,], as n — oo,

First, note that for any fixed event A C R? x {0,1,...,c — 1}, the standard empirical
probability measure satisfies

vn(A) = %ZI((Xi,YZ-) € A) = v(A) as,
=1

by the Strong Law of Large Numbers (SLLN). Hence, for a fixed classifier ¢, we can plug
in the fixed set A = {(x,y) : ¥(x) # y} in the previous equation and conclude that the
empirical classification error converges to the true error a.s. But this is not enough to
obtain results concerning classifiers v, designed from the data S, since these concern events
Ay, = {(x,y) : ¥n(x) # y}, which are not fixed. What is needed instead is a uniform SLLN:

sup |vn(A) —v(A)] — 0 as., (10)

AcA
where A is a family of sets that must contain all events A, = {(x,y) : ¥n(x) # y} that can
be produced by the classification rule. In the two-class case, the Vapnik-Chervonenkis (VC)
Theorem (Vapnik and Chervonenkis, 1971; Devroye et al., 1996) guarantees that (10) holds
if A is small enough, in the sense that its VC dimension V4 is finite. The VC dimension
is a nonnegative integer that measures the size of A; a smaller VC dimension implies that
the classification rule is more constrained and less sensitive to the data 5, i.e., it is less
prone to overfitting at a fixed sample size. For example, a linear classification rule in R? has
VC dimension d + 1, which is finite, and small in low-dimensional spaces. If V4 < oo, then,
according to the VC Theorem,

P <sup lun(A) —v(A)| > 7') < 8(n+ I)VAe_”T2/32, for all 7 > 0.
AcA

The term e~ "7"/32 dominates, and the bound decreases exponentially fast as n — oco. It

then follows from the First Borel-Cantelli Lemma that supsc 4 [vn(A) — v(A)] — 0 a.s.
(Braga-Neto, 2020, Thm A.8). (Strictly speaking, it is necessary to assume that events of
the kind sup gc 4 [Vn(A) — v(A)| > 7 are measurable. General conditions to ensure that are
discussed in (Pollard, 1984); such conditions are tacitly assumed throughout in this paper.)
These facts are used in the proof of the following result.

Theorem 1 In the two-class case, if the family A of all events A,, = {(X,y) : ¥n(x) # y} that
can be produced by a classification rule has finite VC dimension, and the generalized empirical
probability measure converges uniformly to the standard empirical probability measure as
sample size increases, i.e.,

sup |n(A) —vn(A)] — 0 a.s., (11)
AcA
then the generalized resubstitution error estimator is consistent, &, — &, a.s., as well
as asymptotically unbiased, E[é,] — Ele,], as n — oo, regardless of the feature-label
distribution.
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Proof. From

|7 (A) — v(A)]

|0n(A) = vn(A) + vn(A) — v(A)]
< [on(A) = vp(A)] + [vn(A) — v(A)],
it follows that

sup [n(A) — va(A)] < sup [7n(A) — vn(A)| + sup [vn(A) — v(A)].
AcA AcA AcA

The first term on the right converges to zero a.s. by hypothesis, while the second term does

so by virtue of the VC Theorem. Hence, the left-hand side must also converge to zero a.s.,

sup |on(A) —v(A)| — 0 as.

AeA
Since

’én - gn‘ - ’ﬁn(An) - V(An)| < sup ‘ﬁn(A) - V(A)’7
AeA
it follows that |£,, —e,| — 0 a.s. and the generalized resubstitution estimator is consistent.
Furthermore, since all random variables are uniformly bounded, the Dominated Conver-

gence Theorem implies (Braga-Neto, 2020, Thm A.7) that

|E[én — en]| < Ellén —enl] — 0,

i.e., the generalized resubstitution error estimator is asymptotically unbiased. All of these
results are distribution-free, holding for any feature-label distribution v. |

The previous result applies trivially to the plain resubstitution estimator, a fact that has
been long known, by virtue of the VC Theorem (Devroye et al., 1996). For other generalized
resubstitution estimators, condition (11) needs to be checked. The point of (11) is that
the generalized resubstitution should “look like” more and more like plain resubstitution as
sample size increases.

4. Generalized Resubstitution based on Smoothing the Error Count

In this Section, we consider various classes of generalized resubstitution error estimators,
which are all based on the family of empirical probability measures of the form:

o 1¢
Vn = E Zl Bn,Xi,Yi ) (12>
1=

where 3, x,y, is a random probability measure depending on the training point X;,Y;.
Comparing this to (8), we realize that the empirical probability measure in (12) can be seen
as smoothed version of the standard empirical probability measure, where 3, x, y; provides a
smoothed version of the point measure dx; y;. This is not the only case of useful empirical
probability measure for generalized resubstitution error estimation; in Section 5.1, we give
examples that are not of the form in (12).

Notice that a sufficient condition for (11) in Theorem 1 is the uniform convergence of the
smoothed measure (3, x,y; to the point measure dx, y, for any training point (X;, Y;):

sup |Bn.x,.v;(A) — éx,v,(A)] = 0 as. (13)
AeA
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4.1 Bolstered Resubstitution
Given an event A C R? x {0,1,...,c — 1}, define its slices by

A, = {x€R'|(x,y) €A}, y=0,1,...,c—1. (14)

It is clear that A, is an event (i.e., a Borel set) in R? for each y. Note that 0x,y;(A) =
6x;(Ay;), where &x, is a point measure in R?. Similarly, let 8, x,v;(A) = pnx, v (Ay;),
where p, X, y; is an empirical probability measure on R?. Though discrete bolstering is
possible, in practice the bolstered probability measure i, x,y; is assumed to be absolutely
continuous, with density function p, x, y;(x), so that

Bn,xi,Yi (A) = / PrnX;Y; (X) dx.
Ay,

The probability densities py, x,y; are called bolstering kernels. Plugging 8, x,v;(A) in (12),
and then in (7), yields the bolstered resubstitution error estimator proposed in (Braga-Neto
and Dougherty, 2004b) (here extended to the multi-class case). Note that the misclassification
event {(x,y) : ¥n(x) # y} has slices Ay = {x : ¥,(x) # y}. The bolstered resubstitution
error estimator can be thus written as:

e 1
&y = RZ/{ PnX,.y (X) dx. (15)
=1

x:n (x)#Yi}

The integral in (15) gives the error contribution made by training point (X;,Y;); these are
real-valued numbers between 0 and 1, unlike plain resubstitution, in which contributions are
0 or 1. See Figure 2 for an illustration, where the bolstering kernels are uniform distributions
over disks centered at each of the points X;, with radii that depend on Y;. Notice that this
allows counting partial errors, including errors for correctly classified points that are near
the decision boundary.

In some cases, it is possible to solve the integrals in (15) analytically, and the estimator
is fast and low-variance. Otherwise, one has to apply approximations. For example, simple
Monte-Carlo integration yields:

n M

. 1
e > D TWn(XY) £ V), (16)
i=1 j=1
where {X%C;j =1,..., M} are random points drawn from the density p,;, for i =1,...,n.

In this case, the estimation procedure is randomized due to MC sampling.

The radii of the disks in Figure 2 are hyperparameters that can be adjusted to control
the bias of the resulting generalized resubstitution estimator. If the radii are too small, the
estimator is close to plain resubstitution and could be optimistically biased; if they are too
large, the estimator tends to be pessimistically biased.

The most common choice for bolstering kernels are multivariate Gaussian densities with
mean X; and covariance matrix K, x;v;:

1
(277)d det (Kn,Xz‘ Y

1
PnX,vi(X) = exp (— (x = Xi) K, x, v, (x Xi)) :
i ) 2 -
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Original classifier Bolstering kernels (class 0) Bolstering kernels (class 1)

Figure 2: Bolstered resubstitution for a linear classifier with uniform circular bolstering kernels.
The error contribution made by each point is the area of the disk segment extending across the
decision boundary (if any) divided by the area of the entire disk. The bolstered resubstitution
error is the sum of all contributions divided by the number of points. Reproduced from
(Braga-Neto, 2020).

If the matrices K, x,y; are diagonal, with freely adjustable diagonal elements, then the
procedure is known as Naive-Bayes bolstering (Jiang and Braga-Neto, 2014).

We consider next in detail the case K, x,y, = 0721 v, Lla- The hyperparameters here are
the ¢ standard deviations o, j for each class (here, kernel variance is not a function of X).
This demands much less effort than the Naive-Bayes case, which requires in general nd
hyperparameters. (Nevertheless, the analysis below could be extended to the Naive-Bayes
case with more effort.) The hyperparameters ¢™7 can be estimated by making the median
distance of a point sampled from the corresponding kernel to the origin match the mean
minimum distance a?,w among training points in class j:

n;

« 1 & .

dj = —> Xy =Xpll, §=01,....,c=1, (17)
T =1

where n; is the number of points from class j (n; > 2 is assumed), X;; is a point in class j,
and X’ij is its nearest neighbor in class j (Braga-Neto and Dougherty, 2004c).

Now, let R be the random variable corresponding to the distance to the origin of a
point randomly selected from a unit-variance spherically-symmetric density with cumulative
distribution function Fg(z). The median distance of such a point to the origin is ay =
Fr 1(1 /2), where the subscript d indicates explicitly that ay depends on the dimensionality.
If the density has variance o2, all distances get multiplied by o. Hence, Op,j is the solution
of the equation o, jog = a?n’j, ie.,

Onj = —L j=0,1,...,c—1 (18)

The constant ag can be interpreted as a “dimensionality correction,” which adjusts the value
of the estimated mean distance to account for the feature space dimensionality. Indeed,
this approach to selecting the hyperparameters is applicable to any spherically-symmetric
kernel, such as the uniform disks of Figure 2. In the case of spherical Gaussian densities, R is

10
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distributed as a chi random variable with d degrees of freedom, and the median g = F ' (1/2)
can be easily computed numerically. For example, the values up to five dimensions are
a1 = 0.674, ag = 1.177, a3 = 1.538, ay = 1.832, a5 = 2.086.

Next, we consider the asymptotic properties of the bolstered resubstitution estimator
with spherical Gaussian kernels in the case ¢ = 2. First, we define a classification rule to
be regular if it produces “thin” decision boundaries. In the general case ¢ > 2, the decision

boundary D of classifier 1, is
c—1

D = | o4,

y=0

where Ay = {x : ¢,(x) # y} are the misclassification event slices, as defined previously, and
a point is in A, if it does not belong to the interior of either A, or A7. A classification rule
W, is regular if D has Lebesgue measure zero for all its classifiers v,,. If the distribution of
X is absolutely continuous (with respect to the Lebesgue measure), i.e., if X is a continuous
feature vector in the usual sense, then the probability that a training point X; sits on the
decision boundary is zero. The vast majority, if not all, classification rules encountered in
practice are regular.

Theorem 2 In the two-class case, if W, is a reqular classification rule with finite VC
dimension and the distribution of X is absolutely continuous, then the bolstered resubstitution
estimator with spherical Gaussian kernels, with hyperparameters o, ; selected as in (18), is
consistent and asymptotically unbiased.

Proof. By virtue of Theorem 1 and (12), it suffices to show that (13) holds, which in the
present case reduces to proving that

sup |:un,Xi,Yi(AYi) - 6X1(AYZ)| — 0 as.,

AeA
where A s the family of all events {(x,y) : ¥,(x) # y} that can be produced by the
classification rule. Notice that, for any given 7 > 0, whenever sup ¢ 4 |tnx,.v;(Ay;) —
0x;(Ay;)| > 7, there is an A* € A, which is a function of the data, such that |, x, v; (43;) —
x,(Ay,)| > 7, with probability 1. In other words,

P (un,xi,yxAzz) b (A > T

Sup [ x,v; (Av:) — O, (A3 > ) 1,
AcA
which in turn implies that
P (s i, () = B, (A1) > 7 ) < P (i, (43) = O, (45) > 7). (19
S

By regularity of the classification rule, X; belongs to the interior of Ay, or (A3,)¢ with proba-
bility 1. Hence, we can find an open ball B(Xj, p) centered on X; that is entirely contained in
Ay, or AY.. If the variance Ufm tends to zero as at least O(n), the Gaussian measure will con-
centrate exponentially fast inside such a ball, such that P (|, x, (A3,) — 0x, (A3)] > 7) =0
exponentially fast, for any 7 > 0, and the Theorem is proved, via (19) and the First
Borel-Cantelli Lemma.
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From (17) and (18), it suffices to show that the nearest neighbor X;j to X, converges to
X;; exponentially fast as n — oo. Note that, for any 7 > 0,

P(XY, = Xifll > 7) = P([Xe; — Xl > 75 for all k £ ) = (1— P(|Xs; — Xysl| < 7))

(20)
for some [ # i. Notice that, since P(Y = j) > 0, nj — oo as O(n) a.s. as n — oo. If we can
show that P(||X;; — Xy;|| < 7) > 0, then it follows from (20) that P(||X;; — X|| > 7) =0
exponentially fast a.s. and the claim is proved. To ease notation, let Z’ = X;j and Z = Xj;.
Since Z' and Z are independent and identically distributed with density px, Z’ — Z has a
density pz._z, given by the classical convolution formula:

pz—z(W) = /px(w +u) px(w)du.

From this, we have pz/_z(0) = [ p% (1) du > 0. It follows, by continuity of the integral, that
pz/—z must be nonzero in a neighborhood of 0, i.e., P(||Z' — Z|| < 7) > 0, as was to be
shown. [

4.2 Posterior-Probability Generalized Resubstitution

The bolstered empirical probability measure relies on measures p,, x, on R?, which provide
smoothing in the X direction. If one performs smoothing in the Y direction, the so-called
posterior-probability empirical probability measure results.

Given an event A C R x {0,1,...,c — 1}, define the slices

Ay = {ye{0,1,...,c—1}]| (x,y) € A}, xe R%. (21)

(Compare to the slices in (14).) Note that 0%, y; (A4) = dy;(Ax;), where dy; is a point measure
on {0,1,...,c— 1}. Similarly, let 8, x,.v;(4) = 7 x,,v; (Ax,), where 1, x, v, is an empirical
probability measure on {0,1...,c¢ — 1}. This is called a posterior-probability measure as
Mn,X,,v; (Ax,) is to be interpreted as a “posterior-probability” estimate ﬁn(YZ € Ax, | X =X,).
Plugging f,, x,,v;(A) in (12), and then in (7), yields the posterior-probability resubstitution
error estimator (e.g., see (Lugosi and Pawlak, 1994), here extended to the multi-class case).

If A={(x,y): ¢¥n(x) # y} is the misclassification event, then Ax = {1, (x)}¢. Using the
P, notation, it is easy to see that the posterior-probability resubstitution error estimator

can be written as:
. 15
En = n Z;Pn(wn(xi) #Yi [ X=X;). (22)
1=

Here, ﬁn(¢n(Xz) #Y; | X =X;) is the error contribution made by training point (X;,Y;),
rather than 0 or 1 as in plain resubstitution. The idea is that if one is more confident that the
classifier disagrees with the training label, this error should count more, and the reverse is
true if one is not. This smooths the error count of plain resubstitution and reduces variance.

The simplest concrete example is afforded by k-nearest neighbor (kNN) posterior proba-
bility estimation. Let {y'(x),...,4"(x)} denote the labels of the k nearest training points to

1. Equation (20) appears in a similar context in the proof of the Cover-Hart Theorem for nearest-neighbor
classification (Cover and Hart, 1967). The rest of the argument is distinct.
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x, for k =1,...,n. The k-nearest-neighbor (kNN) posterior probability measure is defined
by

P(Y =y|X=x) =

el

k
I (x) =vy), (23)
=

for x € R%. This makes sense since the more labels y there are in the neighborhood of x,
the more likely it should be that its label is y. Plugging (23) into (22) leads to the kNN
posterior-probability error estimator:

A 1 n k .

NN = LSS I (X0) £ (X)) (24)
i=1 j=1

Clearly, the case k = 1 reduces to plain resubstitution. It is clear that if & = k,, is a function

of n, and k, — 1 as n — oo, (13) is satisfied and the kNN posterior probability estimator is

consistent and asymptotically unbiased, under the conditions of Theorem 1.

4.3 Bolstered Posterior-Probability Generalized Resubstitution

A novel class of generalized resubstitution estimator results if one performs smoothing in both
the X and Y directions. Notice that dx, v, (A) = 6x,(Ay;)dy; (Ax,), where the slices A, and
Ay are defined in (14) and (21), respectively. Let £, x,v;(4) = tnx,.v; (Ay;) 00X, v; (Ax%,),
where p, x;v; and 7, x, y; are respectively the bolstered and posterior-probability empirical
probability measures defined previously. Plugging £, x,v;(4) in (12), and then in (7),
yields the bolstered posterior-probability resubstitution error estimator, a new estimator that
combines features of bolstered and posterior-probability resubstitution. Using the ]3n notation,
it is easy to see that the bolstered posterior-probability resubstitution error estimator can be
written as:

n

~ T 1 D
n i=1 {x:n (x)#Yi}

This estimator seeks to combine the bias-reducing properties of the bolstered estimator with
the variance-reducing properties of the posterior-probability estimator.

In the two-class case, with the Gaussian bolstered and k-nearest neighbor empirical
probability measures, it can be shown that the bolstered posterior-probability error estimator
for a linear classifier 1, (x) = I(alx + b, > 0) can be computed analytically as

Y, aZKsz‘,Yian

This estimator is consistent and asymptotically unbiased under the conditions of Theorem 2
and k,, — 1 as n — oo.

G- Ly g ED N X b - %,
GS—kNN _ n o\ (Xa) (T
K nk & q)< ;_1:1(( 1Y X (7% +b,) > 0) || . (26)

5. Extensions

In this section we give additional examples and discuss the extension of the framework to
cross-validation and test-set error estimators.
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5.1 Bayesian Generalized Resubstitution

All previous examples of generalized resubstitution were based on smoothing the error count.
In this section, we given an example that shows that the family of generalized resubstitution
estimators is more general than that.

Let the unknown probability measure v belongs to a parametric family of probability
measures {vg; 0 € O}. Assume a prior distribution p(#) for the parameter, and let p(6 | Sy,)
be its posterior distribution. We define the Bayesian empirical probability measure as:

P (4) = /@ vo(A) p(0 | S,) db,

for each event A C R? x {0,1,...,c — 1}. Plugging this for 2, in (7) yields the Bayesian
generalized resubstitution estimator. This family of Bayesian error estimators was proposed
in (Dalton and Dougherty, 2011a), and later studied by the same authors in a series of
papers (Dalton and Dougherty, 2011b,c, 2012a,b). In (Dalton and Dougherty, 2011a,b),
analytical expressions for the Bayesian resubstitution error estimator are given in a few cases.
In more general cases, the required integrals must be computed by numerical methods, such
as Markov-Chain Monte-Carlo, making the error estimator randomized.

5.2 Gaussian-Process Generalized Resubstitution

Gaussian-process classification and regression (Rasmussen and Williams, 2006) have become
very popular recently. Using Gaussian process regression to estimate posterior probabilities
in (22) leads to a Gaussian-process generalized resubstitution estimator. The idea of using
Gaussian processes in a posterior-probability error estimator was previously suggested in
(Hefny and Atiya, 2010).

Briefly, given the data S, = {(X1,Y1),..., (X}, Yn)}, consider a Gaussian vector of latent
values :

f=(fo(X1), -, fo(Xn), ..o, fem1 (K1), -, fem1(XKn)

corresponding to samples of a vector-valued Gaussian process. The vectors f, = (f,(X1),. ..,
fy(X;,)) are assumed to be uncorrelated with each other, with distribution N(0, K), where
the covariance matrix has elements:

ky(x,x') = Cyexp <—1(X_ X')2> 7

2
2ay

and the constant Cy > 0 ensures that [ k,(x,x")dx = 1. Therefore f is zero-mean and
has a block-structured covariance matrix with the K, matrices along the diagonal. The
posterior distribution of vector £* = (f&(x),..., f* ;(x)) at each test point x € R? is given
by Rasmussen and Williams (2006):

p(E50) = [ BlE ] S (e | S, dt
If the value f;(x) is large compared to the other values f},(x), for y' # vy, then x is likely to

be from class y, for y = 0,...,¢c— 1. Accordingly, we define a vector (§o(f*),...,&—1(f*)) as
the output of a softmax function on f* and define the posterior probability function estimator

PAY =X =x) = [l |5, de".
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Plugging this in (22) yields the Gaussian-process error estimator. The hyperparameter o
correspond to the length-scale of process f,, for y = 0,...,c— 1. These hyperparameters are
critical to the bias properties of the error estimator; in the literature of Gaussian processes,
they are typically chosen by maximum-likelihood methods (Rasmussen and Williams, 2006).

5.3 Generalized Cross-Validation and Test-Set Error Estimators

The generalized cross-validation error estimation procedure results from a random resampling
process that produces R subsets S, = {(X{,YY) ..., (X%, Y)}, where 1 < n; < n. A
classification rule ¥, is applied to szi to obtain a classifier wﬁli, fori=1,...,R. It is also
assumed that the resampling process produces R empirical probability measures vy, 1, ..., vy R.
The generalized cross-validation error estimator is

R
ek = 2> i) ) # ).
=1

The generalized leave-one-out error estimator corresponds to the special case R = n, n; = n—1,
and S!_; equal to the original data with the point (X;,Y;) deleted, for i = 1,...,n.

The generalized test-set error estimator is based on an empirical probability measure v/},
which is a function of independent test data St to produce the error estimator

Enm = Vin({(,) 2 ¥n(x) £ y}) -

6. Experimental Results

In this section, the performance of several of the generalized resubstitution error estimators
discussed in this paper is evaluated empirically, by means of classification experiments with
a variety of linear and nonlinear classification rules. Using synthetic data, we compare the
performance of generalized resubstitution error estimators against each other and against
representative cross-validation and bootstrap error estimators, both in terms of accuracy
and computation speed. We also report the results of an experiment on the applicability of
generalized resubstitution in image classification by convolutional neural networks (CNN),
using the LeNet-5 CNN architecture and the MNIST image data set. In the latter case, due to
the high-dimensionality of the feature space, we employ Naive-Bayes bolstered resubstitution,
as well as a simple data-driven calibration procedure to further reduce the bias.

6.1 Synthetic Data Experiment

In this section we employ synthetic data to investigate the performance of the plain resubstitu-
tion (“resub”), bolstered resubstitution with spherical Gaussian kernels, with hyperparameter
estimated as in (18) (“bolster”), a variant of bolstering that applies the kernels only to
correctly-classified training points (“semi-bolster”), the k-NN posterior-probability estimator,
with £ = 3 (“3NNpp”), and the bolstered k-NN posterior probability estimator with spherical
Gaussian kernels, with hyperparameters as in the previous two cases (“bolster 3NNpp”). For
comparison with resampling error estimators, we also include the 10-fold cross-validation
estimator (“cross valid”) (Braga-Neto and Dougherty, 2015b) and the zero bootstrap estimator
(“boot”) (Efron, 1983) in the experiments.
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Sample |Linear| RBF |CART | 3NN | 5NN | 7NN

Size SVM | SVM
n =20 | 0.311 | 0.311 | 0.377 | 0.329 | 0.315 | 0.315
n =40 | 0.268 | 0.255 | 0.350 | 0.297 | 0.286 | 0.273
n =060 | 0.244 | 0.234 | 0.341 | 0.288 | 0.267 | 0.263
n =380 | 0.233 | 0.232 | 0.332 | 0.283 | 0.264 | 0.251
n =100 | 0.224 | 0.225 | 0.330 | 0.277 | 0.261 | 0.249

Table 1: Classification errors in the synthetic data experiment.

The generative model consists of multivariate Gaussian distributions for each of two
classes, containing d,, noisy features and d — d,, informative features, for each sample size.
The values of the noisy features are sampled independently from a zero-mean, unit-variance
Gaussian distribution across both classes. For the informative features, the class mean vectors
are (—0,...,—0d) and (6,...,d), where the parameter § > 0 is adjusted to obtain a desired
level of classification difficulty. The covariance matrices for both classes are block matrices

Ell Xll 0
Yy x1
Sixd = 0% x e . ;
O .
I4, xd,
where o2 is a variance parameter and >, is an [; x [; matrix,
1 p DY p
p 1 PEEEEY p
Elini = : : .. : 9
p p DY 1

representing [; correlated features, with correlation coefficient —1 < p < 1, such that
Yli=d—dy.

In the experiments below, we considered d = 10 features, consisting of d,, = 4 noisy and
d — d,, = 6 informative features. The latter are correlated in pairs, i.e., I; = lo = [3 = 2, with
correlation coefficient p = 0.2. Four classification rules were considered: linear support vector
machine (SVM), nonlinear SVM with radial basis kernel function (RBF-SVM), classification
tree (CART) with stopped splitting at 5 points per leaf node, and k-nearest neighbors (k-NN),
with k = 3,5,7. We adjusted ¢ to produce moderate classification difficulty over a range of
sample sizes n = 20, 40, 60, 80, and 100; the corresponding average classification errors and
100; see Table 1.

The bias, variance, and RMS of each error estimator were estimated as sample-average
approximations of (2), (3) and (5), respectively, by training the classifier 200 times using
independently generated data sets and approximating the true classification error using
a large test data set of size 5000. The bolstered resubstitution and bolstered posterior-
probability error estimators for nonlinear classifiers used M = 100 Monte-Carlo points in
their computation (the estimators are computed exactly for the linear SVM). The results
are displayed in Tables 2, 3, and 4; boldface indicates the best error estimator for each
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combination of classification rule and sample size. We can see in Table 2 that in almost all
cases, the best bias value is obtained by one of the three bolstered error estimators. For a very
small sample size n = 20, bootstrap is the best estimator in four out of the six classification
rules; however, as will be seen later, bootstrap is much more computationally intensive than all
other error estimators. Plain resubstitution is heavily negatively-biased at small sample sizes,
as expected. All three bolstered estimators are able to significantly reduce this bias, except in
the case of nearest neighbor classification, with small numbers of neighbors. What happens
in this case is that the classification boundary is very complex, which affects negatively the
bias-reducing properties of bolstering (incidentally, nearest-neighbor classification rules have
infinite VC dimension, and Theorem 2 does not apply). As already indicated in Braga-Neto
and Dougherty (2004a), this can be corrected by using the semi-bolstered resubstitution
error estimator, which only applies bolstering kernels to correctly-classified points. Indeed,
as can be seen in Table 2, semi-bolstered resubstitution produces the best bias values in
nearly all cases in the 3NN and 5NN experiments. One can also see in the table that, as the
number of neighbors increases from 3 to 7, the original bolstered error estimator becomes
less biased; this occurs because the classification boundary becomes less rough. At k =7
neighbors, the best results are obtained by the bolstered-3NNpp estimator, a member of
the family of bolstered posterior probability resubstitution estimators proposed in this work.
The plain 3NNpp estimator has good bias properties only in the linear SVM case (indeed,
Lugosi and Pawlak (1994) warned that the resubstitution-like posterior-probability estimator
was expected to be significantly biased). The cross-validation and bootstrap estimators are
positively biased, which is expected since both estimators employ classifiers trained on data
sets of smaller effective sample size than the original one (Braga-Neto and Dougherty, 2015b).

On the other hand, Table 3 shows that the bolstered estimators, but not semi-bolstering,
achieve the smallest variance in nearly all cases. Indeed, semi-bolstering trades off less bias
for more variance, since its bolstered empirical measure is more sparse than in full bolstering,
as was also noted in Braga-Neto and Dougherty (2004a). Notice that both cross-validation
and bootstrap display large variable at small sample sizes, which is expected, since they
are resampling estimators; resubtitution-like estimators avoid resampling and should be less
variable (Braga-Neto and Dougherty, 2004b).

Finally, in Table 4, we can see that the RMS (which combines bias and variance in a
single metric) reveals a clear superiority of the bolstered estimators, and in particular the new
bolstered-3NNpp estimator, over plain resubstitution, cross-validation, and bootstrap, except
in the case of nearest-neighbor classification with a small number of neighbors, due to the
aforementioned bias issue. In this case, semi-bolstering produces the best compromise between
bias and variance. Nevertheless, with & = 7, we can see that the new bolstered-3NNpp
estimator achieves the best RMS values, except at the very small sample size n = 20.

In order to examine the results further, Figures 3 and 4 display the box plots. These
confirm the observations made previously about the bias and variance of the different error
estimators. We can see, additionally, that at small sample size n = 20, all error error
estimators, except for cross-validation, tend to be skewed towards optimistic biases, an effect
that which disappears as sample size increases. Cross-validation is always skewed towards
pessimistic bias, at all sample sizes.

In addition to the statistical issues discussed above, a very important issue is the compu-
tational complexity of the various error estimators, particularly in cases where thousands (or
more) error estimates must be computed, as in wrapper feature selection. Table 5 displays

17



GHANE AND BRAGA-NETO

Classification | Sample | resub |bolster | semi- |3NNpp | bolster | cross | boot

Rule Size bolster 3NNpp | valid
n =20 | -0.292 | -0.076 | -0.066 | -0.070 | -0.025 | 0.011 |0.010
n =40 | -0.169 | -0.030 | 0.008 | -0.039 | 0.002 | 0.021 | 0.027
Linear SVM | n =60 | -0.107 |-0.004 | 0.043 | -0.009 | 0.021 | 0.028 | 0.029
n =80 | -0.079 |-0.001| 0.048 | -0.004 | 0.021 | 0.029 | 0.025
n = 100| -0.063 | 0.008 | 0.058 | 0.006 | 0.028 | 0.030 | 0.019
n =20 |-0.277 | -0.107 | -0.100 | -0.086 | -0.066 | 0.070 | 0.042
n =40 | -0.204 | -0.085 | -0.069 | -0.035 |-0.018 | 0.067 | 0.033
RBF SVM | n =60 | -0.168 | -0.078 | -0.058 | -0.032 |-0.016 | 0.072 | 0.036
n =380 | -0.157 | -0.056 | -0.033 | -0.015 | 0.001 | 0.053 | 0.023
n =100 -0.143 | -0.059 | -0.033 | -0.021 |-0.006 | 0.054 | 0.023
n =20 | -0.354 | -0.060 | -0.054 | -0.124 | -0.026 | 0.017 |0.014
n =40 | -0.323 | -0.040 | -0.033 | -0.119 |{-0.013 | 0.034 | 0.017
CART n =60 | -0.314 | -0.028 | -0.020 | -0.116 |-0.004 | 0.031 | 0.013
n =80 | -0.305 | -0.022 | -0.013 | -0.111 | 0.001 | 0.036 | 0.014
n =100 -0.304 | -0.016 | -0.008 | -0.108 | 0.005 | 0.030 | 0.011
n =20 |-0.175 | -0.112 | -0.034 | -0.132 | -0.124 | 0.031 | 0.032
n =40 | -0.150 | -0.105 |-0.028 | -0.122 | -0.114 | 0.048 | 0.040
3NN n =60 | -0.144 | -0.097 |-0.023 | -0.112 | -0.105 | 0.046 | 0.037
n =80 | -0.143 | -0.096 |-0.021 | -0.113 | -0.106 | 0.046 | 0.035
n =100 -0.136 | -0.096 |-0.022| -0.114 | -0.107 | 0.049 | 0.036
n =20 |-0.124 | -0.091 | 0.023 | -0.086 | -0.076 | 0.047 | 0.045
n =40 | -0.110 | -0.074 | 0.018 | -0.071 | -0.062 | 0.051 | 0.040
5NN n =60 | -0.099 | -0.059 | 0.023 | -0.061 | -0.05 | 0.057 | 0.044
n =80 | -0.095 | -0.057 | 0.023 | -0.060 | -0.051 | 0.056 | 0.041
n =100/ -0.091 | -0.055 | 0.022 | -0.059 | -0.050 | 0.057 | 0.040
n =20 | -0.107 | -0.073 | 0.044 | -0.066 | -0.056 | 0.055 | 0.045
n =40 | -0.083 | -0.047 | 0.046 | -0.044 |-0.033 | 0.062 | 0.044
7NN n =60 | -0.081 | -0.042 | 0.043 | -0.042 |-0.030 | 0.059 | 0.038
n =80 | -0.070 | -0.032 | 0.048 | -0.034 |-0.022 | 0.064 | 0.043
n =100 -0.072 | -0.034 | 0.044 | -0.035 |-0.022 | 0.062 | 0.039

Table 2: Bias results in the synthetic data experiment. The best bias value in each row is
printed in bold.

the average computation time obtained by the error estimators in the experiment. The
results confirm that plain resubstitution is lightning fast; its drawback is its large negative
bias, as already mentioned. We can see that the plain posterior-probability error estimator,
despite some bias issues, is also very fast. Combined with its small variance, this makes this
estimator attractive for computationally-expensive classification tasks. Cross-validation (at
10 folds and no repetition) is the next fastest error estimator. Its poor variance properties
under small sample sizes — and, in the case of wrapper feature selection, the issue of selection
bias (Ambroise and McLachlan, 2002) — makes it unattractive. The bolstered resubstitution
estimators are less fast but still much faster than the bootstrap. The latter is tens of times
slower than the other estimators, in most cases, a fact that was already noted in (Braga-Neto
and Dougherty, 2004b).
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Classification | Sample | resub | bolster | semi- | 3NNpp | bolster | cross | boot

Rule Size bolster 3NNpp | valid
n =20 | 0.0038 | 0.0035 | 0.0049 | 0.0056 |0.0033|0.0168 |0.0101
n =40 | 0.0053 |{0.0016 | 0.0033 | 0.0038 | 0.0018 |0.0091 | 0.0059
Linear SVM | n = 60 | 0.0033 |0.0013| 0.0023 | 0.0027 |0.0013 | 0.0053 | 0.0034
n =80 | 0.0018 {0.0010 | 0.0016 | 0.0019 |0.0010 |0.0033 | 0.002
n =100 0.0017 {0.0008 | 0.0013 | 0.0015 | 0.0008 |0.0028 | 0.0017
n =20 {0.0043|0.0043 | 0.0044 | 0.0092 | 0.0067 |0.0262 |0.0141
n =40 | 0.0017 {0.0013 | 0.0016 | 0.0031 | 0.0018 |0.0113|0.0055
RBF SVM | n =60 | 0.0012 | 0.0008 | 0.0011 | 0.002 | 0.0011 | 0.007 |0.0036
n =80 | 0.0008 | 0.0006 | 0.0009 | 0.0015 |0.0007 | 0.0045 | 0.0023
n = 100 | 0.0007 {0.0005 | 0.0007 | 0.0011 | 0.0006 |0.0035|0.0019
n =20 | 0.0028 |{0.0030 | 0.0032 | 0.0070 | 0.0036 |0.0228 |0.0082
n =40 | 0.0018 |0.0012 | 0.0024 | 0.0032 | 0.0014 |0.0108|0.0037
CART n =60 | 0.0012 | 0.0008 | 0.0009 | 0.0020 | 0.0009 |0.0066 |0.0022
n = 80 | 0.0009 |0.0007 | 0.008 | 0.0015 |0.0007 | 0.0048|0.0017
n = 100 | 0.0008 [0.0005| 0.006 | 0.0012 {0.0005 |0.0039|0.0014
n =20 | 0.0064 | 0.0022 | 0.0059 | 0.0035 | 0.0027 |0.0154 | 0.0081
n =40 | 0.0033 |{0.0010| 0.0030 | 0.0015 | 0.001 |0.0074|0.0036
3NN n =60 | 0.0023 |0.0006 | 0.0017 | 0.0009 | 0.0006 | 0.0051 | 0.0026
n =80 | 0.0017 | 0.0005 | 0.0013 | 0.0007 |0.0004 | 0.0036 | 0.0017
n =100 0.0013 {0.0004 | 0.0011 | 0.0005 | 0.0003 |0.0030|0.0014
n =20 | 0.0082 | 0.0042 | 0.0064 | 0.0068 | 0.0047 | 0.018 |0.0098
n =40 | 0.0033 |{0.0013 | 0.0029 | 0.0022 |0.0013|0.0075|0.0035
5NN n =60 | 0.0023 | 0.0009 | 0.0020 | 0.0014 | 0.0008 | 0.0054 | 0.0026
n =80 | 0.0019 | 0.0007 | 0.0016 | 0.0011 | 0.0006 | 0.0039 |0.0019
n =100 0.0014 | 0.0005 | 0.0013 | 0.0009 | 0.0004 |0.0032|0.0015
n =20 | 0.0091 |0.0052 | 0.0066 | 0.0090 | 0.0064 |0.0192|0.0113
n =40 | 0.0037 |0.0016 | 0.0032 | 0.0030 [ 0.0016 | 0.0076 | 0.0037
7NN n =60 | 0.0025 |0.0010 | 0.0021 | 0.0020 |0.0010 | 0.0051 | 0.0026
n =80 | 0.0019 | 0.0007 | 0.0016 | 0.0012 | 0.0006 | 0.0039 | 0.0019
n = 100 0.0014 {0.0005 | 0.0012 | 0.0010 | 0.0005 | 0.0030|0.0015

Table 3: Variance results in the synthetic data experiment. The smallest variance in each
row is printed in bold.

6.2 MNIST Data Experiment

In this section we present results of a simple experiment that indicate the potential of
generalized resubstitution estimators in image classification with convolutional neural net-
works (CNN). The experiment uses the well-known MNIST data set and the LeNet-5 CNN
architecture.

The MNIST training data set contains 60,000 28 x 28 grayscale images of handwritten
digits between 0 and 9 (hence, 10 classes). It is well-known that LeNet-5 can achieve
accuracies of upwards of 99% on this data set; e.g., see Tabik et al. (2017). Problems
with small classification error tend to be easier in terms of error estimation performance
(Braga-Neto and Dougherty, 2015b). To make the problem more challenging, we train the
LeNet-5 classifier on random subsets of n = 200, 400, 600 and 800 images from the original
data set. The remaining data are used to obtain accurate test-set estimates of the true
classification error, in order to compute estimates of the bias, variance, and RMS of each
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Classification
Rule

Sample
Size

resub

bolster

semi-
bolster

3NNpp

bolster
3NNpp

Cross
valid

boot

Linear SVM

n =20
n =40
n = 60
n = 80
n = 100

0.2981
0.1836
0.1213
0.0896
0.0751

0.0963
0.0506
0.0362
0.0309
0.0289

0.0963
0.0579
0.0650
0.0623
0.0680

0.1029
0.073
0.0532
0.0440
0.0396

0.0626
0.0422
0.0421
0.0378
0.0391

0.1302
0.0976
0.0783
0.0641
0.0611

0.1010
0.0811
0.0651
0.0508
0.0453

RBF SVM

n =20
n =40
n = 60
n = 80
n = 100

0.2844
0.2086
0.1718
0.1596
0.1455

0.1258
0.0921
0.0831
0.0614
0.0632

0.1196
0.0798
0.0666
0.0441
0.0432

0.1289
0.0652
0.0545
0.0412
0.0388

0.1050
0.0455
0.0364
0.0271
0.0242

0.1765
0.1255
0.1101
0.0852
0.0806

0.1259
0.0816
0.0702
0.0535
0.0495

CART

n = 20
n =40
n = 60
n = 80
n = 100

0.3581
0.326
0.3164
0.3067
0.3049

0.0812
0.053
0.0401
0.0334
0.0277

0.0785
0.0492
0.0363
0.0301
0.0251

0.1494
0.1314
0.1242
0.1175
0.1134

0.0650
0.0401
0.0306
0.0265
0.0239

0.1520
0.1093
0.0867
0.0783
0.0692

0.0914
0.0631
0.0489
0.0431
0.039

3NN

n =20
n =40
n = 60
n = 80
n = 100

0.1924
0.1616
0.1524
0.1485
0.1418

0.1227
0.1092
0.1015
0.0981
0.0981

0.0869
0.0573
0.0461
0.0452
0.0378

0.1450
0.1284
0.1159
0.1169
0.1157

0.1337
0.1179
0.1069
0.1079
0.1089

0.1239
0.1020
0.0838
0.0756
0.0775

0.0955
0.0721
0.0622
0.0532
0.0538

5NN

n =20
n =40
n = 60
n = 80
n = 100

0.1532
0.1253
0.1109
0.1031
0.0994

0.1090
0.0841
0.0662
0.0644
0.0585

0.0832
0.0531
0.0550
0.0461
0.0477

0.1175
0.0868
0.0729
0.0671
0.0662

0.1033
0.0738
0.0583
0.0548
0.0539

0.1382
0.1034
0.0903
0.0821
0.0828

0.1097
0.0721
0.0666
0.0573
0.0566

TNN

n =20
n =40
n = 60
n = 80
n = 100

0.1465
0.1024
0.0952
0.0806
0.0824

0.1011
0.0617
0.0516
0.0439
0.0394

0.0913
0.0756
0.0659
0.0625
0.0595

0.1116
0.0666
0.0580
0.0525
0.0461

0.0977
0.0519
0.0424
0.0297
0.0312

0.1504
0.1093
0.0915
0.0877
0.0796

0.1188
0.0744
0.0628
0.0587
0.0559

Table 4: RMS results in the synthetic data experiment. The best RMS value in each row is

printed in bold.

error estimator, using 200 independently drawn training data sets for each sample size. The
LeNet-5 network was trained using 200 epochs of stochastic gradient descent, with batch size
32, employing 10% of the training data in each case as a validation data set to stop training
early if the validation loss was not reduced for 10 consecutive epochs.

We investigate the performance of bolstered resubstitution with diagonal Gaussian
kernels, which leads to a “Naive-Bayes” bolstering resubstitution estimator, as explained
in Section 4.1. This is done since spherical kernels tend to perform poorly in very high-
dimensional spaces (Sima et al., 2014). Likewise, k-nearest neighbor posterior-probability
estimators led to too much bias in this high-dimensional space, and are not considered

further.
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Figure 3: Boxplots for SVM and CART classification rules in the synthetic data experiment.
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Figure 4: Boxplots for nearest-neighbor classification rules in the synthetic data experiment.
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Classification | Sample | resub |bolster | semi- |3NNpp | bolster | cross | boot

Rule Size bolster 3NNpp| valid
n =20 |{0.00012| 7.72 7.17 2.18 6.94 | 3.98 |111.75
n =40 {0.00013| 13.23 | 13.01 | 1.84 | 13.28 | 5.17 |111.83
Linear SVM | n =60 [0.00013| 19.95 | 19.27 | 1.73 | 18.84 | 6.23 |136.64
n =80 {0.00013| 28.06 | 26.59 | 1.76 | 28.15 | 9.41 [194.78
n = 100(0.00014 | 35.67 | 33.98 | 1.95 | 36.04 | 14.51 |259.07
n =20 {0.00021| 9.37 7.81 1.98 9.34 | 5.76 |141.81
n =40 {0.00029| 17.53 | 15.23 | 1.74 | 17.96 | 7.11 |166.50
RBF SVM | n =60 |0.00040| 27.99 | 28.09 | 1.65 | 30.94 | 9.90 |222.74
n =380 [0.00053| 37.45 | 36.41 | 1.67 | 45.82 | 12.60 |272.67
n = 100|0.00070| 53.53 | 50.92 | 1.87 | 68.38 | 18.73 |367.78
n =20 |{0.00014| 5.99 4.26 1.87 7.33 | 3.15 | 91.54
n =40 {0.00014| 12.15 | 11.37 | 1.97 | 16.45 | 4.79 | 99.37
CART n =60 {0.00015| 18.06 | 15.79 | 1.96 | 22.57 | 4.89 |112.91
n =80 {0.00015| 24.08 | 21.96 | 1.51 | 27.54 | 4.94 [113.20
n = 100(0.00016 | 34.82 | 31.87 | 1.98 | 36.51 | 6.00 |133.62
n =20 | 0.0012 | 63.17 | 55.19 | 3.30 | 121.20 | 10.54 |263.76
n =40 | 0.0017 | 125.55 | 120.16 | 3.91 | 239.93 | 11.28 | 300.8
3NN n =60 | 0.0028 | 188.34 | 185.14 | 4.50 | 360.82 | 11.96 |346.19
n =80 | 0.0029 | 254.18 | 252.59 | 5.21 | 397.00 | 12.82 |390.31
n =100 0.0034 | 319.55 | 319.53 | 5.90 | 445.04 | 13.56 |517.62
n =20 | 0.0011 | 61.95 | 51.02 3.24 |118.45| 10.4 |261.14
n =40 | 0.0016 | 123.18 | 113.18 | 3.84 | 235.02 | 11.12 [297.05
5NN n =60 | 0.0021 | 185.08 | 176.05 | 4.43 | 253.90 | 11.79 |346.69
n =80 | 0.0027 | 249.10 | 238.91| 5.11 | 391.04 | 12.61 [417.84
n =100 0.0034 | 310.63 | 300.12 | 5.76 | 436.26 | 13.35 |499.96
n =20 | 0.0011 | 53.07 | 41.08 | 2.76 | 101.20 | 9.01 |230.98
n =40 | 0.0016 | 116.56 | 104.69 | 3.67 | 221.75 | 10.65 |287.32
7NN n =60 | 0.0022 | 175.79 | 163.67 | 4.23 | 329.95 | 11.23 |335.52
n =80 | 0.0027 | 237.74|224.36 | 4.89 | 377.69 | 12.03 [416.78
n =100 0.0034 |299.76 | 286.09 | 5.53 | 422.69 | 12.72 |477.60

Table 5: Average computation time (in milliseconds) in the synthetic data experiment.

If X;ji denotes pixel k in image i of class j, the mean minimum distance d,, j, among
pixels k in class j is:

.
1 J

dnjk = - § [ Xije — Xil, 7=0,1,...,c—1,k=1,...,28 x 28,
J =1

where n; is the number of images in class j (n; > 2 is assumed) and X K 18 the nearest pixel
(in value) in position k to Xjj; among images in class j. The bolstering kernel standard
deviations are then given by:

~

d .
Ok = Zi’“ j=01,...,c—1,k=1,...,28 x 28, (27)

where oy = 0.674, as seen in Section 4.1.
In order to further reduce the bias of the Naive-Bayes bolstered resubstitution estimator
in this high-dimensional space, we employ a data-driven calibration procedure: we multiply
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Sample resub nBbolster calibrated calibrated
Size nBbolster (r=1) | nBbolster (r=>5)

n = 200 —0.131 —0.082 0.019 0.014

n = 400 —0.100 —0.064 0.007 0.012

n = 600 —0.080 —0.052 0.005 0.005

n = 800 —0.072 —0.051 0.003 0.001

Table 6: Bias results in the MNIST data experiment. The best bias value in each row is
printed in bold.

the kernel standard deviation by a constant x > 0, which is adjusted so as to minimize the
estimated bias of the estimator. The bias is roughly estimated by training the classifier
on a random sample of 80% of the images form the available training data, and testing it
on remaining 20%. Depending on the computational cost of training the classifiers, this
process can be repeated a number of times r and the results averaged. The point is that
the bias does not need to be accurately estimated in order to find a useful value for k.
The calibration process consists of starting at x = 1, computing the corrected Naive-Bayes
bolstered resubstitution estimate, and increasing k by a fixed step-size (here, 0.1) until the
magnitude of the roughly estimated bias does not decrease for two consecutive iterations. A
similar model-based calibration method was proposed in (Sima et al., 2014); however, the
procedure proposed here is entirely data-driven and makes no modeling assumptions.

Finally, the naive-Bayes bolstered resubstitution estimator is computed by Monte-Carlo,
as in (16), where {X%IC; j=1,..., M} are random images generated by drawing each pixel
from a Gaussian distribution with mean equal to the original pixel value and standard
deviation in (27). This generates “noisy images” where the intensity of the noise in each pixel
is correlated with the variability of pixel values at that position across the training data (for
that digit class). Here we employed M = 100 Monte-Carlo images for each training image.
A few of these Monte-Carlo images can be seen in Figure 5.

The results of the experiment are displayed in Tables 6, 7 and 8. We can see that, while
Naive-Bayes bolstered resubstitution is able to improve somewhat the optimistic bias of
resubstitution, calibration succeeded into reducing the bias to nearly zero, especially as
sample size increases. The generalized resubstitution estimators were not able to match
the low variance of plain resubstitution. Calibration increased the variance of the plain
Naive-Bayes estimator, as might be expected (though much less in the case » = 5 than in
the case r = 1). When bias and variance are combined in the RMS metric, the clear winners
are the calibrated estimators, particularly at » = 5. Even at r = 1, (i.e., just one additional
step of classifier training), there is a substantial improvement. If more than r = 5 repetitions
are used, it is expected that results will improve further, though at a higher computational
cost. Notice that the bias, variance, and RMS of all estimators decrease monotonically with
increasing sample size.

Finally, Table 9 displays the average computation time for the error estimators in the
experiment. The results again confirm that plain resubstitution is very fast. The superior
performance of the calibrated naive-Bayes bolstered resubstitution estimators come at a
computational price; this is due to the fact that additional classifiers need to be trained in
order to perform the calibration procedure.
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Sample resub nBbolster calibrated calibrated
Size nBbolster (r=1) | nBbolster (r=5)

n =200 | 0.0006 0.0013 0.0064 0.0027

n =400 | 0.0002 0.0008 0.0029 0.0013

n =600 | 0.0002 0.0006 0.0018 0.0006

n =800 | 0.0001 0.0003 0.0011 0.0006

Table 7: Variance results in the MNIST data experiment. The best variance value in each
row is printed in bold.

Sample resub nBbolster calibrated calibrated
Size nBbolster (r=1) | nBbolster (r=>5)

n = 200 0.1336 0.0897 0.0822 0.0519

n = 400 0.1010 0.0702 0.0505 0.0418

n = 600 0.0812 0.0576 0.0403 0.3040

n = 800 0.0728 0.0539 0.0301 0.0200

Table 8: RMS results in the MNIST data experiment. The best RMS value in each row is
printed in bold.

Sample resub | nBbolster calibrated alibrated
Size nBbolster (r=1) | nBbolster (r=5)

n =200 | 0.00043 7.24 65.91 298.51

n =400 | 0.00085 15.42 127.78 597.24

n =600 | 0.00131 25.54 216.99 928.61

n =800 | 0.00175 35.59 296.86 1342.19

Table 9: Average computation time (in seconds) in the MNIST data experiment.

7. Conclusions

We proposed in this paper a completely general and unifying framework to study resubstitution-
like classification error estimators in terms of arbitrary empirical probability measures. This
is a broad family of classification error estimators who can all be computed in the same
way by using different empirical probability measures. They do not require resampling and
retraining of classifiers (though in the MNIST classification example a data-driven calibration
procedure to further reduce bias was used, which may employ resampling, though it is not
necessary). We showed that various existing error estimators are special cases of generalized
resubstitution estimators, and proposed bolstered posterior probability error estimators
as a novel example in this class. Generalized resubstitution estimators are generally fast
and thus can be used in settings where computational complexity issue is an issue, such
as in wrapper feature selection for large data sets. In the two-class case, we showed that
these estimators have good large-sample properties, provided that the classification rule
has a a finite VC dimension and the corresponding empirical probability measure converges
to the standard empirical probability measure, in a precise sense. The extension of these
results to more than two classes is left to future research — the main obstacle being the
absence of a multi-class version of the VC Theorem. In addition, we showed empirically,
by means of numerical experiments, that generalized resubstitution error estimators also
display excellent small-sample performance. In particular, we showed that bolstered-3NNpp,
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an example of error estimator in the new family proposed here, is the error estimator of
choice in traditional classification, except in the case of very complex, overfitting classifiers,
such as those produced by nearest-neighbor rules with a small number of neighbors, in
which semi-bolstered resubstitution should be used instead. For image classification by
deep convolutional neural networks, we showed empirically that naive-Bayes bolstering with
a simple data-driven calibration procedure produces excellent results. This indicates the
potential of this approach in the area of computer vision, a topic that will be further explored
in future work.
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