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Abstract

Using information-theoretic principles, we consider the generalization error (gen-error) of
iterative semi-supervised learning (SSL) algorithms that iteratively generate pseudo-labels
for a large amount of unlabelled data to progressively refine the model parameters. In
contrast to most previous works that bound the gen-error, we provide an exact expression
for the gen-error and particularize it to the binary Gaussian mixture model. Our theoretical
results suggest that when the class conditional variances are not too large, the gen-error
decreases with the number of iterations, but quickly saturates. On the flip side, if the class
conditional variances (and so amount of overlap between the classes) are large, the gen-
error increases with the number of iterations. To mitigate this undesirable effect, we show
that regularization can reduce the gen-error. The theoretical results are corroborated by
extensive experiments on the MNIST and CIFAR datasets in which we notice that for easy-
to-distinguish classes, the gen-error improves after several pseudo-labelling iterations, but
saturates afterwards, and for more difficult-to-distinguish classes, regularization improves
the generalization performance.

Keywords: Generalization error, Semi-supervised learning, Pseudo-label, Information
theory, Binary Gaussian mixture.

1. Introduction

In real-life machine learning applications, it is relatively easy and inexpensive to obtain large
amounts of unlabelled data, while the number of labelled data examples is usually small
due to the high cost of annotating them with true labels. In light of this, semi-supervised
learning (SSL) has come to the fore (Chapelle et al., 2006; Zhu, 2008; Van Engelen and
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Hoos, 2020). SSL makes use of the abundant unlabelled data to augment the performance
of learning tasks with few labelled data examples. This has been shown to outperform
supervised and unsupervised learning under certain conditions. For example, in a classi-
fication problem, the correlation between the additional unlabelled data and the labelled
data may help to enhance the accuracy of classifiers. Among the plethora of SSL meth-
ods, pseudo-labelling (Lee, 2013) has been observed to be a simple and efficient way to
improve the generalization performance empirically. In this paper, we consider the problem
of pseudo-labelling a subset of the unlabelled data at each iteration based on the previ-
ous output parameter and then refining the model progressively, but we are interested in
analysing this procedure theoretically. Our goal in this paper is to understand the impact
of pseudo-labelling on the generalization error.

A learning algorithm can be viewed as a randomized map from the training dataset to
the output model parameter. The output is highly data-dependent and may suffer from
overfitting to the given dataset. In statistical learning theory, the generalization error (gen-
error), or generalization bias, is defined as the expected gap between the test and training
losses, and is used to measure the extent to which the algorithms overfit to the training
data (Russo and Zou, 2016; Xu and Raginsky, 2017; Kawaguchi et al., 2017). In SSL
problems, the unlabelled data are expected to improve the generalization performance in a
certain manner and thus, it is a worthy endeavor to investigate the behaviour theoretically.
Although there exist many works studying the gen-error for supervised learning problems,
the gen-error of SSL algorithms is yet to be explored.

1.1 Related Works

The extensive literature review is categorized into three aspects.

Semi-supervised learning: There have been many existing results discussing about
various methods of SSL. The book by Chapelle et al. (2006) presented a comprehensive
overview of the SSL methods both theoretically and practically. Chawla and Karakoulas
(2005) presented an empirical study of various SSL techniques on a variety of datasets and
investigated sample-selection bias when the labelled and unlabelled data are from different
distributions. Zhu (2008) partitioned SSL methods into six main classes: generative mod-
els, low-density separation methods, graph-based methods, self-training and co-training.
Pseudo-labelling is a technique among the self-training and co-training (Zhu and Goldberg,
2009). In self-training, the model is initially trained by the limited number of labelled data
and generate pseudo-labels to the unlabelled data. Subsequently, the model is retrained
with the pseudo-labelled data and repeats the process iteratively. It is a simple and effec-
tive SSL method without restrictions on the data samples (Triguero et al., 2015). A variety
of works have also shown the benefits of utilizing the unlabelled data. Singh et al. (2008)
developed a finite sample analysis that characterized how the unlabelled data improves the
excess risk compared to the supervised learning, with respect to the number of unlabelled
data and the margin between different classes. Li et al. (2019) studied multi-class classi-
fication with unlabelled data and provided a sharper generalization error bound using the
notion of Rademacher complexity that yields a faster convergence rate. Zhu (2020) consid-
ered the general SSL setting by assuming the loss function to be S-exponentially concave
or the 0-1 loss, and used a Bayesian method for prediction instead of empirical risk mini-
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mization which we consider. The author presented an upper bound for the excess risk and
the learning rate in terms of the number of labelled and unlabelled data examples. Carmon
et al. (2019) proved that using unlabelled data can help to achieve high robust accuracy as
well as high standard accuracy at the same time. Dupre et al. (2019) considered iteratively
pseudo-labelling the whole unlabelled dataset with a confidence threshold and showed that
the accuracy converges relatively quickly. Oymak and Giilcii (2021), in which part of our
analysis hinges on, studied SSL under the binary Gaussian mixture model setup and char-
acterized the correlation between the learned and the optimal estimators concerning the
margin and the regularization factor. Recently, Aminian et al. (2022) considered the sce-
nario where the labelled and unlabelled data are not generated from the same distribution
and these distributions may change over time, exhibiting so-called covariate shifts. They
provided an upper bound for the gen-error and proposed the Covariate-shift SSL (CSSL)
method which outperforms some previous SSL algorithms under this setting. However,
these works do not investigate how the unlabelled data affects the generalization error over
the iterations.

Generalization error bounds: The traditional way of analyzing generalization error in-
volves using the Vapnik—Chervonenkis or VC dimension (Vapnik, 2000) and the Rademacher
complexity (Boucheron et al., 2005). Recently, Russo and Zou (2016) proposed using the
mutual information between the estimated output of an algorithm and the actual realized
value of the estimates to analyze and bound the bias in data analysis, which can be regarded
equivalent to the generalization error. This new approach is simpler and can handle a wider
range of loss functions compared to the abovementioned methods and other methods such
as differential privacy. It also paves a new way to improving generalization capability of
learning algorithms from an information-theoretic viewpoint. Following Russo and Zou
(2016), Xu and Raginsky (2017) derived upper bounds on generalization error of learning
algorithms with mutual information between the input dataset and the output hypothesis,
which formalizes the intuition that less information that a learning algorithm can extract
from training dataset leads to less overfitting. Later Pensia et al. (2018) derived generaliza-
tion error bounds for noisy and iterative algorithms and the key contribution is to bound
the mutual information between input data and output hypothesis. Negrea et al. (2019)
improved mutual information bounds for Stochastic Gradient Langevin Dynamics (SGLD)
via data-dependent estimates compared to distribution-dependent bounds.

However, one major shortcoming of the aformentioned mutual information bounds is
that the bounds go to infinity for (deterministic) learning algorithms without noise, e.g.,
Stochastic Gradient Descent (SGD). Some other works have tried to overcome this problem.
Lopez and Jog (2018) derived upper bounds on the generalization error using the Wasser-
stein distance involving the distributions of input data and output hypothesis, which are
shown to be tighter under some natural cases. Esposito et al. (2021) derived generalization
error bounds via Rényi-, f-divergences and maximal leakage. Steinke and Zakynthinou
(2020) proposed using the Conditional Mutual Information (CMI) to bound the generaliza-
tion error; the CMI is useful as it possesses the chain rule property. Bu et al. (2020) provided
a tightened upper bound based on the individual mutual information (IMI) between the
individual data sample and the output. Wu et al. (2020) extended Bu et al. (2020)’s result
to transfer learning problems and characterized the upper bound based on IMI and KL-
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divergence. In a similar manner, Jose and Simeone (2021) provided a tightened bound on
transfer generalization error based on the Jensen—Shannon divergence. Moreover, recently,
Aminian et al. (2021) and Bu et al. (2022) recently derived the exact characterization of
gen-error for supervised learning and transfer learning with the Gibbs algorithm.

Regularization is an important technique to reduce the model variance (Anzai, 2012),
but there are few works that theoretically analyse the relationship between the gen-error
and regularization. Moody (1992) characterized the gen-error as a function of the regular-
ization parameter in supervised nonlinear learning systems and showed that the gen-error
decreases as the parameter increases. Bousquet and Elisseeff (2002) provided a stability-
based gen-error upper bound in terms of the regularization parameter in supervised learn-
ing. Mignacco et al. (2020) studied how the regularization affects the expected accuracy in
high-dimensional GMM supervised classification problem.

Gaussian mixture models (GMM): The GMM is a popular, simple but non-trivial
model that has been studied by many researchers. The performance of GMM classification
problems depends on the data structure. The classical work of Castelli and Cover (1996)
studied the classification problem in a binary mixture model with known conditional dis-
tributions but unknown mixing parameter and characterized the relative value of labelled
and unlabelled data in improving the convergence rate of classification error probability.
Akaho and Kappen (2000) characterized the generalization bias of general GMMs in su-
pervised learning and discussed its dependency on data noise. Watanabe and Watanabe
(2006) considered GMM in Bayesian learning and provided bounds for variational stochastic
complexity. Wang and Thrampoulidis (2022) and Muthukumar et al. (2021) studied the
dependence of the bGMM classification performance (using the 0-1 loss) on the structure
of data covariance by considering SVM and linear interpolation.

However, all these aforementioned works do not investigate the generalization perfor-
mance of SSL algorithms.

1.2 Contributions

Our main contributions are as follows.

1. In Section 3, we leverage results by Bu et al. (2020) and Wu et al. (2020) to derive
an information-theoretic gen-error bound at each iteration for iterative SSL; see The-
orem 2.A. Moreover, in contrast to most previous works that bound the gen-error, we
derive an eract characterization of gen-error at each iteration for negative log-likelihood

(NLL) loss functions (see Theorem 2.B).

2. In Section 4, we particularize Theorem 2.B to the binary Gaussian mixture model
(bGMM) with in-class variance 02. We show that for any fixed number of data
samples, there exists a critical value oy such that when the data variance (representing
the overlap between classes) 02 < o3, the gen-error decreases in the iteration count
t and converges quickly with a sufficiently large amount of unlabelled data. When
0? > 03, the gen-error increases instead, which means using the unlabelled data does
not help to reduce the gen-error across the SSL iterations. The empirical gen-error
corroborates the theoretical results, which suggests that the characterization serves
as a useful rule-of-thumb to understand how the gen-error changes across the SSL
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iterations and it can be used to establish conditions under which unlabelled data can
help in terms of generalization.

3. In Section 5, we theoretically and empirically show that for difficult-to-classify prob-
lems with large overlap between classes, regularization can effectively help to mitigate
the undesirable increase of the gen-error across the SSL iterations.

4. In Section 6, we implement the pseudo-labelling procedure on the MNIST and CIFAR
datasets with few labelled data and abundant unlabelled data. The experimental
results corroborate the phenomena for the bGMM that the gen-error decreases quickly
in the early pseudo-labelling iterations and saturates thereafter for easy-to-distinguish
classes but increases for hard-to-distinguish classes. By adding ¢s-regularization to the
hard-to-distinguish problem, we also observe improvements to the gen-error similar
to that for the bGMM.

2. Problem Setup

Let the instance space be Z = X x ) C R the model parameter space be © and the
loss fucntion be [ : Z x © — R, where d € N. We are given a labelled training dataset
S1={2Z,.... 2y} = {(X;,Y3)}}_, drawn from Z, where each Z; = (X},Y;) is independently
and identically distributed (i.i.d.) from Pz = Pxy € P(Z). For any i € [n], X; is a vector
of features and Y; is a label indicating the class to which X; belongs. However, in many
real-life machine learning applications, we only have a limited number of labelled data while
we have access to a large amount of unlabelled data, which are expensive to annotate. Then
we can incorporate the unlabelled training data together with the labelled data to improve
the performance of the model. This procedure is called semi-supervised learning (SSL). We
are given an independent unlabelled training dataset S, = {X7,...,X.,,},7 € N, where
each X! is generated i.i.d. from Py € P(X). Typically, m > n.

In the following, we consider the iterative self-training with pseudo-labelling in SSL
setup, as shown in Figure 1. Let t € [0 : 7] denote the iteration count. In the initial round
(t = 0), the labelled data S are first used to learn an initial model parameter 6, € ©.
Next, we split the unlabelled dataset S, into 7 disjoint equal-size sub-datasets {Syx};_1,
where S, = {Xék—l)mﬂv ..., X;,}. In each subsequent round t € [1 : 7], based on 6;_;
trained from the previous round, we use a predictor fy, , : X — Y to assign a pseudo-
label Y] to the unlabelled sample X! for all i € Z; := {(t — 1)m, (t — 1)m + 1,...,tm}.
Let Su¢ = {(X!,Y/)}icz, denote the ' pseudo-labelled dataset. After pseudo-labelling,
both the labelled data S; and the pseudo-labelled data S’u,t are used to learn a new model
parameter 6;. The procedure is then repeated iteratively until the maximum number of
iterations 7 is reached.

This setup is a classical and widely-used model in the realm of self-training in SSL
(Chapelle et al., 2006; Zhu, 2008; Zhu and Goldberg, 2009; Lee, 2013), where in each
iteration, only a subset of the unlabelled data are used. Furthermore, as discussed by
Arazo et al. (2020), this method is less likely to overfit to incorrect pseudo-labels, compared
to using all the unlabelled data in each iteration (also see Figure 10). Under this setup of
iterative SSL, during each iteration ¢, our goal is to find a model parameter 6; € © that
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Figure 1: Paradigm of iterative self-training with pseudo-labelling in SSL

minimizes the population risk with respect to the underlying data distribution

Lp, (915) = EZ"‘PZ [l(etv Z)]

Since Pz is unknown, Lp,(6;) cannot be computed directly. Hence, we instead minimize
the empirical risk. The procedure is termed empirical risk minimization (ERM). For any
model parameter §; € ©, the empirical risk of the labelled data is defined as

Ls,(6;) : Zz Or, 7

and for ¢ > 1, the empirical risk of pseudo—labelled data S’u : as

Sut Zlet’

zEIt

We set Lg (6;) =0 for t = 0. For a fixed weight w € [0, 1], the total empirical risk can be
defined as the following linear combination of Lg,(6;) and Lg (64):

Lg g, ,(0t) = wLs () + (1 —w)Lg, ,(6). (1)

In the usual case where the algorithm minimizes the average of the empirical training losses,
one should set w = --. An SSL algorithm can be characterized by a randomized map
from the labelled and unlabelled training data .S}, S, to a model parameter 6 according
to a conditional distribution Fyg g,. Then at each iteration ¢, we can use the sequence
of conditional distributions {Pp, |s, s, theo With Ppyis.s, = Pgo|s, to represent an iterative
SSL algorithm. The generalization error at the t-th iteration is defined as the expected gap

between the population risk of §; and the empirical risk on the training data:

gen,(Pz, Px, { P, 5,5, Yeeos {0, i)
=E[Lp,(6:) — Lg, gut(@)]

= ’w(Egth 9,5, - — ZEG,:, 0157 )])

+ (1 —w) (Eoth[ (0, Z ZE&,X{,Y; (6, (X! ))]).

ZEI{

Ly

When ¢t = 0 and w = 1, the definition of the generalization error reduces to that of vanilla
supervised learning. Based on this definition, the expected population risk can be decom-
posed as

E[Lp,(0,)] = ElLg 5, (0,)] + gen, (2)

6
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where the first term on the right-hand side of this equation is what the algorithm minimizes
and reflects how well the output hypothesis fits the dataset, and the second term gen, is
used to measure the extent to which the iterative learning algorithm overfits the training
data at the ¢-th iteration. To minimize E[Lp,(6;)], we need both terms in (2) to be small,
but there exists a natural trade-off between them. While the algorithm aims to minimize
the empirical risk ]E[Lsh Su,t(gt)]’ studying and controlling gen, can also help to reduce the
population risk E[Lp, (6;)], which is the ultimate goal of learning. Instead of focusing on
the total generalization error induced during the entire process, we are interested in the
following questions. How does gen, evolve as ¢ increases? Do the unlabelled data examples
in Sy help to improve the generalization error?

3. General Results

Inspired by the information-theoretic generalization results in Bu et al. (2020, Theorem 1)
and Wu et al. (2020, Theorem 1), we derive an upper bound on the gen-error gen, in terms
of the mutual information between input data samples (either labelled or pseudo-labelled)
and the output model parameter 6;, as well as the KL-divergence between the data distri-
bution and the joint distribution of feature vectors and pseudo-labels (cf. Theorem 2.A).
Furthermore, by considering the NLL loss function (MacKay, 2003; Goodfellow et al., 2016),
we derive the exact characterization for the gen-error gen, (cf. Theorem 2.B).

Recall that for a given R > 0, L is an R-sub-Gaussian random wvariable (Vershynin,
2018) if its cumulant generating function Ap(X\) := log Elexp(A\(L — E[L]))] < exp(\2R?/2)
for all A € R. If L is R-sub-Gaussian, we write this as L ~ subG(R). Furthermore, let
us recall the following somewhat non-standard information quantities (Negrea et al., 2019;
Haghifam et al., 2020).

Definition 1. For random wvariables X, Y and U, define the disintegrated mutual infor-
mation between X and Y given U as Iy(X;Y) := D(Pxyl|Pxjy @ Pyjy), and the dis-
integrated KL-divergence between Px and Py given U as Dy(Px||Py) := D(Pxyl|Pyv)-
These are o(U)-measurable random variables. It follows that the conditional mutual infor-
mation I(X;Y|U) = Ey[ly(X;Y)] and the conditional KL-divergence D(Px |y || Py v|Pv) =
Eu[Du (Px || Py)]-

For distributions P, Q) and V', define the cross-entropy as h(P,Q) := Ep[—log Q] and
the divergence between the cross-entropies as Ah(P||Q|V) := h(P, V) — h(Q,V).

Let 6() = (6, ...,6;) for any t € [0 : 7] and w = 1 for t = 0. In iterative SSL, we can
characterize the gen-error as shown in Theorem 2 by applying the law of total expectation.

Theorem 2.A (Gen-error upper bound for iterative SSL). Suppose 1(0,Z) ~ subG(R)
under Z ~ Pz for all 0 € ©, then for any t € [0 : 7],

‘gent(PZ7 Px, {Plesl,Su }Z:Ov {f9k 7]2;_:10)‘

< S B[RRI, 1 S By [y 2R + DL
i—1 1€

where 19(271) = Lo (01 Z;), Ié((?,l) = Ty (0 X1, Y7), and Dle((?fl) = De(t—l)(PXl{7§}i/|’PZ)~
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Theorem 2.B (Exact gen-error for iterative SSL). Consider the NLL loss function (0, Z) =
—logpe(Z), where pg(Z) is the likelihood of Z under parameter 6. For any t € [0 : 7],

gent(PZa Px, {PGk\Sl,Su}Z 0’ {fek 2;10)

= o [0 a0+ 15 (o) B ®)

€Lt

where

Ah(’) Ah(Pz|| Pz, 6,|pe, ), Ah9(<3> = Ah(Pz|| Py g190-1 [Pe,),  and
1(2)

Ahe(t) = Ah( DR ATICEY ”P IAAIO] |P6t)

The proof of Theorem 2.A is provided in Appendix A, in which we provide a general
upper bound not only applicable to sub-Gaussian loss functions. The proof of Theorem 2.B
is provided in Appendix B. Specifically, for NLL loss functions, Theorem 2.B provides an
eract characterization of the gen-error at each iteration. This is in stark contrast to most
works on information-theoretic generalization error in which only bounds are provided.

In contrast to Bu et al. (2020, Theorem 1) and Wu et al. (2020, Theorem 1) which pertain
to supervised learning, Theorem 2 characterizes the gen-error at each iteration during the
pseudo-labelling and training process. Note that the quantities in Theorem 2.B satisfy
Ang) = 18, + D(Pzllpa) — D(Pyp,Ipa,) and Abgy = I, + Dy (P, yollpa,) -

Da(tfl)(PXZ{A}i/thp@t). Thus, it is plausible that the upper bound based on ((2 ;) and

I(;((i)_l) in Theorem 2.A can help to understand and control the exact gen-error. Intuitively,

the mutual information between the individual input data sample Z; and the output model

parameter 6; in Theorem 2.A and the cross-entropy divergences Ahé?, ﬁl,e((zt)) in Theorem 2.B

both measure the extent to which the algorithm is sensitive to each data example at each

iteration ¢. The KL-divergence between the underlying P, and pseudo-labelled distribution
1(4)
i o(t)
how effectively the pseudo-labelling process works. As n — oo and m — oo, we show that

(i)
g(t 1)

Py, v in Theorem 2.A and the cross-entropy divergence Ah,/ in Theorem 2.B measure

the mutual information (as well as Ahé) and Ahe((t))) vanishes but the divergences D

and Ahg((t)> do not, which reflects the impact of pseudo-labelling on the gen-error.

In iterative learning algorithms, by applying the law of total expectation and con-
ditioning the information-theoretic quantities on the output model parameters (¢~ =
{01,...,0,_1} from previous iterations, we are able to calculate the gen-error iteratively. In
the next section, we apply the exact iterated gen-error in Theorem 2.B to a classification
problem under a specific generative model-—the bGMM. This simple model allows us to
derive a tractable characterization on the gen-error as a function of iteration number ¢ that

we can compute numerically.

4. Main Results on bGMM

We now particularize the iterative semi-supervised classification setup to the bGMM. We
evaluate (3) to understand the effect of multiple self-training rounds on the gen-error.
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4.1 Iterative SSL under bGMM

Fix a unit vector u € R? and a scalar ¢ € R, = (0,00). Under the bGMM with mean p
and standard deviation (std. dev.) o (bGMM(u, o)), we assume that the distribution of
any labelled data example (X,Y") can be specified as follows. Let Y = {—1,+1}, Y ~ Py =
unif{—1,+1}, and X|Y ~ N(Y p,0%1,), where I, is the identity matrix of size d x d.

The random vector X is distributed according to the mixture distribution

1 1
b= SN (1, 0%La) + SN (=1, Ta).

In the unlabelled dataset Sy, each X/ for i € [1 : 7m] is drawn i.i.d. from p,,.

Let © C R? such that u € ©. For any § € O, under the bGMM(, o), the joint
distribution of any pair of (X,Y) € Z is given by N (Y0,0%I;) ® Py. The NLL loss
function can be expressed as

l(ev (X,Y)) = —logpg(X,Y) = _log (Py(Y)pg(X|Y))
1

The population risk minimizer is given by argming.g Ex y[I(0, (X,Y))] =

Under this setup, the iterative SSL procedure is shown in Figure 1, but the labelled
dataset S) is only used to train in the initial round ¢ = 0; we discuss the reuse of 5] in all
iterations in Corollary 10. That is, in (1), we set w = 0. The algorithm operates in the
following steps.
e Step 1: Initial round ¢ = 0 with S;: By minimizing the empirical risk of labelled

dataset S
n
L6 Zl (X0, ) £ 5y > (Xi = %) (X - Yio)

where = means that both sides differ by a constant independent of @, we obtain the
minimizer
1 n
6 = inLg (0) =— Y X;. 4
o arggeigin 5,(0) nz iXi (4)
e Step 2: Pseudo-label data in S,: At each 1teration t € [1:7], for any i € Z;, we use
6;_1 to assign a pseudo-label for X!, that is, Y/ = fg, ,(X}) = sgn(6," ;X%).

e Step 3: Refine the model: We then use the p§eudo-1abelled dataset Su,t to train the
new model. By minimizing the empirical risk of Sy ¢

“ c 1 / I\ T / Y
Zl 7,7 Yi)) = 202m Z(X'L_Yie) (X; —Y;0), (5)
’LEZt 1€y
we obtain the new model parameter
1 - 1
0, — — X — T XHXE
t m Z Y; Xz m Z Sgn<0t—1 Z)X’L (6)
i€1y 1€t

If t < 7, go back to Step 2.
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4.2 Definitions

To state our result succinctly, we first define some non-standard notations and functions.
2 o

From (4), we know that 6y ~ N'(u, 2-1;) and inspired by Oymak and Giilcii (2021), we can

decompose 0 as

902( fﬁo)u+fu ;

where & ~ N(0,1), pt ~ N (0,15 — ppe ), and pt is perpendicular to pu and independent
of & (the details of this decomposition are provided in Appendix C).

Given a pair of vectors (a, b), define their correlation coefficient as p(a,b) := ||a<\§’\ﬁzllz‘
The correlation coefficient between the estimated and true parameters is
+ =0
a(&o, wt) = p(6o, 1) = = \f " (7)
VI + %6+ Zllut 3
Let B(&,pu") = /1 —a(é, nl)2. We abbreviate a(&y, ut) and B(&, ut) to o and B

respectlvely in the following. Then the normalized vector 6y/||@y||2 can be decomposed as
follows

0y := = ap + P, (8)

0o
1602
where v = pt/||pt|2. Let 05 = (28?1 — 2a8v) /o, which is a vector perpendicular to 6p.

Let Q(+) := 1 — ®(-). Define the correlation evolution function F, : [-1,1] — [—1,1]
that quantifies the increase to the correlation (between the current model parameter and the
optimal one) and improvement to the generalization error as the iteration counter increases
from t to ¢t + 1:

Jo ()
F,(z) T0) L K20 where 9)
x ox x?
Jo(z) :=1— 2Q<0> + ?/ﬂexp ( — M)’ and (10)
ovl—z 22

The ¢ iterate of the function F,, is defined recursively as Fét) =F, oFétil) with Féo) (z) =
2. As shown in Figure 2, for any fixed o, we can see that Fg) () > Fy(x) > x for z >0
and F\?) (x) < Fy(x) < x for < 0. It can also be easily deduced that for any ¢ € [0 : 7],
FCSHI)(:U) > F (z) for any = > 0 and FéH_l)(m) < FY (x) for any = < 0. This important
observation implies that if the correlation «, defined in (7), is positive, Fét) () increases

with ¢; and vice versa. Moreover, as shown in Figure 11 in Appendix C, by varying o, we
observe that a smaller o results in a larger |F,(x)|.

4.3 Main Theorem

By applying the result in Theorem 2.B, the following theorem provides an exact character-
ization for the generalization error at each iteration ¢ for m large enough.

10
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0.5 1

Figure 2: Fét)(a:) versus x for different ¢ when o = 0.5.

Theorem 3 (Exact gen-error for iterative SSL under bGMM). Fiz any o € Ry, d € N.
The gen-error at t = 0 is given by

d
geng(Pz, Px, Pay|s,,5,) = o (12)
Let a = &, pt). For each t € [1: 7], for almost all sample paths (i.e., almost surely),

gen,(Pz, Px,{Pa,|s,.5. te—o> {0, Yit)

_— 2( =1, 9 (gt—1) N ; U(t—l) N
S [l - VRS )V 2 ) PP

where o(1) is a term that vanishes as m — oo.

The proof of Theorem 3 is provided in Appendix C. Several remarks are in order.

First, the gen-error at t = 0 corresponds to the asymptotic result of supervised maximum
likelihood estimation in works by Akaho and Kappen (2000) and Aminian et al. (2021). We
numerically plot the quantity in (13), g((,m) (z) :== (m—1)(J2(z) + K2(z)) —mJ,(z))/o?, for
x € [-1,1] in Figure 12 in Appendix C, which shows that for all o1 > o9, g((,T) (x) > gf,?) (x)
when x > 0. From (7), we can see that « is close to 1 of high probability, which means
that o — g,(x) is monotonically increasing in o with high probability. As a result, (13)
increases as ¢ increases. This is consistent with the intuition that when the training data
have larger overlap between classes, it is more difficult to generalize well. Moreover, cht)(a)
is also close to 1 of high probability, and thus (13) saturates with ¢ quickly.

Second, by ignoring the o(1) term, we compare the theoretical gen, (cf. (12) and (13))
and the empirical gen-error from the repeated synthetic experiments with d = 2, n = 10
and m = 1000, as shown in Figure 3. It can be seen that the theoretical gen, matches the
empirical gen-error well, which means that the characterization in (13) serves as a useful
rule-of-thumb for how the gen-error changes over the SSL iterations. When the variance is
small (e.g., 02 = 0.62), as shown in Figure 3(a), the gen-error decreases significantly from
t =0tot =1 and then quickly converges to a non-zero constant. Recall the correlation
evolution function F, in (9). Given any pair of (&, ut), if a(&y, ut) > 0, Y (&0, ut)) >
Fét_l)(a(go, put)) for all t € [1 : 7], as shown in Figure 2. This means that if the quality of
the labelled data 5] is reasonably good, by using @y which is learned from .5}, the generated

11
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Figure 3: Comparison of the theoretical gen, and the empirical gen-error at each iteration ¢.

pseudo-labels for the unlabelled data are largely correct. Then the subsequent parameters
0, for t > 1 learned from the large number of pseudo-labelled data examples can improve the
generalization error. With sufficiently large amount of training data, algorithm converges
at very early stage. In addition, for more general cases (e.g., non-diagonal class covariance
matrices), it takes more iterations for the gen-error to reach a plateau, as shown in Figure 4.

When the variance is large (e.g. o2 = 32), as shown in Figure 3(b), the gen-error
increases with iteration ¢. The result shows that when the overlap between different classes
is large enough, using the unlabelled data may not be able to improve the generalization
performance. The intuition is that at the initial iteration with a limited number of labelled
data, the learned parameter 8y cannot pseudo-label the unlabelled data with sufficiently high
accuracy. Thus, the unlabelled data is not labelled well by the pseudo-labelling operation
and hence, cannot help to improve the generalization error. To gain more insight, in Figure
5, we numerically plot gen; versus different values of ¢ under the same setting. It is
interesting to find that there exists a oo such that for o < 09, gen; < gen,, which means
the gen-error can be reduced with the help of abundant unlabelled data, while for o > oy,
using the unlabelled data can even harm the generalization performance.

Third, let us examine the effect of n, the number of labelled training samples. By
expanding «, defined in (7), using a Taylor series, we have

2
g 12 1
-1-Z -). 14
a=1- ¢ I+ o( ;) (1)

It can be seen that as n increases, a converges to 1 in probability. Suppose the dimension
d=2and p = (1,0). Then pu’ = [0, 5] where uz ~ N(0,1). By letting m — oo, the
gen-error gen; (cf. (13)) can be rewritten as

V2 n ny? )
~ — e o2 © ]_ — d
gen; /ﬂ\/mge 95" (1 —y7) dy,

where gc(,oo)(l —y?) = (J2(1—y?)+ K2(1—y?)— J,(1—%?))/0o? and thus, gen, is a decreasing
function of n. We further deduce that for any ¢, gen, is decreasing in n.

12
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Figure 4: Empirical gen-error with Figure 5: Theoretical gen-error at

covariance matrix o2 X t = 1 versus different std.
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Figure 6: geng vs. gen; for different n.

Fourth, we consider an “enhanced” scenario in which the labelled data in 5; are reused
in each iteration. Set w = 7 in (1). We can extend Theorem 3 to Corollary 10 provided
in Appendix F. It can be seen from Figure 17 that gen, still decreases from ¢ = 0 to 1 and
saturates afterwards. We find that when ¢ = 0.6, n = 10, m = 1000, the gen-error is almost
the same as that one in Figure 3(a), which means that for large enough 7', reusing the la-
belled data does not necessarily help to improve the generalization performance. Moreover,
when m = 100, gen, is higher than that for m = 1000, which coincides with the intuition

that increasing the number of unlabelled data helps to reduce the generalization error.

Fifth, it is natural to wonder what the effect is when m, the number of unlabelled data
examples, is held fixed and n, the number of labelled data examples, increases. In Figure 6,
we numerically plot gen, = % in (12) and (the theoretical) gen; in (13) for n ranging from 2
to 50, m = 1000, 0 = 0.6 and d = 2. As n increases, gen, and gen; both decrease, which is
as expected. However, when n is larger than a certain value (30 in this case), we find that
gen, becomes smaller than gen;. This implies that with sufficiently many labelled training
data, the generalization error based on the labelled training data is already sufficiently low,
and incorporating the pseudo-labelled data in fact adversely affects the generalization error.
Understanding this phenomenon precisely is an interesting avenue for future work.
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Figure 7: Empirical gen-error versus Figure 8: Theoretical and empirical
t for o = 3 for different \. gen; vs. A for different o.

Finally, to verify the validity of the gen-error upper bound in Theorem 2.A, we further
apply the bound to this setup and prove that the upper bound exhibits similar behaviour
of the evolution of gen-error as t increases. See Appendix D.

5. Improving the Gen-Error for Difficult Problems via Regularization

In Section 4.3, it is shown that for difficult classification problems with large class conditional
variance, the gen-error increases after using pseudo-labelled data. The reason is that the
learned initial parameter 6y can only generate low-accurate pseudo-labels and thus the
pseudo-labelled data cannot help improve the generalization performance. In this section,
we prove that by adding regularization to the loss function, we can mitigate the undesirable
increase of gen-error across the pseudo-labelling iterations.

Since gen, in (12) does not depend on data variance o2, here we focus on subsequent
iterations t € [1 : 7]. By considering the ¢ regularization (i.e., adding %HOH% to (5)), we
obtain the new parameters (cf. (6)) as follows

(7]
0, = Hﬁ, Vtell: ]
The derivations are provided in Appendix H. By applying Theorem 3, the following theorem
provides a characterization for the gen-error of the case with regularization at each iteration
t for m large enough. Let gen;*® denotes the gen-error of the case with regularization and
we drop the fixed quantities (Pz, Px, { Py, s, 5. oy Lo 2_:10) for notational simplicity.

Theorem 4 (Gen-error with regularization). Fiz any d € N, and o, A € Ry.. The gen-error
at any t € [1:7] is
gen
gen™ = 7oy (15)

The proof of Theorem 4 is provided in Appendix H. From (15), we observe that as A
increases, the gen-error decreases. In Figure 7, we first empirically show that regularization
can help mitigate the increase of gen-error during SSL iterations for hard-to-distinguish

14
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Classes ‘ RGB-mean #5 distance ‘ RGB-variance /5 distance ‘ Difficulty
horse-ship 0.0180 3.90e-05 Easy
automobile-truck 0.0038 7.06e-05 Moderate

cat-dog 0.0007 4.95e-05 Challenging

Table 1: The ¢y distances between the RGB-mean and RGB-variance of different pairs of
classes from the CIFAR10 dataset.

Classes horse ship automobile truck cat dog
—ship | —horse —truck —automobile | —dog | —cat

Number 17 3 61 64 93 137

Difficulty Easy Moderate Challenging

Table 2: Number of images misclassified out of 1000 (Liu and Mukhopadhyay, 2018).

classes by comparing the empirical gen-error under A = 0,0.1,0.5,2 when ¢ = 3 and d = 2.
Then in Figure 8, we plot the theoretical gen-error in (15) versus A when ¢ = 1 for the cases
with small and large variances, i.e., 02 = 0.6 and 0% = 32. We also compare the theoretical
results with the empirical gen-errors, which turn out to corroborate the theoretical ones. For
the case with smaller variance, the improvement on gen-error is barely visible as A increases.
For the case with larger variance, the decrease of the gen-error is more pronounced, which
implies that fs-regularization can effectively mitigate the impact on the gen-error induced
by large class overlapping and pseudo-labels with low accuracy.

The adept reader might naturally wonder why one would not set A — oo in (15), which
results in the gen-error tending to zero, which presumably is a desirable phenomenon. How-
ever, ultimately, what we wish to control is the expected population risk, which, according
to (2), is the sum of the expected empirical risk on the training data and the gen-error.
Even if the gen-error is zero, the expected population risk might be large. Hence, as A
increases, we see a tradeoff between the gen-error and the empirical risk.

6. Experiments on Benchmark Datasets

To further illustrate that our theory is indeed behind the empirical behaviour of the iterative
self-training with pseudo-labelling, in this section, we conduct experiments on real-world
benchmark datasets, which demonstrates that our theoretical results on the bGMM example
can also reflect the training dynamics on more realistic real-world tasks. The code to repro-
duce all the experiments can be found at https://github.com/HerianHe/GenErrorSSL_
2022.git.

Recall that in the bGMM example, a higher standard deviation o represents a higher
in-class variance, larger class-overlap, and consequently higher difficulty in classification.
By a whitening argument, this also holds for bGMMs with non-isotropic covariance ma-
trices. In our experiments on real-world data, we use the difficulty level of classification
to mimic different in-class variances of bGMM. We pick two easy-to-distinguish class pairs
(“automobile” and “truck”, “horse” and “ship”) from the CIFAR-10 dataset (Krizhevsky,
2009) as an analogy to bGMM with small in-class variance, and one difficult-to-distinguish
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class pair (“cat” and “dog”) from the same dataset as an analogy to bGMM with large in-
class variance. Furthermore, to extend the analogy to multi-class classification, we conduct
experiments on the 10-class MNIST dataset to gain more intuition.

We train deep neural networks (DNNs) via an iterative self-learning strategy (under
the same setting as Figure 1) to perform binary and multi-class classification. In the first
iteration, we only use a few labelled data examples to initialize the DNN with a sufficient
number of epochs. In the subsequent iterations, we first sample a subset of unlabelled
data and generate pseudo-labels for them via the model trained from the previous iteration.
Then we update the model for a small number of epochs with both the labelled and pseudo-
labelled data.

Experimental settings: For binary classification, we collect pairs of classes of images,
i.e., “automobile” and “truck”, “horse” and “ship”, and “cat” and “dog” from the CIFAR10
(Krizhevsky, 2009) dataset. In this dataset, each class has 5000 images for training and
1000 images for testing. For each selected pair of classes, we manually divide the 10000
training images into two sets: the labelled training set with 500 images and the unlabelled
training set with 9500 images. We train a convolutional neural network, ResNet-10 (He
et al., 2016), and use stochastic gradient descent (SGD) optimizer to minimize the cross-
entropy loss. In PyTorch, the cross-entropy loss is defined as the negative logarithm of the
output softmax probability corresponding to the true class, which is analogous to the NLL
of the data under the parameters of the neural network. For the task with /o-regularization,
we train the neural network by setting different weight decay parameters (equivalent to Ax
learning rate). In each pseudo-labelling iteration, we sample 2500 unlabelled images. The
complete training procedure lasts for 50 self-training iterations.

We further validate our theoretical contributions on a multi-class classification problem
in which we train a ResNet-6 model with the cross-entropy loss to perform 10-class hand-
written digits classification on the MNIST (LeCun et al., 1998) dataset. We sample 51000
images from the training set, which contains 6000 images for each of the ten classes. We
divide them into two sets, i.e., a labelled training set with 1000 images and an unlabelled set
with 50000 images. The optimizer and training iterations follow those in the aforementioned
binary classification tasks without regularization.

Experimental observations: We perform each experiment 3 times and report the
average test and training (cross entropy) losses, the gen-error, and test and training accu-
racies in Figures 9. To illustrate the difficulty level of classification for each pair, we first
calculated the mean and variance of the RGB (i.e., the red-green-blue color values) values
of the images to show the difference of the images between the two classes. In Table 1,
we display the RGB means and variances of the test data in six classes taken from the
CIFAR10 dataset. We observe that the RGB variances of each pair are almost 0 (and small
compared to the RGB-mean ¢ distances), and thus, the RGB-mean /5 distance is indicative
of the difficulty of the classification task. Indeed, a smaller RGB-mean ¢y distance implies
a higher overlap of the two classes and consequently, greater difficulty in distinguishing
them. Therefore, the “cat-dog” pair, which is more difficult to disambiguate compared to
the “horse-ship” and “automobile-truck” pairs, is analogous to the bGMM with large vari-
ance (i.e. large overlap between the positive and negative classes). Furthermore, in Table
2, we quote the commonly-used confusion matrix for the CIFAR10 dataset in (Liu and
Mukhopadhyay, 2018, Fig. 7), which quantifies how many out of 1000 images of each class
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Figure 9: (a)—(c) & (e)—(g): easier-to-distinguish classes “horse” vs. “ship” and “automo-
bile” vs. “truck”; (d),(h), (i)—(k): harder-to-distinguish classes “cat” vs. “dog”.

are misclassified to any other class. It is obvious that fewer misclassified images indicates
lower classification difficulty, which corresponds with Table 1. These two tables provide an
indication of the level of difficulty to distinguish different pairs of classes.

In Figures 9(a)-9(c), for easier-to-distinguish classes (based on the high classification
accuracy and low loss, as well as Tables 1 and 2), the gen-error appears to have relatively
large reduction in the early training iterations and then fluctuates around a constant value
afterwards. For example, in Figure 9(a), the gen-error converges to around 0.25 after 5 iter-
ations; in Figure 9(b), it converges to around 0.45 after 5 iterations. For multi-classification
of MNIST in Figure 9(c), the gen-error also converges to around 0.25 after 20 iterations.
These results corroborate the theoretical and empirical analyses in the bGMM case with
small variance, which again verifies that Theorem 3 and Corollary 10 can shed light on the
empirical gen-error on benchmark datasets. It also reveals that the generalization perfor-
mance of iterative self-training on real datasets from relatively distinguishable classes can
be quickly improved with the help of unlabelled data. In Figures 9(e), 9(f) and 9(g), we also
show that the test accuracy increases with the iterations and has significant improvement
compared to the initial iteration when only labelled data are used.

In Figures 9(d) and 9(h), we perform another binary classification experiment on the
harder-to-distinguish pair, “cat” and “dog” (based on low accuracy at the initial point
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Figure 10: Comparison of the gen-error for the “horse” and “ship” classification task

as well as Tables 1 and 2). We observe that the gen-error (and the test loss) does not
decrease across the self-training iterations even though the test accuracy increases. This
again corroborates the result in Figure 3(b) for the bGMM with large variance. The fact
that both the test loss and test accuracy appear to increase with the iteration is, in fact,
not contradictory. To intuitively explain this, in binary classification using the softmax
(hence, logistic) function to predict the output classes, suppose the learned probability of a
data example belonging to its true class is p € (1/2, 1], the classification is correct. In other
words, the accuracy is 100%. However, when p (i.e., the classification confidence) decreases
towards (1/2)%, the corresponding decision margin 2p — 1 (Cao et al., 2019) also decreases
and the test loss — log p increases commensurately. Thus, when the decision margin is small,
even though the test accuracy may increase as the iteration counter increases, the test loss
may also increase at the same time; this represents our lack of confidence.

We further investigate the effect of ¢s-regularization on “cat-dog” classification. In
Figures 9(i) and 9(j), we show that by setting the weight decay parameter to be 0.0005,
the increase of gen-error for the “cat-dog” classification task can be mitigated and the test
accuracy is improved by 0.6% as well; compare this to Figures 9(d) and 9(h). In Figure
9(k), we plot the average gen-error over the last 10 iterations versus the weight decay
parameter; this is shown to decrease as the weight decay increases (compared to Figure 8).
In summary, our above observations correspond to that for the bGMM, namely that the
unlabelled data do not always help to improve the gen-error but adding regularization can
help to compensate for the undesirable impact.

Furthermore, we study the effect of reusing all the unlabelled data at each iteration.
Under the same experimental setup as above, we conduct an additional experiment on the
“horse-ship” pair in the CIFAR-10 dataset by using all 9,500 unlabelled images in each
iteration. The self-training procedure lasts for 10 iterations. Figure 10 compares the gen-
error of this additional experiment with the one of the same experiment in Figure 9(a).
We find that when using the unlabelled data all at once, as the pseudo-labelling iteration
increases, the gen-error is even higher than that for our original setup. This can possibly
be attributed to overfitting.
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7. Concluding Remarks and Future Work

In this paper, we have analyzed the gen-error of iterative SSL algorithms that pseudo-
label large amounts of unlabelled data to progressively refine the parameters of a given
model. We particularized the general bounds and exact expressions on the gen-error for the
bGMM to gain some theoretical insight into the problem. These were then corroborated
by experiments on benchmark datasets. The theoretical analyses and experimental results
reinforce the main message of this paper—mamely, that in the low-class-overlap or easy-
to-classify scenario, pseudo-labelling can help to reduce the gen-error. On the other hand,
for the high-class-overlap or difficult-to-classify scenario, pseudo-labelling can in fact hurt.
Thus, the key takeaway from our paper is that practitioners should be judicious in adopting
pseudo-labelling techniques, for they may degrade the overall performance.

There are three avenues for future research. First, our analytical results are only appli-
cable to the bGMM. This yields valuable insights, but the model is admittedly restrictive.
Generalizing our analyses to other statistical models for classification such as logistic regres-
sion will be instructive. Secondly, our work focuses on the gen-error. Often bounds on the
population risk are desired as the population risk is the key determinant of the performance
of classification algorithms. Bounding the population risk in the SSL setting would thus be
interesting. Finally, analyzing other families of SSL algorithms beyond those that utilize
pseudo-labelling would provide a clearer theoretical picture about the utility of SSL.
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Appendices
A. Proof of Theorem 2.A

We commence with some notation. For any convex function ¢ : [0,b) — R, its Legen-
dre dual ¥* is defined as ¥*(z) := supycpp Az — ¥(A) for all z € [0,00). According to
Boucheron et al. (2013, Lemma 2.4), when ¢(0) = ¢'(0) = 0, ¢*(x) is a nonnegative
convex and nondecreasing function on [0,00). Moreover, for every y > 0, its generalized

inverse function ¢*~1(y) := inf{z > 0 : ¥*(z) > y} is concave and can be rewritten as

*— : A
Y (y) = infyepop) y+1§( ),

We first introduce the following theorem that is applicable to more general loss functions.

Theorem 5. For any 0; € O, let - (A and ¢+(>\7§t) be convex functions of A\ and
$1(0,0:) = ¢,.(0,6,) = ¢-(0,6;) = ¢/ (0,8;) = 0. Assume that Ny 7 (N 0;) < b1 (A,0y)
for all X € [0,b) and Al(ét,Z)O"Ht) < Pp_(N, 0) for X € (b_,0] under distribution Ppe-1) =
Pz, where 0 < by < 00 and —oo < b_ < 0. Let P4 (A) = supg, (A, 0) and () =

0,)
)

)
I
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supg, ¥— (/\,ét). We have

gent(PZ) Px, {P€k|Sl,Su}2 0’ {fek 1];_:10)

< 7ZE9“ 1) I@(t 1) (9t7Z ))]

1 —w
+— > By [¢ Y(Tpen) (05 X1, Y) + De(t—l)(PX;,ngPZ))} :

and

- gent(PZv Px, {PGk\Sl,S|,}§c:O’ {fek Z;l[))

< %ZEW*D [wi_l(fe(tfmwt; Zi)))

721549(1& 1) [1/4 Ly (04 X5, ’)+D9“_1)(PX£Y{HPZ))}’
1€Lt

where PX(,Y/\@(t—l)(xaZ/|9A(t71)) = Px(z)1{y = f;,_(x)} for anyz € X, y € Y and 60~V €
@til, and PZ|9(z—1) = Py.

Proof Consider the Donsker—Varadhan variational representation of the KL-divergence
between any two distributions P and ) on X

D(P|[Q) = sup { Ex~rplg(x)] — log Ex~o[e )]},
&Y

where the supremum is taken over the set of measurable functions in G = {g : X — R :
Ex~qle?™)] < oo}.

Recall that 6; and Z are independent copies of 6; and Z respectively, such that B, 7=
Qo, ® Pz, Pe Zlot—1) = P, p-1 ® Pz. For any iterative SSL algorithm, by applymg the
law of total expectation, the generalization error can be rewritten as

gen,(Pz, Px,{Py,|s,5, e 07{fe,c )

:w<E9t[EZ (0, Z —fZEgh 16, Z ])
+(1—w)<E9t[Ez[ (0;, 2 ——ZE%X,Y, 9t,(X{7Y/))]>

i€Lt
n

= %Z (Ee},z[l(éta 7)) — Eq, 7,164, Zﬁ])
i—1
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Note that 14 (\) = supg, ¥+ (A, 0,) and 1)_(\) = supg, ¥— (A, 0;) are convex, and so their
Legendre duals ¢* , 9%, and the corresponding inverses are well-defined.

Let I(6,2) = 1(0,2) — Ez[l(6, Z)]. We have the fact that EZ[Z(ét,Z)] = 0 for any 6;.
Again, by the Donsker—Varadhan variational representation of the KL-divergence, for any
fixed ¢~ and any X € [0,b, ), we have

Ly (013 Z) = D(Py, 790 | By, p-1) © Pz)

> B, z[N(0:, 2)|007V] — log B, ;[e¥D)]p(=))]

= Eg, z[M(01, 2)]607V] — log By, g E 5[N]

= Eg,, z[N(6s, 210" V] = log By, 1) [ exp (My5,.2) (X 60)) ] (17)

> ABg, z[1(0:, Z) — Bz [1(8:, 2)]|0" V] = log B,y [ exp(¢4-(A, 6,))] (18)

> AEy, 7[(6:, Z) — Bz [1(0:, 2)]10" D] — 91 (A) (19)
1

= A(Eg,,2[1(6:. 2)16"~ V] — By, 7 (18, 2)0""V]) — w1 (V).

where (17) follows from the definition of Ao, Z)()\,ét) in (25), (18) follows from the as-
sumption that A, g, )()\ 0;) < 1 (\6;) for all A € [0,by), and (19) follows because
Y4 (A) = supg, ¥4 (X, 0,). Thus, we have

Eo, z[1(6:, 2)|0" V] — By, ;1(0:, Z)|6¢ V]
. 1, t—1 9 ) *—
< A€1[3£+) 6¢ )( t )\) + 1/}+( ) _ ¢+ 1(Ig(t—1)(0t; Z)) (20)

Similarly, for A € (b_,0],
5,.2110:, 210"~ D] — By, £[1(0:, 2)|6" V)]

Tyo—1y(01;2) + 00— .
—Ae[%n_fbf) el )\) Lo ):w— 1(—’9&4)(91:;2)). (21)

By applying the same techniques, for any pair of pseudo-labelled random variables
(X',Y") used at iteration ¢ and any A € [0, by ), we have

I@(t—l) ((915; )(/7 }A//) + D@(t—l) (PX’,Y’ sz)
= Dy (B, xr y[1Po, @ Pxs y1) + Doy (Po, @ Py, 31| Py, © Pz)

> ]Eet s [)\l(gt, (X/, }}/))’9(15—1)] - log Eﬁt [E A/[ Al(@t,(X/’Y/))‘g(t—l)]w(t—l)]
+ B, [Ey ¢/ [N(0r, (X', Y7)) 100 D]|00D] — log By, [Ez[eMN )] |00—1)]
> By, oy [0, (X7, Y7))[0071] — log B, [E [N 2)] |00~ D)] (22)

= M(By, 32 UG, (X, 71))[0D) — B, [E[1(01, 2))10V)] )
—logEg, ¢-1) [ exp (Az(é Z)(/\ et))]

A~

> A(Eehx,y,[)\l(et, (X', Y"))] — Eq, [E z[l(ﬁt,Z)H) — 1+ (A),
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where (22) follows from Jensen’s inequality. Thus, we get
By, x1 v/ [1(6:, (X7, Y7)) |04 D)] ~Ej, [l (81, 2[00 1)]
< wi—l (Ie(t—l) (et; X’, Y’) + D@(t—l) (PX/,?/HPZ)) (23)
and
Ej, 7 (16, 2)10 D] =By, x5 [1(6:, (X', Y7))]610 1]
< U7 (T (05 X, Y") + Dyen (P, /1| P2)- (24)

The proof is completed by applying inequalities (20), (21), (23) and (24) to the expansion
of gen, in (16). [ |

Let 6, and Z be independent copies of 8; and Z respectively, such that P(;t’ 5= Qe ® Pz,
where g, is the marginal distribution of ¢;. For any fixed 6; € O, let the cumulant
generating function (CGF) of I(6¢, Z) be

Ay, (M 0) = 1og E7[AOnD)=BZ 100D, (25)

When the loss function (6, Z) ~ subG(R) under Z ~ Py for any 6 € O, we have

Mg, N 0r) < EZ2 for all A € R. Then we can let (A, 6) = ¥4 (A, 6;) = £ for all

~ 242 242 .—
0, € ©. Hence, Y1 (A) = ¢ (A) = sup, .o 55 = £ and ¢ (y) = ¥ (y) = V2R%y
for any y > 0. Finally, Theorem 2.A can then be dlrectly obtained from Theorem 5.

B. Proof of Theorem 2.B

Recall that 6; and Z are independent copies of 6; and Z respectively, such that B, 7=
Qo, @ Pz, By, 790-1) = Py, jge-1) @ Pg.
Recall the gen-error given in (16). The first term in (16) can be rewritten as

Ege-n |Eg, (101 2)/6%] — Eg,.2,[1(61, )10~V
= Eét,Z[ - 1ng§t] —Eo, 2, [ — logpy,]
= E,, [h(szpet) - h(PZiw“pet)]
= Ky, [Ah(PZHPZ,-wt \pot)} : (26)
The second term in (16) can be rewritten as

Eét,Z[l(éh Z)] - Eehxgﬁ [1(0¢, (Xz/a Yz )]

= Eg,,z,[~logpe,] — By, xr y/[—logpe,]

= Egi-1) [Eetm(t—l) [1(Pz,pa,) = WPy, 51j90-1):Po) + 1(Pys 511017 Po,)

— (P X! Y’|9(t)7p9t)]]

=By [Ah(PZHP IR ALICSY po,) + Ah(PXZ{,Yi/\e(t—U 1P IR AL po,) |- (27)
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By combining (26) and (27), the gen-error is finally given by
gent(P27PX7 {Po, 11,54 Yieeos {for Yot)

v Z Ey, {Ah(lele 16 |p0t)}

+— ZEW)[ (Pz|[Pxs yrig¢-01Po.) + AL(Pys grig6-0[1Pxr prj0 Poy)
ZGIt

n
w w
= Eyw) [n > AW(Pgl|Py, 0, Ipe,) + o > (Ah(Pg||P 1 110 Po;)
=1 1€

+ Ah(PX/ Y/ |ot=1D P XY/ |6 ’th)):| .

Theorem 2.B is thus proved.

C. Proof of Theorem 3

In the following, we abbreviate gen,(Pgz, Px, {Pa,|s,.5. } o’ {fo, }it) as gen, if there is no
risk of confusion. When the labelled data are not reused in the subsequent iterations, for
t>1, w=0.

o Iteration t = 0: Since V;X; "&" N (e, 0%1,), we have 6y ~ N (u, %QId). The gen-error
gen, is given by

geny = Eg, [Ez[— log pe, (Z)] — Egz, 6, log pe, (Z:)]

:/Qeo(e)(Pz(Z)—Pzin( 16)) log e )dzda

1
- / Q0 (8)(Pa(x,y) — Pg.10,(x,310)) (x x — 240 x + 67 0) dxdydd
1

——5rz | Palx)(Qay(6) Pz, (61x.1))200 x dxdyds
1

=55 [ (P2t 1)(Qa,(6) = Poyjz,(01x,1))
— Py(x, ~1)(Qay (0) — Poyz, (01, —1)))20Tx dxd@
:_/ _XPZ 1) — M+XPZ(X,—1))TX dx
1 do? da
T2 ( 2n 2n )

d

e Pseudo-label using 60y: For any i € [1: m] and X € S, the pseudo-label is
Y/ = sgn(6; Xj).
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Civen any pair of (£, ub), 8y is fixed and {Y; }ie[1:m) are conditionally i.i.d. from

Pyigout € P(Y). Recall the pseudo-labelled dataset is defined as Sua = {(X5, Y)}m .

Since 0y ~ N (s, %Id), inspired by Oymak and Giilcii (2021), we can decompose it
as follows:

o g

o o
6o = = — H=(1+— —pt 28
0 u+\/ﬁ£ u+\/ﬁ(€ou+u) <+\/ﬁ€o>u+\/ﬁu, (28)
where € ~ N(0,1y), & ~ N(0,1), ut L p, ut ~ N(0,Ig— pp") and pt is indepen-
dent of &.

Recall the correlation between 8 and p given in (7), the decomposition of 0y in (8) and
a, 3. Since _sgn(O(—)r X!) = sgn(fy X!), in the following we can analyze the normalized
parameter @, instead.

Given any (£o, ut), o is fixed, and for any i € N, let us define a Gaussian noise vector
g; ~ N(0,I;) and decompose it as follows

gi = goil + giv + gi-, (29)

where 90,i,9i ~ N(O> 1)a g'LJ_ ~ N(07 Id—NHT _UUT)7 g@L 1 M, g'LJ_ 1 v, and 90,i5 9i, g'LJ_
are mutually independent.

For any sample X! ~ N (p, 01), we can decompose it as
X = p+ogi = p+o(goit + giv +g;)- (30)
Then we have
0y X, = (ap + Bv) (n+ og;)
= a+o(ap+ o) (goip + v + &)
=a+o(ago; + Bgi) = a+ oh;. (31)

Note that h; ~ N(0,1) for any « € [—1, 1]. Similarly, for any sample X} ~ N (—pu, 021y),
we have

Xi=—p+og;
and
0y X, = —a + oh;.
Denote the true label of X; as Y/ and Py, = Py = unif({—-1,+1}). The probability
that the pseudo-label Y/ is equal to 1 is given by
Pr(Y/ =1) = Pr (6, X} > 0)
~lp, (6) X; > 0lY] =1) + %Pr (6] X; > 0]Y] = —1)

Ea[Pr(0 + ohi > 0)] + JEa[Pr(— a+ ohi > 0)]

()R- e

We also have Pr(Y/ = —1) =1 —Pr(Y/ =1) = 1/2, and so Py, = Py.

K3

N~ N~ N
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e Iteration t = 1:ARecall (6) and the new model parameter learned from the pseudo-
labelled dataset S, is given by

1 o= 1 — 1 — _
0, = - E YiX; = oy E sgn(0y X;)X; = ey E sgn(6y X)X, (33)
=1 =1 =1

First let us calculate the conditional expectation of 81 given 6y. Given any (&, ut),
1 —

for any j € [1 : m], let ugo’” = E[sgn(@JX&)XﬂfO,uﬂ and P 1 denotes the

probability measure under the parameters (o, ub).

1
The expectation ;ﬁo’” can be calculated as follows:

J_ —_
;1,%0’” = E[sgn(O(—)rX;-)X;\fo, ]
= Eyj{[ E[sgn(éOTX;)X;- | €0, pt, YJI] ]

1 _ 1 _
= 5 Elsgn(y X§)X] | &, . Y] = 1] + Elsgn(6 X)X | Lo, Y] = 1].

In contrast to (29), here we decompose the Gaussian random vector g; ~ N (0,13) in
another way

gj = ;600 + &/, (34)
where g; ~ N(0,1), gjl ~N(0,I; — 600 ), §; and gj are mutually independent and
g- 16

j 0
Then we decompose X and 0, X' as
X! =Y/p+ 0§00 + 0g;, and (35)
6, X; = Y/a + 0g;. (36)
Then we have
Elsgn(0] X)X} | & ut.¥] = 1]
= Elsgn(—a +07;)(~p +0g;00 + 0g") | &, ]
= —Elsgn(—a + 0;)[€o, p|pe + oElsgn(—a + 0g;)g;1¢. 1160
+oE[sgn(—a + 03;)&" |0, 7]
= —E[sgn(—a + a§;)|€o, p™ 1 + oElsgn(—a + 03;)3;(€0, 1160, (37)
where (37) follows since g1 is independent of §; and E[g*] = 0.
For the first term in (37), recall g; ~ N(0,1) and we have

— Elsgn(—a + 0d;)|éo, pp = (1 - 2Q<j>)u- (38)
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For the second term in (37), we have

E[sgn(—a + ;)d;|%0, 1160

= — e e =
o g dg o o g 4ag |Yo

By combining (38) and (39), we have
E[sgn (0 X)X/ | &, put, Y] = 1] = (1-2qQ( 2 “+27Uexp _ o 0
0 xj) x5 1 S0 E 5 45 o NG 252 )70
and similarly,

_ 20 a2\ -
E[sgn (6 X)X | {o,u™, Y] =1] = (2Q<— > — 1>u+ m@m(— 202>6’o-

Thus, recall .J, and K, defined in (10) and (11), 8y = ap + Bv and ugo’” is given
by

2 a?\ -

= E[sgn(6g X)Xj[€, ]
A SN
)2

(
“(a(0) e (i) e e (i)
To (6o, ))M+K((§o,u . (40)

From (3), the gen-error at ¢t = 1 is given by

FQ\Q Qe

1 m
gem = Z; Eeyut Eoyjgo,ut [Ah(PXLY’H&)#l HPXQY{IEO,ML,& [Pe,)
1=

+ AB(Pal| P, 7116, 0t |p91)} . (41)
Next, we calculate the two Ah terms in (41) respectively.

— Calculate Eg ¢, .1 [Ah(PX;,YiIKO,HLHP 1V €0t 0 e, )]:
B, ot [Ah( XV |0, L|IP X! V€01t 601 \pel)]
= E61|§0 pt [h(PX, Vot POL) — h(PX;ymO,uL,@l,pol)]
30 [ Qoo 0160 1) (P 5, - 055160, 1)
~ Py j60 0, (o Y60, 1 1,0))(x"x —2y8 " x + 0" 0)dxdydo
22 [ Pt 0 0l0s 1) (@0, Ol 1)
- P (1%, 9,0, 1)) (¥ ' x)dxdydd

611X,V ot
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Co.mt

1 1y 1 YxX T
__02/P 9ot (6 Y1€0s 1 )(m (yx)dxdy

1 T LT ot
= W(E[Xg XGI€o, ] — (i) T it )

L do? T ()T
N mo?
~do?+1— J2(a) — K2(a)

mo?

1
u?o#

— Calculate Ah(Pz||P. !V ot lpe,): Given any (&, u'), in the following, we
drop the condition on &y, u* for notational simplicity. Since Py, (1) = Py (—1) =

Py,(1) = Py,(-1) = 1 (cf. (32)), we have

Ah(PZHP ;yi/‘&)v“l ‘p91) = h(P27p91) - h(PX§7}7i’|§O7”va91)

= 5 [ (Piya30) = Py, (0) log s

g (Prayms09) = Prggea 0108 sy
= 5 [ (P10 = Py, ) o

5 [ (Prvmma 0 = P40 o

Since given 61, pg, (x|-) is a Gaussian distribution, for any y € {£1}, we have

1 1
9 / P91|§07NL(9) (PX\Y(X‘Y) - PX§|Y; (X|Z/)) log deda
1

~ 402 / Py g0t (9) (PX|Y(X‘ZJ) - ng‘g,(x]y)) (XTX — 290 "x + BTO) dxdo
1

1 1
——5r3 [ P O 5P (cln) — 5Py 1)) (107 x) o

1 1 i
= —@(N?’” )" (e — pioH )
_ Ja(@) + K3(e) — Jo (@)

202

Thus,

J2(0) + K2(0) = Jy(a)

o2

EeﬂfoaﬂL [Ab(Pg]| P LY €0t Ipe, )] =
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Finally, the gen-error at ¢t = 1 can be characterized as follows:

Ta(a(&o, ph)) + KZ(a(éo, 1)) — Jo(a(bo, 1T))

geny = E&LILL |:

o2
L do® +1 - J3(aléo, p) — KZ(a(éo, 1))
mo?
& Fm 1) (J2(a(o, 1) + K2 (a(Go, 1)) — mIy (8o, pt)) + do? + 1
= “opt mo2 :

e Pseudo-label using 6;: Let 81 := 01/||01|2. For any i € Z,, the pseudo-labels are
given by
V! = sgn(6] X;) = sgn(6; X).
It can be seen that the pseudo-labels {)A/Z’ }iez, are conditionally i.i.d. given 6; and
let us denote the conditional distribution under fixed 6, as PY’\el € P(Y). The
pseudo-labelled dataset is denoted as Sy o = {(X/, Y/) }icz,-

For any fixed (01, &, ub), let 81 be decomposed as 81 = A1 (&g, ut)p + By (&0, pt)v,

where A2(&o, ut) + B2 (&, ut) = ||61])3. In addition, let ay (&, ut) := A1/\/A? + B?
and By (&, ut) = /1 — (a1(&, ut))2. In the following, we use A;, By, ai, and By for
the above quantities if there is no risk of confusion.

Recall the decomposition of X’ and 8] X’ in (30) and (31). Similarly, we have
0, X! =:Y/ay + ohl,

where h} ~ N(0,1). Note that Py,

bility PY’|01 go.pul CAN be given by

100 €0t = Pf’i’lt‘h and then the conditional proba-

01~/
Py, o (1) = Py, (1) = P, (6] X, > 0)
1 1 1
= 5][]’91((%1—!-0}1,21 >0) +5P91(a1+0h} SO) = 5, (42)
and Pﬁ-’\el,&o, ul (—1) = 1/2, where Pg, denotes the probability measure under param-
eter 6.

e Iteration t = 2:ARecall (6) and the new model parameter learned from the pseudo-
labelled dataset Sy 2 is given by

1 N 1 _
0 L k- Ly suorxx (3
1€12 1€12
where {sgn(0] X!)X’};cz, are conditionally i.i.d. random variables given 61, &, ut.

Similar to (40), the expectation of 8y conditioned on 81, &, ut is given by

. _
plrEor (0,104, o, pt] = E[sgn(0) X})X)|61, &0, ]

2 2 203 i
_ <1—2Q<0;1> + %exp(—;é))li-% jﬁexp(—;)v
= Jo(on (G0, 1))+ Ko (1 (€0, u™)v.
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Figure 11: F,(z) versus z for o € Figure 12: g,(,m)(x) versus x for o €
{0.3,0.5}. {0.6,0.8,1,2,3}.

As m — 0o, by the strong law of large numbers, 6;|&, u= — ufo’“L almost surely.
By the continuous mapping theorem, we also have o (&, u) — Fy(a(&, pt)) almost
surely. Equivalently, for almost all sample paths, there exists a vanishing sequence ¢,,

(ie., €m — 0 as m — oo) such that |ay (&, pt) — Fy(a(€o, ub))| = €m.

The gen-error at t = 2 is given by

1
gengy = m Z EOL&)W«L |:E92\91,§07ui [Ah(PZHP LY/101.60,pt ‘p92)
i€Zy

+ Ah(PX;Y,-'Wl,&O#l HP 275}2—'|92,91,§07I‘«l ‘peQ)H ’

By applying the same techniques in the iteration ¢ = 1, we obtain the exact characteri-

zation of gen-error at t = 2 as follows. By the uniform continuity of J,, , for any vanish-

ing sequence €, > 0, there exist €, €7, > 0 such that sup,cp 1] [Jo (T +€m) — Jo(z)| =

€ and sup,epo1] |Jo (T — €m) — Jo ()| = €, where €, ¢, | 0 as €, | 0. The same

result holds for K.

Finally we can obtain the gen-error as follows. For almost all sample paths, there
exists a vanishing sequence €, (i.e., €, — 0 as m — o0), such that

; a 2 o)) — Jog(LglX
gony = B [ ZE) + KAL) = i)

o2
4 a1 Fola)) - K3<Fo<a>>] .
m — 1) (J2(Fy(a)) + K2(Fy(a))) — mJy(Fy(a ,
:1[«:50,#{( ) (o (Fo ))+ma(2 (@) (Fo( ))] L

2
where €, = €, + % and a stands for a(&y, put).

e Iteration ¢ € [2 : 7]: By iteratively implementing the calculation, we finally obtain
the characterization of gen, as follows. For almost all sample paths, there exists a
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vanishing sequence €y, ¢ (€t — 0 as m — 00) , such that

(m — D2E (@) + K3 (F (@) = mlo (7 (@)] |,
m02 m,t»

gony = Eg 0

di;gl and « stands for a(&, pt).

where €, ; = €t +
The proof is thus completed.
Remark 6 (Numerical plots of Fp() and g((,m)()) Recall g((,m) (z) = ((m — 1)(J2(x) +
K2(x))—mJ,(z))/0? for any x € [—1,1], which is the quantity that determines the behaviour
of (13). To gain more insight, we numerically plot Fét) (z) fort =0,1,2 in Figure 2 and
F,(x) under different o in Figure 11. We also plot gc(ym) (z) under different o in Figure 12.

D. Applying Theorem 2.A to bGMMs

In anticipation of leveraging Theorem 2.A together with the sub-Gaussianity of the loss
function for the bGMM to derive generalization bounds in terms of information-theoretic
quantities (just as in Russo and Zou (2016); Xu and Raginsky (2017); Bu et al. (2020)), we
find it convenient to show that X and [(0, (X,Y)) are bounded w.h.p.. By defining the /.,
ball BY := {x € R?: ||x — yp||oo < 7}, we see that

Pr(X eB)) = (1 - 2<1>( - ;))d =:1— 0.4,

where ®(-) is the Gaussian cumulative distribution function. By choosing r appropriately,
the failure probability 6, 4 can be made arbitrarily small.

To show that € is bounded with high probability, define the set ©,. := {6 € © :
|0 — p]|c < c} for some ¢ > 0. For any 6 € ©, ., we have

min (0, (x,y)) = log(2y/(2n)d0?) =: ¢;, and

(x,y)€Z
d(c—|—7“)2
(6 <log(24/(2m)dc?) + 2L =: ¢y.
e 16, (