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Abstract

While classic studies proved that wide networks allow universal approximation, recent re-
search and successes of deep learning demonstrate the power of deep networks. Based on
a symmetric consideration, we investigate if the design of artificial neural networks should
have a directional preference, and what the mechanism of interaction is between the width
and depth of a network. Inspired by the De Morgan law, we address this fundamental ques-
tion by establishing a quasi-equivalence between the width and depth of ReLU networks.
We formulate two transforms for mapping an arbitrary ReLU network to a wide ReLU
network and a deep ReLU network respectively, so that the essentially same capability of
the original network can be implemented. Based on our findings, a deep network has a
wide equivalent, and vice versa, subject to an arbitrarily small error.

Keywords: Artificial neural networks, deep learning, wide learning, ReLU networks,
quasi-equivalence.

1. Introduction

Over the past years, deep learning (Goodfellow et al., 2016) has become the mainstream
approach of machine learning and achieved the state-of-the-art performance in many im-
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portant tasks (Dahl et al., 2011; Kumar et al., 2016; Chen et al., 2017; Wang, 2016). One
of the key reasons that accounts for the success of deep learning is the increased depth,
which allows a hierarchical representation of features. A number of papers are dedicated
to explaining why deep networks are better than shallow ones. Their idea is basically to
find a special family of functions hard to be approximated by a shallow network but easy
to be approximated by a deep network, or that a deep network can express complicated
functions that a wide network falls short (Szymanski and McCane, 2014; Cohen et al., 2016;
Mhaskar and Poggio, 2016; Eldan and Shamir, 2016; Montufar et al., 2014; Bianchini and
Scarselli, 2014). For example, in Eldan and Shamir (2016) a special class of radial functions
was constructed so that a one-hidden-layer network needs to use an exponential number of
neurons to obtain a good approximation, but a two-hidden-layer network only requires a
polynomial number of neurons for the same purpose. With the number of linear regions as
the complexity measure, Montufar et al. (2014) showed that the number of linear regions
grows exponentially with the depth of a network but only polynomially with the width of a
network. In (Bianchini and Scarselli, 2014), a topological measure was utilized to character-
ize the complexity of functions. Then, it was shown that deep networks can represent more
complex functions than what their shallow counterparts express, given the same amount
of resources. Besides, width-bounded but depth-unbounded universal approximators were
also developed (Lu et al., 2017; Lin and Jegelka, 2018; Fan et al., 2021) in analogy to the
depth-bounded but width-unbounded universal approximators (Funahashi, 1989; Hornik
et al., 1989).

Recently, the effects of width are discussed by more and more studies (Cheng et al.,
2016; Chen and Liu, 2017; Zagoruyko and Komodakis, 2016). Since width and depth are
the most basic topology measures of a neural network, exploring the roles of width and depth
in neural networks is of strong interest and great importance. Currently, there exist both
width-bounded and depth-bounded universal approximators. Since both width-bounded
and depth-bounded networks can represent any function, they can represent each other as
well, which suggests the width-depth equivalence of neural networks. Nevertheless, how a
neural network learns a mapping is quite different from the way used in proving the universal
approximation. Moreover, the core of the width-depth conversion is to employ a network to
learn another network instead of a generic function. Therefore, the width-depth conversion
based on universal approximation does not directly reveal the intrinsic relationship between
the width and depth.

Specifically, we argue that the width-depth conversion via universal approximation lacks
insight and is inefficient: 1) (Lack of insight) Universal approximation theoretically guar-
antees the representation capability of a model, but the way used in the universal approx-
imation is different from how a model learns a mapping. For example, both decision trees
and neural networks are universal approximators, but they are quite distinct. The way used
in enabling the universal approximation is to divide a target function into many functions
over tiny hypercubes. In practice, a network usually does not do so; e.g., a ReLU network
divides the space into polytopes, and a ReLU network is piecewise linear over polytopes. 2)
(Inefficient) The published universal approximation analyses do not consider the character
of a target function, and just inefficiently divide the function into many pieces over tiny
hypercubes. However, in the width-depth transformation, the problem is how to express a
wide (or deep) network using a deep (or wide) network. Thus, the properties of networks
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should be used to make a much more efficient transformation. In brief, utilizing universal
approximation theorems to do the width-depth transformation do not accurately capture
the model’s essential characteristics in the width-depth conversion. Up to now, we still do
not know how to non-trivially do transformation between a wide and a deep network, and
what the mechanism of interaction is between the width and depth of a network.

To bridge this gap, inspired by the De Morgan law, here we demonstrate that the
width and depth of neural networks are quasi-equivalent, which mainly leverages that a
ReLU network is a piecewise linear function over polytopes. Specifically, we revisit the De
Morgan law:

A1 ∨A2 · · · ∨An = ¬
(

(¬A1) ∧ (¬A2) · · · ∧ (¬An)
)
, (1)

where Ai is a propositional rule (e.g., IF input ∈ [ai, bi], THEN input belongs to some
class), and such rules are disjoint. A network for classification can be linked to a rule-based
system such as a collection of propositional rules. Straightforwardly, we can construct
either a deep network to realize a union of propositional rules (left side) or a wide network
that realizes the complement of the intersection of those rules after the complement (right
side). As a result, the constructed deep and wide networks are equivalent to each other.
Furthermore, we elaborate on the quasi-equivalence of ReLU networks by constructing two
transforms mapping an arbitrary ReLU network to its quasi-equivalent wide network and
quasi-equivalent deep network respectively, thereby verifying a general quasi-equivalence of
the width and depth of ReLU networks. Our constructive scheme is largely based on the fact
that a ReLU network partitions the space into polytopes (Chu et al., 2018). By partitioning
each polytope into simplices, we have a simplicial complex in the space. Our strategy is to
construct a modularized network to approximate an arbitrary linear function over a simplex
as the essential building block. Then, we can aggregate these essential building blocks into
either a wide or a deep network so as to establish the width-depth equivalence.

Our main contribution is the establishment of the width-depth quasi-equivalence of neu-
ral networks. We summarize our key results on ReLU networks in Table 1. Specifically,
Table 1 lists the width and depth of the wide and deep networks constructed in our per-
spective, where the complexity measure M is the minimum number of simplices needed to
partition the polytopes formed by a ReLU network (below we rigorously define the con-
cept of partitioning). Given a proper complexity measure, the width of the constructed
wide network is greater than the depth, while the depth of the constructed deep network is
greater than the width.

Table 1: Networks obtained through the transformation, where D is the input dimension,
and M is the complexity measure for a function class defined by ReLU networks.

Network Width Depth

Transform Regression
Networks (Theorem 10)

Wide D2(D + 1)M D + 1
Deep (D + 1)D2 (D + 1)M

To put our contributions in perspective, we would like to mention relevant studies. Jacot
et al. (2018) proposed the theory of the neural tangent kernel (NTK), which provides a lens
to understand a network when the width of a network goes to infinity. Kawaguchi et al.
(2019) analyzed the effects of width and depth on the quality of local minima. It was shown
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that the quality of local minima improves toward the global minima as depth and width
become larger. Levine et al. (2020) revealed the width-depth interplay in a self-attention
network. To the best of our knowledge, our study is the first that reveals the width-depth
quasi-equivalence of neural networks.

2. Quasi-Equivalence by De Morgan’s Law

2.1 Preliminaries

For convenience, we use σ(x) = max{0, x} to denote the ReLU function. We mainly discuss
ReLU networks in this study. Thus, all networks mentioned in the rest of this paper
are ReLU networks, unless otherwise specified. At the same time, we focus on the fully-
connected ReLU networks.

Definition 1 (Width and depth of a feedforward network) Here, we follow the def-
inition in (Arora et al., 2016). Given the number of hidden layers k ∈ N, input and output
dimensions w0, wk+1 ∈ N, a Rw0 → Rwk+1 feedforward network is given by specifying a
sequence of k natural numbers w1, w2, . . . , wk representing widths of the hidden layers, a
set of k affine transformations Ti : Rwi−1 → Rwi for i = 1, . . . , k and a linear transfor-
mation Tk+1 : Rwk → Rwk+1 corresponding to weights of the hidden layers. The function
f : Rw0 → Rwk+1 computed or represented by this network is expressed as

f = Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ T2 ◦ σ ◦ T1, (2)

where ◦ denotes function composition, and σ is an activation function. The depth of a
ReLU DNN is defined as k + 1. The width of a ReLU DNN is max {w1, . . . , wk}.

Definition 2 (Width and depth of a non-feedforward network) Let Π be a network
that is not feedforward, we delete a minimum number of links such that the resultant net-
work Π′ is a feedforward network without any isolated neuron. Then, we define the width
and depth of Π as the width and depth of Π′ respectively. If there are multiple ways to
delete links with the same minimum number such that the resultant networks are feedfor-
ward without any isolated neuron, we take the maximum depth and width of these networks
as the depth and width of Π.

Over the past several years, increasingly diversified network architectures, such as ran-
domly wired networks (Xie et al., 2019), networks with stochastic structures (Deng et al.,
2020), etc. are used as backbones for deep learning. Our definitions for width and depth are
applicable to many unusual network configurations. Naturally, they are extensions of the
conventional width and depth definitions and make sense for common networks. We have
checked the networks constructed in our study. The width and depth of the networks can be
uniquely determined by our definition because these architectures are simple modifications
based on feedforward networks (Please see Supplementary Information V for details).

Definition 3 (Simplicial complex) A D-simplex S is a D-dimensional convex hull pro-
vided by convex combinations of D+ 1 affinely independent vectors {vi}Di=0 ⊂ RD. In other
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words, S =

{
D∑
i=0

ξivi | ξi ≥ 0,
D∑
i=0

ξi = 1

}
. The convex hull of any subset of {vi}Di=0 is

called a face of S. A simplicial complex S =
⋃
α

Sα is composed of a set of simplices {Sα}

satisfying: 1) every face of a simplex from S is also in S; 2) the non-empty intersection of
any two simplices S1, S2 ∈ S is a face of both S1 and S2.

Proposition 1 Suppose that f(x) is a function represented by a ReLU network, then f is a
piecewise linear function that splits the space into polytopes, where each polytope is convex,
and f is a linear function over each polytope.

Proof Inspired by the idea in (Chu et al., 2018), the proof here is for all ReLU networks,
including networks using shortcuts. Let a vector C = {c1, ..., cN} denote the firing states
of all neurons in the network, where N is the total number of neurons, and ci ∈ {0, 1}.
ci = 0 means that the i-th neuron is not fired and vice versa. The firing state of every
neuron is determined by the input x, and we denote the set of instances that share the
same collective neuron firing state Ch as the polytope Ph: Ph = {x | C(x) = Ch}. For
x ∈ Ph, the output of the neuron i is a linear function, denoted as n(i)(x). Then, the firing
state of the neuron i is controlled by a linear inequality (n(i)(x) > 0 or n(i)(x) ≤ 0). In
total, C(x) = Ch is equivalent to a set of N linear inequality constraints, indicating that
Ph is a convex polytope.

Definition 4 A partition of a polytope P into simplices fulfills that the union of all simplices
equals P , and the intersection of any two simplices is a common face or empty.

Definition 5 We define the complexity of the function represented by a ReLU network as
the minimum number of simplices, M , that is needed to partition each and every polytope
to support the function of the ReLU network.

Here we elaborate on why M is a good measure. Previously, because a deep network
with piecewise linear activation is a piecewise linear function, the number of linear regions
(polytopes) was intensively studied to measure the complexity of a neural network. For
example, Montufar et al. (2014) and Serra et al. (2018) estimated the upper and lower
bounds of the number of linear regions with respect to the number of neurons at each
layer. Xiong et al. (2020) computed the bounds for convolutional neural networks. Park
et al. (2021) proposed neural activation coding to maximize the number of linear regions
to improve the model performance. Despite these results, there exists a problem with the
number of linear regions as a complexity measure. It may happen that simple and complex
networks realize the same number of regions for a given task. As shown in Figure 1, two
networks divide the space into two regions to separate concentric rings. However, one
network uses three neurons to define a triangle domain, while the other has six neurons to
form a hexagon. According to the number of linear regions, the two networks have the same
complexity but the six-neuron network is more complex than the other. To address this
problem, the complexity of a linear region should be taken into account as well. We argue
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（a） （b）

Figure 1: Two networks for classification of concentric rings of red circles and blue dia-
monds. (a) A one-hidden-layer network with 3 neurons to classify concentric
rings whose polytope contains 1 simplex; and (b) a one-hidden-layer network
with 6 neurons to classify concentric rings whose polytope comprises 4 simplices.
Clearly, the number of simplices is a more meaningful complexity measure of
ReLU networks than the number of polytopes.

that how many simplices a linear region comprises indicates how complex a linear region is.
Therefore, we propose to use the number of simplices as a legitimate complexity measure.
In Figure 1, counting the number of simplices, the complexity of two networks are 1 and 4
respectively, which is a better characterization.

Let us estimate the lower bound of M . To this end, we need to take advantage of the
lower bound of the number of polytopes. Empirical bounds of the number of polytopes
(Np) for a feedforward ReLU network were estimated in (Montufar et al., 2014; Serra et al.,
2018; Serra and Ramalingam, 2020), where one result in (Montufar et al., 2014) states that
let ni, i = 1, · · · , L, be the number of neurons in the i-th layer, and D be the dimension of

the input space, Np is lower bounded by
(∏L−1

i=1 [ni/D]D
)
·
∑D

j=0

(
nL
j

)
. Thus, the minimum

number of simplices that fill these polytopes is naturally also lower bounded by

M ≥
( L−1∏
i=1

[ni/D]D
)
·
D∑
j=0

(
nL
j

)
. (3)

As the original network becomes more complicated in terms of the minimum number of
simplices (M) to partition the input space, the width of the constructed wide network and
the depth of the constructed deep network will increase accordingly.

Definition 6 We measure the depth and width of a network in terms of complexity in M ,
where M is the minimum number of simplices to partition the polytopes represented by the
original network. More precisely, given M , we call the constructed network wide if its width
is C1M and its depth is C2, where C1 and C2 are constants independent of M . Similarly,
we call the constructed network deep if its depth is C3M and its width is C4, where C3 and
C4 are also constants independent of M .

It is underscored that we use two different concepts: the complexity of the function
class represented by networks and the structural complexity of a network. The former
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measures the complexity of the function, while the latter measures the topological structure
of a network. In our transformation scheme, the structures of constructs/networks are
determined by the complexity of a function of interest.

Definition 7 We call that a wide network N1 : Ω → R is equivalent to a deep network
N2 : Ω → R, if N1(x) = N2(x),∀x ∈ Ω. We call that a wide network N1 is quasi-
equivalent to a deep network N2, if there is a pre-specified small constant δ > 0, m({x ∈
Ω | N1(x) 6= N2(x)} < δ, where m is a Lebesgue measurement defined on Ω.

Definition 8 (Fan-shaped functions/domains) Given vectors {vi}Di=0 ⊂ RD that are
affinely independent, we define the fan-shaped domain with the vertex v0 in RD as

{
D∑
i=1

ξi(vi − v0) | ξi ≥ 0}. (4)

The fan-shaped function is a linear function over the fan-shaped domain and zero outside
that domain.

2.2 Motivating Example

𝒙
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𝑮𝒊
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+ − 𝝈(𝟐𝑮𝒊
+ −

𝒎+ 𝟏 ‖𝑮‖∞
𝜹

(𝒂𝒊+𝟐 − 𝒂𝒊+𝟏)))

𝑮𝒊+𝟏 = 𝑮𝒊
++ − 𝝈(𝑮𝒊

++ − 𝒊 + 𝟏 𝑮 ∞)

𝑹𝒌−𝟏
∗ = 𝑹𝒌

∗ +
𝟏 − 𝒌 𝑮 ∞

𝑮 ∞
𝝈(𝑹𝒌

∗ − (𝒌 − 𝟏) 𝑮 ∞)

Wide NetworkDeep Network

𝑨𝟏∨ ⋯𝑨𝒏 = ¬( ¬𝑨𝟏 ∧ ⋯(¬(𝑨𝒏))

Figure 2: The width and depth equivalence in light of the De Morgan law. In this equiva-
lence construction, a deep network implements A1∨A2 · · ·∨An using a trapezoid

function, while a wide network implements ¬
(

(¬A1) ∧ (¬A2) · · · ∧ (¬An)
)

using

the trap-like function.

An important school of neural network interpretability research is to extract inter-
pretable rules from a network for classification using decompositional or pedagogical meth-
ods (Fan and Wang, 2020; Adadi and Berrada, 2018; Thrun, 1995; Setiono and Liu, 1995;
Saad and II, 2007; Thrun, 1995). Pedagogical methods decode a set of rules that imitate the
input-output relationship of a network, and these rules do not necessarily correspond to the
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parameters of the network. One common type of rules are propositional in the IF-THEN
format, where the preconditions are provided as a set of hypercubes in the input space:

IF input ∈ [ai, bi]
m, THEN input belongs to some class.

Since there is a connection between the rule-based inference and the network-based
inference, we consider a neural network in terms of propositional rules. Furthermore, we
know that the De Morgan law holds true for disjoint propositional rules. Mathematically,
the De Morgan law is formulated as

A1 ∨A2 · · · ∨An = ¬
(

(¬A1) ∧ (¬A2) · · · ∧ (¬An)
)
, (5)

where Ai is a rule, and ¬Ai is its negation. The De Morgan law gives a duality in the sense of
binary logic, which means that for any propositional rule system described by A1 ∨A2 · · · ∨
An, there exists an equivalent dual propositional rule system ¬

(
(¬A1)∧(¬A2) · · ·∧(¬An)

)
.

Regarding each rule as an indicator function over a hypercube:

gi(x) =

{
1, if x ∈ a hypercube
0, if x /∈ a hypercube

in Figure 2, we construct a deep network that realizes a logic union of propositional rules
(the left hand side of Eq. (5)) and a wide network that realizes the negation of the logic
intersection of those rules after negation (the right hand side of Eq. (5)). As a result, the
constructed deep and wide networks are equivalent by the De Morgan law.

The above motivating example inspires us to consider the width-depth equivalence in
a broader sense. First, a ReLU network is a piecewise linear function over polytopes. To
generate rules, such a piecewise linear function should be divided into simplices instead of
hypercubes. As shown in Figure 3, we only need two rules if we build rules over simplices,
which is much more efficient than building rules over hypercubes. Second, the network can
generate continuous values instead of discrete values. Thus, representing a linear function
rather than an indicator function is demanded. Based on these two considerations, we
generalize an indicator function over a hypercube to a linear function over a simplex Si in
a bounded domain:

gi(x) =

{
wx + c, if x ∈ Si

0, if x ∈ Sci .

2.3 Quasi-Equivalence between Width and Depth of Networks

This section describes the main contribution of our paper. We formulate the transformation
from an arbitrary ReLU network to a wide network and a deep network respectively. We
use a network-based building block to represent a linear function over a simplex. Integrat-
ing such building blocks can represent any piecewise linear function over polytopes, thereby
elaborating a general equivalence between the width and depth of networks. In particular, a
ReLU network can be converted into wide and deep ReLU networks respectively (Theorem
10). The transformation of a univariate network is rather different from that of a multi-
variate network. Whereas the equivalence is precise between the wide and deep networks
in the univariate case, the multivariate wide and deep networks are made approximately
equivalent, up to an arbitrarily small error. Furthermore, in the multivariate case the width
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（a） （b）

Figure 3: Given a polytope, one can partition it into simplices or hypercubes. Because a
polytope is naturally partitioned by simplices, the number of needed simplices is
much smaller than that of tiny hypercubes needed for universal approximation.
Thus, simplices are much more efficient than hypercubes.

of the wide network is not the same as the depth of the deep network. This is one reason
why we term such an equivalence as a quasi-equivalence.

The sketch of transforming a ReLU network to a quasi-equivalent form is that we first
construct either a wide modular network or a deep modular network to represent the corre-
sponding function over each and every simplex, and then we aggregate the results into deep
or wide networks in series or parallel respectively, to represent the original network well.

Theorem 9 (Equivalence of Univariate ReLU Networks) Given any ReLU network
f : [−B, B] → R, there is a wide ReLU network H1 : [−B, B] → R and a deep ReLU
network H2 : [−B, B]→ R, such that f(x) = H1(x) = H2(x),∀x ∈ [−B, B].

Our main result is formally summarized as the following quasi-equivalence theorem for the
multivariate case.

Theorem 10 (Quasi-Equivalence of Multivariate ReLU Networks) Suppose that the
representation of an arbitrary ReLU network is h : [−B, B]D → R, and M is the minimum
number of simplices to partition the polytopes supporting h, for any δ > 0, there exist a wide
ReLU network H1 of width O

[
D2(D + 1)M

]
and depth D + 1 and a deep ReLU network

H2 of width (D + 1)D2 and depth O [(D + 1)M ], satisfying that

m
(
x | h(x) 6= H1(x)}

)
< δ

m
(
x | h(x) 6= H2(x)}

)
< δ,

(6)

where m(·) is the standard measure in [−B, B]D.

We defer the proof of Theorem 9 to Supplementary Information I, and split the
proof of Theorem 10 into the two-dimensional case (more intuitive) in Appendix and the
general case in Supplementary Information I for better readability.

The key idea to represent a linear function over a simplex is to construct high-dimensional
fan-shaped functions that are supported in fan-shaped domains, and use these constructs
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Ω3

0

𝑔1

𝑔2
𝑔3

Ω2
Ω3

Ω1 Ω2,1 Ω2,3

Ω2,2

Figure 4: Representing a function that is piecewise linear over a non-convex region and
zero otherwise. (a) The representations in (Wang and Sun, 2005; He et al., 2018)
are handicapped in representing a function over polytopes that make a non-
convex region. It can be seen that due to the unboundedness and continuity,
f = max{g1, g2, g3} is inaccurate over the shaded area (The function value over
the shaded area should be zero, but f generates a linear function over the shaded
area); (b) our representation is accurate over the shaded area because it directly
represents each linear function over its simplex.

to eliminate non-zero functional values outside the simplex of interest. This is a new and
local way to represent a piecewise linear function over polytopes. In contrast, there are two
global ways to represent piecewise linear functions (Wang and Sun, 2005; He et al., 2018).
In (Wang and Sun, 2005), for every piecewise linear function f : Rn → R, there exists a
finite set of linear functions g1, · · · , gm and subsets T1, · · · , TP ⊆ {1, 2, · · · ,m} such that
f =

∑P
p=1 spmax

i∈Tp
{gi}, where sp ∈ {−1,+1}, p = 1, · · · , P . In (He et al., 2018), the rep-

resentation is f = max
1≤p≤P

min
i∈Tp
{gi}. Nevertheless, due to the unboundedness and continuity,

the global representation of a piecewise linear function is handicapped over polytopes that
make a non-convex region. Let us use Figure 4 to illustrate our point: the target function
over Ω1,Ω2,Ω3 is piecewise linear, where the relations of g1, g2, g3 are summarized in Table
2, and the function value over the shaded area is zero.

Table 2: Regions and relations of linear functions.
Region Relation

Ω1 g1 ≥ g2 ≥ g3

Ω2 g2 ≥ g1, g2 ≥ g3

Ω3 g3 ≥ g2 ≥ g1

• Representation in (Wang and Sun, 2005; He et al., 2018): f = max{g1, g2, g3}

• Ours: f = (g1){x∈Ω1} + (g2){x∈Ω2,1} + (g2){x∈Ω2,2} + (g2){x∈Ω2,3} + (g3){x∈Ω3}.
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where (g1){x∈Ω1} means restriction of g1 on Ω1 and the rest notations follow the same
rule. It can be seen that due to the unboundedness and continuity, f = max{g1, g2, g3} is
inaccurate over the shaded area (The function value over the shaded area should be zero,
but f generates a linear function over the shaded area). In contrast, our representation
is accurate over the shaded area because it is local. We highlight the construction of fan-
shaped functions that provides a new way for the representation of a high-dimensional
piecewise linear function. Particularly, the use of fan-shaped functions allows a resultant
neural network to express a manifold effectively and efficiently, since a manifold usually
occupies a non-convex region.

൬

൰

𝒑𝟏
(𝟏)
𝒙𝟏 + 𝒑𝟐

(𝟏)
𝒙𝟐 + 𝒓(𝟏)

− 𝝁 𝒑𝟏
(𝟐)
𝒙𝟏 + 𝒑𝟐

(𝟐)
𝒙𝟐 + 𝒓(𝟐)

+ + +

𝒑𝟏
(𝟏)
𝒙𝟏 + 𝒑𝟐

(𝟏)
𝒙𝟐 + 𝒓(𝟏) = 𝟎

𝒑𝟏
(𝟏)
𝒙𝟏 + 𝒑𝟐

(𝟏)
𝒙𝟐 + 𝒓(𝟏)

−𝝁𝒑𝟏
𝟐
𝒙𝟏 − 𝝁𝒑𝟐

𝟐
𝒙𝟐 − 𝝁𝒓(𝟐) = 𝟎

(b)

𝝁

−

𝒑𝟏
(𝟐)
𝒙𝟏 + 𝒑𝟐

(𝟐)
𝒙𝟐 + 𝒓(𝟐) = 𝟎

𝛀𝟏

𝛀𝟐

(a)

Input

Output

Figure 5: Fan-shaped functions constructed by a modularized network to eliminate non-zero
functional values outside a simplex of interest. (a) The network module F (x1, x2)

is defined in terms of h1(x) = p
(1)
1 x1+p

(1)
2 x2+r(1) and h2(x) = p

(2)
1 x1+p

(2)
2 x2+r(2).

(b) When µ → ∞, the line h1(x) − µh2(x) gets closer to the line h2(x). Thus,
F (x1, x2) gradually becomes a fan-shaped function, which is a linear function h1

in the region Ω1 and 0 outside Ω1. Then, F (x1, x2) will be used to cut the space
to obtain a nearly perfect simplex.

Since such a fan-shaped function is a basic building block for our construction of wide and
deep equivalent networks, let us explain it in a two-dimensional case for easy visualization.
An essential building block expressed by a network in Figure 5(a) is based on the following
function:

F (x) = σ ◦ (h1(x)− µσ ◦ h2(x)), (7)

where h1(x) = p
(1)
1 x1 + p

(1)
2 x2 + r(1), and h2(x) = p

(2)
1 x1 + p

(2)
2 x2 + r(2) are provided by

two linearly independent vectors {(p(1)
1 , p

(1)
2 ), (p

(2)
1 , p

(2)
2 )}, and µ is a positive controlling

factor. Eq. (7) is a ReLU network of depth=2 and width=2 according to our width-depth
definition. As illustrated in Figure 5(b), the support of F (x) contains three boundaries
and four polytopes (two of which only allow zero value of F ). For convenience, given
a linear function `(x) = c1x1 + c2x2 + c3, we define `− = {x ∈ R2 | `(x) < 0} and
`+ = {x ∈ R2 | `(x) ≥ 0}. Thus, we can write Ω1 = h+

1 ∩ h
−
2 and Ω2 = (h1 − µh2)− ∩ h+

2 .
There are three properties of F (x). First, the common line shared by Ω1 and Ω2 is h2(x) = 0.
Second, the size of Ω2 is adjustable by controlling µ. Note that h1(x)− µh2(x) = 0 will be
arbitrarily close to h2(x) = 0 as µ → ∞, which makes Ω2 negligible. In the limiting case,
the support of F (x) converges to the fan-shaped domain Ω1. Because h1(x) − µh2(x) = 0
is almost parallel to h2(x) = 0 when µ is large enough, we approximate the area of Ω2 as

11
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the product of the length of h2(x) = 0 within [−B,B]2 and the distance between two lines,
which yields |Ω2| ≤ 2

√
2B/µ. Third, the function F over the fan-shaped area Ω1 is h1.

Linearly aggregating a number of these functions can represent an arbitrary linear function
over Ω1 (see our further elaboration in Figures 6 and 7 below).

What we approximate is a piecewise linear function defined by a ReLU network, not a
general continuous function considered in the context of traditional universal approximation.
The key is that for a piecewise linear function over polytopes, we do not need to keep dividing
polytopes at increasingly finer resolution. We partition each polytope into simplices. The
error measure we take is a standard measure in [−B,B]D. The error arises because we
cannot perfectly express a function over a fan-shaped function. Figure 5(b) shows what
F (x) looks like. Ideally, Ω2 should not exist so that we can use it to cut the space into a
perfect simplex. However, Ω2 is needed for our construction. Nevertheless, we only need to
increase µ to make its measure (area) arbitrarily small, without using more neurons, since
the boundary of Ω2 is adjustable with µ. Figure 6 illustrates how we use two nearly perfect
fan-shaped functions to obtain a linear function over a simplex. Although the resultant
simplex is inexact, the area of erroneous regions can be controlled to be insignificant. Please
read the proof of our main theorem for details.

𝒙𝟐

𝑭 𝒙𝟏, 𝒙𝟐 = 𝝈(𝒙𝟏 − 𝝁(−𝒙𝟐))

𝒙𝟏

𝝈(𝜸𝟏𝑭 𝒙𝟏, 𝒙𝟐 + 𝜸𝟐𝑭
′ 𝒙𝟏, 𝒙𝟐 + 𝜸𝟑)𝑭′ 𝒙𝟏, 𝒙𝟐 = 𝝈(𝒙𝟏 − 𝝂𝒙𝟐 − 𝝁(−𝒙𝟐))

𝒙𝟏

𝒙𝟐Wedge can be arbitrarily small by 

increasing 𝜇 and decreasing 𝜈

𝒙𝟐

𝒙𝟏

Figure 6: Combination of two fan-shaped functions leads to a linear function over a simplex.
The area of erroneous regions can be arbitrarily small by adjusting the parameters
of the neurons (increasing µ and decreasing ν). γ1, γ2, γ3 are coefficients of linearly
combining F (x1, x2) and F ′(x1, x2).

Remark 1. As a ReLU network of interest partitions the space into more and more
polytopes, the number of needed simplices will increase. Because the lower bound of M in
Eq. (3) is far larger than D or (D + 1)D2, the width of H1(x) and the depth of H2(x)
will dominate. Furthermore, the width of H1(x) is greater than its depth by an order
of magnitude in terms of M , and the depth of H2(x) is greater than its width similarly.
Therefore, H1(x) is a wide network, and H2(x) is a deep network.

Remark 2. Inspired by the network structure used to define the proposed fan-shaped
function, we find that intra-layer links can enhance the representation capability of a shallow
network, without increasing its width. In the current deep learning research, the dominating
network architectures often use shortcuts. However, few studies, if not none, considered the
depth separation theory in the shortcut paradigm. Our work reveals that the insertion of
intra-layer links can reduce width; i.e., without the need to go as wide as before, a shallow
network can express a complicated function as well as a deep network could. Thus, the
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depth separation theory can be extended to the shortcut paradigm. Along this direction,
we have estimated the bound for intra-linked networks; please see Fan et al. (2023) for
details.

Remark 3. The network conversion through our proposed transformation is superior
to universal approximation in the following two aspects.

First, despite that both our conversion scheme and the universal approximation suffer
from the exponential dependency on the ambient space dimension, our scheme is still much
more efficient than universal approximation in the sense of finiteness; i.e., the width and
depth of our constructed networks are fixed given a prescribed error, while the
width and depth of universal approximation need to increase to decrease the
error. Table 3 summarizes recent key advances in the universal approximation theory of
neural networks. To our best knowledge, in all these schemes the network structure will
increase as the prescribed error drops. This is because the basic idea in universal approx-
imation to achieve a lower error is to partition the space at finer resolution (hypercubes,
hyper-trapezoid, etc.), which demands more neurons and increases width or depth accord-
ingly. However, the goal of our construction is not to accomplish universal approximation
but to use a wide or deep ReLU network to approximate an arbitrary ReLU network. There-
fore, we can leverage the functional structure of ReLU networks to increase both accuracy
and efficiency. Very recently, Shen et al. (2021a) developed a feed-forward neural network
for the universal approximation with a fixed number of neurons. However, the employed
activation functions (σ1(x) = |x − [x+1

2 ]|, where [·] is a floor function, and σ2 = x
|x|+1) are

quite unusual, while our work assumes the ReLU function, which is practically dominant.
Second, our transformation between wide and deep ReLU networks takes the intrinsic

functional structure into full account, which is a novel approach. Through this lens, a wide
network can be converted to an equivalent deep network and vice versa, not only because
their output functions can approximate each other sufficiently well but also because they
partition the space in the same way. In contrast, the universal approximation scheme only
mimics the final output function and not the internal space partition.

Table 3: Relationship between the network structure and the error with recent universal
approximation methods, where W and L are the network width and depth respec-
tively, ε > 0 is an error, and wf (·) is the modulus of continuity of f .

Reference Target Function Relation

Shen et al. (2021b) f ∈ C([0, 1]D) ε ∼ O
(

2wf (2
√
D)2−W + wf (2

√
D2−W )

)
Lu et al. (2021) f ∈ Cs([0, 1]D) ε ∼ O

(
‖f‖Cs([0,1]d)W

−2s/DL−2s/D
)

Shen et al. (2019) f ∈ C([0, 1]D) ε ∼ O
(

19
√
Dwf (W−2/DL−2/D)

)
Yarotsky (2017) f ∈ Wn,∞([0, 1]D) L ∼ O (c(d, n)In(1/ε))

3. Discussions

Opportunities through Width-Depth Equivalence. Popular deep learning theories,
such as neural tangent kernel (NTK) and neural network Gaussian process (NNGP), were
developed assuming an infinite width. Essentially, these theories characterize what will
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happen when a network becomes wide. However, in the era of deep learning, we are more
concerned with how depth affects the behavior of a neural network. Characterizing depth-
induced network behaviors is important in deciphering the mechanism of deep learning and
shedding light on the interpretability of deep networks. Therefore, depth-oriented theories
would be highly desirable. Our work suggests that the width-oriented theories might also
hold in a major sense when the width is finite but the depth is infinite, since width and
depth are equivalent.

Width-Depth Correlation. Every continuous n-variable function f on [0, 1]n can
be in the L1 sense represented by partially separable multivariate functions (Light and
Cheney, 2006):

∫
(x1,··· ,xn)∈[0,1]n

|f(x1, · · · , xn)−
L∑
l=1

n∏
i=1

φli(xi)| < ε, (8)

where ε is an arbitrarily small positive number, φli is a continuous function, and L is the
number of products. In Supplementary Information IV, we justify the suitability of
this partially separable representation, and compare it with other representations.

Furthermore, we can correlate the width and depth of a network to the structure of a
function to be approximated. In a nutshell, each continuous function φli can be approxi-
mated by a polynomial of some degree, which can be appropriately represented by quadratic
neurons. As a consequence, via a quadratic representation scheme, the width and depth of
a network structure must reflect the structure of

∑L
l=1

∏n
i=1 φli(xi). In other words, they

are controlled by the nature of a specific task. As the task becomes demanding, the width
and/or depth must be increased accordingly, and the combination of the width and depth
is not unique. For more details, please see Supplementary Information IV.

4. Conclusion

Inspired by the De Morgan law and through a systematic analysis, we have established
the quasi-equivalence between the depth and width of ReLU neural networks. We have
formulated two transforms for mapping an arbitrary regression ReLU network to a wide
ReLU network and a deep ReLU network respectively. This quasi-equivalence represents a
step forward in understanding the relationship between the width and depth of networks.
More efforts are needed to refine this quasi-equivalence relationship and find its real-world
applications.
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Appendix. Proof of Theorem 10 (2D)

Here, we show the correctness of Theorem 10 in the 2D case. Regarding the transformation
of an arbitrary multivariate network, the situation is more complicated than in the case
of univariate networks. Nevertheless, we can still establish the δ-equivalence, which is a
slightly relaxed result.

The sketch of proof: A ReLU network is a piecewise linear function over polytopes,
which can be decomposed into a summation of linear functions over a simplex. Lemma 11
below shows that a network module N(x) can represent an arbitrary linear function over a
simplex. Then, in Theorem 10, to transform an arbitrary ReLU network into a wide and
a deep network, we horizontally aggregate network modules N(x) to have a wide network,
and we use shortcuts to sequentially establish a deep network with N(x).

AD-simplex S is a D-dimensional convex hull formed by the convex combination ofD+1

affinely independent vectors {vi}Di=0 ⊂ RD. In other words, S =

{
D∑
i=0

ξivi | ξi ≥ 0,

D∑
i=0

ξi = 1

}
.

In the 2D case, if we write V = (v1 − v0,v2 − v0), then V is invertible, and S =
{v0 + V x | x ∈ ∆}, where ∆ =

{
x ∈ R2 | x ≥ 0,1>x ≤ 1

}
is a template simplex in R2.

It is clear that the following one-to-one affine mapping between S and ∆ exists, which is

T : S → ∆,p 7→ T (p) = V −1(p− v0). (9)

Therefore, we only need to make the construction in the special case where S = ∆ to simplify
our analysis. The coordinate transform in Eq. (9) can conveniently map the construction
from ∆ to S.

Given a linear function `(x) = c1x1 + c2x2 + c3, we write `− = {x ∈ R2 | `(x) < 0} and
`+ = {x ∈ R2 | `(x) ≥ 0}. ∆ is enclosed by three lines provided by `1(x) = x1, `2(x) = x2,
and `3(x) = −x1−x2+1. We write three vertices of ∆ as v0 = (0, 0),v1 = (1, 0),v2 = (0, 1).
Then, f : [−B, B]2 → R supported on ∆ is expressed as follows:

f(x) =

{
a>x + b, if x ∈ ∆

0, if x ∈ ∆c , (10)

where a = (f(v1)− f(v0), f(v2)− f(v0)), b = f(v0).

Lemma 11 Suppose that the representation of an arbitrary ReLU network is f : [−B, B]D →
R expressed as Eq. (10), for any δ > 0, there exists a ReLU network N of width (D+ 1)D2

and depth D + 1, satisfying that

m
(
x | f(x) 6= N(x)}

)
< δ. (11)

Proof (D=2) Our goal is to approximate the given piecewise linear function f over ∆.
Therefore, we need to cancel f outside its domain. We first index the polytopes separated
by three lines `1(x) = 0, `2(x) = 0, and `3(x) = 0 as A(χ1,χ2,χ3) = `χ1

1 ∩ `
χ2
2 ∩ `

χ3
3 , χi ∈

{+,−}, i = 1, 2, 3. It is clear that ∆ = A(+,+,+). Additionally, we use ∨ to exclude a
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Input Output

𝐹(𝑥)
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…
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𝒙𝟏 + 𝒙𝟐 − 𝟏 = 𝟎

𝒙𝟐 =0 𝑺

(b)(a)

Figure 7: Quasi-equivalence analysis in the 2D case. (a) The structure of the deep network
to represent f over ∆. (b) The polytopes outside ∆ have three fan-shaped do-
mains, on which f can be canceled by three linearly independent functions over
∆.

component. For instance, A(χ1,∨,χ3) = `χ1
1 ∩ `

χ3
3 . It can be easily verified that A(χ1,∨,χ3) =

A(χ1,+,χ3) ∪ A(χ1,−,χ3).

Allowing more layers in a network provides a way to represent f . Let F (x1, x2) =
σ ◦ (x1 − µσ ◦ (−x2)) and F

′
(x1, x2) = σ ◦ (x1 − νx2 − µσ ◦ (−x2)), both of which are

approximately enclosed by boundaries x1 = 0 and x2 = 0. Therefore, the fan-shaped regions
of F (x1, x2) and F

′
(x1, x2) almost overlap as ν is small. To obtain the third boundary

`3(x) = 0 for building the simplex ∆, we stack one more layer with only one neuron to
separate the fan-shaped region of F (x1, x2) with the boundary −x1−x2 + 1 = 0 as follows:

E1(x) = (γ∗1F (x) + γ∗2F
′(x) + γ∗3)+, (12)

where (γ∗1 , γ
∗
2 , γ
∗
3) are roots of the following system of equations:

γ1 + γ2 = −1

−νγ2 = −1

γ3 = 1.

(13)

Thus, E1(x1, x2) will represent the function −x1 − x2 + 1 over ∆ and zero in the rest
area. The depth and width of E1(x1, x2) are 3 and 4, respectively. Similarly, due to the
employment of the two fan-shaped functions, the area of the erroneous regions is estimated
as

2
√

2B (ν + 2/µ) . (14)

To acquire f over ∆, similarly, we need three linear independent functions as linear
independent bases. We modify `3 slightly to get `

′
3 = `3 − τ ′x1 and `

′′
3 = `3 − τ ′′x2.

Repeating the procedure described in (1), for `
′
3 we construct the network E2(x1, x2) that

is `3 − τ ′x1 over `+1 ∩ `
+
2 ∩ (`

′
3)+, while for `

′′
3 we construct the network E3(x1, x2) that is

`3− τ ′x1 over `+1 ∩ `
+
2 ∩ (`

′′
3)+. We set positive numbers τ ′ and τ ′′ small enough to have two
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triangular domains `+1 ∩ `
+
2 ∩ (`

′
3)+ and `+1 ∩ `

+
2 ∩ (`

′′
3)+ almost identical with ∆. Moreover,

let τ ′ and τ ′′ satisfy −1 −1− τ ′ −1
−1 −1 −1− τ ′′
1 1 1

ρ∗1ρ∗2
ρ∗3

 =

a1

a2

b

 , (15)

where ρ∗1, ρ
∗
2, ρ
∗
3 are solutions. As a consequence, we obtain the deep network (illustrated in

Figure 7:
N(x) = ρ∗1E

1(x) + ρ∗2E
2(x) + ρ∗3E

3(x) (16)

that produces f on ∆. The depth and width of the network are 3 and 12. Similarly, the
area of the erroneous regions is bounded by

2
√

2B
(
3ν + τ ′ + τ ′′ + 6/µ)

)
. (17)

Therefore, for any δ > 0, if we choose

0 < ν, τ ′, τ ′′, 1/µ <
δ

2
√

2B(3 + 2 + 6)
=

δ

22
√

2B
, (18)

then the constructed network N will satisfy

m
(
{x ∈ R2|f(x) 6= N(x)}

)
< δ. (19)

Proof (Theorem 10, D = 2) The network h is piecewise linear and splits the space into
polytopes. It is feasible to employ a number of simplices to represent the polytopes defined
by h (Ehrenborg, 2007). Given that M is the minimum number of required simplices, we
have

h(x) =
M∑
m=1

f (m)(x), (20)

where

f (m)(x) =

{
a

(m)
1 x1 + a

(m)
2 x2 + b(m), if x ∈ S(m)

0, if x /∈ S(m)
, (21)

and S(m) is the m-th simplex. For the construction of a wide network, we use network
modules to represent f (m)(x) and then horizontally aggregate them into a wide network.
In contrast, for construction of a deep network, we sequentially express f (m)(x) in terms of
a network module without linking them to the input.

Representing f with a wide ReLU network: Lemma 11 suggests that a wide network
module N can generically represent a piece-wise linear function over a template simplex.
To represent f (m) over S(m), we need to use Eq. (9) to transform the function from the
barycentric coordinate system to the Euclidean coordinate system. Let three vertices of

S(m) be {v(m)
0 ,v

(m)
1 ,v

(m)
2 } and V (m) = (v

(m)
1 − v

(m)
0 ,v

(m)
2 − v

(m)
0 ), we have

N
(m)
1 (x) = N((V (m))−1(x− v

(m)
0 )), (22)

17



Fan, Lai, and Wang

satisfying

m
(
{x ∈ R2 | f (m)(x) 6= N

(m)
1 (x)}

)
< δ. (23)

By aggregating the network N
(m)
1 (x) horizontally, we have the following wide network:

H1(x) =
M∑
m=1

N
(m)
1 (x). (24)

Therefore, the constructed wide network H1(x) is of width O(12M) and depth 3. It is clear
that the width O(12M) of the wide network H1(x) dominates, as the number of needed
simplices becomes sufficiently large.

Representing f with a deep ReLU network: For a deep construction, the fundamental

difficulty is how to sequentially express each f (m); i.e., the input of each block can only
come from the earlier block instead of the input, like what we did in one-dimensional case
(Figure 8(a)). Let us derive via induction how to sequentially represent each f (m). We still
adopt the idea of modularized networks, but now each network module has two outputs.
Lemma 11 suggests that a network module N can generically represent a function over a
template simplex.

𝑁2
𝑚
(Ω(𝑚)(𝒙))

Ω 𝑚+1 𝒙

= 𝒙 −෍

𝑘=1

𝑚

෥𝒙𝑆 𝑘

Ω 1 𝒙
= 𝒙 − ෥𝒙𝑆(1)

𝑁2
1
(𝒙)

…

𝐹′(𝑥1, 𝑥2)

𝐸1(𝑥1, 𝑥2)

𝐸2(𝑥1, 𝑥2)

…

𝐸3(𝑥1, 𝑥2)

…

…
(b)

෥𝒙𝑆(1)

+

(a)

Input Output

…
Input

Output

- +
…

…

෥𝒙𝑆(𝑚)

- …

𝐹(𝑥1, 𝑥2)

Figure 8: Illustration of deep networks in (a) 1D and (b) 2D cases, respectively.

Step 1. Assume that the two outputs of the first block are N
(1)
2 and Ω(1). To represent

f (1) over S(1), similarly we need to transform the function from the barycentric coordinate

system to the Euclidean coordinate system. Let three vertices of S(1) be {v(1)
0 ,v

(1)
1 ,v

(1)
2 }

and V (1) = (v
(1)
1 − v

(1)
0 ,v

(1)
2 − v

(1)
0 ), we have

N
(1)
2 = N((V (1))−1(x− v

(1)
0 )), (25)

which is one output of the first block.
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Next, we derive the other output Ω(1)(x). Note that we are not allowed to use the input
directly. Encouraged by the inversion idea in the univariate case, we invert the function
domain into the input domain to get a function that is approximately only supported over
S(1):

x̃S(1) =

{
x, if x ∈ S(1)

0, if x /∈ S(1) . (26)

To do so, recall that we have E1,E2,E3 in constructing N2, we will have (ξ∗1 , ξ
∗
2 , ξ
∗
3) such

that

x̃S(1) = ξ∗1E1((V (1))−1(x−v
(1)
0 ))+ξ∗2E2((V (1))−1(x−v

(1)
0 ))+ξ∗3E3((V (1))−1(x−v

(1)
0 )) (27)

As shown in Figure 8(b), use the residual connection, we compute Ω(1)(x) = x− x̃S(1) ,
which is zero over S1 and x for other regions. Ω(1)(x) will be used to feed the next block
to construct f (2).

Step 2. Suppose that the two output functions of the m-th block are Nm
2 (x) and

Ω(m)(x) = x −
∑m

i=1 x̃S(i) . Ωm(x) is fed into the (m + 1)-th block as the input. Because
S(m+1) is outside the domain of S(1) ∪ · · · ∪ S(m), with the same technique used in Step 1,
we construct

N
(m+1)
2 (Ω(m)(x)) = N2((V (m+1))−1(Ω(m)(x)− v

(1)
0 )), (28)

where {v(m+1)
0 ,v

(m+1)
1 ,v

(m+1)
2 } are three vertices of S(m+1), and V (m+1) = (v

(m+1)
1 −

v
(m+1)
0 ,v

(m+1)
2 − v

(m+1)
0 ) to express f (m+1) over S(m+1). Ω(m)(x) is functionally equiva-

lent to x for two reasons. First, all simplices do not overlap. Ω(m+1)(x) is x outside the
domain of S(1) ∪ · · · ∪S(m), and hence zero value over S(1) ∪ · · · ∪S(m). Second, w.l.o.g., we
assume that (0, 0) is outside of all simplices or lies on the boundary of a certain simplex. As

such, we have N
(m+1)
2 ((0, 0)) = 0,∀m, and N

(m+1)
2 (Ω(m)(x)) will not erroneously produce

a non-zero constant over S(1) ∪ · · · ∪ S(m). Also, we obtain a function x̃S(m+1) inside the
(m+ 1)-th block. Applying the residual operation, we have

Ω(m+1)(x) = Ω(m)(x)− x̃S(m+1) = x−
m+1∑
i=1

x̃S(i) . (29)

Lastly, similar to the one-dimensional deep network, we aggregate N
(m)
2 (Ω(m−1)(x)) via

shortcut connection to obtain the following deep network:

H2(x) =

M∑
m=1

N
(m)
2 (Ω(m−1)(x)). (30)

Therefore, the constructed deep network H2(x) is of depth O(3M) and width 12. Please
note that in the above equation, the summation is implemented with shortcuts. It is clear
that the depth of H2(x) dominates over the width.
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