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Abstract

Many predictions are probabilistic in nature; for example, a prediction could be for precipitation
tomorrow, but with only a 30% chance. Given such probabilistic predictions together with the
actual outcomes, “reliability diagrams” (also known as “calibration plots”) help detect and diag-
nose statistically significant discrepancies—so-called “miscalibration”—between the predictions and
the outcomes. The canonical reliability diagrams are based on histogramming the observed and
expected values of the predictions; replacing the hard histogram binning with soft kernel density
estimation using smooth convolutional kernels is another common practice. But, which widths of
bins or kernels are best? Plots of the cumulative differences between the observed and expected
values largely avoid this question, by displaying miscalibration directly as the slopes of secant lines
for the graphs. Slope is easy to perceive with quantitative precision, even when the constant offsets
of the secant lines are irrelevant; there is no need to bin or perform kernel density estimation.

The existing standard metrics of miscalibration each summarize a reliability diagram into a
single scalar statistic. The cumulative plots naturally lead to scalar metrics for the deviation of
the graph of cumulative differences away from zero; good calibration corresponds to a horizontal,
flat graph which deviates little from zero. The cumulative approach is currently unconventional,
yet offers many favorable statistical properties, guaranteed via mathematical theory backed by
rigorous proofs and illustrative numerical examples. In particular, metrics based on binning or
kernel density estimation unavoidably must trade-off statistical confidence for the ability to resolve
variations as a function of the predicted probability or vice versa. Widening the bins or kernels
averages away random noise while giving up some resolving power. Narrowing the bins or kernels
enhances resolving power while not averaging away as much noise. The cumulative methods do not
impose such an explicit trade-off. Considering these results, practitioners probably should adopt
the cumulative approach as a standard for best practices.

Keywords: reliability diagram, calibration plot, cumulative differences, Kolmogorov-Smirnov,
Kuiper

1. Introduction

Given 100 independent observations of outcomes (“success” or “failure”) of Bernoulli trials that
are forecast to have an 80% chance of success, the forecasts are perfectly calibrated when 80 of the
observations report success. More generally, given some number, say n, of independent observations
of outcomes of Bernoulli trials that are forecast to have a probability S of success, the predictions
are perfectly calibrated when nS of the observations report success. Needless to say, the actual
number of observations of success is likely to vary around nS randomly, so in practice we test not
whether nS is exactly equal to the observed number of successes, but rather whether the difference
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between nS and the observed number of successes is statistically significant. Such significance tests
can be found in any standard textbook on statistics.

The present paper considers the following more general setting: Suppose we have n observations
R1, R2, . . . , Rn of the outcomes of independent Bernoulli trials with corresponding predicted
probabilities of success, say S1, S2, . . . , Sn. For instance, each Sk could be a classifier’s probabilistic
score and the corresponding Rk could be the indicator of correct classification, with Rk = 1 when
the classification is correct and Rk = 0 when the classification is incorrect (so Rk could also
be regarded as a class label, where class 1 corresponds to “the classifier succeeded” and class 0
corresponds to “the classifier erred”). We would then want to test the hypothesis that the response
Rk is distributed as a Bernoulli variate with expected value Sk for all k = 1, 2, . . . , n, which is the
same null hypothesis considered in the previous paragraph when S1 = S2 = · · · = Sn = S. The
remainder of this article simplifies the analysis by reordering the samples (preserving the pairing of
Rk with Sk for every k) such that S1 ≤ S2 ≤ · · · ≤ Sn, with any ties ordered randomly, perturbing
so that S1 < S2 < · · · < Sn.

One method for measuring calibration is to histogram the responses R1, R2, . . . , Rn as a
function of the scores S1, S2, . . . , Sn; this involves partitioning the scores into m sets known as
“bins” (or “buckets”) and calculating both the average score and the average response for the
scores and corresponding responses falling in each bin. The conventional scalar-valued metrics for
calibration are known as “empirical calibration errors” or “estimated calibration errors” (ECEs).
“ECE1” denotes the sum over every histogram bin of the absolute value of the difference between
the average response and the average score, each weighted by the width of the bin. Thus, the ECE1

estimates the area between the observed responses and ideal calibration. “ECE2” denotes the sum
that is the same aside from squaring every difference prior to summation.

Another method for measuring calibration is to graph the cumulative differences between the
responses and the scores. The expected slope of any secant line connecting two points on the graph
is equal to the average miscalibration over the scores between those points. In the case of perfect
calibration (for which each response is equal to the corresponding score), the resulting graph is a
horizontal, flat line at zero. Both the maximum deviation of the graph from zero and the range
(maximum minus minimum) of the graph measure the deviation of the graph from the horizontal,
flat ideal of perfect calibration. We call these metrics “empirical cumulative calibration errors” or
“estimated cumulative calibration errors” (ECCEs), with the maximum absolute deviation being
denoted “ECCE-MAD” and the range of deviations being denoted “ECCE-R”. Our earlier pub-
lications referred to “ECCE-MAD” as the “Kolmogorov-Smirnov” statistic and to “ECCE-R” as
the “Kuiper” statistic.

The present paper follows up and elaborates on problems highlighted earlier by Gupta et al.
(2020), Roelofs et al. (2020), Tygert (2021a), and Tygert (2021b); they point out that the classical
empirical calibration errors based on binning vary significantly based on the choice of bins. The
choice of bins is fairly arbitrary and enables the analyst to fudge results (whether purposefully or
unintentionally). Having to make such a critical yet arbitrary choice is especially fraught when
dealing with laws and regulators seeking a universal standard for compliance. Also concerning is
the bias observed by Roelofs et al. (2020) in the estimates given by empirical calibration errors
based on binning. The present work proves that the ECCEs have no bias like the ECEs’.

The results of the present article are all implicit in those of Bröcker (2008), Gupta et al. (2020),
Kumar et al. (2019), Nixon et al. (2019), Roelofs et al. (2020), Simonoff and Udina (1997), Srihera
and Stute (2010), Stute (1997), and Vaicenavicius et al. (2019). The purpose of the present paper is
to provide a simple, rigorous exposition of what might be viewed as a unifying thread throughout the
other works. In particular, this article directly compares the ECEs to the ECCEs, more extensively
than prior work has.

2



Metrics of Calibration for Predicted Probabilities

101 102 103

m (number of bins)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
EC

E1

ECE1 for the standard reliability diagram
equispaced
squared
square rooted

101 102 103

m (number of bins)

0.00

0.01

0.02

0.03

0.04

0.05

EC
E2

ECE2 for the standard reliability diagram
equispaced
squared
square rooted

101 102 103

m (number of bins)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

EC
E1

ECE1 with equally many observations per bin
equispaced
squared
square rooted

101 102 103

m (number of bins)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

EC
E2

ECE2 with equally many observations per bin
equispaced
squared
square rooted

Figure 1: Empirical calibration errors for the data set of Section 3.1 with sample size n = 32,768;
the scores are equispaced, squared after initially being equispaced, or square rooted after
initially being equispaced, as indicated in the legends.

The empirical calibration errors based on binning intrinsically trade-off resolution for statistical
confidence or vice versa. Widening the bins averages away more noise in the estimates, while
sacrificing some of the power to resolve variations as a function of score. Narrowing the bins resolves
finer variations as a function of score, while not averaging away as much noise in the estimates.
In contrast, the empirical cumulative calibration errors exhibit no such explicit trade-off, with no
parameters to adjust. The empirical cumulative calibration errors are fully non-parametric and
uniquely, fully specified, statistically powerful and reliable.

The present paper directly treats unweighted samples. To be sure, the results of the present ar-
ticle generalize to the case of weighted samples. In that case, each observation comes with a positive
real number that indicates how heavily to weight the observation when combining it with the other
observations in expected values. However, weighted sampling introduces additional complications
that distract from the comparison between the standard binned metrics and the cumulative metrics,
so the present article focuses on the case of unweighted sampling. (Of course, unweighted sampling
is equivalent to uniform weighting, in which all weights are equal.) Extensive graphical comparisons
for the case of weighted sampling are available from Tygert (2021a) and Tygert (2021b).

The paper is organized as follows: the next section, Section 2, details the methodologies and
proves theorems about their performance. Then, Section 3 illustrates the methodologies and the-
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ory of Section 2 via several examples, using both synthetic and measured data sets.1 Finally,
Section 4 reviews the results, drawing conclusions. Appendix A gives detailed, rigorous proofs, and
Appendix B supplements the plots of Section 3 with additional plots.

2. Methods

This section gives theorems characterizing advantages of cumulative metrics over the standard
binned metrics. A full exposition requires the detailed, rigorous proofs discussed in this section;
however, the high-level strategy of all the derivations is quite simple and straightforward, and can
be summarized as follows:2

First, Section 2.1 defines both standard binned metrics and cumulative metrics for assessing
deviation from perfect calibration. For a perfectly calibrated underlying distribution, both the ideal,
underlying calibration error and the ideal, underlying cumulative calibration error are equal to 0,
whereas for an imperfectly calibrated underlying distribution, both are greater than 0.

Next, Section 2.2 proves that, for a perfectly calibrated underlying distribution, as the sample
size increases without bound the cumulative metrics converge to 0 if the empirical cumulative
distribution function of the scores converges uniformly to a continuous cumulative distribution
function. Section 2.2 also proves that the expected values of the standard binned metrics stay
bounded away from 0 if the number of draws per bin remains bounded on some fixed range of
scores, as the maximum bin width becomes arbitrarily small.

Then, Section 2.3 proves that, for an imperfectly calibrated underlying distribution, as the sam-
ple size becomes arbitrarily large the expected values of the cumulative metrics stay bounded away
from 0. (The proof is under the assumption that the empirical cumulative distribution function of
the scores converges uniformly to a cumulative distribution function.) Section 2.3 also proves that
the expected values of the standard binned metrics stay bounded away from 0 if the maximum bin
width becomes arbitrarily small. This shows that the cumulative metrics can distinguish any imper-
fectly calibrated underlying distribution from perfect calibration, given enough observed scores and
associated responses. This also shows that there exist imperfectly calibrated distributions which
the standard binned metrics cannot distinguish from perfect calibration as the maximum width of
a bin approaches 0, if the number of draws per bin remains bounded on some fixed range of scores.

Section 2.4 then derives the consequences, namely, that the standard binned metrics are in-
trinsically subject to an unavoidable trade-off, requiring observations whose density is infinitely
higher than the density that the cumulative statistics need, in the limit required for asymptotic
consistency. Moreover, the trade-off is even more unwieldy when the number of observations is
limited: the standard binned metrics vary significantly with the (rather arbitrary) choice of bins,
whereas the cumulative metrics work uniformly well without any tuning. In fact, the cumulative
metrics require no tuning at all—the cumulative metrics have no tuning parameters whatsoever;
fudging their results is simply impossible.

Finally, Section 2.5 summarizes the usual motivations for the constructions of these particular
metrics, reviewing the associated graphical methods.

Most of the rest of the present section, Sections 2.1–2.4, now provides rigorous details of this
strategy. The notational conventions used throughout the present paper adhere to those set in
Section 2.1. Section 2.5 briefly reviews the principal motivations for considering the particular
metrics studied here.

1. Permissively licensed open-source software that automatically reproduces all figures and statistics reported below
is available at https://github.com/facebookresearch/ecevecce

2. All sections of the present paper use the same notation that Section 2.1 introduces.
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2.1 Definitions

This subsection defines in detail the metrics analyzed below. Section 2.1.1 defines the standard
binned statistics, while Section 2.1.2 defines the cumulative statistics. Graphical methods summa-
rized in Section 2.5 motivate all these definitions, though the present subsection omits discussion
of the motivation in order to keep the exposition concise and easily digestible for those already
familiar with the motivations.

2.1.1 Binned

The observations come as pairs of scores and responses. Each score is a real number in the unit
interval [0, 1]; each response is a random variable whose value is either 0 or 1. The positive integer
m will denote the number of bins; bin j contains the scores Sk

j for k = 1, 2, . . . , nj , for j = 1, 2,

. . . , m. Each score Sk
j comes with a response Rk

j ; the responses are independent and, under the

null hypothesis of perfect calibration, Rk
j is a Bernoulli variate whose expected value is Sk

j (the

variance is then Sk
j (1− Sk

j )). We order the scores such that Sk
i < S`

j whenever i < j, and Sk
i < S`

j

when i = j and k < `. For notational convenience, we define S1
0 = 0 and S1

m+1 = 1. We denote by
n the total number of observations, that is, n = n1 +n2 + · · ·+nm. We suppress the sequence index
n for Sk

j , Rk
j , nj, and m; in principle the full notation would be Sk

j (n), Rk
j (n), nj(n), and m(n),

where n = 1, 2, 3, . . . ; below, “convergence” refers to convergence with respect to the sample size
n increasing without bound. The scores for each sample size n are assumed to be distinct. The
average score in bin j is

S̃j =
1

nj

nj∑
k=1

Sk
j , (1)

while the average response in bin j is

R̃j =
1

nj

nj∑
k=1

Rk
j . (2)

The mean-square empirical calibration error (ECE2) is the Riemann sum

ECE2 =
m∑
j=1

(
S1
j+1 − S1

j

) (
R̃j − S̃j

)2
=

m∑
j=1

(
S1
j+1 − S1

j

)( nj∑
k=1

Rk
j − Sk

j

nj

)2

; (3)

analogously, the l1 empirical calibration error (ECE1) is the Riemann sum

ECE1 =

m∑
j=1

(
S1
j+1 − S1

j

) ∣∣∣R̃j − S̃j
∣∣∣ =

m∑
j=1

(
S1
j+1 − S1

j

) ∣∣∣∣∣
nj∑
k=1

Rk
j − Sk

j

nj

∣∣∣∣∣ . (4)

2.1.2 Cumulative

We now define S1, S2, . . . , Sn to be all n =
∑m

j=1 nj of the scores Sk
j , sorted in ascending order.

Sorting in ascending order means that S1 < S2 < · · · < Sn (recall from Section 1 that the scores are
distinct). Furthermore, if S` is the score equal to Sk

j , then we set R` to be equal to the corresponding

response, Rk
j . For notational convenience, we also define S0 = 0 and Sn+1 = 1. As in the binned

case, we suppress the sequence index n for S` and R`; in principle the full notation would be S`(n)
and R`(n), where n = 1, 2, 3, . . . ; as mentioned earlier, “convergence” will refer to convergence
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with respect to the index n increasing without bound. Again, the scores for each sample size n are
assumed to be distinct. The cumulative differences are

Ck =
1

n

k∑
j=1

(Rj − Sj) (5)

for k = 1, 2, . . . , n. The maximum absolute deviation of the empirical cumulative calibration error
(ECCE-MAD) is

ECCE-MAD = max
1≤k≤n

|Ck| (6)

and the range of the empirical cumulative calibration error (ECCE-R) is

ECCE-R = max
0≤k≤n

Ck − min
0≤k≤n

Ck, (7)

where Ck is defined in (5) and C0 = 0. Another term for “ECCE-MAD” is the “Kolmogorov-
Smirnov metric,” and another term for “ECCE-R” is the “Kuiper metric”—Kolmogorov (1933),
Smirnov (1939), and Kuiper (1962) introduced these statistics in order to solve a similar problem,
namely, determining the statistical significance of observed differences in empirical probability
distributions.

The absolute value of the total miscalibration
∑

j∈I(Rj − Sj)/n over any interval I of indices
is less than or equal to the ECCE-R; indeed, the ECCE-R is the maximum of the absolute value
of the total miscalibration over any interval of indices: ECCE-R = maxI |

∑
j∈I(Rj − Sj)/n|.

2.2 Perfectly calibrated responses

This subsection analyzes the expected values of the metrics when the responses arise from a perfectly
calibrated distribution, that is, under the assumption of the null hypothesis of perfect calibration.
The principal results of this subsection are Corollaries 2 and 4 for the ECE and Corollary 7 for the
ECCE.

2.2.1 Binned

The following theorem provides the lower limit of the ECE2, yielding the very useful Corollary 2.
Appendix A details the proof of the theorem.

Theorem 1 Assume the null hypothesis that the expected value of the response Rk
j is equal to

the corresponding score Sk
j for all j = 1, 2, . . . , m; k = 1, 2, . . . , nj. Suppose also that

max0≤j≤m(S1
j+1−S1

j ) converges to 0 as the sample size n increases without bound, and that ν = νn
is the step function starting from ν(0) = ν(S1

0) = n1 and jumping to ν(Sk
j ) = nj for all j = 1, 2,

. . . , m; k = 1, 2, . . . , nj. Then, as n becomes arbitrarily large the lower limit of the expected value
of the ECE2 defined in (3) converges to

lim inf
n→∞

∫ 1

0

s(1− s)
ν(s)

ds, (8)

where lim inf denotes the lower limit and the sequence index n of the function ν = νn is suppressed
in the notation.

The main consequence of this theorem is the following, stating that the ECE2 hits a “noise
floor.”
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Corollary 2 If ν = νn is bounded from above on some interval, independent of the sample size n,
and is the step function starting from ν(0) = ν(S1

0) = n1 and jumping to ν(Sk
j ) = nj for all j = 1,

2, . . . , m; k = 1, 2, . . . , nj, then the expected value of the ECE2 defined in (3) is greater than a
fixed strictly positive real number for all sufficiently large n, assuming the null hypothesis of perfect
calibration and that the bin width (S1

j+1 − S1
j ) converges uniformly to 0 (uniformly over j = 0, 1,

. . . , m(n)).

A similar corollary holds for the ECE1 defined in (4), due to the following theorem. Appendix A
details the proof of the theorem.

Theorem 3 The ECE1 defined in (4) is greater than or equal to the ECE2 defined in (3).

Combining Theorem 3 and Corollary 2 yields the following, stating that the ECE1 hits a “noise
floor.”

Corollary 4 If ν = νn is bounded from above on some interval, independent of the sample size n,
and is the step function starting from ν(0) = ν(S1

0) = n1 and jumping to ν(Sk
j ) = nj for all j = 1,

2, . . . , m; k = 1, 2, . . . , nj, then the expected value of the ECE1 defined in (4) is greater than a
fixed strictly positive real number for all sufficiently large n, assuming the null hypothesis of perfect
calibration and that the bin width (S1

j+1 − S1
j ) converges uniformly to 0 (uniformly over j = 0, 1,

. . . , m(n)).

2.2.2 Cumulative

The independence of the responses yields the following theorem, which yields Corollary 7 when
combined with Theorem 6.

Theorem 5 Assume the null hypothesis that the expected value of the response Rk is equal to the
corresponding score Sk for all k = 1, 2, . . . , n. Then, the variance of Ck defined in (5) is

(σk)2 =
1

n2

k∑
j=1

Sj(1− Sj) ≤
k

4n2
≤ 1

4n
(9)

for k = 1, 2, . . . , n.

The following theorem summarizes Sections 2.3 and 3 of Tygert (2022).

Theorem 6 Assume the null hypothesis that the expected value of the response Rk is equal to the
corresponding score Sk for all k = 1, 2, . . . , n. Suppose again that the scores S1, S2, . . . , Sn are
all distinct for each sample size n, and also that max1≤k≤n Sk(1− Sk)/

∑n
j=1 Sj(1− Sj) converges

to 0 as n increases without bound.
Then, as n becomes arbitrarily large the ECCE-MAD divided by σn converges in distribution to

the maximum of the absolute value of the standard Brownian motion over the unit interval [0, 1].
The ECCE-MAD is defined in (6) and σn is defined in (9).

Moreover, as n increases without bound the ECCE-R divided by σn converges in distribution to
the range of the standard Brownian motion over the unit interval [0, 1]. The ECCE-R is defined
in (7) and σn is defined in (9).

The expected value of the maximum of the absolute value of the standard Brownian motion over
[0, 1] is

√
π/2 ≈ 1.25, and the expected value of the range of the standard Brownian motion over

[0, 1] is 2
√

2/π ≈ 1.60.
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Combining Theorems 5 and 6 yields the following.

Corollary 7 As n becomes arbitrarily large both the ECCE-MAD defined in (6) and the ECCE-R
defined in (7) converge to 0, assuming both the null hypothesis of perfect calibration and that the
scores S1, S2, . . . , Sn are all distinct for each sample size n, as well as that max1≤k≤n Sk(1 −
Sk)/

∑n
j=1 Sj(1− Sj) converges to 0 as n increases without bound.

2.3 Imperfectly calibrated responses

This subsection analyzes the expected values of the metrics when the responses arise from an
imperfectly calibrated distribution, that is, under the assumption of an “alternative” hypothesis
that differs nontrivially from the null hypothesis of perfect calibration. The principal results of this
subsection are Corollaries 9 and 10 for the ECE and Theorem 11 for the ECCE.

2.3.1 Binned

Theorem 1 above is similar to the following theorem for the special case in which the function r in
this coming theorem satisfies r(s) = s. Appendix A details the proof of the theorem; the proof is
similar to that of Theorem 1, albeit significantly longer.

Theorem 8 Suppose that r : [0, 1]→ [0, 1] is any piecewise continuous function that is independent
of the sample size n. Suppose also that the response Rk

j is drawn from the Bernoulli distribution

whose expected value is r(Sk
j ) for all j = 1, 2, . . . , m; k = 1, 2, . . . , nj. Suppose finally that

max0≤j≤m(S1
j+1 − S1

j ) converges to 0 as n increases without bound, and that ν = νn is the step

function starting from ν(0) = ν(S1
0) = n1 and jumping to ν(Sk

j ) = nj for all j = 1, 2, . . . , m;
k = 1, 2, . . . , nj. Then, as n becomes arbitrarily large the lower limit of the expected value of the
ECE2 defined in (3) converges to

lim inf
n→∞

∫ 1

0

(
(r(s)− s)2 +

r(s) (1− r(s))
ν(s)

)
ds, (10)

where lim inf denotes the lower limit and the sequence index n of the function ν = νn is suppressed
in the notation.

As with Theorem 1 and Corollary 2, the main consequence of Theorem 8 is the following.

Corollary 9 Suppose that r : [0, 1]→ [0, 1] is any piecewise continuous function that is independent
of the sample size n. Suppose also that the response Rk

j is drawn from the Bernoulli distribution

whose expected value is r(Sk
j ) for all j = 1, 2, . . . , m; k = 1, 2, . . . , nj. If r is also imperfectly

calibrated, that is,
∫ 1
0 (r(s)−s)2 ds > 0, then the expected value of the ECE2 defined in (3) is greater

than a fixed strictly positive real number for all sufficiently large n, assuming that the bin width
(S1

j+1 − S1
j ) converges uniformly to 0 (uniformly over j = 0, 1, . . . , m(n)).

Combining Theorem 3 and Corollary 9 yields the following similar result for the ECE1.

Corollary 10 Suppose that r : [0, 1]→ [0, 1] is any piecewise continuous function that is indepen-
dent of the sample size n. Suppose also that the response Rk

j is drawn from the Bernoulli distribution

whose expected value is r(Sk
j ) for all j = 1, 2, . . . , m; k = 1, 2, . . . , nj. If r is also imperfectly

calibrated, that is,
∫ 1
0 (r(s)−s)2 ds > 0, then the expected value of the ECE1 defined in (4) is greater

than a fixed strictly positive real number for all sufficiently large n, assuming that the bin width
(S1

j+1 − S1
j ) converges uniformly to 0 (uniformly over j = 0, 1, . . . , m(n)).

8
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2.3.2 Cumulative

The following theorem is an analogue for the ECCE of Corollaries 9 and 10. Appendix A details
the proof of the theorem.

Theorem 11 Suppose that the empirical cumulative distribution function of the scores S1, S2, . . . ,
Sn converges uniformly to some cumulative distribution function F as the sample size n increases
without bound. Suppose further that r : [0, 1] → [0, 1] is any function that is independent of the
sample size n, is Riemann-Stieltjes integrable with respect to F , and is imperfectly calibrated, that is,∫ 1
0 |r(s)− s| dF (s) > 0. Suppose also that the response Rk is drawn from the Bernoulli distribution

whose expected value is r(Sk) for all k = 1, 2, . . . , n, and that r(S0) = S0 and r(Sn+1) = Sn+1

(where S0 = 0 and Sn+1 = 1). Then, the expected values of the ECCE-MAD defined in (6) and of
the ECCE-R defined in (7) stay bounded away from 0 for all sufficiently large n.

2.4 Consequences

This subsection puts together the main results of this section.

For a perfectly calibrated underlying distribution, both the ideal, underlying calibration error
and the ideal, underlying cumulative calibration error are equal to 0, whereas for an imperfectly
calibrated underlying distribution, both are greater than 0. For a perfectly calibrated underlying
distribution, Corollaries 2 and 4 show that the expected values of the ECE1 and of the ECE2 stay
bounded away from 0 if the number of draws per bin remains bounded on some fixed range of scores,
as the maximum bin width becomes arbitrarily small, while Corollary 7 shows that as the sample size
n increases without bound both the ECCE-MAD and the ECCE-R converge to 0 if the empirical
cumulative distribution function of the scores converges uniformly to a continuous cumulative
distribution function. For an imperfectly calibrated underlying distribution, Corollaries 9 and 10
show that the expected values of both the ECE1 and the ECE2 stay bounded away from 0 as
the maximum bin width becomes arbitrarily small, and Theorem 11 shows that the expected
values of both the ECCE-MAD and the ECCE-R stay bounded away from 0 for all sufficiently
large n if the empirical cumulative distribution function of the scores converges uniformly to a
cumulative distribution function. Thus, both the ECCE-MAD and the ECCE-R can distinguish
every imperfectly calibrated underlying distribution from perfect calibration, given enough observed
scores and corresponding responses, while in contrast there are imperfectly calibrated distributions
which neither the ECE1 nor the ECE2 can distinguish from perfect calibration as the maximum
width of a bin approaches 0, if the number of draws per bin remains bounded on some fixed range
of scores.

Hence, any significance test based on the ECE1 or the ECE2 with a bounded number of draws
per bin on some fixed range of scores has no power asymptotically for some alternatives or is
asymptotically inconsistent. This exposes a fundamental trade-off inherent in the ECE1 and the
ECE2: in order to attain nontrivial power and asymptotic consistency, the number of draws per
bin must not stay bounded on any fixed range of scores, thus necessarily squandering observations
that otherwise could have contributed additional power to the significance test (whereas the ECCE-
MAD and the ECCE-R have no such explicit trade-off). The trade-off becomes especially hard to
handle when the number of observations is limited; the ECCE-MAD and the ECCE-R work well
without requiring any hard decisions, whereas the ECE1 and the ECE2 depend on the choice of
bins, and that choice makes a big difference even asymptotically, in the limit that the number of
observations tends to infinity (with no obvious best setting for finitely many observations).

To emphasize: to attain asymptotic consistency together with nontrivial asymptotic power
against the fixed alternative distributions discussed above, both the ECE1 and the ECE2 require
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infinitely many draws per bin for almost all bins (where “almost all” refers to “almost everywhere”
on the unit interval [0, 1])—requiring a density that is higher almost everywhere by an unbounded
factor greater than what the ECCE requires.

2.5 Graphical methods

This subsection reviews the primary motivations for the definitions of the ECEs and the ECCEs—
the ECEs and the ECCEs are scalar summary statistics for certain graphical methods of assessing
calibration reviewed here.

2.5.1 Motivation for the empirical calibration error

Formulae (1) and (2) above express the average score and average response in bin j as

S̃j =
1

nj

nj∑
k=1

Sk
j , (11)

and

R̃j =
1

nj

nj∑
k=1

Rk
j (12)

for j = 1, 2, . . . , m, respectively. Due to the central limit theorem, as nj tends to infinity, R̃j

concentrates around its expected value,

E[R̃j ] =
1

nj

nj∑
k=1

E[Rk
j ], (13)

which is the average of the expected values of the responses in the bin. For a perfectly calibrated
underlying distribution, E[Rk

j ] = Sk
j , and so (13) would be equal to (11). The difference from

perfect calibration in bin j is therefore the difference between R̃j from (12) and S̃j from (11), in the
limit of nj tending to infinity. A so-called “calibration plot” or “reliability diagram” plots R̃j versus
S̃j together with the (diagonal) line through a graph of S̃j versus S̃j for j = 1, 2, . . . , m, so that
the difference from perfect calibration is the vertical distance between the two graphs. Section 3
presents many examples of such reliability diagrams; see, for example, Figures 3, 4, 5, 6, 12, 13, 16,
17, 20, 21, 24, 25, 28, 29, 32, and 33.

The ECE2 from (3) is the sum over j = 1, 2, . . . , m of the bin width (S1
j+1 − S1

j ) times the

square of the difference between R̃j and S̃j , where the latter difference approaches the expected
amount of miscalibration in bin j in the limit of nj tending to infinity; similarly, the ECE1 from (4)
is the sum over j = 1, 2, . . . , m of the bin width (S1

j+1 − S1
j ) times the absolute value of the

difference between R̃j and S̃j . In the limit that the bin width (S1
j+1 − S1

j ) tends to 0 uniformly

over j = 0, 1, . . . , m, and nj tends to infinity uniformly, the ECE1 becomes the total area between
the graph of R̃j versus S̃j and the graph of S̃j versus itself, assuming that “area” is well-defined
in terms of the Riemann sum (4), that is, that the ECE1 converges to a unique limit. This is the
case when there exists a fixed Riemann integrable function r such that E[Rk

j (n)] = r(Sk
j (n)) for

all n = 1, 2, 3, . . . ; j = 1, 2, . . . , m(n); k = 1, 2, . . . , nj(n); again assuming that the bin width
(S1

j+1 − S1
j ) tends to 0 uniformly over j = 1, 2, . . . , m, and nj tends to infinity uniformly over j.
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2.5.2 Motivation for the empirical cumulative calibration error

Recall the definition in (5) of the cumulative differences:

Ck =
1

n

k∑
j=1

(Rj − Sj) (14)

for k = 1, 2, . . . , n. Plotting the cumulative sum Ck versus k/n results in a graph whose expected
slope is the amount of miscalibration; indeed, the expected slope from j = k − 1 to j = k is

E[Ck − Ck−1]

k/n− (k − 1)/n
= E[Rk]− Sk (15)

for k = 1, 2, . . . , n—and E[Rk]− Sk is precisely the deviation from perfect calibration. Thus, the
slope of a secant line connecting two points on the graph becomes the average miscalibration over
the long range of k between the two points. Good calibration results in a flat, fairly horizontal
graph that deviates little from zero. This motivates the definitions of the ECCE-MAD in (6) and of
the ECCE-R in (7)—they measure the deviation from zero, that is, the deviation from a perfectly
flat, horizontal graph of perfect calibration. The ECCE-MAD is simply the maximum absolute
value of Ck, while the ECCE-R is simply the range of Ck, where the range is the maximum minus
the minimum. As mentioned in Section 2.1.2 above, the absolute value of the total miscalibration∑

j∈I(Rj − Sj)/n over any interval I of indices is less than or equal to the ECCE-R—the ECCE-
R is the maximum of the absolute value of the total miscalibration over any interval of indices:
ECCE-R = maxI |

∑
j∈I(Rj − Sj)/n|.

Note that slope is easy to perceive independently of any irrelevant constant vertical offset, and
that slope in the plot of Ck versus k/n is equal to the amount of miscalibration (with the slope
of a secant line becoming the average miscalibration over the scores between two distant points
where the secant line intersects the graph). Section 3 presents many examples of such graphs of
cumulative differences; see, for example, Figures 7, 14, 18, 22, 26, 30, and 34.

3. Results and discussion

This section illustrates the methods of the previous section via analysis of both synthetic and
measured data sets.3 The synthetic examples include the ground-truth known by construction.
They first highlight practical problems with the ECEs, then validate the theory of the previous
section directly and explicitly. The examples on measured data display even more extreme practical
problems with the ECEs, especially in comparison with the ECCEs. Section 3.1 presents the
synthetic examples, while Section 3.2 analyzes in detail one of the most popular data sets from
computer vision, ImageNet of Russakovsky et al. (2015).

The following are minor details common to both Section 3.1 and Section 3.2:

1. “P-values” (also known as “attained significance levels”) which are exact in the asymptotic
limit that the sample size n tends to infinity accompany every value for the ECCE-MAD and
for the ECCE-R reported in the captions of the figures; efficient methods for computing such
P-values are detailed by Tygert (2022).

2. All reliability diagrams displayed in the present paper include “error bars” (actually lines,
not bars) plotted in light gray. Each diagram includes 20 such light-gray graphs, obtained via

3. Permissively licensed open-source software that automatically reproduces all figures and statistics reported below
is available at https://github.com/facebookresearch/ecevecce
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bootstrap resampling, corresponding to a confidence level of around 95%. Details on their
computation are available in the appendix of Tygert (2021a).

3. When the bins are equispaced with respect to the scores (the scores are the predicted prob-
abilities), we replace the bin width (S1

j+1 − S1
j ) in (3) and (4) with 1/m, where m is the

number of bins; both (3) and (4) are still Riemann sums with this change, and so all the
analysis given above remains valid without modification. Such replacement is canonical in
the classical reliability diagrams and ECEs when the bins are equispaced.

3.1 Synthetic examples

This subsection presents the results of numerical experiments on a toy example, generated synthet-
ically so that the complete ground-truth is known exactly. Knowing the ground-truth facilitates a
fully rigorous evaluation and validation of the methods of the previous section. Figures 8–10 illus-
trate the theorems and corollaries of Section 2 as explicitly as possible, as detailed in the penultimate
paragraph of the present subsection. Figures 1–7 set the stage, introducing the synthetic examples
and some problems with binning encountered in practice.

Figure 1 displays the four kinds of empirical calibration errors, as a function of m, the number of
bins. Whether any number m of bins is optimal (or even merely representative) is entirely unclear.
The values of the empirical calibration errors vary widely as the number m of bins varies. Figure 1
corresponds to the sample size n = 32,768 used in the present subsection; Appendix B contains
analogous plots for the samples sizes n = 8,192 and n = 131,072.

Figure 2 plots the probabilities of success for the Bernoulli distributions from which the synthetic
data set draws responses at the specified scores, where the scores are equispaced in the upper plot of
the figure, then squared in the middle plot, and finally square rooted from the original equispaced
values in the lower plot. The sample size is n = 32,768, which is the number of scores (each paired
with a response drawn from the Bernoulli distribution whose probability of success is graphed) for
each plot.

Figures 3–6 display the reliability diagrams from Section 2.5.1 (both with bins that are roughly
equispaced with respect to the scores and with each bin containing the same number of observa-
tions), for m = 16 bins and m = 64. Figure 7 displays the cumulative plot from Section 2.5.2,
along with the ground-truth ideal, constructing the ideal graph using the exact expected values of
the Bernoulli distributions from which the observed responses are drawn; the empirical plot closely
resembles the ground-truth ideal.

Figures 8–10 illustrate explicitly the theory of Section 2. The upper plots of Figure 8 correspond
to Corollaries 2 and 4, while the upper plots of Figure 9 correspond to Corollary 7; the lower plots
of Figure 8 correspond to Corollaries 9 and 10, while the lower plots of Figure 9 correspond to
Theorem 11. Figure 10 displays the ECCE-MAD and the ECCE-R both normalized by σn from (9);
the perfectly calibrated data of the upper plots in Figure 10 results in the ECCE-MAD / σn hovering
around its asymptotic expected value

√
π/2 ≈ 1.2533 (asymptotic in the limit of the sample size

n tending to infinity) and in the ECCE-R / σn hovering around its asymptotic expected value
2
√

2/π ≈ 1.5958. Derivations of these expected values in the limit of the sample size n tending to
infinity are available in Section 3 of Tygert (2022). Figure 8 displays graphically how the ECEs
hit a noise floor, staying around the same value for both the perfectly and imperfectly calibrated
distributions, irrespective of the number of observations. In contrast, Figure 9 illustrates how the
ECCEs approach 0 rapidly for the perfectly calibrated distribution as the sample size n increases,
while staying well away from 0 for the imperfectly calibrated distribution. Thus, the ECEs have
trouble telling apart the perfectly and imperfectly calibrated distributions, whereas the power of
the ECCEs increases indefinitely as the sample size grows.
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The captions of the figures discuss the results and their consequences.

3.2 ImageNet

This subsection presents the results of numerical experiments on the standard training data set
“ImageNet-1000” of Russakovsky et al. (2015), which is a very popular data set in computer vision.

The standard training data set “ImageNet-1000” contains a thousand labeled classes, each
containing about 1,300 images corresponding to a particular noun (often an animal such as a
“night snake,” a “sidewinder or horned rattlesnake,” or an “Eskimo dog or husky”); the total
number of images in the data set is n = 1,281,167. To generate the corresponding plots, we
calculate the scores S1, S2, . . . , Sn using the pretrained ResNet18 classifier of He et al. (2016) from
the computer-vision module, “torchvision,” in the PyTorch software library of Paszke et al. (2019);
the score for an image is the probability assigned by the classifier to the class predicted to be most
likely, with the scores randomly perturbed by about one part in 108 to guarantee their uniqueness.
For k = 1, 2, . . . , n, the response Rk corresponding to a score Sk is Rk = 1 when the class predicted
to be most likely is the correct class, and Rk = 0 otherwise.

The figures presented below consider both the subsets of the full data set corresponding to
individual classes as well as the full data set with all classes simultaneously. Figures 11–30 pertain
to individual classes, while Figures 31–34 pertain to all classes together.

Figures 11–14 consider the class corresponding to the night snake, Figures 15–18 consider the
sidewinder or horned rattlesnake, Figures 19–22 consider the Eskimo dog or husky, Figures 23–26
consider the wild boar, and Figures 27–30 consider sunglasses. In each of these sets of four figures,
the first figure displays the four kinds of empirical calibration errors—the ECE1 and the ECE2 for
when the bins are equispaced along the scores, and the ECE1 and the ECE2 for when each bin
(aside from the last) contains the same number of observations. The second figure in the set of four
provides examples of the reliability diagrams from Section 2.5.1, with the bins chosen such that
S1
1 , S1

2 , . . . , S1
m are roughly equispaced on the unit interval [0, 1] (with m = 8 in the upper plot

and m = 32 in the lower plot). The third figure in each set of four gives examples of the reliability
diagrams from Section 2.5.1, now with the bins chosen such that n1 = n2 = · · · = nm−1 ≈ nm
(again with m = 8 in the upper plot and m = 32 in the lower plot). The fourth figure in the set of
four provides an example of the cumulative plot from Section 2.5.2. For each of Figures 11–30, the
sample size is n = 1,300.

Figure 31 displays the empirical calibration errors for all classes analyzed simultaneously, so
that the sample size n = 1,281,167. Figure 32 gives examples of the reliability diagrams from
Section 2.5.1 for all 1,000 classes together, with the bins chosen such that S1

1 , S1
2 , . . . , S1

m are
roughly equispaced on the unit interval [0, 1] (with m = 128 in the upper plot and m = 1,024 in the
lower plot). Figure 33 provides examples of the reliability diagrams from Section 2.5.1 for all 1,000
classes simultaneously, with the bins chosen such that n1 = n2 = · · · = nm−1 ≈ nm (again with
m = 128 in the upper plot and m = 1,024 in the lower plot). Figure 34 provides an example of the
cumulative plot from Section 2.5.2 for all classes together. Only the cumulative plot (Figure 34)
conveniently reveals that a third of all observations (specifically, those with probabilities of at least
0.97) are well-calibrated. The ranges of the graphs in Figure 31 are relatively narrow as m, the
number of bins, varies through the values 8, 16, 32, . . . , 1,024; the empirical calibration errors could
plausibly constitute decent metrics in this setting, on account of their relatively stable values as m
varies through the values 8, 16, 32, . . . , 1,024.

In contrast, all the empirical calibration errors vary enormously as a function of m, the number
of bins, for every individual class from ImageNet investigated here—the range of the graphs in
every one of Figures 11, 15, 19, 23, and 27 is wide even with merely modest variations in m. Which
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choice of m, the number of bins, and binning strategy is best—if any—is entirely unclear from
these plots. Whether any choice of m or binning strategy yields a good metric must be seriously
questionable, as the choice makes such a big difference in the value of the metric. Which choices
are best is unclear.

Thus, the empirical calibration errors may be most meaningful when the probabilities of success
for the Bernoulli distributions underlying the observed data are smooth as a function of m, the
number of bins, and the sample size n greatly exceeds the minimum required to assess statistical
significance reliably by averaging away noise from sampling. If the probabilities of success display
multiscale behavior as a function of m, with interesting variations present at finer and finer scales,
then any choice of m will necessarily miss interesting variations or fail to perform enough averaging
to distinguish signal from noise. In accord with the theory of Section 2, obtaining meaningful
empirical calibration errors apparently requires the sample size n to be much larger than the ideal
attained by the empirical cumulative calibration errors.

More detailed discussion is available in the captions of the figures.

4. Conclusion

A trade-off between statistical confidence and power to resolve variations as a function of score is
inherent to the empirical calibration errors (ECEs) based on binning, while the empirical cumulative
calibration errors (ECCEs) have no such explicit trade-off. The theory of Section 2 proves that this
trade-off results in the ECEs requiring observations whose density is infinitely higher than what the
ECCEs require to attain the same consistency and power against any fixed alternative distribution,
where “infinitely higher” means asymptotically, in the limit of the sample size tending to infinity
(or in the limit of the statistical confidence level tending to 100%). Consonant with the asymptotic
theory, the examples of Section 3 illustrate at the finite sample sizes of greatest interest in practice
the drastically higher density required by the ECEs, together with the ECEs’ trade-off between
confidence and resolving power. The ECEs also exhibit an extreme dependence on the choice of bins,
with different choices of bins yielding significantly different values for the ECE metrics; choosing
among the possible binnings can be confusing, yet makes all the difference. In contrast, the ECCEs
yield trustworthy results without needing such large numbers of observations and without needing to
set any parameters. Furthermore, P-values (also known as “attained statistical significance levels”)
that are asymptotically perfectly-calibrated in the limit of the sample size tending to infinity are
available for the ECCEs via the simple, convenient, efficient methods of Tygert (2022). All in all,
the ECEs are unreliable and largely unusable, while the ECCEs are reliable and easy to use.
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Figure 2: Probabilities of success for the Bernoulli distributions underlying the synthetic data set
(which takes independent draws from these distributions to obtain the observed re-
sponses). The scores are equispaced in the top plot, squared in the middle plot, and
square rooted in the bottom plot, with sample size n = 32,768.
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Figure 3: Reliability diagrams for the synthetic data set, with the bins roughly equispaced. The
scores are equispaced in the top plot, squared in the middle plot, and square rooted in
the bottom plot, with m = 16 bins and sample size n = 32,768.
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Figure 4: Reliability diagrams for the synthetic data set, with an equal number of observations per
bin. The scores are equispaced in the top plot, squared in the middle plot, and square
rooted in the bottom plot, with m = 16 bins and sample size n = 32,768.
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Figure 5: Reliability diagrams for the synthetic data set, with the bins roughly equispaced. The
scores are equispaced in the top plot, squared in the middle plot, and square rooted in
the bottom plot, with m = 64 bins and sample size n = 32,768.
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Figure 6: Reliability diagrams for the synthetic data set, with an equal number of observations per
bin. The scores are equispaced in the top plot, squared in the middle plot, and square
rooted in the bottom plot, with m = 64 bins and sample size n = 32,768
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Figure 7: Cumulative plot for the synthetic data set with square-rooted scores and sample size n =
32,768. The ECCE-MAD is 0.01243/σn = 5.512, and the ECCE-R is 0.02291/σn = 10.16;
the associated asymptotic P-values are 7.1E–08 and zero to double-precision accuracy,
respectively. The upper plot is based on the empirical observations, while the lower
plot is the ideal, based on full knowledge of the exact probabilities of success for the
Bernoulli distributions from which the empirical observations were drawn. The slopes of
secant lines in the upper plot appear to match the slopes of the corresponding secants
in the lower plot reasonably well, aside from the expected statistical fluctuations (whose
expected standard deviation is a quarter of the height of the triangle at the origin).
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Figure 8: The upper plots display the ECE1 and the ECE2 averaged over 9 synthetic data sets
(reducing random variations by about

√
9 = 3), each of which is perfectly calibrated.

The lower plots display the ECE1 and the ECE2 averaged over 9 synthetic data sets,
each drawn from the distribution depicted in Figure 2 for the sample size n = 32,768. In
all cases, each bin contains the same number of observations, namely 16; som, the number
of bins, is n/16. The scores are equispaced, equispaced then squared, or equispaced and
then square rooted, as indicated in the legends for the plots; the underlying alternative
distributions of responses used for the lower plots here which correspond to these different
distributions of scores are the upper, middle, and lower plots of Figure 2 for n = 32,768,
respectively. Notice how all values for the ECE1 are quite similar, as are all values for the
ECE2; distinguishing the perfectly calibrated data sets from the alternative distribution
of Figure 2 is very hard.
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Figure 9: The upper plots display the ECCE-MAD and the ECCE-R averaged over 9 synthetic
data sets (hence reducing random variations by a factor of about

√
9 = 3), each of

which is perfectly calibrated. The lower plots display the ECCE-MAD and the ECCE-
R averaged over 9 synthetic data sets, each drawn from the distribution depicted in
Figure 2 for the sample size n = 32,768. The scores are equispaced, equispaced then
squared, or equispaced and then square rooted, as indicated in the legends for the plots;
the underlying alternative distributions of responses used in the lower plots here which
correspond to these different distributions of scores are the upper, middle, and lower
plots of Figure 2 for n = 32,768, respectively. Notice how the values for the ECCE-
MAD get much, much lower in the upper plot than in the lower plot, and, similarly, how
the values for the ECCE-R get much, much lower in the upper plot than in the lower
plot; distinguishing the perfectly calibrated data sets from the alternative distribution of
Figure 2 is easy with the ECCE-MAD or the ECCE-R, with high statistical confidence
that increases as the sample size n becomes large. The graphs in the lower plots stay flat
as n becomes large, while the graphs in the upper plots decay rapidly.
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Figure 10: The upper plots display the normalized ECCE-MAD and the normalized ECCE-R aver-
aged over 9 synthetic data sets (which reduces random variations by a factor of around√

9 = 3), each of which is perfectly calibrated. The lower plots display the normalized
ECCE-MAD and the normalized ECCE-R averaged over 9 synthetic data sets, each
drawn from the distribution depicted in Figure 2 for the sample size n = 32,768. The
scores are equispaced, equispaced then squared, or equispaced and then square rooted,
as indicated in the legends for the plots; the underlying alternative distributions of re-
sponses used for the lower plots here which correspond to these different distributions
of scores are the upper, middle, and lower plots of Figure 2 for n = 32,768, respectively.
The normalization factor σn is defined in (9). The average across the 9 realizations is
over the quotient of the ECCE by σn, with a different value of σn for every realization.
Notice how the values for the ECCE-MAD / σn get much, much higher in the lower
plot than in the upper plot, and, similarly, how the values for the ECCE-R / σn get
much, much higher in the lower plot than in the upper plot; distinguishing the perfectly
calibrated data sets from the alternative distribution of Figure 2 is easy with the nor-
malized ECCE-MAD or the normalized ECCE-R, with high statistical confidence that
increases as the sample size n becomes large. The graphs in the upper plots stay flat as
n becomes large, while the graphs in the lower plots increase explosively.
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Figure 11: Empirical calibration errors for the night snake (Hypsiglena torquata), with sample size
n = 1,300.
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Figure 12: Reliability diagrams for the night snake (Hypsiglena torquata), with the bins roughly
equispaced. There are m = 8 bins in the upper plot and m = 32 in the lower plot.
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Figure 13: Reliability diagrams for the night snake (Hypsiglena torquata), with an equal number of
observations per bin. There are m = 8 bins in the upper plot and m = 32 in the lower
plot.
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Figure 14: Cumulative plot for the night snake (Hypsiglena torquata), with sample size n = 1,300.
The ECCE-MAD is 0.08059/σn = 6.607, and the ECCE-R is 0.08270/σn = 6.780; the
associated asymptotic P-values are 7.8E–11 and 4.8E–11, respectively.
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Figure 15: Empirical calibration errors for the sidewinder or horned rattlesnake (Crotalus cerastes),
with sample size n = 1,300.
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Figure 16: Reliability diagrams for the sidewinder or horned rattlesnake (Crotalus cerastes), with
the bins roughly equispaced. There are m = 8 bins in the upper plot and m = 32 in the
lower plot.
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Figure 17: Reliability diagrams for the sidewinder or horned rattlesnake (Crotalus cerastes), with
an equal number of observations per bin. There are m = 8 bins in the upper plot and
m = 32 in the lower plot.
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Figure 18: Cumulative plot for the sidewinder or horned rattlesnake (Crotalus cerastes), with sam-
ple size n = 1,300. The ECCE-MAD is 0.07081/σn = 5.446, and the ECCE-R is
0.1075/σn = 8.267; the associated asymptotic P-values are 1.0E–7 for the ECCE-MAD
and zero to double-precision accuracy for the ECCE-R.
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Figure 19: Empirical calibration errors for the Eskimo dog or husky, with sample size n = 1,300.
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Figure 20: Reliability diagrams for the Eskimo dog or husky, with the bins roughly equispaced.
There are m = 8 bins in the upper plot and m = 32 in the lower plot.
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Figure 21: Reliability diagrams for the Eskimo dog or husky, with an equal number of observations
per bin. There are m = 8 bins in the upper plot and m = 32 in the lower plot.
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Figure 22: Cumulative plot for the Eskimo dog or husky, with sample size n = 1,300. The ECCE-
MAD is 0.05534/σn = 4.274, and the ECCE-R is 0.06715/σn = 5.186; the associated
asymptotic P-values are 3.8E–5 and 8.6E–7, respectively.

35



Arrieta-Ibarra, Gujral, Tannen, Tygert, and Xu

101 102 103

m (number of bins)

0.10

0.15

0.20

0.25

0.30

0.35

EC
E1

ECE1 for the standard reliability diagram

101 102 103

m (number of bins)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

EC
E2

ECE2 for the standard reliability diagram

101 102 103

m (number of bins)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

EC
E1

ECE1 with equally many observations per bin

101 102 103

m (number of bins)

0.02

0.04

0.06

0.08

0.10

0.12

EC
E2

ECE2 with equally many observations per bin

Figure 23: Empirical calibration errors for the wild boar (Sus scrofa), with sample size n = 1,300.
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Figure 24: Reliability diagrams for the wild boar (Sus scrofa), with the bins roughly equispaced.
There are m = 8 bins in the upper plot and m = 32 in the lower plot.
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Figure 25: Reliability diagrams for the wild boar (Sus scrofa), with an equal number of observations
per bin. There are m = 8 bins in the upper plot and m = 32 in the lower plot.
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Figure 26: Cumulative plot for the wild boar (Sus scrofa), with sample size n = 1,300. The ECCE-
MAD is 0.1161/σn = 10.14, and the ECCE-R is 0.1172/σn = 10.23; both associated
asymptotic P-values are zero to double-precision accuracy.
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Figure 27: Empirical calibration errors for sunglasses, with sample size n = 1,300.
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Figure 28: Reliability diagrams for sunglasses, with the bins roughly equispaced. There are m = 8
bins in the upper plot and m = 32 in the lower plot.
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Figure 29: Reliability diagrams for sunglasses, with an equal number of observations per bin. There
are m = 8 bins in the upper plot and m = 32 in the lower plot.
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Figure 30: Cumulative plot for sunglasses, with sample size n = 1,300. The ECCE-MAD is
0.09972/σn = 8.004, and the ECCE-R is 0.09977/σn = 8.008; both associated asymp-
totic P-values are zero to double-precision accuracy.

43



Arrieta-Ibarra, Gujral, Tannen, Tygert, and Xu

101 102 103

m (number of bins)

0.051

0.052

0.053

0.054

0.055

0.056

0.057

0.058

EC
E1

ECE1 for the standard reliability diagram

101 102 103

m (number of bins)

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065

0.0070

EC
E2

ECE2 for the standard reliability diagram

101 102 103

m (number of bins)

0.05350

0.05375

0.05400

0.05425

0.05450

0.05475

0.05500

0.05525

0.05550

EC
E1

ECE1 with equally many observations per bin

101 102 103

m (number of bins)

0.0033

0.0034

0.0035

0.0036

0.0037

0.0038

EC
E2

ECE2 with equally many observations per bin

Figure 31: Empirical calibration errors for the full ImageNet-1000 training data set, with sample
size n = 1,281,167.
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Figure 32: Reliability diagrams for the full ImageNet-1000 training data set, with the bins roughly
equispaced. There are m = 128 bins in the upper plot and m = 1,024 in the lower plot.
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Figure 33: Reliability diagrams for the full ImageNet-1000 training data set, with an equal number
of observations per bin. There are m = 128 bins in the upper plot and m = 1,024 in
the lower plot.
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Figure 34: Cumulative plot for the full ImageNet-1000 training data set, with sample size n =
1,281,167. The ECCE-MAD is 0.03306/σn = 111.7, and the ECCE-R is also
0.03306/σn = 111.7; these indicate profoundly statistically significant miscalibration,
courtesy of the large number of observations (the actual effect size is more modest, as
seen by the values without dividing by σn). Both associated asymptotic P-values are
zero to double-precision accuracy.
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Appendix A. Proofs

This appendix provides rigorous proofs for the statements made in earlier sections.

The following is the proof of Theorem 1.

Proof (of Theorem 1): Since the responses are all independent, the expected value of the ECE2

from (3) under the assumption of the null hypothesis is

m∑
j=1

(
S1
j+1 − S1

j

) nj∑
k=1

Sk
j

(
1− Sk

j

)
(nj)2

=

m∑
j=1

(
S1
j+1 − S1

j

)S1
j

(
1− S1

j

)
nj

+

nj∑
k=1

Sk
j

(
1− Sk

j

)
− S1

j

(
1− S1

j

)
(nj)2

 , (16)

which is a Riemann sum for which the second sum in the right-hand side of (16) converges uniformly
to 0 as max0≤j≤m(S1

j+1 − S1
j ) tends to 0 (uniformly over j and independent of the values for nj).

The lower limit of the right-hand side of (16) converges to (8).

The following is the proof of Theorem 3.

Proof (of Theorem 3): It follows from the fact that both the scores and the responses fall on the
unit interval [0, 1] that ∣∣∣∣∣

nj∑
k=1

Rk
j − Sk

j

nj

∣∣∣∣∣ ≤
nj∑
k=1

|Rk
j − Sk

j |
nj

≤
nj∑
k=1

1

nj
= 1, (17)

so ∣∣∣∣∣
nj∑
k=1

Rk
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j

nj

∣∣∣∣∣
2

≤

∣∣∣∣∣
nj∑
k=1

Rk
j − Sk

j

nj

∣∣∣∣∣ . (18)

It follows from (18) that

m∑
j=1

(S1
j+1 − S1

j )

∣∣∣∣∣
nj∑
k=1

Rk
j − Sk

j

nj
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j=1

(S1
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( nj∑
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Rk
j − Sk

j

nj

)2

, (19)

which is the statement of the theorem expressed in terms of the definitions in (3) and (4).

The following is the proof of Theorem 8.

Proof (of Theorem 8): Since the responses are all independent, the expected value of the ECE2

from (3) is

m∑
j=1

(
S1
j+1 − S1

j

)
E

( nj∑
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Rk
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E
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(nj)2

 , (20)
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where r̃j and S̃j denote the averages

r̃j =
1

nj

nj∑
k=1

r(Sk
j ) (21)

and

S̃j =
1

nj

nj∑
k=1

Sk
j (22)

for j = 1, 2, . . . , m. The fact that the variance of a Bernoulli distribution whose expected value is
r(Sk

j ) is r(Sk
j )(1− r(Sk

j )) yields
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)

(nj)2

 . (23)

Referencing terms in each bin to the same score yields

m∑
j=1

(
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(24)

which is the sum of two Riemann sums, the latter of which converges to 0 as max0≤j≤m(S1
j+1−S1

j )
tends to 0. The lower limit of the right-hand side of (24) converges to (10), so combining (20)–(24)
completes the proof.

The following is the proof of Theorem 11.
Proof (of Theorem 11): Applying first {1} the Chernoff or Hoeffding bound for averages of in-
dependent Bernoulli variates to deviate from their expected values by more than n−1/4 (or for
the unnormalized sums to deviate from their expected values by more than n3/4), then {2} union
bounding across the averages for k = 1, 2, . . . , n, and finally {3} applying the Borel-Cantelli
Lemma over the sample size n yields that as n becomes arbitrarily large the ECCE-MAD defined
in (6) converges almost surely to

lim
n→∞

max
1≤k≤n

∣∣∣∣∣∣ 1n
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0
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∣∣∣∣ (25)
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and that the ECCE-R defined in (7) converges almost surely to

lim
n→∞

 max
0≤k≤n

1

n

k∑
j=0

(r(Sj)− Sj)− min
0≤k≤n

1

n

k∑
j=0

(r(Sj)− Sj)


= max

0≤t≤1

∫ t

0
(r(s)− s) dF (s)− min

0≤t≤1

∫ t

0
(r(s)− s) dF (s). (26)

The dominated convergence theorem then yields convergence of the expected values of the ECCE-
MAD and the ECCE-R to the same values in (25) and (26), courtesy of the domination∣∣∣∣∣∣ 1n

k∑
j=1

(Rj − Sj)

∣∣∣∣∣∣ ≤ 1

n

n∑
j=1

|Rj − Sj | ≤ 1 (27)

for k = 1, 2, . . . , n (recall that both Rj and Sj lie in the unit interval [0, 1], so |Rj − Sj | ≤ 1).
Now, if (25) were 0, then ∫ t

0
(r(s)− s) dF (s) = 0 (28)

for all t in the unit interval [0, 1]; differentiating with respect to t would then show that r(s) = s
except on a set of measure 0 relative to dF , making

∫ 1
0 |r(s)− s| dF (s) be 0, too. The assumption

that
∫ 1
0 |r(s)−s| dF (s) > 0 thus implies that the limit (25) of the expected value of the ECCE-MAD

must be strictly positive, completing the proof for the ECCE-MAD.
Similarly, if (26) were 0, then ∫ t

0
(r(s)− s) dF (s) = c (29)

for all t in the unit interval [0, 1], for some real number c (after all, the maximum and minimum of
a function are the same only if the function is equal to some constant c); as before, differentiating
both sides of (29) with respect to t would then show that r(s) = s except on a set of measure 0
relative to dF , making

∫ 1
0 |r(s) − s| dF (s) be 0, too. The assumption that

∫ 1
0 |r(s) − s| dF (s) > 0

thus implies that the limit (26) of the expected value of the ECCE-R must be strictly positive,
completing the proof for the ECCE-R.

Appendix B. Additional figures

This appendix provides analogues for the samples sizes n = 8,192 and n = 131,072 of Figure 1
from Section 3.1 (Figure 1 corresponds to the sample size n = 32,768). Figure 35 is for n = 8,192;
Figure 36 is for n = 131,072.
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Figure 35: Empirical calibration errors for the synthetic data set with the sample size n = 8,192;
the scores are equispaced, squared, or square rooted, as indicated in the legends.
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Figure 36: Empirical calibration errors for the synthetic data set with the sample size n = 131,072;
the scores are equispaced, squared, or square rooted, as indicated in the legends.
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