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Abstract

Several fields in science, from genomics to neuroimaging, require monitoring populations
(measures) that evolve with time. These complex datasets, describing dynamics with both
time and spatial components, pose new challenges for data analysis. We propose in this
work a new framework to carry out averaging of these datasets, with the goal of synthesizing
a representative template trajectory from multiple trajectories. We show that this requires
addressing three sources of invariance: shifts in time, space, and total population size (or
mass/amplitude). Here we draw inspiration from dynamic time warping (DTW), optimal
transport (OT) theory and its unbalanced extension (UOT) to propose a criterion that can
address all three issues. This proposal leverages a smooth formulation of DTW (Soft-DTW)
that is shown to capture temporal shifts, and UOT to handle both variations in space and
size. Our proposed loss can be used to define spatio-temporal barycenters as Fréchet means.
Using Fenchel duality, we show how these barycenters can be computed efficiently, in parallel,
via a novel variant of entropy-regularized debiased UOT. Experiments on handwritten letters
and brain imaging data confirm our theoretical findings and illustrate the effectiveness of
the proposed loss for spatio-temporal data.

Keywords: Time-Series, Dynamic time warping, Optimal transport

1. Introduction

One of the most elementary operations in machine learning pipelines is to summarize data
by aggregating several samples into one. On metric spaces, while the Euclidean mean is
probably the most standard averaging tool, it is often not suited to applications where
features are inherently structured independently of the data. This is for instance the case
with spatio-temporal data where features correspond to fixed physical positions in space in
some given moments in time. Spatio-temporal data can be seen as multivariate time-series
where each (temporal) observation is defined in a space equipped with a physical notion
of geometry. For instance, with videos displaying the motion of some object, the spatial
features (pixels) are defined through a fixed rectangular grid while the temporal features
are given in a chronological order. More generally, the spatial geometry can be defined on
a predefined graph. This is the case with brain imaging data, where the measurements of
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neural activity are provided at each vertex of the triangulated mesh of the brain and across
several time points (Gramfort et al., 2011).

Formally, each sample x4’ in our dataset can be represented as a time sequence of discrete
non-negative measures (ui);—;. 7 defined in some finite set X. Our aim is to find a loss
function £ through which the weighted Fréchet mean can be defined as:

N

[ = argmin Zwiﬁ(,ui,,u,) , (1)
HEML(XNT 25

where (w;)i = 1..N is a set of positive weights summing to one.

In the videos example, X aof {x1,...,7,} would be the set of pixels and pi € M (X)
would correspond to the t-th frame of the i-th video. Given that u! is discrete with a fixed
support X, it can be identified with a non-negative vector of weights p € Rﬁ such that
pi = > 1 Prdg,. Such a setting was considered in Janati et al.’s proposal 2020a where
they defined £ in (1) as an alignment soft-DTW metric operating on top of an OT cost.
Intuitively, DTW is computed by finding the alignment between time points that has the
lowest cost. If this cost is defined through OT, then the obtained optimal temporal alignment
would pair time points that are spatially similar to each other while capturing temporal
differences. Janati et al. (2020a) propose to use Soft-DTW (Cuturi and Blondel, 2017) —
rather than DTW (Sakoe and Chiba, 1978) — to benefit from additional properties notably
a different behaviour with respect to time shifts (Janati et al., 2020a). In this paper, our
work sees instead in Soft-DTW a differentiable loss that will be more adequate for the task
of computing barycenters.

Related work On one hand, ignoring the temporal dimension, one could leverage the
geometric properties of optimal transport (OT) metrics by computing OT barycenters
(i.e using an OT loss for £) sequentially through time i.e averaging all the samples for
each time point ¢ independently of the others. These geometrical differences between
measures are captured through some pre-defined ground metric between the spatial features.
Taking once again the videos example, this ground metric can be for instance given by the
Euclidean distance between the coordinates of the pixels in their fixed rectangular frame.
A straightforward use of OT with spatio-temporal data is to consider the transportation
across space and time simultaneously via a customized ground metric. Motivated by OT
between signed signals, this customization of the ground metric was previously studied by
Thorpe et al. (2017) and introduced as TL, distances. However, this method ignores the
chronology of the data and requires a difficult tuning of the tradeoff between spatial and
temporal transport costs when designing the ground metric.

Recently, Vayer et al. (2020) proposed a new derivative of soft-DTW that learns the
global invariances of the data that is very well adapted for data depicting trajectories that
are invariant by rotations. This method however is not suited for comparing and averaging
complex mass dynamics that cannot be modeled as a set of trajectories which is the case
with meteorological or neuroimaging data for instance. Inspired by the Gromov-Wasserstein
framework, this proposal was later generalized by Cohen et al. (2021) to align and average
time series in different spaces.

Challenges and contributions Following Janati et al. (2020a), we propose to define the
loss function £ using Soft-DTW and unbalanced optimal transport (UOT). This combination
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is straightforward since Soft-DTW requires a cost function of its own to align temporal
observations across time series. Using UOT as a cost function leads to the loss function
coined STA: spatio-temporal alignement. While evaluating STA can be easily carried out to
perform clustering or metric based classification, computing its Fréchet mean comes with
several challenges:

e A classic bottleneck when using OT is scalability. In Janati et al. (2020a), the
differentiability of Soft-DTW is more or less hinted, but not experimented with.
Attempting to solve (1) naively via gradient descent turns out to be computationally
infeasible as one gradient step requires computing N7? gradients of entropic OT, and
thus running N7 Sinkhorn loops. Instead we propose to re-write the loss function
using Fenchel duality so that one can update the spatio-temporal barycenter using the
generalized Sinkhorn’s algorithm for barycenters. Using Fenchel duality is the main
contribution of this paper. It transforms a difficult spatio-temporal barycenter problem
to a straightforward spatial barycenter weighted in time. Interestingly, this result is not
specific to optimal transport: spatio-temporal barycenters for any spatial loss function
can be computed via alternating between temporal weight updates and purely spatial
averages.

e Asin (Janati et al., 2020a), we use a debiased variant of unbalanced OT that is non-
negative and suffers from less entropic blur. Starting from Janati et al.’s proposal 2020b
to modify the Sinkhorn algorithm to compute debiased OT barycenters (that cancel the
blurring effect induced by entropic regularization), we extend their work and generalize
it to the unbalanced case, where the marginals have different sums.

e As is usual in mixed approaches that combine several metrics (Thorpe et al., 2017;
Damodaran et al., 2018), setting hyperparameters that control the tradeoffs between
these different contributions is challenging. We propose a heuristic to set the hyperpa-
rameters of OT and soft-DTW based on a maximum desired temporal shift.

e To find this heuristic, we derive tight inequalities that bound the growth of Delannoy
numbers which can be of independent interest in Combinatorics.

Structure Section 2 provides background material on Soft-DTW, our contributions to
Delannoy numbers that lead to a practical heuristic to set the Soft-DTW hyperparameter.
Next in section 3, we propose an alternating optimization algorithm to compute the Fréchet
mean (1). This alternating algorithm reduces the problem to a sequence of temporally
weighted Fréchet means of the Soft-DTW cost. In section 4, we propose a generalized
Sinkhorn algorithm to compute these Fréchet means for debiased unbalanced OT barycenters.
Finally, we showcase the performance of STA averaging in Section 5 in a forecasting experiment
of handwritten characters and averaging of brain imaging data.

Notation Vectors are denoted by small cap boldface letters (e.g x), matrices are denoted
by large cap boldface letters (e.g X). For a matrix X, rows and columns are denoted by X;.
and X ;. Some operations on matrices are considered element-wise: log, exp, and division.
The element-wise product is denoted by ®. The entropy of a vector (or a matrix) x € RP
is defined as H(x) = (x,log(x) — 1,). For any integer ¢ € N, [q] is the set {1,...,q} .
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The set of vectors in RP with non-negative (resp. positive) entries is denoted by RE (resp.
RY ). The Kullback-Leibler (KL) divergence between two positive vectors (or matrices) by
KL(x]y) = (x,log(x/y)) + (y — x,1,,) with the continuous extensions 0log(0/0) = 0 and
0log(0) = 0 and the limit x # 0 = KL(x|0) = 4+00. The Delannoy set Ap, 7. corresponds
to the feasible set of binary matrices of R71*72 where only —, |, \, movements are allowed.
These binary matrices form a non-zero path starting at (1,1) and ending at (77, 7%), thus
the condition A; 1 = A7, 1, = 1 holds for any alignment matrix A € A.

2. Soft-DTW and Delannoy numbers
2.1 Background

Dynamic time warping Consider two multivariate time series x € R?»71 and y € RP/T2
with respective lengths 77, 7T> and having observations in RP. DTW is defined through some
pairwise distance matrix A(x,y) € R7172 between all their time points such that the cost
of a given alignment function o : [1,71] — [1, T3] is equal to S i, 0(Xi, ¥4(i)), where we
used an upper case A to differentiate the distance matrix from the distance function 0 it was
defined through i.e A;; = §(x;,y;) To guarantee the preservation of the chronology of the
data, o must be increasing and verify o(1) = 1 and o(71) = T5>. The resulting optimization
problem is however better posed as a minimization of ZlT:ll Z]Til A;j6(x;,y;) over the set
of binary alignments A on the rectangular lattice [1,71] X [1,75] where no temporal back
steps are allowed. This amounts to considering binary matrices with a non-zero path linking
the corners of the lattice (1,1) (upper left) and (71,75) (bottom right) using —, |, \, steps
exclusively (Sakoe and Chiba, 1978). Formally, DTW is defined as:

dtW(X, y; A) = min{<A7 A(Xa y)>7 Ae AT17T2} ) (2>

where (.,.) denotes the Frobenius dot product. The binary nature of the constraint set in
(2) makes the DTW loss non-differentiable which is a major limitation when DTW is used
as a loss function. To circumvent this issue, several authors introduced regularized variants
of DTW (Saigo et al., 2004; Cuturi et al., 2007; Cuturi, 2011; Cuturi and Blondel, 2017).
Instead of selecting the minimum cost alignment, Global Alignment Kernels (GAK) for
instance (Saigo et al., 2004; Cuturi et al., 2007; Cuturi, 2011) compute a weighted cost of all
possible alignments with a certain smoothing hyperparameter. Similarly, the soft-minimum
generalization approach of Cuturi and Blondel (2017) — called soft-DTW — provides a similar
framework to that of GAK that includes DTW as a sub-case:

dtwg(x,y; A) = softming{(A, A(x,y)),A € An, 1} , (3)

where the soft-minimum operator of a set A with parameter 8 > 0 is defined as:

: —f41 —a/B if
softming(A) = { miﬂn?f (%%ei% ) >0 ‘ n

In particular, softmin is continuous at 0 so that when § — 0, dtwg approaches dtw.

Remark 1 7To control for time series lengths, dtwg can be normalized by the total length,
1/(Th + T3), as proposed in (Sakoe and Chiba, 1978, Eq.(22)). This is particularly important
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for datasets with time series with very different sizes. For the barycenter problem, this
normalization can be included in the weights vector w defined in (1). We did not explore
this normalization given that the datasets we considered in the experimental section were
homogeneous in length.

Forward recursion When 8 = 0, the soft-minimum is a minimum and dtwg falls back to
the classical DTW metric. Nevertheless, it can still be computed using the dynamic program
of Algorithm 1 with a soft-min instead of min operator.

Algorithm 1 BP recursion to compute dtwg (Cuturi and Blondel, 2017)
Input: data x,y soft-min parameter S and distance function §
Output: dtwg(x,y) =11
70,0 = 0; r0,j = Ti,0 = 00 for i € [[Tl]] ,J € [[Tg]]
for i =1 to T} do

for j =1 to 15 do
ri,j = 6(Xi, yj) + Softmin/g(ri,l,j,l, ri*l,ja ’I“i,jfl)
end for
end for

Remark 2 The boundary conditions hard-coded by the Delannoy set do not allow for align-
ments that disregard the starting and ending point of the time series. This is enforced in
Algorithm 1 by setting all the initial costs of the first row and column of r to +00. However,
by changing the initialization of r, it is possible to relax these constraints. In situations
where partial matching of time series is relevant, one can set the first row to the costs
r0,; = 0(z0,y;) and the first column to r;o = ZZ:O d(xk,yo0). The final cost is obtained by
picking the minimizer of the last row.

Algorithmic differentiation When 5 > 0, differentiating (3) with respect to x yields:

0A(x,y)\ "
Vadtwslxy. &) = (25N ) By )
_(AA(xy))
def Odtw Zar e P . .
where Eg(x,y) = —5x2(X,y) = Ly~ can be interpreted as a weighted
—AAY)

ZAT T €
average alignment. To compute Eg(x,;/)? Cuturi and Blondel (2017) proposed to back
propagate the forward recursion of Algorithm 1, starting from Ep, 7, down to Ep . Indeed,
the value of dtwg is stored in the last alignment cost 77, 7,. Thus differentiating dtwg with
respect to any 7; ; only involves the terms of r;_1 j,7; j—1 and 7;_1 j—1. Differentiating the
softmin operation of the forward pass yields the backward recursion of Algorithm 2.

2.2 Delannoy numbers

Delannoy numbers arise naturally when working with Dynamic time warping: they correspond
to the number of feasible alignments Az, 7, and are usually denoted by D(T} — 1,715 —
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Algorithm 2 Backward recursion to differentiate dtwg (Cuturi and Blondel, 2017).

Input: x,y, parameter 3, distance J and intermediary alignment matrix R
Output: F = Eg(x,y)

Tim+1 = Tnt1,j = —00, 1€ [[’I’L]] ,J € [[m]]

€im+1 =Tnt1,; = 0,1 € [n], j € [m]

Sim+1 = Opt1,5 =0, 4 € [n], j € [m]

5n+1,m+1 =0, Ent+1,m+1 = 1, Tnd+1,m+1 = T'nym

for:=1tondo

for j =1tomdo
— L e S
a = exp ,B(TH‘L] Tij = Oi+1,)
1
b= exp 5(rij+1 — Tij — 0ij+1)
1
¢ =exp 3(7“1'+1,j+1 — 15 = Oit1,5+1)
€ij = a€it1j + beijy1 + it j+1
end for
end for

1) (Cuturi, 2011). The role played by Delannoy numbers is even more apparent when working
with Soft-DTW which is only natural since the minimum is replaced with an exponential
weighted sum over all feasible alignments. In this section, we provide some new properties of
Delannoy numbers which are crucial to establish the time sensitivity of dtwg and define a
heuristic to set the hyperparameter j.

For the sake of convenience, we consider the shifted Delannoy sequence starting at
n =m = 1 so that: card(Ay,,,) = Dy, for all integers m,n > 1. Formally, the Delannoy
sequence can be defined recursively by:

Definition 3 (Delannoy sequence) The Delannoy number D, ,, corresponds to the num-
ber of paths from (1,1) to (m,n) in a (m x n) lattice where only —, |, \, movements are
allowed. It can also be defined with the recursion ¥Ym,n € N*:

Dl,n = Dm,l =1 (6)
Dm+1,n+1 = Dm,n+1 + Dm+1,n + Dm,n . (7)

Janati et al. (2020a) showed that there exists a positive constant ¢ such that the diagonal
elements D, ,, verify the bounded growth inequality D;,41,m+1 < cQDmm. The following
proposition provides tighter inequalities that bound the growth of the central Delannoy
sequence from both ends. The proof can be found in the supplementary materials.

Proposition 4 Let ¢ = 1 4+ /2. The central (diagonal) Delannoy sequence Dy, def Dy om,

verifies:

Dm+1

< Vm>1, 8
Dm - m+% - ()
D
mil s (2 :n — Ym>1. 9)
D mtgta,

Moreover, these bounds are tight asymptotically since DDL;—l =c? (+0(%)) .
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Reiterating this inequality over the course of the time series leads to the following corollary
which is crucial to derive a simple heuristic to set the dtwg hyperparameter 3 in practice. A
detailed derivation is provided in the supplementary materials.

Corollary 5 Let T >m > 1, c =1 ++/2. The central Delannoy numbers verify:

N[

c2(T7m)% > (T> form>1,

Dr = \me
D 2 5 (T—1\2 1)
x — 2
AT-m)Zm o T —% <> form>2 .
T m—1 -

We conclude this section on Delannoy numbers by restating a result of (Janati et al.,
2020a) which will be useful later on. It provides bounds on the off-diagonal Delannoy numbers
which lead to the quadratic lower bound of Soft-DTW.

Proposition 6 Let c =1+ 2. Vm,i € N*:

Dm,m+i < Cq)m,iDm,erifl ) (11)
C\I’m,iDm,m+i < Dm+1,m+i > (12)

where

m+i—1 )
(1-1)i-1) _

m

—_Lyi— 1
By =1 — Loe)lioDte
\I/m,i =1+

Moreover, combining the inequalities above with a running i = 1..k we get for any m,m’, k €
N* such that m+m/ <T —1 and k < min(T —m,m' —1):

Dm mDm’ m/ )
log < : : > P(k) , 13
Dm—i—k,mDm’—k,m’ ( ) ( )

where P(k) = ak(k — 1) + pk + 37 with o = 2%& >0 and p = 3‘?{4 > 0.

2.3 Time sensitivity of Soft-DTW and effect of 3

In (Janati et al., 2020a), Soft-DTW was shown to increase quadratically with the size of the
temporal shift between two time series. Formally, let x,y € R” such that y is temporally
shifted w.r.t. x by k time steps :

Yitk =X; Vi€ IIl,T — k]] . (14)
Then the following holds:

Proposition 7 Letr = min; ;{A(x,x);j|A(x,x);; > 0}. Denotem = argmin;epy p_q7 {Xi+1 #
x;} m' =T — argmax;c r_1] {Xi+1 # Xi}.

IfO < 6 < log(SﬂrDT,T) .

Dm,mDm’,m’ > _ B

— . 15
Dm+k,mDm’fk,m’ ( )

dtwg(x,y) — dtwg(x,x) > Slog < 3T

7



H. Janati, M. CUTURI, A. GRAMFORT

PROOF. see (Janati et al., 2020a) for a proof.

An example of a temporal 50-shift is illustrated in Figure 1. The heatmap of the squared
Euclidean cost matrix A shows two white rectangles where all alignments A, B and C have
the same cost of 0. Since dtwy is defined as the minimum of all alignment costs, all these
paths are equivalent. Shifting y temporally would move the red horizontal line downwards,
changing the set of alignments with cost 0 without affecting the dtwg value (0). However,
when 8 > 0, dtwg computes a weighted sum of all possible paths, which is affected by
temporal shifts by including the number of equivalent paths. This number of equivalent
paths is expressed as the product of Delannoy numbers as showed by proposition 7 which,
combined with proposition 6 provides a quadratic lower bound for temporal shifts.

A tighter lower bound While the previously considered time series covered a wide range
of scenarios, the obtained result requires 8 to be too small, thereby not providing any insight
on how dtwg behaves when 3 increases. In the following paragraph, we relax this assumption
on (3 in order to find a tighter lower bound than the one given in (15). We consider the
simplified setting of Dirac univariate time series x,y such that y is ahead of x by k time
steps. Formally, let x,y € R” such that for some t* € [1,7] and 1 < k < T — t*:

t 75 = x; =0
t#t"+k=y; =0 (16)
Xpr =Yk =g €ER
This simplified setting allows for tighter bounds of Soft-DTW.

Proposition 8 Consider x and y as defined in (16). Let r = §(g,0), T > 6, c = 1 + /2.
Then:

dtwg(x,y) — dtwg(x,x) > —flog (G_P(k)(l —Ag) + )xgH) , (17)

s

ool

Se

where: \g = e_g, H=¢ T3 and P is the quadratic bound defined in Proposition 0.

(=2

PROOF. See the supplementary materials.

Effect of 3 When 3 is small enough, Ag goes to 0, thus the lower bound of Proposition 8
can be very well approximated by the quadratic bound P(k). However when 3 increases,
AgH increases which will dominate the log argument for a sufficiently large k. Using the
example of Figure 1 (left), we compute both sides of Equation (17) for 3 values of . Figure
1 shows that dtwg saturates for a certain temporal shift kyax beyond which it is no longer
sensitive to temporal lags. This phase transition is also observed by the lower bound (17).
This provides a heuristic to set 5 based on a predefined k. i.e the largest temporal shift
the user is willing to capture. Notice that such a point does not always exist (when S is too
small) as it may be larger than the time series length T (see top example, Figure 1).

Proposition 9 LetT > 3, 1 < kpax and 0 < n < 1. Using the same notations of Proposition
8, define the lower bound function:

LBy i k> —Blog (e "M(1 = Ag) + A H)

8
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x —— dtwpg(x, y) - dtwg(x, x)
0.50 1 —~— Lower bound
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Fig. 1. Left: example of 3 DTW alignment paths (A, B and C) between x and y with a
temporal 50-shift. The heatmap of the distance matrix A (here squared Euclidean) shows 2
red bars where the distance is not equal to 0 except at their intersection. An alignment path
has 0 cost if and only if it does not cross the red lines. Compared to the figure of (Janati
et al., 2020a), here we consider the simpler case of Dirac time series. This setting allows
one to obtain a bound for all values of 3, including the asymptotes for large temporal shifts
displayed on the right side figure above.

then:

If B 2 Pl oat@=m0

lim LBg(k) — LB (kmax)

k—+o0

0< <n. (18)

5 <

PROOF. See the supplementary materials.

Proposition 9 provides a sufficient condition to set § such that the lower bound LB
saturates for a certain kpyax. In the examples shown in Figure 1, 8 was set using this heuristic
with 7 = 0.01 and kpax € {500, 100,80} respectively top to bottom. The dotted vertical
lines highlight the choice of kpax which is very close to the saturation point of dtwg. In
practice, we use the same heuristic by setting r» = max; ; A(x;,y;).

3. Soft-DTW barycenters via alternating optimization

Consider a dataset with N multivariate time series X1, ...,xy assumed to have the same
dimension p and respective time lengths T7,...,Txy. Let wi,...,w, be a set of positive
weights summing to one. The Soft-DTW barycenter with cost A and fixed length 7" is defined
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as:
N
X =arg minZwidtwﬂ(xi,x, A) (19)
xeRp:T i=1
N
(A A(x,%x4))
=argmin — Z w; 5 log Z e B . (20)
xeRp,T =1 A€Arr,

Alternating optimization Provided that A is differentiable, the most straightforward
solution to (19) would probably be to use a Quasi-Newton method. However, since we
intend to use an OT loss for A, computing each gradient step would require T Zf\il T, OT
gradients. Instead, we use Fenchel duality to obtain an alternating optimization problem
that not only avoids the computation of the gradients of A but also spares us any form of
step-size backtracking. This is given by proposition 10.

Proposition 10 For the sake of convenience, provide the sets of binary matrices Ar, T with

Dr.
some arbitrary indezation Ar, 7 = {A},. .., A, "™V and let Sic denote the probability simplex
of RE. The Soft-DTW problem (19) is equivalent to the optimization problem.:

N Dty 7
min - 1oin Wi OFAY, A(x;, x)) + BH(0;)| - 21
x€RPT 01€SDy. 7 ; ( ; (xi, x)) + BH(6:) (21)

QNGSDTN,T

PROOF. A standard result in convex optimization theory states that the Fenchel conjugate of
entropy is logsumexp. Formally, for x € R¥:

K
(BH)*(x) < max(x,0) — BH(9) = flog (Z ﬁ) - (22)

€5k k=1
Thus:
K xp
—fBlog (Z e_ﬁ> = emin (—x,0) + BH(9) . (23)

€s
k=1 K

Therefore, the barycenter loss (19) can be written:

N N (4,80 x,))
min w;dtwg(x;,X) = mi —w; 51 B B 24
Juin, Z idtwg(x;, X) Join w; 3 log Z e (24)
=1 =1 AGAT,TZ.
N
— ; ) ; ) 1 ) Dt 1. ) N (9
XIEIE;}TZMZ&E%IJ;ITIPT<0“ (<A27A(XZ7X)>7"'7<A ZvA(Xl7X)>)> +BH(91) ( 5)
N Dty 7
= min w;  min 0F AY A(x;,x)) + BH(6;) | 26
xeRp,T ; ! 0¢€SDT1_,T ; < e ( ’ )> 6 ( Z) ( )

where the last equality follows from the separability of the sum with respective to the 6; B

10
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The major benefit of the dual formulation of Proposition (10) is the ability to compute
Fréchet means of A directly. This will be in particular crucial when we define A as an
OT divergence for which Fréchet means are orders of magnitude faster to compute using
Sinkhorn’s algorithm than via gradient based methods (Cuturi and Peyré, 2018). While
minimizing with respect to the #; seems computationally unfeasible due their large dimension,
their update is actually not required to compute the new x. Instead, one needs to update
the matrices Z; def kD:T’f’T HfAf which are ezactly given by the gradients %twaﬁiim’x)(xi, X).
Indeed, given that the loss is convex in 6;, for a fixed x, the optimal 0; verifies the KKT
conditions for some Lagrange multiplier \;:

{ (AF, A(xi,x)) + Blog(%) — X\; =0

Dy, r g
k=1 ei =1 ’

which leads to:

Ak AGg )
e B
ok = . : (27)
Doy, g (AFAG )
k> B
k=1 €
Thus:
D1 _APAGyx)
zi N LAl = 2pme 7 A Odtwptix) (28)
- R (ak A x) OA v
k=1 L - —

k=1

which can be computed using Algorithm 2. Notice that to update x, computing 6; is not
necessary: it is sufficient to have updated Z;. This leads to algorithm 3.

Initialization It is important to keep in mind the loss (21) is not jointly convex in x and
f. Thus, algorithm 3 is not guaranteed to converge to a global minimum. Nevertheless, in
our experiments, initializing x with a uniform distribution leads to meaningful barycenters
with the desired spatio-temporal properties.

Algorithm 3 Soft-DTW barycenter.

Input: x1,...,xy, Xg, weights wq, ..., wy, parameter 3
Output: solution of (21)
Initialize x = xo € RPT, compute A(x;,x) for all i = 1..N
while not converged do
fort=1to N do
Compute Z' with Algorithm 2
end for
fort=1to T do
x! = argminaepe i) 2:51:1 wizi’,tA(Xgla a)
end for
end while

11
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4. Spatio-temporal barycenters

4.1 UvaT as debiased unbalanced OT

We start this section by explaining how we use optimal transport to define the alignment
cost UOT between two non-negative measures x,y with a fixed support given by A =
{a1,...,ap} C R?. Since the support is fixed, x,y can be identified with vectors of non-
negative weights i.e x,y € R%..

Entropy regularized unbalanced OT and Sinkhorn’s algorithm Let C € Ri’d be
the pairwise distance matrix given by C;; = c(as, a;), where c is a symmetric Lipschitz cost
function such that exp(—g) is positive semi-definite for any € > 0. The matrix C — known as
the ground metric — defines the geometry that OT distances lift to compute transportation
costs. Formally, transporting a fraction of mass P;; from a; to a; is given by P;;C;;, the
total cost of transport is given by (P, C) = Zij P;;C;;. To guarantee mass transportation,
Liero et al. (2016) introduced the following formulation of unbalanced OT":

min (P, C) + vKL(P1|x) + vKL(P "1]y) , (29)
P€R+p><p

where 7 > 0 is a fixed hyperparameter. Chizat et al. (2017) generalized the above problem
to other divergences than KL while adding entropy regularization (Cuturi, 2013). Up to an
additional constant, this generalized problem is equivalent to:

UOT(x,y) = min eKL(Ple %)+ yKL(P1|x) + yKL(P 1y) . (30)
PeR P*P

The following proposition — taken from (Janati et al., 2020a) — shows how to compute UOT
using a generalized version of Sinkhorn’s algorithm.

Proposition 11 (Janati et al., 2020a) Problem (30) is equivalent to:

UOT(x,y) = max —y(x, e — 1) — fy(y,e_% - 1) — 5(6%‘% — 1,6_%> . (31)
u,vERP
Moreover, with the change of variables: w = #, K= efg,a = e%,b = e%, the optimal

dual points are the solutions of the fixed point problem.:

X \w y w
() | b= <7> 32
a (Kb) K'a (32)
In particular, if x =y, then there exists a pair of solutions such that a = b.

Solving the fixed point problem (32) is equivalent to alternate maximization of the dual
function (31). Starting from two vectors a,b set to 1, the algorithm iterates through the
scaling operations (32). This is a generalization of the Sinkhorn algorithm which corresponds
tow=1or v = 4o0.

PROOF. The symmetry of the dual problem (31) with x = y implies immediately that a = b.
Proposition 11 gives the fixed point equation.

12
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Debiased UOT Due to regularization, UOT is known to suffer from an entropy bias
causing UOT to fail to identify identical distributions UOT(x,x) # 0. Inspired by the
balanced OT case Feydy et al. (2018), we define the debiased UOT cost:

Iﬁ(x, y) =UOT(x,y) — % (UOT(x,x) + UOT(y,y)) - (33)

—_—

UOT is coercive with respect to each of its arguments, moreover, if K f =2 is positive
semi-definite, then UOT is non-negative (Janati et al., 2020a). Therefore, dtwg is well
defined with UOT as a cost function, a loss function we named STA: Spatio-Temporal
Alignment.

Definition 12 (STA) We define the STA loss as:
stag(x,y) = dtw5(x,y;[7(3/T) ) (34)

Remark 13 [t is important to note that all the properties shown for UOT (coercivity, non-
negativity) hold only if the reference measure used to define the entropy regularization is the

uniform distribution over a fived universal support A for all measures i.e the penalty applied
def

to the transportation plan writes E(P) = KL(P|1,/p). For instance, when considering the
more general formulation with the product measure as a reference (KL(P|x ®y)), Séjourné
et al. (2019) showed that non-negativity and convexity hold but with an additional quadratic

term between the masses of the distributions %(XT]I —y"1)? in the definition of UOT.

4.2 Computing barycenters with UOT

To use algorithm 3, it is required to compute barycenters with the inner dtwg cost function

UOT as dissimilarity. In the following, we show that this barycenter can be estimated using
a modified Sinkhorn algorithm. Let x1,...,xx € Ri and wy, ..., wk a sequence of positive

weights adding to 1. UOT is non-negative and coercive, thus its barycenter problem is well

defined:

K
. def . —
min J(x) = min wirUOT (xp,X) . 35
mip 769 % i 30,00 (w3 (35)

UOT is differentiable, and its gradient is given by y(1 — a v,1— bfg) where (a,b) is the
solution of the fixed point equation (32) Feydy et al. (2017). Thus, using the chain rule, J
is also differentiable and its gradient is given by:

K €
VI(x)=~(c7 =Y wpb, ") | (36)
k=1
where, using the notations of Proposition 11, ¢,bq,...,bg,a1,...,ax € Rﬁ verify the fixed

point equations:
w w
X X X \w
IS o= () 37
A (Kbk> k <KTak> “~ \Kec (37)

13
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Without studying the convexity of J, we can show that any stationary point of 7 is actually a
global minimum. Thus, it is sufficient to solve V.7 (x) = 0 to compute the UOT —barycenter.
The following lemma plays a major role in proving this statement.

Lemma 14 (Suboptimality) Let x,y € Rﬁ. Let a,b € RZ_)F be the optimal dual variables

associated with UOT(x,y) i.e the solutions of the optimality conditions a = (%)w and
b= (KLTa)“’ Then for any f,g € R :
Y, £77) +9(y.8 ) +e(f. Keg) > (e +27)(a Kb) (38)

PROOF. Using the same change of variable f = e%,g = eg, the dual problem of Proposition
11 can be written:

UOT(xy) = max —y{x £77-1)—y(y.g 7  —1)—cfog— LK)
’ +

= max —y(x,f 7) —(y,g 7) —e(f, Kg) — | K[ i+ (Ix[l1+[yl1) -
f',gEIRJr

Since a, b are the solution of the dual problem above, at optimality it holds:
<x,a7%> = <a%Kb,a7%> = (a,Kb) .
Similarly:
(y,b"%) = (bsK'a,b” ) = (b,K'a) = (a,Kb) .

Thus:
UOT(x,y) = —(¢ +27)(a, Kb) — ¢ K|1+y([[x[[i +[lyl1) -

By the definition of the max operator, it holds for any f, g € ]Rﬂ:
Y, £77) + 90y, 87 7) +e(f, Kg) > (e +27){a, Kb) .

O
Since J is coercive, it has at least one global minimum. The following proposition shows
that this minimum is unique.

Proposition 15 Let x € R such that V.J(X) = 0. Then for anyy € RY it holds:
JI(y) > J(x).

PROOF. Let di,...,dg be the symmetric dual variables used to compute [ﬁ(xk, xy,) for
w
k = 1..K i.e the solutions of d;, = <Kx—(’;k> . Let y € R and its associated dual vari-

ables ¢/, al,...,al,b],...,b) used to compute m(y,y), IT(\)'/T(xl,y), ey ITG/T(XK,y).
Therefore, it holds:

i 1
T(y)=(e+27)  wy (2(<c’, Kc') + (dg, Kdy)) — (al, Kb@)
k=1

14
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Let c,ay,...,ax,b1,...,bg denote the dual variables verifying (37) for x = x. Moreover,
VJ(x) = 0 leads to ¢ = YK wkb;;. Therefore:

K
) wilag, Kby) = = (c,Kc) . (39)
k=1

IM=
S
=
uxl
o
?TI
2]

Il
W
¢]

Thus, evaluate J at X leads to:
T(®) = (¢ +29) Zwk( c.Ke) + (dn Kdo) — an Kby) )

. K
— 5(5 +2v) (Z wy(dy, Kdy) — <C7KC>>

k=1

Thus, the statement we wish to prove is equivalent to:
K
= 1 / / / /
J(y) 2 I(x) & 5(e+27) (¢, Ke) + (¢, Kc)) > (e +27) > wilag, Kby) . (40)
k=1

For each element of the sum in the right side above, let us derive an upper bound using
Lemma 14. Consider the sub-optimal dual variables (fx, gr) = (ag, br © %l) It holds:

/

Y7 +ly, (b 2)7 >+e<bk®—Kak> (e +27)(a),, Kb}) . (41)

Applying the weighted sum and using the optimality conditions along with J(x) = 0, the
elements in the left side can be further simplified as:

Therefore, summing over equation (41):
K
(e, Ke) +y(c, Kc') + (¢, Ke) > (e +27) Y wilaj, Kb}) .
k=1

On another side, since K is positive semi-definite, it holds:

(c—c’,K(c—c’)>20:%(<C,Kc> +({c/,Kc')) > (¢, Kc) .

15
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Combining the last two inequalities leads to (40) ending the proof. 0.
To solve the barycenter problem (35), it is sufficient to solve the fixed point system:

xe \¥ x \“ x \“ s . .
v () v (a) e (m) 2w =T ()
which — combining the last 3 equations — is equivalent to:

1

w = w — w K 1-w
Xk X X — 1 § T 1—w
= _ b = = e— = Cw K
o (Kb,) L <KTak> - © (KC) S (kl il ) )

(43)
These equations are very similar to the barycentric Sinkhorn algorithm of Chizat et al. (2017).
Indeed, disregarding the symmetric equation in ¢ and setting ¢ = 1, in the update of X, we
recover Sinkhorn’s iterations for the UOT barycenter. These updates lead to Algorithm 4.
While the theoretical analysis of its convergence is left for future work, we empirically observe
that it converges regardless of the initialization of the dual variables. More importantly,
it leads sharper barycenter than the (biased) UOT barycenters for almost no additional
computational cost. Figure 2 shows the example of Gaussians with different means, variances
and masses for 3 values of €.

Algorithm 4 Debiased unbalanced UOT barycenter.

def M

Input: x1,...,xx € Rﬁ, parameters £,7v >0, K = ¢ -
Output: x, the UOT barycenter of (xi,...,xx)
Initialize c=b; =--- =bg =1,, set w = A{lg
while Not converged do
for k=1 to Kwdo
a = Kxigk
end for )
%= ch (Zszl wk(KTak)l_w> e
for k=1 to K do
by = (
end for
X w
¢ = (ge)

end while

-, S
KTak

Remark 16 The proposition 15 may seem indicate that J has a positive curvature. However,
it is easy to show that UOT is not convexr in dimension 1. Indeed, taking p = 1 leads to
K =1 and the Sinkhorn equations can be solved in closed form. We obtain for x,y € Ry:

2w 2w
0OT(2,9) = (e +27) (“””;‘y - <a:y>w‘il> .

Since w < 1, in dimension 1, x — 6(\)/T($,y) 1s strictly concave provided x is large enough.
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inputs —— UOT barycenter _ le\fbarycenter

£=0.004 £€=0.010 £=0.020

Fig. 2. Barycenters of 4 Gaussian distributions with different means, variances and total
masses. The debiased barycenter UOT is less sensitive to entropy regularization (&) than the
original unbalanced barycenter UOT.

Complexity analysis As shown by Algorithm 1, soft-DTW is quadratic in time. Comput-
ing the UOT pairwise matrix is quadratic in p. Moreover, when the time series are defined on
regular grids such as images, one could benefit from spatial Kernel separability as introduced
in Solomon et al. (2015). This trick allows to reduce the complexity of Algorithm 4 on 2D
data from O(p?) to O(p%). Moreover, to leverage fast matrix products on GPUs, computing
the UOT barycenter and the pairwise UOT distance matrices can be done in parallel so that
the iterations within both k-loops in Algorithm 4 are run simultaneously.

5. Experiments

We illustrate the effectiveness of the STA barycenter in two experiments with real data by
comparing it to the following benchmark methods:

e Fuclidean mean;

e DTW barycenter averaging (DBA): the Fréchet mean using DTW as loss function
introduced by Petitjean et al. (2011). We use the code provided by the authors
https://github.com /fpetitjean /DBA,;

e UOT averaging: averaging using OT but disregarding time. Useful to evaluate the
importance of the temporal dimension.

Python code for all the experiments can be found in https://github.com/hichamjanati/spatio-
temporal-alignements.

Optimal transport hyperparameters The debiased divergence UOT is defined by the
same hyperparameters of UOT: ¢ and 7. Given that some of the entropy bias is removed
with UOT, the obtained barycenter is less sensitive to € than the original UOT barycenter
(Fig 2). However, setting e too large slows down the convergence of the symmetric potential
c. Here we set ¢ = 1./p. The marginals parameter v must be large enough to guarantee
transportation of mass. When v — 0, the optimal transport plan P* — K. Large v however
slows down the convergence of Sinkhorn’s algorithm, especially if the input histograms have
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significantly different total masses that are concentrated far from each other. We set v at
the largest value guaranteeing a minimal transported mass using the heuristic proposed in
Janati et al. (2019).

5.1 Averaging of brain imaging data

Studying the function of the various regions of the Human brain is one of the primary goals of
neuroimaging research. These studies usually involve a group of healthy individuals (subjects)
or patients who perform a series of tasks while having their neural activity recorded from
which active regions of the brain are localized. However, drawing conclusions at a population
level requires an aggregation function that combines the individual active sources of each
subject. While averaging may seem like a straightforward and simple solution, it does not
take into account the anatomical differences across subjects which lead to spatially blurred
means. Moreover, the brain responses of the different subjects are never synced in time,
specially when working with Electro-encephalogrphy (EEG) or Magneto-encephalography
(MEG) data which have a high temporal resolution of the order of 1 millisecond. We use the
public EEG/MEG dataset DS117 (Wakeman and Henson, 2015) and compute the spatio-
temporal source configuration of 6 subjects who were shown images of Human faces using
MNE-Python (Gramfort et al., 2013). Here the support of our measures A is taken to be
the set of 642 vertices that define the cortical mesh of the brain. The OT ground metric
C is defined as the quadratic length of the shortest path on the triangulated mesh. We
compute 3 different averages: a Euclidean mean, a UOT barycenter (independently across
time) and a spatio-temporal STA barycenter with kyax = 20. As shown in Figure 3, the
first burst in the neural response is a visually evoked potential (known as P1) that arises
around 100ms after the stimulus (Slotnick et al., 1999) in the primary visual cortex (blue).
Then, at around 170ms, an evoked response that is specific to the display of faces occurs in a
small region known as the Fusiform Face Area (Green) (FFA) (Bentin et al., 1996; Kanwisher
et al., 1997). The delimited regions of interest were selected using the meta-analysis tool
Neurosynth (Yarkoni, 2014). As expected, OT based averages (UOT and STA) show less
spurious activation patterns but also a smoother temporal transition from P1 to the FFA
response than euclidean based ones (Euclidean mean, DBA). To further assess the temporal
sensitivity of STA, we display in Figure 4 the £5 norm across space of the 3 barycenters of
Figure 3. The temporal distinction between the two evoked responses is more pronounced
with STA than the other methods.

5.2 Forecasting the motion of handwritten letters

Dataset We evaluate the performance of STA in a prediction task using a publicly available
dataset of handwritten letters where the position of a pen are tracked in time Williams et al.
(2006). We subsample the data both spatially and temporally so as to keep 13 time points of
(30x30) images for each time series. Each image can thus be seen as a screenshot at a certain
time during the writing motion. To make the task a bit more challenging, we randomly shift
each time series spatially (resp. temporally) by 0 to 10 pixels in each direction (by keeping 5
to 13 time points evenly selected). The dataset is composed of 20 samples of each one of the
letters (“a”, “b”, “c”, “v”), thus the full shape of the dataset is (100, 13, 30, 30).
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Euclidean mean
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86 ms 99 ms 131 ms 154 ms 172 ms 190 ms
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Temporally static UOT

86 ms 99 ms 131 ms 154 ms 172 ms 190 ms
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7.33 100 2.0 4.6 7.33 100 2.0 4.67 7.33 100 2.00 4.67 7.33 100 2.00 4.67 7.33 100 2.00 4.67 7.33 100
it it L C— L C— L C—

Fig. 3. Barycenters of the spatio-temporal neural activity of 6 subjects taken from the
DS117 dataset. The STA barycenter shows a more focused activation around the Fusiform
Form Face Area (green) than the other methods. Unlike the OT barycenter, STA shows a
more plausible time occurrence of the first evoked response around 100ms.

Forecasting We propose to use barycenters as a forecasting method. For each time series
X in the dataset, knowing only the first ¢y < 13 time points, we would like to predict the rest.
First, based only on the observed tg = 5 time points, we select the closest 5 neighbors of x in
the data based on some loss function d. We denote these nearest neighbors x7,. .., x5. Next,
we predict the future of x by computing the d-barycenter of (x},)r=1.5 while keeping the
first ¢y observations of x fixed. The full pipeline is illustrated in Figure 5. The predictions
obtained for the example shown in Figure 5 are illustrated in Figure 6. While ¢5 (Euclidean
mean, DBA) based method clearly fail to identify neighbors in the same class (“a”), OT based
methods do not. Moreover, thanks to temporal variability, STA provides a more accurate
prediction of the remaining time points than OT alone.

Figure 7 shows a more quantitative comparison where we evaluate the accuracy of the
predictions for all samples in the dataset with the ¢ and the EMD (Earth mover distance)
metrics averaged across the 8 predicted time points. To compute the EMD scores, we
normalize all images so that their values add up to 1 and define EMD with the Euclidean
quadratic cost between pixel coordinates. On both metrics and for all letters, STA outperforms
the other loss functions. The prediction error of DBA in this experiment was so high that

19



H. Janati, M. CUTURI, A. GRAMFORT

- Euclidean mean — DBA ——— Temporally static UOT mean = Spatio-temporal mean (STA)
50
40
= 30
3
20
10
0 25 50 75 100 125 150 175
Time (ms)

Fig. 4. /5 norm (across space) of the barycenters for the 4 methods shown in Figure 3.
Euclidian average and DBA output temporally smoothed signals. On the contrary STA
returns two clear peaks in the signal at 125 ms and around 160 ms, suggesting that it has
correctly identified the two transient evoked responses elicited by the visual presentation of
faces to the different subjects.

Time
Time series sample rXO ------ ----- Xt
to forecast J 0] {i—[f o] :
) TXpXp r F
X; €R E .
; A
X;[0: to] Unknown time points X[to + 1 : T
Xif0:to]| * * |~ o Determine nearest neighbors in X[O : to]
X004 . B > Compute all distances d(X;[0 : o], X;[0 : to]) for i # j
to get the 5 nearest neighbors of X;: (Xj,,...,Xj;)
X, [0 : to) : : ‘
o Forecasting using the barycenter of (X, ..., X};)
X [0 . to]
Complete X [0 : ¢o] by computing the barycenter over the unknown time points:

5
1
arg min gZd(Xjk,[Xj[OZto],Xj[t0+1 :TN)
X;[to+1:T]eRT 0P © gy

Fig. 5. Sketch explaining the forecasting pipeline used with the handwritten letters experi-
ment.

the nuance between the other methods was no longer visible. For this reason, we defer the
performance of DBA to the appendix.
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Fig. 6. Forecasts of a handwritten letter time series. The green time points are fixed and
considered known for all models. Blue observations are predicted. As expected ¢ based
methods fail to identify neighbors in the same class.

./, e sdtw(fy) I Temporally static UOT B stdw(UOT) (proposed)

a C S \Z

Fig. 7. Mean prediction scores computed on the unknown halves of the time series for
each letter. The EMD score is computed between each true image and its prediction after
normalization to the probability simplex. The ground metric is the Euclidean distance
between pixel locations, normalized so that EMD is within [0-1].
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6. Conclusion

Spatio-temporal data can differ in amplitude and in spatio-temporal structure. To average
such data we proposed a combination of Soft-DTW and optimal transport. Our main
contributions are twofold. First, we derive a fast optimization schedule that reduces the
spatio-temporal averaging to a sequence of temporally weighted spatial averages. Second,
combined with entropic unbalanced OT as a spatial mean, we show that the debiased version
can also be used to compute barycenters using a generalized version of Sinkhorn’s algorithm.
The performance of our experiments on simulations and real data confirm our findings and
show that our method can identify meaningful spatio-temporal barycenters.
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Supplementart materials

Proof of Proposition 4.

The central (or diagonal) Delannoy numbers D,,, verify the 2-stages recursion equation for
any m > 2 (Stanley, 2011):

mDy, 11 = (6m —3)Dy, — (m — 1) Dy (44)
We are going to prove both inequalities by induction.

Inequality (8) For m =1, we have Dy =3 <2+ %\/i = %62 = %cle. Assume that (9)
holds for some m > 2. From (44) and the induction assumption:

(m +1)Dyyyo = (6m + 3)Dypy1 — mD,yy, (45)
m+ i
< (6m +3)Dyni1 — me?DmH (46)
m+ i
< (6m+3— = 2)Dpni1 (47)
6c2 — 1)m + =1
_( )02 2 Dyt (48)
1
= A (m+ §)Dm+1 (49)
where we used the fact that 1/c? = 3+; 7= 3—2v2=6—c?, hence 6¢2 — 1 = c*. Therefore:
1
Do < 62m+ 2
Dm+1 - m-+1
To conclude, it suffices to show that for all m > 5:
+3 1
m-—+ 3 < m+ (50)

m+1 _m+%
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which is equivalent to:

1 3
(m—|—2> <m+2> < (m+1)? (51)
<:>m2+2m+%§m2—|—2m+1 (52)
3
& -<1
- (53)

Inequality (9) For m = 1, we have with numerical evaluation BQ —c? 5 > (0. Assume that

(9) holds for some m > 1. From (44) and the induction assumption:

(m+1)Dpy2 = (6m + 3)Dpyp1 — mDyy, (54)
m +3 L+
Z (6m + S)Dm+1 - 02 2m Dm+1 (55)
m+ 5+ 5=
= (6m +3 — —25—2") Dy (56)
6c? — 1)m + 3c? _,_L
_ (6 m s Zp (57)
c
1
(59)
where we used the fact that 1/(:2 = 3+2\[ =3-2/2=6-— 02 hence 6¢2 — 1 = ¢*. Therefore:

> I
D1 — c(m+ 2 2c4m)

To conclude, it suffices to show that for all m > 2:

11
m+3 2ctm > 77;—1_1 - (60)
m+1 m+5+ o
which is equivalent to:
11 3 1 )
- id > 1
<m+2 204m> <m+2+2m+2>(m+)
1 3 1 1 1 3
& - - -4 ->1 61
2ctm <m+2>+2m+2<m+2> 4C4m(m+l)+4_ (61)
3 1 1 1
s—(m+1)(m+)+c*m(m+= _,_%20 (62)
2 2 2 2
1
@(54—1)171 —2m—2>0 . (63)

Which holds for m >1. B
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Proof of Corollary 5.

Combining both inequalities of proposition 4 leads to:
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Using the inequalities ;7 < log(1 + ) < x which holds for z > —1, on one hand:

T-1 T
|
ZH%_Zog( 2k>
2T T T-1 1
- — <
p> DTS log<1+2k>
k=2m+1 k=m+1 k=m
oT 2m T m T-1
1 1 1 1 1
D D ~ <31
=2 % DI BE T Og<+2k>
k=1 k=1 k=1 k=1 k=m
and on the other hand, for m > 3
T-1 m—1
1 1 7 5
2 I — < R 4o
Zog(+ +2k2)—;k ;k+6 4

Finally, using —larger versions for the sake of simplicity of — the classical bounds of the
Harmonic series (Chen and Qi, 2003):

n

1
] <N 1< 4
og(n)+v+2n+1_i s Slog(n) +y+ 55—, (64)
which leads to:
T—-1
T-1 1 1 1 T-1 1 1
] _ <N 2 <1
o8l 1)t or 1 2m—3 = : pelee Dt 31 (69
=m
it holds:
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and similarly:

Tz:llo 1—|—i > lo E +llo (T)—k 1 — 1 + 1 _ 1
& %)= %\ om ) T2\ T) T T 1 am—1 " dm+2 AT -2

1 (T !
Lo (T L
=29\ ) "2

Taking the exponential ends the proof H.

6.1 Proof of proposition 8

For empty time series, we adopt the convention Dg; = D; o = 1 for any integer i. First let’s
upper bound dtwpg(x,y). Notice that since x,y are Dirac time series, the elements of the
distance matrix A(x,y) are either equal to 0 or r. Therefore, the cost of any path A given
by (A, A(x,y)) can be written as gr for some g € N. More specifically, ¢ corresponds to the
number of times the path A meets the non-zero elements of A(x,y). Therefore, denoting
the number of feasible alignments corresponding to each ¢ by M,(x,y) it holds:

_(Aaey) O e Py _ra=)
oo T =Y Mxy)e F = Mylxy) e F Y Mixy)e F (66)
AcAr q=0 g=1
Therefore:
T+k
_(AAGY)) _r
Z e B < My(x,y)+e 5 ZMk(XaY)

AcAr T g=1

= Mo(x,y) + ¢ #(Dr — Mo(x,y))
= (1= Ag)Mo(x,y) + AgDr
and similarly:

_ (A A(x,x))
Z € s > MO(va)

AGAT,T

where My(x,y) = Di—1 146 D1r—tx 7—>—1 and Mo(x,x) = D1 Dp_4». Therefore, com-
bining both inequalities after introducing — log leads to:

Mo(x,y)(1 = Ag) + )‘BDT>

dtwg(x,y) — dtwg(x,x) > —(log (

My(x,x)
Dy 1o 111D+ 7+ Dr >
= _ABlo d ’ 1—Ag)+ \g—7F+
B & < Dt*—lDT—t* ( /8) 5Dt*—1DT—t*

On one hand applying Proposition 6 with m = ¢* — 1 and m’ =T — m — 1 provides:

Dy 1414k Dr—tx 74+ ke < o—P®)
Dy« 1 Dr_4» h
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and on the other hand, using Corollary 5 we can get the upper bound constant H. For
tr > 1:
DT < CZt* (T — t*)e

Dp_p — T
and if t* — 1> 2:
7‘_2
D: €% sy
Dt*fl - 02(t*73)
Combining the two leads to:
2 5
Dr _ Petns \/e(T—t*)(t* —2)
Dy 1Dy — 3 T

Maximizing the upper bound with respect to t* leads to the maximizer t* = %—H. Substituting
shows that: Finally:

Dy 1\Dr_p —
Multiplying by 1 — Ag > 0, adding AgH and applying — log ends the proof W.

Proof of proposition 9

It is straightforward to see that khT LBg(k) = —Blog(AgH). Therefore on one hand:
—400

m LB — LBg(kmax
(i L5 ~ gl

3 <
& log <€—P(kmx)<1 —Ag) + AgH) —log(AgH) <1
e Plhma) (1 _ \g) 4 N\gH < e"\gH

efp(k’max)

(e" —1)H + e~ P(kmax)

<:)>)\5 >

and on the other hand:

B> d
B P(kmax) + log ((677 - 1)H)
- % > — P(kuma) — log (¢ — 1)H)
>\ > e_P(kmax) > e_P(kmax)
TN E e “1)H = (e — 1) H + e Plomar)

Thus the upper bound in (18) holds. The lower bound follows from the positivity of
e PR (1 — X)W
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[ Emm DBA  mmm sdtw({) I Temporally static UOT W stdw(UOT) (proposed)

a b c s v

Fig. 8. Mean prediction scores computed on the unknown halves of the time series for
each letter. The EMD score is computed between each true image and its prediction after
normalization to the probability simplex. The ground metric is the Euclidean distance
between pixel locations, normalized so that EMD is within [0-1]. The poor performance of
DBA is most likely due to its (1) high sensitivity with respect to initialization and (2) its
blindness to temporal shifts.
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