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Abstract

An individualized decision rule (IDR) is a decision function that assigns each individual
a given treatment based on his/her observed characteristics. Most of the existing works
in the literature consider settings with binary or finitely many treatment options. In this
paper, we focus on the continuous treatment setting and propose a jump interval-learning to
develop an individualized interval-valued decision rule (I2DR) that maximizes the expected
outcome. Unlike IDRs that recommend a single treatment, the proposed I2DR yields an
interval of treatment options for each individual, making it more flexible to implement
in practice. To derive an optimal I2DR, our jump interval-learning method estimates the
conditional mean of the outcome given the treatment and the covariates via jump penalized
regression, and derives the corresponding optimal I2DR based on the estimated outcome
regression function. The regressor is allowed to be either linear for clear interpretation or
deep neural network to model complex treatment-covariates interactions. To implement
jump interval-learning, we develop a searching algorithm based on dynamic programming
that efficiently computes the outcome regression function. Statistical properties of the
resulting I2DR are established when the outcome regression function is either a piecewise
or continuous function over the treatment space. We further develop a procedure to infer
the mean outcome under the (estimated) optimal policy. Extensive simulations and a real
data application to a Warfarin study are conducted to demonstrate the empirical validity
of the proposed I2DR.

Keywords: Continuous treatment, Dynamic programming, Individualized interval-valued
decision rule, Jump interval-learning, Precision medicine

∗. Equal contribution.

c©2023 Hengrui Cai, Chengchun Shi, Rui Song, and Wenbin Lu.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/21-0843.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-0843.html


Cai, Shi, Song, and Lu

1. Introduction

Individualized decision making is an increasingly attractive artificial intelligence paradigm
that proposes to assign each individual a given treatment based on their observed charac-
teristics. In particular, such a paradigm has been recently employed in precision medicine
to tailor the individualized treatment decision rule. Among all individualized decision rules
(IDR), the one that maximizes the expected outcome is referred to as an optimal IDR. There
is a huge literature on learning the optimal decision rule. Some popular methods include
Q-learning (Watkins and Dayan, 1992; Chakraborty et al., 2010; Qian and Murphy, 2011;
Song et al., 2015), A-learning (Robins, 2004; Murphy, 2003; Shi et al., 2018), policy search
methods (Zhang et al., 2012, 2013; Wang et al., 2018; Nie et al., 2020), outcome-weighted
learning (Zhao et al., 2012, 2015; Zhu et al., 2017; Meng et al., 2020), concordance-assisted
learning (Fan et al., 2017; Liang et al., 2017), decision list-based methods (Zhang et al.,
2015, 2018), and direct learning (Qi et al., 2020). We note, however, all these methods
consider settings where the number of available treatment options is finite.

In this paper, we consider individualized decision making in continuous treatment set-
tings. These studies occur in a number of real applications, including personalized dose
finding (Chen et al., 2016) and dynamic pricing (den Boer and Keskin, 2020). For instance,
in personalized dose finding, one wishes to derive a dose level or dose range for each patient.
Due to patients’ heterogeneity in response to doses, it is commonly assumed that there may
not exist a unified best dose for all patients. Thus, one major interest in precision medicine
is to develop an IDR that assigns each individual patient a certain dose level or a specified
range of doses based on their individual personal information, to optimize their health sta-
tus. Similarly, in dynamic pricing, we aim to identify an IDR that assigns each product an
optimal price according to its characteristics to maximize the overall profit.

In contrast to developing the optimal IDR under discrete treatment settings, individu-
alized decision making with a continuous treatment domain has been less studied. Among
those available, Rich et al. (2014) modeled the interactions between the dose level and co-
variates to recommend personalized dosing strategies. Laber and Zhao (2015) developed a
tree-based method to derive the IDR by dividing patients into subgroups and assigning each
subgroup the same dose level. Chen et al. (2016) proposed an outcome-weighted learning
method to directly search the optimal IDR among a restricted class of IDRs. Kallus and
Zhou (2018) and Chernozhukov et al. (2019) evaluated and optimized IDRs for continu-
ous treatments by replacing the indicator function in the doubly-robust approach with the
kernel function, and by modeling the conditional mean outcome function (i.e., the value)
through a semi-parametric form, respectively. Zhu et al. (2020) focused on the class of
linear IDRs and proposed to compute an optimal linear IDR by maximizing a kernel-based
value estimate. Schulz and Moodie (2020) proposed a doubly robust estimation method for
personalized dose finding. Zhou et al. (2021) proposed a dimension reduction framework
for personalized dose finding that effectively reduces the dimensionality of baseline charac-
teristics from a high to a moderate scale. The estimated optimal IDRs computed by these
methods typically recommend one single treatment level for each individual, making it hard
to implement in practice.

The focus of this paper is to develop an individualized interval-valued decision rule
(I2DR) that returns a range of treatment levels based on individuals’ baseline information.
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Compared to the IDRs recommended by the existing works, the proposed I2DR is more
flexible to implement in practice. Take personalized dose finding as an illustration. First,
interval-valued dose levels may be applied to patients of the same characteristics, when an
arbitrary dose within the given dose interval could achieve the same efficacy. Studies of
the pharmacokinetics of vancomycin conducted by Rotschafer et al. (1982) suggested that
adults with normal renal function should receive an initial dosage of 6.5 to 8 milligrams
of vancomycin per kilogram intravenously over 1 hour every 6 to 12 hours. In the review
of Warfarin dosing reported by Kuruvilla and Gurk-Turner (2001), when the international
normalized ratio (INR) approaches the target range or omits dose, they suggested giving
1-2.5 milligram vitamin K1 if a patient has a risk factor for bleeding, otherwise provide
Vitamin K1 2-4 milligram orally. Second, in cases where the available dose levels are lim-
ited, recommending a single dose is not practical. The proposed interval-valued dose rule
gives more options. Based on the proposed interval, the decision maker can select the most
appropriate dose by taking some other factors (e.g., patient affordability or side effects)
into consideration. Third, a range of doses gives instructions for designing the medicine
specification and helps to save costs on manufacturing dosage. Finally, many medical appli-
cations including treating chronic disease (Flack and Adekola, 2020) and radiation therapy
for cancer (Scott et al., 2017) prefer optimal dose interval recommendation.

Our contributions are summarized as follows. Scientifically, individualized decision mak-
ing in a continuous treatment domain is a vital problem in many applications such as pre-
cision medicine and dynamic pricing. To the best of our knowledge, this is the first work
on developing individualized interval-valued decision rules. Our proposal thus fills a crucial
gap, extends the scope of existing methods that focus on recommending IDRs, and offers a
useful tool for individualized decision making in a number of applications.

Methodologically, we propose a novel jump interval-learning (JIL) by integrating per-
sonalized decision making with multi-scale change point detection (see Niu et al., 2016, for
a selective overview). Our proposal makes useful contributions to the two aforementioned
areas simultaneously.

First, to implement personalized decision making, we propose a data-driven I2DR in a
continuous treatment domain. Our proposal is motivated by the empirical finding that the
expected outcome can be a piecewise function in the treatment domain in various applica-
tions. Specifically, in dynamic pricing (den Boer and Keskin, 2020), the expected demand
(outcome Y of interest) for a product has jump discontinuities as a function of the charged
price (action A) and baseline information such as income (covariates X). In other words,
a small price change will lead to a considerably different demand given fixed covariates.
In these applications, it is reasonable to impose a piecewise-function model for the out-
come regression function. We then leverage ideas from the change point detection literature
and propose a jump-penalized regression to estimate the conditional mean of the expected
outcome as a function of the treatment level and the baseline characteristics (outcome re-
gression function). This partitions the entire treatment space into several subintervals. The
proposed I2DR is a set of decision rules that assign each subject to one of these subintervals.
In addition, we further develop a procedure to construct a confidence interval (CI) for the
expected outcome under the proposed I2DR and the optimal IDR.

Second, we note that most works in the multi-scale change point detection literature
either focused on models without covariates, or required the underlying truth to be piece-
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wise constant (see e.g., Boysen et al., 2009; Frick et al., 2014; Fryzlewicz, 2014, and the
references therein). Our work goes beyond those cited above in that we consider a more
complicated (nonparametric) model with covariates, and allow the underlying outcome re-
gression function to be either a piecewise or continuous function over the treatment space.
To approximate the expected outcome as a function of baseline covariates, we propose a
linear function model and a deep neural networks model. We refer to the two procedures as
L-JIL and D-JIL, respectively. Here, the proposed L-JIL yields a set of linear decision rules
that is easy to interpret. See the real data analysis in Section 6 for details. On the contrary,
the proposed D-JIL employs deep learning (LeCun et al., 2015) to model the complicated
outcome-covariates relationships that often occur in high-dimensional settings. We remark
that both procedures are developed by imposing a piecewise-function model to approximate
the outcome-treatment relationship. Yet, they are valid when the expected outcome is a
continuous function of the treatment level as well.

Theoretically, we systematically study the statistical properties of the jump-penalized
estimators with linear regression or deep neural networks. Our theoretical approaches can
be applied to the analysis of general covariate-based change point models. The model
could be either parametric or nonparametric. Specifically, we establish the almost sure
convergence rates of our estimators. When the underlying outcome regression function is
a piecewise function of the treatment, we further derive the almost sure convergence rates
of the estimated change point locations, and show that with probability 1, the number of
change points can be correctly estimated with sufficiently large sample size. These findings
are nontrivial extensions of classical results derived for models without covariates. For
instance, deriving the asymptotic behavior of change point estimators for these models
typically relies on the tail inequalities for the partial sum process (see e.g., Frick et al.,
2014). However, these technical tools are not directly applicable to our settings where deep
learning is adopted to model the outcome regression function. Moreover, we expect our
theories to also be of general interest to the line of work on developing theories for deep
learning methods (see e.g., Imaizumi and Fukumizu, 2019; Schmidt-Hieber et al., 2020;
Farrell et al., 2021).

The rest of this paper is organized as follows. In Section 2, we introduce the statisti-
cal framework, define the notion of I2DR, and posit our working model assumptions. In
Section 3, we propose the jump interval-learning method and discuss its detailed imple-
mentation. Statistical properties of the proposed I2DR and the estimator for the mean
outcome under the proposed I2DR are presented in Section 4. We further develop a con-
fidence interval for the expected outcome under the estimated I2DR. Simulation studies
are conducted in Section 5 to evaluate the finite sample performance of our proposed
method. We apply our method to a real dataset from a Warfarin study in Section 6,
followed by a concluding discussion in Section 7. All the proofs are provided in the supple-
mentary article. An R package implementing our proposed I2DR is available on CRAN at
https://cran.r-project.org/web/packages/JQL/index.html.

2. Statistical Framework

This section is organized as follows. We first introduce the model setup in Section 2.1. The
definition of I2DR is formally presented in Section 2.2. In Section 2.3, we posit two working
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model assumptions for the expected outcome as a function of the treatment level. We aim
to develop a method that works under both working assumptions.

2.1 Model Setup

We begin with some notations. Let A denote the treatment level assigned to a randomly
selected individual in the population from a compact interval. Without loss of generality,
suppose A belongs to [0, 1]. Let X ∈ X be that individual’s baseline covariates where the
support X is a subset in Rp. We assume the covariance matrix of X is positive definite. Let
Y ∈ R denote that individual’s associated outcome, the larger the better by convention.
Let p(•|x) denote the probability density function of A given X = x. In addition, for any
a ∈ [0, 1], define the potential outcome Y ∗(a) as the outcome of that individual that would
have been observed if they were receiving treatment a. The observed data consists of the
covariate-treatment-outcome triplets {(Xi, Ai, Yi) : i = 1, . . . , n} where (Xi, Ai, Yi)’s are
i.i.d. copies of (X,A, Y ). Based on this data, we wish to learn an optimal decision rule to
possibly maximize the expected outcome of future subjects using their baseline information.

Formally speaking, an individualized decision rule (IDR) is a deterministic function d(·)
that maps the covariate space X to the treatment space [0, 1]. The optimal IDR is defined
to maximize the expected outcome (value function) V (d) = E{Y ∗(d(X))} among all IDRs.
The following assumptions guarantee the optimal IDR is identifiable from the observed
data.

(A1.) Consistency: Y = Y ∗(A), almost surely,
(A2.) No unmeasured confounders: {Y ∗(a) : a ∈ [0, 1]} ⊥⊥ A | X,
(A3.) Positivity: there exists some constant c∗ > 0 such that p(a|x) ≥ c∗ for any x ∈ X and
a ∈ [0, 1].

Assumption (A1) requires the observed outcome to be the same as the potential outcome
associated with the observed treatment. Assumption (A2) requires the baseline covariates
to contain enough confounders given that the treatment is conditionally independent of the
potential outcomes. Assumption (A3) requires the propensity score to be strictly positive
for any realization of the baseline covariates. Assumptions (A2) and (A3) automatically
hold in randomized studies. In observational studies, one can estimate the propensity score
from the data to check (A3). Nonetheless, (A2) cannot be verified in general. In addition,
Assumptions (A1) to (A3) are commonly imposed in the literature (see e.g., Chen et al.,
2016; Zhu et al., 2020; Schulz and Moodie, 2020) to guarantee that the outcome of interest
and the optimal IDR are estimable from observed data. In particular, under (A1)-(A3), we
have V (d) = E{Q(X, d(X))} where Q(x, a) = E(Y |X = x,A = a) is the conditional mean
of an individual’s outcome given their received treatment and baseline covariates. We refer
to this function as the outcome regression function. As a result, the optimal IDR for an
individual with covariates x is given by arg maxa∈[0,1]Q(x, a). Let V opt denote the value
function under the optimal IDR. We have V opt = E{supa∈[0,1]Q(X, a)}.

2.2 I2DR

The focus of this paper is to develop an optimal individualized interval-based decision
rule (I2DR). As commented in the introduction, these decision rules are more flexible to
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implement in practice when compared to single-valued decision rules in personalized dose
finding and dynamic pricing.

We define an I2DR as a function d(·) that takes an individual’s covariates x as input and
outputs an interval I ⊆ [0, 1]. Given the recommended interval I, different doctors/agents
might assign different treatments to patients/products according to their own preferences.
In practice, the decision maker could take the minimum value, the maximum value, the
mid-point value, or the value uniformly at random. The actual treatments that subjects
receive in the population will have a distribution function Π∗(·;x, I). Throughout this
paper, we assume Π∗(·;x, I) has a bounded density function π∗(·;x, I) for any x and I.
Apparently, we have

∫
I π
∗(a;x, I)da = 1, for any interval I and x ∈ X. When (A1)-(A3)

hold, the associated value function under an I2DR d(·) equals

V π∗(d) = E

(∫
d(X)

Q(X, a)π∗(a;X, d(X))da

)
.

Restricting d(·) to be a scalar-valued function, V π∗(d) is reduced to V (d).
Given the dataset, one may estimate V π∗(d) nonparametrically for any d(·) and directly

search the optimal I2DR based on the estimated value function. However, such a value
search method has the following two limitations. First, a nonparametric estimator of V π∗(d)
requires specifying the preference function π∗, which might be unknown to us. Second,
even though a nonparametric estimator of V π∗(d) can be derived, it remains unknown
how to efficiently compute the I2DR that maximizes the estimated value (see Section 7.2.2
for details). To overcome these limitations, we propose a semiparametric model for the
outcome regression function and use a model-assisted approach to derive the optimal I2DR.
We formally introduce our method in Section 3.

2.3 Working Model Assumptions

In this section, we introduce two working models for the outcome regression function, cor-
responding to a piecewise function and a continuous function of the treatment level.

Model I (Piecewise Functions). Suppose

Q(x, a) =
∑
I∈P0

qI,0(x)I(a ∈ I) ∀x ∈ X, a ∈ [0, 1], (1)

for some partition P0 of [0, 1] and a collection of continuous functions (qI,0)I∈P0 , where
the number of intervals in P0 is finite. Specifically, a partition P of [0, 1] is defined as a
collection of mutually disjoint intervals {[τ0, τ1), [τ1, τ2), . . . , [τK−1, τK ]} for some 0 = τ0 <
τ1 < τ2 < · · · < τK−1 < τK = 1 and some integer K ≥ 1. Here, we only require any two
consecutive q-functions to be different. We do not impose any additional constraints. As
commented in our introduction, we expect the above model assumption holds in real-world
examples such as dynamic pricing.

Model II (Continuous Functions). Suppose Q(x, a) is a continuous function of a
and x, for any x ∈ X and a ∈ [0, 1].

We aim to propose a new method that works when either Model I (piecewise function)
or Model II (continuous function) holds.
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3. Methods

In this section, we first present the proposed jump interval-learning and its motivation in
Section 3.1. We next introduce two concrete proposals, i.e., linear jump interval-learning
and deep jump interval-learning, to detail our methods in Section 3.2. We then present the
dynamic programming algorithm to implement jump interval-learning (see Algorithm 1 for
an overview) in Section 3.3. Finally, we provide more details on tuning parameter selection
in Section 3.4.

3.1 Jump Interval-learning

We use Model I to present the motivation for our jump interval-learning. In view of (1), any
treatment level within an interval I ∈ P0 will yield the same efficacy to a given individual.
The optimal I2DR is then given by

dopt(x) = arg max
I∈P0

qI,0(x),

independent of the preference function π∗. To see this, notice that

V π∗(dopt) = E

∫
dopt(X)

∑
I∈P0

qI,0(X)I(a ∈ I)π∗(a;X, dopt(X))da


= E

∑
I∈P0

qI,0(X)I(dopt(X) ∈ I)

∫
dopt(X)

π∗(a;X, dopt(X))da.

For any I2DR d(·), we have
∫
dopt(X) π

∗(a;X, dopt(X))da =
∫
d(X) π

∗(a;X, d(X))da = 1 by
definition. It follows that

V π∗(dopt) = E
∑
I∈P0

qI,0(X)I(dopt(X) ∈ I)

∫
d(X)

π∗(a;X, d(X))da

≥ E

∫
d(X)

∑
I∈P0

qI,0(X)I(a ∈ I)π∗(a;X, d(X))da = V π∗(d),

where the inequality is due to that Q(X, dopt(X)) =
∑
I∈P0

qI,0(X)I(dopt(X) ∈ I) ≥∑
I∈P0

qI,0(X)I(a ∈ I) = Q(X, a), almost surely for any a ∈ [0, 1]. Therefore, to de-
rive the optimal I2DR, it suffices to estimate qI,0(·). For notation simplicity, in the rest of
this paper, we denote V π∗(d) by V (d) for any decision rule d.

From now on, we focus on a subset of intervals in [0, 1]. By interval we always refer
to those of the form [a, b) for some 0 ≤ a < b < 1 or [a, 1] for some 0 ≤ a < 1. For
any partition P = {[0, τ1), [τ1, τ2), . . . , [τK−1, 1]}, we use J(P) to denote the set of change
point locations, i.e, {τ1, τ2, . . . , τK−1}, and |P| to denote the number of intervals in P. Our
proposed method yields a partition P̂ and an I2DR d̂(·) such that d̂(x) ∈ P̂, ∀x ∈ X. The
number of intervals in P̂ (denoted by |P̂|) involves a trade-off. If |P̂| is too large, then P̂
will contain many short intervals, making the resulting decision rule hard to implement in
practice. Yet, a smaller value of |P̂| might result in a smaller value function. Our proposed
method adaptively determines |P̂| based on jump-penalized regression.
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We next detail our method. Jump interval-learning consists of the following two steps.
In the first step, we estimate the outcome regression function using jump penalized least
squares regression. Then we derive the corresponding I2DR from the resulting estimator
q̂I(·). To begin with, we cut the entire treatment range into m initial intervals:

[0, 1/m), [1/m, 2/m), . . . , [(m− 1)/m, 1]. (2)

The integer m is allowed to diverge with the number of observations n. For instance, it can
be specified by the clinical physician such that the output dose interval for each individual
is at least of the length m−1. When no prior knowledge is available, we recommend setting
m to be proportional to n. It is worth mentioning that (2) is not the final partition that
we recommend. Nor is it equal to P0 defined in Model I. Given (2), we are looking for a
partition P̂ such that each interval in P̂ corresponds to a union of some of the these m
intervals. In other words, we will adaptively combine some of these intervals to form P̂.

More specifically, let B(m) denote the set of partitions P that satisfy the following
requirement: the end-points of each interval I ∈ P lie on the grid {j/m : j = 0, 1, . . . ,m}.
We associate to each partition P ∈ B(m) a collection of functions {q(·; θI)}I∈P ∈

∏
I∈P QI

forQI as some class of functions, where θI is the underlying parameter associated to interval
I. We propose to estimate P̂ by solving

(P̂, {q̂I : I ∈ P̂}) =

arg min
P∈B(m)

{q(·;θI)∈QI :I∈P}

{∑
I∈P

( 1

n

n∑
i=1

I(Ai ∈ I)
{
Yi − q(Xi; θI)

}2
+ λn|I|‖θI‖22

)
+ γn|P|

}
, (3)

where λn and γn are some nonnegative regularization parameters specified in Section 3.4,
and ‖θI‖22 denote the Euclidean norm of the model parameter θI . The purpose of introduc-
ing the `2-type penalty term λn|I|‖θI‖22 is to help to prevent overfitting in large p problems.
The purpose of introducing the `0-type penalty term γn|P| is to control the total number
of jumps. When m = n, λn = 0, Ai = i/n,∀1 ≤ i ≤ n, no baseline covariates are collected,
the above optimization corresponds to the jump-penalized least square estimator proposed
by Boysen et al. (2009). We refer to this step as jump interval-learning (JIL).

For a fixed P, solving the optimization function in (3) yields its associated outcome
regression functions {q̂I}I∈P . This step involves parametric or nonparametric regression
and can be solved via existing statistical or machine learning approaches. We provide two
concrete study cases below, based on linear regression and deep learning. These estimated
outcome regression functions can be viewed as functions of P. As such, P̂ is adaptively
determined by minimizing the penalized least square function in (3).

To maximize the expected outcome of interest, our proposed I2DR is then given by

d̂(x) = arg max
I∈P̂

q̂I(x), ∀x ∈ X. (4)

When the argmax in (4) is not unique, d̂(·) outputs the interval that contains the smallest
treatment.

We next evaluate the value function under the proposed I2DR V (d̂) and V (dopt). For
each interval I in the estimated optimal partition P̂, we estimate the generalized propensity
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score function e(I|x) ≡ Pr(A ∈ I|X = x). Let ê(I|x) denote the resulting estimate.
Following the estimation strategy in Zhang et al. (2012), we propose the following value
estimator under (4),

V̂ =
1

n

n∑
i=1

[
I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

{
Yi −max

I∈P̂
q̂I(Xi)

}
+ max
I∈P̂

q̂I(Xi)

]
. (5)

Statistical properties of the estimates in (4) and (5) are studied in Section 4. Although
we use the example of piecewise functions to motivate our procedure, the proposed method
allows the outcome regression function to be a continuous function of a and x as well.
Specifically, we can approximate any continuous outcome function by a piecewise function
with the increasing number of partitions. As such, the proposed jump-interval learning
method is applicable to handle Model II as well. See Section 4 for detail.

3.2 Linear- and Deep-JIL

In practice, we consider two concrete proposals for implementing jump interval-learning, by
considering a linear function class and a deep neural networks (DNN) class for QI in (3). In
particular, the proposed L-JIL yields a set of linear decision rules that is easy to compute
and interpret. See the real data analysis in Section 6 for details. In theory, it achieves
a better convergence rate under the correct model specification. We recommend using L-
JIL in applications where a simple and interpretable decision rule is preferred. On the
contrary, the use of DNN in D-JIL allows us to capture the complicated outcome-covariates
relationships that often occur in high-dimensional settings. We recommend using D-JIL in
applications with high-dimensional covariates and complicated nonlinear associations.

We also remark that the proposed method is very general and allows a large variety
of function approximators. Although we focus on linear models and deep neural nets in
this paper, other function approximators such as linear basis expansion, reproducing kernel
Hilbert spaces, and random forests are equally applicable. The theoretical properties of the
resulting estimated Q-function can be similarly established (see e.g., Burman and Chen,
1989; Steinwart and Christmann, 2008; Wager and Athey, 2018, for the convergence rate of
these nonparametric estimators).

3.2.1 Case 1: Linear-JIL

We use a linear regression model for QI . Specifically, we set q(x, θI) to x̄>θI for any
interval I and x ∈ X, where x̄ is a shorthand for the vector (1, x>)>. Adopting the linearity
assumption, we have q̂I(x) = x̄>θ̂I for some θ̂I . It follows from (4) that the proposed I2DR
corresponds to a linear decision rule, i.e., d̂(x) = arg maxI∈P̂ x̄

>θ̂I . As such, the linearity
assumption ensures our I2DR is interpretable to the domain experts.

We next discuss how to compute P̂ and {θ̂I : I ∈ P̂}. The objective function in (3) is
reduced to

(P̂, {θ̂I : I ∈ P̂}) = (6)

= arg min
(P∈B(m),{θI :I∈P})

{∑
I∈P

(
1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θI)

2 + λn|I|‖θI‖22

)
+ γn|P|

}
,

9



Cai, Shi, Song, and Lu

Figure 1: Illustration of DNN with L = 2 and W = 25; here µ ∈ Rp is the input, the output
is given by A(3)σ(A(2)σ(A(1)µ + b(1)) + b(2)) + b(3) where A(l), b(l) denote the
corresponding parameters to produce the linear transformation for the (l − 1)th
layer and that σ denotes the componentwise rectified linear unit (ReLU) function.
In this example, W =

∑3
j=1(‖A(3)‖0 + ‖b(3)‖0) = 25 where ‖ • ‖0 denotes the

number of nonzero elements in the vector or matrix.

where Xi = (1, X>i )>. We refer to this step as linear jump interval-learning (L-JIL). The

ridge penalty λn|I|‖θI‖22 in (6) guarantees that for any interval I ∈ P̂, the parameter θ̂I is

well defined even when
∑n

i=1 I(Ai ∈ I) < p + 1 such that the matrix
∑

i I(Ai ∈ I)XiX
>
i

is not invertible. It also prevents over-fitting and yields more accurate estimates in high-
dimensional settings.

3.2.2 Case 2: Deep-JIL

We next consider using deep neural networks (DNNs) to approximate the outcome regression
function, so as to capture the complex dependence between the outcome and covariates.
Specifically, the network consists of p input units (colored in blue in Figure 1), corresponding
to the covariates X. The hidden units (colored in green) are grouped in a sequence of L
layers. Each unit in the hidden layer is determined as a nonlinear transformation of a linear
combination of the nodes from the previous layer. The total number of parameters in the
network is denoted by W . See Figure 1 for an illustration. The parameters in DNNs can be
solved using a stochastic gradient descent algorithm. In our implementation, we apply the
Multi-layer Perceptron (MLP) regressor (Pedregosa et al., 2011) for parameter estimation.
We refer to the resulting optimization as deep jump interval-learning (D-JIL).

Finally, we remark that alternative to our approach, one may directly apply DNN that
takes the covariate-treatment pair (X,A) as the input to learn the outcome regression func-
tion. However, the resulting estimator for the outcome regression function is not guaranteed
to be a piecewise function of the treatment. As such, it cannot yield an I2DR.

10
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3.3 Implementation

In this section, we present the computational details for jump interval-learning. We em-
ploy the dynamic programming algorithm (see e.g., Friedrich et al., 2008) to find the op-
timal partition P̂ that minimizes the objective function (3). Meanwhile, other algorithms
for multi-scale change point detection are equally applicable (see e.g., Scott and Knott,
1974; Harchaoui and Lévy-Leduc, 2010; Fryzlewicz, 2014). Specifically, we adopt the PELT
method proposed by Killick et al. (2012) that includes additional pruning steps within the
dynamic programming framework to achieve a linear computational cost. Given P̂, the
set of functions {q̂I : I ∈ P̂} can be computed via either linear regression or deep neural
network.

To detail our procedure, for any interval I ∈ [0, 1], we define the cost function

cost(I) = min
q(·;θI)∈QI

[
1

n

n∑
i=1

I(Ai ∈ I)
{
Yi − q(Xi; θI)

}2
+ λn||θI ||22

]
,

where QI is a class of linear functions or deep neural networks, corresponding to L-JIL and
D-JIL, respectively.

For any integer 1 ≤ r < m, denote by B(m, r) the set consisting of all possible partitions
Pr of [0, r/m) such that the end-points of each interval I ∈ Pr lie on the grid {j/m : j =
0, 1, . . . , r}. Set B(m,m) = B(m), we define the Bellman function

B(r) = inf
Pr∈B(m,r)

(∑
I∈Pr

cost(I) + γn(|Pr| − 1)

)
.

Let B(0) = −γn, the dynamic programming algorithm relies on the following recursion
formula,

B(r) = min
j∈Rr

{B(j) + γn + cost([j/m, r/m))} , ∀r ≥ 1, (7)

where Rr is the candidate change-point list updated by

{j ∈ Rr−1 ∪ {r − 1} : B(j) + cost([j/m, (r − 1)/m)) ≤ B(r − 1)}, (8)

during each iteration with R0 = {0}. The constraint listed in (8) iteratively updates the
set of candidate change points and removes values that can never be the minima of the
objective function. It speeds up the computation, leading to a cost that is linear in the
number of observations (Killick et al., 2012).

We briefly summarize our algorithm below. For a given integer r, we search the optimal
change point location j that minimizes the above Bellman function B(r) in (7). This
requires applying the linear/MLP regression to learn q̂[j/m,r/m) and cost([j/m, r/m)) for
each j ∈ Rr. Let j∗ be the corresponding minimizer. We then define the change points list
τ(r) = {j∗, τ(j∗)}. This procedure is iterated to compute B(r) and τ(r) for r = 1, . . . ,m.
The optimal partition P̂ is determined by the values stored in τ(·). A pseudocode containing
more details is given in Algorithm 1.
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Global: data {(Xi, Ai, Yi) : i = 1, . . . , n}; sample size n; covariates dimension p;
number of initial intervals m; penalty terms λn, γn.

Local: integers l, r ∈ N; cost dictionary C; a vector of integers τ ∈ Nm;
Bellman function B ∈ Rm; a set of candidate point lists R.

Output: P̂ and {q̂I : I ∈ P̂}.

I. Initialization. Set B(0)← −γn; P̂ ← Null; τ ← Null; R(0)← {0};
II. Apply the PELT method. For r = 1, . . . ,m:

1. Compute B(r) = minj∈R(r){B(j) + C([j/m, r/m)) + γn} by Algorithm 2;

2. j∗ ← arg minj∈R(r){B(j) + C([j/m, r/m)) + γn};
3. τ(r)← {j∗, τ(j∗)};
4. R(r)← {j ∈ R(r − 1) ∪ {r − 1} : B(j) + C([j/m, (r − 1)/m)) ≤ B(r − 1)};

III. Get Partitions. τ∗ ← τ(m); r ← m; l← τ∗[r]; While r > 0:
1. Let I = [l/m, r/m) if r < m else I = [l/m, 1];

2. P̂ ← P̂ ∪ I;
3. q̂I(·)← arg minq

∑
i I(Ai ∈ I){Yi − q(Xi)}2;

4. r ← l; l← τ∗[r];

return P̂ and {q̂I : I ∈ P̂}.

Algorithm 1: Jump interval-learning.

Global: data {(Xi, Ai, Yi) : i = 1, . . . , n}; cost dictionary C; an interval I;
penalty term λn.

Output: C.

If C(I) == NULL:
(1). Apply linear/MLP regression:

q̂I(·)← arg minq
∑

i I(Ai ∈ I){Yi − q(Xi; θI)}2 + nλn|I|‖θI‖22;
(2). Set the cost C(I) to the objective value;

return C.

Algorithm 2: Calculation of the cost function.

12
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3.3.1 Analysis of Computational Complexity

We analyze the computational complexity of the proposed methods in this section. The
main computation lies in the dynamic programming algorithm to find the change points as
well as the estimation of the outcome regression function in L- and D-JIL.

First, recall that we use the PELT method to implement the dynamic programming. It
requires at least O(m) computing steps and at most O(m2) steps (Friedrich et al., 2008).
According to Theorem 3.2 in Killick et al. (2012), the expected computational cost is O(m).

Second, for each step in PELT, we need to train the DNN or linear regression model
to calculate the cost function. Here, the complexity of training the linear regression is well
known and equals O(np2 +p3) with sample size n and feature dimension p. To the contrary,
the complexity of training a DNN depends on the model architecture. Suppose we use a
fully connected MLP with w width and d depth, and set the total number of epochs for
training to e. Then the time complexity is given by O{ne(d− 1)w2}1.

To summarize, the expected computational complexities of the proposed linear- and
deep-JIL are given by O{m(np2 + p3)} and O{mne(d− 1)w2}, respectively.

3.4 Tuning Parameters

Our proposal requires specifying the tuning parameters m, λn, and γn. We first discuss the
choice of m. In practice, we recommend setting m = n/c with some constant c > 0 such that
m and n are of the same order. The choice of c represents a trade-off between the estimation
bias and the computational cost. A small value of c would improve the estimation efficiency
whereas a larger value of c saves the computation time. We recommend using the smallest
possible c whenever the computation is affordable. In our numerical studies, we tried several
different values of c and found the resulting estimated I2DRs have approximately the same
value function as long as c is not too large. Thus, the proposed I2DR is not overly sensitive
to the choice of this constant. Detailed empirical results can be found in Sections 5.3 and
6.

We next discuss the choices of λn and γn. The selection of these tuning parameters relies
on the concrete proposal to approximate the outcome regression function. We elaborate
below.

3.4.1 Tuning in L-JIL

For L-JIL, we choose γn and λn simultaneously via cross-validation. The theoretical re-
quirements of γn and λn for L-JIL are imposed in the statement of Theorem 1. We further
develop an algorithm that substantially reduces the computation complexity resulting from
the use of cross-validation.

To be more specific, let Λn = {λ(1)
n , · · · , λ(H)

n } and Γn = {γ(1)
n , · · · , γ(J)

n } be the set of
candidate tuning parameters. For a given integer K0, we randomly split the data into K0

equal-sized subgroups. Let Gk denote indices of the subsamples in the kth subgroup, for
k = 1, · · · ,K0. Let G−k denote the complement of Gk. For any λn ∈ Λn, γn ∈ Γn, k ∈
{1, · · · ,K0}, let (P̂λn,γn,k, {θ̂I,γn,λn,k : I ∈ P̂λn,γn,k}) denote the optimizer (6), computed

1. See https://ai.stackexchange.com/questions/5728/what-is-the-time-complexity-for-training-a-neural-
network-using-back-propagation/5730.
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based on the data in G−k. We aim to choose γn and λn that minimizes

1

n

K0∑
k=1

∑
i∈Gk

∑
I∈P̂λn,γn,k

I(Ai ∈ I){Yi −X
>
i θ̂I,γn,λn,k}2. (9)

To solve (9), we remark that there is no need to apply Algorithm 1 |Λn| × |Γn| times
to compute the minimizer of (6) over the set of candidate tuning parameters. We develop
an algorithm to facilitate the computation. The key observation is that, for any interval
I ⊆ [0, 1] and k ∈ {1, · · · ,K0}, the set of estimators {θ̂I,γn,λn,k : γn ∈ Γn, λn ∈ Λn} can be
obtained simultaneously over the set of candidate tuning parameters. This forms the basis
of our algorithm. More details are provided in Section A of the supplementary article.

3.4.2 Tuning in D-JIL

As for D-JIL, we find that the MLP regressor is not overly sensitive to the choice of λn,
so we set λn = 0. The parameter γn is chosen based on cross-validation. The theoretical
requirement of γn for D-JIL is imposed in the statement of Theorem 2. To implement
the cross-validation, we randomly split the data into K0 equal-sized subgroups, denoted by
{(Xi, Ai, Yi)}i∈G1 , {(Xi, Ai, Yi)}i∈G2 , · · · , {(Xi, Ai, Yi)}i∈GK0

, accordingly. For each γn and

k = 1, . . . ,K0, we compute the estimators P̂γn,k and q̂I,γn,k(·) based on the sub-dataset in
G−k. Then we choose γn that minimizes

1

n

K0∑
k=1

∑
i∈Gk

∑
I∈P̂γn,k

I(Ai ∈ I){Yi − q̂I,γn,k(Xi)}2.

We also remark that implementing deep neural networks involves some other tuning param-
eters, such as the learning rate, and the numbers of hidden nodes and hidden layers. In our
implementation, we set them to the default values of the MLP regressor implementation
(Pedregosa et al., 2011).

4. Theory

We establish the statistical properties of our proposed method in this section. As we have
commented, we allow the outcome regression function to be either a piecewise or continuous
function of the treatment. We first study the statistical properties of L-JIL and D-JIL when
Model I holds, respectively. We next outline a procedure to construct a confidence interval
for the value under the proposed I2DR and prove its validity. Finally, we investigate the
properties of our proposed method when Model II holds. These theoretical results imply
that our method will work when the outcome regression function is either a piecewise or a
continuous function.

4.1 Properties When Model I Holds

4.1.1 Results for L-JIL

To establish the theoretical properties of the I2DR obtained by L-JIL, we first assume (1)
holds with qI,0(x) = x̄>θI,0 for any x ∈ X and I ∈ P0. In other words, the outcome

14
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regression function Q(x, a) is linear in x and piecewise constant in a. Without loss of
generality, assume θ0,I1 6= θ0,I2 for any two adjacent intervals I1, I2 ∈ P0. This guarantees
that the representation in (1) is unique. We write an � bn for two sequences {an}, {bn}
if there exists some universal constant c ≥ 1 such that c−1bn ≤ an ≤ cbn. Define θ0(·) =∑
I∈P0

θI,0I(· ∈ I). Giving (P̂, {θ̂I : I ∈ P̂}), our estimator for the function θ0(·) is defined
by

θ̂(·) =
∑
I∈P̂

θ̂II(· ∈ I). (10)

This yields a piecewise constant approximation of θ0(·). We first study the theoretical
properties of θ̂(·). Toward that end, we need to impose the following condition on the
probability tails of X and Y .

(A4) Suppose there exists some constant ω > 0 such that supa,j ‖X(j)‖ψ2|A=a ≤ ω and

supa ‖Y ‖ψ2|A=a ≤ ω almost surely, where X(j) denotes the jth element of X, and that for
any random variable Z, ‖Z‖ψ2|A=a denotes the conditional Orlicz norm given that A = a,
i.e.,

‖Z‖ψ2|A=a
∆
= inf

C>0

[
E

{
exp

(
|Z|2

C2

)∣∣∣∣A = a

}
≤ 2

]
.

We remark that Condition (A4) is automatically satisfied when the covariates and the
outcomes are bounded.

Theorem 1 Assume (A1)-(A4) hold and (1) holds with qI,0(x) = x̄>θI,0. Assume A has a
bounded probability density function on [0, 1]. Assume m � n, λn = O(n−1 log n), {γn}n∈N
satisfies γn → 0 and γnn/ log n→∞. Then, there exists some constant c̄ > 0 such that the
following events hold with probability at least 1−O(n−2):

(i) |P̂| = |P0|.
(ii) maxτ∈J(P0) min

τ̂∈J(P̂)
|τ̂ − τ | ≤ c̄n−1 log n.

(iii)
∫ 1

0 ‖θ̂(a)− θ0(a)‖22da ≤ c̄n−1 log n.

In Theorem 1, results in (i) show the model selection consistency of our jump penalized
estimator. Results in (ii) imply that the estimated change point locations converge at a
rate of Op(n

−1 log n). In (iii), we derive an upper error bound for the integrated `2 loss of

θ̂(·). As discussed in the introduction, the derivation of Theorem 1 is nontrivial. A number
of technical lemmas (see Lemma 1-4 in Section B.1) are established to prove Theorem 1.
These results can be easily extended to study general covariate-based change point models.

We next establish the convergence rate of V opt − V (d̂), where V opt = V (dopt). The
quantity V opt − V (d̂) represents the difference between the optimal value and the value
under the proposed I2DR. The smaller the difference, the better the I2DR. Notice that
V opt ≥ V (d) for any I2DR d(·). It suffices to provide an upper bound for V opt − V (d̂). We
impose the following condition.

(A5.) Assume for any I1, I2 ∈ P0, there exist some constants γ, δ0 > 0 such that

Pr(0 < |qI1,0(X)− qI2,0(X)| ≤ t) = O(tγ),
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where the big-O term is uniform in 0 < t ≤ δ0.

Condition (A5) is commonly assumed in the literature to derive a sharp convergence rate
for the value function under the estimated optimal IDR (Qian and Murphy, 2011; Luedtke
and Van Der Laan, 2016; Shi et al., 2020). It is very similar to the margin condition
(Tsybakov, 2004; Audibert and Tsybakov, 2007) used in the classification literature. This
condition is automatically satisfied with γ = 1 when qI,0(X) has a bounded probability
density function for any I ∈ P0.

Theorem 2 Assume the conditions in Theorem 1 are satisfied. Further, assume (A5) holds.
Then, we have

V opt − V (d̂) ≤ c̄(n−1 log n)(1+γ)/2 + c̄n−1 log n, (11)

for some constant c̄ > 0, with probability at least 1−O(n−2).

When (A5) holds with γ = 1, Theorem 2 suggests that V (d̂) converges to the optimal
value at a rate of Op(n

−1) up to some logarithmic factor. Notice that the events defined in
Theorem 1 and 2 occur with probability at least 1 − O(n−2). Since

∑
n≥1 n

−2 < +∞, an
application of the Borel-Cantelli lemma implies that these events will occur for sufficiently
large n almost surely.

4.1.2 Results for D-JIL

We study the theoretical properties of the proposed I2DR based on D-JIL when Model I is
correct. Similar to the linear case, we assume qI1,0 6= qI2,0 for any two adjacent intervals
I1, I2 ∈ P0. For any I, we set the regression class QI to a general class of feedforward
architecture with LI hidden layers, WI many number of parameters, and ReLU activation
function (Farrell et al., 2021).

To derive the theoretical properties of D-JIL, we assume the outcome regression function
is a smooth function of the baseline covariates (see assumption (A6) below). Meanwhile,
D-JIL is valid when Q(x, a) is a nonsmooth function of x as well (see e.g., Imaizumi and
Fukumizu, 2019). Specifically, define the class of β-smooth functions (also known as Hölder
smooth functions with exponent β) as

Φ(β, c) =

h : sup
‖α‖1≤bβc

sup
x∈X
|Dαh(x)| ≤ c, sup

‖α‖1=bβc
sup
x,y∈X
x 6=y

|Dαh(x)−Dαh(y)|
‖x− y‖β−bβc2

≤ c

 ,

for some constant c > 0, where bβc denotes the largest integer that is smaller than β and
Dα denotes the differential operator Dα denote the differential operator:

Dαh(x) =
∂‖α‖1h(x)

∂xα1
1 · · · ∂x

αd
d

.

We introduce the following conditions.

(A6.) Suppose Q(•, a) ∈ Φ(β, c), and p(a|•) ∈ Φ(β, c) for any a.

(A7.) Functions {q̂I}I∈P̂ are uniformly bounded.
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Assumption (A7) ensures that the optimizer would not diverge in the `∞ sense. Similar
assumptions are commonly imposed in the literature to derive the convergence rates of DNN
estimators (see e.g., Farrell et al., 2021). Combining (A7) with (A6) allows us to derive
the uniform rate of convergence for the class of DNN estimators {q̂I}I∈P̂ . The following
theorem summarizes the theoretical properties of the proposed method via deep neural
networks.

Theorem 3 Assume (A1)-(A3), (A6), (A7) and Model I hold. Assume X and Y are
bounded variables, and A has a bounded probability density function on [0, 1]. Assume m �
n, {γn}n∈N satisfies γn → 0 and γn � n−2β/(2β+p) log8 n. Then, there exist some constant
c̄ > 0 and DNN classes {QI : I} with LI � log(n|I|) and WI � (n|I|)p/(2β+p) log(n|I|)
such that the resulting D-JIL estimator computed by (3) satisfies

(i) |P̂| = |P0|;
(ii) maxτ∈J(P0) min

τ̂∈J(P̂)
|τ̂ − τ | ≤ c̄n−2β/(2β+p) log8 n;

(iii) E|Q(X,A)−
∑
I∈P̂ I(A ∈ I)q̂I(X)|2da ≤ c̄n−2β/(2β+p) log8 n,

with probability at least 1−O(n−2).

Theorem 3 establishes the properties of our method under settings where the Q(x, a) is
a piecewise function in the treatment. Results in (i) imply that D-JIL correctly identifies
the number of change points. Results in (ii) imply that any change point in P0 can be
consistently identified at a convergence rate of Op(n

−2β/(2β+p)) up to some logarithmic
factors. Notice that we use the piecewise function

∑
I∈P̂ I(a ∈ I)q̂I(x) to approximate the

outcome regression function. In (iii), we show our estimator for function Q(X,A) converges
at a rate of Op(n

−2β/(2β+p)) up to some logarithmic factors. The theoretical choices of LI
and WI in Theorem 3 are consistent with the literature of DNN estimators (Imaizumi and
Fukumizu, 2019; Farrell et al., 2021). These DNN architectures ensure the convergence rate
of our estimator for function Q(X,A), which achieves the minimax-optimal nonparametric
rate of convergence under (A6) (see e.g., Stone, 1982).

We next establish the convergence rate of V opt−V (d̂) when Model I holds in the following
theorem.

Theorem 4 Assume the conditions in Theorem 3 are satisfied. Further, assume (A5) holds.
Then, we have

V (d̂) ≥ V opt −O(1)(n
− 2β

2β+p log8 n+ n
− 2β(1+γ)

(2β+p)(2+γ) log
8+8γ
2+γ n), (12)

with probability at least 1−O(n−2).

Theorem 4 suggests that V (d̂) converges to the optimal value at a rate ofOp{n−
2β(1+γ)

(2β+p)(2+γ) }
up to some logarithmic factors. This rate is slower than the rate (Op(n

−1) up to some log-
arithmic factor) we obtained in Theorem 2 where we posit a parametric (linear) model.
Suppose the condition 4β(1 + γ) > (2β + p)(2 + γ) holds, it follows that V (d̂) = V opt +
op(n

−1/2). This observation forms the basis of our inference procedure in Section 4.1.3.
Here, the extra margin parameter γ in our results is introduced by (A5) to bound the bias
due to the estimated decision rule d̂. If the margin parameter γ goes to infinity, we only
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require the smooth parameter β > p/2 to obtain V (d̂) = V opt + op(n
−1/2). This condition

(β > p/2) is commonly assumed in the literature on evaluating average treatment effects
(see e.g., Chernozhukov et al., 2017; Farrell et al., 2021).

4.1.3 Evaluation of the Value Function

Suppose Model I holds. When L-JIL is used, it follows from Theorem 2 that V (d̂) =
V opt + op(n

−1/2). When D-JIL is used, if the smoothness parameter β (see (A6)) and the
margin parameter γ (see (A5)) satisfy 4β(1 + γ) > (2β+ p)(2 + γ), it follows from Theorem
4 that V (d̂) = V opt + op(n

−1/2). In the following, we derive the asymptotic normality of√
n(V̂ − V opt). By Slutsky’s theorem, this implies that

√
n{V̂ − V (d̂)} is asymptotically

normal as well.

(A8.) [E{ê(I|X)−e(I|X)}2]1/2 = o(n−1/4) and that ê(I; •) belongs to the class of VC-type
functions with VC-index upper bounded by O(n1/2) (see e.g. Chernozhukov et al., 2017, for
a detailed definition of the VC-type class), for any I ∈ I(m).

The first part of Assumption (A8) requires the generalized propensity score function to
converge at certain rates. Similar assumptions are commonly imposed in the causal inference
literature to derive the asymptotic distribution of the estimated average treatment effect
(see e.g., Chernozhukov et al., 2017). The second part of (A8) essentially controls the model
complexity of the estimator ê. The more complicated ê is, the larger the VC index. Under
(A6), we can show (A8) holds when DNN is used to model the generalized propensity score.

Theorem 5 Assume (A8) holds and suppose functions {êI}I∈P̂ are uniformly bounded away
from zero. Further assume that for any I1, I2 ∈ P0 with I1 6= I2, we have Pr(qI1,0(X) =
qI2,0(X)) = 0.

(i) Suppose conditions in Theorem 2 are satisfied. Then, under L-JIL, we have

√
n(V̂ − V opt)

d→ N(0, σ2
L),

for some σ2
L > 0.

(ii) Suppose conditions in Theorem 4 are satisfied with 4β(1 + γ) > (2β + p)(2 + γ).
Then, under D-JIL, we have

√
n(V̂ − V opt)

d→ N(0, σ2
D),

for some σ2
D > 0.

We now introduce the estimator for the asymptotic variance σ2
L or σ2

D, and derive a

Wald-type 1 − α CI for V opt. Since V (d̂) = V opt + op(n
−1/2), the proposed CI also covers

V (d̂) with probability tending to 1− α. We estimate σ2
L or σ2

D by

σ̂2 =
1

n− 1

n∑
i=1

[
I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

{
Yi −max

I∈P̂
q̂I(Xi)

}
+ max
I∈P̂

q̂I(Xi)− V̂

]2

,

where {q̂I(·)} corresponds to the value estimations under L-JIL or D-JIL.
The corresponding 1−α CI is given by V̂ ± zα/2σ̂, where zα/2 denotes the upper α/2-th

quantile of a standard normal distribution. Similar to Theorem 5, we can show that σ̂ is
consistent. This shows the validity of our inference procedure.
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4.2 Properties When Model II Holds

4.2.1 Properties of L-JIL under Varying Coefficient Model

We first consider the case when the outcome regression function can be represented by a
varying coefficient model and investigate the theoretical properties of the proposed L-JIL.
Specifically, suppose the true outcome regression function takes the following form

Q(x, a) = x̄>θ0(a), ∀x ∈ X, a ∈ [0, 1], (13)

where x̄ = (1, x>)> and θ0(·) is some continuous (p+ 1)-dimensional function. That is, we
assume the conditional mean of the outcome is a linear function of individuals’ covariates
for any treatment a ∈ [0, 1]. Yet, the model is flexible in that θ0(·) is allowed to be an
arbitrary continuous function of a with certain smoothness constraints. Models of this type
belong to the class of varying coefficient models popularly applied in many scientific areas
(see e.g., Fan and Zhang, 2008, for an overview).

Here, we consider the following class of Hölder continuous functions for θ0(·). Suppose
there exist some constants L > 0, 0 < α0 ≤ 1 such that θ0(·) satisfies

sup
a1,a2∈[0,1]

‖θ0(a1)− θ0(a2)‖2 ≤ L|a1 − a2|α0 . (14)

We first sketch a few lines to see why our method works under (14). For a given integer
k > 0, we define θ∗k(·) as

θ∗k(a) =
k−1∑
j=0

θ0

(
j + 1/2

k + 1

)
I(j ≤ (k + 1)a < j + 1) + θ0

(
k + 1/2

k + 1

)
I((k + 1)a ≥ k).

Apparently, θ∗k(·) has at most k change points. In addition, with some calculations, we can
show that supa∈[0,1] ‖θ∗k(a)− θ0(a)‖2 ≤ 2−α0(k+ 1)−α0L. Letting k →∞, it is immediate to
see that θ0(·) can be uniformly approximated by a step function as the number of change
points increases.

In Theorems 1 and 2, we have shown the proposed I2DR is consistent under the piecewise
linear function assumption. Based on the above discussion, we expect that jump interval-
learning also works when the model (13) holds. We formally establish the corresponding
theoretical results in the following theorem.

Theorem 6 Assume (A1)-(A4) and (14) hold. Assume A has a bounded probability on
[0, 1]. Assume m � n, λn = O(n−1 log n), γn satisfies γn → 0 and γn � n−1 log n. Under
the model (13), there exists some constant c̄ > 0 such that the following holds with probability
at least 1−O(n−2): ∫ 1

0
‖θ̂(a)− θ0(a)‖22da ≤ c̄γ2α0/(1+2α0)

n .

In addition, assume γn � (n−1 log n)(1+2α0)/(1+4α0). Then there exists some constant c̄∗ > 0
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such that the following occurs with probability at least 1−O(n−2) that

V opt − V (d̂) ≤ c̄∗(n−1 log n)α0/(1+4α0). (15)

It is worth mentioning that with proper choice of γn, the integrated `2 loss of θ̂(·) con-
verges at a rate of Op(n

−2α0/(1+2α0)) up to some logarithmic factor. The rate is slower
compared to the results in Theorem 1, since θ0(·) is only “approximately” piecewise con-
stant. When θ0(·) is Lipschitz continuous, it follows from (15) that the value under our
proposed I2DR will converge to the optimal value function at a rate of Op(n

−1/5 log1/5 n).

4.2.2 Properties of D-JIL under the Continuous outcome regression
function

We next consider the general case when the outcome regression function is specified by
model II and study the theoretical properties of the proposed D-JIL. The following theorem
proves the consistency of the proposed estimator.

Theorem 7 Suppose Q is a continuous function of a and x. Assume (A1)-(A3) and
(A6)-(A7) hold. Assume X and Y are bounded variables, and A has a bounded prob-
ability density function on [0, 1]. Assume m � n and {γn}n∈N satisfies γn → 0 and
γn � n−2β/(2β+p) log8 n. Then, there exist some DNN classes {QI : I} with LI � log(n|I|)
and WI � (n|I|)p/(2β+p) log(n|I|) such that the resulting D-JIL estimator computed by (3)
satisfies

(i) maxI∈P̂ supa∈I E|q̂I(X) − Q(X, a)|2 = Op(γ
2α0

1+2α0
n ) + Op

(
(nγn)

− 2β
2β+p log8 n

)
where

the expectation is taken with respect to the marginal distribution of X;

(ii) Suppose γn ∼ n
−1/
(

1+
β(2α0+1)
α0(2β+p)

)
. Then V opt−V (d̂) = Op

(
n−α0β/(4α0β+α0p+β) log4 n

)
.

Theorem 7 establishes the properties of our method under settings where Q is continuous
in a. Results in (i) imply that q̂I(x) can be used to uniformly approximate Q(x, a) for any
a ∈ I. The consistency of the value in (ii) thus follows.

Finally, we remark that the optimal I2DR is well-defined under Model I. When Model
II holds, however, it remains unclear whether the optimal I2DR is uniquely defined or not.
Nonetheless, as shown in Theorems 6 and 7, the value under the proposed I2DR converges to
that under the optimal IDR. This implies that even when the optimal I2DR is not uniquely
defined, our proposal is able to identify one of them asymptotically.

4.2.3 Evaluation of the Value Function

As discussed in Section 4.1.3, the validity of the proposed CI for the optimal value requires
the outcome regression function to satisfy the piecewise model assumption. Under Model II,
however, the value under the proposed I2DR might not be n−1/2-consistent to the optimal
value. As such, in theory, the proposed CI would fail to cover the optimal value. Nonethe-
less, when the preference function π∗ is assigned according to the generalized propensity
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score, i.e.,

π∗(a;x, I) =
p(a|x)∫
I p(a|x)da

,

and other regularity conditions hold, our CI is able to cover the value under the proposed
I2DR. We omit the theoretical results to save space.

5. Simulations

5.1 Confidence Interval for the Value

In this section, we focus on scenarios where the outcome regression function takes the
form of Model I and examine the coverage probability of the proposed CI in Section 4.1.3.
Simulated data are generated from the following model:

Y |X,A ∼ N(Q(X,A), 1), A|X ∼ Unif[0, 1] and X(1), X(2), . . . , X(p) iid∼ Unif[−1, 1],

where Unif[a, b] denotes the uniform distribution on the interval [a, b]. We consider the
following two scenarios with different choices of Q(X,A).

Scenario 1:

Q(x, a) =


1 + x(1), a < 0.35,

x(1) − x(2), 0.35 ≤ a < 0.65,

1− x(2), a ≥ 0.65.

Under Scenario 1, the outcome regression function is piecewise constant as a function of a,
and is linear as a function of x. Here, we have J(P0) = {0.35, 0.65} and |P0| = 3. With
some calculations, one can show that the optimal value V opt equals 1.34.

Scenario 2:

Q(x, a) =


1 + (x(1))3, a < 0.35,

x(1) − log(1.5 + x(2)), 0.35 ≤ a < 0.65,

1− sin(0.5πx(2)), a ≥ 0.65.

Under Scenario 2, the outcome regression function is piecewise constant as a function of
a, but is nonlinear as a function of x. The change points are J(P0) = {0.35, 0.65} with
|P0| = 3. The optimal value equals 1.35, based on Monte Carlo approximations.

For each scenario, we set p = 4 and consider three different choices of the sample size,
corresponding to n = 200, 400, 800. We apply the proposed L-JIL and D-JIL to both
scenarios. The detailed implementation is discussed in Section 3.3. We set m = n/5,
λn = 0, γn = 4n−1 log(n), and construct the CI for V opt based on the procedure described
in Section 4.1.3. Reported in Table 1 are the estimated value function V̂ with its standard
error σ̂, the empirical coverage probabilities of the proposed confidence interval for V opt,
and the number of estimated partitions |P̂|, aggregated over 500 simulations. In addition,
we include the integrated `2 loss of the estimated varying coefficient θ̂(·) via L-JIL.

Based on the results, it is clear that the estimated value function approaches the optimal
value as the sample size increases for both methods. For instance, when n = 800, L-JIL
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Table 1: The estimated optimal value V̂ with its standard error, the empirical coverage
probability of its associated confidence interval, and the averaged number of esti-
mated partitions computed by the proposed L-JIL and D-JIL.

Scenario 1, p = 4 Scenario 2, p = 4
n = 200 n = 400 n = 800 n = 200 n = 400 n = 800

Method Optimal value V opt 1.34 1.35

L-JIL Estimated optimal value V̂ 1.436 1.383 1.340 1.400 1.351 1.421
Mean of standard error σ̂ 0.129 0.091 0.066 0.120 0.085 0.065
Coverage probabilities(%) 89.80 93.20 95.60 92.40 94.60 95.00

Number of partitions |P̂| 2.97 3.01 3.00 2.19 2.81 3.01

Integrated `2 loss of θ̂(·) 0.371 0.175 0.111 0.786 0.389 0.269

D-JIL Estimated optimal value V̂ 1.297 1.338 1.345 1.333 1.331 1.349
Mean of standard error σ̂ 0.160 0.108 0.060 0.166 0.102 0.060
Coverage probabilities(%) 90.60 93.60 96.00 95.60 93.80 95.00

Number of partitions |P̂| 2.98 3.25 3.18 2.95 3.10 3.08

obtained an estimated value of 1.340 under Scenario 1 on average. D-JIL yields an average
value of 1.349 under Scenario 2. These values are very close to the truths 1.34 and 1.35,
respectively. The performance of our proposed L-JIL and D-JIL are comparable under
Scenario 1. In addition, as the sample size increases, the coverage probability of the Wald-
type CI approaches to the nominal level. This verifies our theoretical findings in Theorem
5. It is worth noting that the CI computed via L-JIL achieves the nominal coverage under
Scenario 2 where the outcome regression function is nonlinear in x. We suspect this is due
to that the optimal I2DR is close to a linear decision rule despite the nonlinearity of the
outcome regression function.

Moreover, the averaged estimated number of partitions |P̂| is approximately 3 for all
settings. This demonstrates the consistency of the estimated number of partitions in The-
orems 1 and 3. In addition, the integrated `2 loss of the estimated varying coefficient com-
puted via L-JIL converges to 0, as the sample size increases. For example, when n = 800,∫ 1

0 ‖θ̂(a)− θ0(a)‖22da equals 0.111 for Scenario 1 and 0.269 for Scenario 2. These values are

fairly small by noting that
∫ 1

0 ‖θ0(a)‖22da = 2. Notice that
∫ 1

0 ‖θ̂(a) − θ0(a)‖22da decays at
a rate that is approximately proportional to n−1. This verifies our theoretical findings in
Theorem 1.

5.2 Value Function under the Proposed I2DR

In this section, we consider more general settings and compare the proposed procedure with
the existing state-of-the-art methods that output single-valued decision rules. Similar to
Section 5.1, we generate the data from the following model:

Y |X,A ∼ N(Q(X,A), 1), A|X ∼ Unif[0, 1] and X(1), X(2), . . . , X(p) iid∼ Unif[−1, 1].

In addition to Scenarios 1 and 2, we consider several other choices of the outcome regression
function, allowing the working model assumption in Model I or Model II to be violated in
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Table 2: Simulation scenarios.

scenarios piecewise in a? linear in x? J(P0) |P0| optimal rule optimal value

1 X X {0.35, 0.65} 3 arg maxI∈P0
qI(x) 1.34

2 X × {0.35, 0.65} 3 arg maxI∈P0
qI(x) 1.35

3 X × {0.25, 0.5, 0.75} 4 arg maxI∈P0
qI(x) 0.76

4 × X N.A. N.A. 0.5I(x̄>θ < 0) 1.28

5 × × N.A. N.A. 0.5 + 0.25(x(1) + x(2)) 8

some scenarios. Specifically, similar to Scenarios 1 to 2, the outcome regression function
in Scenario 3 is a piecewise constant function of the treatment. As commented earlier,
these scenarios are motivated by various applications such as dynamic pricing where the
expected demand of a product has jump discontinuities as a function of the charged price. In
Scenarios 4 and 5, however, the outcome regression function is continuous in the treatment.
In particular, Scenario 4 is known as the varying coefficient model that has been widely
applied in many scientific domains. Scenario 5 has been considered by Chen et al. (2016)
for the personalized dose finding.

Scenario 3:

Q(x, a) =


√
x(1)/2 + 0.5, a < 0.25,

sin(2πx(2)), 0.25 ≤ a < 0.5,

0.5− (x(1) + x(2) − 0.75)2, 0.5 ≤ a < 0.75,
0.5, a ≥ 0.75.

Scenario 4:
Q(x, a) = x̄>{2|a− 0.5|θ∗},

where θ∗ = (1, 2,−2, 0>p−2)>. By setting θ0(a) = 2|a − 0.5|θ∗, it is immediate to see that

Q(x, a) = x̄>θ0(a) and satisfies the condition in (13).

Scenario 5:

Q(x, a) = 8 + 4x(1) − 2x(2) − 2x(3) − 10(1 + 0.5x(1) + 0.5x(2) − 2a)2.

We apply the proposed L-JIL and D-JIL to Scenarios 1-5 to estimate the optimal I2DR,
with p = 20 and n ∈ {50, 100, 200, 400, 800}. The tuning parameters in JILs are specified
according to Section 3.4. Here, we set m = n/c with c = 10 to save computational costs.
In Section 5.3, we report results with c ∈ {6, 8} and find the values under the estimated
I2DRs are very similar to those with c = 10.

To evaluate the proposed I2DRs, we compare its value function V (d̂) with the values
under estimated optimal IDRs obtained by the linear outcome-weighted learning (L-O-L)
and the nonlinear outcome-weighted learning based on the Gaussian kernel function (K-O-
L) proposed by Chen et al. (2016), and the Q-learning method based on the linear regression
(Q-Linear). To implement L-O-L and K-O-L, we fix the parameter φn = 0.1, and select
other tuning parameters by five-fold cross-validation, as in Chen et al. (2016). Finally, to
implement Q-Linear, we first fit the outcome on {X,X ×X,A,A2, XA,X ×XA,XA2, X ×
XA2} via the linear regression where X ×X means the quadratic and cross terms among
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Table 3: The value function under the proposed I2DR and IDRs estimated based on
outcome-weighted learning (L-O-L and K-O-L) and Q-learning with the linear
regression (Q-Linear) for Scenarios 1-5.

n 50 100 200 400 800

Scenario 1 L-JIL 0.783(0.016) 0.832(0.016) 1.080(0.014) 1.259(0.002) 1.297(0.001)
V = 1.34 D-JIL 0.914(0.012) 0.967(0.008) 1.050(0.005) 1.071(0.005) 1.138(0.001)
p = 20 L-O-L 0.558(0.004) 0.574(0.004) 0.600(0.005) 0.597(0.005) 0.583(0.005)

K-O-L 0.335(0.008) 0.415(0.006) 0.441(0.006) 0.457(0.005) 0.489(0.004)
Q-Linear 1.026(0.041) 1.055(0.038) 1.080(0.038) 1.048(0.029) 0.829(0.028)

Scenario 2 L-JIL 0.741(0.021) 0.854(0.020) 1.180(0.007) 1.266(0.001) 1.299(0.001)
V = 1.35 D-JIL 0.900(0.012) 0.978(0.008) 1.074(0.004) 1.102(0.003) 1.141(0.001)
p = 20 L-O-L 0.450(0.009) 0.448(0.006) 0.447(0.005) 0.429(0.004) 0.410(0.003)

K-O-L 0.115(0.019) 0.213(0.010) 0.229(0.007) 0.241(0.004) 0.276(0.002)
Q-Linear 1.048(0.039) 1.071(0.037) 1.080(0.036) 1.042(0.027) 0.772(0.034)

Scenario 3 L-JIL 0.227(0.020) 0.268(0.013) 0.372(0.008) 0.432(0.003) 0.511(0.002)
V = 0.76 D-JIL 0.453(0.019) 0.469(0.009) 0.511(0.005) 0.526(0.004) 0.545(0.002)
p = 20 L-O-L 0.002(0.010) -0.009(0.008) -0.060(0.006) -0.090(0.005) -0.107(0.004)

K-O-L -0.268(0.026) -0.233(0.015) -0.260(0.009) -0.251(0.006) -0.233(0.003)
Q-Linear 0.601(0.039) 0.604(0.032) 0.597(0.022) 0.575(0.015) 0.315(0.032)

Scenario 4 L-JIL 0.553(0.013) 0.564(0.011) 0.630(0.011) 0.806(0.006) 0.882(0.002)
V = 1.28 D-JIL 0.612(0.014) 0.651(0.008) 0.684(0.004) 0.653(0.006) 0.801(0.001)
p = 20 L-O-L 0.525(0.016) 0.458(0.010) 0.375(0.004) 0.300(0.002) 0.237(0.001)

K-O-L 0.236(0.007) 0.260(0.004) 0.252(0.003) 0.244(0.001) 0.246(0.001)
Q-Linear 0.995(0.025) 0.995(0.026) 0.999(0.021) 0.998(0.025) 0.832(0.044)

Scenario 5 L-JIL 5.82(0.05) 6.41(0.02) 6.80(0.01) 7.02(0.01) 7.16(0.01)
V = 8.00 D-JIL 5.57(0.06) 5.79(0.03) 5.97(0.02) 6.10(0.01) 6.26(0.01)
p = 20 L-O-L 5.92(0.07) 6.75(0.03) 7.32(0.02) 7.66(0.01) 7.81(0.01)

K-O-L 6.70(0.02) 7.05(0.02) 7.38(0.01) 7.58(0.01) 7.56(0.01)
Q-Linear -0.53(1.27) 1.35(1.05) 3.80(0.57) 6.57(0.21) 6.57(0.21)

X. Denote the resulting estimator as Q̂L(x, a), then the optimal dose for a patient with
covariates X = x is given by arg maxa Q̂

L(x, a). All the value functions are evaluated via
Monte Carlo simulations. The average value function as well as its standard deviation over
200 replicates are summarized in Table 3.

It can be seen from Table 2 that both L-JIL and D-JIL are very efficient when Model
I (Scenarios 1-3) holds, and perform reasonably well when Model II (Scenario 4 and 5)
holds or the sample size is small. For instance, the proposed L-JIL achieves a value of
1.297 in Scenario 1 and 1.299 in Scenario 2, when n = 800. These values are very close
to the optimal values, given by 1.34 and 1.35. In addition, due to the largely increased
feature dimension, extra noises compromise the performance of D-JIL in both Scenarios 1
and 2, by comparing the results in Table 1 with that in Table 2. Yet, in Scenario 3, the
nonlinear setting is hard to be modeled by the linear pattern, and thus the proposed D-JIL
performs consistently better than L-JIL, due to the capacity of deep neural networks in
approximating complicated non-linear relationships. Moreover, the value of the proposed
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I2DR increases with the sample size in most cases. This supports our theoretical findings
in Section 4.

In comparison, the value function under the estimated IDR using L-O-L and K-O-L is
no more than half of the optimal value for each setting in Scenarios 1 to 4. This is owing to
the ‘V-structured’ non-linear complex optimal decision rule in Scenario 4, which violates the
assumption in Chen et al. (2016) that the decision rules should be smooth over the entire
space of the treatment. While our method still works well for such a varying coefficient
model. This supports our theoretical findings in Theorem 6. In Scenario 5, L-O-L and
K-O-L have better performance, as the true optimal decision rule is linear and the outcome
regression function is very sensitive to the change of the treatment level a (by noticing that
the coefficient of the quadratic term in Scenario 5 is 10). Our methods perform worse in
this scenario. However, the value difference is not large. In addition, under Scenarios 1-3,
both L-JIL and D-JIL achieve larger value functions than Q-Linear when n = 800, since the
linear model misspecifies the true conditional mean function under Model I. Under Scenarios
4-5, Q-Linear performs reasonably and comparably well as our proposed methods, because
Scenario 4 is linear in X and the conditional mean outcome function under Scenario 5 is
correctly specified by Q-Linear. Yet, due to the largely increased feature dimension p, the
input dimension in Q-Linear is 3p(p − 1)/2 + 3p + 2, which compromises the performance
of Q-Linear under Scenario 5 when n is small. Among competing methods, the Q-Linear
method has better performance than outcome-weighted learning methods by Chen et al.
(2016) in Scenarios 1-4. Yet, all results of values based on Q-Linear have considerably
larger variances than other methods. More importantly, our methods are able to derive
the I2DR, which is more interpretable and easier to implement in practice.

In addition, we notice that D-JIL performs comparably to L-JIL in Scenario 1. This
is because the DNN model with the ReLU activation function contains the linear model
as a special case. Yet, the asymptotic rate of convergence of D-JIL is slower than that of
L-JIL due to its complexity. When n ≥ 200, D-JIL performs worse than L-JIL, as expected.
In Scenario 2, although the outcome regression function is nonlinear in x, the resulting
I2DR can be well-approximated by a linear decision rule. As such, L-JIL and D-JIL achieve
similar performance.

Finally, we report the computation time of D-JIL in Table 4. The computing infras-
tructure used is a virtual machine containing the second generation Intel Xeon Scalable
Processors with 16 processor cores and 64GB memory in the AWS Platform. It can be seen
that the computation time increases approximately linearly with the sample size. The main
computation lies in adaptively selecting γn via cross-validation. We remark that parallel
computing can be employed to further reduce the computation time.

5.3 Choice of m

Recall that we set m = n/c for some constant c > 0. In Section 5.2, we report our simulation
results with c = 10. In this section, we set c ∈ {6, 8} and report the corresponding results
in Tables 5-7 to investigate the sensitivity of the proposed methods to the choice of c. We
also include results with c = 10 for completeness. It can be seen from Tables 5 and 6 that
the value functions are very similar across different choices of c. In addition, it can be seen
from Table 7 that the averaged number of estimated intervals for the proposed I2DR is very
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Table 4: The computation time (in minutes) of the proposed D-JIL.

50 100 200 400 800

Scenario 1 0.90(0.04) 1.95(0.03) 4.96(0.05) 14.04(0.12) 35.48(0.21)

Scenario 2 0.78(0.02) 1.56(0.02) 4.07(0.04) 13.53(0.07) 35.46(0.12)

Scenario 3 0.67(0.01) 1.02(0.02) 2.50(0.04) 7.34(0.04) 23.20(0.06)

Scenario 4 0.70(0.01) 1.09(0.02) 3.72(0.04) 10.25(0.06) 15.80(0.19)

Scenario 5 1.01(0.01) 1.51(0.01) 2.30(0.02) 5.37(0.02) 16.32(0.05)

Table 5: The value function of the proposed I2DR under L-JIL for Scenarios 1-5 with dif-
ferent choices of m = n/c.

n 50 100 200 400 800

Scenario 1 c = 6 0.813(0.019) 0.858(0.017) 1.027(0.014) 1.249(0.003) 1.289(0.001)
V = 1.34 c = 8 0.836(0.022) 0.870(0.018) 1.024(0.014) 1.238(0.002) 1.295(0.001)
p = 20 c = 10 0.783(0.016) 0.832(0.016) 1.080(0.014) 1.259(0.002) 1.297(0.001)

Scenario 2 c = 6 0.804(0.025) 0.891(0.021) 1.132(0.008) 1.257(0.002) 1.290(0.001)
V = 1.35 c = 8 0.857(0.029) 0.935(0.021) 1.123(0.009) 1.241(0.002) 1.299(0.001)
p = 20 c = 10 0.741(0.021) 0.854(0.020) 1.180(0.007) 1.266(0.001) 1.299(0.001)

Scenario 3 c = 6 0.280(0.023) 0.310(0.014) 0.339(0.008) 0.422(0.003) 0.504(0.002)
V = 0.76 c = 8 0.229(0.019) 0.325(0.014) 0.326(0.008) 0.417(0.003) 0.512(0.002)
p = 20 c = 10 0.227(0.020) 0.268(0.013) 0.372(0.008) 0.432(0.003) 0.511(0.002)

Scenario 4 c = 6 0.565(0.015) 0.561(0.012) 0.639(0.011) 0.818(0.006) 0.884(0.002)
V = 1.28 c = 8 0.563(0.015) 0.564(0.012) 0.627(0.011) 0.810(0.006) 0.882(0.002)
p = 20 c = 10 0.553(0.013) 0.564(0.011) 0.630(0.011) 0.806(0.006) 0.882(0.002)

Scenario 5 c = 6 5.81(0.05) 6.38(0.02) 6.78(0.01) 6.99(0.01) 7.09(0.01)
V = 8.00 c = 8 5.82(0.05) 6.40(0.02) 6.78(0.01) 7.02(0.01) 7.12(0.01)
p = 20 c = 10 5.82(0.05) 6.41(0.02) 6.80(0.01) 7.02(0.01) 7.16(0.01)

close to the ground truth under Scenarios 1-3 where the underlying models are piecewise
constant. Under Scenarios 4-5 however, the number of estimated intervals grows with the
sample size, as expected. In all cases, the averaged number of estimated intervals is not
overly sensitive to the choice of m. Finally, we report the computation time of the proposed
D-JIL in Table 8. It can be seen that the computation time increases with m and n, as
expected.

6. Real Data Analysis

In this section, we illustrate the empirical performance of our proposed method on real data
from the International Warfarin Pharmacogenetics Consortium (Consortium, 2009). War-
farin is a medication that is commonly used for preventing blood clots such as thrombosis
and thromboembolism. Its effect is evaluated by the international normalized ratio (INR),
which is a measurement of the time it takes for the blood to clot, with an ideal number
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Table 6: The value function of the proposed I2DR under D-JIL for Scenarios 1-5 with
different choices of m = n/c.

n 50 100 200 400 800

Scenario 1 c = 6 0.941(0.012) 0.972(0.008) 1.028(0.004) 1.065(0.004) 1.127(0.001)
V = 1.34 c = 8 0.973(0.016) 0.990(0.008) 1.030(0.004) 1.053(0.005) 1.136(0.001)
p = 20 c = 10 0.914(0.012) 0.967(0.008) 1.050(0.005) 1.071(0.005) 1.138(0.001)

Scenario 2 c = 6 0.943(0.013) 0.980(0.008) 1.037(0.004) 1.087(0.003) 1.129(0.001)
V = 1.35 c = 8 1.002(0.015) 1.012(0.008) 1.039(0.004) 1.076(0.003) 1.137(0.001)
p = 20 c = 10 0.900(0.012) 0.978(0.008) 1.074(0.004) 1.102(0.003) 1.141(0.001)

Scenario 3 c = 6 0.475(0.018) 0.480(0.009) 0.481(0.006) 0.493(0.004) 0.521(0.002)
V = 0.76 c = 8 0.416(0.019) 0.497(0.009) 0.493(0.006) 0.506(0.003) 0.532(0.002)
p = 20 c = 10 0.453(0.019) 0.469(0.009) 0.511(0.005) 0.526(0.004) 0.545(0.002)

Scenario 4 c = 6 0.624(0.014) 0.655(0.008) 0.686(0.004) 0.687(0.005) 0.801(0.001)
V = 1.28 c = 8 0.622(0.014) 0.651(0.008) 0.684(0.004) 0.676(0.005) 0.801(0.001)
p = 20 c = 10 0.612(0.014) 0.651(0.008) 0.684(0.004) 0.653(0.006) 0.801(0.001)

Scenario 5 c = 6 5.49(0.06) 5.69(0.03) 5.82(0.02) 5.97(0.01) 6.12(0.01)
V = 8.00 c = 8 5.58(0.05) 5.77(0.03) 5.91(0.02) 6.04(0.01) 6.20(0.01)
p = 20 c = 10 5.57(0.06) 5.79(0.03) 5.97(0.02) 6.10(0.01) 6.26(0.01)

Table 7: The averaged number of estimated intervals computed by L-JIL with different
choices of m = n/c.

n 50 100 200 400 800

Scenario 1 c = 6 2.04(0.17) 2.16(0.15) 2.60(0.09) 3.00(0.01) 3.00(0.00)
|P0| = 3 c = 8 1.98(0.15) 2.15(0.14) 2.47(0.07) 3.01(0.01) 3.00(0.00)
p = 20 c = 10 1.78(0.14) 1.95(0.13) 2.76(0.10) 3.00(0.00) 3.00(0.00)

Scenario 2 c = 6 2.38(0.18) 2.76(0.16) 3.17(0.09) 3.00(0.00) 3.00(0.00)
|P0| = 3 c = 8 2.38(0.15) 3.03(0.16) 3.02(0.04) 3.00(0.00) 3.00(0.00)
p = 20 c = 10 2.00(0.15) 2.64(0.14) 3.12(0.07) 3.00(0.00) 3.00(0.00)

Scenario 3 c = 6 2.63(0.20) 3.59(0.21) 3.65(0.17) 3.34(0.03) 3.76(0.02)
|P0| = 4 c = 8 2.26(0.19) 3.40(0.19) 3.41(0.14) 3.34(0.03) 3.78(0.02)
p = 20 c = 10 2.24(0.18) 3.01(0.18) 3.48(0.13) 3.32(0.03) 3.75(0.02)

Scenario 4 c = 6 1.68(0.15) 1.59(0.13) 1.86(0.07) 2.86(0.04) 3.12(0.01)
/ c = 8 1.61(0.14) 1.55(0.11) 1.79(0.07) 2.80(0.04) 3.15(0.02)

p = 20 c = 10 1.58(0.13) 1.62(0.13) 1.82(0.07) 2.79(0.04) 3.13(0.02)

Scenario 5 c = 6 4.78(0.17) 6.56(0.12) 9.56(0.08) 15.08(0.08) 25.71(0.07)
/ c = 8 4.29(0.13) 6.28(0.13) 9.30(0.09) 14.36(0.08) 23.91(0.08)

p = 20 c = 10 3.91(0.11) 5.96(0.11) 8.67(0.08) 13.62(0.08) 22.00(0.08)

of 2.5. High doses of Warfarin are more beneficial than its lower doses, but may lead to a
high risk of bleeding as well. Proper dosing of Warfarin is thus of significant importance.
Yet, this problem is particularly challenging due to the complex interactions between War-
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Table 8: The computation time (in minutes) of D-JIL with different choices of m = n/c.

n 50 100 200 400 800

Scenario 1 c = 6 0.69(0.03) 2.36(0.05) 10.38(0.10) 33.00(0.22) 87.56(0.36)
c = 8 1.21(0.03) 2.23(0.05) 6.33(0.09) 19.96(0.16) 53.75(0.29)

p = 20 c = 10 0.90(0.04) 1.95(0.03) 4.96(0.05) 14.04(0.12) 35.48(0.21)

Scenario 2 c = 6 0.71(0.04) 2.35(0.06) 10.35(0.11) 32.08(0.21) 86.53(0.26)
c = 8 1.02(0.02) 2.27(0.03) 5.79(0.08) 18.54(0.11) 54.36(0.24)

p = 20 c = 10 0.78(0.02) 1.56(0.02) 4.07(0.04) 13.53(0.07) 35.46(0.12)

Scenario 3 c = 6 0.71(0.02) 2.33(0.03) 6.12(0.05) 17.23(0.10) 52.96(0.24)
c = 8 0.79(0.01) 1.59(0.02) 4.28(0.03) 9.61(0.06) 32.52(0.17)

p = 20 c = 10 0.67(0.01) 1.02(0.02) 2.50(0.04) 7.34(0.04) 23.20(0.06)

Scenario 4 c = 6 1.15(0.02) 2.67(0.05) 7.45(0.08) 21.38(0.19) 52.07(0.38)
c = 8 0.88(0.02) 1.99(0.02) 4.92(0.04) 13.38(0.06) 32.77(0.19)

p = 20 c = 10 0.70(0.01) 1.09(0.02) 3.72(0.04) 10.25(0.06) 15.80(0.19)

Scenario 5 c = 6 1.24(0.02) 2.49(0.03) 4.47(0.04) 8.91(0.05) 28.52(0.09)
c = 8 0.86(0.01) 1.37(0.01) 3.53(0.02) 7.39(0.03) 20.80(0.09)

p = 20 c = 10 1.01(0.01) 1.51(0.01) 2.30(0.02) 5.37(0.02) 16.32(0.05)

farin and many commonly used medications (Holbrook et al., 2005). Nonetheless, existing
methods are not able to recommend an individualized interval-based dose rule for Warfarin.

To develop the optimal I2DR for Warfarin dosing, we use the dataset provided by the
International Warfarin Pharmacogenetics (Consortium, 2009) for analysis. We choose 6
baseline covariates, including age, height, weight, gender, the VKORC1.AG genotype, and
the VKORC1.AA genotype. This yields a total of 3848 with complete records of baseline
information. Here, the VKORC1 genotype has been shown to play a particularly large role
in response to Warfarin (Wadelius et al., 2005). The outcome is defined as the negative
absolute distance between the INR after the treatment and the ideal number of 2.5, i.e,
Y = −|INR− 2.5|. Thus, a larger outcome represents a better balance between preventing
blood clots and the risk of bleeding, with the optimal value of 0. We use the min-max
normalization to convert the range of the dose level A into [0, 1].

To implement L-JIL and D-JIL, we set c = 5, i.e., m = n/5, and select γn and λn
via cross-validation, as in Section 5.2. To further evaluate the empirical performance of
the proposed I2DRs, we compare their values with the value under the IDR estimated by
K-O-L. Specifically, we randomly select 70% of the data to compute the proposed I2DR
and the IDR obtained by K-O-L, and evaluate their value functions using the remaining
dataset. We then iterate this procedure 50 times to calculate the average value function.
For each iteration, the value function is estimated based on the nonparametric estimator
proposed by Zhu et al. (2020).

Specifically, let Gtest denote observations in the testing dataset. For the IDR d̃ computed
by K-O-L, we consider the following nonparametric estimator for its value function,

Ṽ (d̃) =

∫
x

∑
i∈Gtest YiK(h−1

x (x−Xi))K(h−1
a (d̃(x)−Ai))∑

i∈Gtest K(h−1
x (x−Xi))K(h−1

a (d̃(x)−Ai))

{ ∑
i∈Gtest

K(h−1
x (x−Xi))

|Gtest|hpx

}
dx,
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Table 9: The averaged value and their standard deviation under four different choices of
π∗(·;x, I) in the real data application.

Choice of π∗(·;x, I) Minimum Dose Maximum Dose Mid-point Dose Uniformly Sample

Under L-JIL -0.329(0.008) -0.329(0.007) -0.328(0.008) -0.328(0.008)

Under D-JIL -0.333(0.012) -0.332(0.011) -0.333(0.012) -0.333(0.012)

Table 10: The averaged value with their standard deviation under L-JIL with different
choices of c in real data analysis.

Choice of c c = 6 c = 8 c = 10

Estimated Value -0.329(0.009) -0.329(0.009) -0.328(0.008)

where K(·) denotes the Gaussian kernel function, and hx and ha are some bandwidth
parameters. The tuning parameters hx and ha are chosen according to the numerical results
in Section 5 of Zhu et al. (2020).

Notice that the value function under the proposed I2DR d̂(·) depends on the preference
function π∗. To evaluate d̂, we consider multiple preference functions, including the maxi-
mum value, the minimum value, the mid-point value, and the value uniformly at random.
In particular, when π∗ is set to the uniform density function, we compute Ṽ π∗(d̂) as∫
x

∫
d̂(x)

1

|d̂(x)|

∑
i∈Gtest YiK(h−1

x (x−Xi))K(h−1
a (d(x)−Ai))∑

i∈Gtest K(h−1
x (x−Xi))K(h−1

a (d(x)−Ai))

{ ∑
i∈Gtest

K(h−1
x (x−Xi))

|Gtest|hpx

}
dadx.

Reported in Table 9 are the averaged values under the proposed I2DRs computed via L-JIL
and D-JIL, with the aforementioned four choices of π∗, aggregated over 10 replications. It
can be seen that our method is not sensitive to the choice of π∗.

Over 50 iterations, the average value functions of our proposed I2DRs computed by
L-JIL and D-JIL are −0.332 and −0.331, larger than the value −0.344 of the IDR obtained
by K-O-L. These values mean that the INR of patients following the recommended I2DR
is around 0.33 far from the ideal amount of 2.5. In contrast, using K-O-L would lead to a
greater departure from the ideal amount. We also set c to 6, 8, or 10 when employing L-JIL
and report the average value functions and their standard deviations in Table 10. It can be
seen that the performance is similar across difference choices of c. In addition, among the 50
iterations, |P̂| computed by L-JIL equals 3 for 40 iterations. Let θ̂1, θ̂2, and θ̂3 denote the
corresponding regression coefficients associated with these three subintervals. We report
the means and standard deviations of the estimated regression coefficients across these 40
iterations in Table 11. It can be seen that except for the intercept term associated with the
first subinterval, the standard deviations of other parameters are fairly small. In the rest
10 iterations, |P̂| is either 2 or 4. As such, the change points and parameter estimates are
relatively stable across 50 iterations.

Finally, we apply L-JIL to the entire data without sample-splitting to compute an I2DR
and illustrate its interpretability. It turns out that L-JIL partitions [0, 1] into three subin-
tervals: [0, 0.02), [0.02, 0.17), and [0.17, 1]. We report these regression coefficients in Table
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Table 11: The means and standard deviations of regression coefficients associated with the
three subintervals computed by L-JIL over 40 iterations.

Intercept Age Weight Height Gender VKORC1.AG VKORC1.AA

θ̂1 -1.289(0.841) 0.005(0.036) 0.003(0.005) 0.005(0.005) -0.123(0.105) -0.493(0.140) -0.533(0.141)

θ̂2 -1.900(0.163) 0.021(0.006) 0.004(0.001) 0.008(0.001) -0.203(0.021) -0.024(0.027) -0.125(0.026)

θ̂3 -0.450(0.063) 0.014(0.002) 0.001(0.001) 0.001(0.001) -0.026(0.009) -0.007(0.006) -0.116(0.012)

Table 12: The regression coefficients associated with the three subintervals computed by
applying L-JIL to the entire data without sample-splitting.

Intercept Age Weight Height Gender VKORC1.AG VKORC1.AA

θ̂1 -1.229 0.013 0.003 0.004 -0.130 -0.466 -0.541

θ̂2 -2.008 0.021 0.004 0.008 -0.212 -0.030 -0.127

θ̂3 -0.518 0.015 0.001 0.001 -0.032 -0.001 -0.118

12. According to Table 12, the proposed I2DR based on L-JIL gives us a clear interpreta-
tion of the effect of baseline information on the dose assignment rule. For instance, patients
whose genotype VKORC1 is AG or AA are more likely to receive low doses of Warfarin
to prevent bleeding; older patients with larger weights shall be treated with higher dose
levels. Future experiments are warranted to confirm these scientific findings. In Figure 2,
we give a virtual representation of the proposed I2DR under L-JIL. Specifically, for each of
the 3848 patients in the whole dataset, we plot a 3-dimensional vector (x̄>θ̂1, x̄

>θ̂2, x̄
>θ̂3)>

based on his/her covariates x. Patients that are recommended to receive dose levels in
[0, 0.02), [0.02, 0.17), and [0.17, 1] are colored in blue, orange, and green, respectively. That
is, we classify patients into three groups according to the recommended dose interval. It can
be seen from Figure 2 that these three subgroups are well separated and have comparable
sample sizes. In Figure 3, we further plot the histograms of the recommended treatments
(uniformly randomly sampled from the computed I2DR) and the received treatments.

7. Discussions

7.1 Diverging Number of Change Points

When Model I is true, we assume |P0| is fixed to simplify the results in Theorems 1, 2, 3, and
4. Our theoretical results can be generalized to the situation where |P0| diverges with n as
well. Take L-JIL as an example. Similar to Theorem 1, we can show that the `2 integrated
loss satisfies

∫ 1
0 ‖θ̂(a)−θ0(a)‖22da = Op(|P0|n−1 log n). Compared to the results in Theorem

1, the convergence rate here is slower by a factor |P0|. In addition, |P0| = o(n/ log n) is
required to guarantee the consistency of θ̂.

We next present more technical details. In the proof of Theorem 6 (see Section B.10 for
details), we consider a more general framework and establish the `2 integrated loss of θ̂(·)
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Figure 2: 3D plot of the proposed I2DR computed by L-JIL.
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by assuming θ0 satisfies lim supk→∞ k
α0AEk(θ0) <∞ where

AEk(θ0) = inf
P:|P|≤k+1

(θI)I∈P∈
∏
I∈P Rp+1

{
sup
a∈[0,1]

∥∥∥∥∥θ0(a)−
∑
I∈P

θII(a ∈ I)

∥∥∥∥∥
2

}
.

By definition, AEk(θ0) describes how well θ0(·) can be approximated by a step function.

When θ0(·) is a step function with number of jumps equal to |P0|, we have AEk(θ0) = 0
for any k ≥ |P0|. As a result, θ0 satisfies the condition lim supk→∞ k

α0AEk(θ0) < ∞ for
any α0 > 0. As a result, the assertion (143) in the proof of Theorem 6 also holds for θ0(·)
and we have with probability at least 1−O(n−2) that∫ 1

0
‖θ̂(a)− θ0(a)‖22da ≤ O(1)(|P0|−α0 + γn|P0|),

where O(1) denotes some positive constant. As |P0| → ∞ and α0 can be made arbitrarily
large, we have with probability at least 1−O(n−2) that∫ 1

0
‖θ̂(a)− θ0(a)‖22da ≤ O(1)(γn|P0|),

where O(1) denotes some positive constant.

In Theorem 6, we require γn � n−1 log n. However, this condition can be relaxed to
γn ≥ M0n

−1 log n for some sufficiently large constant M0 > 0. Under the latter condition,
we have ∫ 1

0
‖θ̂(a)− θ0(a)‖22da = Op(|P0|n−1 log n).

This yields the convergence rate of the `2 integrated loss of θ̂(·).

7.2 Potential Alternative Approaches

In this paper, we focus on modeling the outcome regression function to derive I2DR. Below,
we outline two other potential approaches and discuss their weaknesses.

7.2.1 A-learning Type Methods

Let’s assume qI(·) satisfies (1) and the partition P0 is known to us. In order to eliminate the
baseline function u0(·), we can apply Robinson’s transformation (see for example, Robinson,
1988; Chernozhukov et al., 2018; Zhao et al., 2022, and the references therein) and compute
q̃I by minimizing

arg min
{qI∈QI :I∈P0}

1

n

n∑
i=1

[Yi − µ̂(Xi)−
∑
I∈P0

{I(Ai ∈ I)− ê(I|Xi)}qI(X)]2,

where µ̂(x) correspond to some nonparametric estimators for E(Y |X = x). Both µ̂ and ê can
be obtained by some generic machine learning methods with good prediction performance.
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When P0 is unknown, one might consider estimating P0 and {qI : I ∈ P0} jointly by

arg min
P∈B(m),

{qI∈QI :I∈P}

1

n

n∑
i=1

[
Yi − µ̂(Xi)−

∑
I∈P
{I(Ai ∈ I)− ê(I|Xi)}qI(Xi)

]2

+ γn|P|,

for some tuning parameter γn. However, different from the objective function in (3), for
a given partition P, all the functions {qI : I ∈ P} need to be jointed estimated. As a
result, standard change point detection algorithms such as dynamic programming or binary
segmentation (Scott and Knott, 1974) cannot be applied. The exhaustive search among
all possible partitions is computationally infeasible. It remains unknown how to efficiently
solve the above optimization problem. We leave it for future research.

7.2.2 Policy Search

As commented in Section 2.2, to apply value search, we need to specify a preference function
π∗. To better illustrate the idea, let us suppose π∗(·;x, I) = p(a|x)/

∫
x′∈I p(a|x

′)dx′. That
is, the preference function is the same as the one we observe in our data. Then, for a
given I2DR d, we can consider the following inverse propensity score weighted estimator for
V π∗(d),

V̂ π∗(d) =
1

n

n∑
i=1

I(Ai ∈ d(Xi))

ê(d(Xi)|Xi)
Yi.

For a given partition P, let DP denote the space of I2DRs that we consider. Then d̂
can be computed by maximizing

arg max
P∈B(m)

arg max
d∈DP

1

n

n∑
i=1

I(Ai ∈ d(Xi))

ê(d(Xi)|Xi)
Yi

= arg max
P∈B(m)

arg max
d∈DP

1

n

n∑
i=1

∑
I∈P

I(Ai ∈ I)

ê(d(Xi)|Xi)
YiI(d(Xi) = I).

Suppose we consider the class of linear decision rules, i.e.,

DP = {d : d(x) = arg max
I∈P

θ>I x̄}.

It suffices to maximize

arg max
P∈B(m)

{qI∈QI :I∈P}

1

n

n∑
i=1

∑
I∈P

I(Ai ∈ I)

ê(d(Xi)|Xi)
YiI{d(Xi) = arg max

I∈P
qI(Xi)}.

Similar to Section 7.2.1, for a given partition P, all the functions {qI : I ∈ P} need to
be jointed estimated. As a result, dynamic programming cannot be applied. It remains
unknown how to efficiently solve the above optimization problem. We leave it for future
research.

33



Cai, Shi, Song, and Lu

7.3 Other Approaches

Recently, Meng et al. (2020) developed set-valued decision rules that contain equally ben-
eficial treatments, borrowing ideas from multicategory classification with reject and refine
options. Their method is developed under a discrete treatment setting with finitely many
treatment options. It remains unclear whether it can be extended to our continuous treat-
ment setting or not. We leave it for future research.

Next, in addition to the jump penalized regression formulation, one can alternatively
consider the following constrained optimization function that directly restricts the number
of estimated intervals to smaller than or equal to some integer M ,

(P̂, {θ̂I : I ∈ P̂}) = arg min
(|P|≤M,{θI :I∈P})

∑
I∈P

(
1

n

n∑
i=1

I(Ai ∈ I)(Yi − q(Xi; θI)
2 + λn|I|‖θI‖22

)
.

It would be interesting to further investigate the theoretical and numerical properties of
this method. However, this is beyond the scope of the current paper and we leave it for
future research.

Finally, our estimated partition is independent of the patient’s baseline information. It
might be practically more useful to consider patient-specific partitions and allow P̂ to be
a function of the baseline information. Additional interests include extending our work to
policy evaluation (Cai et al., 2021) in the infinite horizon (Li et al., 2023). We leave them
for future research.

7.4 Other Penalty Functions in L-JIL

In L-JIL, We use a ridge penalty in (6) to prevent overfitting in large p problems. When the
true regression coefficient θ0(·) is sufficiently sparse, one can consider replacing the ridge
penalty with the LASSO (Tibshirani, 1996) to improve the estimation accuracy. However,
optimizing the resulting objective function requires computing the LASSO estimator m(m−
1)/2 times. This is far more computationally expensive than the proposed method. It
remains unknown whether the computation can be simplified. Finally, We leave it for
future research.
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This appendix is organized as follows. In Section A, we discuss more details on tuning
parameters in L-JIL. Technical proofs are given in Section B.

Appendix A. More on Tuning in L-JIL

For L-JIL, we choose γn and λn simultaneously via cross-validation. As we will show below,
the use of cross-validation will not increase the computation complexity substantially in
L-JIL.

To elaborate, let us revisit the proposed jump interval-learning in Algorithm 1. The
most time consuming part lies in computing the ridge-type estimator

θ̂I(λn) =

 ∑
i∈G−k

XiX
>
i I(Ai ∈ I) + nλn|I|Ep+1

−1 ∑
i∈G−k

XiYiI(Ai ∈ I)

 , (16)

where Ep+1 is the identity matrix with dimension p+ 1, and the cost function

cost(I, λn) =
1

n

∑
i∈Gk

I(Ai ∈ I)
{
Yi −X

>
i θ̂I(λn)

}2
,

for any I ∈ {[l/m, r/m) : 1 ≤ l < r < m} ∪ {[l/m, 1] : 1 ≤ l < m}.
To compute {θ̂I,γn,λn,k : γn ∈ Γn, λn ∈ Λn}, we need to calculate {θ̂I(λn) : λn ∈ Λn} and

{cost(I, λn) : λn ∈ Λn} for any I. We first factorize the matrix
∑

i∈G−k XiX
>
i I(Ai ∈ I) as∑

i∈G−k

XiX
>
i I(Ai ∈ I) = UT U>,

according to the eigendecomposition, where U is some (p+ 1)× (p+ 1) orthogonal matrix
and T = diag(τ0, τ1, · · · , τp) is some diagonal matrix. Let φ = U>{

∑
i∈G−k XiYiI(Ai ∈ I)}.

Then the set of estimators {θ̂I(λn) : λ ∈ Λn} can be calculated by

θ̂I(λn) = Udiag
{

(τ0 + nλn|I|)−1, (τ1 + nλn|I|)−1, · · · , (τp + nλn|I|)−1
}
φ,

simultaneously for all λn.

Compared to separately inverting the matrix
∑

i∈G−k XiX
>
i I(Ai ∈ I) + nλn|I|Ep+1 in

(16) for each λn to compute {θ̂I(λn) : λn ∈ Λn}, the proposed method saves a lot of time
especially for large p. Similarly, based on the eigendecomposition, we have

ncost (I, λn) =
∑
i∈G−k

Y 2
i I(Ai ∈ I) (17)

−2φ>diag
{

(τ0 + nλn|I|)−1, (τ1 + nλn|I|)−1, · · · , (τp + nλn|I|)−1
}
φ

+φ>diag
{
τ0(τ0 + nλn|I|)−2, τ1(τ1 + nλn|I|)−2, · · · , τp(τp + nλn|I|)−2

}
φ,

for all λn ∈ Λn. This facilitates the computation of {cost(I, λn) : λn ∈ Λn}.
After obtaining these cost functions, we can recursively compute the Bellman function

B(r, λn, γn) by

B(r, λn, γn) = min
j∈Rr

{B(j, λn, γn) + γn + cost([j/m, r/m), λn)} ,
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for all r ≥ 1, λn ∈ Λn and γn ∈ Γn. Given the Bellman function, the set of estimators
{θ̂I,γn,λn,k : γn ∈ Γn, λn ∈ Λn} thus can be computed efficiently.

Appendix B. Technical Proofs

In the proofs, we use c, C > 0 to denote some universal constants whose values are allowed
to change from place to place. For any vector φ ∈ Rq, we use φ(j) to denote the j-th element
of φ, for any j ∈ {1, . . . , q}. For any two positive sequences {an}, {bn}, an ∝ bn means that
an ≤ cbn for some universal constant c > 0

B.1 Proof of Theorem 1

We provide the proof for Theorem 1 in this section. We present an outline of the proof first.
Let δmin = minI∈P0 |I|/3 > 0. We divide the proof into four parts. In Part 1, we show that
the following event occurs with probability at least 1−O(n−2),

max
τ∈J(P0)

min
τ̂∈J(P̂)

|τ̂ − τ | < δmin. (18)

By the definition of δmin, this implies that

Pr(|P̂| ≥ |P0|) ≥ 1−O(n−2). (19)

In Part 2, we show that

max
τ∈J(P0)

min
τ̂∈J(P̂)

|τ̂ − τ | = O(n−1 log n), (20)

with probability at least 1−O(n−2). This proves (ii) in Theorem 1. In Part 3, we prove

Pr(|P̂| ≤ |P0|) ≥ 1−O(n−2). (21)

This together with (19) proves (i) in Theorem 1. In the last part, we show (iii) holds.
In the following, we first introduce some notations and auxiliary lemmas. Then, we

present the proofs for Part 1, 2, 3 and 4.
Notations and technical lemmas: For any interval I ⊆ [0, 1], define

θ̂I =

(
1

n

n∑
i=1

I(Ai ∈ I)XiX
>
i + λn|I|Ep+1

)−1(
1

n

n∑
i=1

I(Ai ∈ I)XiYi

)
,

θ0,I =
(

EI(A ∈ I)XX
>
)−1
{EI(A ∈ I)XY },

where X = (1, X>)>. It is immediate to see that the definition of θ̂I here is consistent
with the one defined in (3) for any I ∈ P̂. In addition, under the model assumption in
(13), the definition of θ0,I here is consistent with the one defined in step function model
θ0(a) =

∑
I∈P0

θ0,II(a ∈ I) for any I ∈ P0.
Let I(m) denote the set of intervals

I(m) = {[i1/m, i2/m) : for some integers i1 and i2 that satisfy 0 ≤ i1 < i2 < m}
∪ {[i3/m, 1] : for some integers i3 that satisfy 0 ≤ i3 < m}.
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Let {τ0,k}K−1
k=1 with 0 < τ0,1 < τ0,2 < · · · < τ0,K−1 < 1 be the locations of the true change

points of θ0(·). Set τ0,0 = 0, τ0,K = 1. We introducing the following lemmas.

Lemma 1 Assume conditions in Theorem 1 are satisfied. Then there exist some constants
c̄0 > 0, c0 ≥ 1 such that the following events occur with probability at least 1−O(n−2): for
any interval I ∈ I(m) that satisfies |I| ≥ c̄0n

−1 log n, we have

‖θ̂I − θ0,I‖2 ≤
c0
√

log n√
|I|n

, (22)∥∥∥∥∥ 1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)Xi

∥∥∥∥∥
2

≤
c0

√
|I| log n√
n

, (23)∣∣∣∣∣ 1n
n∑
i=1

I(Ai ∈ I){Yi −X
>
θ0(Ai)}X

>
i {θ0(Ai)− θ0,I}

∣∣∣∣∣ ≤ c0

√
|I| log n√
n

, (24)

1

n

n∑
i=1

I(Ai ∈ I)[X
>
i {θ0(Ai)− θ0,I}]2 ≥

1

c0

∫
I
‖θ0(a)− θ0,I‖22da−

c0

√
|I| log n√
n

, (25)

1

n

n∑
i=1

I(Ai ∈ I)(|Yi|2 + ‖Xi‖22) ≤ c0

(√
|I| log n√

n
+ |I|

)
. (26)

In addition, for any I ∈ [0, 1], we have

‖θ0,I‖2 ≤ c0. (27)

Lemma 2 Assume conditions in Theorem 1 are satisfied. Then there exist some constants
c̄1 > 0, c1 ≥ 1 such that the following events occur with probability at least 1−O(n−2): for
any interval I ∈ I(m) that satisfies

∫
I ‖θ0(a)− θ0,I‖22da ≥ c̄1n

−1 log n,∣∣∣∣∣
n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}X

>
i {θ0(Ai)− θ0,I}

∣∣∣∣∣
≤ c1

√
n

∫
I
‖θ0(a)− θ0,I‖22da log n, (28)

n∑
i=1

I(Ai ∈ I)[X
>
i {θ0(Ai)− θ0,I}]2

≥ n

c1

∫
I
‖θ0(a)− θ0,I‖22da− c1

√
n

∫
I
‖θ0(a)− θ0,I‖22da log n. (29)

Lemma 3 Assume conditions in Theorem 1 are satisfied. Then for sufficiently large n and
any interval I ⊆ [0, 1] of the form [i1, i2) or [i1, i2] with i2 = 1 that satisfies

∫
I ‖θ0(a) −

θ0,I‖22da = cn for some sequence {cn}n such that cn ≥ 0,∀n and cn → 0 as n→∞, we have
either τ0,k−1 ≤ i1 ≤ i2 ≤ τ0,k for some integer k such that 1 ≤ k ≤ K or

τ0,k−2 ≤ i1 < τ0,k−1 < i2 ≤ τ0,k and min
j∈{1,2}

|ij − τ0,k−1| ≤ c2cn,
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for some integer k such that 2 ≤ k ≤ K and some constant c2 > 0, or

τ0,k−3 ≤ i1 < τ0,k−2 < τ0,k−1 < i2 ≤ τ0,k and max
j∈{1,2}

|ij − τ0,k−3+j | ≤ c̄2cn,

for some integer k such that 3 ≤ k ≤ K and some constant c2 > 0.

In addition, the following events occur with probability at least 1 − O(n−2): for any
interval I ∈ I(m) that satisfies

∫
I ‖θ0(a)− θ0,I‖22da ≤ c̄1n

−1 log n, we have∣∣∣∣∣
n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}X

>
i {θ0(Ai)− θ0,I}

∣∣∣∣∣ ≤ c̄2 log n, (30)

for some constant c̄2 > 0.

Lemma 4 Under the conditions in Theorem 1, the following events occur with probability
at least 1−O(n−2): there exists some constant c̄3 > 0 such that minI∈P̂ |I| ≥ c̄3γn.

Part 1: Assume |P0| > 1. Otherwise, (18) trivially hold. Consider the partition P = {[0, 1]}
which consists of a single interval and a zero vector 0p+1. By definition, we have

∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂|

≤
n∑
i=1

(Yi −X
>
i 0p+1)2 + nλn‖0p+1‖22 + nγn =

n∑
i=1

Y 2
i + nγn.

In view of (26), we obtain with probability at least 1−O(n−2),

∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn(|P̂| − 1) ≤ c0n

(√
log n√
n

+ 1

)
.

This implies that under the event defined in (26), we have for sufficiently large n,

γn(|P̂| − 1) ≤ c0

(√
log n√
n

+ 1

)
,

and hence

|P̂| ≤ 2c0γ
−1
n , (31)

for sufficiently large n.

Under the event defined in Lemma 4, we have minI∈P̂ |I| ≥ c̄0n
−1 log n for sufficiently

large n, since γn � n−1 log n. Thus, with probability at least 1−O(n−2), the events defined
in (22)-(26) hold for any interval I ∈ P̂.
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Notice that ∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂| (32)

≥
∑
I∈P̂

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nγn|P̂| ≥ nγn|P̂|+
∑
I∈P̂

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)

2

︸ ︷︷ ︸
η1

+
∑
I∈P̂

n∑
i=1

I(Ai ∈ I){X>i (θ̂I − θ0,I)}2︸ ︷︷ ︸
η2

− 2
∑
I∈P̂

∣∣∣∣∣
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)X

>
i (θ̂I − θ0,I)

∣∣∣∣∣︸ ︷︷ ︸
η3

.

By (22) and (23), we obtain that

η3 ≤ 2
∑
I∈P̂

∥∥∥∥∥
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)Xi

∥∥∥∥∥
2

‖θ̂I − θ0,I‖2 (33)

≤
∑
I∈P̂

2c2
0 log n ≤ 2c2

0 log n|P̂|,

with probability at least 1−O(n−2). Since γn � n−1 log n, η2 ≥ 0, for sufficiently large n,
we have with probability at least 1−O(n−2),

∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂| ≥ η1. (34)

Notice that

η1 =
∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai) +X

>
i θ0(Ai)−X

>
i θ0,I}2

=
∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}2︸ ︷︷ ︸

η4

+
∑
I∈P̂

n∑
i=1

I(Ai ∈ I){X>i θ0(Ai)−X
>
i θ0,I}2

+ 2
∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}{X

>
i θ0(Ai)−X

>
i θ0,I}.

Under the events defined in (24) and (25), it follows that

η1 ≥ η4 + n
∑
I∈P̂

1

c0

∫
I
‖θ0(a)− θ0,I‖22da− 2c0

∑
I∈P̂

√
|I|n log n

≥ η4 + n
∑
I∈P̂

1

c0

∫
I
‖θ0(a)− θ0,I‖22da− 2c0

√
|P̂|n log n,
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where the last inequality is due to Cauchy-Schwarz inequality. By (31) and the condition
that γn � n−1 log n, we obtain

η1 ≥ η4 + n
∑
I∈P̂

1

c0

∫
I
‖θ0(a)− θ0,I‖22da+ o(n), (35)

with probability at least 1−O(n−2). Notice that

η4 =

n∑
i=1

{Yi −X
>
i θ0(Ai)}2 =

∑
I∈P0

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)

2.

Combining (34) with (35), we’ve shown that

∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂|

≥
∑
I∈P0

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)

2 + n
∑
I∈P̂

1

c0

∫
I
‖θ0(a)− θ0,I‖22da+ o(n),

with probability at least 1 − O(n−2). By (27) and the condition that λn = O(n−1 log n),
γn = o(1), this further implies

∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂|

≥
∑
I∈P0

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)

2 + nλn|I|‖θ0,I‖22

)
+ nγn|P0|

+ n
∑
I∈P̂

1

c0

∫
I
‖θ0(a)− θ0,I‖22da+ o(n). (36)

For any integer k such that 1 ≤ k ≤ K − 1, let τ∗0,k be the change point location that

satisfies τ∗0,k = i/m for some integer i and that |τ0,k − τ∗0,k| < m−1. Denoted by P∗ the

oracle partition formed by the change point locations {τ∗0,k}
K−1
k=1 . Set τ∗0,0 = 0, τ∗0,K = 1

and θ∗[τ∗0,k−1,τ
∗
0,k) = θ0,[τ0,k−1,τ0,k) for 1 ≤ k ≤ K − 1 and θ∗[τ∗0,K−1,1] = θ0,[τ0,K−1,1]. Let

∆k = [τ∗0,k−1, τ
∗
0,k) ∩ [τ0,k−1, τ0,k)

c for 1 ≤ k ≤ K − 1 and ∆K = [τ∗0,K−1, 1] ∩ [τ0,K−1, 1]c.

The length of each interval ∆k is at most m−1. Since m � n, we have m−1 � c̄0n
−1 log n.

For any k and sufficiently large n, we can find an interval I ∈ I(m) with length between
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c̄0n
−1 log n and 2c̄0n

−1 log n that covers ∆k. It follows that{∑
I∈P∗

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ
∗
I)

2 + nλn|I|‖θ∗I‖22

)
+ nγn|P∗|

}
(37)

−

∑
I∈P0

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)

2 + nλn|I|‖θ0,I‖22

)
+ nγn|P0|


≤ nλn sup

I⊆[0,1]
‖θ0,I‖22 +

K∑
k=1

n∑
i=1

I(Ai ∈ ∆k)

(
Y 2
i + sup

I⊆[0,1]
‖θ0,I‖22‖Xi‖22

)

≤ nλn sup
I⊆[0,1]

‖θ0,I‖22 +K sup
I∈I(m)

1≤c̄−1
0 |I|n log−1 n≤2

n∑
i=1

I(Ai ∈ I)

(
Y 2
i + sup

I⊆[0,1]
‖θ0,I‖22‖Xi‖22

)
.

Since λn = O(n−1 log n), combining (37) together with (26) and (27), we obtain with
probability at least 1−O(n−2),{∑

I∈P∗

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ
∗
I)

2 + nλn|I|‖θ∗I‖22

)
+ nγn|P∗|

}

−

∑
I∈P0

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)

2 + nλn|I|‖θ0,I‖22

)
+ nγn|P0|


≤ c2

0nλn +K(c2
0 + 1)c0(

√
2c̄0 + 2c̄0) log n = O(log n) = o(n). (38)

By definition, we have

∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂|

≤
∑
I∈P∗

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ
∗
I)

2 + nλn|I|‖θ∗I‖22

)
+ nγn|P∗|.

In view of (36) and (38), we obtain that

∑
I∈P̂

∫
I
‖θ0(a)− θ0,I‖22da = o(1), (39)

with probability at least 1 − O(n−2). We now show (18) holds under the event defined in
(39). Otherwise, there exists some τ0 ∈ J(P0) such that |τ̂ − τ0| ≥ δmin, for all τ̂ ∈ J(P̂).
Under the event defined in (39), we obtain that∫ τ0+δmin

τ0−δmin

‖θ0(a)− θ0,[τ0−δmin,τ0+δmin)‖22da = o(1). (40)
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On the other hand, since θ0(a) is a constant function on [τ0− δmin, τ0) or [τ0, τ0 + δmin), we
have ∫ τ0+δmin

τ0−δmin

‖θ0(a)− θ0,[τ0−δmin,τ0+δmin)‖22da

≥ min
θ∈Rp+1

(
δmin‖θ0,[τ0−δmin,τ0) − θ‖22 + δmin‖θ0,[τ0,τ0+δmin) − θ‖22

)
≥ δmin

2
‖θ0,[τ0−δmin,τ0) − θ0,[τ0,τ0+δmin)‖22 ≥

δminκ
2
0

2
,

where

κ0 ≡ min
I1,I2∈P0

I1 and I2 are adjacent

‖θ0,I1 − θ0,I2‖2 > 0.

This apparently violates (40). (18) thus holds with probability at least 1−O(n−2).

Part 2: By (32) and (33), we have with probability at least 1−O(n−2) that∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂| ≥ η1 + nγn|P̂| − 2c2

0|P̂| log n.

Notice that

η1 = η4 + 2
∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}{X

>
i θ0(Ai)−X

>
i θ0,I}

+
∑
I∈P̂

n∑
i=1

I(Ai ∈ I){X>i θ0(Ai)−X
>
i θ0,I}2.

Denoted by T(m) the set of intervals I ∈ I(m) with
∫
I ‖θ0(a)− θ0,I‖22da ≥ c̄1n

−1 log n.
Under the events defined in Lemma 2 and 3, we have

η1 ≥ η4 + 2
∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}{X

>
i θ0(Ai)−X

>
i θ0,I}

+
∑

I∈P̂,I∈T(m)

n∑
i=1

I(Ai ∈ I){X>i θ0(Ai)−X
>
i θ0,I}2 ≥ η4 − 2c̄2|P̂| log n

+
∑

I∈P̂,I∈T(m)

(
n

c1

∫
I
‖θ0(a)− θ0,I‖22da− 3c1

√
n

∫
I
‖θ0(a)− θ0,I‖22da log n

)
.

To summarize, we’ve shown that with probability at least 1−O(n−2),∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂| (41)

≥
∑

I∈P̂,I∈T(m)

(
n

c1

∫
I
‖θ0(a)− θ0,I‖22da− 3c1

√
n

∫
I
‖θ0(a)− θ0,I‖22da log n

)

+ η4 + nγn|P̂| − 2(c2
0 + c̄2)|P̂| log n.
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It follows from (37) and (38) that

η4 + nλn sup
I∈P0

‖θ0,I‖22 + nγn|P0|

≥

{∑
I∈P∗

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ
∗
I)

2 + nλn|I|‖θ∗I‖22

)
+ nγn|P∗|

}
− c∗0 log n,

for some constants c∗0 > 0, with probability at least 1−O(n−2). By (27) and the condition
that λn = O(n−1 log n), there exists some constant c∗1 > c∗0 such that

η4 + nγn|P0|

≥

{∑
I∈P∗

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ
∗
I)

2 + nλn|I|‖θ∗I‖22

)
+ nγn|P∗|

}
− c∗1 log n,

with probability at least 1−O(n−2). In view of (41), we’ve shown that with probability at
least 1−O(n−2),∑

I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂| (42)

≥
∑

I∈P̂,I∈T(m)

(
n

c1

∫
I
‖θ0(a)− θ0,I‖22da− 3c1

√
n

∫
I
‖θ0(a)− θ0,I‖22da log n

)

+

{∑
I∈P∗

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ
∗
I)

2 + nλn|I|‖θ∗I‖22

)
+ nγn|P∗|

}
+ nγn|P̂| − (2c2

0 + 2c̄2)|P̂| log n− c∗1 log n− nγn|P0|.

By definition, ∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂|

≤
∑
I∈P∗

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ
∗
I)

2 + nλn|I|‖θ∗I‖22

)
+ nγn|P∗|.

Thus, we have with probability at least 1−O(n−2),∑
I∈P̂,I∈T(m)

(
n

c1

∫
I
‖θ0(a)− θ0,I‖22da− 3c1

√
n

∫
I
‖θ0(a)− θ0,I‖22da log n

)

≤ (2c2
0 + 2c̄2)|P̂| log n+ c∗1 log n+ nγn|P0| − nγn|P̂|,

and hence,

∑
I∈P̂,I∈T(m)

n

c1

(√∫
I
‖θ0(a)− θ0,I‖22da−

3c1

2
n−1/2

√
log n

)2

(43)

≤ (2c2
0 + 2c̄2 + 9c1/4)|P̂| log n+ c∗1 log n+ nγn|P0| − nγn|P̂|.
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Under the event defined in (19), we have either |P̂| ≥ 2|P0|, or |P0| ≤ |P̂| ≤ 2|P0|. When
|P̂| ≥ 2|P0|, it follows from the condition nγn � log n that for sufficiently large n, γn/4 ≥
2c2

0 + 2c̄2 + 9c1/4, n|P0|γn ≥ 2c∗1 log n and hence

(2c2
0 + 2c̄2 + 9c1/4)|P̂| log n+ c∗1 log n+ nγn|P0| − nγn|P̂|

≤ (2c2
0 + 2c̄2 + 9c1/4)|P̂| log n+ c∗1 log n− nγn|P̂|/4− nγn|P0|/2

≤ (2c2
0 + 2c̄2 + 9c1/4)|P̂| log n− nγn|P̂|/4 ≤ 0,

When |P0| ≤ |P̂| ≤ 2|P0|, we have

(2c2
0 + 2c̄2 + 9c1/4)|P̂| log n+ c∗1 log n+ nγn|P0| − nγn|P̂|

≤ 2(2c2
0 + 2c̄2 + 9c1/4)|P0| log n+ c∗1 log n.

In view of (43), we have with probability at least 1−O(n−2),

∑
I∈P̂,I∈T(m)

n

c1

(√∫
I
‖θ0(a)− θ0,I‖22da−

3c1

2
n−1/2

√
log n

)2

≤ c log n,

for some constant c > 0. Thus, with probability at least 1−O(n−2), we have∫
I
‖θ0(a)− θ0,I‖22da = O(n−1 log n),

for any I ∈ P̂ ∩ T(m). By the definition of T(m), we obtain that with probability at least
1−O(n−2), ∫

I
‖θ0(a)− θ0,I‖22da = O(n−1 log n), ∀I ∈ P̂. (44)

Consider a given change point τ ∈ P0, there exists an interval I ∈ P̂ of the form [i1, i2)
or [i1, i2] with i2 = 1 such that i1 ≤ τ < i2. Under the event defined in (44), it follows from
Lemma 3 such that min(|i1 − τ |, |i2 − τ |) = O(n−1 log n). This proves (20).
Part 3: Using similar arguments in proving (30), we can show that the following events
occur with probability at least 1−O(n−2): for any interval I ∈ P̂, we have∣∣∣∣∣

n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}X

>
i {θ0(Ai)− θ0,I}

∣∣∣∣∣ ≤ C log n,

for some constant C > 0.
By (44), using similar arguments in proving (41) and (42), we can show the following

event occurs with probability at least 1−O(n−2),∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂|

≥

{∑
I∈P∗

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ
∗
I)

2 + nλn|I|‖θ∗I‖22

)
+ nγn|P∗|

}
+ nγn|P̂| − C|P̂| log n− C log n− nγn|P0|,
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for some constant C > 0. By definition,

∑
I∈P̂

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nλn|I|‖θ̂I‖22

)
+ nγn|P̂|

≤
∑
I∈P∗

(
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ
∗
I)

2 + nλn|I|‖θ∗I‖22

)
+ nγn|P∗|.

Thus, we have with probability at least 1−O(n−2),

nγn|P̂| − C|P̂| log n− C log n− nγn|P0| ≤ 0.

Since γn � n−1 log n, the above event occurs only when |P̂| ≤ |P0|. To see this, notice that
if |P̂| > |P0|, we have

nγn − C log n− C log n

|P̂|
− nγn

|P0|
|P̂|
≥ nγn − C log n− C log n

|P0|+ 1
− nγn

|P0|
|P0|+ 1

=
nγn
|P0|+ 1

− C log n− C log n

|P0|+ 1
� 0,

since γn � n−1 log n. This proves (21).

Part 4: In the first three parts, we’ve shown that

|P̂| = |P0| and max
τ∈J(P0)

min
τ̂∈J(P̂)

|τ̂ − τ | = O(n−1 log n), (45)

with probability tending to 1. For sufficiently large n, the event defined in (45) implies that
|I| ≥ c̄0n

−1 log n for any I ∈ P̂. Thus, it follows from Lemma 1 that the following occurs
with probability at least 1−O(n−2): for any I ∈ P̂, we have

|I|‖θ̂I − θ0,I‖22 ≤ c2
0n
−1 log n. (46)

Under the events defined in (44), (45) and (46), we have∫ 1

0
‖θ̂(a)− θ0(a)‖22da =

∑
I∈P̂

∫
I
‖θ̂I − θ0(a)‖22da =

∑
I∈P̂

∫
I
‖θ̂I − θ0,I + θ0,I − θ0(a)‖22da

=
∑
I∈P̂

∫
I
‖θ̂I − θ0,I‖22da+

∑
I∈P̂

∫
I
‖θ0,I − θ0(a)‖22da+ 2

∑
I∈P̂

∫
I
(θ̂0,I − θ0,I)

>{θ0,I − θ0(a)}da

≤ 2
∑
I∈P̂

∫
I
‖θ̂I − θ0,I‖22da+ 2

∑
I∈P̂

∫
I
‖θ0,I − θ0(a)‖22da = O(|P̂|n−1 log n) = O(|P0|n−1 log n),

where the first inequality is due to Cauchy-Schwarz inequality. This proves (iii). The proof
is hence completed.
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B.2 Proof of Lemma 1

Proof of (22): By definition, we have

‖θ̂I − θ0,I‖2

≤

∥∥∥∥∥∥
(

1

n

n∑
i=1

I(Ai ∈ I)XiX
>
i + λn|I|Ep+1

)−1(
1

n

n∑
i=1

I(Ai ∈ I)XiYi − EI(A ∈ I)XY

)∥∥∥∥∥∥
2

+

∥∥∥∥∥∥

(

1

n

n∑
i=1

I(Ai ∈ I)XiX
>
i + λn|I|Ep+1

)−1

−
(

EI(A ∈ I)XX
>
)−1

 {EI(A ∈ I)XY }

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
(

1

n

n∑
i=1

I(Ai ∈ I)XiX
>
i + λn|I|Ep+1

)−1
∥∥∥∥∥∥

2︸ ︷︷ ︸
η1(I)

∥∥∥∥∥
(

1

n

n∑
i=1

I(Ai ∈ I)XiYi − EI(A ∈ I)XY

)∥∥∥∥∥
2︸ ︷︷ ︸

η2(I)

+

∥∥∥∥∥∥
(

1

n

n∑
i=1

I(Ai ∈ I)XiX
>
i + λn|I|Ep+1

)−1

−
(

EI(A ∈ I)XX
>
)−1

∥∥∥∥∥∥
2︸ ︷︷ ︸

η3(I)

‖EI(A ∈ I)XY ‖2︸ ︷︷ ︸
η4(I)

.

It follows from Cauchy-Schwarz inequality that

‖θ̂I − θ0,I‖22 ≤ 2η2
1(I)η2

2(I) + 2η2
3(I)η2

4(I). (47)

In the following, we provides upper bounds for

max
I∈I(m)

|I|≥c̄0n−1 logn

ηj(I),

for j = 1, 2, 3, 4, where the constant c̄0 will be specified later. The uniform convergence
rates of ‖θ̂I − θ0,I‖2 can thus be derived.

Without loss of generality, assume the constant ω in Condition (A4) is greater than or
equal to log−1/2 2. Then, we have exp(1/ω2) ≤ exp(log 2) = 2 and hence ‖1‖ψ2|A ≤ ω.

Therefore, we have maxj∈{1,...,p+1} ‖X
(j)‖ψ2|A ≤ ω, almost surely. By the definition of the

conditional Orlicz norm, this implies that

E

1 +
+∞∑
q=1

|X(j)|2q

ω2qq!

∣∣∣∣∣∣A
 ≤ 2, ∀j ∈ {1, . . . , p+ 1},

almost surely, and hence

E(|X(j)|2q|A) ≤ q!ω2q, ∀j ∈ {1, . . . , p+ 1}, q = 1, 2, . . . (48)

By Cauchy-Schwarz inequality, we obtain that

E(|X(j1)
X

(j2)|q|A) ≤
√

E(|X(j1)|2q|A)E(|X(j2)|2q|A) ≤ q!ω2q, (49)
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for any j1, j2 ∈ {1, . . . , p+ 1} and any integer q ≥ 1, almost surely.

Since A has a bounded probability density function pA(·) in [0, 1], there exists some
constant C0 > 0 such that

sup
a∈[0,1]

pA(a) ≤ C0 and Pr(A ∈ I) ≤ C0|I|, (50)

for any interval I ∈ [0, 1]. This together with (49) yields that for any integer q ≥ 1,
j1, j2 ∈ {1, . . . , p+ 1} and any interval I ∈ [0, 1], we have

E|I(A ∈ I)X
(j1)

X
(j2)|q = E{I(A ∈ I)E(|X(j1)

X
(j2)|q|A)} ≤ q!ω2qEI(A ∈ I) ≤ C0q!ω

2q|I|.

It follows that

E|I(A ∈ I)X
(j1)

X
(j2) − EI(A ∈ I)X

(j1)
X

(j2)|q

≤ E|I(A1 ∈ I)X
(j1)
1 X

(j2)
1 − I(A2 ∈ I)X

(j1)
2 X

(j2)
2 |q

≤ 2q−1E|I(A1 ∈ I)X
(j1)
1 X

(j2)
1 |q + 2q−1E|I(A2 ∈ I)X

(j1)
2 X

(j2)
2 |q

= 2qE|I(A ∈ I)X
(j1)

X
(j2)|q ≤ C0q!(2ω

2)q|I|,

where the second inequality follows from Jensen’s inequality and the third inequality is due
to that |a+ b|q ≤ 2q−1|a|q + 2q−1|b|q−1, for any a, b ∈ R and q ≥ 1.

By the Bernstein’s inequality (see Lemma 2.2.11, van der Vaart and Wellner, 1996), we
obtain that

Pr

(∣∣∣∣∣
n∑
i=1

I(Ai ∈ I)X
(j1)
i X

(j2)
i − nEI(A ∈ I)X

(j1)
X

(j2)

∣∣∣∣∣ ≥ tω2
√
|I|n log n

)
(51)

≤ 2 exp

(
−1

2

ω4t2|I|n log n

8nC0ω4|I|+ 2ω4t
√
|I|n log n

)
≤ 2 exp

(
− t2 log n

16C0 + 4t(n|I|)−1/2
√

log n

)
,

for any t > 0, any integers j1, j2 ∈ {1, . . . , p+ 1} and any interval I ∈ [0, 1]. Set t = 20
√
C0,

for any interval I with |I| ≥ C−1
0 n−1 log n, we have

t2 log n ≥ 4{16C0 + 4t(n|I|)−1/2
√

log n}.

It follows from (51) that

Pr

(∣∣∣∣∣
n∑
i=1

I(Ai ∈ I)X
(j1)
i X

(j2)
i − nEI(A ∈ I)X

(j1)
X

(j2)

∣∣∣∣∣ ≥ 20ω2
√
C0|I|n log n

)
≤ 2n−4,

for any integers j1, j2 ∈ {1, . . . , p+ 1} and any interval I that satisfies |I| ≥ C−1
0 n−1 log n.

Notice that the number of elements in I(m) is bounded by (m+1)2. Since m � n, it follows
from Bonferroni’s inequality that

Pr(A1) ≥ 1− 2(m+ 1)2(p+ 1)2n−4 = 1−O(n−2), (52)
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where the event A1 is defined as

⋂
j1,j2∈{1,...,p+1}
I∈I(m)

|I|≥C−1
0 n−1 logn

{∣∣∣∣∣
n∑
i=1

I(Ai ∈ I)X
(j1)
i X

(j2)
i − nEI(A ∈ I)X

(j1)
X

(j2)

∣∣∣∣∣ ≤ 20ω2
√
C0|I|n log n

}
.

For any symmetric matrix A, we have ‖A‖2 ≤
√
‖A‖∞‖A‖1 = ‖A‖∞. Thus, under the

event defined in A1, we have∥∥∥∥∥
n∑
i=1

I(Ai ∈ I)XiX
>
i − nEI(A ∈ I)XX

>
∥∥∥∥∥

2

≤

∥∥∥∥∥
n∑
i=1

I(Ai ∈ I)XiX
>
i − nEI(A ∈ I)XX

>
∥∥∥∥∥
∞

≤ 20ω2(p+ 1)
√
C0|I|n log n,

for any I ∈ I(m) with |I| ≥ C−1
0 n−1 log n. Since λn = O(n−1 log n), we obtain∥∥∥∥∥

n∑
i=1

I(Ai ∈ I)XiX
>
i − nEI(A ∈ I)XX

>
+ nλnE|I|

∥∥∥∥∥
2

≤ nλn|I|+

∥∥∥∥∥
n∑
i=1

I(Ai ∈ I)XiX
>
i − nEI(A ∈ I)XX

>
∥∥∥∥∥

2

≤ c
√
|I|n log n,

for some constant c > 0. To summarize, under the event defined in A1, we’ve shown that∥∥∥∥∥
n∑
i=1

I(Ai ∈ I)XiX
>
i − nEI(A ∈ I)XX

>
+ nλnE|I|

∥∥∥∥∥
2

≤ c
√
|I|n log n, (53)

for any interval I ∈ I(m) with |I| ≥ C−1
0 n−1 log n.

Let Σ = EXX
>

. If Σ is singular, there exists some nonzero vector a ∈ Rp and some
b ∈ R such that a>X = b, almost surely. As a result, the covariance matrix of X is
degenerate. Thus, we’ve reached a contraction. Therefore, Σ is nonsingular. There exists
some constant c̄∗ > 0 such that

λmin(Σ) ≥ c̄∗. (54)

By (A3), we have

Pr(A ∈ I|X) ≥ c∗|I|,

for any interval I ∈ [0, 1]. This together with (54) implies that

λmin

(
EI(A ∈ I)XX

>
)

= λmin

(
EPr(A ∈ I|X)XX

>
)

(55)

≥ c∗λmin(EXX
>

)|I| ≥ c∗c̄∗|I|.

For any interval I with |I| ≥ 4c2(c∗c̄∗)
−2n−1 log n, we have

c∗c̄∗|I| − c
√
|I|n−1 log n ≥ c∗c̄∗|I|

2
.
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In view of (53) and (55), we obtain that

λmin

(
1

n

n∑
i=1

I(Ai ∈ I)XiX
>
i + λnE|I|

)
≥ λmin

(
EI(A ∈ I)XX

>
)

(56)

− 1

n

∥∥∥∥∥
n∑
i=1

I(Ai ∈ I)XiX
>
i − nEI(A ∈ I)XX

>
+ nλnE|I|

∥∥∥∥∥
2

≥ c∗c̄∗|I|
2

.

Set c̄0 = max(4c2(c∗c̄∗)
−1, C−1

0 ), it is immediate to see that

max
I∈I(m)

|I|≥c̄0n−1 logn

η1(I) ≤ 2

c∗c̄∗|I|
, (57)

under the event defined in A1.

For any I ∈ [0, 1], we have∥∥∥∥∥∥
(

1

n

n∑
i=1

I(Ai ∈ I)XiX
>
i + λnE|I|

)−1

−
(

EI(A ∈ I)XX
>
)−1

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
(

1

n

n∑
i=1

I(Ai ∈ I)XiX
>
i + λnE|I|

)−1
∥∥∥∥∥∥

2

∥∥∥∥(EI(A ∈ I)XX
>
)−1

∥∥∥∥
2

×

∥∥∥∥∥
n∑
i=1

I(Ai ∈ I)XiX
>
i − nEI(A ∈ I)XX

>
+ nλnE|I|

∥∥∥∥∥
2

This together with (53), (55) and (56) yields

max
I∈I(m)

|I|≥c̄0n−1 logn

η3(I) ≤ 2c
√
n−1 log n

c2
∗c̄

2
∗|I|3/2

, (58)

under the event defined in A1.

Similar to (49), we can show that for any integer q ≥ 1 and j ∈ {1, . . . , p+ 1},

E(|X(j)
Y |q|A) ≤ q!ω2q, (59)

almost surely. Specifically, set q = 1, we obtain E(|X(j)
Y ||A) ≤ ω2. By (50), we have that

‖EI(A ∈ I)XY ‖2 ≤

p+1∑
j=1

|EI(A ∈ I)X
(j)
Y |2
1/2

≤

p+1∑
j=1

|E{I(A ∈ I)E(|X(j)
Y ||A)}|2

1/2

≤

p+1∑
j=1

|ω2E(A ∈ I)|2
1/2

≤ C0

√
p+ 1ω2|I|.
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for any I ∈ [0, 1]. This implies that

max
I∈I(m)

|I|≥c̄0n−1 logn

η4(I) ≤ C0

√
p+ 1ω2|I|. (60)

Moreover, in view of (51) and (52), we can similarly show that

Pr(A2) ≥ 1− 2(m+ 1)2(p+ 1)n−4 = 1−O(n−2), (61)

where the event A2 is defined as

⋂
j∈{1,...,p+1}
I∈I(m)

|I|≥c̄0n−1 logn

{∣∣∣∣∣
n∑
i=1

I(Ai ∈ I)X
(j)
i Yi − nEI(A ∈ I)X

(j)
Y

∣∣∣∣∣ ≤ 20ω2
√
C0|I|n log n

}
.

Under the event defined in A2, we have

max
I∈I(m)

|I|≥c̄0n−1 logn

η2(I) ≤ 20ω2
√

(p+ 1)C0|I|n−1 log n. (62)

Combining (57) together with (58), (60), (62) yields

max
I∈I(m)

|I|≥c̄0n−1 logn

|I|‖θ̂I − θ0,I‖22 = O

(
log n

n

)
,

under the events defined in A1 and A2. The proof is thus completed based on (52) and
(61).

Proofs of (23), (24) and (27): We first prove (27). By the definition of θ0,I , we have

‖θ0,I‖2 ≤
∥∥∥∥(EXX

>I(A ∈ I)
)−1

∥∥∥∥
2

∥∥EXY I(A ∈ I)
∥∥

2
.

It follows from (50), (55) and (59) that

‖θ0,I‖2 ≤ (c∗c̄∗|I|)−1

√√√√p+1∑
j=1

[
E
{(

E|X(j)
Y ||A

)
I(A ∈ I)

}]2
≤
√
p+ 1(c∗c̄∗)

−1C0ω
2,

for any I ∈ [0, 1]. Assertion (27) thus follows.
Consider (23). Since p is fixed, it suffices to show for any j ∈ {1, . . . , p+1}, the following

event occurs with probability at least 1−O(n−2):∣∣∣∣∣ 1n
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)X

(j)
i

∣∣∣∣∣
2

= O

(√
|I| log n√

n

)
. (63)

By (27), (63) can be proven in a similar manner as (52) and (61). (24) can be similarly
proven.
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Proof of (25): Similar to (23), we can show that the following event occurs with probability
at least 1−O(n−2): for any I ∈ I(m) such that |I| ≥ c̄0n

−1 log n,∣∣∣∣∣ 1n
n∑
i=1

I(Ai ∈ I)[X
>
i {θ0(Ai)− θ0,I}]2 − EI(A ∈ I)[X

>{θ0(A)− θ0,I}]2
∣∣∣∣∣ = O

(√
|I| log n√

n

)
.

Notice that

EI(A ∈ I)[X
>{θ0(A)− θ0,I}]2 = E

∫
I
[X
>{θ0(a)− θ0,I}]2π(a|X)da

≥ c∗E

∫
I
[X
>{θ0(a)− θ0,I}]2da = c∗

∫
I
{θ0(a)− θ0,I}>Σ{θ0(a)− θ0,I}da

≥ c∗λmin(Σ)

∫
I
‖θ0(a)− θ0,I‖22da ≥ c∗c̄∗

∫
I
‖θ0(a)− θ0,I‖22da, (64)

where the first inequality is due to Condition (A3) and the last inequality is due to (54).

It follows that

1

n

n∑
i=1

I(Ai ∈ I)[X
>
i {θ0(Ai)− θ0,I}]2 ≥ c∗c̄∗

∫
I
‖θ0(a)− θ0,I‖22da−O

(√
|I| log n√

n

)
,

for any I ∈ I(m) such that |I| ≥ c̄0n
−1 log n, with probability at least 1 − O(n−2). This

completes the proof.

Proof of (26): Similar to (23), we can show that the following event occurs with probability
at least 1−O(n−2): for any I ∈ I(m) such that |I| ≥ c̄0n

−1 log n,∣∣∣∣∣ 1n
n∑
i=1

I(Ai ∈ I)(|Yi|2 + ‖Xi‖22)− EI(A ∈ I)(Y 2 + ‖X‖22)

∣∣∣∣∣ = O

(√
|I| log n√

n

)
. (65)

By (50) and (48), we have

EI(A ∈ I)‖X‖22 ≤
p+1∑
j=1

EI(A ∈ I)|X(j)|2 ≤ (p+ 1)C0ω
2|I|.

Similarly, we can show

EI(A ∈ I)Y 2 ≤ C0ω
2|I|,

and thus

EI(A ∈ I)(Y 2 + ‖X‖22) ≤ (p+ 2)C0ω
2|I|.

This together with (65) yields (26).
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B.3 Proof of Lemma 2

We first prove (28). By (27), we have supa∈[0,1] ‖θ0(a)‖2 ≤ c0 and hence

sup
a∈[0,1]

‖θ0(a)− θ0,I‖2 ≤ 2c0. (66)

Similar to (48), we can show that for any integer q ≥ 1,

E(|Y |2q|A) ≤ q!ω2q. (67)

For any I ⊆ I(m) and integer q ≥ 2, it follows from (59), (66) and (67) that

E
(

[Y X
>{θ0(A)− θ0,I}]q|A

)
≤ ‖θ0(A)− θ0,I‖q2E(|Y |q‖X‖q2|A) (68)

≤ 1

2
‖θ0(A)− θ0,I‖q2E

 |Y |2q +

∣∣∣∣∣∣
p+1∑
j=1

(X
(j)

)2

∣∣∣∣∣∣
q∣∣∣∣∣∣A

 ≤ 1

2
‖θ0(A)− θ0,I‖q2q!ω

2q

+
1

2
‖θ0(A)− θ0,I‖q2(p+ 1)q−1

p+1∑
j=1

E(|X(j)|2q|A) ≤ q!ω2q

2
{1 + (p+ 1)q}‖θ0(A)− θ0,I‖q2

≤ q!ω2q(p+ 1)q‖θ0(A)− θ0,I‖q2 ≤ q!ω
2q(p+ 1)q(2c0)q−2‖θ0(A)− θ0,I‖22.

Similarly, we can show

E
(

[{X>θ0(A)}X>{θ0(A)− θ0,I}]q|A
)
≤ q!ω2q(p+ 1)q2q−2c2q−2

0 ‖θ0(A)− θ0,I‖22.

This together with (68) yields that for any integer q ≥ 2, I ⊆ [0, 1], we have

E
(

[{Y −X>θ0(A)}X>{θ0(A)− θ0,I}]q|A
)
≤ q!cq‖θ0(A)− θ0,I‖22, (69)

for some constant c > 0. Combining (50) together with (69), we obtain that for any integer
q ≥ 2, I ⊆ [0, 1],

E[I(A ∈ I){Y −X>θ0(A)}X>{θ0(A)− θ0,I}]q ≤ C0q!c
q

∫
I
‖θ0(a)− θ0,I‖22pA(a)da

≤ C0q!c
q

∫
I
‖θ0(a)− θ0,I‖22da.

Applying the Bernstein’s inequality (using similar arguments in (51) and (52)), we can
show that with probability at least 1 − O(n−2), we have for any interval I that satisfies∫
I ‖θ0(a)− θ0,I‖22da ≥ (C0)−1n−1 log n and I ∈ I(m),∣∣∣∣∣
n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}X

>
i {θ0(Ai)− θ0,I}

∣∣∣∣∣ ≤ O(1)
√
n log n

(∫
I
‖θ0(a)− θ0,I‖22da

)1/2

,

where O(1) denotes some positive constant. This proves (28).
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Similarly, we can show that with probability at least 1−O(n−2), there exists some con-
stant C > 0 such that for any interval I that satisfies

∫
I ‖θ0(a)−θ0,I‖22da ≥ (C0)−1n−1 log n

and I ∈ I(m), we have∣∣∣∣∣
n∑
i=1

I(Ai ∈ I)[X
>
i {θ0(Ai)− θ0,I}]2 − nEI(A ∈ I)[X

>{θ0(A)− θ0,I}]2
∣∣∣∣∣

≤ O(1)
√
n log n

(∫
I
‖θ0(a)− θ0,I‖22da

)1/2

,

for some postive constant O(1). This together with (64) yields (29).

B.4 Proof of Lemma 3

Consider the following three categories of intervals.
Category 1: Suppose i1 and i2 satisfy τ0,k−1 ≤ i1 ≤ i2 ≤ τ0,k for some integer k such that
1 ≤ k ≤ K. Then apparently, we have θ0,I = θ0(a), ∀a ∈ I, and hence

∫
I ‖θ0(a)−θ0,I‖22da =

0. The assertion
∫
I ‖θ0(a)− θ0,I‖22da ≤ cn is thus automatically satisfied.

Category 2: Suppose there exists some integer k such that 2 ≤ k ≤ K and i1, i2 satisfy
τ0,k−2 ≤ i1 < τ0,k−1 < i2 ≤ τ0,k. Assume we have

min
j∈{1,2}

|ij − τ0,k−1| ≥
3

κ2
0

cn.

where

κ0 ≡ min
I1,I2∈P0

I1 and I2 are adjacent

‖θ0,I1 − θ0,I2‖2 > 0.

Since cn → 0, for sufficiently large n, we have τ0,k > τ0,k−1 + 3κ−2
0 cn and τ0,k−2 + 3κ−2

0 cn <
τ0,k−1. Then, we have∫

I
‖θ0(a)− θ0,I‖22da ≥ min

θ∈Rp+1

∫ τ0,k−1+3κ−2
0 cn

τ0,k−1−3κ−2
0 cn

‖θ − θ0(a)‖22da

≥ 6

κ−2
0

cn min
θ∈Rp+1

(
‖θ − θ0,[τ0,k−2,τ0,k−1)‖22, ‖θ − θ0,[τ0,k−1,τ0,k)‖22

)
≥ 6

κ−2
0

cn
κ−2

0

4
> cn.

This violates the assertion that
∫
I ‖θ0(a)− θ0,I‖22da ≤ cn. We’ve thus reached a contradic-

tion. As a result, we have

min
j∈{1,2}

|ij − τ0,k−1| ≤
3

κ2
0

cn.

Category 3: Suppose there exists some integer k such that 3 ≤ k ≤ K and i1, i2 satisfy
τ0,k−3 ≤ i1 < τ0,k−2 < τ0,k−1 < i2 ≤ τ0,k. Assume we have

|i1 − τ0,k−2| ≥
3

κ2
0

cn.
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Then for sufficiently large n, we have∫
I
‖θ0(a)− θ0,I‖22da ≥ min

θ∈Rp+1

∫ τ0,k−2+3κ−2
0 cn

τ0,k−2−3κ−2
0 cn

‖θ − θ0(a)‖22da

≥ 6

κ−2
0

cn min
θ∈Rp+1

(
‖θ − θ0,[τ0,k−2,τ0,k−1)‖22, ‖θ − θ0,[τ0,k−1,τ0,k)‖22

)
≥ 6

κ−2
0

cn
κ−2

0

4
> cn.

This violates the assertion that
∫
I ‖θ0(a)− θ0,I‖22da ≤ cn. We’ve thus reached a contradic-

tion. As a result, we have |i1 − τ0,k−2| ≤ 3κ−2
0 cn. Similarly, we can show |i2 − τ0,k−1| ≤

3κ−2
0 cn. Therefore, we obtain

max
j∈{1,2}

|ij − τ0,k−3+j | ≤
3

κ2
0

cn.

If I belongs to none of these categories, then there exists some integer k such that
2 ≤ k ≤ K and i1, i2 satisfy i1 ≤ τ0,k−2 and i2 ≥ τ0,k. Using similar arguments, we can
show that ∫

I
‖θ0(a)− θ0,I‖22da ≥

∫ τ0,k

τ0,k−2

‖θ0(a)− θ0,I‖22da ≥
κ2

0

4
min
I∈P0

|I|.

For sufficiently large n, this violates the assertion that
∫
I ‖θ0(a)−θ0,I‖22da ≤ cn. We’ve thus

reached a contradiction. Therefore, we shall have τ0,k−2 ≤ i1 < i2 ≤ τ0,k. This completes
the first part of the proof.

We now show (30). Take cn = c̄1n
−1 log n and consider any interval I ∈ I(m) that

satisfies
∫
I ‖θ0(a)− θ0,I‖22da ≤ c̄1n

−1 log n.
If I belongs to Category 1, then θ0(a) = θ0,I for any a ∈ I. As a result, we have

n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}X

>
i {θ0(Ai)− θ0,I} = 0.

If I belongs to Category 2, then there exists some integer k such that 2 ≤ k ≤ K and
i1, i2 satisfy τ0,k−2 ≤ i1 < τ0,k−1 < i2 ≤ τ0,k. Thus, we have

n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}X

>
i {θ0(Ai)− θ0,I}

=
n∑
i=1

I(Ai ∈ [i1, τ0,k−1)){Yi −X
>
i θ0(Ai)}X

>
i {θ0(Ai)− θ0,I}︸ ︷︷ ︸

ζ1

+

n∑
i=1

I(Ai ∈ [τ0,k−1, i2)){Yi −X
>
i θ0(Ai)}X

>
i {θ0(Ai)− θ0,I}︸ ︷︷ ︸

ζ2

.

Notice that we’ve shown

min
j∈{1,2}

|ij − τ0,k−1| ≤
3c̄1

κ2
0

n−1 log n.
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Without loss of generality, suppose |i1−τ0,k−1| ≤ 3c̄1κ
−2
0 n−1 log n. Using similar arguments

in (37) and (38), we can show that ζ1 = O(log n), with probability at least 1−O(n−2).
As for ζ2, consider intervals of the form [τ0,j , (m + 1)−1i) for j = 0, 1, . . . ,K − 1, i =

1, . . . ,m + 1. Denoted by J(m) the set consisting of all such intervals. Similar to Lemma
1, we can show that the following event occurs with probability at least 1−O(n−2):∥∥∥∥∥

n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}Xi

∥∥∥∥∥
2

= O(
√
n|I| log n), (70)

for any I ∈ J(m) with |I| ≥ cn−1 log n for some constant c > 0. Suppose i2 − τ0,k−1 ≥
cn−1 log n. Under the event defined in (70), it follows that∥∥∥∥∥

n∑
i=1

I(Ai ∈ [τ0,k−1, i2)){Yi −X
>
i θ0(Ai)}Xi

∥∥∥∥∥
2

= O(
√
n|I| log n), (71)

Since
∫
I ‖θ0(a) − θ0,I‖22da ≤ c̄1n

−1 log n, we have
∫ i2
τ0,k−1

‖θ0(a) − θ0,I‖22da ≤ c̄1n
−1 log n,

and hence (i2 − τ0,k−1)‖θ0(a)− θ0,I‖22 ≤ c̄1n
−1 log n, for any a ∈ [τ0,k−1, i2). This together

with (71) yields that∣∣∣∣∣
n∑
i=1

I(Ai ∈ [τ0,k−1, i2)){Yi −X
>
i θ0(Ai)}Xi{θ0(Ai)− θ0,I}

∣∣∣∣∣
≤

∥∥∥∥∥
n∑
i=1

I(Ai ∈ [τ0,k−1, i2)){Yi −X
>
i θ0(Ai)}Xi

∥∥∥∥∥
2

‖θ0(τ0,k−1)− θ0,I‖2 = O(log n),

and hence ζ2 = O(log n). When i2 − τ0,k−1 ≤ cn−1 log n, using similar arguments in (37)
and (38), we can show that ζ2 = O(log n), with probability at least 1 − O(n−2). Thus,
we’ve shown that with probability at least 1 − O(n−2), for any interval I that belongs to
the Category 2 with

∫
I ‖θ0(a)− θ0,I‖22 ≤ c̄1n

−1 log n, we have∣∣∣∣∣
n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}Xi{θ0(Ai)− θ0,I}

∣∣∣∣∣ = O(log n).

Similarly, one can show that with probability at least 1 − O(n−2), for any interval I
that belongs to the Category 3 with

∫
I ‖θ0(a)− θ0,I‖22 ≤ c̄1n

−1 log n, we have∣∣∣∣∣
n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}Xi{θ0(Ai)− θ0,I}

∣∣∣∣∣ = O(log n).

The proof is thus completed.

B.5 Proof of Lemma 4

Consider a given interval I ∈ P̂. Suppose |I| < c̄3γn. The value of the constant c̄3 will be
determined later. Then, for sufficiently large n, we can find some interval I ′ ∈ I(m) ∩ P̂
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that is adjacent to I. Thus, we have I ∪ I ′ ∈ I(m), and hence

1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + λn|I|‖θ̂I‖22 +
1

n

n∑
i=1

I(Ai ∈ I ′)(Yi −X
>
i θ̂I′)

2 (72)

+ λn|I ′|‖θ̂I′‖22 ≤
1

n

n∑
i=1

I(Ai ∈ I ∪ I ′)(Yi −X
>
i θ̂I∪I′)

2 + λn|I ∪ I ′|‖θ̂I∪I′‖22 − γn.

Notice that the left-hand-side of the above expression is nonnegative. It follows that

γn ≤
1

n

n∑
i=1

I(Ai ∈ I ∪ I ′)(Yi −X
>
i θ̂I∪I′)

2 + λn|I ∪ I ′|‖θ̂I∪I′‖22.

By definition, we have

θ̂I∪I′ = arg min
θ∈Rp+1

(
1

n

n∑
i=1

I(Ai ∈ I ∪ I ′)(Yi −X
>
i θ)

2 + λn|I ∪ I ′|‖θ‖22

)
. (73)

Therefore, we obtain that

γn ≤
n∑
i=1

I(Ai ∈ I ∪ I ′)(Yi −X
>
i 0p+1)2

n
+ λn|I ∪ I ′|‖0p+1‖22 (74)

=
n∑
i=1

I(Ai ∈ I ∪ I ′)Y 2
i

n
.

Suppose

|I ∪ I ′| ≤ γn
8c0

, (75)

where the constant c0 is defined in Lemma 1.

Since γn � n−1 and m � n, we can find some interval I∗ ∈ I(m) that covers I ∪I ′ and
satisfies (8c0)−1γn ≤ |I∗| ≤ (4c0)−1γn. Under the event defined in (26), it follows from the
condition γn � n−1 log n that

1

n

n∑
i=1

I(Ai ∈ I ∪ I ′)Y 2
i ≤

1

n

n∑
i=1

I(Ai ∈ I∗)Y 2
i ≤ c0

(√
|(4c0)−1γn| log n√

n
+ (4c0)−1γn

)
≤ 2c0(4c0)−1γn =

γn
2
,

for sufficiently large n. This apparently violates the results in (74). Thus, Assertion (75)
doesn’t hold. Therefore, we obtain that

|I ∪ I ′| ≥ γn
8c0

, (76)

with probability at least 1−O(n−2).
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Suppose the constant c̄3 satisfies c̄3 ≤ (16c0)−1. Under the event defined in (76), we have
|I ′| ≥ γn(16c0)−1. By (22), we have with probability at least 1−O(n−2) that ‖θ̂I′−θ0,I′‖2 ≤
c0

√
n−1 log n|I ′|−1/2 ≤ 4c

3/2
0

√
n−1 log nγ−1

n � 1. By (27), we have with probability at least
1−O(n−2) that

‖θ̂I′‖2 ≤ 2c0, (77)

for sufficiently large n.

In addition, it follows from (73) that

1

n

n∑
i=1

I(Ai ∈ I ∪ I ′)(Yi −X
>
i θ̂I∪I′)

2 + λn|I ∪ I ′|‖θ̂I∪I′‖22

≤ 1

n

n∑
i=1

I(Ai ∈ I ∪ I ′)(Yi −X
>
i θ̂I′)

2 + λn|I ∪ I ′|‖θ̂I′‖22.

By (72), this further implies that

1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + λn|I|‖θ̂I‖22 ≤
1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I′)

2 + λn|I|‖θ̂I′‖22 − γn,

and hence

γn ≤
1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I′)

2 + λn|I|‖θ̂I′‖22.

By (77) and the conditions that λn = O(n−1 log n), γn � n−1 log n, we have for sufficiently
large n,

γn
2
≤ 1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I′)

2.

It thus follows from Cauchy-Schwarz inequality and (77) that

γn
2
≤ 2

n

n∑
i=1

I(Ai ∈ I)(Y 2
i + ‖X>i ‖22‖θ̂I′‖22) ≤ 2(1 + 4c2

0)

n

n∑
i=1

I(Ai ∈ I)(Y 2
i + ‖Xi‖22).

Using similar arguments in showing (76), we obtain that

|I| ≥ γn
32(1 + 4c2

0)c0
.

with probability at least 1−O(n−2). Set c̄3 = 32−1(1+4c2
0)−1c−1

0 , this violates the assump-
tion that |I| < c̄3γn. Thus, with probability at least 1−O(n−2), we obtain that |I| ≥ c̄3γn,
for any I ∈ P̂. The proof is hence completed.
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B.6 Proof of Theorem 2

Let {τ̂1, τ̂2, . . . , τ̂K̂−1
} be the set of change points in J(P̂). Under the events defined in

Theorem 1, we have K̂ = K, and

max
k∈{1,...,K−1}

|τ̂k − τ0,k| ≤ cn−1 log n, (78)

for some constant c > 0. Set τ̂0 = 0 and τ̂K = 1.

Under the event defined in (78), we have for sufficiently large n that

τ̂k − τ̂k−1 ≥ δmin, ∀k ∈ {1, . . . ,K}. (79)

Since π∗ satisfies supI⊆[0,1] supa∈I,x∈X |I|π∗(a;x, I) � 1, there exists some constant c̄4 > 0

such that π∗(a;x, d̂(x)) ≤ c̄4|d̂(x)|−1 for all a and x. This together with (79) yields that

π∗(a;x, d̂(x)) ≤ c̄4δ
−1
min, ∀a ∈ [0, 1], x ∈ X. (80)

The rest of our proof is divided into three parts. In the first part, we show that there
exists some constant C > 0 such that

‖θ̂[τ̂k−1,τ̂k) − θ̂[τ0,k−1,τ0,k)‖2 ≤
C log n

n
, ∀k ∈ {1, . . . ,K}, (81)

with probability at least 1 − O(n−2). Using similar arguments in Lemma 1, we can show
that there exists some constant c3 > 0 such that the following events occur with probability
at least 1−O(n−2):

‖θ̂[τ0,k−1,τ0,k) − θ0,[τ0,k−1,τ0,k)‖2 ≤
c3
√

log n√
nδmin

, ∀k ∈ {1, . . . ,K}.

This together with (81) implies that

‖θ̂[τ̂k−1,τ̂k) − θ0,[τ0,k−1,τ0,k)‖2 ≤
2c3
√

log n√
nδmin

, ∀k ∈ {1, . . . ,K}, (82)

for sufficiently large n, with probability at least 1−O(n−2).

In the second part, we define an integer-valued function K̂(x) as follows. We set K̂(x) = k
if d̂(x) = [τ̂k−1, τ̂k) for some integer k such that 1 ≤ k ≤ K − 1, and set K̂(x) = K if
d̂(x) = [τ̂K−1, 1]. By the definition of θ̂I and θ0,I , we have almost surely θ̂[τ̂K−1,1) = θ̂[τ̂K−1,1]

and θ0,[τ0,K−1,1) = θ0,[τ0,K−1,1]. It is immediate to see that

K̂(x) = sarg max
k∈{1,...,K}

x̄>θ̂[τ̂k−1,τ̂k), (83)

where sarg max denotes the smallest maximizer when the argmax is not unique. In Part 2,
we focus on proving

V π∗(d̂) ≥ E
(
X
>
θ0,[τ

0,K̂(X)−1
,τ

0,K̂(X)
)

)
−O(1)n−1 log n, (84)
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with probability at least 1−O(n−2), where O(1) denotes some positive constant.

In the last part, we provide an opper bound for

V opt − E
(
X
>
θ0,[τ

0,K̂(X)−1
,τ

0,K̂(X)
)

)
.

This together with (84) yields the desired results.

Proof of Part 1: Let ∆̂k = [τ̂k−1, τ̂k) ∪ [τ0,k−1, τ0,k)
c + [τ̂k−1, τ̂k)

c ∪ [τ0,k−1, τ0,k). With some
calculations, we can show that

‖θ̂[τ̂k−1,τ̂k) − θ̂[τ0,k−1,τ0,k)‖2 ≤ ζ1(k)ζ2(k) + ζ3(k)ζ4(k),

where

ζ1(k) =

∥∥∥∥∥∥
(

1

n

n∑
i=1

I(τ0,k−1 ≤ Ai < τ0,k)XiX
>
i + λn(τ0,k − τ0,k−1)Ep+1

)−1
∥∥∥∥∥∥

2

,

ζ2(k) =

∥∥∥∥∥ 1

n

n∑
i=1

I(Ai ∈ ∆̂k)XiYi

∥∥∥∥∥
2

, ζ3(k) =

∥∥∥∥∥ 1

n

n∑
i=1

I(τ0,k−1 ≤ Ai < τ0,k)XiYi

∥∥∥∥∥
2

,

ζ4(k) =

∥∥∥∥∥∥
(

1

n

n∑
i=1

I(τ0,k−1 ≤ Ai < τ0,k)XiX
>
i + λn(τ0,k − τ0,k−1)Ep+1

)−1

−

(
1

n

n∑
i=1

I(τ̂k−1 ≤ Ai < τ̂k)XiX
>
i + λn(τ̂k − τ̂k−1)Ep+1

)−1
∥∥∥∥∥∥

2

.

Similar to (57), we can show with probability at least 1−O(n−2) that

max
k∈{1,...,K}

ζ1(k) = O(1) and max
k∈{1,...,K}

ζ5(k) = O(1), (85)

where

ζ5(k) =

∥∥∥∥∥∥
(

1

n

n∑
i=1

I(τ̂k−1 ≤ Ai < τ̂k)XiX
>
i + λn(τ̂k − τ̂k−1)Ep+1

)−1
∥∥∥∥∥∥

2

.

Under the event defined in (78), the Lebesgue measure of ∆̂k is uniformly bounded by
2cn−1 log n, for any k ∈ {1, . . . ,K}. Using similar arguments in (37) and (38), we can show
with probability at least 1−O(n−2) that

max
k∈{1,...,K}

ζ2(k) = O(n−1 log n). (86)

Similar to (60), we can show with probability at least 1−O(n−2) that

max
k∈{1,...,K}

ζ3(k) = O(1). (87)
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Notice that ζ4(k) can be upper bounded by

ζ4(k) ≤ ζ1(k)ζ5(k)

∥∥∥∥∥ 1

n

n∑
i=1

I(τ0,k−1 ≤ Ai < τ0,k)XiX
>
i + λn(τ0,k − τ0,k−1)Ep+1

− 1

n

n∑
i=1

I(τ̂k−1 ≤ Ai < τ̂k)XiX
>
i − λn(τ̂k − τ̂k−1)Ep+1

∥∥∥∥∥
2

≤ ζ1(k)ζ5(k)

∥∥∥∥∥ 1

n

n∑
i=1

I(Ai ∈ ∆̂k)XiX
>
i + λn(τ0,k − τ0,k−1 − τ̂k + τ̂k−1)Ep+1

∥∥∥∥∥
2

.

Under the condition λn = O(n−1 log n), using similar arguments in (37) and (38), we can
show that with probability at least 1 − O(n−2), the absolute value of each element in the
matrix

1

n

n∑
i=1

I(Ai ∈ ∆̂k)XiX
>
i + λn(τ0,k − τ0,k−1 − τ̂k + τ̂k−1)Ep+1

is upper bounded by O(n−1 log n), uniformly for any k ∈ {1, . . . ,K}. It follows that∥∥∥∥∥ 1

n

n∑
i=1

I(Ai ∈ ∆̂k)XiX
>
i + λn(τ0,k − τ0,k−1 − τ̂k + τ̂k−1)Ep+1

∥∥∥∥∥
2

= O(n−1 log n).

In view of (85), we obtain that

max
k∈{1,...,K}

ζ4(k) = O(n−1 log n), (88)

with probability at least 1−O(n−2). Combining (85)-(88) yields (81).

Proof of Part 2: It follows from Condition (A4) and the definition of the conditional Orlicz
norm that

E

{
exp

(
|X(j)|2

ω2

)}
= E

[
E

{
exp

(
|X(j)|2

ω2

)∣∣∣∣∣A
}]
≤ 2,

for any j ∈ {1, . . . , p}. Without loss of generality, suppose ω ≥ log−1/2 2. Then, we have

E

{
exp

(
|X(j)|2

ω2

)}
= E

[
E

{
exp

(
|X(j)|2

ω2

)∣∣∣∣∣A
}]
≤ 2,

for any j ∈ {1, . . . , p+ 1}. As a result, it follows from Bonferroni’s inequality and Markov’s
inequality that

Pr
(
‖X‖2 > ω

√
2(p+ 1) log n

)
≤

p+1∑
j=1

Pr(|X(j)| > ω
√

2 log n)

≤
p+1∑
j=1

E

{
exp

(
|X(j)|2

ω2

)}
/ exp

(
2ω2 log n

ω2

)
≤ 2(p+ 1)

n2
.
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Thus, we obtain

Pr(A∗) ≥ 1− 2(p+ 1)

n2
, (89)

where

A∗ = {‖X‖2 ≤ ω
√

2(p+ 1) log n}.

Consider the event

A0 =
⋃

I1,I2∈P0

{
0 <

∣∣∣X>(θ0,I1 − θ0,I2)
∣∣∣ ≤ 4

√
2(p+ 1)c3ω log n√

nδmin

}
.

By Condition (A5) and Bonferroni’s inequality, we have

Pr(A0) ≤
∑

I1,I2∈P0
I1 6=I2

Pr

(
0 <

∣∣∣X>(θ0,I1 − θ0,I2)
∣∣∣ ≤ 4

√
2(p+ 1)c3ω log n√

nδmin

)
(90)

≤ K2

(
4
√

2(p+ 1)c3ω log n√
nδmin

)γ
.

By the definition of V π∗(·), we have

V π∗(d̂) = E

(∫
d̂(X)

X
>
θ0(a)π∗(a;X, d̂(X))da

)
.

Notice that the expectation in the above expression is taken with respect to X. Define
an interval-valued function d̂0(x) = [τ

0,K̂(x)−1
, τ

0,K̂(x)
) and set ∆̂(x) = d̂(x) ∩ {d̂0(x)}c. It

follows that

V π∗(d̂) = E

(∫
d̂0(X)∩d̂(X)

X
>
θ0(a)π∗(a;X, d̂(X))da

)
+ E

(∫
∆̂(X)

X
>
θ0(a)π∗(a;X, d̂(X))da

)
︸ ︷︷ ︸

χ1

= E

(∫
d̂0(X)

X
>
θ0(a)π∗(a;X, d̂(X))da

)
+ χ1.

Here, the second equality is due to that π∗(a;X, d̂(X)) = 0, for any a ∈ {d̂(X)}c. By (27)
and (80), we have

|χ1| ≤ c0c̄4δ
−1
minE

(∫
∆̂(X)

‖X‖2da

)
= c0c̄4δ

−1
minE‖X‖2λ(∆̂(X)),

where λ(∆̂(X)) denotes the Lebesgue measure of ∆̂(X). Under the event defined in (78),
we have λ(∆̂(X)) ≤ 2cn−1 log n, for any realization of X. It follows that

|χ1| ≤ 2cc0c̄4δ
−1
min(n−1 log n)E‖X‖2. (91)
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By (48), we have

E‖X‖22 =

p+1∑
j=1

E|X(j)|2 =

p+1∑
j=1

E(E|X(j)|2|A) ≤ ω2(p+ 1). (92)

By Cauchy-Schwarz inequality, this further implies that

E‖X‖2 ≤
√

E‖X‖22 ≤ ω
√
p+ 1.

This together with (91) yields

|χ1| ≤ 2cc0c̄4ω
√
p+ 1δ−1

minn
−1 log n, (93)

with probability at least 1−O(n−2).
Notice that θ0(·) is a constant on d̂0(x) for any x. It follows that

E

(∫
d̂0(X)

X
>
θ0(a)π∗(a;X, d̂(X))da

)
= E

(
X
>
θ0,[τ

0,K̂(x)−1
,τ

0,K̂(x)
)

)∫
d̂0(X)

π∗(a;X, d̂(X))da

= E
(
X
>
θ0,[τ

0,K̂(x)−1
,τ

0,K̂(x)
)

)∫
d̂0(X)∩d̂(X)

π∗(a;X, d̂(X))da

= E
(
X
>
θ0,[τ

0,K̂(x)−1
,τ

0,K̂(x)
)

)∫
d̂(X)

π∗(a;X, d̂(X))da− χ2 = E
(
X
>
θ0,[τ

0,K̂(x)−1
,τ

0,K̂(x)
)

)
− χ2,

where

χ2 = E
(
X
>
θ0,[τ

0,K̂(x)−1
,τ

0,K̂(x)
)

)∫
∆̂(X)

π∗(a;X, d̂(X))da.

Similar to (93), we can show that

|χ2| = O(n−1 log n),

with probability at least 1−O(n−2). This together with (93) yields (84).

Proof of Part 3 : Similar to the definition of K̂, we define

K0(x) = sarg max
k∈{1,...,K}

x̄>θ0,[τ0,k−1,τ0,k). (94)

Let

K∗(x) =

{
k0 : k0 = arg max

k∈{1,...,K}
x̄>θ0,[τ0,k−1,τ0,k)

}
,

denote the set that consists of all the maximizers. Apparently, K0(x) ∈ K∗(x), ∀x ∈ X.
We now claim that

K̂(X) ∈ K∗(X), (95)
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under the events defined in Ac0 ∩ A∗ and (82). Otherwise, suppose there exists some k0 ∈
{1, . . . ,K} such that

X
>
θ̂[τ̂k0−1,τ̂k0 ) ≥ max

k 6=k0
X
>
θ̂[τ̂k−1,τ̂k), (96)

max
k 6=k0

X
>
θ0,[τ0,k−1,τ0,k) > X

>
θ0,[τ0,k0−1,τ0,k0 ). (97)

Under Ac0, it follows from (97) that

max
k 6=k0

X
>
θ0,[τ0,k−1,τ0,k) > X

>
θ0,[τ0,k0−1,τ0,k0 ) +

4
√

2(p+ 1)c3ω log n√
nδmin

. (98)

Under the events defined in A∗ and (82), we have

max
k∈{1,...,K}

|X>(θ̂[τ̂k−1,τ̂k) − θ0,[τ0,k−1,τ0,k))| ≤ ‖X‖2 max
k∈{1,...,K}

‖θ̂[τ̂k−1,τ̂k) − θ0,[τ0,k−1,τ0,k)‖2

≤
2
√

2(p+ 1)c3ω log n√
nδmin

.

This together with (98) yields that

max
k 6=k0

X
>
θ̂[τ̂k−1,τ̂k) > X

>
θ̂[τ̂k0−1,τ̂k0 ).

In view of (96), we have reached an contradiction. Therefore, (95) holds under the events
defined in Ac0 ∩ A∗ and (82). When (95) holds, it follows from the definition of K∗(·) that

X
>
θ

0,[K̂(X)−1,K̂(X))
= X

>
θ0,[K0(X)−1,K0(X)). Therefore, under the event defined in (82), we

have

E
(
X
>
θ0,[τ

0,K̂(X)−1
,τ

0,K̂(X)
)

)
= E

(
X
>
θ0,[τ

0,K̂(X)−1
,τ

0,K̂(X)
)

)
I(Ac0 ∩ A∗) (99)

+ E
(
X
>
θ0,[τ

0,K̂(X)−1
,τ

0,K̂(X)
)

)
I(A0 ∪ A∗c)︸ ︷︷ ︸

χ3

= E
(
X
>
θ0,[τ0,K0(X)−1,τ0,K0(X))

)
I(Ac0 ∩ A∗)

+ χ3 = E
(
X
>
θ0,[τ0,K0(X)−1,τ0,K0(X))

)
+ χ3 − E

(
X
>
θ0,[τ0,K0(X)−1,τ0,K0(X))

)
I(A0 ∪ A∗c)︸ ︷︷ ︸

χ4

.

Notice that

χ3 − χ4 = EX
>
(
θ0,[τ

0,K̂(X)−1
,τ

0,K̂(X)
) − θ0,[τ0,K0(X)−1,τ0,K0(X))

)
I(A0 ∪ A∗c).

Using similar arguments in showing (95), we can show that under the event defined in (82),

X
>
(
θ0,[τ

0,K̂(X)−1
,τ

0,K̂(X)
) − θ0,[τ0,K0(X)−1,τ0,K0(X))

)
6= 0,

only when

0 <
∣∣∣X> (θ0,[τ

0,K̂(X)−1
,τ

0,K̂(X)
) − θ0,[τ0,K0(X)−1,τ0,K0(X))

)∣∣∣ ≤ 4
√

2(p+ 1)c3ω log n√
nδmin

.
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Therefore, under the event defined in (82), we have

|χ3 − χ4| ≤
4
√

2(p+ 1)c3ω log n√
nδmin

Pr(A0 ∪ A∗c).

It follows from (89) and (90), we have

|χ3 − χ4| ≤
4
√

2(p+ 1)c3ω log n√
nδmin

{
2(p+ 1)

n2
+K2

(
4
√

2(p+ 1)c3ω log n√
nδmin

)γ}
.

For sufficiently large n, this together with (84) and (99) implies that we have with probability
at least 1−O(n−2),

V π∗(d̂) ≥ E
(
X
>
θ0,[τ0,K0(X)−1,τ0,K0(X))

)
−O(1)(n−1 log n+ n−(1+γ)/2 log1+γ n),

for some positive constant O(1). The proof is hence completed by noting that

V opt = E
(
X
>
θ0,[τ0,K0(X)−1,τ0,K0(X))

)
.

B.7 Proof of Theorem 3

We first introduce some technical lemmas. We remark that the key ingredient of the proof
lies in Lemma 5, which establishes a uniform upper bound on the mean squared error of
q̂I . Proofs of these lemmas can be found in Sections E.1 - E.3 of Cai et al. (2021)2 and
we omit them for brevity. The rest of the proof can be similarly proven as Theorem 1.
Specifically, we first show the consistency of the estimated change point locations. We then
derive the rate of convergence of the estimated change point locations and the estimated
outcome regression function.

Lemma 5 Assume conditions in Theorem 3 are satisfied. Then there exists some constant
C̄ > 0 such that the following holds with probability at least 1−O(n−2): For any I ∈ I(m)
and |I| ≥ cγn,

E|qI,0(X)− q̂I(X)|2 ≤ C̄(n|I|)−2β/(2β+p) log8 n, (100)

where qI,0 = E(Y |A ∈ I, X) for any interval I.

Lemma 6 Assume conditions in Theorem 3 are satisfied. Then there exists some constant
C̄ > 0 such that the followings hold with probability at least 1−O(n−2): For any I ∈ I(m)
and |I| ≥ cγn,

∑
I∈P̂

∣∣∣∣∣
n∑
i=1

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂I(Xi)− qI,0(Xi)}

∣∣∣∣∣ ≤ C̄(n|I|)p/(2β+p) log8 n,

for any I ∈ I(m) such that |I| ≥ cγn for any positive constant c > 0.

Lemma 7 Under the conditions in Theorem 3, the following events occur with probability
at least 1−O(n−2): there exists some constant C > 0 such that minI∈P̂ |I| ≥ Cγn.

2. See https://openreview.net/attachment?id=rvKD3iqtBdk&name=supplementary_material
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We next show the consistency of the estimated change-point locations. Using similar
arguments in proving (31), we can show that

|P̂| ≤ C0γ
−1
n , (101)

for sufficiently large n and some constant C0 > 0.
Notice that∑

I∈P̂

n∑
i=1

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi − qI,0(Xi)}2︸ ︷︷ ︸
η∗1

+
∑
I∈P̂

n∑
i=1

I(Ai ∈ I){q̂I(Xi)− qI,0(Xi)}2

−2
∑
I∈P̂

∣∣∣∣∣
n∑
i=1

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂I(Xi)− qI,0(Xi)}

∣∣∣∣∣ .
The second line is non-negative. Under Lemmas 6 and 7, the third line is lower bounded by
−C1

∑
I∈P̂(n|I|)p/(2β+p) log8 n for some constant C1 > 0. By Hölder’s inequality, it can be

further lower bounded by −C1|P̂|2β/(2β+p)np/(2β+p) log8 n. By (101) and the given condition
on γn, the third line is o(n). It follows that

∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥ η∗1 + o(n), (102)

with probability at least 1−O(n−2).
Similar to (24) and (25), we can show that the following events occur with probability

at least 1−O(n−2), ∣∣∣∣∣ 1n
n∑
i=1

I(Ai ∈ I){Yi −Q(Xi, Ai)}{Q(Xi, Ai)− qI,0(Xi)}

∣∣∣∣∣
≤ c0

[
n−1/2

√
EI(A ∈ I){Q(X,A)− qI,0(X)}2 log n+ n−1 log n

]
,∣∣∣∣∣ 1n

n∑
i=1

I(Ai ∈ I){Q(Xi, Ai)− qI,0(Xi)}2 − EI(A ∈ I)|Q(X,A)− qI,0(X)|2
∣∣∣∣∣

≤ c0

[
n−1/2

√
EI(A ∈ I){Q(X,A)− qI,0(X)}2 log n+ n−1 log n

]
,

for some constant c0 > 0 and any I. The two upper bounds are o(1). Similar to (35), we
can show that

η∗1 =

n∑
i=1

|Yi −Q(Xi, Ai)|2 + n
∑
I∈P̂

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 + o(n),
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with probability at least 1−O(n−2). It follows from (102) that∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
n∑
i=1

|Yi −Q(Xi, Ai)|2︸ ︷︷ ︸
η∗2

(103)

+n
∑
I∈P̂

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 + o(n),

with probability at least 1−O(n−2).
Let us consider η∗2. We observe that

η∗2 =
∑
I∈P0

n∑
i=1

I(Ai ∈ I)|Yi − qI,0(Xi)|2.

By the uniform approximation property of DNN, there exists some q∗I ∈ QI such that

n∑
i=1

|qI,0(Xi)− q∗I(Xi)|2 ∝ n(n|I|)−2β/(2β+p).

See Part 1 of the proof of Lemma 5 for details. Similar to (24) and (25), we can show that
the following events occur with probability at least 1−O(n−2),∣∣∣∣∣ 1n

n∑
i=1

I(Ai ∈ I){Yi − qI,0(Xi)}{qI,0(Xi)− q∗I(Xi)}

∣∣∣∣∣ ≤ c0

√
|I| log n√
n

(n|I|)−β/(2β+p),

for some constant c0 > 0 and any I ∈ P0. It follows that

η∗2 −
∑
I∈P0

n∑
i=1

I(Ai ∈ I)|Yi − q∗I(Xi)|2 ≥ −
∑
I∈P0

n∑
i=1

I(Ai ∈ I)|qI,0(Xi)− q∗I(Xi)|2

−2
∑
I∈P0

∣∣∣∣∣
n∑
i=1

I(Ai ∈ I){Yi − qI,0(Xi)}{qI,0(Xi)− q∗I(Xi)}

∣∣∣∣∣ ≥ −c̄np/(2β+p),

for some constant c̄ > 0. This together with (103) yields that∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
∑
I∈P0

n∑
i=1

I(Ai ∈ I)|Yi − q∗I(Xi)|2

+n
∑
I∈P̂

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 + o(n) +O(np/(2β+p)),

with probability at least 1−O(n−2).
Next, using similar arguments in proving (39), we can show that there exist a partition

P∗ ∈ B(m) and a set of functions {q∗∗I : I ∈ P∗} with |P∗| = |P0| such that

∑
I∈P0

n∑
i=1

I(Ai ∈ I)|Yi − q∗∗I (Xi)|2 ≥
∑
I∈P∗

n∑
i=1

I(Ai ∈ I)|Yi − q∗∗I (Xi)|2 +O(1).
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It follows that∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
∑
I∈P∗

n∑
i=1

I(Ai ∈ I)|Yi − q∗∗I (Xi)|2 (104)

+n
∑
I∈P̂

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 + o(n) +O(np/(2β+p)),

with probability at least 1−O(n−2). Since

∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi − q̂I(Xi)}2 + nγn|P̂| (105)

≤
∑
I∈P∗

n∑
i=1

I(Ai ∈ I)|Yi − q∗∗I (Xi)|2 + nγn|P0|,

and that γn → 0, we obtain that∑
I∈P̂

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 = o(1).

Under the condition that qI1,0 6= qI2,0 for any adjacent I1, I2 ∈ P0, we have E|qI1,0(X) −
qI2,0(X)|2 > 0. Using similar arguments in the Part 1 of the proof of Theorem 1, we obtain
that maxτ∈J(P0) min

τ̂∈J(P̂)
|τ̂ − τ | ≤ δ for any constant δ > 0. This further implies that

|P̂| ≥ |P0|.
We next derive the rate of convergence of the estimated change point locations and the

estimated outcome regression function. Similar to (104), with a more refined analysis (see
e.g., Step 2 of the proof of Theorem 1), we obtain that

∑
I∈P̂

n∑
i=1

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
∑
I∈P∗

n∑
i=1

I(Ai ∈ I)|Yi − q∗∗I (Xi)|2

+n
∑
I∈P̂

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 − C1|P̂|2β/(2β+p)np/(2β+p) log8 n+O(np/(2β+p)),

with probability at least 1−O(n−2). This together with (105) yields that

n
∑
I∈P̂

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 ≤ C1|P̂|2β/(2β+p)np/(2β+p) log8 n

+O(np/(2β+p)) + nγn(|P0| − |P̂|).

Under the given condition on γn, we obtain that |P̂| ≤ |P0|. Combining this together with
|P̂| ≥ |P0|, we obtain that |P̂| = |P0|. This proves the results in (i).

Consequently, we obtain that

n
∑
I∈P̂

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 = O(np/(2β+p) log8 n),
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As such, we have that∑
I∈P̂

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 = O(n−2β/(2β+p) log8 n),

This together with Lemma 5 proves the result in (iii). Using similar arguments in Part 2
of the proof of Theorem 1, we can show the result in (ii) holds. This completes the proof.

B.8 Proof of Theorem 4

The proof of Theorem 4 is similar to that of Theorem 2. We provide the outline as below
and omit the duplicated arguments for brevity.

Under the events defined in Theorem 3, we have K̂ = K, and

max
k∈{1,...,K−1}

|τ̂k − τ0,k| ≤ cn−2β/(2β+p) log8 n, (106)

for some constant c > 0. By similar arguments in the proof of Theorem 2, there exists some
constant C̄4 > 0 such that

π∗(a;x, d̂(x)) ≤ C̄4δ
−1
min, ∀a ∈ [0, 1], x ∈ X. (107)

The rest of our proof is divided into two parts. In the first part, we focus on proving

V π∗(d̂) ≥ E
(
q[τ

0,K̂(x)−1
,τ

0,K̂(x)
)(X)

)
−O(1)n−2β/(2β+p) log8 n, (108)

with probability at least 1−O(n−2), where O(1) denotes some positive constant.
In Part 2, we provide an upper bound for

V opt − E
(
q[τ

0,K̂(x)−1
,τ

0,K̂(x)
)(X)

)
.

This together with (108) yields the desired results.

Proof of Part 1: Recall the integer-valued function

K̂(x) = sarg max
k∈{1,...,K}

q̂[τ̂k−1,τ̂k)(x), (109)

where sarg max denotes the smallest maximizer when the argmax is not unique. Similarly,
we have K̂(x) = k if d̂(x) = [τ̂k−1, τ̂k) for some integer k such that 1 ≤ k ≤ K − 1, and set
K̂(x) = K if d̂(x) = [τ̂K−1, 1].

Let ∆̂k = [τ̂k−1, τ̂k) ∪ [τ0,k−1, τ0,k)
c + [τ̂k−1, τ̂k)

c ∪ [τ0,k−1, τ0,k). Using similar arguments
in the proof of Theorem 2, we have

V π∗(d̂) = E

(∫
d̂0(X)∩d̂(X)

Q(X, a)π∗(a;X, d̂(X))da

)
+ E

(∫
∆̂(X)

Q(X, a)π∗(a;X, d̂(X))da

)
︸ ︷︷ ︸

χ∗1

= E

(∫
d̂0(X)

Q(X, a)π∗(a;X, d̂(X))da

)
+ χ∗1,
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where d̂0(x) = [τ
0,K̂(x)−1

, τ
0,K̂(x)

) and ∆̂(x) = d̂(x) ∩ {d̂0(x)}c.
By (107) and the assumption that Y is bounded, we have

|χ∗1| ≤ c0C̄4δ
−1
minλ(∆̂(X)),

where λ(∆̂(X)) denotes the Lebesgue measure of ∆̂(X). Under the event defined in (106),
we have λ(∆̂(X)) ≤ 2cn−2β/(2β+p) log8 n, for any realization of X. It follows that

|χ∗1| ≤ C̄0δ
−1
minn

−2β/(2β+p) log8 n, (110)

for some constant C̄0 with probability at least 1−O(n−2).

Using similar arguments in the proof of Theorem 2, we have

E

(∫
d̂0(X)

Q(X, a)π∗(a;X, d̂(X))da

)
= E

(
q[τ

0,K̂(x)−1
,τ

0,K̂(x)
)(X)

)
− χ∗2,

where

χ∗2 = E
(
q[τ

0,K̂(x)−1
,τ

0,K̂(x)
),0(X)

)∫
∆̂(X)

π∗(a;X, d̂(X))da.

Similar to (110), we can show that

|χ∗2| = O(n−2β/(2β+p) log8 n),

with probability at least 1−O(n−2). This together with (110) yields (108).

Proof of Part 2: Let εn = C̄1(nδmin)−2β/{(2β+p)(2+γ)} log8/(2+γ) n for some constant C̄1.
Define an event

Aε =
⋃
k

{
|q[τ0,k−1,τ0,k)(X)− q̂[τ̂k−1,τ̂k)(X)| ≤ εn

}
.

Based on Lemma 5, by Markov’s inequality, we can show that there exists some constant
c̄ > 0 such that

Pr{|q[τ0,k−1,τ0,k),0(X)− q̂[τ̂k−1,τ̂k)(X)| > εn} (111)

≤ C̄2(nδmin)−2β(1+γ)/{(2β+p)(2+γ)} log8(1+γ)/(2+γ) n, ∀k ∈ {1, . . . ,K},

with probability at least 1−O(n−2) for some constant C̄2. Thus, by Bonferroni’s inequality,
we have

Pr{Acε} ≤ C̄3(nδmin)−2β(1+γ)/{(2β+p)(2+γ)} log8(1+γ)/(2+γ) n (112)

holds with probability at least 1−O(n−2) for some constant C̄3.

Consider the event

A0 =
⋃

I1,I2∈P0

{0 < |qI1,0(X)− qI2,0(X)| ≤ 2εn} .
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By Condition (A5) and Bonferroni’s inequality, we have

Pr(A0) ≤
∑

I1,I2∈P0
I1 6=I2

Pr (0 < |qI1,0(X)− qI2,0(X)| ≤ 2εn) ≤ K2 (2εn)γ . (113)

Similar to the definition of K̂, we define

K0(x) = sarg max
k∈{1,...,K}

q[τ0,k−1,τ0,k),0(x). (114)

Let

K∗(x) =

{
k0 : k0 = arg max

k∈{1,...,K}
q[τ0,k−1,τ0,k),0(x)

}
,

denote the set that consists of all the maximizers. Apparently, K0(x) ∈ K∗(x), ∀x ∈ X.

We now claim that

K̂(X) ∈ K∗(X), (115)

under the events defined in Ac0 and Aε. Otherwise, suppose there exists some k0 ∈
{1, . . . ,K} such that

q̂[τ̂k0−1,τ̂k0 )(X) ≥ max
k 6=k0

q̂[τ̂k−1,τ̂k)(X), (116)

max
k 6=k0

q[τ0,k−1,τ0,k),0(X) > q[τ0,k0−1,τ0,k0 ),0(X). (117)

Under Ac0, it follows from (117) that

max
k 6=k0

q[τ0,k−1,τ0,k),0(X) > q[τ0,k0−1,τ0,k0 ),0 + 2εn. (118)

Under the event Aε, we have

max
k∈{1,...,K}

|q̂[τ̂k−1,τ̂k)(X)− q[τ0,k−1,τ0,k),0(X)| ≤ εn.

This together with (118) yields that

max
k 6=k0

q̂[τ̂k−1,τ̂k)(X) > q̂[τ̂k0−1,τ̂k0 )(X).

In view of (116), we have reached a contradiction. Therefore, (115) holds under the events
defined in Ac0 and Aε.

By the definition of K∗(·) that q[τ
0,K̂(X)−1

,τ
0,K̂(X)

),0(X) = q[τ0,K0(X)−1,τ0,K0(X)),0(X) when

(115) holds. Using the similar augments in (99), we have

E
(
q[τ

0,K̂(x)−1
,τ

0,K̂(x)
),0(X)

)
= E

(
q[τ0,K0(X)−1,τ0,K0(X)),0(X)

)
+ χ3 + χ4, (119)
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where

χ3 = E
(
q[τ

0,K̂(X)−1
,τ

0,K̂(X)
),0(X)− q[τ0,K0(X)−1,τ0,K0(X)),0(X)

)
I(A0)I(Aε),

and

χ4 = E
(
q[τ

0,K̂(X)−1
,τ

0,K̂(X)
),0(X)− q[τ0,K0(X)−1,τ0,K0(X)),0(X)

)
I(Acε),

Therefore, under the event Aε, it follows from (113) that

|χ3| ≤ K2 (2εn)γ+1 . (120)

Similarly, by Condition (A7) and the outcome is bounded, following Markov’s inequality,
we have

|χ4| ≤ C̄3Pr{Acε} (121)

Based on (112) and εn = C̄1(nδmin)−2β/{(2β+p)(2+γ)} log8/(2+γ) n, for sufficiently large
n, the above (121) and (120) together with (108) and (119) implies that we have with
probability at least 1−O(n−2),

V π∗(d̂) ≥ V opt −O(1)(n
− 2β

2β+p log8 n+ n
− 2β(1+γ)

(2β+p)(2+γ) log
8+8γ
2+γ n),

for some positive constant O(1). The proof is hence completed.

B.9 Proof of Theorem 5

We focus on proving Theorem 5 (ii) when conditions in Theorem 4 are satisfied with 4β(1+
γ) > (2β + p)(2 + γ), where D-JIL is applied. Since the piecewise linear case requires
weaker conditions (when conditions in Theorem 2 are satisfied), one can similarly derive
the asymptotic normality of V̂ under L-JIL.

We present an outline of the proof first, which can be divided into two parts. Define
d0(x) = arg maxI∈P0

qI,0(x), ∀x ∈ X. Under the given conditions, the maximizers d0(Xi)’s

are almost surely unique. By the definition of K̂(·) in (109), we have

V̂ =
1

n

n∑
i=1

[
I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

{
Yi − q̂[τ̂K̂(Xi)−1

,τ̂K̂(Xi)
)(Xi)

}
+ q̂[τ̂K̂(Xi)−1

,τ̂K̂(Xi)
)(Xi)

]
.

Given K0(·) defined in (114), the above value estimator can be decomposed by

V̂ = V̂1 +
1

n

n∑
i=1

[{
I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

− 1

}{
q[τ0,K0(Xi)−1,τ0,K0(Xi)

),0(Xi)− q̂[τ̂K̂(Xi)−1
,τ̂K̂(Xi)

)(Xi)
}]

︸ ︷︷ ︸
η7

,

where

V̂1 =
1

n

n∑
i=1

[
I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

{
Yi − q[τ0,K0(Xi)−1,τ0,K0(Xi)

),0(Xi)
}

+ q[τ0,K0(Xi)−1,τ0,K0(Xi)
),0(Xi)

]
.
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In Part 1, we first establish the following result that

η7 = op(n
−1/2). (122)

This implies

V̂ = V̂1 + op(n
−1/2). (123)

In the second step, we further decompose V̂1 as

V̂1 = V̂2 +
1

n

n∑
i=1

[{
I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

− I{Ai ∈ d0(Xi)}
e(d0(Xi)|Xi)

}{
Yi − q[τ0,K0(Xi)−1,τ0,K0(Xi)

),0(Xi)
}]

︸ ︷︷ ︸
η8

,

where

V̂2 =
1

n

n∑
i=1

[
I{Ai ∈ d0(Xi)}
e(d0(Xi)|Xi)

{
Yi − q[τ0,K0(Xi)−1,τ0,K0(Xi)

),0(Xi)
}

+ q[τ0,K0(Xi)−1,τ0,K0(Xi)
),0(Xi)

]
.

We focus on proving

η8 = op(n
−1/2). (124)

This together with (123) leads to

V̂ = V̂2 + op(n
−1/2). (125)

Combing the results in the first two steps, it follows from the definition of d0(·) that

V̂ =
1

n

n∑
i=1

∑
I∈P0

I(I = d0(Xi))

[
I{Ai ∈ d0(Xi)}
e(d0(Xi)|Xi)

{
Yi − qI,0(Xi)

}
+ qI,0(Xi)

]
+ op(n

−1/2),

almost surely. Notice that the first term at RHS corresponds to a sum of i.i.d random vari-
ables. Hence, based on Lindeberg-Feller central limit theorem, one can show the asymptotic
normality result of the value estimator under the proposed I2DR.

Proof of Part 1: We aim to show (122). Toward that end, we define

V̂3 =
1

n

n∑
i=1

[
I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

{
Yi − q[τ

0,K̂(Xi)−1
,τ

0,K̂(Xi)
),0(Xi)

}
+ q[τ

0,K̂(Xi)−1
,τ

0,K̂(Xi)
),0(Xi)

]
.

The difference |η7| can be upper bounded by |V̂1 − V̂3|+ |V̂ − V̂3|. Consider |V̂1 − V̂3| first.

Under the given conditions, the term
{

I{Ai∈d̂(Xi)}
ê(d̂(Xi)|Xi)

− 1
}

is bounded, it suffices to show that

1

n

n∑
i=1

∣∣∣q[τ0,K0(Xi)
−1,τ0,K0(Xi)

),0(Xi)− q[τ̂K̂(Xi)−1
,τ̂K̂(Xi)

),0(Xi)
∣∣∣ = op(n

−1/2),
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where K0(·) and K̂(·) are defined in (114) and (109), respectively. Under the margin-type
condition, the above expression can be proven using similar arguments in the proof of
Theorem 4. We omit the details to save space.

It remains to show |V̂ − V̂3| = op(n
1/2). Notice that |V̂ − V̂3| can be further upper

bounded by ∣∣∣∣∣ 1n
n∑
i=1

{
I{Ai ∈ d̂(Xi)}
e(d̂(Xi)|Xi)

− 1

}{
q[τ

0,K̂(Xi)−1
,τ

0,K̂(Xi)
),0(Xi)− q̂[τ̂K̂(Xi)−1

,τ̂K̂(Xi)
)(Xi)

}∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

{
I{Ai ∈ d̂(Xi)}
e(d̂(Xi)|Xi)

− I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

}{
q[τ

0,K̂(Xi)−1
,τ

0,K̂(Xi)
),0(Xi)− q̂[τ̂K̂(Xi)−1

,τ̂K̂(Xi)
)(Xi)

}∣∣∣∣∣ .
Consider the first line. Notice that it can be represented by∣∣∣∣∣∣ 1n

∑
I∈P̂

n∑
i=1

{
I{Ai ∈ I}
e(I|Xi)

− 1

}{
qI,0(Xi)− q̂I(Xi)

}
I(I = d̂(Xi))

∣∣∣∣∣∣ .
Since the number of intervals in P̂ is finite with probability tending to 1 (see Results (i) in
Theorem 1), to show the above expression is op(n

−1/2), it suffices to show

sup
I∈I(m)

∣∣∣∣∣ 1n
n∑
i=1

{
I{Ai ∈ I}
e(I|Xi)

− 1

}{
qI,0(Xi)− q̂I(Xi)

}
I(I = d̂(Xi))

∣∣∣∣∣ = op(n
−1/2).

The key observation is that, by Corollary A.1 of Chernozhukov et al. (2014), the above
empirical sum forms a VC-type class. Using similar arguments in bounding the stochastic
error in Step 2 of the proof of Lemma 5, we can show the above assertion holds.

To bound the second line, notice that by Cauchy-Schwarz inequality, it is smaller than
or equal to the square root of

1

n

n∑
i=1

∣∣∣∣∣I{Ai ∈ d̂(Xi)}
e(d̂(Xi)|Xi)

− I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

∣∣∣∣∣
2

︸ ︷︷ ︸
η
(1)
7

1

n

n∑
i=1

|q[τ
0,K̂(Xi)−1

,τ
0,K̂(Xi)

),0(Xi)− q̂[τ̂K̂(Xi)−1
,τ̂K̂(Xi)

)(Xi)|2︸ ︷︷ ︸
η
(2)
7

Using similar arguments in establishing the uniform convergence rate of q̂I , we can show

that η
(2)
7 = op(n

−c) for some c > 1/2. To prove the second line is op(n
−1/2), it remains to

show η
(1)
7 = Op(n

−1/2 log n). Under the positivity assumption on e and ê, it suffices to show

1

n

n∑
i=1

|e(d̂(Xi)|Xi)− ê(d̂(Xi)|Xi)|2 = Op(n
1/2 log n). (126)

The left-hand-side can be further upper bounded by

1

n

∑
I∈P̂

n∑
i=1

|e(I|Xi)− ê(I|Xi)|2

≤
∑
I∈P̂

E|e(I|X)− ê(I|X)|2 +
∑
I∈P̂

[
1

n

n∑
i=1

|e(I|Xi)− ê(I|Xi)|2 − E|e(I|X)− ê(I|X)|2
]
.
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The first term on the second line is Op(n
−1/2) under Condition (A8) and the fact that

|P̂| = O(1) with probability tending to 1. To prove (126), by the boundedness of |P̂|, it
suffices to show the supremum of the empirical process term

sup
I∈I(m)

[
1

n

n∑
i=1

|e(I|Xi)− ê(I|Xi)|2 − E|e(I|X)− ê(I|X)|2
]

= Op(n
−1/2 log n).

Under Condition (A8), this can be proven in a similar manner as Step 2 of the proof of
Lemma 5. We omit the details to save space.

Proof of Part 2: We next focus on proving (124). We notice that |η8| can be upper bounded
by ∣∣∣∣∣ 1n

n∑
i=1

[{
I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

− I{Ai ∈ d̂(Xi)}
e(d̂(Xi)|Xi)

}{
Yi − q[τ0,K0(Xi)−1,τ0,K0(Xi)

),0(Xi)
}]∣∣∣∣∣

+

∣∣∣∣∣ 1n
n∑
i=1

[{
I{Ai ∈ d0(Xi)}
e(d0(Xi)|Xi)

− I{Ai ∈ d̂(Xi)}
e(d̂(Xi)|Xi)

}{
Yi − q[τ0,K0(Xi)−1,τ0,K0(Xi)

),0(Xi)
}]∣∣∣∣∣ .

The first line can be shown to be op(n
−1/2) using similar arguments in the proof of Part 1.

The second line can be shown to be op(n
1/2) by noting that the difference between d0 and

d̂ is asymptotically negligible. This completes the proof.

B.10 Proof of Theorem 6

Before proving Theorem 6, it is worth mentioning that results in Lemma 1 and Lemma 4
do not rely on the assumption that θ0(·) is piecewise constant. These lemmas hold under
the conditions in Theorem 6 as well. The proof is divided into two parts. In the first
part, we derive the convergence rate of the integrated `2 loss for θ̂. Then, we establish the
convergence rate of the value under our I2DR.

Convergence rate of the integrated `2 loss: We first establish the upper error bound on the
integrated `2 loss of θ̂(·). Here, we consider a more general framework. Specifically, define

AEk(θ0) = inf
P:|P|≤k+1

(θI)I∈P∈
∏
I∈P Rp+1

{
sup
a∈[0,1]

∥∥∥∥∥θ0(a)−
∑
I∈P

θII(a ∈ I)

∥∥∥∥∥
2

}
.

It describes how well θ0(·) can be approximated by a step function with at most k change
points. Consider the following class of functions

Bα0 =

{
θ0(·) : lim sup

k→∞
kα0AEk(θ0) <∞

}
,

for some α0 > 0. The parameter α0 characterizes the speed of approximation as the number
of change points increases. According to the discussion in Section 4.2.1, the class of Hölder
continuous functions in Model II belongs to Bα0 . In the following, we show with probability

at least 1−O(n−2) that
∫ 1

0 ‖θ̂(a)− θ0(a)‖22da ≤ c̄γ
2α0/(1+2α0)
n for any θ0(·) ∈ Bα0 .

79



Cai, Shi, Song, and Lu

Since θ0(·) ∈ Bα0 , for some sequence {kn}n that satisfies kn → ∞ as n → ∞, there
exists a piecewise constant function θ∗(·) such that

θ∗(a) =
∑
I∈P∗

θ∗II(a ∈ I), ∀a ∈ [0, 1],

for some partition P∗ of [0, 1] with |P∗| ≤ kn + 1 and some (θ∗I)I∈P∗ ∈
∏
I∈P∗ Rp+1, and

sup
I∈P∗

sup
a∈I
‖θ0(a)− θ∗I‖2 ≤

c4

kα0
n
, (127)

for some constant c4 > 0. Detailed choice of kn will be given later. Combining (127)
together with (27), we obtain that

sup
I∈P∗

‖θ∗I‖2 ≤ 2c0, (128)

for sufficiently large n.

Let {τ∗k}
|P∗|−1
k=1 with 0 < τ∗1 < τ∗2 < · · · < τ∗|P∗|−1 < 1 be the locations of the change

points in J(P∗). For 1 ≤ k ≤ |P∗| − 1, define τ∗∗k such that 0 ≤ τ∗∗k − τ∗k < 1/m and
τ∗∗k ∈ {1/m, 2/m, . . . , 1}. Let k∗n be the largest integer that satisfies k∗n ≤ |P∗| − 1 and
τ∗∗k∗n < 1. Apparently, k∗n ≤ kn. Set τ∗0 = τ∗∗0 = 0 and τ∗k∗n+1 = τ∗∗k∗n+1 = 1. Define a new
partition P∗∗ ∈ B(m) and the set of vectors (θ∗∗I )I∈P∗∗ as follows,

P∗∗ = {[τ∗∗0 , τ∗∗1 ), [τ∗∗1 , τ∗∗2 ), · · · , [τ∗∗k∗n , τ
∗∗
k∗n+1]},

θ∗∗[τ∗∗k ,τ∗∗k+1) = θ∗[τ∗k ,τ
∗
k+1), ∀k ∈ {0, 1, . . . , k∗n − 1} and θ∗∗[τ∗∗

k∗n
,1] = θ∗[τ∗

k∗n
,τ∗
k∗n+1

) (or θ∗[τ∗
k∗n
,1]).

Notice that it is possible that [τ∗∗k , τ
∗∗
k+1) = ∅ for some k < k∗n.

Then, it follows from (128) that

sup
I∈P∗∗

‖θ∗∗I ‖2 ≤ 2c0, (129)

Moreover, it follows from (27), (129) and the condition m � n that

∑
I∈P∗∗

∫
I
‖θ0(a)− θ∗∗I ‖22da ≤

∑
I∈P∗

∫
I
‖θ0(a)− θ∗I‖22da+

|P∗∗|
m

sup
a∈[0,1],I∈P∗∗

‖θ0(a)− θ∗∗I ‖22

≤ c2
4k
−2α0
n + 9c2

0(kn + 1)m−1 ≤ O(1)(k−2α0
n + n−1kn), (130)

for sufficiently large n, where O(1) denotes some positive constant.
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Notice that

n∑
i=1

∑
I∈P̂

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 =
n∑
i=1

∑
I1∈P̂

∑
I2∈P∗∗

I(Ai ∈ I1 ∩ I2)(Yi −X
>
i θ̂I1)2

=

n∑
i=1

∑
I1∈P̂

∑
I2∈P∗∗

I(Ai ∈ I1 ∩ I2)(Yi −X
>
i θ
∗∗
I2 +X

>
i θ
∗∗
I2 −X

>
i θ̂I1)2

=

n∑
i=1

∑
I2∈P∗∗

I(Ai ∈ I2)(Yi −X
>
i θ
∗∗
I2)2 +

n∑
i=1

∑
I1∈P̂

∑
I2∈P∗∗

I(Ai ∈ I1 ∩ I2)(X
>
i θ
∗∗
I2 −X

>
i θ̂I1)2

︸ ︷︷ ︸
χ5

+ 2
n∑
i=1

∑
I1∈P̂

∑
I2∈P∗∗

I(Ai ∈ I1 ∩ I2)(Yi −X
>
i θ
∗∗
I2)X

>
i (θ∗∗I2 − θ̂I1)

︸ ︷︷ ︸
χ6

.

By definition, we have

n∑
i=1

∑
I∈P̂

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + nγn|P̂| ≤
n∑
i=1

∑
I∈P∗∗

I(Ai ∈ I)(Yi −X
>
i θ
∗∗
I )2 + n(kn + 1)γn.

It follows that

χ5 + 2χ6 + nγn|P̂| ≤ n(kn + 1)γn. (131)

We now give a lower bound for χ5. Similar to (55) and (56), we can show that the
following event occurs with probability at least 1−O(n−2):

λmin

(
n∑
i=1

I(Ai ∈ I)XiX
>
i

)
≥ c5n|I|, (132)

for some constant c5 > 0, and any interval I ∈ I(m) that satisfies |I| ≥ c̄0n
−1 log n where

the constant c̄0 is defined in Lemma 1. Under the event defined in (132), we obtain that

χ5 ≥
∑
I1∈P̂

∑
I2∈P∗∗

n∑
i=1

I(Ai ∈ I1 ∩ I2)I(|I1 ∩ I2| ≥ c̄0n
−1 log n)(X

>
i θ
∗∗
I2 −X

>
i θ̂I1)2

≥ c5n
∑
I1∈P̂

∑
I2∈P∗∗

I(|I1 ∩ I2| ≥ c̄0n
−1 log n)|I1 ∩ I2|‖θ∗∗I2 − θ̂I1‖

2
2. (133)

In addition, under the events defined in (22) and Lemma 4, we have

sup
I∈P̂
‖θ̂I − θ0,I‖2 ≤ sup

I∈P̂

c0
√

log n√
|I|n

≤ c0
√

log n√
c̄3nγn

= o(1),

since γn � n−1 log n. In view of (27), we obtain that

sup
I∈P̂
‖θ̂I‖2 ≤ 2c0, (134)
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for sufficiently large n. This together with (129) yields that∑
I1∈P̂

∑
I2∈P∗∗

I(|I1 ∩ I2| ≤ c̄0n
−1 log n)|I1 ∩ I2|‖θ∗∗I2 − θ̂I1‖

2
2

≤ (4c2
0c̄0n

−1 log n)
∑
I1∈P̂

∑
I2∈P∗∗

I(|I1 ∩ I2| ≤ c̄0n
−1 log n),

with probability at least 1 − O(n−2). Recall that P∗∗ has at most kn change points. The
number of nonempty intervals I1 ∩ I2 is at most kn + 1 + |P̂|. Thus, we obtain that∑
I1∈P̂

∑
I2∈P∗∗

I(|I1 ∩ I2| ≤ c̄0n
−1 log n)|I1 ∩ I2|‖θ∗∗I2 − θ̂I1‖

2
2 ≤ (kn + 1 + |P̂|)(4c2

0c̄0n
−1 log n),

with probability at least 1−O(n−2). This together with (133) yields that

χ5 ≥ c5n
∑
I1∈P̂

∑
I2∈P∗∗

|I1 ∩ I2|‖θ∗∗I2 − θ̂I1‖
2
2 − c5(kn + 1 + |P̂|)(4c2

0c̄0 log n),

with probability at least 1−O(n−2), or equivalently,

χ5 ≥ c5n

∫ 1

0
‖θ̂(a)− θ∗∗(a)‖22da− c5(kn + 1 + |P̂|)(4c2

0c̄0 log n), (135)

with probability at least 1−O(n−2), where

θ∗∗(a) =
∑
I∈P∗∗

θ∗∗I I(a ∈ I).

We now provide an upper bound for |χ6|. Notice that

χ6 =

n∑
i=1

∑
I1∈P̂

∑
I2∈P∗∗

I(Ai ∈ I1 ∩ I2)(Yi −X
>
i θ
∗∗
I2)X

>
i (θ∗∗I2 − θ̂I1) (136)

=
n∑
i=1

∑
I1∈P̂

∑
I2∈P∗∗

I(Ai ∈ I1 ∩ I2){Yi −X
>
i θ0(Ai)}X

>
i (θ∗∗I2 − θ̂I1)

︸ ︷︷ ︸
χ7

+

n∑
i=1

∑
I1∈P̂

∑
I2∈P∗∗

I(Ai ∈ I1 ∩ I2){X>i θ0(Ai)−X
>
i θ
∗∗
I2}X

>
i (θ∗∗I2 − θ̂I1)

︸ ︷︷ ︸
χ8

.

It suffices to provide upper bounds for |χ7| and |χ8|.
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Under the event defined in (23), we obtain that∣∣∣∣∣∣
n∑
i=1

∑
I1∈P̂

∑
I2∈P∗∗

I(Ai ∈ I1 ∩ I2)I(|I1 ∩ I2| ≥ c̄0n
−1 log n){Yi −X

>
i θ0(Ai)}X

>
i (θ∗∗I2 − θ̂I1)

∣∣∣∣∣∣
≤
∑
I1∈P̂

∑
I2∈P∗∗

∥∥∥∥∥
n∑
i=1

I(Ai ∈ I1 ∩ I2)I(|I1 ∩ I2| ≥ c̄0n
−1 log n){Yi −X

>
i θ0(Ai)}Xi

∥∥∥∥∥
2

‖θ∗∗I2 − θ̂I1‖2

≤
∑
I1∈P̂

∑
I2∈P∗∗

√
c0|I1 ∩ I2|n log n‖θ∗∗I2 − θ̂I1‖2 ≤

c5n

16

∫ 1

0
‖θ̂(a)− θ∗∗(a)‖22da

+
4c0 log n

c5

∑
I1∈P̂

∑
I2∈P∗∗

|I1 ∩ I2| ≤
c5n

16

∫ 1

0
‖θ̂(a)− θ∗∗(a)‖22da+ 4c0c

−1
5 log n,

where the third inequality is due to Cauchy-Schwarz inequality.
In addition, using similar arguments in (37) and (38), we have with probability at least

1−O(n−2) that, for any interval I ∈ I(m) that satisfies |I| ≤ c̄0n
−1 log n,∥∥∥∥∥

n∑
i=1

I(Ai ∈ I){Yi −X
>
i θ0(Ai)}Xi

∥∥∥∥∥
2

≤ c̄5 log n, (137)

for some constant c̄5 > 0. Since the number of nonempty intervals I1 ∩ I2 is at most
kn + 1 + |P̂|, we obtain that∣∣∣∣∣∣

n∑
i=1

∑
I1∈P̂

∑
I2∈P∗∗

I(Ai ∈ I1 ∩ I2)I(|I1 ∩ I2| ≤ c̄0n
−1 log n){Yi −X

>
i θ0(Ai)}X

>
i (θ∗∗I2 − θ̂I1)

∣∣∣∣∣∣
≤
∑
I1∈P̂

∑
I2∈P∗∗

∥∥∥∥∥
n∑
i=1

I(Ai ∈ I1 ∩ I2)I(|I1 ∩ I2| ≤ c̄0n
−1 log n){Yi −X

>
i θ0(Ai)}Xi

∥∥∥∥∥
2

‖θ∗∗I2 − θ̂I1‖2

≤ (kn + 1 + |P̂|)(c̄5 log n) sup
I1∈P̂

sup
I2∈P∗∗

‖θ∗∗I2 − θ̂I1‖2 ≤ 4c0(kn + 1 + |P̂|)(c̄5 log n),

with probability at least 1−O(n−2). It follows that

|χ7| ≤
c5n

16

∫ 1

0
‖θ̂(a)− θ∗∗(a)‖22da+ 4c0c

−1
5 log n+ 4c0(kn + 1 + |P̂|)(c̄5 log n),(138)

with probability at least 1−O(n−2).
As for |χ8|, it follows from Cauchy-Schwarz inequality that

|χ8| ≤
1

4

n∑
i=1

∑
I1∈P̂

∑
I2∈P∗∗

I(Ai ∈ I1 ∩ I2)(X
>
i θ
∗∗
I2 −X

>
i θ̂I1)2

+

n∑
i=1

∑
I1∈P̂

∑
I2∈P∗∗

I(Ai ∈ I1 ∩ I2){X>i θ0(Ai)−X
>
i θ
∗∗
I2}

2

︸ ︷︷ ︸
χ9

=
χ5

4
+ χ9. (139)
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Notice that

χ9 =

n∑
i=1

∑
I∈P∗∗

I(Ai ∈ I){X>i θ0(Ai)−X
>
i θ
∗∗
I }2

It follows from (48), (50), (130) and Cauchy-Schwarz inequality that

E(χ9) = n
∑
I∈P∗∗

EI(A ∈ I){X>θ0(A)−X>θ∗∗I }2 ≤ n
∑
I∈P∗∗

E‖X‖22I(A ∈ I)|θ0(A)− θ∗∗I |22

≤ n
∑
I∈P∗∗

E(E‖X‖22|A)I(A ∈ I)|θ0(A)− θ∗∗I |22 ≤ ω2n
∑
I∈P∗∗

EI(A ∈ I)‖θ0(A)− θ∗∗I ‖22

≤ C0ω
2n

∑
I∈P∗∗

∫
I
‖θ0(a)− θ∗∗I ‖22da ≤ O(1)(nκ−2α0

n + κn),

where O(1) denotes some positive constant. Using similar arguments in (68), we have for
any integer q ≥ 2 that

E

( ∑
I∈P∗∗

I(A ∈ I){X>θ0(A)−X>θ∗∗I }2
)q
≤
∑
I∈P∗∗

EI(A ∈ I){X>θ0(A)−X>θ∗∗I }2q

≤ q!cq
∑
I∈P∗∗

∫
I
‖θ0(a)− θ∗∗I ‖22da ≤ q!Cq(nκ−2α0

n + κn),

for some constants c, C > 0. Using Bernstein’s inequality, we have for any t > 0 that

Pr(χ9 ≥ Eχ9 + t) ≤ exp

(
−1

2

t2

tC + 2C2(nk−2α0
n + kn)

)
.

We will require the sequence {kn}n to satisfy kn � log n. Set t0 = 4C
√

(nk−2α0
n + kn) log n,

we have

t20
t0C + 2C2(nk−2α0

n + kn)
=

8
√
nk−2α0

n + kn log n

2
√

log n+
√
nk−2α0

n + kn
≥ 2 log n,

for sufficiently large n. Therefore, we obtain with probability at least 1−O(n−2) that

χ9 ≤ O(1)(nκ−2α0
n + κn) + 4C

√
(nk−2α0

n + kn) log n = O(nk−2α0
n + kn).

This together with (136), (138) and (139) yields that

|χ6| ≤
c5n

16

∫ 1

0
‖θ̂(a)− θ∗∗(a)‖22da+ c6{(kn + |P̂|) log n+ nk−2α0

n }+
χ5

4
.

with probability at least 1 − O(n−2), for some constant c6 > 0 and sufficiently large n.
In view of (131) and (135), we obtain with probability at least 1 − O(n−2) that χ5 ≤
nγn(kn + 1− P̂) + 2|χ6| and hence

3c5n

8

∫ 1

0
‖θ̂(a)− θ∗∗(a)‖22da (140)

≤ 2c6{(kn + |P̂|) log n+ nk−2α0
n }+ nγn(kn + 1− P̂).
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Suppose |P̂| ≥ 2kn + 1. Under the event defined in (140), it follows from the condition
nγn � log n that

nγn(kn + 1− |P̂|) + 2c6(kn + |P̂|) log n ≤ 3c6|P̂| log n− 2−1nγn|P̂| ≤ 0,

for sufficiently large n, and hence

3c5n

8

∫ 1

0
‖θ̂(a)− θ∗∗(a)‖22da ≤ 2c6nk

−2α0
n . (141)

Otherwise, suppose |P̂| ≤ 2kn. It follows from (140) that

3c5n

8

∫ 1

0
‖θ̂(a)− θ∗∗(a)‖22da ≤ 6c6(kn log n+ nk−2α0

n ) + nγnkn,

with probability at least 1−O(n−2). This together with (141) yields that∫ 1

0
‖θ̂(a)− θ∗∗(a)‖22da ≤ 16c−1

5 c6n
−1(kn log n+ nk−2α0

n ) + 3γnkn, (142)

with probability at least 1−O(n−2).
By Cauchy-Schwarz inequality, we have∫ 1

0
‖θ̂(a)− θ0(a)‖22da =

∫ 1

0
‖θ̂(a)− θ∗∗(a) + θ∗∗(a)− θ0(a)‖22da

≤ 2

∫ 1

0
‖θ̂(a)− θ∗∗(a)‖22da+ 2

∫ 1

0
‖θ∗∗(a)− θ0(a)‖22da.

In view of (130) and (142), we obtain that∫ 1

0
‖θ̂(a)− θ0(a)‖22da = O(n−1kn log n+ k−2α0

n + γnkn) = O(k−2α0
n + γnkn), (143)

with probability at least 1 − O(n−2), where the last equality is due to the condition that

γn � n−1 log n. Set kn = bγ−(1+2α0)
n c (the largest integer that is smaller than γ

−(1+2α0)
n ),

we obtain that ∫ 1

0
‖θ̂(a)− θ0(a)‖22da = O(γ2α0/(1+2α0)

n ),

with probability at least 1−O(n−2). The proof is hence completed.
Convergence rate of the value function: To derive the convergence rate of the value function
under the proposed I2DR, we introduce the following lemma.

Lemma 8 Assume conditions in Theorem 6 hold. Then for any interval I ∈ I(m) with
|I| ≥ c̄0n

−1 log n and any interval I ′ ∈ P̂ with I ⊆ I ′, we have with probability at least
1−O(n−2) that

‖θ0,I − θ0,I′‖2 ≤ 3

√
c−1

5 γn|I|−1,
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where the constant c5 is defined in (132).

Recall by the definition of the value function that

V opt − V π∗(d̂) = E

(
sup
a∈[0,1]

X
>
θ0(a)

)
− E

(∫
d̂(X)

X
>
θ0(a)π∗(a;X, d̂(X))da

)
.(144)

We begin by providing an upper bound for

χ11 = E

(
sup
a∈[0,1]

X
>
θ0(a)

)
− E

(
sup
I∈P̂

X
>
θ0,I

)
.

It follows from (48) and Cauchy-Schwarz inequality that

χ11 = E

(
sup
I∈P̂

sup
a∈I

X
>
θ0(a)

)
− E

(
sup
I∈P̂

X
>
θ0,I

)
(145)

≤ E‖X‖2 sup
I∈P̂

sup
a∈I
‖θ0(a)− θ0,I‖2

≤

√√√√E

p+1∑
j=1

|X(j)|2 sup
I∈P̂

sup
a∈I
‖θ0(a)− θ0,I‖2 ≤ (p+ 1)1/2ω sup

I∈P̂
sup
a∈I
‖θ0(a)− θ0,I‖2.

Consider a sequence {dn}n that satisfies dn ≥ 0,∀n, dn → 0 as n→∞ and dn � n−1 log n.
By the definition of Hölder continuous functions, we have for any I with |I| ≤ dn that

sup
a1,a2∈I

‖θ0(a1)− θ0(a2)‖2 ≤ L sup
a1,a2∈I

|a1 − a2|α0 ≤ Ldα0
n .

It follows that

sup
a∈I
‖θ0(a)− θ0,I‖2 ≤ sup

a∈I

∥∥∥θ0(a)− {EXX>I(A ∈ I)}−1EXX
>
θ0(A)I(A ∈ I)

∥∥∥
2

≤ sup
a∈I

∥∥∥{EXX>I(A ∈ I)}−1EXX
>I(A ∈ I){θ0(a)− θ0(A)}

∥∥∥
2

(146)

≤ sup
a∈I

∥∥∥{EXX>I(A ∈ I)}−1EXX
>I(A ∈ I)

∥∥∥
2

sup
a,a∗∈I

‖θ0(a)− θ0(a∗)‖2 ≤ Ldα0
n ,

for any I that satisfies |I| ≤ dn.

Consider an interval I ∈ I(m) that satisfies |I| > dn. For any a ∈ I, we can find an
interval I ′ ⊆ I with dn/2 ≤ |I ′| ≤ dn and I ′ ∈ I(m) that covers a. Similar to (146), we
have

‖θ0,I′ − θ0(a)‖2 ≤ Ldα0
n . (147)

Since dn � n−1 log n, by Lemma 8, we have with probability at least 1−O(n−2) that

‖θ0,I − θ0,I′‖2 ≤ 3

√
2c−1

5 γnd
−1
n .
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This together with (147) yields that

sup
a∈I
‖θ0(a)− θ0,I‖2 ≤ Ldα0

n + 3

√
2c−1

5 γnd
−1
n ,

for any I ∈ I(m) that satisfies |I| > dn. Combining this together with (146), we obtain
that

sup
a∈I
‖θ0(a)− θ0,I‖2 ≤ Ldα0

n + 3

√
2c−1

5 γnd
−1
n ,

for any I ∈ I(m), with probability at least 1−O(n−2). Set dn � γ(1+2α0)−1

n , we have with
probability at least 1−O(n−2) that

sup
a∈I
‖θ0(a)− θ0,I‖2 ≤ O(1)γα0/(1+2α0)

n ,

for any I ∈ I(m), where O(1) denotes some positive constant.

Therefore, we obtain with probability at least 1−O(n−2) that

χ11 ≤ O(1)γα0/(1+2α0)
n , (148)

where O(1) denotes some positive constant. Similarly, we can show with probability at least
1−O(n−2) that

χ12 = EX
>
θ

0,d̂(X)
− E

(∫
d̂(X)

X
>
θ0(a)π∗(a;X, d̂(X))da

)
≤ O(1)γα0/(1+2α0)

n ,

where O(1) denotes some positive constant. This together with (144) and (148) yields that,

V opt − V π∗(d̂) ≤ E

(
sup
I∈P̂

X
>
θ0,I

)
− EX

>
θ

0,d̂(X)
+O(1)γα0/(1+2α0)

n , (149)

with probability at least 1−O(n−2), where O(1) denotes some positive constant.

Using similar arguments in (145), we can show that

E

(
sup
I∈P̂

X
>
θ0,I

)
− E

(
sup
I∈P̂

X
>
θ̂I

)
≤ (p+ 1)1/2ω sup

I∈P̂
‖θ0,I − θ̂I‖2,

and

EX
>
θ

0,d̂(X)
− EX

>
θ̂
d̂(X)

≤ (p+ 1)1/2ω sup
I∈P̂
‖θ0,I − θ̂I‖2.

Since supI∈P̂ X
>
θ̂I = X

>
θ̂
d̂(X)

, we have

V opt − V π∗(d̂) ≤ 2(p+ 1)1/2ω sup
I∈P̂
‖θ0,I − θ̂I‖2 +O(1)γα0/(1+2α0)

n , (150)
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under the event defined in (149). It follows from Lemma 1 and 4 that

sup
I∈P̂
‖θ0,I − θ̂I‖2 ≤

√
log n
√
nγn

,

with probability at least 1−O(n−2). This together with (150) yields that

V opt − V π∗(d̂) ≤ O(1)

(
γα0/(1+2α0)
n +

√
log n
√
nγn

)
,

with probability at least 1−O(n−2), where O(1) denotes some positive constant. Set γn �
(n−1/2 log1/2 n)(2α0+1)/(4α0+1), we obtain that V opt−V π∗(d̂) = O(n−α0/(1+4α0) logα0/(1+4α0) n),
with probability at least 1−O(n−2). The proof is hence completed.

B.11 Proof of Lemma 8

For a given interval I ′ ∈ P̂, the set of intervals I considered in Lemma 8 can be classified
into the following three categories.
Category 1: I = I ′. Then it is immediate to see that ‖θ0,I − θ0,I′‖2 = 0 and the assertion
automatically holds.
Category 2: There exists another interval I∗ ∈ I(m) that satisfies I ′ = I∗ ∪ I. Notice that
the partition P̂∗ = P̂ ∪ {I∗} ∪ I − {I ′} also belongs to B(m). By definition, we have

1

n

n∑
i=1

∑
I0∈P̂∗

I(Ai ∈ I0)(Yi −X
>
i θ̂I0)2 + λn|I0|‖θ̂I0‖22 + γn|P̂∗|

≥ 1

n

n∑
i=1

∑
I0∈P̂

I(Ai ∈ I0)(Yi −X
>
i θ̂I0)2 + λn|I0|‖θ̂I0‖22 + γn|P̂|,

and hence

1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + λn|I|‖θ̂I‖22 +
1

n

n∑
i=1

I(Ai ∈ I∗)(Yi −X
>
i θ̂I∗)

2 + λn|I∗|‖θ̂I∗‖22

≥ 1

n

n∑
i=1

I(Ai ∈ I ′)(Yi −X
>
i θ̂I′)

2 + λn|I ′|‖θ̂I′‖22 − γn.

It follows from the definition of θ̂I∗ that

1

n

n∑
i=1

I(Ai ∈ I∗)(Yi −X
>
i θ̂I∗)

2 + λn|I∗|‖θ̂I∗‖22 ≤
1

n

n∑
i=1

I(Ai ∈ I∗)(Yi −X
>
i θ̂I′)

2 + λn|I∗|‖θ̂I′‖22.

Therefore, we obtain

1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + λn|I|‖θ̂I‖22 (151)

≥ 1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I′)

2 + λn|I|‖θ̂I′‖22 − γn.
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Category 3: There exist two intervals I∗, I∗∗ ∈ I(m) that satisfy I ′ = I∗ ∪ I ∪ I∗∗. Using
similar arguments in proving (151), we can show that

1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + λn|I|‖θ̂I‖22 ≥
1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I′)

2 + λn|I|‖θ̂I′‖22 − 2γn.

Hence, regardless of whether I belongs to Category 2, or it belongs to Category 3, we have

1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + λn|I|‖θ̂I‖22

≥ 1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I′)

2 + λn|I|‖θ̂I′‖22 − 2γn

≥ 1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I′)

2 − 2γn. (152)

Notice that |I ′| ≥ |I|. Under the event defined in (22), we obtain that

‖θ̂I′ − θ0,I′‖2 ≤
c0
√

log n√
|I|n

.

Similar to (33), we can show the following event occurs with probability at least 1−O(n−2),∣∣∣∣∣ 1n
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)X

>
i (θ̂I′ − θ0,I′)

∣∣∣∣∣ ≤ O(1)n−1 log n, (153)

where O(1) denotes some positive constant. Similarly, using Cauchy-Schwarz inequality, we
can show with probability at least 1−O(n−2) that∣∣∣∣∣ 1n

n∑
i=1

I(Ai ∈ I)(X
>
i θ0,I −X

>
i θ0,I′)X

>
i (θ̂I′ − θ0,I′)

∣∣∣∣∣
≤ 1

4n

n∑
i=1

I(Ai ∈ I)(X
>
i θ0,I −X

>
i θ0,I′)

2 +
1

n

n∑
i=1

I(Ai ∈ I){X>i (θ̂I′ − θ0,I′)}2

≤ 1

4n

n∑
i=1

I(Ai ∈ I)(X
>
i θ0,I −X

>
i θ0,I′)

2 +O(1)n−1 log n,

where O(1) denotes some positive constant. This together with (153) yields∣∣∣∣∣ 1n
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)X

>
i (θ̂I′ − θ0,I′)

∣∣∣∣∣
≤ 1

4n

n∑
i=1

I(Ai ∈ I)(X
>
i θ0,I −X

>
i θ0,I′)

2 +O(1)n−1 log n,
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with probability at least 1 − O(n−2), where O(1) denote some positive constant. Using
similar arguments in proving (32), we can show the following event occurs with probability
at least 1−O(n−2),

1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I′)

2 ≥ 1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I′)

2 (154)

− 1

2n

n∑
i=1

I(Ai ∈ I)(X
>
i θ0,I −X

>
i θ0,I′)

2 −O(1)n−1 log n,

where O(1) denotes some positive constant.
In addition, it follows from the definition of θ̂I that

1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + λn|I|‖θ̂I‖22 ≤
1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)

2 + λn|I|‖θ0,I‖22.

By (27) and the condition that λn = O(n−1 log n), we obtain that

1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ̂I)

2 + λn|I|‖θ̂I‖22 ≤
1

n

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)

2 +O(1)n−1 log n,

where O(1) denotes some positive constant. This together with (152) and (154) yields

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)

2 (155)

≥
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I′)

2 − 2nγn −O(1) log n

−1

2

n∑
i=1

I(Ai ∈ I)(X
>
i θ0,I −X

>
i θ0,I′)

2,

with probability at least 1−O(n−2), where O(1) denotes some positive constant.
Notice that

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I′)

2 =

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I +X

>
i θ0,I −X

>
i θ0,I′)

2

=

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)

2 + 2

n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)(X

>
i θ0,I −X

>
i θ0,I′)︸ ︷︷ ︸

χ10

+

n∑
i=1

I(Ai ∈ I)(X
>
i θ0,I′ −X

>
i θ0,I)

2.

Combining this with (155) yields that

n∑
i=1

I(Ai ∈ I)(X
>
i θ0,I′ −X

>
i θ0,I)

2 ≤ 4nγn +O(1) log n+ 4|χ10|. (156)
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Under the event defined in (132), we obtain that

n∑
i=1

I(Ai ∈ I)(X
>
i θ0,I′ −X

>
i θ0,I)

2 ≥ c5n|I|‖θ0,I′ − θ0,I‖22. (157)

By the definition of θ0,I , we have EI(A ∈ I)(Y −X>θ0,I)X = 0. Under the event defined
in (23), it follows from Cauchy-Schwarz inequality that

|χ10| ≤
2

c5n|I|

∥∥∥∥∥
n∑
i=1

I(Ai ∈ I)(Yi −X
>
i θ0,I)Xi

∥∥∥∥∥
2

2

+
c5n

8
|I|‖θ0,I′ − θ0,I‖22

≤ 2c2
0 log n

c5
+
c5n

8
|I|‖θ0,I′ − θ0,I‖22.

This together with (156) and (157) yields that

|I|‖θ0,I − θ0,I′‖22 ≤
8γn
c5

+O(1)n−1 log n,

with probability at least 1 − O(n−2), where O(1) denotes some positive constant. Since
γn � n−1 log n, for sufficiently large n, we obtain with probability at least 1−O(n−2) that

|I|‖θ0,I − θ0,I′‖22 ≤ 9c−1
5 γn.

The proof is hence completed.

B.12 Proof of Theorem 7

The proof of Theorem 7 relies on the following result that is proven in Lemma E.4 of Cai
et al. (2021)3: For any interval I ∈ I(m) with |I| � γn and any interval I ′ ∈ P̂ with
I ⊆ I ′, we have with probability approaching 1 (w.p.a.1.) that

E|qI,0(X)− qI′,0(X)|2 ≤ C̄|I|−1γn, (158)

for some constant C̄ > 0.

The rest of the proof is divided into two parts. In the first part, we show assertion (i) in
Theorem 7 holds. In the second part, we present the proof for assertion (ii) in Theorem 7.
It is worth mentioning that results in Lemmas 5 and 7 do not rely on the assumption that
Q(·) is piecewise function. These lemmas hold under the conditions in Theorem 7 as well.

Proof of Part 1: Consider a sequence {dn}n such that dn → 0 and dn � γn. We aim to
show

max
a∈I′
I′∈P̂

E[|Q(X, a)− q̂I′(X)|2] = Op
(
γ

2α0
2α0+1
n

)
+Op

(
(nγn)

− 2β
2β+p log4 n

)
,

where the expectation is taken with respect to the marginal distribution of X.

3. See https://openreview.net/attachment?id=rvKD3iqtBdk&name=supplementary_material.
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By Lemma 5, it suffices to show

max
a∈I′
I′∈P̂

E|Q(X, a)− qI′,0(X)|2 = Op
(
γ

2α0
2α0+1
n

)
. (159)

Suppose |I ′| ≥ dn. Then according to (158), we can find some I such that |I| = dn and
a ∈ I ⊆ I ′,

E|qI,0(X)− qI′,0(X)|2 ≤ C̄ γn
dn
.

In addition, it follows from Hölder smoothness assumption that

max
x

max
I

max
a∈I
|Q(x, a)− qI(x)| ≤ max

x
max
I

max
a1,a2∈I

|Q(x, a1)−Q(x, a2)| = O(dα0
n ).

By setting dn to proportional to γ
1/(1+α0)
n , it is immediate to see that (159) holds.

Next, suppose |I ′| < γ
1/(1+α0)
n . Then it follows from the Hölder smoothness condition

that (159) is satisfied as well. This completes the proof for the result (i).

Proof of Part 2: This part follows the second part of the proof of Theorem 6. Recall by the
definition of the value function that

V opt − V π∗(d̂) = E

(
sup
a∈[0,1]

Q(X, a)

)
− E

(∫
d̂(X)

Q(X, a)π∗(a;X, d̂(X))da

)
, (160)

where the expectation is taken with respect to the marginal distribution of X.
Using similar arguments in (145), it follows from the result in Part 1 that

E

(
sup
a∈[0,1]

Q(X, a)

)
− E

(
sup
I∈P̂

qI,0(X)

)
= Op

(
γ
− α0

2α0+1
n

)
. (161)

Similarly, we can show that

EQ(X, d̂(X))− E

(∫
d̂(X)

Q(X, a)π∗(a;X, d̂(X))da

)
= Op

(
γ
− α0

2α0+1
n

)
.

This together with (160) and (161) yields that,

V opt − V π∗(d̂) ≤ E

(
sup
I∈P̂

qI,0(X)

)
− EQ(X, d̂(X)) +Op

(
γ
− α0

2α0+1
n

)
. (162)

Using similar arguments in (145), we can obtain that

E

(
sup
I∈P̂

qI,0(X)

)
− E

(
sup
I∈P̂

q̂I(X)

)
≤ C̄ ′ sup

I∈P̂

√
E[|qI,0(X)− q̂I(X)|2],

EQ(X, d̂(X))− EQ̂(X, d̂(X)) ≤ C̄ ′ sup
I∈P̂

√
E[|qI,0(X)− q̂I(X)|2],

for some constant C̄ ′ > 0. Since supI∈P̂ q̂I(X) = Q̂(X, d̂(X)), it follows from Lemma 5 and
(162) that

V opt − V π∗(d̂) = Op
(
γ

α0
2α0+1
n

)
+Op

(
(nγn)

− β
2β+p log4 n

)
.

The proof is completed by setting γn to be proportional to n
−1/
(

1+
β(1+2α0)
α0(p+2β)

)
.
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