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Abstract

We consider infinite-horizon discounted Markov decision problems with finite state and
action spaces and study the convergence rates of the projected policy gradient method and
a general class of policy mirror descent methods, all with direct parametrization in the
policy space. First, we develop a theory of weak gradient-mapping dominance and use it to
prove sharp sublinear convergence rate of the projected policy gradient method. Then we
show that with geometrically increasing step sizes, a general class of policy mirror descent
methods, including the natural policy gradient method and a projected Q-descent method,
all enjoy a linear rate of convergence without relying on entropy or other strongly convex
regularization. Finally, we also analyze the convergence rate of an inexact policy mirror
descent method and estimate its sample complexity under a simple generative model.

Keywords: discounted Markov decision problem, policy gradient, gradient domination,
policy mirror descent, sample complexity.

1. Introduction

Markov decision process (MDP) is a fundamental model for sequential decision-making and
serves as the mathematical framework for stochastic control and reinforcement learning. In
this paper, we consider infinite-horizon, discounted Markov decision processes with finite
state and action spaces. They are specified as a 5-tuple (S,A, P,R, γ), where S is a finite
state space with cardinality |S|, A is a finite action space with cardinality |A|, P is a
transition probability function with P (s′|s, a) denoting the probability of transitioning to s′

when taking action a from state s, R : S × A → [0, 1] is a reward function with Rs,a or
R(s, a) being the (expected) reward of taking action a from state s, and finally γ ∈ [0, 1) is
a discount factor applied to the reward one-step in the future.

Starting from an initial state s0 ∈ S, an agent takes an action at ∈ A at each time step
t = 0, 1, 2, . . ., which leads to the next state st+1 with probability P (st+1|st, at) and obtains
the immediate reward rt = R(st, at). Such interactions generate a trajectory

(s0, a0, r0), (s1, a1, r1), (s2, a2, r2), . . . .

The goal of the agent is to find a policy of choosing the actions a0, a1, a2, . . . that maximizes
the discounted cumulative reward E

[∑∞
t=0 γ

trt
]
. Here the expectation is taken with respect

to the possible randomness in s0, any randomness in choosing the actions at, and the
randomness of state transitions prescribed by P .
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In general, a policy that determines the action at time t may depends on the whole
history of the trajectory up to time t. A stationary policy π specifies a decision rule that
depends only on the current state. Specifically, we let πs ∈ ∆(A) be the decision rule at
state s, where ∆(A) denotes the probability simplex supported on A, and πs,a denotes the
probability of taking action a at state s. The value of a stationary policy π ∈ ∆(A)|S|

starting from an arbitrary state s is defined as

Vs(π) := E

[ ∞∑
t=0

γtR(st, at)
∣∣∣ s0 = s

]
, (1)

where the expectation is taken with respect to at ∼ πst and st+1 ∼ P (·|st, at) for all t ≥ 0.
We define V : ∆(A)|S| → R|S| as a vector-valued function with components Vs(π). By the
assumption that R(s, a) ∈ [0, 1] for all (s, a) ∈ S ×A, we immediately have

0 ≤ Vs(π) ≤
∞∑
t=0

γt =
1

1− γ
, ∀ s ∈ S, ∀π ∈ ∆(A)|S|. (2)

The conventional formulation of Markov decision problems is about maximizing the
discounted total reward. In this paper, we adopt a minimization formulation in order to
better align with conventions in the optimization literature. To this end, we regard each
R(s, a) ∈ [0, 1] as a value measuring regret rather than reward. Given a reward matrix R,
we can reset R(s, a) ← 1 − R(s, a) for all (s, a) ∈ S × A to turn it into a regret matrix.
Suppose ρ ∈ ∆(S) is an arbitrary initial state distribution. We consider the problem of
minimizing

Vρ(π) := E
s∼ρ

Vs(π) = E

[ ∞∑
t=0

γtR(st, at)
∣∣∣ s0 ∼ ρ

]
. (3)

For infinite-horizon MDPs with finite state and actions spaces, there exists a (deterministic)
stationary policy π? that is simultaneously optimal in minimizing Vs(·) for all s ∈ S (e.g.,
Puterman, 1994, Section 6.2.4). Such a solution is insensitive to the choice of ρ.

In this paper, we focus on policy gradient methods for minimizing the weighted value
function Vρ. These methods generate a sequence of policies {π(k)} through repeated evalu-
ation of the policy gradient ∇Vµ, where µ ∈ ∆(S) is not necessarily equal to ρ. The most
straightforward variant is the projected policy gradient method,

π(k+1) = projΠ

(
π(k) − ηk∇Vµ(π(k))

)
, (4)

where ηk is the step size, Π := ∆(A)|S| is the set of feasible policies, and projΠ(·) denotes
projection onto Π in the Euclidean norm. More generally, policy gradient methods can be
derived from the mirror-descent form

π(k+1) = arg min
π∈Π

{
ηk
〈
∇Vµ(π(k)), π

〉
+Dk(π, π

(k))
}
, (5)

where Dk(·, ·) is a distance-like function that may depend on π(k). For example, setting Dk

as the squared Euclidean distance yields the projected policy gradient method (4). Shani
et al. (2020) showed that by setting Dk as an appropriately weighted Kullback-Leibler (KL)
divergence, one recovers the natural policy gradient (NPG) method of Kakade (2001). In
general, we can think of (5) as a class of preconditioned policy gradient methods. The main
results of this paper concern the convergence rates of such methods.
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1.1 Previous Work

Many classical algorithms for MDPs are based on dynamical programming (Bellman, 1957),
including value iteration, policy iteration, temporal difference learning and Q-learning (see,
e.g., Puterman, 1994; Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 2018). Analyses of
these methods in the tabular case mostly rely on the contraction property of the Bellman
operator, which are difficult to extend with nonlinear function approximation and policy
parametrization. In contrast, policy gradient methods (Williams, 1992; Sutton et al., 2000;
Konda and Tsitsiklis, 2000; Kakade, 2001) aim to find a local minimum of an expected
value function, thus are applicable to any differentiable policy parametrization and admit
easy extensions to function approximation. In particular, they appear to work well when
parametrized with modern deep neural networks (Schulman et al., 2015, 2017).

Despite the long history and empirical successes of policy gradient methods, their con-
vergence properties are not well understood until recently. For example, it was widely
accepted that they converge asymptotically to a stationary point or a local minimum be-
cause the objective function is nonconvex in general. However, Fazel et al. (2018) show that
for linear quadratic control problems, policy gradient methods converge to the global opti-
mal solution despite the nonconvex cost function, thanks to a gradient dominance property
(Polyak, 1963). Agarwal et al. (2021) derive a variational gradient-dominance property and
use it to obtain global convergence of the projected policy gradient method (4). Bhandari
and Russo (2019) identify more general structural properties of policy gradient methods to
ensure gradient domination and hence convergence to global optimum.

Using direct policy parametrization (over π ∈ ∆(A)|S|), Agarwal et al. (2021) show that
the projected policy gradient method (4) converges to a global optimum at an O(1/

√
k)

sublinear rate. Specifically, the number of iterations to obtain Vρ(π
(k))− V ?

ρ ≤ ε is

O

(
|S||A|

(1− γ)6 ε2

∥∥∥∥dρ(π?)µ

∥∥∥∥2

∞

)
, (6)

where dρ(π
?) ∈ ∆(S) is a discounted state-visitation distribution and

∥∥dρ(π?)/µ∥∥∞ is a
distribution mismatch coefficient (see Section 2.1 for definition and explanation). Zhang
et al. (2020) develop a variational policy gradient framework and use it to show that the
projected policy gradient method converges to global optimum at a faster O(1/k) rate. In
both cases, the constants in the iteration complexity are very large and depend on the
Lipschitz constant characterizing the smoothness of the objective function.

Shani et al. (2020) show that the natural policy gradient (NPG) method (Kakade,
2001) can be cast as a special case of policy mirror descent method (5) and has an O(1/

√
k)

convergence rate. Agarwal et al. (2021) improve the convergence rate of NPG to O(1/k);
more concretely, the number of iterations to obtain Vρ(π

(k))− V ?
ρ ≤ ε is

2

(1− γ)2ε
, (7)

which is independent of the dimensions |S| and |A| or any distribution mismatch coefficient.
Interestingly, the step sizes that guarantee such a rate can be chosen arbitrarily large,
regardless of the Lipschitz constant of the policy gradient.
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With entropy regularization, Cen et al. (2020) show that the NPG method has linear
(geometric) convergence. Their approach relies on the contraction property of a generalized
Bellman operator and the convergence guarantees are in terms of the infinity norm of the
“soft” Q-functions. With appropriate choice of the regularization parameter and step size,
they obtain iteration complexity on the order of

1

1− γ
log

1

(1− γ)ε
. (8)

Lan (2021) proposes a general policy mirror descent method that is similar to (5) with either
convex or strongly convex regularizations. He focuses on the case of minimizing Vρ? where
ρ? is the stationary distribution of the MDP under the optimal policy π?, which avoids any
distribution mismatch coefficient in the analysis. In order to guarantee Vρ?(π

(k))− V ?
ρ? ≤ ε,

Lan (2021) obtains iteration complexity on the orders of (7) and (8) for the settings without
and with entropy regularization, respectively. Lan (2021) also obtains linear convergence
for the un-regularized Markov decision problems using diminishing regularization combined
with increasing step sizes (while maintaining a constant product of the two).

More recently, Zhan et al. (2021) extend the framework of Lan (2021) to accommodate a
broader class of convex regularizers including those that are nonsmooth. For un-regularized
MDPs, Khodadadian et al. (2021) show that the NPG method can obtain linear convergence
with an adaptive step-size rule, and Bhandari and Russo (2021) show that several variants
of policy gradient methods has linear convergence with exact line search.

For the exact policy gradient method with softmax parametrization, Agarwal et al.
(2021) show that it converges asymptotically to a global optimum, and attains an O(1/

√
k)

rate with log barrier regularization. Mei et al. (2020) derive an O(1/k) convergence rate
and Mei et al. (2021) further improve it to linear convergence by exploiting non-uniform
variants of the smoothness and gradient dominance properties. However, these fast rates
are associated with problem-dependent constants that can be very large (Li et al., 2021).

1.2 Contributions and Outline

In this paper, we present a systematic study of policy gradient methods with direct policy
parametrization, focusing on their convergence rates for minimizing Vρ over π ∈ ∆(A)|S|.

Section 2 contains an overview of structural properties of discounted MDPs that are
well-known but essential for the main results of the paper.

In Section 3, we develop a theory of weak gradient-mapping domination for general
nonconvex composite optimization, and use it to obtain an O(1/k) convergence rate for the
projected policy gradient method. Concretely, our result on iteration complexity replaces
ε−2 in (6) with ε−1 and (1 − γ)−6 with (1 − γ)−5. Although this result is the same as the
one obtained by Zhang et al. (2020), our analysis are quite different. Zhang et al. (2020)
exploit the bijection structure of the primal-dual MDP formulations, while we derive this
result as a special case of nonconvex optimization with weak gradient-mapping domination
which, to our best knowledge, is new and of independent interest.

In Section 4, we study exact policy mirror descent methods of the form (5). First,
we show that with a constant step size (which can be arbitrarily large), they obtain the
same dimension-free iteration complexity (7). This result extend the one of Agarwal et al.
(2021) on NPG with KL-divergence to a general class of Bregman divergences, including a

4
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projected Q-descent method derived with squared Euclidean distance. Second, we show that
with geometrically increasing step sizes, as simple as ηk+1 = ηk/γ, policy mirror descent
methods enjoy linear convergence without relying on any regularization. Specifically, their
iteration complexity for reaching Vρ(π

(k))− V ?
ρ ≤ ε is

1

1− γ

∥∥∥∥dρ(π?)ρ

∥∥∥∥
∞

log
2

(1− γ)ε
.

If ρ is set to be the stationary distribution under the optimal policy π?, then the distribution
mismatch coefficient

∥∥dρ(π?)/ρ∥∥∞ = 1 and we recover (8). In addition, we discuss conditions
for superlinear convergence and make connections with the classical Policy Iteration method.

In Section 5, we investigate the iteration complexity of inexact policy mirror descent
methods and show that the geometrically increasing step sizes do not cause instability
even with errors in evaluating the policy gradients or Q-functions. They converge with the
same linear rate up to an asymptotic error floor. With a simple Q-estimator by repeated
simulation of truncated trajectories, we obtain a sample complexity of

Õ

(
|S||A|

(1− γ)8 ε2

∥∥∥∥dρ(π?)ρ

∥∥∥∥3

∞

)
,

where the notation Õ(·) hides poly-logarithmic factors of |S||A|, 1/(1− γ) and 1/ε.
Finally, in Section 6, we discuss the limitations of our work and possible extensions.

2. Preliminaries on Discounted MDPs

In this section, we overview the structural properties of infinite-horizon discounted MDPs
that are essential for the developments in later sections. We start with a few definitions.
Let ∆(S) denote the probability simplex defined over the state space S, i.e.,

∆(S) =
{
p ∈ R|S|

∣∣ ∑
s∈S ps = 1, ps ≥ 0 for all s ∈ S

}
.

Similarly, ∆(A) denotes the probability simplex over the action space A. The set of admis-
sible policies is defined as

Π := ∆(A)|S| =
{
π = {πs}s∈S

∣∣ πs ∈ ∆(A) for all s ∈ S
}
.

With slight abuse of notation, we define the following functions of π ∈ Π:

• P : Π→ R|S|×|S|: a matrix function with entries Ps,s′(π) =
∑

a∈A πs,aP (s′|s, a);

• r : Π→ R|S|: a vector function with components rs(π) =
∑

a∈A πs,aRs,a.

Using the definitions above, the value function V : Π→ R|S|, whose components Vs are
defined in (1), admits the following analytic form (see, e.g., Puterman, 1994, Section 6.1)

V (π) =

∞∑
t=0

γtP (π)t r(π) =
(
I − γP (π)

)−1
r(π). (9)
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Since P (π) is a row stochastic matrix and 0 ≤ γ < 1, the spectral radius of γP (π) is strictly
less than one (by the Perron-Frobenius theorem) and thus I − γP (π) is always invertible.
Given ρ ∈ ∆(S), the weighted value function Vρ defined in (3) can be written as

Vρ(π) = ρTV (π) = ρT (I − γP (π))−1r(π). (10)

Here we treat ρ as a column vector and use matrix multiplication conventions.

2.1 Distribution Mismatch Coefficient

Starting from s ∈ S, the discounted state-visitation distribution under a policy π is a vector
ds(π) ∈ ∆(S) whose components are defined as

ds,s′(π) := (1− γ)
∞∑
t=0

γt Prπ
(
st = s′ | s0 = s

)
, ∀ s′ ∈ S. (11)

The coefficient 1− γ ensures that
∑

s′∈S ds,s′(π) = 1. In fact, ds,s′(π) is the (s, s′) entry of

the matrix (1 − γ)(I − γP (π))−1. In other words, if we define es ∈ R|S| with components
es,s′ = 1 if s = s′ and 0 otherwise, then we have

ds,s′(π) = (1− γ)eTs
(
I − γP (π)

)−1
es′ , ∀ s, s′ ∈ S. (12)

Given an initial state distribution ρ ∈ ∆(S), we define dρ(π) ∈ ∆(S) with components

dρ,s′(π) = E
s∼ρ

ds,s′(π) =
∑
s∈S

ρsds,s′(π).

Some useful facts from the above definitions are:

ds,s(π) ≥ 1− γ and dρ,s(π) ≥ (1− γ)ρs, ∀ s ∈ S. (13)

For any ρ, µ ∈ ∆(S), we define the distribution mismatch of ρ from µ as∥∥∥∥ρµ
∥∥∥∥
∞

:= max
s∈S

ρs
µs
,

with the convention 0/0 = 1. This is an asymmetric measure of mismatch and it is finite if
and only if the support (set of indices with nonzero entries) of µ contains that of ρ. If µ is
the uniform distribution, then the mismatch is bounded by |S|.

The convergence properties of policy gradient methods often depend on the distribution
mismatch coefficients between two discounted state-visitation distributions (e.g., Kakade
and Langford, 2002; Agarwal et al., 2021). According to (13), we have for any ρ, µ ∈ ∆(S)
and π, π′ ∈ Π, ∥∥∥∥ dρ(π)

dµ(π′)

∥∥∥∥
∞
≤ 1

1− γ

∥∥∥∥dρ(π)

µ

∥∥∥∥
∞
. (14)

Our results in this paper mostly concern the case with ρ = µ and π = π?, i.e.,

C?ρ :=

∥∥∥∥dρ(π?)ρ

∥∥∥∥
∞
.
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In order for C?ρ to be finite, it suffices to assume ρ > 0, which means ρs > 0 for all s ∈ S.
The distribution mismatch coefficient is closely related to the concentrability coeffi-

cients in the analysis of approximate dynamic programming algorithms (Munos, 2003, 2005;
Szepesvári and Munos, 2008). In fact, C?ρ is considered the “best” one among all concentra-
bility coefficients in the sense that it does not impose any restrictions on the MDP dynamics
and it can be finite when other concentrability coefficients are infinite (Scherrer, 2014). See
Agarwal et al. (2021, Section 2) for further discussions.

If ρ is chosen as the stationary distribution of the MDP under the optimal policy π?,
denoted as ρ?, then we have dρ?(π

?) = ρ? and hence C?ρ? = 1. This is the setting adopted by
Liu et al. (2019) and Lan (2021), which leads to simplified analysis for minimizing Vρ? . For
discounted MDPs with entropy regularization (Lan, 2021; Cen et al., 2020), the resulting ρ?

always have full support over S. However, in general ρ? may not have full support over S
unless the underlying MDP is ergodic (Puterman, 1994, Section A.2).

2.2 Q-functions, Policy Gradient and Performance Difference Lemma

For each pair (s, a) ∈ S ×A, the state-action value function Qs,a : Π→ R is defined as

Qs,a(π) := E

[ ∞∑
t=0

γtR(st, at)
∣∣∣ s0 = s, a0 = a

]
, (15)

where the expectation is taken with respect to at ∼ πst and st+1 ∼ P (·|st, at) for all t ≥ 0.
It is straightforward to verify that

Qs,a(π) = Rs,a + γ
∑
s′∈S

P (s′|s, a)Vs′(π). (16)

Let Qs(π) ∈ R|A| denote the vector with components Qs,a(π) for all a ∈ A. Then,

Vs(π) =
∑
a∈A

πs,aQs,a(π) = 〈πs, Qs(π)〉, (17)

where 〈·, ·〉 denotes the inner product of two vectors.
Policy gradients refer to the gradients of the value functions Vs(π) and Vρ(π). We can

obtain their expressions as special cases of the policy gradient theorem (Sutton et al., 2000)
which covers the general case with policy parametrization. For easy reference, we give a
simple, self-contained derivation in the Appendix (Section A.1). Specifically, we have

∇sVρ(π) :=
∂Vρ(π)

∂πs
=

1

1− γ
dρ,s(π)Qs(π), (18)

and ∇Vρ is the concatenation of ∇sVρ for all s ∈ S. In other words, policy gradients
are weighted Q-functions where the weights are block-diagonal and proportional to the
discounted state-visitation probabilities.

A fundamental result for analyzing discounted MDPs and related algorithms is the
performance difference lemma of Kakade and Langford (2002). In this paper, we mostly
rely on the following variant, which has appeared in Liu et al. (2019) and Lan (2021). For
completeness, here we provide an alternative proof.
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Lemma 1 (Performance difference lemma) For any π, π̃ ∈ Π, it holds that

Vs(π)− Vs(π̃) =
1

1− γ
E

s′∼ds(π)
〈Qs′(π̃), πs′ − π̃s′〉 , ∀ s ∈ S. (19)

Proof Using the relation (17) on both π and π̃ and the definition of Q-functions, we obtain

Vs(π)− Vs(π̃) =
〈
Qs(π), πs

〉
−
〈
Qs(π̃), π̃s

〉
=
〈
Qs(π̃), πs − π̃s

〉
+
〈
Qs(π)−Qs(π̃), πs

〉
=
〈
Qs(π̃), πs − π̃s

〉
+ γ

∑
s∈S

πs,a
∑
s′∈S

P (s′|s, a)
(
Vs′(π)− Vs′(π̃)

)
, ∀ s ∈ S.

Define u ∈ R|S| with components us =
〈
Qs(π̃), πs − π̃s

〉
. Then the above result leads to

V (π)− V (π̃) = u+ γP (π)
(
V (π)− V (π̃)

)
,

which further implies

V (π)− V (π̃) =
(
I − γP (π)

)−1
u.

Using the expression of ds,s′(π) in (12), we write the above equality component-wise as

Vs(π)− Vs(π̃) = eTs
(
I − γP (π)

)−1
u =

1

1− γ
∑
s′∈S

ds,s′(π)us′ ,

which is the same as (19).

The weighted version of the performance difference lemma is,

Vρ(π)− Vρ(π̃) =
1

1− γ
E

s′∼dρ(π)
〈Qs′(π̃), πs′ − π̃s′〉 , ∀π, π̃ ∈ Π. (20)

Considering the expression of policy gradient in (18), the above characterization resembles
that of a linear function (precisely so if the expectation were taken with respect to s′ ∼
dρ(π̃) instead of s′ ∼ dρ(π)). The performance difference lemma is directly responsible for
variational gradient domination (Agarwal et al., 2021, Lemma 4), which is a convexity-like
property, and also for descent with arbitrarily large step sizes (see Section 4), which is a
concavity-like property.

3. Projected Policy Gradient Method

In this section, we analyze the projected policy gradient method for solving the problem

minimize
π∈Π

Vρ(π), (21)

where Vρ(π) is defined in (3) or equivalently (10). We assume that the policy gradients are
computed with respect to an initial state distribution µ, which may be different from the
performance evaluation distribution ρ.
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Starting from an initial policy π(0) ∈ Π, the projected policy gradient method generates
a sequence π(k) for k = 1, 2, . . . as follows:

π(k+1) = projΠ

(
π(k) − ηk∇Vµ(π(k))

)
, (22)

where ηk is the step size and projΠ(·) denotes projection onto Π in Euclidean norm, i.e.,
projΠ(π) = arg minπ′∈Π ‖π′ − π‖22. Since Π = ∆(A)|S| is a Cartesian product, the projec-
tions associated with different states can be done separately:

π(k+1)
s = proj∆(A)

(
π(k)
s − ηk∇sVµ(π(k))

)
, s ∈ S, (23)

where ∇sVµ is given by (18) with ρ replaced by µ.

Agarwal et al. (2021, Theorem 5) show that with a constant step size ηk = (1−γ)3

2γ|A| for all

k ≥ 0, the projected policy gradient method converges at an O
(
1/
√
k
)

rate. More precisely,

min
0<k≤K

{
Vρ(π

(k))− V ?
ρ

}
≤ ε whenever K >

64γ|S||A|
ε2 (1− γ)6

∥∥∥∥dρ(π?)µ

∥∥∥∥2

∞
. (24)

The following two ingredients are key to their analysis.

• Smoothness (Agarwal et al., 2021, Lemma 54): For any π, π′ ∈ Π, it holds that∥∥∇Vρ(π)−∇Vρ(π′)
∥∥

2
≤ 2γ|A|

(1− γ)3

∥∥π − π′∥∥
2
. (25)

• Variational gradient domination (Agarwal et al., 2021, Lemma 4): For any π ∈ Π,

Vρ(π)− V ?
ρ ≤

1

1− γ

∥∥∥∥dρ(π?)µ

∥∥∥∥
∞

max
π′∈Π

〈
∇Vµ(π), π − π′

〉
. (26)

Here “variational” refers to the term maxπ′∈Π〈∇Vµ(π), π−π′〉, which is different from
‖∇Vµ(π)‖ as in gradient dominance conditions for unconstrained optimization.

Based on the same two results above, we show that the projected policy gradient method
enjoys a faster O(1/k) convergence rate. The following theorem holds for the case ρ = µ.

Theorem 2 Suppose ρ = µ and the step size ηk = (1−γ)3

2γ|A| for all k ≥ 0. Then the projected

policy gradient method (22) generates a sequence of policies π(k) satisfying

Vρ(π
(k))− V ?

ρ ≤
256|S||A|
k (1− γ)5

∥∥∥∥dρ(π?)ρ

∥∥∥∥2

∞
.

The general case with ρ 6= µ can be handled with an additional distribution mismatch
coefficient. Concretely,

Vρ(π
(k))− V ?

ρ =
∑
s∈S

ρs

(
Vs(π

(k))− V ?
s

)
=
∑
s∈S

ρs
µs
µs

(
Vs(π

(k))− V ?
s

)
≤
∥∥∥∥ρµ
∥∥∥∥
∞

(
Vµ(π(k))− V ?

µ

)
.
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Then applying Theorem 2 with ρ replaced by µ yields

Vρ(π
(k))− V ?

ρ ≤
256|S||A|
k(1− γ)5

∥∥∥∥dµ(π?)

µ

∥∥∥∥2

∞

∥∥∥∥ρµ
∥∥∥∥
∞
.

Comparing with (24), in addition to improving the rate from O(1/
√
k) to O(1/k), our bound

also has better dependence on the discount factor: 1/(1 − γ)5 as opposed to 1/(1 − γ)6.
However, our bound uses a different distribution mismatch coefficient and has an additional
factor of ‖ρ/µ‖∞. We prove Theorem 2 as a special case of a more general result on
gradient-mapping domination, which we present next.

3.1 An Interlude on Gradient-Mapping Domination

In this section, we consider the following composite optimization problem

minimize
x∈Rn

F (x) := f(x) + Ψ(x), (27)

where f is smooth and Ψ is convex and lower semi-continuous (Rockafellar, 1970, Section 7).
Specifically, we assume that there exists a constant L > 0 such that

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ dom Ψ. (28)

The MDP formulation in (21) is a special case of (27) with the mappings x ← π, f ← Vρ
and Ψ as the indicator function of Π, i.e., Ψ(π) = 0 if π ∈ Π and ∞ otherwise.

For any convex function φ, the prox operator is defined as

proxφ(x) = arg min
y

{
φ(y) +

1

2
‖y − x‖22

}
.

A generic algorithm for solving problem (27) is the proximal gradient method :

x(k+1) = arg min
x

{〈
∇f(x(k)), x− x(k)

〉
+

1

2ηk
‖x− x(k)‖2 + Ψ(x)

}
= proxηkΨ

(
x(k) − ηk∇f(x(k))

)
, (29)

where ηk is the step size. If Ψ is the indicator function of Π, then proxηkΨ becomes the
projection operator projΠ for any ηk > 0. In this section, we focus on the proximal gradient
method with the constant step size ηk = 1/L. To simplify presentation, we define

TL(x) := prox 1
L

Ψ

(
x− 1

L
∇f(x)

)
, (30)

thus the proximal gradient method (29) can be written simply as x(k+1) = TL(x(k)). The
gradient mapping associated with problem (27) is defined as

GL(x) := L
(
x− TL(x)

)
. (31)

In the special case Ψ ≡ 0, we have GL(x) = ∇f(x) for any L > 0. The norm of the gradient
mapping, ‖GL(x(k))‖, can serve as a measure of closeness to a first-order stationary point.

10
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Key to the convergence analysis of the proximal gradient method is the following descent
property (Nesterov, 2013, Theorem 1),

F (x(k))− F (x(k+1)) ≥ 1

2L

∥∥GL(x(k))
∥∥2

2
. (32)

Summing up over k = 0, 1, . . . ,K, we obtain

F (x(0))− F (x(K+1)) ≥ 1

2L

K∑
k=0

∥∥∥GL(x(k))
∥∥∥2

2
,

which, together with the fact F (x(K+1)) ≥ F ?, implies (Beck, 2017, Theorem 10.15)

min
0≤k≤K

∥∥∥GL(x(k))
∥∥∥

2
≤

√
2L
(
F (x(0))− F ?

)
K + 1

. (33)

The O(1/
√
k) convergence rate stated in (24) is obtained by combining (33) with (26),

which is the approach taken by Agarwal et al. (2021) and Bhandari and Russo (2019).
We show that under a weak gradient mapping dominance condition, which we define

next, the proximal gradient method enjoys a much faster sublinear convergence rate.

Definition 3 (weak gradient-mapping domination) Suppose F := f + Ψ where f is
L-smooth and Ψ is proper, convex and closed. We say that F satisfies a weak gradient-
mapping dominance condition, of exponent α ∈ (1/2, 1], if there exists ω > 0 such that

‖GL(x)‖2 ≥
√

2ω
(
F
(
TL(x)

)
− F ?

)α
, ∀x ∈ dom Ψ, (34)

where F ? = minx F (x) and TL and GL are defined in (30) and (31) respectively.

This weak version of gradient-mapping domination corresponds to the Kurdyka- Lojasiewicz
(K L) condition with exponent α ∈ (1/2, 1] (Kurdyka, 1998). We note that classical K L
theory mostly considers the range α ∈ [0, 1), where α = 0 implies convergence in finite
number of steps, α ∈ (0, 1/2] implies linear convergence, and α ∈ (1/2, 1) leads to sublinear
convergence (e.g., Li and Pong, 2018; Cui and Pang, 2022, Section 8.4.2). We consider
extensions of classical results to gradient-mapping domination and include the case α = 1,
which is what we need for the analysis of the policy gradient method. We discuss the case
α = 1/2, which corresponds to the strongly convex case, in Appendix A.2.

Theorem 4 Consider the problem of minimizing F := f + Ψ where f is L-smooth and
Ψ is proper, convex and closed. Let F ? = minx F (x). Suppose F is weakly gradient-
mapping dominant with exponent α ∈ (1/2, 1] and parameter ω. Then the proximal gradient
method (29) with step size ηk = 1/L generates a sequence {x(k)} that satisfies, for all k ≥ 0,

F (x(k))− F ? ≤ max

{(
22α+1L

(2α− 1)ω

) 1
2α−1

(
1

k

) 1
2α−1

,

(√
2

2

)k(
F (x(0))− F ?

)}
. (35)

In particular, for α = 1, we have

F (x(k))− F ? ≤ max

{
8L

ωk
,

(√
2

2

)k(
F (x(0))− F ?

)}
. (36)
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Proof Combining the descent property (32) with the inequality (34) yields

F (x(k))− F (x(k+1)) ≥ 1

2L

∥∥∥GL(x(k))
∥∥∥2

2
≥ ω

L

(
F (x(k+1))− F ?

)2α
.

Let δk = F (x(k))− F ? ≥ 0. Then we have

δk − δk+1 ≥
ω

L
δ2α
k+1. (37)

Given that α ∈ (1/2, 1], we have 2α− 1 ∈ (0, 1]. Expanding a telescoping sum, we get

1

δ2α−1
k

− 1

δ2α−1
0

=
k−1∑
i=0

(
1

δ2α−1
i+1

− 1

δ2α−1
i

)
=

k−1∑
i=0

2α− 1

δ2α−1
i+1

1

2α− 1

(
1−

(
δi+1

δi

)2α−1
)

Notice that due to the descent property, we always have δi+1 ≤ δi and thus δi+1/δi ≤ 1.
Mei et al. (2021, Lemma 13) proved that for any β > 0 and ρ ∈ [0, 1], it holds that

1

β
(1− ρβ) ≥ ρβ(1− ρ).

Apply this result with β = 2α− 1 and ρ = δi+1/δi, we obtain

1

δ2α−1
k

− 1

δ2α−1
0

≥
k−1∑
i=0

2α− 1

δ2α−1
t+1

(
δi+1

δi

)2α−1(
1− δi+1

δi

)
= (2α− 1)

k−1∑
i=0

δi − δi+1

δ2α
i

.

Now invoking (37) leads to

1

δ2α−1
k

− 1

δ2α−1
0

≥ (2α− 1)
ω

L

k−1∑
i=0

(
δi+1

δi

)2α

.

For any two constant r, c ∈ (0, 1), let’s define n(k, r) to be the number of times that the
ratio δi+1/δi is at least r among the first k iterations. If n(k, r) ≥ ck, then δi+1/δi ≥ r at
least dcke times, thus

1

δ2α−1
k

− 1

δ2α−1
0

≥ (2α− 1)
ω

L
r2αck,

which implies

δk ≤

(
1

1/δ2α−1
0 + (2α− 1)ωLr

2αck

) 1
2α−1

≤
(

L

(2α− 1)ωr2αc

) 1
2α−1

(
1

k

) 1
2α−1

Otherwise, we must have n(k, r) < ck, which means that δi+1/δi < r at least d(1 − c)ke
times. Noticing that δi+1/δi ≤ 1 for all i, we arrive at

δk ≤ δ0r
(1−c)k = δ0

(
r1−c)k .

Combining the above two cases and using the fact that r, c ∈ (0, 1) can be chosen arbitrarily,
we conclude that

δk ≤ min
0<r,c<1

max

{(
L

(2α− 1)ωr2αc

) 1
2α−1

(
1

k

) 1
2α−1

,
(
r1−c)k δ0

}
.

Setting r = c = 1/2 gives the desired result (35), and further letting α = 1 yields (36).
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3.2 Proof of Theorem 2

In order to prove Theorem 2, we only need to verify that the weak gradient-mapping dom-
ination holds for the weighted value function Vρ. This is the result of the next lemma.

Lemma 5 Consider the problem of minimizing Vρ over Π and suppose that Vρ is L-smooth.
We have

Vρ
(
TL(π)

)
− V ?

ρ ≤
2
√

2|S|
1− γ

∥∥∥∥dρ(π?)µ

∥∥∥∥
∞
‖GL(π)‖2 , (38)

where

TL(π) := projΠ

(
π − 1

L
∇Vµ(π)

)
, GL(π) := L

(
π − TL(π)

)
.

Proof Applying a result of Nesterov (2013, Theorem 1) to our setting yields〈
∇Vµ(TL(π)), TL(π)− π′

〉
≤ 2‖GL(π)‖2 · ‖TL(π)− π′‖2, ∀π, π′ ∈ Π.

Using the facts TL(π) ∈ Π and ‖π′′ − π′‖2 ≤
√

2|S| for any π′′, π′ ∈ Π, we obtain

max
π′∈Π

〈
∇Vµ(TL(π)), TL(π)− π′

〉
≤ 2
√

2|S| ‖GL(π)‖2.

Combining the above bound with (26) yields the desired result.

An argument equivalent to Lemma 5 was used by Agarwal et al. (2021) which relies on
a result of Ghadimi and Lan (2016). Combining (38) with (33) gives the result in (24). On
the other hand, we recognize that with ρ = µ, inequality (38) implies (34) with

α = 1, ω =
(1− γ)2

16|S|

∥∥∥∥dρ(π?)ρ

∥∥∥∥−2

∞
, L =

2γ|A|
(1− γ)3

.

Now we can apply Theorem 4. Notice that in this case, the exponential decay part in (35)
is always smaller than the sublinear part, which leads to Vρ(π

(k))− V ?
ρ ≤ 8L/(ωk), i.e.,

Vρ(π
(k))− V ?

ρ ≤
256|S||A|
k(1− γ)5

∥∥∥∥dρ(π?)ρ

∥∥∥∥2

∞
.

This finishes the proof of Theorem 2.

Zhang et al. (2020, Theorem 5) have also established the O(1/k) rate of the projected
policy gradient method with direct parametrization. However, their proof appears to be
quite different from ours, which leverages the dual linear programming parametrization
(Puterman, 1994, Section 6.9). In contrast, our approach is based on a novel notion of weak
gradient-mapping domination and applies to general nonconvex composite optimization
problems.
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4. Exact Policy Mirror Descent Methods

Mirror descent (Nemirovski and Yudin, 1983) is a general framework for the construction
and analysis of optimization algorithms, which covers the projected gradient method as a
special case. Here we adopt the form of mirror descent based on proximal minimization
with respect to a Bregman divergence (Beck and Teboulle, 2003).

Let h : ∆(A) → R be a strictly convex function and continuously differentiable on the
relative interior of ∆(A), denoted as rint ∆(A). The Bregman divergence generated by h is
a distance-like function defined for any p ∈ ∆(A) and p′ ∈ rint ∆(A) as

D(p, p′) := h(p)− h(p′)− 〈∇h(p′), p− p′〉.

Two most popular examples of Bregman divergence are:

• Squared Euclidean distance, generated by the squared 2-norm:

h(p) = (1/2)‖p‖22, D(p, p′) = (1/2)‖p− p′‖22.

• Kullback-Leibler (KL) divergence, generated by the negative entropy:

h(p) =
∑
a∈A

pa log pa, D(p, p′) =
∑
a∈A

pa log
pa
p′a
.

Notice that the gradient of negative entropy vanishes on the boundary of the simplex.
Therefore we need to restrict the second argument p′ to lie within the relative interior
of ∆(A). We shall address such subtleties later in the convergence analysis.

Recall that the set of feasible policies is Π = ∆(A)|S|, which is a Cartesian product of
|S| copies of ∆(A). For any ρ ∈ ∆(S), we define a weighted divergence function

Dρ(π, π
′) := E

s∼ρ

[
D(πs, π

′
s)
]

=
∑
s∈S

ρsD(πs, π
′
s).

This function satisfies the basic properties of a Bregman divergence; in particular, it is
nonnegative and for ρ > 0 it equals to 0 if and only if π = π′.

Following the derivations of Shani et al. (2020), we consider policy mirror descent (PMD)
methods with dynamically weighted divergences:

π(k+1) = arg min
π∈Π

{
ηk
〈
∇Vµ(π(k)), π

〉
+

1

1− γ
Ddµ(π(k))(π, π

(k))

}
,

where ηk is the step size, µ ∈ ∆(S) is an arbitrary state distribution and dµ(π(k)) is the
discounted state-visitation distribution under the policy π(k). Using the fact〈

∇Vµ(π(k)), π
〉

=
∑
s∈S

〈
∇sVµ(π(k)), πs

〉
,

and plugging in the policy gradient formula (18), we obtain

π(k+1) = arg min
π∈Π

{
1

1− γ
∑
s∈S

dµ,s(π
(k))
(
ηk
〈
Qs(π

(k)), πs
〉

+D(πs, π
(k)
s )
)}

= arg min
π∈Π

{∑
s∈S

(
ηk
〈
Qs(π

(k)), πs
〉

+D(πs, π
(k)
s )
)}

,
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where the second equality, strictly speaking, requires dµ,s(π
(k)) > 0 for all s ∈ S. The above

update rule can be written separately for each state as

π(k+1)
s = arg min

p∈∆(A)

{
ηk
〈
Qs(π

(k)), p
〉

+D(p, π(k)
s )
}
, ∀ s ∈ S. (39)

Clearly, this update rule is independent of the choice of µ, which is the result of adap-
tive preconditioning with a dynamically weighted divergence: the weight for each state in
Ddµ(π(k)) matches the coefficient of Qs(π

(k)) in the policy gradient ∇Vµ(π(k)).
For the two prominent examples of Bregman divergence listed before, the corresponding

PMD methods have closed-form update rules:

• Projected Q-descent. IfD(·, ·) is the squared Euclidean distance, then (39) becomes

π(k+1)
s = proj∆(A)

(
π(k)
s − ηkQs(π(k))

)
, ∀ s ∈ S. (40)

Compared with the projected policy gradient method (23), we replaced the policy
gradient ∇sVµ(π(k)) by Qs(π

(k)) as the result of adaptive preconditioning.

• Exponentiated Q-descent. If D(·, ·) is the KL-divergence, then (39) takes the form

π(k+1)
s,a = π(k)

s,a

exp
(
−ηkQs,a(π(k))

)
z

(k)
s

, ∀ a ∈ A, s ∈ S, (41)

where
z(k)
s =

∑
a∈A

exp
(
−ηkQs,a(π(k))

)
, ∀ s ∈ S.

This is exactly the Natural Policy Gradient (NPG) method (Kakade, 2001) expressed
in the policy space (Agarwal et al., 2021). For the derivation of (41), see, for example,
Beck (2017, Section 9.1).

In the rest of this section, we investigate the convergence rate of the PMD method (39).
We show that with a constant step size, it has O(1/k) convergence rate. When the step
size increases exponentially as ηk = η0/γ

k, we have linear convergence and the convergence
rate depends on the distribution mismatch coefficient ‖dρ(π?)/ρ‖∞. In addition, we discuss
situations of super-linear convergence and connections to policy iteration.

Our results hold for PMD methods constructed with general Bregman divergences,
matching or improving over the best known convergence rates. In particular, the pro-
jected Q-descent method has the same rate of convergence as NPG. We show that the key
ingredient for fast convergence of the PMD method is the adaptive preconditioning using
weighted divergence functions. The adopted local Bregman divergence, being KL-divergence
or squared Euclidean distance, does not make much difference.

4.1 Sublinear Convergence

Our analysis is based on two key ingredients: the performance difference lemma (Lemma 1)
and a three-point descent lemma on proximal optimization with Bregman divergences.

In order to cover both the squared Euclidean distance and KL-divergence without loss
of rigor, we need some technical conditions. Specifically, we say a function h is of Legendre
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type (Rockafellar, 1970, Section 26) if it is essentially smooth and strictly convex in the
relative interior of domh, denoted as rint domh. Essential smoothness means that h is
differentiable and ‖∇h(xk)‖ → ∞ for every sequence {xk} converging to a boundary point
of domh. The following result is a slight variation of Chen and Teboulle (1993, Lemma 3.2),
where we replaced the original assumption of h being a Bregman function with h being of
Legendre type. The proof essentially follows the same arguments and thus is omitted here.

Lemma 6 (Three-point descent lemma) Suppose that C ⊂ Rn is a closed convex set,
φ : C → R is a proper, closed convex function, D(·, ·) is the Bregman divergence generated
by a function h of Legendre type and rint domh ∩ C 6= ∅. For any x ∈ rint domh, let

x+ = arg min
u∈C

{
φ(u) +D(u, x)

}
.

Then x+ ∈ rint domh ∩ C and for any u ∈ C,

φ(x+) +D(x+, x) ≤ φ(u) +D(u, x)−D(u, x+).

In the context of the PMD method (39), C = ∆(A) and φ is the linear function
ηk〈Qs(π(k)), · 〉. There are some subtle differences between the two Bregman divergences
we consider, as explained below.

• For the squared Euclidean distance, h(·) = (1/2)‖ · ‖22 is of Legendre type with
rint domh = R|A| and thus rint domh ∩ C = ∆(A). Therefore each iterate gener-
ated by the PMD method, specifically (40), can be on the boundary of ∆(A).

• For the KL divergence, h is the negative entropy function, which is also of Legendre
type, but with rint domh ∩ C = rint domh = rint ∆(A). Therefore, if we start with
an initial point in rint ∆(A), then every iterates will stay in rint ∆(A).

We first use Lemma 6 to prove a descent property of PMD. This result is elementary
and has appeared in various forms before (e.g., Liu et al., 2019; Lan, 2021). We present the
proof for completeness as we will need to refer to some intermediate steps in it later.

Lemma 7 (Descent property of PMD) Suppose the initial point π(0) ∈ rint Π. Then
the sequences generated by the PMD method (39) satisfy〈

Qs(π
(k)), π(k+1)

s − π(k)
s

〉
≤ 0, ∀ s ∈ S, (42)

and for any ρ ∈ ∆(s),
Vρ(π

(k+1)) ≤ Vρ(π(k)), ∀ k ≥ 0. (43)

Proof Applying Lemma 6 to the update rule (39) with C = ∆(A) and φ(·) = ηk〈Qs(πk), · 〉,
we obtain that for any p ∈ ∆(A),

ηk

〈
Qs(π

(k)), π(k+1)
s

〉
+D(π(k+1)

s , π(k)
s ) ≤ ηk

〈
Qs(π

(k)), p
〉

+D(p, π(k)
s )−D(p, π(k+1)

s ).

Rearranging terms and dividing both sides by ηk, we get

〈Qs(π(k)), π(k+1)
s − p〉+

1

ηk
D(π(k+1)

s , π(k)
s ) ≤ 1

ηk
D(p, π(k)

s )− 1

ηk
D(p, π(k+1)

s ). (44)
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Letting p = π
(k)
s in (44) yields

〈Qs(π(k)), π(k+1)
s − π(k)

s 〉 ≤ −
1

ηk
D(π(k+1)

s , π(k)
s )− 1

ηk
D(π(k)

s , π(k+1)
s ),

which implies (42) since the Bregman divergence D(·, ·) is always nonnegative. By the
performance difference lemma, specifically the weighted version (20), we have

Vρ(π
(k+1))− Vρ(π(k)) =

1

1− γ
E

s∼dρ(π(k+1))

〈
Qs(π

(k)), π(k+1)
s − π(k)

s

〉
≤ 0,

which is the same as (43).

The next result is a generalization of the O(1/k) convergence rate of the NPG method
obtained by Agarwal et al. (2021, Theorem 16), where they focused on the setting of KL-
divergence and their proof also relies on specific properties of the KL-divergence. Here we
extend it to more general Bregman divergence. Lan (2021, Theorem 2) derived a similar
result using techniques that work for general Bregman divergence. However, he worked
with the special objective function Vρ? where ρ? is the stationary distribution of the optimal
policy π?. As a result, the proof of Lan (2021, Theorem 2) avoids some subtle arguments
required for the more general objective function Vρ where ρ ∈ ∆(S) can be arbitrary.

In order to simplify presentation, we use the following notation throughout this paper:

D?
k := Ddρ(π?)(π

?, π(k)) =
∑
s∈S

dρ,s(π
?)D(π?s , π

(k)
s ), (45)

where dρ(π
?) is the state-visitation distribution under π? with initial state distribution ρ.

Although ρ does not appear in the notation D?
k, we hope it is clear from the context.

Theorem 8 Consider the policy mirror descent method (39) with π(0) ∈ rint Π and constant
step size ηk = η for all k ≥ 0. For any ρ ∈ ∆(S), we have for all k ≥ 0,

Vρ(π
(k))− V ?

ρ ≤
1

k + 1

(
D?

0

η(1− γ)
+

1

(1− γ)2

)
.

Proof Consider the inequality (44), we let p = π?s and subtract and add π
(k)
s within the

inner product term, which leads to

〈Qs(π(k)), π(k+1)
s − π(k)

s 〉+ 〈Qs(π(k)), π(k)
s − π?s〉 ≤

1

ηk
D(π?s , π

(k)
s )− 1

ηk
D(π?s , π

(k+1)
s ).

Notice that we dropped the nonnegative term (1/ηk)D(π
(k+1)
s , π

(k)
s ) on the left side of the

inequality. Taking expectation with respect to the distribution dρ(π
?) on both sides of the

above inequality and using the notation in (45), we obtain

E
s∼dρ(π?)

[
〈Qs(π(k)), π(k+1)

s −π(k)
s 〉
]
+ E
s∼dρ(π?)

[
〈Qs(π(k)), π(k)

s −π?s〉
]
≤ 1

ηk
D?
k−

1

ηk
D?
k+1. (46)
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For the first expectation in (46), we have

E
s∼dρ(π?)

[
〈Qs(π(k)), π(k+1)

s − π(k)
s 〉
]

=
∑
s∈S

dρ,s(π
?)
〈
Qs(π

(k)), π(k+1)
s − π(k)

s

〉
≥ 1

1− γ
∑
s∈S

ddρ(π?), s(π
(k+1))

〈
Qs(π

(k)), π(k+1)
s − π(k)

s

〉
= Vdρ(π?)(π

(k+1))− Vdρ(π?)(π
(k)), (47)

where the inequality holds because of (42) and the fact, due to (13), that

ddρ(π?),s(π
(k+1)) ≥ (1− γ)dρ,s(π

?), ∀ s ∈ ∆(S).

The last equality in (47) is due to the performance difference lemma. For the second
expectation in (46), we again use the performance difference lemma to obtain

E
s∼dρ(π?)

[
〈Qs(π(k)), π(k)

s − π?s〉
]

= (1− γ)
(
Vρ(π

(k))− Vρ(π?)
)
. (48)

Substituting the two results above into (46) leads to

(1− γ)
(
Vρ(π

(k))− Vρ(π?)
)
≤ 1

ηk
D?
k −

1

ηk
D?
k+1 + Vdρ(π?)(π

(k))− Vdρ(π?)(π
(k+1)).

Setting ηk = η for all k ≥ 0 and summing up over k:

(1− γ)

k∑
i=0

(
Vρ(π

(i))− Vρ(π?)
)
≤ 1

η
D?

0 −
1

η
D?
k+1 + Vdρ(π?)(π

(0))− Vdρ(π?)(π
(k+1))

≤ 1

η
D?

0 + Vdρ(π?)(π
(0)).

Since Vρ(π
(k)) is monotone non-increasing in k (see Lemma 7), we conclude that

Vρ(π
(k))− V ?

ρ ≤
1

k + 1

k∑
i=0

(
Vρ(π

(i))− Vρ(π?)
)
≤ 1

k + 1

(
D?

0

η(1− γ)
+
Vdρ(π?)(π

(0))

1− γ

)
,

Finally, bounding Vdρ(π?)(π
(0)) by 1/(1− γ) as in (2) gives the desired result.

As a result of Theorem 8, whenever η ≥ (1− γ)D?
0 = (1− γ)Ddρ(π?)(π

?, π(0)), we have

Vρ(π
(k))− V ?

ρ ≤
2

(k + 1)(1− γ)2
, ∀ k ≥ 0. (49)

In other words, the number of iterations to reach Vρ(π
(k))− V ?

ρ ≤ ε is at most

2

(1− γ)2ε
,

which is independent of the problem dimensions |S| and |A|. More specifically,
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• For the projected Q-descent method (40), since D(πs, π
′
s) = (1/2)‖πs − π′s‖2 ≤ 1 for

any πs, π
′
s ∈ ∆(A), we have Dρ(π, π

′) =
∑

s∈S ρsD(πs, π
′
s) ≤ 1 for any ρ ∈ ∆(S).

Therefore in order for (49) to hold, it suffices to have η ≥ (1− γ).

• For the exponentiated Q-descent method (41), if we choose the uniform initial policy,

i.e., π
(0)
s,a = 1/|A| for all (s, a) ∈ S × A, then Dρ(π

?, π(0)) ≤ log |A| for all ρ ∈ ∆(S).
Therefore in order for (49) to hold, it suffices to have η ≥ (1− γ) log |A|.

The above analysis indicates that, compared with the exponentiated update variant (NPG),
the projected Q-descent method has a wider range of η to enjoy the same dimensional
independent convergence guarantee (49).

A more curious fact is that for both variants, the step size η does not have an upper
bound and can be as large as possible. This is in contrast to the classical analysis of
smooth optimization, where the step size is usually upper bounded by 2/L with L being the
Lipschitz constant of the gradient; see, e.g., the approach taken in Section 3.1. Here the fact
the step sizes can be arbitrarily large is due to the unique structure of discounted MDPs.
Indeed, we show next that PMD has linear convergence if the step size grows exponentially.

4.2 Linear Convergence

Consider again the policy mirror descent algorithm (39). In order to simplify the presenta-
tion, we define two more notations: the optimality gap

δk := Vρ(π
(k))− Vρ(π?), (50)

which is always nonnegative, and the per-iteration distribution mismatch coefficient

ϑk :=

∥∥∥∥ dρ(π?)dρ(π(k))

∥∥∥∥
∞
. (51)

The following result is the basis for establishing the linear convergence and also for
discussions on possible superlinear convergence.

Proposition 9 Consider the policy mirror descent method (39) with π(0) ∈ rint Π and
ηk > 0 for all k ≥ 0. Then for any ρ ∈ ∆(S), we have for all k ≥ 0,

ϑk+1

(
δk+1 − δk

)
+ δk ≤

1

(1− γ)ηk
D?
k −

1

(1− γ)ηk
D?
k+1, (52)

where δk, ϑk and D?
k are defined in (50), (51) and (45), respectively.

Proof We start with the inequality (46) and bound the first expectation as follows:

E
s∼dρ(π?)

[
〈Qs(π(k)), π(k+1)

s − π(k)
s 〉
]

=
∑
s∈S

dρ,s(π
?)
〈
Qs(π

(k)), π(k+1)
s − π(k)

s

〉
=
∑
s∈S

dρ,s(π
?)

dρ,s(π(k+1))
dρ,s(π

(k+1))
〈
Qs(π

(k)), π(k+1)
s − π(k)

s

〉
≥
∥∥∥∥ dρ(π

?)

dρ(π(k+1))

∥∥∥∥
∞

∑
s∈S

dρ,s(π
(k+1))

〈
Qs(π

(k)), π(k+1)
s − π(k)

s

〉
=

∥∥∥∥ dρ(π
?)

dρ(π(k+1))

∥∥∥∥
∞

(1− γ)
(
Vρ(π

(k+1))− Vρ(π(k))
)
,
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where the inequality holds because of (42), and the last equality is due to the performance
difference lemma, specifically (20). Substituting the above bound and (48) into (46) and
dividing both sides by 1− γ yield the desired result.

The next theorem is our main result on linear convergence. The convergence rate de-
pends on the performance evaluation distribution ρ through the following quantity:

ϑρ :=
1

1− γ

∥∥∥∥dρ(π?)ρ

∥∥∥∥
∞
, (53)

which is an upper bound on ϑk for all k ≥ 0.

Theorem 10 Consider the policy mirror descent method (39) with π(0) ∈ rint Π. Suppose
the step sizes satisfy η0 > 0 and

ηk+1 ≥
ϑρ

ϑρ − 1
ηk, k = 0, 1, 2, . . . , (54)

then we have for each k ≥ 0,

Vρ(π
(k))− V ?

ρ ≤
(

1− 1

ϑρ

)k (
Vρ(π

(0))− V ?
ρ +

D?
0

η0γ

)
. (55)

Proof Using (13), specifically dρ,s(π
(k)) ≥ (1− γ)ρs for all s ∈ S, we have ϑk ≤ ϑρ for all

k ≥ 0. In addition, by Lemma 7, we have δk+1 − δk ≤ 0 for all k ≥ 0. Therefore (52) still
holds if we replace ϑk+1 by its upper bound ϑρ, i.e.,

ϑρ
(
δk+1 − δk

)
+ δk ≤

1

(1− γ)ηk
D?
k −

1

(1− γ)ηk
D?
k+1.

Dividing both sides by ϑρ and rearranging terms, we obtain

δk+1 +
1

(1− γ)ηkϑρ
D?
k+1 ≤

(
1− 1

ϑρ

)(
δk +

1

(1− γ)ηk(ϑρ − 1)
D?
k

)
.

If the step sizes satisfy (54), i.e., ηk+1(ϑρ − 1) ≥ ηkϑρ, then we have

δk+1 +
1

(1−γ)ηk+1(ϑρ−1)
D?
k+1 ≤

(
1− 1

ϑρ

)(
δk +

1

(1−γ)ηk(ϑρ−1)
D?
k

)
.

This forms a recursion and results in

δk +
1

(1−γ)ηk(ϑρ−1)
D?
k ≤

(
1− 1

ϑρ

)k (
δ0 +

1

(1−γ)η0(ϑρ−1)
D?

0

)
. (56)

Finally, using the fact ϑρ ≥ 1/(1− γ), we derive

(1− γ)(ϑρ − 1) ≥ (1− γ)

(
1

1− γ
− 1

)
= γ, (57)
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Substituting the above bound into the right side of (56), and considering the nonnegativity
of D?

k on the left side, we arrive at the desired bound (55).

The exact value of ϑρ is hard to estimate in practice, which hinders the use of the step
size rule (54). However, we can replace it with the more aggressive increasing rule

ηk+1 = ηk/γ, ∀ k ≥ 0,

which always implies (54). To see this, we use ϑρ ≥ 1/(1− γ) to derive

ϑρ
ϑρ − 1

≤ 1/(1− γ)

1/(1− γ)− 1
=

1

γ
.

According to Theorem 10, in order to guarantee Vρ(π
(k))−V ?

ρ ≤ ε, the required number
of iterations of the PMD method is

1

1− γ

∥∥∥∥dρ(π?)ρ

∥∥∥∥
∞

log

((
Vρ(π

(0))− V ?
ρ +

1

η0γ
D?

0

)
1

ε

)
.

Using the bound (2) and assuming η0 ≥ 1−γ
γ D?

0, the iteration complexity becomes

1

1− γ

∥∥∥∥dρ(π?)ρ

∥∥∥∥
∞

log
2

(1− γ)ε
.

Next we discuss a special choice of the performance evaluation distribution ρ.

Special case of ρ = ρ?. Let ρ? ∈ ∆(S) be the stationary state distribution of the MDP
under the optimal policy π?. If the MDP starts with s ∼ ρ? and following π?, then the visit
probability at every step is ρ? and so is the discounted sum of them. Therefore we have
dρ?(π

?) = ρ?, which implies∥∥∥∥dρ?(π?)ρ?

∥∥∥∥
∞

= 1 and ϑρ? =
1

(1− γ)
.

In this case, with the step size rule η0 ≥ 1−γ
γ D?

0 and ηk+1 ≥ ηk/γ, we have

Vρ?(π
(k))− Vρ?(π?) ≤ γk

2

1− γ

and the iteration complexity for Vρ?(π
(k))− Vρ?(π?) ≤ ε is dimension-independent:

1

1− γ
log

2

(1− γ) ε
. (58)

However, unless the MDP is ergodic, the support of ρ? may not cover the full state space S.
Several recent work studied policy mirror descent method for entropy-regularized MDP

and obtained similar linear convergence rates (Cen et al., 2020; Lan, 2021; Zhan et al., 2021).
With entropy regularization, the resulting MDP is always ergodic and the support of any
stationary distribution covers the full state space S, i.e., ρ? > 0. Lan (2021) only considers
ρ? as the performance evaluation distribution; Cen et al. (2020) and Zhan et al. (2021) rely
on the contraction properties of a generalized Bellman operator and obtain guarantees of
the form ‖Q(π(k)) − Q(π?)‖∞ ≤ ε where Q is the “soft” Q-function with regularization.
Our analysis closely resembles that of Lan (2021), with the following differences:
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• We consider standard discounted MDPs and show that linear convergence can be
obtained without entropy regularization. Since the support of ρ? may not cover the
entire state space, we give a general analysis for any ρ ∈ ∆(S) and characterize the
convergence rate in terms of the distribution mismatch coefficient ‖dρ(π?)/ρ‖∞.

• For discounted MDPs without regularization, Lan (2021) also obtains a slower linear
convergence rate (γk/2 instead of γk), through an approximate policy mirror descent
(APMD) method. This method employs exponentially diminishing regularization and
exponentially increasing step sizes, and the analysis is considerably more technical.

4.3 Superlinear Convergence

Under additional conditions, the PMD method (39) may exhibit superlinear convergence.
We revisit Proposition 9 and start by rewriting the inequality (52) as

δk+1 +
D?
k+1

(1− γ)ϑk+1ηk
≤
(

1− 1

ϑk+1

)(
δk +

D?
k

(1− γ)(ϑk+1 − 1)ηk

)
.

If the step sizes satisfy ηk ≥ ϑk
ϑk+1−1ηk−1 starting with some η−1 > 0, then we have

δk+1 +
D?
k+1

(1− γ)ϑk+1ηk
≤
(

1− 1

ϑk+1

)(
δk +

D?
k

(1− γ)ϑkηk−1

)
≤

k∏
i=0

(
1− 1

ϑi+1

)(
δ0 +

D?
0

(1− γ)ϑ0η−1

)
. (59)

Therefore, we have superlinear convergence of δk if ϑk → 1.
Recalling the definition of ϑk in (51), we have ϑk → 1 if and only if dρ(π

(k))→ dρ(π
?).

Apparently, a sufficient condition is π(k) → π?. However, this is hard to establish without
additional assumptions, e.g., by assuming that the optimal policy π? is unique. Alterna-
tively, since D?

k = Ddρ(π?)(π
?, πk) → 0 implies πk → π?, a reasonable attempt is to show

the convergence of D?
k by further leveraging (59). In particular, we can show

D?
k

(1− γ)ϑkηk−1
→ 0

at the same speed as δk → 0, which is at least linear with an uniform upper bound on ϑk as
we have done in Section 4.2. However, the step-size condition ηk ≥ ϑk

ϑk+1−1ηk−1 implies that

the factor 1/(ϑkηk−1) itself converges at the same rate, thus we can not guarantee D?
k → 0.

Nevertheless, we list here two sufficient conditions for superlinear convergence that are
weaker than directly assuming π(k) → π?. Both conditions have been used to establish
superlinear convergence of the classical Policy Iteration algorithm (Puterman, 1994, Corol-
lary 6.4.10 and Theorem 6.4.8, respectively).

• Convergence of the transition probability matrix P (πk). Specifically,

lim
k→∞

∥∥P (πk)− P (π?)
∥∥ = 0,

where ‖ · ‖ is any matrix norm. Under this condition, we have dρ(π
(k))→ dρ(π

?) and

thus ϑk → 1 because dρ(π
(k)) =

(
I − γP (π(k))

)−T
ρ is a continuous function.
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• There exists a finite constant C > 0 such that for all k = 1, 2, . . .∥∥P (πk)− P (π?)
∥∥ ≤ C(Vρ(πk)− V ?

ρ

)
.

This condition is stronger than the previous one because we already established linear
convergence of Vρ(π

k)− V ?
ρ . As a result, it leads to local quadratic convergence.

Khodadadian et al. (2021) showed that under a variant of the second condition above, the
NPG method converges superlinerly. With entropy regularization, the optimal policy π?

is unique and Cen et al. (2020) established local quadratic convergence of the regularized
PMD method.

4.4 Connection with Policy Iteration

Our analysis of the PMD method does not impose any upper bound on the step sizes:
they can be either arbitrarily large constant (Section 4.1) or geometrically increasing (Sec-
tion 4.2). If we allow ηk →∞ for all iterations, the limit of the PMD method (39) becomes

π(k+1)
s = arg min

p∈∆(A)

〈
Qs(π

(k)), p
〉
, ∀ s ∈ S,

which is precisely the classical Policy Iteration method (e.g., Puterman, 1994; Bertsekas,
2012). In fact, our analysis still holds in the limiting case and the result corresponding to
Theorem 10 is

δk+1 ≤
(

1− 1

ϑρ

)k
δ0,

where δk = Vρ(π
(k)) − V ?

ρ . Recall the definition of ϑρ in (53). If ρ = ρ?, then we have
ϑρ? = 1/(1− γ) and

δk+1 ≤ γkδ0,

which has the same convergence rate as Policy Iteration (e.g., Puterman, 1994; Ye, 2011).
In general, we have the trivial bound

ϑρ =
1

1− γ

∥∥∥∥dρ(π?)ρ

∥∥∥∥
∞
≤ 1

(1− γ) mins∈S ρs
,

which leads to

δk+1 ≤
(

1− (1− γ) min
s∈S

ρs

)k
δ0.

This convergence rate is the same as that established for several variants of policy gradient
methods by Bhandari and Russo (2021, Theorem 1), which requires exact line search.
Khodadadian et al. (2021) show that the NPG method with an adaptive step size rule can
also achieve linear convergence. In contrast, our results in Section 4.2 show that the simple,
non-adaptive step size schedule of ηk = η0/γ

k is sufficient to obtain linear convergence of a
general class of policy mirror descent methods.

23



Xiao

5. Inexact Policy Mirror Descent Methods

For discounted MDPs with large state and action spaces, computing the exact policy gra-
dients or Q-functions are very costly and infeasible in practice. In this section, we consider
the following inexact PMD method

π(k+1)
s = arg min

p∈∆(A)

{
ηk

〈
Q̂s(π

(k)), p
〉

+D(p, π(k)
s )
}
, ∀ s ∈ S. (60)

where Q̂s(π
(k)) is an inexact evaluation of Qs(π

(k)). We first study the convergence prop-
erties of (60) under the following assumption on the evaluation error.

Assumption 11 The inexact Q-function evaluations Q̂(π(k)) satisfy∥∥Q̂(π(k))−Q(π(k))
∥∥
∞ ≤ τ, ∀ k ≥ 0. (61)

The following result is the counterpart of Lemma 7 for the inexact PMD method.

Lemma 12 Consider the inexact PMD method (60) with π(0) ∈ rint Π and suppose that
Assumption 11 holds. Then we have for all k ≥ 0,〈

Q̂s(π
(k)), π(k+1)

s − π(k)
s

〉
≤ 0, ∀ s ∈ S, (62)

and for any ρ ∈ ∆(S),

Vρ(π
(k+1))− Vρ(π(k)) ≤ 2

1− γ
τ. (63)

Proof The proof of (62) follows the same arguments as in Lemma 7. However, due to the
inexact Q-function evaluations, the objectives Vρ(π

(k)) are no longer monotone decreasing.
We use the performance difference lemma to deduct:

Vρ(π
(k+1))− Vρ(π(k)) =

1

1− γ
∑
s∈S

dρ,s(π
(k+1))

〈
Qs(π

(k)), π(k+1)
s − π(k)

s

〉
=

1

1− γ
∑
s∈S

dρ,s(π
(k+1))

〈
Q̂s(π

(k)), π(k+1)
s − π(k)

s

〉
+

1

1− γ
∑
s∈S

dρ,s(π
(k+1))

〈
Qs(π

(k))− Q̂s(π(k)), π(k+1)
s − π(k)

s

〉
.

Notice that the first term on the right-hand side is non-positive due to (62). For the second
term, we use Hölder’s inequality to obtain, for all s ∈ S,〈

Qs(π
(k))− Q̂s(π(k)), π(k+1)

s − π(k)
s

〉
≤
∥∥Qs(π(k))− Q̂s(π(k))

∥∥
∞
∥∥π(k+1)

s − π(k)
s

∥∥
1

≤ 2
∥∥Q̂s(π(k))−Qs(π(k))

∥∥
∞

≤ 2τ, (64)

where the second inequality is due to
∥∥π(k+1)

s − π
(k)
s

∥∥
1
≤
∥∥π(k+1)

s

∥∥
1

+
∥∥π(k)

s

∥∥
1
≤ 2, and

the last inequality is due to Assumption 11. Combining (64) with the previous inequality
yields (63).

We will need the following simple fact, whose proof is straightforward and thus omitted.
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Lemma 13 Suppose 0 < α < 1, b > 0, and a nonnegative sequence {ak} satisfies

ak+1 ≤ αak + b, ∀ k ≥ 0.

Then for all k ≥ 0,

ak ≤ αka0 +
b

1− α
.

The following theorem characterizes the convergence of the inexact PMD method un-
der Assumption 11. We keep using the notations D?

k and ϑρ defined in (45) and (53),
respectively.

Theorem 14 Consider the inexact PMD method (60) with π(0) ∈ rint Π and suppose that
Assumption 11 holds. If the step sizes satisfy η0 ≥ 1−γ

γ D?
0 and ηk+1 ≥ ηk/γ, then we have

for all k ≥ 0,

Vρ(π
(k))− V ?

ρ ≤
(

1− 1

ϑρ

)k 2

1− γ
+

4ϑρ
1− γ

τ. (65)

Proof Applying Lemma 6 to the update in (60) and following the same arguments in the
proof of Theorem 8, we arrive at the following counterpart of (46):

E
s∼dρ(π?)

[
〈Q̂s(π(k)), π(k+1)

s −π(k)
s 〉
]
+ E
s∼dρ(π?)

[
〈Q̂s(π(k)), π(k)

s −π?s〉
]
≤ 1

ηk
D?
k−

1

ηk
D?
k+1. (66)

For the first expectation in (66), we follow the proof of Proposition 9 to obtain

E
s∼d?ρ

[
〈Q̂s(π(k)), π(k+1)

s − π(k)
s 〉
]
≥
∥∥∥∥ dρ(π

?)

dρ(π(k+1))

∥∥∥∥
∞

∑
s∈S

dρ,s(π
(k+1))

〈
Q̂s(π

(k)), π(k+1)
s − π(k)

s

〉
= ϑk+1

∑
s∈S

dρ,s(π
(k+1))

〈
Qs(π

(k)), π(k+1)
s − π(k)

s

〉
+ ϑk+1

∑
s∈S

dρ,s(π
(k+1))

〈
Q̂s(π

(k))−Qs(π(k)), π(k+1)
s − π(k)

s

〉
≥ ϑk+1(1− γ)

(
Vρ(π

(k+1))− Vρ(π(k))
)
− 2ϑk+1τ,

where the last inequality is due to the performance difference lemma and (64). For the
second expectation in (66), we again use the performance difference lemma and Hölder’s
inequality to obtain

E
s∼dρ(π?)

[
〈Q̂s(π(k)), π(k)

s − π?s〉
]

= E
s∼dρ(π?)

[
〈Qs(π(k)), π(k)

s − π?s〉
]

+ E
s∼dρ(π?)

[
〈Q̂s(π(k))−Qs(π(k)), π(k)

s − π?s〉
]

≥ (1− γ)
(
Vρ(π

(k))− Vρ(π?)
)
− E
s∼dρ(π?)

[∥∥Q̂s(π(k))−Qs(π(k))
∥∥
∞
∥∥π(k)

s − π?s
∥∥

1

]
≥ (1− γ)

(
Vρ(π

(k))− Vρ(π?)
)
− 2τ.

Substituting the last two bounds into (66) and dividing both sides by 1− γ, we get

ϑk+1

(
δk+1 − δk −

2τ

1− γ

)
+ δk ≤

1

(1− γ)ηk
D?
k −

1

(1− γ)ηk
D?
k+1 +

2τ

1− γ
,
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where δk := Vρ(π
(k+1)) − V ?

ρ . Since δk+1 − δk − 2τ
1−γ ≤ 0 (Lemma 12) and ϑk+1 ≤ ϑρ, the

above inequality still holds with ϑk+1 replaced by ϑρ, which leads to

ϑρ (δk+1 − δk) + δk ≤
1

(1− γ)ηk
D?
k −

1

(1− γ)ηk
D?
k+1 +

2(1 + ϑρ)τ

1− γ
.

Dividing both sides by ϑρ and rearranging terms, we get

δk+1 +
1

(1− γ)ηkϑρ
D?
k+1 ≤

(
1− 1

ϑρ

)(
δk +

1

(1− γ)ηk(ϑρ − 1)
D?
k

)
+

(
1 +

1

ϑρ

)
2τ

1− γ
.

If the step sizes satisfy ηk+1(ϑρ − 1) ≥ ηkϑρ, which is implied by ηk+1 ≥ ηk/γ, then

δk+1 +
1

(1− γ)ηk+1(ϑρ − 1)
D?
k+1 ≤

(
1− 1

ϑρ

)(
δk +

1

(1− γ)ηk(ϑρ − 1)
D?
k

)
+

4τ

1− γ
,

where we also used 1 + 1/ϑρ < 2 because ϑρ > 1. Next we invoke Lemma 13 with

ak = δk +
1

(1− γ)ηk(ϑρ − 1)
D?
k, α = 1− 1

ϑρ
and b =

4τ

1− γ
,

which leads to

δk ≤
(

1− 1

ϑρ

)k (
δ0 +

1

(1− γ)η0(ϑρ − 1)
D?

0

)
+

4ϑρ
1− γ

τ.

Finally applying (57) and η0 ≥ 1−γ
γ D?

0 gives the desired result (65).

As a result of Theorem 14, we have the following asymptotic error bound:

lim
k→∞

Vρ(π
(k))− V ?

ρ ≤
4ϑρ

1− γ
τ =

4τ

(1− γ)2

∥∥∥∥dρ(π?)ρ

∥∥∥∥
∞
,

which agrees with that of conservative policy iteration (CPI) of Kakade and Langford (2002,
Theorem 6.2). It is also similar to the asymptotic error bound of many approximate dynami-
cal programming algorithms (e.g., Bertsekas, 2012), with the additional factor of distribution
mismatch coefficient.

5.1 Sample Complexity under a Generative Model

One way to ensure Assumption 11 hold with high probability is through multiple indepen-
dent simulations (rollouts) of the MDP under a fixed policy. In this section, we analyze the
sample complexity of this approach.

Suppose that for a given policy π(k) and any state-action pair (s, a) ∈ S × A, we can
generate a set of Mk independent, truncated trajectories of horizon H, i.e.,

T (k,i)
s,a =

{
(s

(i)
0 , a

(i)
0 ), (s

(i)
1 , a

(i)
1 ), . . . , (s

(i)
H−1, a

(i)
H−1)

∣∣∣ s(i)
0 = s, a

(i)
0 = a

}
, i = 1, . . . ,Mk.
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We construct Q̂s,a(π
(k)) with the trajectories T (k,i)

s,a , i = 1, . . . ,Mk, as follows:

Q̂s,a(π
(k)) :=

1

Mk

Mk∑
i=1

Q̂(i)
s,a(π

(k)), where Q̂(i)
s,a(π

(k)) :=

H−1∑
t=0

γtR
(
s

(i)
t , a

(i)
t

)
. (67)

The following lemma gives a high-probability bound on the error ‖Q̂(π(k))−Q(π(k))‖∞.

Lemma 15 Consider the Q-estimator given in (67). For any δ ∈ (0, 1), if Mk satisfies

Mk ≥
γ−2H

2
log

(
2|S||A|

δ

)
,

then we have with probability at least 1− δ,∥∥∥Q̂(π(k))−Q(π(k))
∥∥∥
∞
≤ 2γH

1− γ
. (68)

Proof We first define the expectation of the Q-estimator in (67):

Qs,a(π
(k)) := E

[
Q̂s,a(π

(k))
]

= E
[
Q̂(i)
s,a(π

(k))
]

= E

[
H−1∑
t=0

γtR
(
s

(i)
t , a

(i)
t

)]
,

which holds for any i = 1, . . . ,Mk. Recall the definition of Qs,a in (15). Since R(s, a) ≥ 0,
we always have Qs,a(π

(k))−Qs,a(π(k)) ≥ 0. On the other hand,

Qs,a(π
(k))−Qs,a(π(k)) = E

[ ∞∑
t=H

γtR
(
s

(i)
t , a

(i)
t

)]
≤ E

[ ∞∑
t=H

γt

]
=

γH

1− γ
,

which holds for all (s, a) ∈ S ×A. Therefore,∥∥∥Q(π(k))−Q(π(k))
∥∥∥
∞
≤ γH

1− γ
. (69)

Next that we can decompose the estimation error into two parts:∥∥∥Q̂(π(k))−Q(π(k))
∥∥∥
∞
≤
∥∥∥Q̂(π(k))−Q(π(k))

∥∥∥
∞

+
∥∥∥Q(π(k))−Q(π(k))

∥∥∥
∞
. (70)

The last term is bounded by (69), so we need to bound
∥∥Q̂(π(k))−Q(π(k))

∥∥
∞. To this end,

we notice that the random variables Q̂
(i)
s,a(π(k)) are bounded in the interval [0, 1/(1 − γ)].

Therefore Hoeffding’s inequality (Hoeffding, 1963) implies that for any σk > 0,

Pr
(∣∣∣Q̂s,a(π(k))−Qs,a(π(k))

∣∣∣ ≥ σk) ≤ 2 exp

(
−

2M2
kσ

2
k

Mk/(1− γ)2

)
= 2 exp

(
−2(1− γ)2Mkσ

2
k

)
.

Applying the union bound across all (s, a) ∈ S ×A, we obtain

Pr
(∥∥∥Q̂(π(k))−Q(π(k))

∥∥∥
∞
≥ σk

)
≤ 2|S||A| exp

(
−2(1− γ)2Mkσ

2
k

)
. (71)
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Therefore, for any δ ∈ (0, 1), if we choose Mk large enough, i.e.,

Mk ≥
1

2(1− γ)2σ2
k

log

(
2|S||A|

δ

)
, (72)

then
∥∥Q̂(π(k)) − Q(π(k))

∥∥
∞ < σk with probability at least 1 − δ. Combining with (69)

and (70), we conclude that with probability at least 1− δ,∥∥∥Q̂(π(k))−Q(π(k))
∥∥∥
∞
≤ γH

1− γ
+ σk.

Finally setting σk = γH/(1− γ) gives the desired result.

The next theorem characterizes the sample complexity of the inexact PMD method with
the simple Q-estimator.

Theorem 16 Consider using the Q-estimator (67) in the inexact PMD method (60), with
the step sizes satisfying η0 ≥ 1−γ

γ D?
0 and ηk+1 ≥ 1

γ ηk for all k ≥ 0. For any δ ∈ (0, 1) and
integers H > 0 and K > 0, suppose the batch sizes Mk satisfy

Mk ≥
γ−2H

2
log

(
2K|S||A|

δ

)
, k = 0, 1, . . . ,K − 1. (73)

Then we have with probability at least 1− δ,

Vρ(π
(K))− V ?

ρ ≤
(

1− 1

ϑρ

)K 2

1− γ
+

8ϑρ
(1− γ)2

γH . (74)

In addition, for any ε > 0, we have Vρ(π
(K))− V ?

ρ ≤ ε with probability at least 1− δ if

K ≥ ϑρ log
4

(1− γ)ε
and H ≥ 1

1− γ
log

16ϑρ
(1− γ)2ε

. (75)

The corresponding sample complexity of state-action pairs is

Õ

(
|S||A|

(1− γ)8ε2

∥∥∥∥dρ(π?)ρ

∥∥∥∥3

∞

)
, (76)

where the notation Õ(·) hides poly-logarithmic factors of 1/(1− γ), 1/ε and |S||A|/δ.

Proof Suppose the total number of iterations is K. In order to have (68) hold for all
k = 0, 1, . . . ,K − 1, we need to apply the union bound across all K iterations, which
imposes an additional factor K on the right-hand side of (71). Consequently, we can extend
Lemma 15 to ensure that the event∥∥∥Q̂(π(k))−Q(π(k))

∥∥∥
∞
≤ 2γH

1− γ
, k = 0, 1, . . . ,K − 1,
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occurs with probability at least 1 − δ provided that (73) holds. Then (74) follows directly
from Theorem 14 with τ = 2γH/(1− γ).

In order to have Vρ(π
(k)) − V ?

ρ ≤ ε within K iterations, it suffices to have each of the
two terms on the right-hand side of (74) less than ε/2, i.e.,(

1− 1

ϑρ

)K 2

1− γ
≤ ε

2
and

8ϑρ
(1− γ)2

γH ≤ ε

2
.

which translate into the conditions on K and H in (75). Correspondingly, the batch sizes
need to satisfy Mk ≥M where

M :=
γ−2H

2
log

(
2K|S||A|

δ

)
≥ 1

2

(
16ϑρ

(1− γ)2ε

)2

log

(
2K|S||A|

δ

)
.

The total number of state-action samples can be estimated as

|S||A| ·K ·H ·M

= |S||A| · ϑρ log

(
4

(1− γ)ε

)
· 1

1− γ
log

(
16ϑρ

(1− γ)2ε

)
· 1

2

(
16ϑρ

(1− γ)2ε

)2

log

(
2K|S||A|

δ

)
=

128|S||A|ϑ3
ρ

(1− γ)5ε2
log

(
4

(1− γ)ε

)
log

(
16ϑρ

(1− γ)2ε

)
log

(
2K|S||A|

δ

)
= Õ

(
|S||A|ϑ3

ρ

(1− γ)5ε2

)
.

Finally, plugging in the definition ϑρ = 1
1−γ

∥∥∥dρ(π?)
ρ

∥∥∥
∞

gives the estimate in (76).

The sample complexity obtained in Theorems 16 has O(ε−2) dependence on ε. This is
better than that of O(ε−4) obtained by Shani et al. (2020) and Agarwal et al. (2021) and
O(ε−3) by Liu et al. (2020) for policy gradient type of methods (without regularization).
Cen et al. (2020) remarked that O(ε−2) sample complexity can be obtained with entropy
regularization. Their approach leads to a result without the factor of the distribution
mismatch coefficient, but with the same 1/(1 − γ)8 factor. Lazaric et al. (2016) derived
an O(ε−2) sample complexity for a variant of the policy iteration method, with a factor
of at least 1/(1 − γ)7. Lan (2021) studies sample complexity in expectation instead of
with high probability and obtains similar results with weaker dependence on 1/(1 − γ).
Yuan et al. (2022) characterize the sample complexity of vanilla policy gradient method
(such as REINFORCE (Williams, 1992)) under a variety of different assumptions on the
parametrized value function.

Much progresses have been made for understanding the sample complexity of discounted

MDPs in the tabular setting. Azar et al. (2013) established a lower bound of Ω̃
(
|S||A|

(1−γ)3ε2

)
for

discounted MDPs under a generative model, which allows drawing random state-transitions
repeatedly under any policy. The simple Q-estimator we use in this section fits this sample
oracle model, but the dependence of our results on 1/(1− γ) is much worse than the lower
bound. On the other hand, this lower bound has been matched or nearly matched by
several recent work based on variance-reduced Value Iteration (Sidford et al., 2018) and
Q-learning (Wainwright, 2019). There is interesting work to be done for improving the
sample complexity of stochastic policy gradient methods.
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6. Conclusion and Discussion

We developed a general theory of weak gradient-mapping dominance and used it to obtain
an improved sublinear convergence rate of the projected policy gradient method. By ex-
ploiting additional structure of discounted MDPs, we show that with a simple, non-adaptive
rule of geometrically increasing the step sizes, policy mirror descent methods enjoy linear
convergence without relying on entropy or other strongly convex regularizations. In fact,
the convergence rates obtained with strongly convex regularizations (Cen et al., 2020; Lan,
2021; Zhan et al., 2021) are no better than γk regardless of the regularization strength.

Our results on policy mirror descent methods show that dynamic preconditioning using
discounted state-visitation distributions is critical for obtaining fast convergence rates that
are (almost) independent of problem dimensions. The adopted local Bregman divergence,
being KL-divergence or squared Euclidean distance, does not make much difference. Indeed,
when the step sizes grow to infinity, preconditioned policy mirror descent methods derived
with different Bregman divergences all reduce to the classical Policy Iteration algorithm.
Essentially, such methods with finite step sizes can be viewed as inexact Policy Iteration
methods, much like many approximate dynamic programming algorithms.

The major limitation of this work is our restriction to direct policy parametrization.
(We note that the NPG method with tabular softmax parametrization has an equivalent
mirror-descent form expressed in the policy space, therefore is included in our study.) A
natural extension is to consider general policy parametrizations of the form π(θ) where
the dimension of θ is much smaller than |S||A|. There are two ways to proceed. The
first approach is to simply treat it as a nonlinear optimization problem of minimizing the
composite objective Jρ(θ) = Vρ(π(θ)). This approach may lose some important structure
of discounted MDPs and it will be hard to establish convergence to global optimum. In
addition, by relying on standard theory of smooth nonconvex optimization, we may have
to impose bounded step sizes and settle for relatively slow convergence rates.

The second approach is to follow the framework of compatible function approximation
(Sutton et al., 2000; Kakade, 2001), which is extensively developed by Agarwal et al. (2021).
This approach facilitates the extension of our results on inexact policy mirror descent to
general policy parametrization. In particular, our results in Section 5 show that geomet-
rically increasing step sizes do not cause instability even if the Q-functions are evaluated
inaccurately. In fact, inexact policy mirror descent methods converge linearly up to an
asymptotic error floor, which immediately leads to an O(ε−2) sample complexity as we have
shown. It is of great interest to reduce the dependence of sample complexity on 1/(1 − γ)
and the distribution mismatch coefficient.
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Appendix A. Appendix

A.1 Derivation of Policy Gradient using Matrix Calculus

We derive the policy gradient formula (18) using simple matrix calculus. Let es ∈ R|S| be
a vector with components es,s′ = 1 if s = s′ and 0 otherwise. From the expression of V (π)
in (9), we can write its components as

Vs(π) = eTs V (π) = eTs
(
I − γP (π)

)−1
r(π).

Using the matrix calculus formula ∂X−1

∂π = −X−1 ∂X
∂πX

−1 with X = (I − γP (π)), we have

∂Vs(π)

∂πs′,a′
= eTs

(
−
(
I−γP (π)

)−1
(
−γ ∂P (π)

πs′,a′

)(
I−γP (π)

)−1
)
r(π) + eTs

(
I−γP (π)

)−1 ∂r(π)

∂πs′,a′

= eTs
(
I − γP (π)

)−1
(
∂r(π)

∂πs′,a′
+ γ

∂P (π)

πs′,a′

(
I − γP (π)

)−1
r(π)

)
= eTs

(
I − γP (π)

)−1
(
Rs′,a′es′ + γ

∂P (π)

πs′,a′
V (π)

)
where in the last equality we used ∂r(π)/∂πs′,a′ = Rs′,a′es′ and the definition of V (π). From
the definition of P (π), we have ∂P (π)/∂πs′,a′ = es′P (·|s′, a′), which is a rank-one matrix
with P (·|s′, a′) acting as a row vector. Therefore,

∂Vs(π)

∂πs′,a′
= eTs

(
I − γP (π)

)−1
es′
(
Rs′,a′ + γP (·|s′, a′)V (π)

)
=

1

1− γ
ds,s′(π)Qs′,a′(π),

where we used the expression of ds,s′(π) in (12) and the definition of Qs′,a′(π). This gives
the component-wise expression for policy gradient, which leads to the aggregated form (18).

A.2 Strong Gradient-Mapping Domination

Following the setting in Section 3.1, we define a stronger notion of gradient-mapping domi-
nation and show that it leads to geometric convergence to a global optimum. It corresponds
to the setting with exponent α = 1/2, which is excluded in Definition 3.

Definition 17 (strong gradient-mapping domination) Suppose F := f + Ψ where f
is L-smooth and Ψ is proper, convex and closed. We say that F satisfies a strong gradient-
mapping dominance condition if there exists ω > 0 such that

1

2
‖GL(x)‖22 ≥ ω

(
F (TL(x))− F ?

)
, ∀x ∈ dom Ψ, (77)

where F ? = minx F (x) and TL and GL are defined in (30) and (31) respectively.
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Consider the composite optimization problem of minimizing F := f + Ψ where f is
L-smooth and Ψ is proper, convex and closed. If F satisfies the strong gradient-mapping
domination condition, then the proximal gradient method (29) converges geometrically to
a global minimum. To see this, we simply combine the descent property (32) with strong
gradient-mapping dominance condition (77) to obtain

F (xk)− F (xk+1) ≥ 1

2L

∥∥∥GL(xk)
∥∥∥2

2
≥ ω

L

(
F (xk+1)− F ?

)
.

Rearranging terms, we obtain(
1 +

ω

L

) (
F (xk+1)− F ?

)
≤ F (xk)− F ?.

This leads to a geometric recursion and we have

F (xk)− F ? ≤
(

1 +
ω

L

)−k (
F (x0)− F ?

)
.

Connections with other notions of gradient dominance. The classical Kurdyka-
 Lojasiewicz (K L) condition with exponent 1/2 (Kurdyka, 1998) can be expressed as

min
s∈∂F (x)

1

2
‖s‖2 ≥ ω̃

(
F (x)− F ?

)
, ∀x ∈ dom Ψ, (78)

where ∂F (x) denotes the set of subgradients (subdifferential) of F at x and ω̃ > 0 is a
constant. Karimi et al. (2016) derived a proximal Polyak- Lojasiewicz (P L) condition

1

2
PL(x) ≥ ω

(
F (x)− F ?

)
, ∀x ∈ dom Ψ, (79)

where

PL(x) := −2Lmin
y

{
〈∇f(x), y − x〉+

L

2
‖y − x‖22 + Ψ(y)−Ψ(x)

}
,

and showed that it is equivalent to the K L condition (78) in the sense that they imply each
other albeit with different constants ω̃ and ω. Interestingly, it can be shown that there is
an interlacing relationship between our definition of gradient-mapping domination and the
proximal P L condition above:

1

2
‖PL(x)‖22 ≥

1

2
‖GL(x)‖22 ≥ ω

(
F (x)− F ?

)
≥ ω

(
F (x+)− F ?

)
.

The proximal P L condition (79) takes the first and the third terms in the above inequal-
ity chain, while our gradient-mapping dominance condition (77) takes the second and the
fourth. We conjecture that these two conditions also imply each other.
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