Journal of Machine Learning Research 23 (2022) 1-39 Submitted 2/22; Revised 7/22; Published 8/22

De-Sequentialized Monte Carlo: a parallel-in-time particle
smoother

Adrien Corenflos ADRIEN.CORENFLOS@QAALTO.FI
Department of Electrical Engineering and Automation, Aalto University

Nicolas Chopin NICOLAS.CHOPIN@ENSAE.FR
ENSAE, Institut Polytechnique de Paris

Simo Sarkka SIMO.SARKKA@AALTO.FI
Department of Electrical Engineering and Automation, Aalto University

Editor: Anthony Lee

Abstract

Particle smoothers are SMC (Sequential Monte Carlo) algorithms designed to approxi-
mate the joint distribution of the states given observations from a state-space model. We
propose dSMC (de-Sequentialized Monte Carlo), a new particle smoother that is able to
process T observations in O(log, T') time on parallel architectures. This compares favor-
ably with standard particle smoothers, the complexity of which is linear in T. We derive
L, convergence results for dSMC, with an explicit upper bound, polynomial in 7. We
then discuss how to reduce the variance of the smoothing estimates computed by dSMC
by (i) designing good proposal distributions for sampling the particles at the initialization
of the algorithm, as well as by (ii) using lazy resampling to increase the number of parti-
cles used in dSMC. Finally, we design a particle Gibbs sampler based on dSMC, which is
able to perform parameter inference in a state-space model at a O(log, T') cost on parallel
hardware.

Keywords: Sequential Monte Carlo; Parallel methods; Particle smoothing; Particle
Gibbs

1. Introduction

State-space models (SSM), or hidden Markov models, are a class of statistical models
that comprise unobserved (latent) Markovian states X; € X for ¢t € {0,1,...,T}, and
conditionally independent observations Y; €). The models can be written in the form

X ’ T—1 ~ Pt(dl"t | 33t—1),

1
Y: | ¢ ~ P(dy | z4), @)

with Xo ~ Po(dxo), where P;(dz; | ;1) is the transition kernel of the Markov sequence
X; modeling the dynamics of the system, Pi(dy; | x¢) is the conditional distribution of
measurements Yz, and Py(dxg) is the prior distribution of the initial state X. For simplicity,

(©2022 Adrien Corenflos, Nicolas Chopin and Simo Sarkké.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/22-0140.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/22-0140.html

CORENFLOS, CHOPIN AND SARKKA

we assume that there exist h; such that Pi(dy; | z1) = he(ye | x¢) dye, where dy; refers to a
dominating measure over), for example, the Lebesgue measure if J) = R%,

In this paper, we consider the state-estimation problem which refers to the problem
of inferring the states X; from the measurements Y;. In particular, we concentrate on
the smoothing problem, where the aim is to infer the distribution of the whole trajectory
of states Xo.r given the whole set of measurements Yp.r. A typical application of state
estimation consists in target tracking, where the state X; models the position (and possibly
other physical quantities such as the speed) of a moving target, and the observation Y;
corresponds to some noisy and partial or indirect measurement of X; (Jazwinski, 1970;
Bar-Shalom et al., 2001). Additionally, we consider the parameter-estimation problem of
inferring the unknown parameters appearing in the model. In addition to target tracking,
state and/or parameter estimation problems also arise in various other applications such as
in biomedicine, epidemiology, finance, audio signal analysis, and imaging. For an in-depth
review of state-space models and their applications, see the books of Sarkka (2013) and
Chopin and Papaspiliopoulos (2020).

In the signal processing setting, the solutions to the smoothing problem are focused
on computing the marginal conditional distributions of X; for t = 0,...,T given all the
measurements Yy.r. However, in the context of Monte Carlo methods — which we also
concentrate on here — it is more natural to directly consider the joint distribution of all the
states and measurements which can be written as

T
P(dzo.r , dyo.r) = Po(dzo) {H ha(ye | xt)dyt} {H Py(day | ft—l)} : (2)

t=0 t=1

In this notation, smoothing consists in representing the posterior distribution of the states
conditionally on the observations, Qr(dzo.7) = P(dzo.r | yo.r), and in particular being
able to approximate expectations such as Qr(y¢) = Eq, [¢(Xo.7)] for some function ¢ of
interest. When Py(dxg) = Po(dzg | 0), P(dxy | x—1) = Pi(dzy | 24-1,0), and he(y: |
xt) = hi(ye | x¢,0) depend on a parameter 6, parameter estimation consists in computing
estimates 0 either as point estimates or in the form of a posterior distribution of the
parameter. Formally, if 0 is given a prior distribution p(df), one can represent its posterior
distribution as

p(d0 | yo.r) o< p(df)p(yo.r |), (3)

where

T
por 10)= [P dwore{ﬂhtyt\xt, }{HPAdwtm_he)}. @)
t=1

Except in the case of finite-state SSMs (e.g. Rabiner, 1989), linear Gaussian SSMs
(LGSSMs) (Kalman, 1960; Rauch et al., 1965), and certain other special cases, neither

DE-SEQUENTIALIZED MONTE CARLO

the smoothing nor the parameter estimation problems admit a closed-form solution, and
we need to resort to approximations. A successful class of such approximations comprise
Gaussian approximation based filtering and smoothing approximations such as extended
(Jazwinski, 1970), unscented (Julier et al., 2000), and cubature Kalman filters (Ito and
Xiong, 2000; Arasaratnam and Haykin, 2009), as well as their corresponding smoothers
(for a review, see, e.g., Sarkkd, 2013). Another class of methods is sequential Monte
Carlo (SMC) algorithms (see, e.g., Gordon et al., 1993; Doucet et al., 2000; Chopin and
Papaspiliopoulos, 2020) such as particle filters and smoothers which are based on Monte
Carlo sampling from the filtering and smoothing distributions. These algorithms can, more
generally, also sample from the full distribution of Feynman—Kac models (Del Moral, 2004;
Chopin and Papaspiliopoulos, 2020) given as a product of Markov kernels and potentials
h; as follows:

T T
Qr(dzo.7) o Po(dzo) {H ht(:ct)} {H Py(dz | xH)} : (5)
t=0 t=1

which recovers the case of (2) by setting hy(x¢) = hy(y: | 2¢) in a slight abuse of notation.

The aforementioned finite-state methods, Gaussian approximations, and SMC methods
are based on sequential forward and backward recursions which allow for computationally
efficient algorithms that scale linearly in the number of time steps O(T'). Although this
computational complexity is (in a sense) optimal in classical single-core computers, it is not
optimal in multi-core parallel computers which are capable of sub-linear time-complexity
in terms of span-complexity (Cormen et al., 2009) — span-complexity referring here to the
actual wall-clock time taken by a method when run on a parallel computer which can be
less than O(T') even when the size of data is T'. The sequential approximations for filtering
and smoothing, in their standard formulation, have a linear time complexity in 1" even
when run on a parallel computer, which is due to the inherent sequential nature of the
computations.

However, it was recently shown in Sarkkéd and Garcia-Fernandez (2021) that Bayesian
filtering and smoothing recursions (including, e.g., the Kalman filter and smoother) can
be reformulated in terms of associative operators that can be time-parallelized to O(log T')
span-complexity by using a parallel scan algorithm. In Hassan et al. (2021), similar methods
were developed for finite-state models, and Yaghoobi et al. (2021) developed Gaussian
approximation based parallel methods for non-linear SSMs. These methods reduce the
computational cost from linear to logarithmic in the number of time steps 7' on highly
parallel hardware such as graphics processing units (GPUs). Unfortunately, the general
formulation of Sarkka and Garcia-Ferndndez (2021) is not directly applicable to SMC-based
particle filters and smoothers, as propagating the associative operator appearing in Sarkka
and Garcia-Ferndndez (2021) is exactly what SMC offers to do in the first place. The aim
of this article is to fix this shortcoming by proposing a parallel-in-time (PIT) formulation
of SMC, the de-Sequentialized Monte Carlo (dSMC) method, that can be used — either

CORENFLOS, CHOPIN AND SARKKA

as a standalone method, or in combination with Gaussian approximations — in order to
perform Monte Carlo inference in general SSMs. However, instead of using an associative
operator formulation as in Sarkka and Garcia-Fernandez (2021), the method uses parallel
merging of blocks in a tree structure.

1.1 Related work

Temporal parallelization of general Bayesian filters and smoothers have recently been dis-
cussed in Sérkka and Garcia-Fernandez (2021), Hassan et al. (2021), and Yaghoobi et al.
(2021), but only in the contexts of Gaussian approximations and finite-state models. Par-
allelization methods for Kalman type of (ensemble) filters via parallel matrix computations
over the state dimension are presented in Lyster et al. (1997) and Evensen (2003). In the
context of SMC methods, parallelization over particles has been considered in Lee et al.
(2010), Rosen and Medvedev (2013), and Murray et al. (2016), however, these methods
do not address the time dimension and their computational complexity is still linear in T
on parallel hardware. In the context of variational inference (see, e.g. Blei et al., 2017), it
was also noted in Aitchison (2019) that operations akin to sequential importance sampling
could easily be written as chaining matrix multiplications, allowing to parallelize these on
a GPU, both in the time and particle dimensions. Singh et al. (2017) consider blocking
strategies for particle Gibbs algorithm, using the Markov property to allow the treatment
of non-contiguous time blocks in parallel. Their method, however, works better for larger
blocks with a significant overlap, thereby reducing its parallelization properties, and they
also do not consider parallelization of particle smoothing. Orthogonally to these direction,
coupled smoothing methods, introduced in Jacob et al. (2019) and further developed in
Middleton et al. (2019) and Lee et al. (2020), allow to compute unbiased estimates of
particle smoothers. This allows to parallelize calculation of smoothing expectations by
aggregating many unbiased smoothers together.

Closest to our work is Lindsten et al. (2017) who consider the case of already formed
graphical models. In fact, once the tree structure of dSMC is built, our algorithm can be
seen as a direct instance of divide and conquer SMC for one dimensional lattices (Lindsten
et al., 2017, Section 3.4), which propagates and merges particle samples from children
nodes to a parent node. In their article, Lindsten et al. (2017) show the consistency of
their algorithm in terms of convergence in probability. This was further improved by
Kuntz et al. (2021b) who derived additional theoretical properties of estimates computed
from divide-and-conquer SMC. These results can be applied to dSMC as well. However,
our method differs from both these articles in several ways. First, Lindsten et al. (2017)
do not consider modifying the structure of a pre-existing graphical model to be able to
parallelize it. Second, the bounds for £, errors we derive in this article depend explicitly
(and polynomially) on T'. These results are specific to dSSMC as a parallel algorithm. Third,
we derive a parallel-in-time particle Gibbs algorithm for dSMC which can be more generally
applied to Lindsten et al. (2017). Lastly, we introduce parallel-in-time initialization of the

DE-SEQUENTIALIZED MONTE CARLO

algorithm and lazy resamplings as ways to speed up the algorithm and allow for better
scalability in the number of particles used.

Finally, we note that Ding and Gandy (2018) introduced a smoothing algorithm leverag-
ing the same binary tree. However, their method differs from ours in the following aspects.
The main goal of Ding and Gandy (2018) is to reduce the variance of smoothing algorithms
by computing adapted target distributions at each node of the tree. As a consequence, they
do not directly address parallelization in time (our main motivation), and, in fact, do not
allow for it as their algorithm requires to run a particle filter and a particle smoother a
priori. They also do not discuss approximated LGSSM (PIT) initialization, lazy schemes,
or particle Gibbs extensions.

1.2 Contributions

In Section 2, we introduce a formal divide-and-conquer formulation of the smoothing dis-
tribution for a class of Feynman—Kac models, which is then used to define dASMC. We then
proceed to study the properties of dSMC and, in particular, we derive £, error bounds
that only scale polynomially in T' for balanced tree representations of the smoothing dis-
tribution. Section 3 is concerned with introducing the conditional formulation of dSMC.
This is then used to define a PIT particle Gibbs algorithm. In Section 4, we discuss how to
construct adapted proposals without breaking the logarithmic scaling in 7', and then show
how parallel resampling methods can be used to lazily increase the number of particles
used in dSMC. Finally, in Section 5, we experimentally demonstrate the statistical and
computational properties of our method on a suite of examples. The article concludes with
a discussion of the limitations and possible improvements of the de-Sequentialized Monte
Carlo method.

2. De-Sequentialized Monte Carlo

We first introduce the core components required for building a parallel-in-time (PIT)
particle smoother algorithm that we call de-Sequentialized Monte Carlo (dSMC). Our
method relies on a divide-and-conquer approach, where we recursively stitch together par-
tial smoothing distributions Qg.;(dz,) to form the final estimate. In order to do this, we
first present the tree structure associated with smoothing in state-space models, and then
we discuss how importance sampling-resampling can be leveraged to create joint samples
from marginal ones. Finally, we describe the resulting algorithm and derive convergence
bounds for it. For the sake of generality, we will consider the potential formulation h:(x)
in (5), which possibly depends on y;, but, by a slight abuse of language, we will still refer
to Qr as the smoothing distribution. To ensure that the model (5) is not degenerate, we
will for simplicity assume that these potentials h; are positive.

CORENFLOS, CHOPIN AND SARKKA

2.1 Tree structure

The recursive expressions for the smoothing distribution

T T
1
Qr(dzor) = I, Po(dwo) tHlPt(dxt | zi-1) tHOht(HUt% (6)
where Ly is a normalizing constant, are given by the forward Feynman—Kac recursion (see,
e.g., Del Moral, 2004; Chopin and Papaspiliopoulos, 2020)

Qt+1(d$0:t+1) X Qt(de:t)htH(ﬂft+1)Pt(d33t+1 \ $t>7

or the backward one

@T(dxt:T) 08 ht+1(ﬂft+1)Pt(ﬂft+1 \ $t) dw; QT(d$t+1:T)7

when P;(dzy41 | x;) admits a density py(x¢11 | ;) with respect to a fixed (z4-independent)
measure dz41. Leveraging these recursions respectively corresponds to particle filtering
and particle smoothing algorithms, and results in algorithms for sampling from Q7 that
scale computationally in O(T).

In this section we instead propose a divide-and-conquer recursive construction of the
smoothing density Q. In order to do so, we introduce the concept of partial smoothing
distributions.

Definition 1 Let (v.(dx.))L_, be a collection of probability measures, such that for all
¢ >0 and all z,—y € X, P.(dz. | xc—1) is absolutely continuous with respect to v.(dz.).
Then for any 0 < a < b<T, we can define

b b
Qa(dras) = 7 |valdra) T] Pz || T oo ™

t=a+1 t=a+1

where LY, is a normalizing constant (assumed to be positive), and by convention the product
over an empty set is 1, so that, for any a, Q4.,(dz,) = ve(dz,) and LY., = 1.

Provided that vg defines the filtering posterior distribution of g, we can then recover the
original Q7 from Q.. This corresponds to the following proposition.

Proposition 2 For any family vo.r given by Definition 1, and such that the initial distri-
bution verifies vo(dxg) o< ho(zo)Po(dzo), we have

Qr(dzo.r) = Qp.r(dwo.T). (8)

The partial smoothing distributions (Q%.;), <, <p.<7 can then be stitched together, form-
ing a recursive structure for the smoothing operation.

DE-SEQUENTIALIZED MONTE CARLO

Proposition 3 For any 0 <a <c<b<T, we have

v v
La:cfch b

Qpp(dray) = L 2We (Te—1, Te) Qg1 (ATa:c—1)Qrp (dwep)s 9)

where wY is defined as the following Radon—Nikodym derivative:

Pe(dze | 2e—1)he(zc)

We (IC—lv xC) = l/c(dxc) (10)
Proof Forall0 <a<c<b<T, we have:
LV'C— LZ 1% v 14
a.Lyl .bwc (xc_h wc)@a:cfl (dxaic—l)@c;b(dxc:b)
a:b
1 Pdze | we—1)he(ze)
- L, ve(dz,)
B c—1 c—1
X |va(dza) J] Pi(day | ztl)] | J RED)
L t=a+1 t=a+1 (11)
B b b
x |ve(dee) [Pu(da | xtl)] || RED
L t=c+1 t=c+1
1 b b
= o |valdza) [T Pu(da | mtl)] | J IRED)
ab t=a+1 t=a+1
= ngb(dxa:b)-
[|

The recursive property exhibited by Proposition 3 allows us to construct an arbitrary tree
structure on the smoothing distribution. This construction is illustrated in Figure 1. In
practice, we could use any ordered binary tree structure on {0,1,...,7} to define a well-
posed recursive representation of Qp, but, as we will see in Sections 2.2 and 2.3, balanced
representations offer better statistical and computational properties.

In practice, the stitching operation described by Proposition 3 is not tractable in closed-
form, and we need to resort to Monte Carlo integration instead.

2.2 Sample stitching

For notational simplicity, in this section and all subsequent ones we do not emphasize the
dependency of our estimates on v. Suppose that we have two independent Monte Carlo

CORENFLOS, CHOPIN AND SARKKA

/\

Qe:9

/\ /N

Qo:2 Q35 Qe:s Qo:9

/N /N /N

Qo:1 Qa:2 Q3.4 Qs:5 Qe:6 Q78

/N /N /N

Qo:0 Q11 Q3.3 Qu4:4 Q7.7 Qs:s

Figure 1: Example of a recursive tree structure for Qg.g.

approximations

@a:c—l ~ ac 1 ch 15Xac 1
(12)

N .
QCZb ~ chb = Z w?6X?b7

n=1

following Lindsten et al. (2017) and Kuntz et al. (2021a), we can then form the “product-
form” importance empirical density

N
Qo= Y W o, xz,l (13)

m,n=1

where
c—1» Xn)

N
Z,J | W 1wcwc(Xc 17Xj)

As described in Kuntz et al. (2021a), this estimator exhibits better statistical properties
than the “naive” estimator

Wl qwlwe (X"

W =

Cc

(14)

N

Z wy_qwewe(X, X7)

N
n=1 Zmzl W jwlwe (X, X))

a:c—1>

Xl

when the (X2), and (X7)Y_; have been sampled independently.

n=1
Moreover, the denominator of (14) directly provides us with an estimate of the nor-

malizing constant increment, that is, if ng\:[c—l and Lgfb are estimates of the normalizing

DE-SEQUENTIALIZED MONTE CARLO

constants of Qg..—1 and Q..p, respectively, then, following Proposition 3, we know that

Ly = La:c—1Lcy // Wc(xc—lvxc)@a:c—l(dxc—l)(@c:b<d$0)
N

‘ (15)
~ Ly 1 L2 Z W wiwe(Xe_y, X7 1)
ij=1

Algorithm 1: Block combination

// All operations on indices m,n are done in parallel
s 1:N I:N 7N N , ,I:N TN
Function CoMBINE (XY | w!N, LY |, XLV wiN LY)
// In all but the initial step, the weights w!"; and w] are 1/N.
N
LY « Em,n:l we(X2y, XS)wiqwg
W™ = we(Xe g, X0 ywi ywi /LY
// In parallel, using, e.g., multinomial or systematic resampling:
Sample N times from 3 W™ dxm(dze)dxn | (dze—1) to get
(Xe 1, X2 i<nen
// The two loops below can be done in parallel:

for ¢ =a,...,c—1 in parallel do
| X2 XY

for ¢ =c,...,bin parallel do
| XD X1

v 1I:N 1N NN
return Xa:b ’ La:cfch:bLC

When the importance estimator in (13) has been formed, we can then resample N pairs

of partial smoothing paths (I",7")_; according to the normalized weights W."" to obtain
1

a stitched Monte Carlo approximation Qfl\f =¥ Zgzl (5[Xm X This construction is

a:c—17?

summarized in Algorithm 1, from which we can also compute the normalizing constant
increment as a by-product. On the other hand, for all ¢ = 0,...,7T, we can define the
initial self-normalized importance approximation Q% = 25:1 W{'éxy, where, for all ¢,
ve(X7')
¢ (X{")

Under this construction, we can show that the resulting Monte Carlo £, error is well-
behaved.

sum to 1.

the X}*’s are i.i.d. sampled from ¢, and the W}*

Proposition 4 Let p > 1 be an integer, suppose that the (1", 7“”),]:7:1 are sampled according

to a categorical distribution (i.e. multinomial resampling), that ¢ is a bounded measurable
function, and that w. is bounded. If for any measurable bounded functions pg.c—1 and pep

CORENFLOS, CHOPIN AND SARKKA

we have
1/p Pa:c—1|| 0o
E [‘@a:o—l(@a:c—l) - @i\{cfl(@a:c—lﬂp} Cgc 1 H N1/12|| s (16)
1/p Pe:
E [‘Qc:b(@pc:b) - Q?{b(‘pc:b)‘ } Cfb ” Nlb/H2) (17)

for some constants C¥ .,

C’f:b independent of N, pg.c—1, and ep, then,

1/p
E[|Qusle) ~ Q@] " < (4min(Cl, .y, €2zl +2000) e 4
where W, = Wc/Zc and Z. = La:b/(La:c—ch:b)-

The proof of Proposition 4 may be found in Appendix C. Proposition 4 allows us to derive
upper bounds to the total £, error as a consequence.

Corollary 5 Suppose that the w./Z.’s and the % ’s are uniformly bounded by some constant
Q independent of ¢, and let QY, = % Zgzl Wioxn, where, for all c, the X7’s are i.i.d.
sampled from q., then

Chr = O ((42)7), (19)

where D is the depth of the tree structure chosen for the smoothing operation (see Figure 1).
In particular, if the tree is balanced, that is, if D = [logy T'],

Chy = O (1222, (20)

Proof The initial case comes from (Del Moral, 2004, Lemma 7.3.3) so that for all c,
CP. < 2tD/P. The result then proceeds by using inequalities on the progression of
arithmetico-geometric sequences (see, e.g., Riley et al., 2006, Section 4.2.3). |

Remark 6 The uniform bounding of the quantities
We We

Ze - ff Wc(xcfla370)(@(1:071(dxcfl)(@czb(dﬂrc)7

for all ¢, assumed in Corollary 5, is, for example, true as soon as the w.’s are uniformly
bounded below and above. This hypothesis, albeit strong, is typically assumed in proofs of
the uniform convergence of particle filtering algorithms (Del Moral and Guionnet, 2001).

(21)

Following Crisan and Doucet (2000, Proof of Lemma 5), for p > 2, Chebyshev’s in-
equality and Borel-Cantelli lemma also provides the following corollary.

Corollary 7 Under the same hypotheses, Q)1 (¢) converges almost surely to Qo.r ().

An interesting point to notice is that for very unbalanced trees with depth of order T,
Proposition 4 recovers the usual exponential scaling in 7' (Andrieu et al., 2001) of the mean
squared error, instead of the polynomial scaling obtained when the tree is balanced.

10

DE-SEQUENTIALIZED MONTE CARLO

Algorithm 2: Smoother initialization

// All operations on indices m,n are done in parallel
for t=0,...,7T in parallel do

X[" < sample from ¢ (dxy)

if t =0 then

n n\ Po(dz n
| w < ho(X5) e (X))

else
n Ijt(dCCt) n
‘ Wy PAGED) (Xt)
n n N m
Wt Wy /Zm:l Wy
Lt — N Em:l Wy
1:N I:N 7N
return X, Wy, Lo.p

2.3 Algorithm

The Monte Carlo approximation of Qg7 can be computed using a recursive algorithm
which can be parallelized across all operations happening at each level of the tree depth.
At initialization, we simply need to sample independently N times from 7"+ 1 proposal
distributions ¢, t = 0,...,7T, and then form the resulting importance sampling represen-
tation of all the distributions Q¢, t = 0,...,T, following Definition 1 and Proposition 2.
This is summarized in Algorithm 2. In order to obtain a balanced tree, we can recursively
split at the midpoint of the partial smoothing interval, essentially recovering a binary tree
when T + 1 is a power or 2. This results in Algorithm 3.

The smoothing algorithm then simply consists in passing the output of Algorithm 2
to Algorithm 3. It is worth noting that while Algorithm 3 is correct, its recursive nature
makes its implementation on parallel devices tedious if one wants to benefit from hard-
ware acceleration. Moreover it does not consist in a tail recursion (see, e.g. Muchnick,
1997, Chap. 15), so that it cannot easily be transformed into a loop that would be easier
to parallelize. However, the split-combine operations can be reformulated as a series of
tensor reshaping operations, which is more amenable to parallelization. We provide this
equivalent, albeit parallelizable, formulation of the algorithm in Appendix A.

Consider now the choice of tree partitioning given in Figure 1. The nodes correspond
to the combination operation, while the edges correspond to the split happening in Algo-
rithm 3. All the operations at a given depth can be run fully in parallel, each of them
being entirely parallelizable too with respect to the particle samples, except for the resam-
pling operation. The resampling operation requires normalizing the weights and running
parallel search operations, which can be done with span complexity (Cormen et al., 2009)
of O(log N) on parallel architectures (using prefix-sum operations, see, e.g., Murray et al.,
2016), so that each level of the tree has span complexity O(log N). This results in a par-
allelized algorithm run time that globally scales linearly with the depth of the smoothing

11

CORENFLOS, CHOPIN AND SARKKA

Algorithm 3: Recursion

Function RECURSION (XY, wiill | LY XN wlN L)
ifa=c—1 and b = ¢ then

‘ return COMBINE(X LN wl™N LN XN wlN L))
else if c—1 > a and b = ¢ then
C/ — La-i—g—lJ
XEN L LY, e

a:c—1»

1:N 1L:N N 1:N 1:N N
RECURSION (Xa:c’—17 Weiel 1> La:c’—l7 ‘ch’:c—l7 Werie 1> Lc’:c—l)
1L:N N N 1I:N I:N 7N
return CoMBINE(X NV | (1/N)A_ LY XN wiN LY,
else if a =c—1 and b > ¢ then

¢ |4

Xclzsz’ Livb < RECURSION (X(}::c]’v—l’ wi::c]y—l’ LZ:YC’—I’ X(}’::]lY’ wi’::]l\)]7 Lé\’f:b)
return COMBINE(X L, wi™ LY, X N (1/N)N_ L)

else

¢ e

Xoi g Lley

1:N 1:N N 1:N 1:N N
RECURSION (X(:L:C’—l’ wa:cl_la La;cl_lﬂ XC’;C—17 wc’:c—l’ Lc’:c—l)
/ c+b
Cc < LTJ

Xeip' Lty < RECURSION(X 0 welll 1, Ly, X3 weiys Ly
return CoMBINE(X Y |, (1/N)A,, LY, X N, (1/N)A_,, LY,)

ac—1» n=1 “a:c—1» n=1»

tree considered, and logarithmically in the number of particles. As a consequence, we have
the following proposition.

Proposition 8 The total span complezity of dSMC' is O(logy(T') log(N)).

Remark 9 It is worth noting that some alternative resampling methods exist that allow
to parallelize the resampling operation, at the cost of biasing it, or at the cost of random
execution time (Murray et al., 2016). We discuss these methods and the additional benefits
they provide for dSMC' in Section 4.2.

3. Parallel-in-time particle Gibbs

We now focus on deriving a conditional formulation of dSMC (that we call c-dSMC) that
we then use to build a PIT particle Gibbs algorithm. We quickly discuss its degeneracy
properties, and in particular the fact that it may mix well even without the addition of a
backward sampling step.

12

DE-SEQUENTIALIZED MONTE CARLO

3.1 Conditional dSMC sampler

Particle Gibbs methods were introduced in Andrieu et al. (2010) in order to sample from
the joint posterior Qq.r(dzo.r,df) of a state-space model. It consists in successively ap-
plying two conditional sampling steps: (i) sampling 6 conditionally on a given smoothing
trajectory xf ., and (ii) sampling a smoothing trajectory (., conditionally on z{.,. and
6. Step (ii) needs to be understood as “conditionally to one of the trajectories sampled by
the SMC algorithm being z.,”.

Due to the arbitrary tree representation of the smoothing operation, it is complicated
to manipulate the complete expression for the distribution of all the random variables
generated during the course of the smoothing algorithm!. However, we can still provide
a natural recursive expression that will serve as a support for understanding the behavior
of the conditional distributions. In order to make notations simpler, we write o4.c—1(k),
k=a,a+1,...,¢—1 for the resampling array (i.e., the array of the resampling indices)

applied to node k, and we write o}.,_; (k) for its n-th element (and similarly for o..(k)).

Remark 10 0,1 is a function of the left-right resampling indices X1, rEN.._1 gen-
erated deeper in the recursion tree, and similarly for o, via the recursion

oy (k) = 0512;71(14;)7 foralla <k <c,

m (22)
oy (k) =o.s (k), foralle<k<b,
and initial values
Oaiaa) =m, (23)

for allm e {1,2,...,N}.

Under this notation, if the initial Monte Carlo approximation for the Q...’s are given
by

1 N
QY. = NZ:IW%X?,
n—=

then for all a < k < b, a < b, we have

1 N
N Z 6}(2&:[;(’“) (dxk)

n=1

QN (dzy) =

That is, o, encodes the subset (with repetitions) of particles that survived from initial-
ization down to the partial smoothing distribution approximation Qfl\:’b.

1. Although this was done for instance in Lindsten et al. (2017) to prove the unbiasedness of their resulting
likelihood estimate.

13

CORENFLOS, CHOPIN AND SARKKA

For a < ¢ < b, let Yot (da k| 1N, reN. 1) and ey (daliy S IEN ., rEN.,) be the
full distributions of all the random variables generated by dSMC for the partial smoothing
distributions Qg..—1 and Q..;, respectively. The full distribution of all the random variables
generated to form the resampled approximation Qi\fb of Qg.p is given by

l IN)

77Z)tlb(d$ab ’la+1b7 a+1b) wac 1(ac 1ra+1:c—1 Tat1:c—1

chb(dmcb 7lc+1b’ C+1b {HWlC,T }’ 24)
where for all m,n € {1,..., N}, we have

C

W o (o751 a0l (25)

N
sothat Y. W. ™" =1, and the initial distributions are given by 1a.q(dzlN) = [T, va(dz?)
m,n=1
(for the sake of clarity, we restrict to the case v, = qq)-
Equation (24) further allows to define the full distribution of all the random variables

generated to form the weighted approximation @fl\{b (13) as

wa b(dxa :b 7la+1 by a+1 b) 7/}a:cfl(L g c 1 ala—i—l c—1» a+1 c— 1)
1:N ;1:N 1:N
X wc:b(dxc:b) lc—i—l:b? Tc—i—l:b)' (26)

Similarly, the related estimate of the normalizing constant

La b — Lcjz\:[b(la+1 c—1» lc+1 b T leﬁ ie—15T i+]\1[b) (27)
follows the recursion
S fere) o
Ly = Lea AN 3w (a0 B 25)
ij=1

Putting these together allows us to characterize recursively the invariant distribution of
our specific version of the particle Gibbs kernel (Andrieu et al., 2010), that we will then
use in order to express the related conditional dSMC distribution

L
Tan(Azyy a1 Tatyy) = 722 % p(daiy o ratis)- (29)
Following Andrieu et al. (2010), define
Ta; b(dxa b > la+1 b T é-i]-\{ ps T n) = Ta: b(dma b > la—i—l by a+1 b)Wm " (30)

14

DE-SEQUENTIALIZED MONTE CARLO

corresponding to sampling once from (13). We have

Ta: b(d%b 7la+1 b T (11+1 by T, 1) (31)

AL e |
= Wgnun
La'C—lLC'bwa wc—l;xc)@a:c—l(dxc—l)(@c-b(dxc)

1:N 1:N
X wa ‘c— l(dxa ie—1 7la+1 ie—1> a+1‘cfl) X wc b(dx 7lc+1 :b» c+1:b)
PN LT,
X 7TCLinl(d Lgic— 1 7la+1 c—1» a+1:c 1 H WC (32)
X Te: b(dxc b ’lc—l—l b c+1 b H o

o _(c—1 o’ (c
X wc (xci.i: 1()7$Cc,b()) ,

where we assumed that we have a < ¢ — 1 and ¢ < b (as we otherwise recover the base
case for ¢4..—1 and 1. and the recursion can be stopped), that ¢; and ¢, are the indices
for the stitching that formed 4..—1 and . in Proposition 3, respectively, and where the
constant of normalization is N? [we(ze—1, Te)Qaic—1(d2e—1)Qep(dze).

This, in turn, can be rewritten to isolate a “star trajectory”: developing line (32) we
obtain

m

1:N l?‘l »Til lcl 77'27
Taze—1(dzgid 7la+1 1> Tatlie—1) ¥ H We, x We,
i#m

i J
N N -2 N U(’Lz:c 71(C171) O :671(01)
La cl—chl:c—l {N Zi,j:l Wey <IBCZ_{ ’qu
La:clfchl'cfl ff We; l'clflyxcl)(@a:clf (dxclf)ch'cfl(dfcl)

1:N 1:N N
X waiczf (d‘/L‘a cp—1 7la+1 c— Ta—i—l:cl—) X ¢c; C— 1(dxcl :c—1 ’lcl—i-l c—1 cl+1:c—1)v

which can be further decomposed in

N
Laclf w (d l 1:N)
I a:c;—1 acl 15%+1:—15 Tatlig—1
a:c;—1
N
cric—1 N
X ﬁ¢616 1(d clc 1’lcl+lc 1 cl+1:c—1)
cic
; & e
Ogie,—1(a—=1) o, . _1(a)
cl7 Cl acy—1 cpie—1
X H we, | Tey1 , T, . (33)

i#=m

15

CORENFLOS, CHOPIN AND SARKKA

The final structure of (33) mirrors that of (31), with the decomposition {Hz e chp o } X

m m
Tguey—1(a=1) ol q(cr) . : .
we, | Ze—1 , Ty . This ensures that we can recursively decompose 7, in a

star trajectory and a remainder by defining o7, | = ol |, ;“b = an, Where (I,J) is
distributed according to a categorical distribution on W.™", and o7, = [o%.._1,0%,]. This
in turn defines X, = XZ:‘;;” = [o l,X:b] and the related [}, r}, which correspond

to the resampling indices pairs that eventually lead to the star trajectory. Following the
recursive construction of (31) and (33), we are able to isolate the star trajectory from the
rest of the variables appearing in m,.; to form the marginal distribution

Tab(dT). o<1_[1/C (dx}) ch Th 1, (34)

which corresponds exactly to Qg.;. This allows us to formulate the following proposition.

Proposition 11 (Conditional dSMC) Under m,, the star trajectory X, is marginally
distributed according to Qu.p, and the remaining variables admit as a conditional distribu-
tion, given the star trajectory, the distribution defined by Algorithm 4 (discussed in next
section).

Remark 12 While we are concerned here with parallel-in-time smoothing, the construc-
tion above generalizes to the algorithm of Lindsten et al. (2017) which considers stitching
independent SMC samplers by means of an operation akin to that of Proposition 3. This
means that, provided that one is able to implement a conditional SMC' for each individual
SMC sampler in the tree structure — possibly in the form of an ancestor sampling algori-
htm (Lindsten and Schén, 2012; Whiteley, 2010) — the conditional SMC properties can be
preserved by a construction similar to the one we developed in this section for dSMC.

3.2 Parallel-in-time particle Gibbs

The resulting algorithm resembles the classical conditional SMC algorithm of Andrieu et al.
(2010), in that, similarly, we can implement it by simply enforcing that the first trajectory
be preserved throughout the course of the recursion. In particular, only Algorithms 1 and 2
need to be modified. The conditional version of Algorithm 2 simply consists in prepending
the star trajectory to the sampled proposal trajectories before computing the resulting
weights. In other words, for a star trajectory (.., if, for a given ¢, we are given N —1 i.i.d.
samples (Xt")g:2 from ¢, we set X} = 2} and then proceed with computing the weights
in Algorithm 2 as if xj had simply been sampled from g too. On the other hand the
conditional version of Algorithm 1 consists in preserving said star trajectory throughout
the resampling steps and is given by Algorithm 4.

16

DE-SEQUENTIALIZED MONTE CARLO

Algorithm 4: Conditional Block combination

// All operations on indices m,n are done in parallel
Result: Combine conditional particle representation of partial smoothing
distributions

Function CONDITIONALCOMBINE (XY | w!H, XN V)

Set We™™ oc we(XM™y, XP)w!™ jw?

Sample independently N — 1 times from Zmn Wg”’”éxgn(dxc)éxgil(d:vc_l) to
get (Xiil,XcT")lgngN // in parallel, using multinomial resampling

// The two loops below can be done in parallel:

for ¢ =a,...,c—1 in parallel do

Xo X,

Xn e X

for ¢ =c,...,b in parallel do

Xo X,

XX

v1:N
return X j

Andrieu et al. (2010) considered implementing the conditional SMC step using a parti-
cle filter only, which resulted in lower mixing speeds for time steps further away from the
last time step 7'. This was corrected by the introduction of the so-called backward sampling
step (Whiteley, 2010; Lindsten and Schon, 2012), which enabled rejuvenating the condi-
tional trajectories; see also Lindsten et al. (2014) for a related approach. A noteworthy
point is that our proposed PIT particle Gibbs algorithm does not suffer from the classical
genealogy degeneracy problem that prompted the development of the ancestor sampling
step. This is due to the fact that the degeneracy arising in dSMC is essentially uniform
across all time steps thanks to the balanced tree structure. Indeed, instead of the last time
steps being resampled just a few times and the initial time steps being resampled around T’
times, as in standard SMC, all time steps in dSMC are resampled at most [logy, T'] times.
This is also the reason why the £, error in Proposition 4 scales as a polynomial of 7" and
not exponentially. In practice, this means that the modified trajectories sampled from our
conditional dSMC will mix similarly for initial timesteps and for final ones, provided that
our proposal distributions ¢; and auxiliary weight functions 14 are adapted to the model
and data at hand.

It is worth noting, however, that the backward sampling step of Whiteley (2010) ad-
ditionally removes the need for scaling the number of particles, N, with the time horizon,
T (at the cost of instead increasing the number of MCMC iterations required to converge,
Lee et al., 2020). This property is likely not preserved by c-dSMC, and we expect that N
needs to increase with 7' (at least logarithmically) in order to ensure proper ergodicity.

17

CORENFLOS, CHOPIN AND SARKKA

4. Variance reduction methods

A drawback of our method consists in the necessity to use independent proposals go.7(dzo.7)
= H;‘FZO qt(dzy). It is well known that using such rough estimates increases the variance
of the smoothing distribution estimates in particular in case of “sticky” processes which
exhibit a strong time-dependency, or more precisely, when the conditional reverse Markov
chain representing the smoothing distribution mixes slowly. However, this problem can
be mitigated by using proposal distributions that are adapted to the model at hand. In
Section 4.1 we describe how recently developed parallel-in-time Gaussian approximation
based smoothing algorithms (Sérkkd and Garcia-Ferndndez, 2021; Yaghoobi et al., 2021)
can be used to form such proposals. As these methods are also parallel in time, they do
not relinquish the O(log T') span complexity of the dSMC algorithm.

More prosaically, a natural way to reduce the variance of the smoothing estimators is
to increase the number of particles used in the Monte Carlo representations. However,
doing so in Algorithm 2.3 comes at a quadratic cost in memory and threads utilization.
In Section 4.2 we discuss how we can leverage ideas from Murray et al. (2016) to lazily
resample so as to keep a linear memory cost and reduce the computational burden.

4.1 Parallel-in-time Gaussian approximated smoothing solutions

It is well known that non-linear SSMs for which the state posterior distribution is uni-
modal can be approximated by LGSSMs. For example, consider an additive Gaussian
noise transition model py(x; | z4—1) = N (zy; f(x4-1), Qi—1) day. Under the Gaussian ap-
proximated assumption p(z¢ | y1.¢) = N (2¢; my, P;), we can use a Taylor linearization of the
transition function f around the approximated mean m; to form the linearized dynamics
xey1 = f(me) + J[f](me)(ze — me) + €, where € is a Gaussian random variable with mean
0 and covariance J[f](m¢)Q:J[f](m¢)" and J[f](my) is the Jacobian of f evaluated at m.
By repeating this approximation for each time step and for the observation model, we ob-
tain the extended Kalman filter algorithm (Jazwinski, 1970). Similarly, one can use Taylor
expansion in order to compute Gaussian approximations of the smoothing distribution
marginals p(z; | y1.7) for all ¢, yielding the extended Kalman smoother algorithm. Other
linearization techniques exist, such as statistical linearization (Gelb, 1974), sigma-point
(unscented) methods (Julier et al., 2000; Sarkké, 2008), and numerical integration based
methods (Ito and Xiong, 2000; Sarkkd and Hartikainen, 2010). For a review, we refer the
reader to Sarkka (2013).

In practice it is worth noting that the reference point used to linearize the system
at time t (m; for the extended Kalman filter example above) is arbitrary, and could be
optimized instead of taking the result of the previous time step. This remark led to
development of iterated extended Kalman filters (Bell and Cathey, 1993), iterated sigma-
point filters (Sibley et al., 2006; Zhan and Wan, 2007), and general iterated statistical
linear regression methods called posterior linearization filters (Garcia-Fernandez et al.,
2015). When considering smoothing problems, it is even better to iteratively linearize with

18

DE-SEQUENTIALIZED MONTE CARLO

respect to the smoothing trajectory as is done in the iterated extended Kalman smoother
(Bell, 1994). A general framework of iterated posterior linearization smoothers using this
idea was developed in Garcia-Ferndndez et al. (2017) and this was further generalized
to more general state-space models in Tronarp et al. (2018). These methods result in
Gaussian approximations to the marginals p(z; | y1.7) ~ N (xs;mi, P}) which are optimal
in a Kullback-Leibler sense (Garcia-Fernandez et al., 2015).

Recently, Sarkkd and Garcia-Ferndndez (2021) showed that by reformulating Bayesian
filters and smoothers (including Kalman filters and smoothers) in terms of associative oper-
ators, it is possible to parallelize them along the time dimension by leveraging prefix-sum
algorithms (Blelloch, 1989). This leads to logarithmic span-time complexity O(log, T")
instead of the conventional O(T') of sequential methods. Yaghoobi et al. (2021) then
extended this framework to non-linear models by developing parallelized versions of the
iterated extended Kalman smoothers as well as the more general iterated posterior lin-
earization smoothers. This framework allows for computing the marginal approximations
p(x¢ | yr.r) = N (zg;ml, P}) in the O(log, T') time complexity.

These Gaussian approximations to the smoothing distributions can now be used as pro-
posal distributions ¢; and/or weighting distributions 14 in the proposed dSMC algorithm.
The resulting method with ¢; = 14 is summarized in Algorithm 5.

Algorithm 5: PIT linearized proposal smoother

Function LINEARIZEDSMOOTHER(y;.7)

for t=0,...,7T in parallel do

Initialize ¢) = N'(zy;m?, P?) // for example, using the stationary
distribution

Set I + 1

while convergence criterion not verified do

Linearize (2) around qllfl, fort=0,1,...,7 // Done in parallel

Run parallel Kalman filter and RTS smoothers on the linearized system as

per Sérkké and Garcia-Fernandez (2021) or Yaghoobi et al. (2021)

Set p(x¢ | y1.17) ~ ¢t = N(zy;ml, P}), for t =0,1,...,T // Done in
parallel

Set [+ 1+1

Run the parallel smoother defined as per Algorithms 2 and 1

Similarly, we can tweak Algorithm 5 in order to define an efficient Gaussian proposal
model for PIT pGibbs. Indeed, between two iterations of the d-cSMC described in Sec-
tion 3.1, pGibbs typically proposes new parameters and we can expect the parameters of
the state-space model to not have changed too much. Intuitively, this means that the op-
timum trajectory for the parallel IPLS method will not change much and we can therefore

19

CORENFLOS, CHOPIN AND SARKKA

reuse the optimum of the previous Gibbs iteration as initialization for the next one. The
benefit of doing so is shown in the experiment of Section 5.2.

4.2 Parallel resampling for lazy evaluation of the weight matrix

Algorithm 1 presented in Section 2.3 requires to form a N x N matrix to then sample N
elements from it. Doing so limits the scalability of dSMC in at least two ways:

1. The memory cost will increase quadratically with the required number of particles.
This is particularly problematic on parallel hardware such as GPUs where the memory
available is usually more limited than the main (random-access memory) memory
accessible via a CPU. For a large number of time steps or particles, our algorithm
may therefore simply fail to return a result.

2. The number of threads available on GPUs, while increasing year-on-year, is still lim-
ited, and our algorithm computational scalability, although theoretically logarithmic
in both NV and T, may be affected by threading bottlenecks. See Section 5.1 for an
illustration of this.

In order to mitigate both these issues, we can leverage the parallel resampling schemes
proposed by Murray et al. (2016). Indeed, these can be modified in order to sample N
entries from a set of N x N unnormalized weights without needing to evaluate the whole
matriz. This property, although not discussed in Murray et al. (2016) can crucially be
utilized to design lazy resampling schemes for our N x N size importance density (13).
Formally, suppose we want to sample N pairs (I, Jr,) independently from a categorical
distribution Cat((Wé’J)Z]-szl), where for all 4,5, We? oc we(X!_ 1, X2) for some time index
c. This can be done in parallel across the N pairs (I,,, J,) by considering N independent
instances of a Metropolis-Hastings (Code 2 in Murray et al., 2016) algorithm with proposal
(after proper flattening of the N x N matrix) U({1,..., N?}) and target o< w.(X! |, X7).
Similarly, when an upper bound @, to w,. is available, an unbiased rejection sampling
equivalent (Code 3 in Murray et al., 2016) can be implemented. Under this perspective,
we only need to evaluate the term w.(X! ;, X?) for the proposed pairs (i,5). This allows
us to never increase the memory and thread utilization beyond O(N) operations at any
point in time. On the other hand, this also means that we may inefficiently re-evaluate the
same pair several times. However, as shown in Section 5.3, the parallelization makes this
trade-off beneficial. For the sake of completeness, we reproduce the resulting resampling
algorithms in Appendix B.

Finally, while using these lazy resampling schemes comes at a price (biasedness in the
case of the Metropolis—Hastings variation and random execution time in the case of the
rejection sampling one), as discussed in Murray et al. (2016, Sections 3.2 and 3.4), this
trade-off becomes better as the variance of the weights w.(X’_;, X2) decreases.

c—1

20

DE-SEQUENTIALIZED MONTE CARLO

5. Experiments

In order to illustrate the computational and statistical properties of our proposed methods,
we now consider a set of examples from the literature and compare with the sequential
counterparts of our methods. All the results were obtained using an Nvidia® GeForce
RTX 3090 GPU with 24GB memory and the code to reproduce them can be found at
https://github.com/AdrienCorenflos/parallel-ps.

5.1 Comparison with FFBS

In this section, we compare dSMC to the classical forward filtering backward sampling
(FFBS) algorithm (Godsill et al., 2004), both in terms of execution time and Monte Carlo
error. To make the comparison fairer, we also implement FFBS on GPU; in this way,
FFBS scale as O(T'log N) (see, e.g., the prefix-sum implementation of classical resampling
operations in Murray et al., 2016), since the particle operations are parallelizable up to a
logarithmic factor (corresponding to computing the sum of the importance weights, which
can be done using a prefix-sum algorithm). We consider the same model as in Chopin and
Singh (2015) (which is a simplified version of the model in Yu and Meng (2011) for photon

emission):
2
o
xo ~ N <M7 1—p2>)

xp = p+pAzi—1 —p) Feo1, e-1~N(0,0%), t>1,
Yyt ~ P(exp(zt)),

(35)

where P(exp(z;)) denotes a Poisson distribution with rate exp(x;), and we want to estimate
its Fisher score with respect to o2, and evaluated at o2
E [Vg2 Inp(Xo.7, yo.1) | Yo.7]

T+1 1-—p?
B 5 T 4
20 20

g (36)

T
1
(Xo =) + 53 D AXe = p= p(Xams =)} [0
s=1

Because of its additive nature, the variance of this expectation should increase as T in-
creases, making it a good benchmark function to test our algorithm.

The stationary distribution of the underlying dynamics is z; ~ N(u, 02/(1 — p?)), so
we take ¢ = 1p = N'(1,0%/(1 — p?)) for all ¢.

In order to study the statistical and numerical properties of our algorithm we then
generate 50 datasets xg.7, yo.r from the model for T' = 32,64, 128,256,512 and repeat 100
dSMC and FFBS smoothing experiments on each dataset generated. The statistics we
generate are then averaged over the datasets.

The resulting average running times (and 90% confidence intervals) of the correspond-
ing algorithms are shown in Figure 2. Our algorithm is always faster than its sequential

21

https://github.com/AdrienCorenflos/parallel-ps

CORENFLOS, CHOPIN AND SARKKA

dSMC FFBS
I %igg /_%- u
PSS] pup g =
—e— —-—Jifv::fooooo /
—

Runtime (s)
o
b
!

\

il —————— 00— i
S —]
10_3 — v =
T T T T T T
95 96 o7 08 99 210

Figure 2: Average clock time of running a sequential FFBS vs dSMC. For T' small enough,
dSMC scales logarithmically, and then linearly when the parallelization threads have all
been utilized. The effect is more pronounced for a higher number of particles. The 90%
confidence intervals over the 50 datasets are also reported but hardly visible. The numerical
artifact at 7 = 2% for N = 25 and N = 50 is not explained but may be due to the
computational framework used.

FFBS counterpart. Due to the limited number of threads on our GPU, the logarithmic
complexity scaling of our proposed method reaches a technical upper bound as we increase
the number of sampled time steps. In particular the number of time steps that can effec-
tively be parallelized is a decreasing function of the number of particles used. After the
parallelization limit has been reached, dSMC scales linearly as further progress is blocked
by waiting that a thread becomes free to use.

On the other hand, as can be expected from using independent proposals, our algorithm
exhibits a larger error for estimating the Fisher score function, and this error increases with
the number of time steps we want to sample. This effect is illustrated by Figure 3 where,
for each dataset, we report the average relative error of computing the Fisher score for 100
runs of the particle smoothers, and report the average of this over all the datasets. There
therefore exists a natural trade-off between speed and precision, which can be beneficial or
not depending on the application. In the next section we show that the increase in variance
does not necessarily affect sampling performance in practice.

22

DE-SEQUENTIALIZED MONTE CARLO

—— T =32
T =64
35 | | —e—T=128 . B
—e—T=26|_ — 7 —
" —e—T=512 [—
g \
S T e ° ° :/
@)
= .\ ./
o 25 o— — -
o)
°
2 ° O 0 L
T T T T]
102 103
N

Figure 3: Average relative error (and 90% confidence interval thereof) of running a sequen-
tial FFBS vs dSMC. dSMC always exhibits a higher error than FFBS, the ratio between
the two increasing as 7T increases.

5.2 Particle Gibbs sampling of theta-logistic model

The goal of this section is to show how the ¢-dSMC algorithm can be used to perform
particle Gibbs sampling while not reducing its performance compared to the sequential
version of ¢cSMC. In order to illustrate the properties of this PIT pGibbs algorithm, we
consider the following theta-logistic state-space model:

xo ~ N(0,1),
Ty =xi1 + 70— Trexp(rozi_1) + &, € ~N(0,¢%),t>1 (37)
Y =3+, n~N(0,7%), t>0.

This model was originally proposed by Lande et al. (2003) in order to model population
dynamics and has been used as a benchmark for PMCMC methods in, for example, Peters
et al. (2010), Chopin and Papaspiliopoulos (2020, Chap. 16). We use the same prior and
data (nutria, 7'+ 1 = 120) as in these references. We run two sets of experiments: one
informed, where Kalman approximations are used, and one uninformed.

For ¢-dSMC, the “informed proposal” method is defined as taking ¢; = 14 to be “locally
adapted”: ¢ (x¢) = prxs(x¢ | Yo, 70,71, 72,q,7) given by the parallel extended Kalman
smoother described in Section 4.1. More precisely, given an initial sample from the prior

23

CORENFLOS, CHOPIN AND SARKKA

p(70, 71, 72,9, 7), we compute the iterated EKS solution with 25 iterations and take the ¢;’s
to be the resulting approximated smoothing marginal. For all subsequent steps, given new
parameters, we run a single step of the iterated EKS, starting from the previous iterated
EKS approximation, and use the updated Gaussian approximated smoothing marginals
as our new proposal distributions ¢;’s. The “uninformed proposal” on the other hand, is
taken to be a Gaussian proposal around the data: q;(x;) = N (z¢; 5z, 7% + ¢2).

For the classical ¢cSMC, the “informed proposal” method is defined as a guided particle
filter using the “locally optimal proposal” for (37) (see, e.g., Chopin and Papaspiliopoulos,
2020, Chap. 10.3.2). The “uninformed proposal” on the other hand, is taken to be the
bootstrap proposal for the model. We use N = 50 particles for both the sequential and
PIT versions of cSMC and report the run time of the experiments.

Informed proposals Not informed

fb) 1 77777777777 T e === J"’\,"’L/\»HI_‘L\’\‘"\,'>/‘I,'—\'/
B 08—y | w
—

o 0.6 1 - T
T 04| . -
£ |

5 02f]]

0

0 20 40 60 8 100 120 O 20 40 60 80 100 120

t t
Figure 4: Average update rate of the star trajectory X; for each time ¢. The average
update rate of cSMC with backward sampling (---) is higher than that of c-dSMC (—),
but in the case of uninformed proposals, the latter is more homogeneous across time steps.
Using an adapted proposal marginally improves the resulting update rate in both cases,
mostly by smoothing out the “dip” in the model.

In Figure 4, we report the update rate for the sampled trajectory, defined as the em-
pirical probability that the star trajectory X; is updated by running a conditional SMC.
It varies between 70% and 80% for the uninformed c-dSMC, and 80% and 85% for the
informed version, homogeneously across all time steps without any explicit backward sam-
pling step. This is to be compared with the non-uniform renewal rates (= 90%) of the
uninformed standard pGibbs algorithm, and the almost ideal behavior of the informed
standard pGibbs, when a backward sampling step (Whiteley, 2010; Lindsten and Schon,
2012) is implemented.

Moreover, obtaining 10° samples from the Gibbs chain took around 400 seconds with
both proposal versions of ¢c-dSMC, while it took around 4 000 seconds for both sequential
c¢SMC samplers with backward sampling. Finally, the ACFs (auto-correlation functions)
of the Markov chains formed by the parameters posterior samples are virtually identical,
as illustrated by Figure 5 (we only report these for the adapted proposals, as there is no
major difference with the uninformed ones).

24

DE-SEQUENTIALIZED MONTE CARLO

70 1 T2

0.8 | 11 4 F\ :

Correlation

1/o3 Xo

0.6 : 11 :

0.4

Correlation

0.2

U ! ! ! ! ! | ! - ! ! I 1
0 20 40 60 80 40 60 80 1000 20 40 60 80 100

Lag Lag Lag

Figure 5: Auto-correlation plots for the parameters 7o, 71, 72, 1/ Ug(, 1/ 012,, and the initial
state X posterior samples. Using ¢cSMC with backward sampling (---) or c-dSMC (—)
results in similar auto-correlation functions for the posterior samples.

5.3 Speed-up and variance reduction via lazy resampling

We now show how the lazy resampling methods introduced in Section 4.2 can help speed
up dSMC significantly, while at the same time retaining the same variance as the original
method. In order to do so, similarly to Deligiannidis et al. (2020, Section 4.1), we consider
a constrained random walk model studied, for example, in Del Moral and Doucet (2004)
and Adorisio et al. (2018). While, contrarily to these works, we are not concerned with
exact simulation, this model is helpful in understanding the impact of the weights variance
on the total runtime and variance of dSMC with lazy resampling. Indeed, the model is
controlled by a single parameter ¢ which represents the noise of the constrained random
walk, and directly impacts the variance of the weights in dSMC. Decreasing this parameter
will increase the variance of the importance weights, reducing the performance of Monte
Carlo methods. This type of behavior is akin to what happens when one increases the
dimension of the state (or of the observation). Furthermore, this model is not easily
approximated by an LGSSM, and therefore, the variance reduction method of Section 4.1
does not apply here.

25

CORENFLOS, CHOPIN AND SARKKA

Formally, the model is defined as follows:

xo ~ N(0,1),
Ty =z + o061, €-_1~N(0,1),
and we want to sample from p(xzor | —1 < 2y < 1,t =0,...,T). This model corresponds

to the transition kernel Py(dz; | x;_1) ~ N(w_1,02) with potential function hy(x;) =
1{_1,1)(z¢). Following Deligiannidis et al. (2020), we consider the proposal ¢ = U([-1,1]);
the weights w; are then upper-bounded by (2rc)~'/2. As o gets higher, we expect the lazy
resampling schemes in Section 4.2 to perform better. In order to compare the different
smoothing algorithms, we estimate E [p(Xo.7) | =1 < X; < 1,t =0,...,T], where

T
ozor) = log(o) + % S (w1 — m)?, (39)
t=1

which corresponds (up to a multiplicative constant) to the expected Fisher’s score estimate
of this model.

For the sake of simplicity, we only consider the rejection version of our lazy resampling
methods. Recall that the Metropolis—Hastings version is biased, and thus our convergence
theorems do not apply. On the other hand, Murray et al. (2016) find that it works better
than the rejection counterpart in all the examples they consider.

In Figure 6, we take o to be in {0.3,0.4,0.5}, this set being taken to be around the
value when using lazy resampling starts to outperform FFBS, and we report the average
(over 100 experiments) run times of FFBS, dSMC with systematic resampling (sys-dSMC),
and dSMC with rejection-resampling (rs-dSMC) of computing Fisher’s score estimates. In
Figure 7, we report the respective variance of the resulting 100 score estimates.

For low N’s, sys-dSMC is the fastest, with fairly high variance estimates of the Fisher
score, as previously discussed in Section 5.1. However, for larger N values, despite its
random run time, rs-dSMC completely outperforms both FFBS and sys-dSMC in terms
of speed. Moreover, for ¢ = 0.4 and ¢ = 0.5 and all 7’s, the slowest running rs-dSMC
(N =5000) is faster than the fastest running FFBS (N = 25) and exhibits a lower Fisher
score estimate variance than FFBS with more particles than N = 25. Finally, this improved
performance becomes better as the number of time steps T increases, therefore confirming
the appeal of dSMC for high values of T

6. Discussion

In this article we have introduced de-Sequentialized Monte Carlo, the first fully parallel-in-
time particle smoother. This algorithm exhibits £, error bounds that scale polynomially
in the number of times steps and inverse proportionally to the number of particles used.
Futhermore, we have shown how one can build a conditional version of dSMC, to be used,

26

DE-SEQUENTIALIZED MONTE CARLO

T=32 T=064 T=128 T =264 T =512

=0.5
Run Time
=

CIC
LA
LK

LYY
AR

10—3]

102108 02 108 102 108 02 108 02 108

Figure 6: Average run times to compute Fisher’s score estimate (39) as a function of
the number of particles N for FFBS (mmm) sys-dSMC (mmm) and rs-dSMC (=) and
different values of 7" and 0. We can see that for lower variance weights regimes (higher o),
rs-dSMC runs largely faster than both FFBS and sys-dSMC.

T =32 T =04 T =128 T = 264 T =512
10} - - L -
o 10%] = = = =
g%loz, P o \\
I .:% 101\ \ P
o= 0] = = = =
107 = = = =
104} L L - L
) 10°4 £ E g E g E g
RIS = - F \\
I “% 101_ »_\»_ »_\,.
b§ 100\] L] L3 [
107 » » E »
10} L - L -
oo 10°] = = F =
g = 10% P P [3 \
=
g 10 P] \] i \
=10 \ = =
10714 = = F =

02 108 02 103 0”2 108 02 108 02 10

Figure 7: Variances of Fisher’s score estimate (39) as a function of the number of particles
N for FFBS (=), sys-dSMC (wmm) and rs-dSMC (===) and different values of 7' and
o. We can see that rs-dSMC retains roughly the same variance as sys-dSMC throughout.

27

CORENFLOS, CHOPIN AND SARKKA

for example, in particle Gibbs algorithms. Furthermore, we discussed two variance reduc-
tion schemes based on parallel-in-time linear Gaussian state-space models approximants,
as well as lazy resampling schemes. The resulting algorithms have then been shown to be
competitive with standard sequential methods in different non-trivial regimes.

While the Gaussian approximations recover a lot of practical use cases, their nature
makes them inadequate to approximate, for example, multi-modal posteriors. Designing
proposals with more modeling capacity, and fully utilizing the additional degree of freedom
offered by the different roles of v and ¢ is an important direction of future work. This could
be done, for instance, using direct gradient methods (Corenflos et al., 2021; Naesseth et al.,
2018; Maddison et al., 2017; Le et al., 2018) or more iterative methods (Guarniero et al.,
2017; Heng et al., 2020).

Our parallel smoother exhibits good statistical and computational properties in non-
trivial regimes, and allows faster inference at the cost of some precision. The loss of
precision comes from the need to use independent proposal distributions, and hinders
inference in high variance regimes (such as high dimensional spaces). We believe future
research should maybe directed towards using pathwise proposals instead, for example by
further leveraging the LGSSM approximants of Yaghoobi et al. (2021).

Because we developed a conditional version of dSMC, our algorithm can be used mutatis
mutandis within the unbiased coupled smoothing framework of Jacob et al. (2019). While
(non-lazy) dSMC exhibits higher variance than its sequential counterparts (for the same
number of particles), the framework of Jacob et al. (2019) allows to average independent
such estimates to increase the precision of the resulting estimate arbitrarily, making the
gain of speed particularly attractive in this context.

Another avenue of future work is to study the ergodic properties of the parallel-in-
time particle Gibbs we developed in Section 3, in particular, how one needs to choose the
number of particles IV as a function of T. We believe that, contrary to conditional SMC
with backward sampling (Lee et al., 2020), N needs to increase with 7. Understanding
the exact relationship between 7" and N in our case requires a careful examination and is
an interesting direction of research.

An important technical limitation of our methodology is the necessity, at each level
of the recursion, to explicitly form several N x N matrices. While this does not impact
the theoretical logarithmic properties of our algorithm, this clearly limits the number of
particles that we can use in at least two ways: the memory footprint will scale quadratically
with it, and the number of threads being limited, a processing bottleneck may appear (as
illustrated in Figure 2). We mitigated these issues by utilizing the parallel resampling
perspective of Murray et al. (2016) as a lazy resampling scheme, never computing more
than N weights at once, which allowed us to improve the scalability of dSMC in the low
weights variance regime. We believe that this method can be further improved by using
non-uniform proposals on the indices pairs (I, J) to target specific pairs that have a higher
a priori chance of resulting in a high weight. It was also suggested in Corenflos and Sarkka
(2022) that using ensemble techniques in parallel resampling schemes may result in an

28

DE-SEQUENTIALIZED MONTE CARLO

improved performance at the cost of a slightly higher memory consumption. Both these
extensions deserve more investigation.

On the computational resource perspective, over the years parallel processing hardware
have continually increased both the memory and number of threads, so we expect our
algorithm to become increasingly competitive in the future. Similarly, it is also possible
to distribute the computations across several processors (be it GPUs or CPUs), which
in turn would result in making the algorithm scale better with the number of time steps
or particles, provided that the communication cost between processors remains limited.
Combining this technical solution with the lazy resampling approach of Section 4.2 in
particular would likely result in a very competitive smoothers.

Finally, it was recently suggested in Deligiannidis et al. (2020) that it is possible to
perform perfect sampling of SSMs smoothing distributions provided we use independent
proposals. While our algorithm does not sample exactly from the same proposal distribu-
tion, it is our hope that the methods developed here could be applied to sampling from their
proposal distribution too, thereby making their sampling algorithm scale logarithmically
in time.

Acknowledgments

Adrien Corenflos and Simo Sarkka gratefully acknowledge the support of Academy of
Finland (project 321900). The authors would also like to thank Francesca R. Crucinio for
spotting a typo in the proof of Proposition 3, as well as the two anonymous referees and
the editor for their useful comments and suggestions on this article.

Individiual contributions

The original idea for this article comes from discussions between Adrien Corenflos and Simo
Sarkka. The methodology of ASMC was developed by Adrien Corenflos in collaboration
with Nicolas Chopin. The pGibbs and lazy resampling extensions are both due to Adrien
Corenflos while the LGSSM approximants are jointly due to Simo Séarkkd and Adrien
Corenflos. The original proofs of this article’s results are due to Adrien Corenflos, the
convergence rate of Proposition 4 being subsequently improved with the help of Nicolas
Chopin. The experimental results are all due to Adrien Corenflos. The first version of
this article was written by Adrien Corenflos, after which all authors contributed to the
writing.

29

CORENFLOS, CHOPIN AND SARKKA

Appendix A. Parallel combination algorithm

We now reproduce a parallel equivalent to Algorithm 3. It can generally be thought of a
divide-and-conquer algorithm akin to prefix-sum algorithms, but not requiring associativity
of the operator. Algorithm 6 is phrased in terms of generic operators and elements which,
in the particular case of parallel particle smoothing, need to be taken to be, respectively,
the operator defined in Algorithm 1 and the set of particles, weights and partial normalizing
constants.

Algorithm 6: Generic parallel combination via array reshaping
Result: Combined array
Function PARALLELRESHAPECOMBINATION(Z1.x, OPERATOR)
Find L such that 2F71 < K < 2F
fort=1,...,K in parallel do
// Flag that says if we should use the value or not
bt +—1

// Pad Z to the next power of 2 using some NULL value
for t = K +1,...,2" in parallel do

Zy — NULL

by <0
for [=0,...L—1do

for n =1,...257! in parallel do

/* Join the Z’s block by block, this corresponds to
reshaping the array and do not result in creating a new
array. */

Y, + Zl+(n—1)217 ZQ+(n—1)2l7 R anl

for n =1,...257! in parallel do

/* Combine the adjacent odd and even Y’s if we have not
reached the padding threshold, otherwise, just leave the
data unchanged. x/

if by, 00 = 1 then
Zl+(n71)217 Z2+(n71)21) s ZnQZ]) |:Zl+n21’ Zyinals- - - Z(n+1)25] —

COMBINATIONOPERATOR (Y, Y, +1)
return Z1.x

It is worth noting that Algorithm 6 and Algorithm 3 are not strictly equivalent. This is
because the combination operator used for smoothing is random and depends on the state
of a random number generator. In fact two reasons make these two algorithm differ:

1. The order in which the nodes at a given depth of Algorithm 3 are handled is arbitrary.
Similarly for the order in which we combine adjacent blocks in Algorithm 6.

30

DE-SEQUENTIALIZED MONTE CARLO

2. The splitting of Algorithm 6, although corresponding to a balanced tree, will not
correspond to the mid-point splitting of Algorithm 3 except when T + 1 is a power
of 2.

However, both algorithms are consistent and can be analyzed by Proposition 4 in the same
way.

Appendix B. Lazy resampling algorithms

We now describe the lazy resampling algorithms introduced in Section 4.2. The Metropolis—
Hastings version is given by Algorithm 7, while the rejection sampling one is given by
Algorithm 8. In Algorithm 7, B is a user defined parameter corresponding to the assumed
number of MCMC steps required for the Markov chain to converge to the categorical
distribution Cat((Wé’])ij:l) (Murray et al., 2016, Section 2.1). Some guidance on how to
choose B is provided in Murray et al. (2016), and directly applies to Algorithm 7.

Algorithm 7: Metropolis—Hastings lazy resampling algorithm

Result: Resampling indices (I, J,n) for m=1,... N.
Function MHREsAMPLING (XY, X1V w,, B)
for m=1,..., N in parallel do
(I, Jim) < (m,m)
forb=1,...,B do
Sample u ~ U([0,1])
Sample I*, J* ~U({1,...,N}), independently
if u < we(XI), X7) Jwe(X, X ™) then
| (I i) < (I, J)
return .y, J1:n

It is worth noting that, contrarily to Algorithm 3 (Code 3) in Murray et al. (2016),
the initial proposal in Algorithm 8 is random and not deterministic. This is because the
deterministic starting point of Murray et al. (2016) would result in a bias when subsampling
N candidates from the N x N entries in the weight matrix.

Appendix C. Proof of Proposition 4

For simplicity we only consider the case when w! ; = w? = 1/N, for all n € {1,...,N}.
The general case follows from the same lines. Using Minkowski’s inequality, we have

1/p 1/p

E [|@us(0) ~ Q)] <E [[@unte) - (0] +E |0 - @[]

(40)

31

CORENFLOS, CHOPIN AND SARKKA

Algorithm 8: Rejection-sampling lazy resampling algorithm
Result: Resampling indices (I, Jp,) for m=1,... N.
Function RSREsamMPLING (X2, X2V w., @)

// W, is such that w.(z,y) <@, for all z,y.

for m =1,..., N in parallel do

Sample Ip,, J, ~U({1,...,N}), independently
Sample u ~ U([0, 1])
while u > w.(X, X/ /@, do
Sample Ip,, J, ~U({1,..., N}), independently
return .y, Ji.n

The second term of (40), corresponding to the resampling error, can be controlled as a
Monte Carlo error via Del Moral (2004, Lemma 7.3.3). Indeed, let us first notice that we
have E [QY, (¢) | XLN] = Z%,n:l W (X, X™), and that, given that we are con-
sidering the multinomial resampling case, conditionally on X;év , the variables (I,,,7,)N_,

are independent. In this case,

- 1/
E[|aNe) - ate)| 1 x4 < a1 (41)

for some constant d(p) < 2P+D/P 5o that the tower law ensures that

1/p < 2(p+1)/pH90||oo (42)

E ([0 (e) - (0| N1

is verified too.

On the other hand, the first term of (40), corresponding to the self-normalization error,
requires more attention. In order to simplify notations, let us introduce the following
quantities:

N
~ 1 _
Q?fb(‘p) = N Z /wc (Xg—lv xc) ‘2 (X(;L:c—la xc:b) Qc:b(dxc:b)a
n=1
L (43)
sz\:[b(@) = W Z We (chilﬂch) 90(g:lcfl’ gb) .
m,n=1
Using Minkowski’s inequality again, twice, we can now decompose the first term of (40) as

1/p 1/p 1/p

+E H@é\’b(so) — QN (e) ﬂ ’

9

E H@a;b(sf)) — @ff;b(@)‘p} <E HQa;b(sa) - szv:b(sé?)‘p]

(44)

32

DE-SEQUENTIALIZED MONTE CARLO

so that, splitting once more, we have
. p11/p ~ p11/p
E[|Qus(e) - Q)|] < E [|Qusle) — Q)|])
~ o p11/p
+E HQ%(‘P) - Qfl\{b(@’ } :
Let us first remark that
(46)

Qa:b((p) = @a:c—l (l‘a:c—l — /WC (xc—l) ch) @ (xa:c—lu xc:b) Qc:b(dxc:b)> .

Then, the integrand zq:c—1 — [@ (Te—1,2c) @ (Taze—1, Teb) Qep(dzep) is upper bounded by

[|@ell oo |l o» SO that we can apply the recursion hypothesis to get

el)

1/p ~
< Cg:c—lnwcnoo N1/2 :

~ P
E[|Quale) - Q)|]
On the other hand, using the tower law, the second term of (45) becomes

E[|Q%(0) - Q)| | =E[E [|@N(0) - Q)| | x2X.]]. (148)

Noting that
Qévb(cp) = @c:b)) (49)

and that, for all n = 1,...,N and all 2., N! EnNzl We (X?_l,xc) @ (ch_pffc:b) <
[|@ell oo [l o» We can leverage the recursion hypothesis one more time to obtain

n=1

N
(xc:b — N1 Z We (X?_ly xc) ¥ (Xg:c—la xc:b)

A % PN 1YP o lells
E[|Q%) - Q)| 1 XaN] T < el s (50)
and, applying the tower law again,

E [|at0) - 0@)|] " < OBl e

This ensures that
< 1/p el
X < 200,y ll@cll o s (52

E HQa;b(sO) — Qqp(9) ‘p]

Similarly, instead of introducing @i\fb(gp), we could have introduced the similar quantity

33

CORENFLOS, CHOPIN AND SARKKA

N
AN 1 — n n
é\{c—l((p) = N E /Wc (xcfly Xc) @ (xa:cfla Xc;b) Qa:cfl(dxa:cfl)

n=1

to obtain:

B [[uste) - @)] < 2021l Lok

This finally ensures that

1/

E [Qup(p) — @(Jl\;{b(@))p} Cﬁb)llwcll ||‘P”oo

p o
< 2min(C o0 N1/2

a:c—1»

(53)

(54)

< N ~N p1/p . -
Now the term E HQM(@ - Qa;b(‘P)‘] can be controlled in a way similar to the one

used in (Chopin and Papaspiliopoulos, 2020, Lemma 11.2). Indeed we first note that

Q) — Q) = Q) (1 - Q1)) so that

1/ 1/p

E[|@N () - 8% @)|] 7 < el B |1 - @]

Moreover, Qg.5(1) = 1 by definition, so that we can rewrite

1/p

£ Hl B Qévzb(l)‘p] =E [Qun(1) — @fﬁb(l)‘p} 1/p

which can be bounded similarly to (54), giving

1

E H1 - Q{ﬁbu)‘p} " o min(c? T

a:c—1?

Cep)lleel

This results in the following inequality

Y ~ py1/p) B Ol oo
E (|60 - 0o < 2min(ct, . 2ol P

Putting everything together, we obtain

1/
E[|Qule) - Q)] < (4min(ct, .2z, + 200m) 2l

N1/2

34

(55)

(58)

DE-SEQUENTIALIZED MONTE CARLO

References

M. Adorisio, A. Pezzotta, C. de Mulatier, C. Micheletti, and A. Celani. Exact and efficient
sampling of conditioned walks. Journal of Statistical Physics, 170(1):79-100, 2018.

L. Aitchison. Tensor Monte Carlo: Particle methods for the GPU era. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

C. Andrieu, A. Doucet, and E. Punskaya. Sequential Monte Carlo methods for optimal
filtering. In A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo
Methods in Practice, pages 79-95. Springer New York, New York, NY, 2001.

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269—
342, 2010.

I. Arasaratnam and S. Haykin. Cubature Kalman filters. IEEE Transactions on Automatic
Control, 54(6):1254-1269, 20009.

Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan. Estimation with Applications to Tracking
and Navigation. Wiley, New York, NY, 2001.

B. M. Bell. The iterated Kalman smoother as a Gauss—Newton method. SIAM Journal on
Optimization, 4(3):626-636, 1994.

B. M. Bell and F. W. Cathey. The iterated Kalman filter update as a Gauss—Newton
method. IEEE Transactions on Automatic Control, 38(2):294-297, 1993.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: a review for statis-
ticians. Journal of the American statistical Association, 112(518):859-877, 2017.

G. E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Computers,
38(11):1526-1538, 1989.

N. Chopin and O. Papaspiliopoulos. An Introduction to Sequential Monte Carlo. Springer
International Publishing, 2020.

N. Chopin and S. S. Singh. On particle Gibbs sampling. Bernoulli, 21(3):1855-1883, 2015.

A. Corenflos and S. Sarkka. The coupled rejection sampler. arXiv preprint
arXiv:2201.09585 (version 1), 2022.

A. Corenflos, J. Thornton, G. Deligiannidis, and A. Doucet. Differentiable particle fil-
tering via entropy-regularized optimal transport. In M. Meila and T. Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 2100-2111. PMLR, 2021.

35

CORENFLOS, CHOPIN AND SARKKA

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
3rd edition, 2009.

D. Crisan and A. Doucet. Convergence of sequential Monte Carlo methods. Signal Pro-
cessing Group, Department of Engineering, University of Cambridge, Technical Report
CUEDIF-INFENGrrR38, 1, 2000.

P. Del Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with
Applications. Springer New York, New York, NY, 2004.

P. Del Moral and A. Doucet. Particle motions in absorbing medium with hard and soft
obstacles. Stochastic Analysis and Applications, 22(5):1175-1207, 2004.

P. Del Moral and A. Guionnet. On the stability of interacting processes with applications
to filtering and genetic algorithms. Annales de ’Institut Henri Poincaré (B) Probability
and Statistics, 37(2):155-194, 2001.

G. Deligiannidis, A. Doucet, and S. Rubenthaler. Ensemble rejection sampling. arXiv
preprint arXiv:2001.09188 (version 1), 2020.

D. Ding and A. Gandy. Tree-based particle smoothing algorithms in a hidden Markov
model. arXiv preprint arXiv:1808.08400 (version 1), 2018.

A. Doucet, S. J. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods
for Bayesian filtering. Statistics and Computing, 10(3):197-208, 2000.

G. Evensen. The ensemble Kalman filter: Theoretical formulation and practical implemen-
tation. Ocean dynamics, 53(4):343-367, 2003.

A.F. Garcia-Fernandez, L. Svensson, M. R. Morelande, and S. Sarkka. Posterior lineariza-
tion filter: principles and implementation using sigma points. IEEE Transactions on
Signal Processing, 63(20):5561-5573, 2015.

A. F. Garcia-Fernandez, L. Svensson, and S. Sarkka. Iterated posterior linearization
smoother. IEEFE Transactions on Automatic Control, 62(4):2056-2063, 2017.

A. Gelb. Applied Optimal Estimation. MIT press, 1974.

S. J. Godsill, A. Doucet, and M. West. Monte Carlo smoothing for nonlinear time series.
Journal of the American Statistical Association, 99(465):156-168, 2004.

N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. In IFEE Proceedings on Radar and Signal Process-
ing, volume 140, pages 107-113, 1993.

36

DE-SEQUENTIALIZED MONTE CARLO

P. Guarniero, A. M. Johansen, and A. Lee. The iterated auxiliary particle filter. Journal
of the American Statistical Association, 112(520):1636-1647, 2017.

S. Hassan, S. Sarkka, and A. F. Garcia-Ferndndez. Temporal parallelization of inference in
hidden Markov models. IEEE Transactions on Signal Processing, 69:4875-4887, 2021.

J. Heng, A. N. Bishop, G. Deligiannidis, and A. Doucet. Controlled sequential Monte
Carlo. The Annals of Statistics, 48(5):2904-2929, 2020.

K. Ito and K. Xiong. Gaussian filters for nonlinear filtering problems. IEEE Transactions
on Automatic Control, 45(5):910-927, 2000.

P. E. Jacob, F. Lindsten, and T. B. Schon. Smoothing with couplings of conditional particle
filters. Journal of the American Statistical Association, 2019.

A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, New York,
NY, 1970.

S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte. A new method for the nonlinear
transformation of means and covariances in filters and estimators. IEEE Transactions
on Automatic Control, 45(3):477-482, 2000.

R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME-Journal of Basic Engineering, 82 (Series D):35-45, 1960.

J. Kuntz, F. R. Crucinio, and A. M. Johansen. Product-form estimators: exploiting inde-
pendence to scale up Monte Carlo. arziv preprint arXiv:2102.11575 (version 3), 2021a.

J. Kuntz, F. R. Crucinio, and A. M. Johansen. The divide-and-conquer sequential
Monte Carlo algorithm: theoretical properties and limit theorems. arXiv preprint
arXiw:2110.15782 (version 1), 2021b.

R. Lande, S. Engen, and B.-E. Saether. Stochastic population dynamics in ecology and
conservation. Oxford University Press on Demand, 2003.

T. A. Le, M. Igl, T. Rainforth, T. Jin, and F. Wood. Auto-encoding sequential Monte
Carlo. In ICLR, 2018.

A. Lee, C. Yau, M. B. Giles, A. Doucet, and C. C. Holmes. On the utility of graphics cards
to perform massively parallel simulation of advanced Monte Carlo methods. Journal of
Computational and Graphical Statistics, 19(4):769-789, 2010.

A. Lee, S. S. Singh, and M. Vihola. Coupled conditional backward sampling particle filter.
The Annals of Statistics, 48(5):3066—3089, 2020.

37

CORENFLOS, CHOPIN AND SARKKA

F. Lindsten and T. B. Schon. On the use of backward simulation in the particle Gibbs
sampler. In Proceedings of the 87th IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Kyoto, Japan, 2012.

F. Lindsten, M. I. Jordan, and T. B. Schon. Particle Gibbs with ancestor sampling. Journal
of Machine Learning Research, 15:2145-2184, 2014.

F. Lindsten, A. M. Johansen, C. A. Naesseth, B. Kirkpatrick, T. B. Schén, J. Aston,
and A. Bouchard-Coté. Divide-and-conquer with sequential Monte Carlo. Journal of
Computational Statistics and Graphics, 26:445-458, 2017.

P. M. Lyster, S. E. Cohn, R. Ménard, L.-P. Chang, S.-J. Lin, and R. G. Olsen. Parallel
implementation of a Kalman filter for constituent data assimilation. Monthly Weather
Review, 125(7):1674-1686, 1997.

C. J. Maddison, D. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet, and
Y. W. Teh. Filtering variational objectives. In Advances in Neural Information Process-
ing Systems, 2017.

L. Middleton, G. Deligiannidis, A. Doucet, and P. E. Jacob. Unbiased smoothing using
particle independent Metropolis-Hastings. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 2378-2387. PMLR, 2019.

S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

L. M. Murray, A. Lee, and P. E. Jacob. Parallel resampling in the particle filter. Journal
of Computational and Graphical Statistics, 25(3):789-805, 2016.

C. A. Naesseth, S. W. Linderman, R. Ranganath, and D. M. Blei. Variational sequential
Monte Carlo. In AISTATS, 2018.

G. W. Peters, G. R. Hosack, and K. R. Hayes. Ecological non-linear state space model
selection via adaptive particle Markov chain Monte Carlo (AdPMCMC). arXiv preprint
arXiv:1005.2238 (version 1), 2010.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic
systems. ATAA Journal, 3(8):1445-1450, 1965.

K. F. Riley, M. P. Hobson, and S. J. Bence. Mathematical Methods for Physics and Engi-
neering: A Comprehensive Guide. Cambridge University Press, 2006.

38

DE-SEQUENTIALIZED MONTE CARLO

O. Rosen and A. Medvedev. Efficient parallel implementation of state estimation algorithms
on multicore platforms. IEEE Transactions on Control Systems Technology, 21(1):107—
120, 2013.

S. Sarkka. Unscented Rauch-Tung-Striebel smoother. IEFEE Transactions on Automatic
Control, 53(3):845-849, 2008.

S. Sarkka. Bayestan Filtering and Smoothing. Cambridge University Press, 2013.

S. Siirkkd and A. F. Garcfa-Fernandez. Temporal parallelization of Bayesian smoothers.
IEEE Transactions on Automatic Control, 66(1):299-306, 2021.

S. Sarkka and J. Hartikainen. On Gaussian optimal smoothing of non-linear state space
models. IEEE Transactions on Automatic Control, 55(8):1938-1941, 2010.

G. Sibley, G. S. Sukhatme, and L. H. Matthies. The iterated sigma point Kalman filter
with applications to long range stereo. Robotics: Science and Systems, 8(1):235-244,
2006.

S. S. Singh, F. Lindsten, and E. Moulines. Blocking strategies and stability of particle
Gibbs samplers. Biometrika, 104(4):953-969, 2017.

F. Tronarp, A F. Garcia-Fernandez, and S. Sérkka. Iterative filtering and smoothing in
nonlinear and non-Gaussian systems using conditional moments. IEFE Signal Processing
Letters, 25(3):408-412, 2018.

N. Whiteley. Discussion of ‘Particle Markov chain Monte Carlo methods’ by Andrieu et
al. J. R. Statist. Soc. B, 72(3):306-307, 2010.

F. Yaghoobi, A. Corenflos, S. Hassan, and S. Sarkka. Parallel iterated extended and sigma-
point Kalman smoothers. In ICASSP 2021 - 2021 IEEFE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5350-5354, 2021.

Y. Yu and X.-L. Meng. To center or not to center: that is not the question—an ancillarity-
sufficiency interweaving strategy (ASIS) for boosting MCMC efficiency. Journal of Com-
putational and Graphical Statististics, 20(3):531-570, 2011.

R. Zhan and J. Wan. Iterated unscented Kalman filter for passive target tracking. IFEFE
Transactions on Aerospace and Electronic Systems, 43(3):1155-1163, 2007.

39

	Introduction
	Related work
	Contributions

	De-Sequentialized Monte Carlo
	Tree structure
	Sample stitching
	Algorithm

	Parallel-in-time particle Gibbs
	Conditional dSMC sampler
	Parallel-in-time particle Gibbs

	Variance reduction methods
	Parallel-in-time Gaussian approximated smoothing solutions
	Parallel resampling for lazy evaluation of the weight matrix

	Experiments
	Comparison with FFBS
	Particle Gibbs sampling of theta-logistic model
	Speed-up and variance reduction via lazy resampling

	Discussion
	Parallel combination algorithm
	Lazy resampling algorithms
	Proof of Proposition 4

