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Abstract

Empirical risk minimization, where the underlying loss function depends on a pair of data
points, covers a wide range of application areas in statistics including pairwise ranking
and survival analysis. The common empirical risk estimator obtained by averaging values
of a loss function over all possible pairs of observations is essentially a U-statistic. One
well-known problem with minimizing U-statistic type empirical risks, is that the computa-
tional complexity of U-statistics increases quadratically with the sample size. When faced
with big data, this poses computational challenges as the colossal number of observation
pairs virtually prohibits centralized computing to be performed on a single machine. This
paper addresses this problem by developing two computationally and statistically efficient
methods based on the divide-and-conquer strategy on a decentralized computing system,
whereby the data are distributed among machines to perform the tasks. One of these
methods is based on a surrogate of the empirical risk, while the other method extends
the one-step updating scheme in classical M-estimation to the case of pairwise loss. We
show that the proposed estimators are as asymptotically efficient as the benchmark global
U-estimator obtained under centralized computing. As well, we introduce two distributed
iterative algorithms to facilitate the implementation of the proposed methods, and conduct
extensive numerical experiments to demonstrate their merit.
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1. Introduction

The past decade has witnessed the increasing availability of large data sets due to advances
in information technology. Big data pose many challenges, including those of computation
and storage. In particular, the storage problem makes it difficult for a single computer to
handle a large data set. This renders many traditional statistical techniques inapplicable in
the face of big data.

Many statistical problems can be expressed in terms of parameter estimation. Let
θ∗ be the parameter of interest. Typically, θ∗ is the minimizer of the population risk
F (θ) = EZ∼Pf(θ;Z), with f being a loss function, and Z a random vector following an
unknown probability distribution, P. Assume that zi’s, i = 1, . . . , N , are i.i.d. One of the
most common approaches to estimating θ∗ is empirical risk minimization (ERM) (Bartlett
and Mendelson, 2006). The estimator of θ∗ obtained by minimizing the empirical risk
function FN (θ) = 1/N

∑N
i=1 f(θ; zi) is commonly referred to as the M-estimator, whose

properties have been extensively studied under a variety of setups (van de Geer, 2000). Large
scale data pose challenges for the implementation of M-estimation due to the computational
and storage problems mentioned above. A number of authors, including Zhang et al. (2013),
Shamir et al. (2014), Huang and Huo (2015), Smith et al. (2017), Fan et al. (2021) and
Jordan et al. (2019), have considered M-estimation when the data are divided into blocks
stored on different platforms.

The ERM studies cited above are all based on univariate error or loss functions. There
exist many statistical problems where pairwise loss functions provide a more appropriate ba-
sis for evaluating estimators’ efficiency (see Subsection 3.2 for examples). Under a pairwise
decision problem, θ∗ is the minimizer of the population risk L(θ) = E(Z,Z′)∼P×P`(θ;Z,Z

′),
where Z and Z ′ are pairwise i.i.d. random vectors and `(θ;Z,Z ′) is the corresponding loss
function. A common estimator of L(θ) is the empirical risk

LN (θ) =
1

N(N − 1)

∑
i 6=j

` (θ, zi, zj) , (1)

obtained by averaging `(.) over all pairs of observations of zi’s. The estimator LN (θ) is
essentially a U-statistic, which has the smallest variance among all unbiased estimators
(Korolyuk and Borovskich, 2013). The minimizer of U-statistic-based empirical risk is a
generalization of the M-estimator, and is commonly referred to as the U-(or M2-)estimator.
The large sample properties of U-estimators under the centralized setting (that is, using all
data on one machine) have been extensively studied. See, for example, Bose (1998), Song
and Ma (2010) and Bose and Chatterjee (2018b). The U-statistic-based ERM approach has
been applied to many statistical problems, including ranking problems (Clémençon et al.,
2005, 2008; Agarwal and Niyogi, 2009), survival analysis (Brown and Wang, 2007; Chung
et al., 2013), ROC analysis (Ying and Zhou, 2016), and others.

With N observations, there are O(N2) matched pairs. When the sample size becomes
very large, this poses computational challenges that virtually prohibit centralized comput-
ing. A more viable approach is to adopt a decentralized, or distributed, computing system,
whereby the data are distributed among machines to perform the tasks. When the empirical
risk is just a simple average of the errors, distributed computing can usually be implemented
without any major difficulty, and the complete information, including the empirical risk val-
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ues at different points and their gradients, can be obtained by integrating the subset-based
information via a centralized machine. However, it is difficult, if not impossible, to obtain a
complete U-statistic due to the high computational cost associated with a colossal number
of sample pairs. This is the major issue with distributed inference for pairwise problems,
for which the objective function is inseparable across the observations and to which existing
distributed computing methods under univariate loss functions cannot be directly applied.
We need a new distributed algorithm for the U-statistic-based ERM. The objective of the
present paper is to take steps in this direction.

The strategy of divide-and-conquer has long been regarded as an effective paradigm to
reduce computational efforts and memory requirements, and has been used in conjunction
with many distributed algorithms. Instead of processing all data on a single machine, this
strategy divides the data into manageable subsets stored on different local machines, and
constructs local statistics from each subset to be integrated at the final stage. In this
paper, we develop two simple and reliable distributed methods that use the divide-and-
conquer strategy for conducting U-statistics-based ERM. The first method is based on a
surrogate empirical risk that can be calculated in a distributed manner, and the second
method is a distributed variant of the usual M-estimation procedure. We denote the two
methods as the SU-ERM and the OS-ERM methods respectively. These two methods share
one common feature that local gradient information based on subsets of data is computed
by the local machines. The local statistics are then transferred to the master machine to
perform the remaining operations. The SU-ERM method uses a weighted aggregate of local
gradients combined with the subset information for computing the surrogate empirical risk
that yields the estimator. Let n be the size of the subset sample. The SU-ERM method
has the advantage of reducing the computational complexity from O(N2) to O(n2), and
avoids many memory-intensive operations brought about by the large number of observation
pairs. The purpose of the OS-ERM method is to reduce computational cost. It replaces
the optimization of the surrogate empirical risk in SU-ERM by a Newton-type algorithm
involving the computation of the local Hessian matrix on the central machine. Being a
Newton-type optimization algorithm, the OS-ERM method has a closed-form analytical
solution, being its biggest advantage over the SU-ERM method. In addition, for the classical
one-step M-estimator to achieve optimal efficiency, the initial estimator θ̂0 has to satisfy
‖θ̂0−θ∗‖2 = OP((p/N)1/2), but to achieve the same efficiency based on the OS-ERM method,
θ̂0 only has to satisfy ‖θ̂0 − θ∗‖2 = OP((p/n)1/2). We provide theoretical upper bounds for
the approximation errors and the mean squared errors (MSE) of the estimators obtained
from the SU-ERM and OS-ERM methods, and show that under some regularity conditions,
these estimators are as asymptotically efficient as the global U-estimator. As well, we
develop procedures of distributed statistical inference, including methods for estimating
covariance matrices and constructing confidence intervals.

The rest of this paper is organized as follows. In Section 2, we review the literature of
distributed algorithms and U-statistic-based ERM. Section 3 introduces the problem setup.
The two distributed methods for conducting U-statistic-based ERM in the face of big data
are introduced in Section 4, and their theoretical properties are analyzed in Section 5. In
Section 6, we relax a technical condition about the number of machines and develop iterative
versions of the methods for handling situations where the sample size is exceeded by the
number of machines. Section 7 investigates the properties of the proposed methods in finite
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samples. Section 8 concludes. The Appendix provides the proofs of the main theorems.
Proofs of other theorems and results related to the degenerate U-Statistics and the naive
estimator are relegated to the Online Supplementary Material.

2. A Review of Related Studies

Distributed algorithms related to M-estimation have been studied for sparse linear regression
(Lee et al., 2017), generalized linear regression (Chen and Xie, 2014; Cai et al., 2019), M-
estimators with cubic-rate (Shi et al., 2018), convex learning and optimization (Arjevani
and Shamir, 2015; Chen et al., 2021; Fan et al., 2021), sparse Cox regression (Wang et al.,
2021), linear support vector machine (Wang et al., 2019), and quantile regression (Volgushev
et al., 2019; Chen et al., 2019; Chen and Zhou, 2019). Distributed algorithms not involving
M-estimation have also been considered in the context of hypothesis testing (Battey et al.,
2018), Bayesian estimation (Suchard et al., 2010; Wang and Dunson, 2013; Scott et al.,
2016; Terenin et al., 2020), principal component analysis (Garber et al., 2017; Fan et al.,
2019), and bootstraping (Kleiner et al., 2014).

Lin and Xi (2010) and Chen and Peng (2021) proposed surrogate versions of U-statistics
for big data that can be computed in a distributed framework. The surrogate U-statistics
are obtained by weighting and aggregating the local U-statistics based on different sub-
sets of the full sample. They proved that the surrogate U-statistic is as efficient as the
global U-statistic computed from the full sample. Xi and Lin (2016) introduced a dis-
tributed estimation method for the U-statistic-based functional regression model (U-FRM)
for estimating higher-order moments. Although the estimating equations that underlie their
U-FRM are U-statistics-based, they are different from the ERM framework being considered
in the present paper. Also of relevance to our work are the studies of Vogel et al. (2019) and
Wang et al. (2019). Vogel et al. (2019) proposed a distributed stochastic gradient descent
(SGD) algorithm for pairwise empirical risk minimization that involves alternating between
repartitioning the full data across local machines and in-parallel computation of gradients.
An important shortcoming of the SGD method is that when there is a large amount of data,
the method requires hundreds if not thousands of iterations in order to converge. As well, as
each SGD iteration involves a divide-and-conquer procedure, the communication cost can
be enormous. Determining the number of SGD iterations to balance the trade-off between
accuracy and cost can also be difficult. Wang et al. (2019) investigated the distributed
pairwise learning based on SGD under the framework of a reproducing kernel Hilbert space
(RKHS).

3. Preliminaries and Problem Formulation

In this section, we describe the framework of our analysis. Let P be an unknown probability
distribution over the sample space Z = X ×Y, where X is a domain in Rp and Y ⊆ R. Let
{`(θ; z, z′) : Θ×Z2 7→ R | θ ∈ Θ ⊆ Rp} denote a collection of convex loss functions that are
assumed to be continuously twice-differentiable with respect to θ. For each parameter θ, the
loss function ` measures its performance on a pair of instances (z, z′). The corresponding
population risk is L0(θ) := E

(Z,Z′)∼P×P [`(θ;Z,Z ′)]. Without loss of generality, we assume

that ` is symmetric with respect to (z, z′).
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3.1 The U-statistics-based Empirical Risk Minimization

Our goal is to estimate the parameter of interest θ∗ that minimizes the population risk,
that is,

θ∗ = arg min
θ∈Θ

L0(θ) = arg min
θ∈Θ

E
(Z,Z′)∼P×P [`(θ;Z,Z ′)]. (2)

In order to obtain the estimate of θ∗ in (2), an estimation of the unknown L0 is required.
Denote a sample of i.i.d. observations as DN := {Zi = (X>i , Yi)

> : i = 1, . . . , N}. Let C 2
N

denote the number of all possible pairs of observations in DN . A natural way to estimate
L0 is to average the values of ` over C 2

N . This leads to the following global empirical risk
measure:

LN (θ) =
1

C 2
N

∑
1≤i<j≤N

` (θ;Zi, Zj) . (3)

Clearly, LN is a U-statistic, which has the favourable property of minimum variance in
the class of all unbiased estimators of L0. The minimization with respect to (3) is known
as empirical risk minimization (ERM). We denote the resultant minimizer as θ̂N , that is,
θ̂N = arg minθ∈ΘLN (θ).

Remark 1 When the loss function is univariate, the estimators obtained by ERM are re-
ferred to as the M-estimators, which are a broad class of estimators for which the objective
function corresponds to a sample average. For example, when the loss function is a negative
log-likelihood, the M-estimator is the maximum likelihood estimator. We label the univariate
loss-based ERM as the usual ERM and the pairwise loss-based ERM as the U-ERM.

Remark 2 Our analysis can be generalized to loss functions that average over all d-tuples
(d ≥ 2) of observations. For ease of illustration, we consider d = 2 in this paper.

3.2 Examples

The U-ERM framework can cover a wide range of statistical problems. Some examples are
provided below.
Example 1 (Ranking Problems). Ranking problems abound in information retrieval,
credit-risk screening, and quality control. Let Z1 = (X1, Y1) and Z2 = (X2, Y2) be objects,
where X1 and X2 are random vectors describing the objects’ features, and Y1 and Y2 are
random variables that define the ordering between the objects. For example, Z1 is said
to be “better” than Z2 if Y1 > Y2. We can observe X but not Y . The goal of ranking
is to determine the ordering based upon the observed features of the objects by finding
a rule f : X × X → R such that Z1 is ranked higher than Z2 if f (X1, X2) > 0. Here,
we focus on linear ranking rules, that is, from a collection of ranking rules {fθ (x1, x2) =
θ> (x1 − x2) , θ ∈ Rp}, we seek the rule (or the optimal θ) that minimizes the following
population ranking risk:

L0(θ) = Eφ
[
sign (Y1 − Y2) θ> (X1 −X2)

]
,

where φ : R → R is a loss function, for example, the logistic loss φ(u) = ln(1 + e−u) as in
Laporte et al. (2013), or the exponential loss φ(u) = exp(−u) as in Freund et al. (2003). As
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DN contains only the observed features, the most natural estimator of L0 is the empirical
risk defined by the U-statistic

LN (θ) =
1

N(N − 1)

∑
i 6=j

φ
[
sign (Yi − Yj) θ> (Xi −Xj)

]
.

Example 2 (Rank-based coefficient estimation for censored regression models).
A popular model used in survival analysis is the following accelerated failure time (AFT)
model that assumes the logarithm of the failure time Ti to be linearly related to the asso-
ciated covariates Xi:

log Ti = X>i θ + ζi, (4)

where θ is a p× 1 vector of unknown regression parameters and {ζi, i = 1, . . . , N} are i.i.d.
random errors with an unspecified distribution function independent of {Xi, i = 1, . . . , N}.
Usually, Ti is subject to censoring at time Ci, and the observed dataset is {Zi = (T̃i, δi, Xi), i =
1, · · · , N}, where T̃i = min (Ti, Ci) is the observed failure time and δi = I (Ti ≤ Ci) is the
censoring indicator. One technique often used for estimating AFT models is the Gehan esti-
mator (Fygenson and Ritov, 1994), obtained by minimizing the following objective function
in the form of a U-statistic:

FN (θ) =
1

C 2
N

N∑
i 6=j

δi (ej(θ)− ei(θ)) I (ei(θ) ≤ ej(θ)) , (5)

where ei(θ) = log T̃i − X>i θ. The non-smooth nature of (5) introduces challenges to the
computation of coefficient estimates and their standard errors. To reconcile this difficulty,
Brown and Wang (2007) developed an induced smoothing method that replaces the non-
smooth objective function by a smooth approximation. Specifically, let Φ(·) and φ(·) denote
the standard normal cumulative distribution and density functions respectively. Brown and
Wang (2007) obtained their estimator of θ by minimizing the following empirical risk:

1

C 2
N

N∑
i 6=j

δi

[
(ej(θ)− ei(θ)) Φ

(
ej(θ)− ei(θ)

rij

)
+ rijφ

(
ej(θ)− ei(θ)

rij

)]
, (6)

where r2
ij = 1

N (Xi − Xj)
>Σ(Xi − Xj), and Σ is a symmetric and positive definite matrix

that satisfies ‖Σ1/2‖ = O(1).

Example 3 (Partially linear logit model). Consider the partially linear logit model

yi = I
{
x>i θ + g (wi) + εi ≥ 0

}
, i = 1, . . . , N,

where {εi}Ni=1 are i.i.d random errors from the logistic distribution and g(·) is an unknown
function assumed to be sufficiently smooth. As g(wi) and g(wj) behave like fixed effects
when wi is close to wj , Honoré and Powell (1997) suggested estimating θ by optimizing the
following empirical risk based on pairwise differencing:

1

C 2
N

∑
i<j
yi 6=yj

K

(
wi − wj
hN

)(
yi ln

(
1 + exp

(
(xj − xi)> θ

))
+ yj ln

(
1 + exp

(
(xi − xj)> θ

)))
,
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where the bandwidth hN shrinks towards zero as N increases, and K(·) is a kernel function
that gives a large weight to the pair (i, j) when wi and wj are close. Similar approaches
exist for the estimation of other semiparametric models including the partially linear Tobit
and Poisson regression models (Honoré and Powell, 1997).

There exist many other examples, including the AUC maximization (Gao et al., 2013)
based on the regularized misranking loss function `(θ, z, z′) = I{(x−x′)>θ<0}I{y=1∧y′=−1} +

(µ/2)‖θ‖2 that has been widely used in binary classification and bipartite ranking. For
computational convenience, ` is usually replaced by a surrogate loss function ˜̀(θ, z, z′) =
(1− (x−x′)>θ)2I{y=1∧y′=−1}+ (µ/2)‖θ‖2. Another example is metric learning (Papa et al.,
2015), where the empirical risk is defined by a U-statistic of degree 3.

4. Distributed Estimation for Large-scale Datasets

In this section, we focus on U-ERM in the context of big data, where N is exceedingly
large and p grows with N . As mentioned, the computational complexity of the problem
increases quadratically with the sample size due to the pairwise feature of the loss functions.
The high volume of sample pairs poses formidable challenges to the implementation of U-
ERM in terms of both memory requirements and computational cost. A single machine
cannot accommodate the memory required for processing O(N2) sample pairs. Enormous
computational operations are also needed for performing numerical iterative algorithms on
such a high volume of data. The overall computational cost is therefore very high, even for
moderate N . The way to proceed is to develop a computationally efficient and statistically
valid divide-and-conquer algorithm for the U-ERM, to be conducted in a distributed manner
rather than on a centralized machine.

To this end, let the data DN be evenly divided into K smaller subsets {Dk}Kk=1, each of

size n. The subset Dk :=
{
Zk,i = (X>k,i, Yk,i)

>, i = 1, . . . , n
}

is stored on the k-th machine,

k = 1, . . . ,K. One of these K machines is a master machine on which the summary statistics
computed from local machines are aggregated. No machine other than the master machine
can access data not produced by itself. Without loss of generality, we assume that the
first machine is the master machine. In the following, we develop two simple and reliable
distributed estimation methods for U-ERM.

4.1 The SU-ERM Estimator

The local empirical risk corresponding to the k-th machine is

Lkn(θ) =
1

C 2
n

∑
1≤i<j≤n

` (θ;Zk,i, Zk,j) for k = 1, . . . ,K. (7)

A natural way to obtain a distributed estimator with the same statistical efficiency as the
global U-estimator θ̂N is to perform ERM based on SN , a surrogate empirical risk computed
in a distributed manner that is asymptotically equivalent to the global risk LN . Specifically,
consider the Taylor’s expansion of LN around an initial value θ̂0:

LN (θ) = LN (θ̂0) +∇LN (θ̂0)>
(
θ − θ̂0

)
+

∞∑
m=2

1

m!
∇mLN (θ̂0)(θ − θ̂0)⊗m. (8)
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Here, θ̂0 can be any initial estimator such as the local U-estimator θ̂kn obtained through opti-
mizing any local empirical risk Lkn(θ) for some k, or the naive estimator θN = 1/K

∑K
k=1 θ̂

k
n

obtained by averaging all of θ̂kn’s. For the usual ERM for which the loss function depends
on a single sample of observations, one can readily obtain the exact values of LN and the
corresponding m-th order derivatives ∇mLN (m ≥ 1) in a single round of communications.
On the other hand, as LN and ∇mLN (m ≥ 1) are U-statistics that involve all pairs of
sample observations, it is difficult to obtain all of their values even after multi-rounds of
communications between the local machines. To reconcile this difficulty, we replace LN and
∇mLN (m ≥ 1) at θ̂0 by their surrogates

L̃N (θ̂0) =
1

K

K∑
k=1

Lkn(θ̂0) and ∇mL̃N (θ̂0) =
1

K

K∑
k=1

∇mLkn(θ̂0), for m ≥ 1 (9)

respectively in the Taylor’s expansion in (8). Given θ̂0, these surrogate U-statistics can
be calculated in parallel in a distributed manner such that machine k computes Lkn(θ̂0)
or ∇mLkn(θ̂0) using the subset Dk, k = 1, · · · ,K. These local U-statistics will then be
transferred to the master machine for aggregation.

The surrogates defined in (9) can be viewed as incomplete U -statistics as in Clémençon
et al. (2016), who derived uniform deviation results for the estimation errors using incom-
plete U -statistics and compared them with their complete counterparts; the objective is to
reduce the computational burden by reducing the number of pairs involved in the summa-
tion of U -statistics, yet retaining the original convergence rate.

In a distributed environment, the data are stored in or artificially assigned to local
machines that do not communicate with one another. Under this setting, it is difficult
if not impossible to obtain the complete U -statistic LN (θ). On the other hand, the U -
statistic Lkn(θ) based on data on a local machine can be computed with complexity equal
to O(n). Because Lkn(θ) is complete, information on all local machines is used in the
aggregate statistic L̃N (θ) =

∑K
k=1 Lkn(θ); this approach also has the advantage of reducing

the computational burden as the computation of Lkn(θ) uses significantly fewer observation
pairs than the computation of LN (θ) in a centralized setting. If computational burden
remains an issue, other incomplete U -statistics may be used to approximate Lkn(θ).

Note that the aggregation of the higher-order derivatives ∇mLkn (m ≥ 2) requires a vast
amount of communication exchanges between the master and local machines. To reduce
the communication cost, we can replace the surrogate higher-order derivatives ∇mL̃N (θ̂0)
(m ≥ 2) by the local derivatives computed from the subset stored in the master machine.
This leads to the following surrogate empirical risk:

SN (θ) = L̃N (θ̂0) +∇L̃N (θ̂0)
>

(θ − θ̂0) +

∞∑
m=2

1

m!
∇mL1

n(θ̂0)(θ − θ̂0)⊗m. (10)

Again, by using the Taylor’s expansion of L1
n(θ) around θ̂0, the infinite sum of the higher-

order terms in (10) can be replaced by the term L1
n(θ)−L1

n(θ̂0)−∇L1
n(θ̂0)

>
(θ− θ̂0), yielding

SN (θ) = L̃N (θ̂0) +∇L̃N (θ̂0)
>

(θ − θ̂0) + L1
n(θ)− L1

n(θ̂0)−∇L1
n(θ̂0)

>
(θ − θ̂0). (11)
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After omitting the constant term in (11), the surrogate empirical risk reduces to

SN (θ) = L1
n(θ)−

(
∇L1

n(θ̂0)−∇L̃N (θ̂0)
)>
θ. (12)

We abbreviate the ERM based on this surrogate empirical risk as the SU-ERM, and denote
the following estimator obtained by minimizing SN (θ) as the SU-ERM estimator:

θ̃N = arg min
θ∈Θ
SN (θ). (13)

In summary, by the SU-ERM procedure, the gradients are computed based on K − 1 local
machines with the rest of the computational operations performed on the master machine.
Compared with the U-ERM method conducted on a single machine, the SU-ERM method
reduces the computational complexity from O(N2) to O(n2), which in turn reduces the risk
of memory overflow caused by the large number of sample pairs.

4.2 The OS-ERM Estimator

Despite the advantages of the SU-ERM method, the computational complexity of optimizing
the surrogate empirical risk SN is still high even for moderate sample sizes. To further
reduce the computational cost, we consider another distributed method based on a one-
step approach. For classical M-estimation, Bickel (1975) developed a one-step estimator
based on the Newton’s method that improves the initial estimator. van der Vaart (1998)
proved that the same one-step estimator can be as efficient as the M-estimator. In the
following, we investigate this one-step method for U-ERM under the distributed setting.

The procedure entails a quadratic approximation to the surrogate empirical risk SN . By
applying the Taylor’s expansion, we can write

SN (θ) ≈ SN (θ̂0) +∇SN (θ̂0)
>

(θ − θ̂0) +
1

2
(θ − θ̂0)>∇2SN (θ̂0)(θ − θ̂0). (14)

Recognizing that ∇SN (θ̂0) = ∇L̃N (θ̂0) and ∇2SN (θ̂0) = ∇2L1
n(θ̂0), and omitting the con-

stant terms in (14), we obtain the following quadratic surrogate empirical risk function:

SQN (θ) = ∇L̃N (θ̂0)>(θ − θ̂0) +
1

2
(θ − θ̂0)>∇2L1

n(θ̂0)(θ − θ̂0). (15)

The OS-ERM estimator θ̃QN is the minimizer of (15) and has the following closed-form
expression:

θ̃QN = θ̂0 −∇2L1
n(θ̂0)−1∇L̃N (θ̂0). (16)

Similar to the SU-ERM procedure, the OS-ERM method uses K − 1 machines to compute
the local gradients, which are then transferred to the master machine for the remaining
processing. However, unlike the SU-ERM method, the OS-ERM method is based on an
empirical risk function with a closed form expression. This is an important advantage as
no optimization would be required at the master machine. This significantly reduces the
computational effort and offers a fast solution compared to U-ERM in a distributed setting.
Furthermore, as will be shown in Section 5, the resultant OS-ERM estimator θ̃QN enjoys the

same statistical efficiency as the SU-ERM estimator θ̃N . These credentials strongly favour
the use of the OS-ERM method in practice.
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5. Theoretical Results

This section is devoted to an analysis of the theoretical properties of the SU-ERM and
OS-ERM estimators. Let U(θ∗, ρ) = {θ ∈ Rp : ‖θ − θ∗‖2 < ρ} be a ball around θ∗ with
radius ρ ∈ (0, 1). Our theoretical analysis requires the following regularity conditions:

Condition 1 The dimension p, the number of machines K and the total sample size N
satisfy p = o(N) and logK = o(N) as min(p, n,K)→∞.

Condition 2 The parameter space Θ ⊂ Rp is a compact convex set, and θ∗ is an interior
point of Θ.

Condition 3 The Hessian matrix ∇2L0(θ) of the population risk at θ∗ is positive definite,
and there exist two positive parameters (λ−, λ+) such that λ−Ip×p � ∇2L0 (θ∗) �
λ+Ip×p.

Condition 4 There exists a compact neighborhood K ⊂ Θ of θ∗ such that

inf
θ∈Θ\K

L0(θ) > L0 (θ∗) , a.s.

Condition 5 There exists a function M(z, z′) such that for all θ, θ′ ∈ U(θ∗, ρ), the loss
function `(θ; z, z′) and `(θ′; z, z′) satisfy∥∥∇2`(θ; z, z′)−∇2`

(
θ′; z, z′

)∥∥
2
≤M(z, z′)

∥∥θ − θ′∥∥
2
.

As well, it is assumed that E
[
M8(Z,Z ′)

]
≤M8 for some constant M > 0.

Condition 6 There exist a constant τ > 0, and functionsG(·) andH(·) satisfying EG16(Z) ≤
G16 and EH16(Z) ≤ H16 for some constants G and H, such that for all θ ∈ U(θ∗, ρ).

E
[
‖∇`(θ;Z, z0)‖16

2

]
≤ p8G16(z0) and E

[∥∥∇2`(θ;Z, z0)
∥∥16

2

]
≤ pτH16(z0),

Condition (C1) guarantees the consistency of the global estimator as ‖θ̂N−θ∗‖2 = OP(
√
p/N).

Note that under Condition (C1), log p = o(n) on any local machine. Condition (C2) in-
forms the relationship between θ∗ and the parameter space. Condition (C3) assumes local
convexity of the population risk, which guarantees θ∗ to be a local minimum. Condi-
tion (C4) is a standard model identifiability condition that guarantees the consistency of
estimators. Conditions (C2)-(C4) are standard conditions for U-estimation (Honoré and
Powell, 1994; Wang et al., 2009; Bose and Chatterjee, 2018a). Condition (C5) restricts
the first and second derivatives of the loss function ` to be bounded, and places a Lips-
chitz condition for ∇2 to hold at least in a small neighbourhood of θ∗. Condition (C6)
pertains to the projection of `, and is necessary for establishing the moment inequalities
of the empirical risk and its derivatives; see Lemma 14 in the Appendix. Note that Con-

dition (C6) implies E
[
‖∇`(θ;Z,Z ′)‖16

2

]
≤ p8G16 and E

[∥∥∇2`(θ;Z,Z ′)
∥∥16

2

]
≤ pτH16. The

first part of Condition (C6) holds if the high-order moments of the p-dimensional random
vector ∇`(θ;Z,Z ′) is bounded. In particular, Condition (C6) results in the condition of
E
[
‖∇`(θ;Z, z0)‖22

]
≤ pG2(z0), which is satisfied if all the coordinates of ∇`(θ;Z, z0) are

10
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uniformly bounded, as in Tu et al. (2021). The second part of Condition (C6) introduces a

constant τ to allow flexibility for the rate of E
[∥∥∇2`(θ;Z, z0)

∥∥16

2

]
, so that our framework

can cover a diverse range of situations. Under Examples 1-3 above, we can set τ to 16,
which is a common choice of τ . The following is an example where other values of τ may
be selected.

Example 4 (U-means). Let K(·) : R2 → Rp be a p-dimensional symmetric kernel func-
tion. Define the loss function

`(θ;x1, x2) = (K(x1, x2)− θ)>Σ−1(K(x1, x2)− θ).

where Σ is a positive definite matrix. If Σ is selected as the covariance matrix of K(X1, X2),
we obtain the so-called Mahalanobis distance between K(x1, x2) and θ. It can be shown
that ∇2`(θ;X1, X2) = Σ−1. Hence the parameter τ in Condition (C6) is determined by the
rate of the largest eigenvalue of Σ−1.

Heuristically, under the above conditions, given that∇SN (θ̃N ) ≈ ∇SN (θ∗)+∇2SN (θ∗)(θ̃N
−θ∗), the errors of the SU-ERM estimator θ̃N with respect to the true parameter θ∗ may
be approximated by

‖θ̃N − θ∗‖2
≈OP(‖∇SN (θ∗) ‖2)

=OP(‖∇L1
n(θ∗)−∇L1

n(θ̂0)− (∇L̃N (θ∗)−∇L̃N (θ̂0)) +∇L̃N (θ∗)‖2)

=OP(‖(∇2L1
n(θ∗)−∇2L̃N (θ∗))(θ∗ − θ̂0)‖2) +OP((p/n)1/2‖θ∗ − θ̂0‖22) +OP((p/N)1/2)

=OP((p/n)1/2‖θ̂0 − θ∗‖2) +OP((p/N)1/2),

(17)

provided that the initial estimator satisfies θ̂0−θ∗ = OP((p/n)1/2). The statistical efficiency
of θ̃N is of the same order of magnitude as that of the global U-estimator θ̂N (that is,
‖θ̂N − θ∗‖2 = OP((p/N)1/2)), if pK = O(n). In particular, under the case of pK < n,
this condition is satisfied when the local U-estimator θ̂kn obtained from the k-th machine
or the naive estimator θN is used as the initial estimator. We now present a result on the
approximated errors of θ̃N .

Proposition 3 Let Conditions (C1)-(C6) be satisfied. In particular, there exists ζ > 0

such that p = O(n
8
τ (1− 1+ζ

8 )) if τ > 0. Assume the initial estimator θ̂0 lies in U(θ∗, ρ̃),
where ρ̃ = min{(1 − ρ)λ−δρ/(32λ+),

√
(1− ρ)λ−δρ/(32M)} with δρ = min{ρ, ρλ−/(4M)}.

Then the SU-ERM estimator θ̃N satisfies

‖θ̃N − θ̂N‖2 ≤C
(
‖θ̂0 − θ̂N‖2 + ‖θ̂N − θ∗‖2 + ‖∇2L1

n (θ∗)−∇2LN (θ∗) ‖2
)
‖θ̂0 − θ̂N‖2

+ C
(
‖θ̂0 − θ∗‖2 + ‖∇2LN (θ∗)−∇2L̃N (θ∗)‖2

)
‖θ̂0 − θ∗‖2

+ ‖∇LN (θ∗)−∇L̃N (θ∗)‖2

(18)

with probability no smaller than 1− C ′
(
K(log p)8/n8 + p8/N8

)
, where C and C ′ are inde-

pendent of (K,n,N, p).

11
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Note that the parameter τ in Condition (C6) determines the condition on p in Propo-
sition 3. The smaller the value of τ , the faster the convergence rate of p. For example,

if τ = 16, Proposition 3 requires p = O(n(1− 1+ζ
8 )/2) for some ζ > 0, but if τ = 8, then

p = O(n(1− 1+ζ
8 )).

As will be shown in the Appendix, ‖∇2L1
n (θ∗) − ∇2LN (θ∗) ‖2 = OP[{(log p)/n}1/2],

‖∇2LN (θ∗)−∇2L̃N (θ∗)‖2 = OP[{(log p)/n}1/2], and ‖∇LN (θ∗)−∇L̃N (θ∗)‖2 = OP[{p/(nN)}1/2].
A key takeaway of Proposition 3 is that the SU-ERM estimator’s performance can be im-
proved by updating the estimates iteratively. For example, if ‖θ̂0−θ∗‖2 = OP((p/n)1/2), and
when θ̂1

n is used as the initial estimator, we have ‖θ̃N − θ̂N‖2 = OP((p/n)1/2)‖θ̂0 − θ̂N‖2 +
OP[{p/(nN)}1/2]. This process can reduce the estimator’s errors by a factor of O((p/n)1/2).
The following theorem presents the upper bound of the MSE of θ̃N for estimating θ∗.

Theorem 4 Let Conditions (C1)-(C6) be satisfied. In particular, there exists ζ > 0 such

that p = O(n
8
τ (1− 1+ζ

8 )) if τ > 0. Assume the initial estimator θ̂0 lies in U(θ∗, ρ̃), where
ρ̃ = min{(1 − ρ)λ−δρ/(32λ+),

√
(1− ρ)λ−δρ/(32M)} with δρ = min{ρ, ρλ−/(4M)}. Then

the MSE of the SU-ERM estimator θ̃N is bounded above by

E
[∥∥∥θ̃N − θ∗∥∥∥2

2

]
≤4A

N
+ C

(
γ2
n,K,p(θ̂0) +

γn,K,p(θ̂0)
√
A√

N
+
p logN log logN

N2

)
, (19)

where A = E[
∥∥∥∇2L0 (θ∗)−1 g (θ∗;Z)

∥∥∥2

2
] with g(θ;Z) = E [∇` (θ;Z,Z ′) |Z], C is some con-

stant independent of (K,n,N, p), and

γ2
n,K,p(θ̂0) =

√
E
[
‖θ̂0 − θ∗‖42

]
max

{
p

N
,
log p

n
,

√
E
[
‖θ̂0 − θ∗‖42

]}

+

(
p

N
max

{
p

N
,
log p

n

}
+
K(log p)8

n8

)
.

Theorem 4 implies the consistency of θ̃N , which is formalized in the following theorem.

Theorem 5 Let Conditions (C1)-(C6) be satisfied. In particular, there exists ζ > 0 such

that p = O(n
8
τ (1− 1+ζ

8 )) if τ > 0. Assume the initial estimator θ̂0 lies in U(θ∗, ρ̃), where
ρ̃ = min{(1 − ρ)λ−δρ/(32λ+),

√
(1− ρ)λ−δρ/(32M)} with δρ = min{ρ, ρλ−/(4M)}, and

‖θ̂0 − θ∗‖2 = OP(αn,K,p), where αn,K,p =
√

1/K or
√
p/n. Then the SU-ERM estimator

satisfies

‖θ̃N − θ∗‖2 = OP

(
α2
n,K,p +

√
p

N
+

√
K(log p)4

n4

)
.

Furthermore, if log p = o(nK−1/8) and αn,K,p = o(1), the SU-ERM estimator θ̃N is consis-
tent.

The convergence rates ‖θ̂0 − θ∗‖2 = OP(K−1/2) and ‖θ̂0 − θ∗‖2 = OP((p/n)1/2) can
be achieved by setting θ̂0 to be the naive estimator θN = 1/K

∑K
k=1 θ̂

k
n and the local U-

estimator θ̂1
n respectively. Theorem 5 provides the conditions for the consistency of θ̃N

12
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under the case of diverging p. If p is fixed, and αn,K,p = K−1/2 or αn,K,p = (p/n)1/2, the

consistency conditions are equivalent to K = o(n8). Specifically, if ‖θ̂0−θ∗‖2 = OP(K−1/2),
then E‖θ̃N−θ∗‖2 = O

(
1
K2 + 1

N + K
n8

)
; additionally, if C1n ≤ K ≤ C2n

7/2 for some constants

C1, C2 > 0, the leading term of E‖θ̃N − θ∗‖22 is O(1/N), which is of the same order as that

of E‖θ̂N − θ∗‖22. This indicates that the SU-ERM estimator enjoys the same efficiency

as the global U-estimator. Similarly, if ‖θ̂0 − θ∗‖2 = OP((p/n)1/2), then E‖θ̃N − θ∗‖2 =
O
(

1
n2 + 1

N + K
n8

)
, and additionally, if K = O(n), then E‖θ̃N −θ∗‖22 = O(1/N). For the case

of K = O(nγ) with γ > 1, the SU-ERM estimator may exhibit slightly worse performance
than the global U-estimator. The execution of the right-hand-side of (19) requires an
iterative algorithm with θ̃N as the initial estimate to successively refine the result. Section
6 discusses this algorithm. For the case of diverging p, the global U-estimator satisfies
E‖θ̂N − θ∗‖22 = O(p/N). The following corollary presents the conditions for E‖θ̃N − θ∗‖2 to
achieve the optimal convergence rate.

Corollary 6 Assume the conditions in Theorem 4 hold. Then (i) when ‖θ̂0 − θ∗‖2 =
OP(K−1/2), and if

n = O(pK) and log p/p1/8 = O(n−7/8K1/4),

the SU-ERM estimator achieves the optimal convergence rate with respect to MSE, in
the sense that E‖θ̃N − θ∗‖22 = O(p/N), which is also the convergence rate of the global
U-estimator. If one assumes the stronger conditions of n = o(pK) and log p/p1/8 =
O(n−7/8K1/4), then the MSE of the SU-ERM estimator achieves the optimal upper bound
of E‖θ̃N − θ∗‖22 = 4A/N + o(p/N); (ii) when ‖θ̂0 − θ∗‖2 = OP((p/n)1/2), and if

pK = O(n),

then E‖θ̃N − θ∗‖22 = O(p/N), or if pK = o(n), then E‖θ̃N − θ∗‖22 = 4A/N + o(p/N), which
is the optimal upper bound of the MSE.

Now, let us consider the OS-ERM estimator θ̃QN . As θ̃QN is obtained by minimizing a

quadratic approximation to the surrogate empirical risk SN (that is, SQN and SN agree
up to the second-order Taylor’s expansion), they share similar theoretical properties. The
analogues of Proposition 3 and Theorem 4 that pertain to θ̃QN are presented below.

Proposition 7 Let Conditions (C1)-(C6) be satisfied. In particular, there exists ζ > 0

such that p = O(n
8
τ (1− 1+ζ

8 )) if τ > 0. Assume that the initial estimator θ̂0 lies in U(θ∗, ρ′),
where ρ′ = min

{
ρ, (16M)−1(1− ρ)λ−

}
. Then the OS-ERM estimator θ̃QN satisfies

‖θ̃QN − θ̂N‖2 ≤C1

(
‖θ̂0 − θ̂N‖2 + ‖θ̂N − θ∗‖2 + ‖∇2L1

n (θ∗)−∇2LN (θ∗) ‖2
)
‖θ̂0 − θ̂N‖2

+ C1

(
‖θ̂0 − θ∗‖2 + ‖∇2LN (θ∗)−∇2L̃N (θ∗)‖2

)
‖θ̂0 − θ∗‖2

+ ‖∇LN (θ∗)−∇L̃N (θ∗)‖2,

(20)

with probability no smaller than 1 − C ′1
(
K(log p)8/n8 + p8/N8

)
, where C1 and C ′1 are in-

dependent of (K,n,N, p).
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Theorem 8 Let Conditions (C1)-(C6) be satisfied. In particular, there exists ζ > 0 such

that p = O(n
8
τ (1− 1+ζ

8 )) if τ > 0. Assume that the initial estimator θ̂0 lies in U(θ∗, ρ′), where
ρ′ = min{ρ, (16M)−1(1 − ρ)λ−}. Then the MSE of the OS-ERM estimator θ̃QN is bounded
above by

E
[∥∥∥θ̃QN − θ∗∥∥∥2

2

]
≤4A

N
+ C

(
γ2
n,K,p(θ̂0) +

γn,K,p(θ̂0)
√
A√

N
+
p logN log logN

N2

)
, (21)

where A = E[‖∇2L0 (θ∗)−1 g (θ∗;Z) ‖22] with g(θ;Z) = E [∇` (θ;Z,Z ′) |Z], C is some con-
stant independent of (K,n,N, p), and

γ2
n,K,p(θ̂0) =

√
E
[
‖θ̂0 − θ∗‖42

]
max

{
p

N
,
log p

n
,

√
E
[
‖θ̂0 − θ∗‖42

]}

+

(
p

N
max

{
p

N
,
log p

n

}
+
K(log p)8

n8

)
.

Analogous to Theorem 5 and Corollary 6, the OS-ERM estimator θ̃QN is a consistent
estimator of θ∗ and achieves the same convergence rate to the optimal MSE as the global
estimator θ̂N under similar conditions.

We have also derived the theoretical properties of the naive estimator θ̄N = K−1
∑K

k=1 θ̂
k
n,

including the bound of its MSE, consistency properties and optimal convergence rate. These
results facilitate a formal comparison between the naive estimator and our proposed esti-
mators. They are presented in the Online Supplementary Material.

It is well-known that under some regularity conditions (Honoré and Powell, 1994; Wang
et al., 2009), the global U-estimator θ̂N satisfies

θ̂N − θ∗ = −∇2L0 (θ∗)−1

 2

N

N∑
i=1

g (θ∗;Zi) +
2

N2

∑
1≤i<j≤N

h(θ∗;Zi, Zj)

+$N,p,

where g(θ; z) = E [∇` (θ;Z,Z ′) |Z = z] as defined in Theorems 4 and 8, h(θ∗; z, z′) =
∇`(θ∗; z, z′)−g(θ∗; z)−g(θ∗; z′), and ‖$N,p‖2 = oP(‖θ̂N−θ∗‖2). Let V0 = E[g(θ∗;Z)g(θ∗;Z)>]
be the dispersion matrix of the first projection of ∇`(θ∗;Z,Z ′). Assume that V0 is non-
degenerate. If V0 is positive definite, then for any v0 ∈ Rp,

√
Nv>0 (θ̂N − θ∗)

D−→ N
(

0, 4v>0 ∇2L0 (θ∗)−1 V0∇2L0 (θ∗)−1 v0

)
. (22)

Similar results hold for the SU-ERM estimator θ̃N and the OS-ERM estimator θ̃QN , meaning

that θ̃N and θ̃QN are asymptotically equivalent to θ̂N when V0 > 0.

Theorem 9 Let Conditions (C1)-(C6) be satisfied. In particular, there exists ζ > 0 such

that p = O(n
8
τ (1− 1+ζ

8 )) if τ > 0. Assume that the initial estimator θ̂0 lies in U(θ∗, ρ̃), where
ρ̃ = min{(1 − ρ)λ−δρ/(32λ+),

√
(1− ρ)λ−δρ/(32M)} with δρ = min{ρ, ρλ−/(4M)}, and

14
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‖θ̂0 − θ∗‖2 = OP
(
(p/n)1/2

)
. Then the SU-ERM estimator θ̃N satisfies

θ̃N − θ∗ = −∇2L0 (θ∗)−1

 2

N

N∑
i=1

g (θ∗;Zi) +
2K

N2

K∑
k=1

∑
1≤i<j≤n

h(θ∗;Zk,i, Zk,j)


+Gn,K,p(θ̂0) + ωn,K,p, (23)

where g(θ; z) = E [∇` (θ;Z,Z ′) |Z = z], h(θ∗; z, z′) = ∇`(θ∗; z, z′) − g(θ∗; z) − g(θ∗; z′),
Gn,K,p(θ̂0) is a random function of θ̂0 satisfying ‖Gn,K,p(θ̂0)‖2 = OP((p/n)1/2‖θ̂0 − θ∗‖2),

and ‖ωn,K,p‖2 = oP(‖θ̃N − θ∗‖2). If we also assume pK = o(n), then θ̃N is asymptotically

equivalent to θ̂N , and for any v0 ∈ Rp (v0 6= 0),

√
Nv>0 (θ̃N − θ∗)√

4v>0 ∇2L0(θ∗)−1V0∇2L0(θ∗)−1v0

D−→ N (0, 1) .

This theorem also holds for the OS-ERM estimator. One can obtain the analogous result for
the OS-ERM estimator by replacing θ̃N by θ̃QN everywhere in the statements of the theorem

and replacing θ̂0 ∈ U(θ∗, ρ̃) by θ̂0 ∈ U(θ∗, ρ′), where ρ′ is defined in Proposition 3.

Remark 10 The asymptotic normality in Theorem 9 is valid for V0 > 0, which is referred
to as the non-degenerate case. If V0 is degenerate, then θ̃N is still asymptotically nor-
mally distributed, a result different from that of the global estimator θ̂N , whose asymptotic
distribution is an infinite series of independent Chi-square random vectors. As well, the
asymptotic variance of θ̃N is 2KN−2∇2L0(θ∗)−1(V1 − 2V0)∇2L0(θ∗)−1, which is K times
of the asymptotic variance of θ̂N , where V1 = E[∇`(θ∗;Z,Z ′)∇>`(θ∗;Z,Z ′)]. The asymp-
totic results relating to the case of degenerate V0 are contained in the Online Supplementary
Material.

From Theorem 9, provided that ‖θ̂0 − θ∗‖2 = oP(
√

1/K), the SU-ERM estimator and

the OS-ERM estimators are as asymptotically efficient as the global U-estimator θ̂N when
V0 is non-degenerate. As mentioned, this condition is satisfied when pK = o(n), and θ̂kn
is chosen to be the initial estimator. We suggest an iterative algorithm to deal with the
situation where the number of local machines or the dimension of covariates exceed the size
of the sample subset. This is discussed in Section 6.

Our next task is to develop a valid distributed statistical inference procedure. By
Theorem 9, the inference procedure necessitates the estimation of ∇2L0(θ∗) and V0 in a
distributed setting. From results of Honoré and Powell (1994), a consistent estimator of
∇2L0(θ∗) is ∇2LN (θ̃N ). The following may be used as a consistent estimator of V0:

V̂N (θ̃N ) =
1

N3

∑
i

∑
j 6=i

∑
l 6=i,j
∇`(θ̃N ;Zi, Zj)∇`(θ̃N ;Zi, Zl)

>. (24)

The problem here is that ∇2LN (θ̃N ) and V̂N (θ̃N ) cannot be computed in the distributed
setting because they cannot be calculated when the data are not all used in one go. On the
other hand, ∇2LN (θ̃N ) and V̂N (θ̃N ) are U-statistics. From Chen and Peng (2021), provided
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that K = o(N), the surrogate U-statistic ∇2L̃N (θ̃N ) = 1/K
∑K

k=1∇2Lkn(θ̃N ) has the same

asymptotic efficiency as ∇2LN (θ̃N ) and is therefore a consistent estimator of ∇2L0(θ∗).
By an analogous argument, V̂N,K(θ̃N ) = 1/K

∑K
k=1 V̂n,k(θ̃N ) is a consistent estimator of V0,

where V̂n,k(θ̃N ) is computed from the subset of data Dk on the kth machine. The consistency
of variance estimators is shown in the following theorem.

Theorem 11 Let Conditions (C1)-(C6) be satisfied. In particular, there exists ζ > 0 such

that p = O(n
8
τ (1− 1+ζ

8 )) if τ > 0. Assume that the initial estimator θ̂0 lies in U(θ∗, ρ̃), where
ρ̃ = min{(1− ρ)λ−δρ/(32λ+),

√
(1− ρ)λ−δρ/(32M)} with δρ = min{ρ, ρλ−/(4M)}, and θ̂0

also satisfies E‖θ̂0− θ∗‖16
2 = O(α16

n,K,p), where αn,K,p =
√

1/K or
√
p/n. Then the MSE of

the estimators ∇2L̃N (θ̃N ) and V̂N,K(θ̃N ) are bounded above by

E[‖∇2L̃N (θ̃N )−∇2L0(θ∗)‖22] = O

(
α4
n,K,p

K
+

p

nK2
+

(log p)4

n4
√
K

+
log p

N

)
and

E[‖V̂N,K(θ̃N )− V0‖22] = O

(
α4
n,K,p

K
+
α8
n,K,p

K
+

p

nK2
+

(log p)4

n4
√
K

+
(log p)8

n8

)

respectively. In particular, the statistics ∇2L̃N (θ̃N ) and V̂N,K(θ̃N ) are consistent estimators
of ∇2L0(θ∗) and V0 respectively.

It can be shown using Theorem 11 that the conditions on (n,K, p) required for the
consistency of the variance estimators may be weaker than the analogous conditions required
for the parameter estimators presented in Theorem 5. This will be the case, for example,
when the upper bound are expressed in terms of the spectral norm ‖ · ‖2. However, the
conditions are different when the Frobenius norm ‖·‖F is used, since ‖Ω‖F ≤

√
p‖Ω‖2 for any

p×p symmetric matrix Ω. It can be shown that if we require E[‖∇2L̃N (θ̃N )−∇2L0(θ∗)‖2F ] =

o(1) and E[‖V̂N,K(θ̃N )− V0‖2F ] = o(1), the restrictions of (n,K, p) are in the form of

p = o(min{n2/3K1/3, n1/2K,n4/5K1/5}) and log p = o(nmin{p−1/8,K1/8p−1/4,Kp−1}).
(25)

To further compare Condition (25) with the analogous condition in Theorem 5, let us
consider the special case where K = O(nγ) and p = O(nη) for some A, η > 0. Then
Condition (25) holds if and only if

3η − γ < 2, η − γ < 1/2, 5η − γ < 4 and η < 8.

Figure 1 shows the feasible region for the proposed coefficient estimators and the variance
estimator to be consistent, and the region for the proposed estimators to achieve the opti-
mal rate of convergence. From Figure 1, both the coefficient and variance estimators are
consistent in the region R4 ∪ R5 that corresponds to 3η − γ < 2, η − γ < 1/2, η < 1
and γ < 8. In particular, if η − γ < 1/2 and η + γ < 1 (say (γ, η) ∈ R5), the SU-ERM and
OS-ERM estimators achieve the optimal rate and the variance estimators are consistent.
We label R5 as the ideal region.
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Figure 1: The consistency regions (CRs), that is, the feasible regions for the SU-ERM/OS-ERM
estimator and the variance estimator to be consistent as a function of γ and η. To conserve space,
we only report the CRs for γ ≤ 8. The CR of the SU-ERM/OS-ERM estimator is R1∪R2∪R4∪R5,
while the CR of the variance estimator is R3∪R4∪R5. In the region R2∪R5, the SU-ERM/OS-ERM
estimator achieves the optimal convergence rate.

Hence there is a justification to use the estimated covariance matrix of θ̃N as a plug-in
estimator, that is, V̂ar(θ̃N ) = ∇2L̃N (θ̃N )−1V̂N,K(θ̃N )∇2L̃N (θ̃N )−1. We can construct the
100(1− α)% confidence interval of v>0 θ

∗ as follows:[
v>0 θ̃N −N−1/2

√
v>0 V̂ar(θ̃N )v0z1−α/2, v

>
0 θ̃N +N−1/2

√
v>0 V̂ar(θ̃N )v0z1−α/2

]
, (26)

where z1−α/2 is the (1− α/2)-th percentile of the standard Normal distribution.

6. Distributed Iterative Algorithm

Given the limited capacity of any single machine, distributed data processing will likely
require many machines when there is a massive number of observations. This can result
in the number of machines K exceeding the sample size n of the data subset. In such a
circumstance, the SU-ERM and OS-ERM approaches may not result in the same asymptotic
efficiency as the global U-estimator. We reconcile this difficulty by implementing the method
within a distributed iterative algorithm that has the effect of progressively improving the
estimator’s performance. For each of the SU-ERM and OS-ERM methods, we introduce
one such algorithm, and label them as DiaSER and DiaOSE respectively. The steps of the
algorithms are presented in Algorithms 1 and 2 below.

6.1 Properties of Estimators Following the Algorithm

The following comments are based on the DiaOSE algorithm. The same comments apply
to the DiaSER algorithm. Assume that at the t-th iteration (t ≥ 1), the estimate θ̃QN,t is

obtained, where θ̃QN,1 = θ̃QN . Then at the (t + 1)-th iteration, DiaOSE treats θ̃QN,t as the

(new) initial estimate, and refines it by the one-step updating mechanism θ̃QN,t+1 = θ̃QN,t −
∇2Ltn(θ̃QN,t)

−1∇L̃N (θ̃QN,t) as in (16). If the initial estimator θ̂0 satisfies E‖θ̂0−θ∗‖2 = O(p/n)

and p = o(n), Proposition 7 implies that the OS-ERM estimate θ̃QN,t, obtained from the t-th
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1 Initialization: Compute θ̂kn at Machine k, where θ̂kn = arg minθ∈Θ Lkn(θ),
k = 1, 2, · · · ,K. Transfer the local estimates to the master machine, on which the
naive estimator θN = 1/K

∑K
k=1 θ̂

k
n is calculated. Set θ̂0 = θN ;

2 for Iteration t = 1, . . . , T do

3 The master machine transfers θ̂0 to each local machine;
4 for Machine k = 1, . . . ,K do

5 Machine k computes the local gradient ∇Lkn(θ̂0) based on data subset Dk;
6 Machine k sends ∇Lkn(θ̂0) back to the master machine ;

7 end
8 The master machine computes the surrogate global gradient

∇L̃N (θ̂0) = 1/K
∑K

k=1∇Lkn(θ̂0) ;
9 The master machine conducts the empirical risk minimization based on the

surrogate empirical risk StN (θ) = Ltn(θ)− (∇Ltn(θ̂0)−∇L̃N (θ̂0))>θ, and

obtains the t-th SU-ERM estimator θ̃N,t = arg minθ∈Θ StN (θ);

10 Set θ̂0 = θ̃N,t ;

11 end

12 return θ̃N,T ;

Algorithm 1: Distributed iterative algorithm based on surrogate empirical risk
(DiaSER)

1 Initialization: Compute θ̂kn at Machine k, where θ̂kn = arg minθ∈Θ Lkn(θ),
k = 1, 2, · · · ,K. Transfer the local estimates to the master machine, on which the
naive estimator θN = 1/K

∑K
k=1 θ̂

k
n is calculated. Set θ̂0 = θN ;

2 for Iteration t = 1, . . . , T do

3 The master machine transfers θ̂0 to each local machine;
4 for Machine k = 1, . . . ,K do

5 Machine k computes the local gradient ∇Lkn(θ̂0) with subset Dk;
6 Machine k sends ∇Lkn(θ̂0) back to the master machine ;

7 end
8 The master machine computes the surrogate global gradient

∇L̃N (θ̂0) = 1/K
∑K

k=1∇Lkn(θ̂0);

9 The master machine computes the local Hessian matrix ∇2Ltn(θ̂0) with subset

Dt, and obtains the t-th OS-ERM estimator θ̃QN,t = θ̂0 −∇2Ltn(θ̂0)−1∇L̃N (θ̂0);

10 Set θ̂0 = θ̃QN,t ;

11 end

12 return θ̃QN,T ;

Algorithm 2: Distributed iterative algorithm based on one-step estimation
(DiaOSE)
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iteration satisfies the recursive formula

‖θ̃QN,t+1 − θ̂N‖2 = OP((p/n)1/2)‖θ̃QN,t − θ̂N‖2 + oP((p/N)1/2).

Hence, after performing multiple rounds of iterations, we obtain the Bahadur representa-
tions of θ̂QN,t and θ̃N,t in the following theorem:

Theorem 12 Assume that the conditions of Proposition 7 holds and the initial estimator
θ̂0 satisfies ‖θ̂0 − θ∗‖2 = OP(αn,K,p) with αn,K,p = o(1). Then the OS-ERM estimate θ̃QN,t
obtained from the t-th iteration satisfies

‖θ̃QN,t − θ̂N‖2 = OP

((
αn,K,p +

√
p

N
+

√
log p

n

)t)
‖θ̂0 − θ̂N‖2 +OP

(√
p

N
max

{
αn,K,p,

√
log p

N

})
.

Also, for any v0 ∈ Rp,

v>0 θ̃
Q
N,t − v

>
0 θ
∗ = −v>0 ∇2L0 (θ∗)−1

 2

N

N∑
i=1

g (θ∗;Zi) +
2K

N2

K∑
k=1

∑
1≤i<j≤n

h(θ∗;Zk,i, Zk,j)

+ rn,K,p,

where

rn,K,p = OP

((
αn,K,p +

√
p

N

)t+1

+

(√
log p

n

)t(
αn,K,p +

√
p

N

))

+OP

(√
p

N
max

{
αn,K,p,

√
log p

N

})
.

This theorem also holds for the SU-ERM estimator, with θ̃N replacing θ̃QN everywhere in the
statement of the theorem.

Remark 13 If αn,K,p =
√
p/n, Theorem 12 implies

‖θ̃QN,t − θ̂N‖2 = OP((p/n)t/2)‖θ̂0 − θ̂N‖2 + oP((p/N)1/2). (27)

Note that no more than dlogK/log(n/p)e iterations are required to achieve the same accu-
racy as θ̂N (recall that ‖θ̂N −θ∗‖2 = OP(

√
p/N)). Hence, by implementing the DiaOSE and

DiaSER algorithms, our proposed methods no longer require the condition of pK = o(n)
to achieve the optimal convergence rates. This leads to weaker conditions on K and p of
the proposed estimators compared with those of the naive estimator θ̄N . In particular, when
pK = o(n), we require only one iteration to achieve the desired accuracy.

When implementing the algorithms, we use the naive estimator θN obtained by simple av-
eraging as the initial estimator. Although the naive estimator θN and the local U-estimator
θ̂kn share the same order of magnitude of bias, the naive estimator has a smaller variance
than θ̂kn. The lower variability can enhance the numerical stability of the algorithms. There
is only a minimal extra communication cost of O((K − 1)p) of using the naive estimator at
the start.
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6.2 Time Complexity

Here, we derive bounds on the running times of the DiaSER and DiaOSE algorithms and the
optimization methods used. The proposed SU-ERM and OS-ERM estimators are special
cases for DiaSER and DiaOSE algorithms respectively with T set to 1. Instead of focusing
on a specific case, we conduct a general investigation with respect to the proposed SU-ERM
and OS-ERM estimators, the naive estimator θ̄N = K−1

∑K
k=1 θ̂

k
n and the global empirical

risk minimization (GL-ERM) estimator θ̂N = arg minLN (θ) under a general loss function.
The computational complexity of the GL-ERM estimator is O(pn2K2), which is significantly
higher than that of the proposed distributed iterative algorithms. We present the details
below.

Let us first consider the DiaSER algorithm. Assume that the optimization of (12) is
implemented via some algorithms, resulting in an approximated minimizer θ̃∗N . Then the

error of θ̃∗N is upper-bounded by the sum of the estimation error of θ̃N and the approximation
error of the optimization algorithm, that is,

‖θ̃∗N − θ∗‖2 ≤ ‖θ̃N − θ∗‖2 + ‖θ̃∗N − θ̃N‖2. (28)

Analogously, let θ̂1
n be the initial estimator and θ̂1∗

n the corresponding approximated mini-
mizer obtained by some optimization algorithm. The error bound for θ̂1∗

n is also represented
by (28).

We assume that all estimates, including the initial estimate obtained by θ̃1
n and the

final estimate based on θ̃N or θ̃QN are calculated by the same optimization method. Let
the approximation error be ε > 0. One may adopt a gradient method or the Newton-
Raphson method as the optimization method. These methods usually provide satisfactory
results. Two popular gradient methods are the gradient descent (GD) and the stochastic
gradient descent (SGD) methods. If one uses the SGD to obtain the initial estimator, then
O(log2(n/p)/ρ2) iterations are required to guarantee θ̃1∗

n ∈ U(θ∗, ρ) for some ρ > 0. This
results in a total computational cost of O(pn2 log2(n/p)). If GD is used to optimize (12), we
needO(log(nK)) iterations to reduce the approximation error to ‖θ̃∗N−θ̃N‖2 = OP((p/N)1/2)
with the cost per iteration in the order of O(pn2). Hence the total computational cost asso-
ciated with the GD approach is O(pn2T log(nK)). If SGD is used, the cost per iteration is
reduced to O(p) but the number of iterations increases to O(nK). Hence the SGD approach
results in a computational cost of O(pnKT ). As well, the Broyden-Fletcher=Goldfarb-
Shanno (BFGS) method (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) is a
commonly used Newton-Raphson-type method. The BFGS methods incurs a computational
cost of O(Tp2 log log(1/ε)) when being implemented to optimize (12).

As in the case of the DiaSER algorithm, the DiaOSE algorithm is implemented by
computing (16) in multiple rounds. If the SGD approach is used to obtain the initial
estimator, then the total computational cost amounts to O(pn2 log2(n/p)). In practice,
instead of directly deriving the inverse matrix ∇2L1

n(θ̂0)−1, we usually compute the LU
decomposition of the matrix ∇2L1

n(θ̂0), and solve the linear system

∇2L1
n(θ̂0)(θ̃QN − θ̂0) = −∇L̃N (θ̂0). (29)

The computational costs associated with the LU decomposition and the steps for solving
the linear system are O(p3) and O(p2) respectively. To further reduce the computing time,
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we update ∇2L1
n(θ̂QN,t) every p steps. These result in a total computing time of O(n2T +

p2T + p3T/p+ pn2 log2(n/p)) = O((p2 +n2)T + pn2 log2(n/p)). We summarize the running
time bounds of different methods in Table 1.

Distributed Algorithm Optimization Algorithm Computational Cost

DiaOSE Direct O((p2 + n2)T + T (n,K, p))

DiaSER GD O(pn2K2T log(1/ε))
DiaSER SGD O(Tp/ε)
DiaSER BGFS O(Tp2 log log(1/ε))

Naive GD O(pn2 log(1/ε) + pK)
Naive SGD O(p/ε+ pK)
Naive BGFS O(p2 log log(1/ε) + pK)

Table 1: Computational cost of the DiaOSE and DiaSER algorithms. We set the approxi-
mation accuracy to some known ε > 0. The DiaOSE algorithm has a closed-form expression
and usually requires no optimization (except for θ̃1∗

n ). Hence in the table, we refer to the
optimization algorithm associated with the DiaOSE algorithm as ”Direct”. With the Di-
aSER algorithm, the cost of estimating θ̂0 is given by T (n,K, p) = np log(1/ε), p/ε and
p2 log log(1/ε) under the GD, SGD and the BGFS methods respectively.

From Table 1, other things being equal, the SGD and the BGFS methods result in the
smallest time bounds for the large and small p cases respectively. We implement the BFGS
method via the R package optim with J = 1000 iterations. Under the BGFS method, the
costs of computing the DiaOSE algorithm, DiaSER algorithm and the naive estimator are
O((p2 + n2)T + p2J), O(p2TJ) and O(p2J + pK) respectively.

6.3 Guidance on Practice

In practice, a proper choice of the parameter K is required to balance statistical efficiency
and computational complexity. When N is fixed, the number of machines K must not be
very large. This is because when K is exceedingly large, the sample size of each machine
will be small, resulting in poor approximations of the high-order gradients in the surrogate
empirical risk SN (θ) in (10). As well, from the asymptotic expansion of θ̃N , the parameter
K only has an effect on the order of the remainder term. To avoid the cumbersome task of
computing the inverse matrix, we consider the equivalent expansion

[∇2L0(θ∗)](θ̃N − θ∗) = − 2

N

N∑
i=1

g(θ∗;Zi) + en,K,p,

where ‖en,K,p‖2 = oP(‖N−1
∑N

i=1 g(θ∗;Zi)‖2). A good candidate of K is to minimize the
MSE of the remainder term.

Let the initial estimator be θ̂0 = θ̃1
n. For a given K, let θ̃−kN,K be the SU-ERM estimator

obtained by excluding the data stored on the k-th machine (k ≥ 2). Specifically, θ̃−kN,K =

arg minθ∈Θ S−kN,K(θ), where S−kN,K(θ) is constructed by replacing ∇L̃N (θ̂0) by ∇L̃−kN,K(θ̂0) =
1
K

∑
k′ 6=k Lk

′
n (θ̂0) in (10). Denote GN (θ∗) =

∑N
i=1 g(θ∗;Zi)/N and V(θ∗) = ∇2L(θ∗). The
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matrix V(θ∗) can be estimated by Vn = 1
n2

∑
i 6=j ∇2`(θ̂0;Z1,i, Z1,j) using the data stored on

the first machine. For a given k ≥ 2, let

G−kN,K =
1

n(N − n)

∑
k′ 6=k

∑
i 6=j
∇`(θ̃−kN,K ;Zk′,i, Zk′,j)

as an approximation of GN (θ∗). Write the error as

ε−kN,K = Vn(θ̃−kN,K − θ̄) + 2G−kN,K ,

where θ̄ =
∑K

k=2 θ̃
−k
N,K/(K − 1). The parameter K is chosen by minimising the MSE of

{ε−kN,K}Kk=1 such that K̂ = arg minK K
−1
∑K

k=1(ε−kN,K−ε̄)(ε
−k
N,K−ε̄)′, where ε̄ =

∑K
k=1 ε

−k
N,K/K.

As the OS-ERM and SU-ERM estimators share the same asymptotic properties, the pa-
rameter K for the OS-ERM estimator can be chosen analogously.

It is instructive to note that in practice, when one applies the DiaOSE and DiaSER algo-
rithms under a pre-determined K, the number of iterations essentially becomes the tuning
parameter. According to Theorem 12 and Remark 13, it suffices to iterate dlogK/log(n/p)e
times when θ̂0 = θ̃1

n. Also, our simulation results show that the proposed algorithms are
not sensitive to the iteration number T , and in most situations, reasonably accurate results
are obtained after a relatively small number of iterations.

7. Simulation Studies

The purpose of this section is to examine the finite sample performance of the proposed
methods via a large scale simulation study. We focus on the U-ERM problems of pairwise
ranking and smoothed rank-based estimation under the accelerated failure time model,
both being introduced in Section 3.2. For comparison purposes, we also consider the gold-
standard method that uses the full set of data all in one go to obtain the global U-estimates,
and the naive method that averages local U-estimates obtained across different subsets of
data.

7.1 Pairwise Ranking Problem

Our first experiment considers the ranking problem with the logistic loss function, the
details of which are presented in Example 1.

7.1.1 Simulation Setting

Note that statistical inference for ranking problems requires only the ordering information
but not the exact values of Yi’s. Thus, in our experiment, for any two objects Zi and Zj ,
based on their corresponding features Xi and Xj , we simulate the pairwise ordering from
the following model:

Yi = J(X>i θ
∗ + εi), i = 1, . . . , n, (30)

where θ∗ is the true value of the parameter satisfying ‖θ∗‖2 = 1, Xi is the predictor and εi
is the noise variable. The function J(·) is defined as

J(t) =
5∑

k=1

kI(tk−1 ≤ t < tk),
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where t0 = −∞, t5 = ∞, and t1, . . . , t4 are fixed such that there are approximately equal
number of elements in each class. The estimator of θ∗ is the solution to the empirical risk
minimization problem based on the following logistic loss function:

LN (θ) =
1

C2
N

∑
i<j

ln[1 + exp{−sign(Yi − Yj)θ>(Xi −Xj)}],

subject to the constraint ‖θ‖2 = 1.

We set θ∗ = (1/
√

5, 1/
√

5, 1/
√

5, 1/
√

5, 1/
√

5)> and generate Xi from a multivariate
N (0,Σ) distribution, where Σij = 1 when i = j and Σij = 0.5 when i 6= j, and ε ∼ N (0, 1).
We generate the ordering between Zi and Zj from (30). To examine the performance of
the proposed methods for the cases of K < n and K > n, we fix the sample size of each
subset to be n = 50 and vary K, the number of machines, from 25 to 200. We set the
number of replications of the experiment to S = 200. It is worth noting that the constraint
‖θ‖2 = 1 places additional demands on the minimization problem, but it is needed for model
identifiability purpose. Indeed, when K = 200, to obtain the global U-estimate, one has to
simultaneously process more than 49995000 sample pairs on a single machine, and solve the
corresponding constrained optimization problem. This is virtually impossible to compute.
Hence, we only present the simulation results for the proposed estimators and the naive
estimator.

To gauge the performance of the methods, we use the following empirical root mean
square error (RMSE) of an estimator θ̂ of θ∗:

1

S

S∑
s=1

√√√√ p∑
l=1

(θ̂sl − θ∗)2, (31)

where θ̂sl is the estimates of the l-th component of θ based on the s-th simulation. As
mentioned, the execution of the DiaSER and DiaOSE algorithms requires only a very small
number of iterations. Under the current simulation setup, it is found that both algorithms
converge after no more than five iterations. The results to be presented are based on the
SU-ERM and OS-ERM estimates obtained at the end of the fifth iteration. We label them
as θ̃N,5 and θ̃QN,5 respectively.

7.1.2 Overall Results

Figure 2(a) provides the plot of the RMSE of the methods in terms of K, the number of
machines. Note that an increase in K is equivalent to an increase in N as N = K × n and
n is fixed. The figure shows that in all cases and by both yardsticks, the SU-ERM and OS-
ERM methods outperform the naive method. This is because although simple averaging
yields smaller variability than the local U-estimates, it also results in large biases that
cannot be compensated for by the lower variance. It can be seen that when K increases,
the RMSE of the naive estimator θN decreases at a relatively slow rate. In contrast, the
RMSEs of the SU-ERM and OS-ERM estimators decrease markedly when K increases. In
general, the SU-ERM and OS-ERM methods exhibit very similar performance, a feature
that corroborates our theoretical results.//
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Figure 2: (a) RMSEs and (b) computational times of different methods for the pairwise
ranking problem.

Table 2 presents the coverage probabilities (CPs) of the 95% confidence intervals based
on different methods computed from 200 trials. The construction of the naive method-
based CPs uses the same formula (26), with θ̃N replaced by θN . The results show that
the SU-ERM- and OS-ERM-based CPs are close to the nominal 95% level. This suggests
that the proposed variance estimation method is consistent. On the other hand, the CPs
based on the naive method are unsatisfactory, especially when K is large. This can be
explained by the fact that the naive method results in much larger RMSEs than the SU-
ERM and OS-ERM methods, and the gap in RMSEs produced by the naive and the two
proposed methods widens as K increases, as shown in Figure 2(a). This indicates that the
variance estimation method that works well for the SU-ERM and OS-ERM methods likely
underestimates the variance of the naive estimator. Because the naive method requires
pK = o(n), the naive estimator is not consistent when K is large. The poor empirical
showing of the naive estimator with respect to RMSE and CP corroborates the derived
theoretical results on its properties.

K
Naive SU-ERM OS-ERM

θ∗1 θ∗2 θ∗3 θ∗4 θ∗5 θ∗1 θ∗2 θ∗3 θ∗4 θ∗5 θ∗1 θ∗2 θ∗3 θ∗4 θ∗5
25 0.755 0.660 0.780 0.805 0.810 0.980 0.955 0.950 0.960 0.965 0.970 0.955 0.950 0.955 0.965
50 0.670 0.595 0.565 0.610 0.625 0.975 0.955 0.965 0.960 0.985 0.975 0.960 0.970 0.970 0.990
75 0.490 0.450 0.475 0.415 0.450 0.935 0.965 0.935 0.955 0.945 0.935 0.970 0.945 0.960 0.955

100 0.370 0.330 0.325 0.430 0.380 0.965 0.955 0.965 0.970 0.955 0.970 0.955 0.970 0.965 0.950
125 0.260 0.250 0.295 0.280 0.300 0.975 0.965 0.955 0.925 0.965 0.970 0.980 0.950 0.940 0.965
150 0.155 0.215 0.235 0.220 0.185 0.955 0.970 0.940 0.965 0.940 0.955 0.965 0.940 0.975 0.955
175 0.165 0.195 0.170 0.135 0.115 0.955 0.945 0.975 0.970 0.950 0.955 0.955 0.975 0.970 0.955
200 0.115 0.125 0.125 0.100 0.065 0.970 0.940 0.945 0.935 0.945 0.965 0.940 0.945 0.940 0.940

Table 2: The coverage probabilities (CPs) of CIs corresponding to the nominal 95% of
various methods under the pairwise ranking model.
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7.1.3 Time Complexity Analysis

Figure 2(b) reports the computational time of the four methods corresponding to the ex-
perimental setup in Subsection 7.1.1.

The computational time of a given method is obtained by first averaging the times
required for the method to estimate the parameters across all machines and then adding
this average and the time required for the optimization. Further details on the calculation of
the computational times are given in the Online Supplementary Material. We are primarily
interested in the running times of the methods as K varies (that is, with the increase of the
total sample size N). The running times reported for the SU-ERM and OS-ERM estimates
correspond to the times recorded at the end of the fifth iteration of the DiaSER or DiaOSE
algorithm.

The running times of the proposed SU-ERM and OS-ERM methods are not substantially
more than the time required for computing the naive estimate used in the initialization
stage of the DiaSER and DiaOSE algorithms. This indicates that it does not take long to
complete the steps of the algorithms subsequent to initiation. As well, the computational
time of the two algorithms remains more or less static irrespective of the value of K. We
consider K = 100 to be an appropriate choice of K. Generally speaking, the SU-ERM
method is a slightly more time consuming procedure than the OS-ERM method because
SU-ERM entails solving an optimization problem at each conquer step, whereas the OS-
ERM possesses a closed-form solution. It is worth noting that while the OS-ERM estimate
takes marginally longer time to compute than the naive estimate, its performance is way
better than the latter.

7.1.4 Impact of the Iterative Algorithm

This subsection is devoted to an investigation of the impact of the iterative algorithm
on the estimator’s properties. We use DiaSER as an example and report the changes
in the estimator’s RMSE. It is seen that in all cases, the errors of the SU-ERM method
decrease rapidly within the initial two iterations and remain steady thereafter, meaning
that the algorithm converges very quickly after a small number of iterations. This finding
is consistent with our theoretical results.

7.2 Accelerated Failure Time Model

The following experiment, performed in accordance with the smoothed rank-based estima-
tion of the AFT model introduced in Example 2, allows us to examine the efficiency of the
procedures with respect to inference.

7.2.1 Simulation Setting

We generate Xi from N (0,Σ) and the random errors ζi from the standard extreme value
distribution with Σij = 0.5|i−j|. We let θ∗ = (1, 1, 1), and generate the failure time Ti based
on the AFT model in (4), with the censoring time Ci generated from the U [0, τ ] distribution,
and τ selected to achieve a 25% censoring percentage.

As in the last experiment, we let the sample size of each subset be n = 50 and vary the
number of subsets K in {25, 50, 75, 100, 125, 150, 175, 200}. Each experiment is based on
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Figure 3: RMSE after varying numbers of iterations for different K’s under the DiaSER
algorithm.

S = 200 replications. We measure the performance of the procedures by the CP associated
with a 95% confidence interval for each coordinate of θ∗. Table 3 reports the CP, and
Figure 4 shows the RMSE of the four methods. The results reported for the SU-ERM and
OS-ERM estimators are those delivered after five iterations.
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Figure 4: (a) RMSEs and (b) computational times of different methods for the AFT model when
n = 50.

7.2.2 Overall Results

Figure 4 and Table 3 show that in all cases, by the yardsticks of CP and RMSE, the
SU-ERM and OS-ERM methods yield estimates comparable to each other’s and to those
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(K,N)
Naive SU-ERM OS-ERM

θ∗1 θ∗2 θ∗3 θ∗1 θ∗2 θ∗3 θ∗1 θ∗2 θ∗3
(25, 1250) 0.900 0.975 0.925 0.950 0.945 0.930 0.950 0.945 0.930
(50, 2500) 0.925 0.950 0.925 0.955 0.955 0.965 0.955 0.955 0.965
(75, 3750) 0.910 0.945 0.920 0.940 0.955 0.940 0.940 0.955 0.940

(100, 5000) 0.905 0.925 0.920 0.920 0.960 0.925 0.920 0.960 0.925
(125, 6250) 0.915 0.925 0.910 0.935 0.940 0.925 0.935 0.940 0.925
(150, 7500) 0.920 0.935 0.905 0.930 0.955 0.925 0.930 0.960 0.930
(175, 8750) 0.915 0.890 0.925 0.935 0.905 0.965 0.935 0.905 0.965
(200, 10000) 0.950 0.870 0.915 0.940 0.915 0.950 0.940 0.915 0.950

Table 3: The coverage probabilities (CPs) of CIs corresponding to the nominal 95% of
various methods when n = 50 under the AFT model.

delivered by the global method. This is consistent with the conclusions reached under the
previous experiment. It is noteworthy that in all cases, the CPs of both the SU-ERM and
OS-ERM methods are close to the nominal level of 95%. This affirms that the efficiency of
the proposed methods carries over to aspects of inference. The performance of the naive
method, especially with respect to the criterion of CP, is sub-optimal.

7.2.3 Time Complexity Analysis

The computational time is presented in Figure 4(b), which shows that the naive method
is the winner with respect to running time and the OS-ERM method is a close second.
Although the SU-ERM method takes the longest to execute, the differences in running
times between the three methods in absolute terms are in fact very small. Similar to the
observation under the ranking problem, the value of K has no impact on the running times
of all three methods. The running times of the global estimator, which are not shown
in Figure 4(b), are 102.34, 378.78, 821.06, 1301.67, 2002.11, 2375.44, 2910.37 and 3270.46
seconds for K =25,50,75,100,125, 150, 175 and 200 respectively. The time-curve of using
the global method therefore mimics a quadratic function of K, for example, if K (or N)
increases by 10 times, the running time increases by nearly 100-fold. Thus, when there is a
large volume of data, it will be difficult if not impossible to apply the global method.

(K,n)
Naive SU-ERM OS-ERM

θ∗1 θ∗2 θ∗3 θ∗1 θ∗2 θ∗3 θ∗1 θ∗2 θ∗3
(50, 120) 0.970 0.940 0.955 0.975 0.945 0.975 0.975 0.945 0.975

(100, 60) 0.885 0.925 0.920 0.925 0.935 0.935 0.930 0.935 0.935
(150, 40) 0.870 0.875 0.890 0.923 0.943 0.933 0.922 0.938 0.933
(200, 30) 0.850 0.880 0.875 0.940 0.925 0.885 0.940 0.925 0.885
(250, 24) 0.855 0.805 0.795 0.875 0.875 0.885 0.880 0.875 0.890

Table 4: The coverage probabilities (CPs) of CIs corresponding to a 95% nominal level
delivered by different methods when N = 6000.
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Figure 5: (a) RMSEs and (b) computational times of different methods when N = 6000.
The computational time of the global estimator is about 2× 103 for all K’s.

7.2.4 Analysis for fixed N

Here, we investigate the empirical performance of the SU-ERM and OS-ERM methods for
K = 50, 100, 150, 200, and 250, while fixing the total sample size to N = 60000. These
values of K and N result in n = 120, 60, 40, 30, and 24.

Figure 5(a), which presents the RMSEs of estimators under above the setting, shows that
the RMSE of the global estimator is generally insensitive to values of K (or equivalently,
n). This is expected because the RMSE of the global estimator θ̂N has a convergence rate
that satisfies ‖θ̂N−θ∗‖2 = OP(

√
p/N), and the latter’s magnitude remains unchanged when

N and p are fixed. On the other hand, the RMSEs of the naive, SU-ERM and OS-ERM
estimators increase as n decreases. As well, for a given value of K, the SU-ERM and OS-
ERM estimators produce very similar RMSEs that compare favourably with the RMSE
arising from the naive method. Figure 5(b) shows that K has little effect on the running
times of all methods, which in turn shows that n, the size of local samples, does not impact
the running times of the methods under the AFT model.

Table 4 presents the coverage probabilities (CPs) associated with the nominal 95%
confidence interval of different methods. When n is large, all methods deliver CPs that
are reasonably close to the nominal 95% level. Other things being equal, a decrease in n
has the effect of decreasing the CPs, but the rate of decrease varies across the methods.
Generally speaking, the naive method produces CPs that experience the most rapid decline
as n decreases; in particular, when n < 60, the naive method-based CPs are below 90%. On
the other hand, the CPs based on the SU-ERM and OS-ERM methods fall below 90% only
when (K,n) = (250, 24). These results show the proposed methods are clearly superior to
the naive method, especially when the local sample size is small.
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8. Conclusions

U-statistic type ERM has ample applications in a wide range of statistical problems in-
cluding bipartite ranking, survival analysis, metric learning, pairwise clustering and others,
but this method usually requires summation over all pairs of observations, rendering com-
putation difficult if not impossible on a single machine in the face of big data. Even with
moderate sample sizes, performing an optimization routine on a single machine can be
costly. There is a large collection of literature on distributed algorithms for ERM with
univariate loss functions, but the results are inapplicable to pairwise cases. This is because
under univariate losses, the objective function is separable across observations, and when
applying the divide-and-conquer strategy, this separability feature allows the data to be
stored in a distributed environment (for example, in a sensor network) and local statistics
such as the local empirical risks and their gradients from the different subsets to be com-
puted in parallel. In contrast, under bivariate losses, obtaining a complete U-statistic is
difficult because the computation requires communications between all pairs of machines.
The presence of massive data sets, as is often the case, will only worsen an already difficult
situation.

This paper is an attempt to address the above issue. Based on the divide-and-conquer
strategy, we propose two computationally and statistically efficient distributed estimation
methods for the U-ERM: the SU-ERM and the OS-ERM methods. The SU-ERM method
entails the construction of a surrogate empirical risk that can be computed in a distributed
manner. The surrogate empirical risk consists of a local empirical risk computed only on
one subset. Optimization based on this surrogate empirical risk can substantially reduce
the computational complexity from O(pN2) to O(pn2). We have also developed a quadratic
approximation to this surrogate empirical risk as an extension of the traditional one-step M-
estimator to the case of U-ERM. This quadratic approximation has the advantage of yielding
a closed-form analytical solution. We have shown that the resultant OS-ERM estimator has
the same asymptotic efficiency as SU-ERM and the global U-estimators under the condition
of pK = o(n), and provided the theoretical upper bounds of the approximation errors and
MSE of the OS-ERM and SU-ERM estimators. In addition, for the case of K = O(nA)
(A ≥ 1), we have developed iterative algorithms to improve the performance of estimators,
and demonstrated both theoretically and empirically that only a small number of iterations
are required for the proposed estimators to achieve the same efficiency as the global U-
estimator.

Our results can be readily extended to Mm estimators (Bose and Chatterjee, 2018a).
Throughout the analysis we assume twice-differentiability of the loss functions, as the dis-
tributed estimation procedures being considered are Newton-type methods. When this
assumption is unsustainable, the loss function can be substituted by a surrogate that is suf-
ficiently smooth and the proposed methods can still be applied. One can further relax the
restrictions about the smoothness of loss functions and develop a new method for U-ERM
along the lines of the distributed first-order Newton-type estimator (FONE) proposed by
Chen et al. (2021) that considers large-scale ERM with univariate loss functions. As FONE
approximates the Newton step only through stochastic sub-gradients, it can accommodate
non-differentiable loss functions. These remain for future research.
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Appendix A.

This section gives the proofs of theorems. In the following, we let θ̂1
n = θ̂0, that is, we assume

that the estimator produced by the first machine is the initial estimator. It is instructive to
note that our proofs also hold for the case where the naive estimator θN , which has superior
properties to θ̂1

n, is used as the initial estimator.

A.1 Proofs of Theorems Related to SU-ERM

Let δρ = min {ρ, ρλ−/4M}, MN = 1/(N(N − 1))
∑

i 6=jM (zi, zj), and Mk = 1/(n(n −
1))
∑

i 6=jM (zik, zjk), k = 1, . . . ,K. Let us define the following “good” events:

E0 =

{
MN ≤ 2M,

∥∥∇2LN (θ∗)−∇2L0 (θ∗)
∥∥
2
≤ ρλ−

2
, ‖∇LN (θ∗)‖2 ≤

(1− ρ)λ−
2

δ1(ρ, λ−, λ+,M)

}
.

and

Ek =

{
Mk ≤ 2M, ‖∇2Lkn (θ∗)−∇2L0 (θ∗) ‖2 ≤

ρλ−
4

}
for k = 1, . . . ,K, where

δ1(ρ, λ−, λ+,M) = min

{
(1− ρ)λ−δρ

32λ+
,

√
(1− ρ)λ−δρ

32M

}
.

The proof of Proposition 3 requires the following three lemmas.

Lemma 14 Under Conditions (C1), (C2), (C5) and (C6), there exist constants C and C ′

that depend only on ν, such that for ν ∈ {1, . . . , 8} and k ∈ {1, . . . ,K},

E
[∥∥∥∇Lkn (θ∗)

∥∥∥2ν

2

]
≤ Cp

νG2ν

nν
and E

[
‖∇LN (θ∗)‖2ν2

]
≤ Cp

νG2ν

Nν
.

Furthermore, assume that there exists ζ > 0 such that p = O(n
8
τ (1− 1+ζ

8 )) if τ > 0. Then

E
[∥∥∥∇2Lkn (θ∗)−∇2L0 (θ∗)

∥∥∥2ν

2

]
≤ C ′ (log p)νH2ν

nν
and

E
[∥∥∇2LN (θ∗)−∇2L0 (θ∗)

∥∥2ν

2

]
≤ C ′ (log p)νH2ν

Nν
.

Lemma 15 Suppose that Conditions (C1)-(C6) hold. Assume that there exists ζ > 0 such

that p = O(n
8
τ (1− 1+ζ

8 )) if τ > 0. Then there exists a constant C ′′ independent of (n,K,N, p)
such that

P

(
K⋂
k=0

Ek

)
≥ 1− C ′′

(
K(log p)8

n8
+

p8

N8

)
.

Lemma 16 Suppose that Conditions (C1)-(C6) hold, log p = O(n7/8) and the initial esti-
mator θ̂0 satisfies ‖θ̂0 − θ∗‖2 ≤ δ1(ρ, λ−, λ+,M). Then, under the event

⋂K
k=0 Ek,

‖θ̃N − θ̂N‖2 ≤
2‖∇SN (θ̂N )‖2

(1− ρ)λ−
.
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Proof [Proof of Proposition 3] By Lemma 16, it suffices to prove the error bound for
‖∇SN (θ̂N )‖2 under the event

⋂K
k=0 Ek. Note that

∇SN (θ̂N ) = ∇L1
n(θ̂N )−∇L1

n(θ̂0) +∇L̃N (θ̂0). (32)

By the first-order optimality condition, the solution θ̂N for the global empirical risk LN
satisfies ∇LN (θ̂N ) = 0. As well, by subtracting ∇LN (θ̂N ) from the l.h.s. and r.h.s. of (32),
we can write

∇SN (θ̂N ) =
(
∇L1

n(θ̂N )−∇L1
n(θ̂0)

)
−
(
∇LN (θ̂N )−∇L̃N (θ̂0)

)
.

Using the integral form of the Taylor’s expansion, we have, for k = 1, . . . ,K,

∇Lkn(θ̂N )−∇Lkn(θ̂0) = Hk(θ̂N − θ̂0),

where Hk =
∫ 1

0 ∇
2Lkn(θ̂0 + t(θ̂N − θ̂0))dt, and Hk satisfies∥∥∥Hk −∇2Lkn (θ∗)

∥∥∥
2
≤
∥∥∥Hk −∇2Lkn(θ̂N )

∥∥∥
2

+
∥∥∥∇2Lkn(θ̂N )−∇2Lkn(θ∗)

∥∥∥
2

≤ 2M
(
‖θ̂0 − θ̂N‖2 + ‖θ̂N − θ∗‖2

)
.

Similarly, ∇LN (θ̂N )−∇LN (θ̂0) = HN (θ̂N − θ̂0), where HN =
∫ 1

0 ∇
2LN (θ̂0 + t(θ̂N − θ̂0))dt

and satisfies ∥∥HN −∇2LN (θ∗)
∥∥

2
≤ 2M

(
‖θ̂0 − θ̂N‖2 + ‖θ̂N − θ∗‖2

)
.

Therefore, we can write∥∥∥∇SN (θ̂N )
∥∥∥

2

=
∥∥∥(∇L1

n(θ̂N )−∇L1
n(θ̂0)

)
−
(
∇LN (θ̂N )−∇LN (θ̂0)

)
−
(
∇LN (θ̂0)−∇L̃N (θ̂0)

)∥∥∥
2

≤
∥∥∥(∇L1

n(θ̂N )−∇L1
n(θ̂0)

)
−
(
∇LN (θ̂N )−∇LN (θ̂0)

)∥∥∥
2

+
∥∥∥∇LN (θ̂0)−∇L̃N (θ̂0)

∥∥∥
2

=:R1 +R2.

Note that

‖R1‖2 ≤
∥∥∥(H1 −∇2L1

n(θ∗)
)

(θ̂N − θ̂0)
∥∥∥

2
+
∥∥∥(HN −∇2LN (θ∗)

)
(θ̂N − θ̂0)

∥∥∥
2

+
∥∥∥(∇2L1

n(θ∗)−∇2LN (θ∗)
)

(θ̂N − θ̂0)
∥∥∥

2

≤
(

4M‖θ̂0 − θ̂N‖2 + 4M‖θ̂N − θ∗‖2 + ‖∇2L1
n(θ∗)−∇2LN (θ∗)‖2

)
‖θ̂N − θ̂0‖2

and

R2 =
(
∇LN (θ̂0)−∇LN (θ∗)

)
−
(
∇L̃N (θ̂0)−∇L̃N (θ∗)

)
+
(
∇LN (θ∗)−∇L̃N (θ∗)

)
.

Similar to the expansion for ‖R1‖2 above, we can write∥∥∥(∇LN (θ̂0)−∇LN (θ∗)
)
−
(
∇L̃N (θ̂0)−∇L̃N (θ∗)

)∥∥∥
2

≤
(

4M‖θ̂0 − θ∗‖2 +
∥∥∥∇2LN (θ∗)−∇2L̃N (θ∗)

∥∥∥
2

)
‖θ̂0 − θ∗‖2.
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Therefore,

‖R2‖2 ≤
(

4M‖θ̂0 − θ∗‖2 +
∥∥∥∇2LN (θ∗)−∇2L̃N (θ∗)

∥∥∥
2

)
‖θ̂0 − θ∗‖2

+
∥∥∥∇LN (θ∗)−∇L̃N (θ∗)

∥∥∥
2
.

Combining these results and Lemmas 15 and 16, we obtain

‖θ̃N − θ̂N‖2 ≤C
(
‖θ̂0 − θ̂N‖2 + ‖θ̂N − θ∗‖2 +

∥∥∇2L1
n (θ∗)−∇2LN (θ∗)

∥∥
2

)
‖θ̂0 − θ̂N‖2

+ C
(
‖θ̂0 − θ∗‖2 +

∥∥∥∇2LN (θ∗)−∇2L̃N (θ∗)
∥∥∥

2

)
‖θ̂0 − θ∗‖2

+
∥∥∥∇LN (θ∗)−∇L̃N (θ∗)

∥∥∥
2

with probability no smaller than 1−C ′
(
K(log p)8/n8 + p8/N8

)
, where the constants C and

C ′ are independent of (K,n,N, p).

Proof [Proof of Theorem 4] First, denote C as an arbitrary constant independent of
(K,n,N, p). Applying the integral form of Taylor’s expansion with respect to the global
empirical risk minimizer θ̂N , we can write

0 = ∇LN (θ̂N ) = ∇LN (θ∗) +HN (θ̂N − θ∗),

where HN =
∫ 1

0 ∇
2LN (θ∗+ t(θ̂N − θ∗))dt. By a straightforward algebraic operation, we can

show that

θ̂N − θ∗ = −∇2L0 (θ∗)−1
(
∇LN (θ∗) + UN (θ̂N − θ∗) + VN (θ̂N − θ∗)

)
,

where UN = HN −∇2LN (θ∗) and VN = ∇2LN (θ∗)−∇2L0 (θ∗). Note that under the event

E0, we have ‖θ̂N − θ∗‖2 ≤ 2‖∇LN (θ∗)‖2
(1−ρ)λ−

. This leads to

∥∥∥θ̂N − θ∗ +∇2L0 (θ∗)−1∇LN (θ∗)
∥∥∥

2

≤ 1

λ−
‖UN (θ̂N − θ∗)‖2 +

1

λ−
‖VN (θ̂N − θ∗)‖2

≤2M

λ−
‖θ̂N − θ∗‖22 +

1

λ−

∥∥∇2LN (θ∗)−∇2L0 (θ∗)
∥∥

2
‖θ̂N − θ∗‖2

≤ 8M

(1− ρ)2λ3
−
‖∇LN (θ∗)‖22 +

2

(1− ρ)λ2
−

∥∥∇2LN (θ∗)−∇2L0 (θ∗)
∥∥

2
‖∇LN (θ∗)‖2 .
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Recognizing the above inequality and Proposition 3, we have, under the event
⋂K
k=0 Ek,

‖θ̃N − θ∗ +∇2L0 (θ∗)−1∇LN (θ∗) ‖2
≤‖θ̂N − θ∗ +∇2L0 (θ∗)−1∇LN (θ∗) ‖2 + ‖θ̃N − θ̂N‖2
≤C‖∇2LN (θ∗)−∇2L0 (θ∗) ‖2 ‖∇LN (θ∗)‖2 + C ‖∇LN (θ∗)‖22

+ C
(
‖θ̂0 − θ̂N‖2 + ‖θ̂N − θ∗‖2 + ‖∇2L1

n (θ∗)−∇2LN (θ∗) ‖2
)
‖θ̂0 − θ̂N‖2

+ C
(
‖θ̂0 − θ∗‖2 + ‖∇2LN (θ∗)−∇2L̃N (θ∗) ‖2

)
‖θ̂0 − θ∗‖2 + ‖∇LN (θ∗)−∇L̃N (θ∗) ‖2

≤C
∥∥∇2LN (θ∗)−∇2L0 (θ∗)

∥∥
2
‖∇LN (θ∗)‖2 + C ‖∇LN (θ∗)‖22

+ C
(
‖θ̂0 − θ∗‖2 + ‖∇LN (θ∗)‖2 + ‖∇2LN (θ∗)−∇2L0 (θ∗) ‖2

+‖∇2L1
n (θ∗)−∇2L0 (θ∗) ‖2 +

1

K − 1

∑
k 6=1

‖∇2Lkn (θ∗)−∇2L0 (θ∗) ‖2

 ‖θ̂0 − θ∗‖2

+ C‖∇2L1
n (θ∗)−∇2L0 (θ∗) ‖2‖∇LN (θ∗)‖2 + ‖∇LN (θ∗)−∇L̃N (θ∗) ‖2.

Also, using Hölder’s inequality and Lemma 14 together, we obtain

E

∥∥∥∥∥(θ̃N − θ∗ +∇2L0 (θ∗)−1∇LN (θ∗)
)
I

(
K⋂
k=0

Ek

)∥∥∥∥∥
2

2


≤C
√

E
[
‖∇2LN (θ∗)−∇2L0 (θ∗)‖42

]
E
[
‖∇LN (θ∗)‖42

]
+ CE

[
‖∇LN (θ∗)‖42

]
+ CE

[
‖θ̂0 − θ∗‖42

]
+ C

(√
E[‖∇LN

(
θ∗)‖42

]
+
√
E[‖∇2LN (θ∗)−∇2L0 (θ∗) ‖42] +

√
E[‖∇2L1

n (θ∗)−∇2L0 (θ∗) ‖42]

+
1

K − 1

∑
k 6=1

√
E[‖∇2Lkn (θ∗)−∇2L0(θ∗)‖42]

√E[‖θ̂0 − θ∗‖42]

+ C

√
E
[
‖∇2L1

n (θ∗)−∇2L0 (θ∗)‖42
]
E
[
‖∇LN (θ∗)‖42

]
+ E

[∥∥∥∇LN (θ∗)−∇L̃N (θ∗)
∥∥∥2

2

]
≤Cp
N

max

{
p

N
,
log p

n

}
+ C

√
E
[
‖θ̂0 − θ∗‖42

]
max

{
p

N
,
log p

n
,

√
E
[
‖θ̂0 − θ∗‖42

]}

+ E
[∥∥∥∇LN (θ∗)−∇L̃N (θ∗)

∥∥∥2

2

]
.

Let us consider the term ∇LN (θ∗) in E[‖∇LN (θ∗) − ∇L̃N (θ∗) ‖22]. As ∇LN (θ∗) is a
U-statistic, we denote it as UN = 2{N(N − 1)}−1

∑
1≤i<j≤N h (Xi, Xj) for simplicity. By

applying the Hoeffding’s Decomposition (see the Supplementary Material of Chen and Peng
(2021)), we can write

UN = θU +N−1
N∑
i=1

αU (Zi) +N−2
∑

1≤i<j≤N
βU (Zi, Zj) +RUN ,
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where θU = E (UN ), αU (z) = 2 [E {h (z, Z2)} − θU ], βU (z1, z2) = 2h(z1, z2) − αU (z1) −
αU (z2)− 2θU , and RUN is a remainder term that satisfies E (RUN ) = 0 and E

(
‖RUN‖22

)
=

O
(
p/N4

)
. As well, Proposition 1 of Chen and Peng (2021) demonstrates that

E

∥∥∥∥∥∥N−2
∑

1≤i<j≤N
βU (Zi, Zj)

∥∥∥∥∥∥
2

2

= O(p/N2).

Similarly, for ∇L̃N (θ∗), which is a distributed U-statistic, we denote it as UN,K =

K−1
∑K

j=1 U
(k) = K−1

∑K
k=1{

2
n(n−1)

∑
1≤i<j≤n h (Zk,i, Zk,j)} for simplicity. Following the

same procedure as above, we have

UN,K = θU +N−1
N∑
i=1

αU (Zi) +N−1
K∑
k=1

n−1
∑

1≤i<j≤n
βU (Zk,i, Zk,j) +RUN,K ,

where the remainder termRUN,K satisfies E (RUN,K) = 0 and E
(
‖RUN,K‖22

)
= O

(
pK3N−4

)
.

Also, Theorem 3.1 of Chen and Peng (2021) shows that

E

∥∥∥∥∥∥N−1
K∑
k=1

n−1
∑

1≤i<j≤n
βU (Zk,i, Zk,j)

∥∥∥∥∥∥
2

2

= O(Kp/N2).

Combining the above results, we can write

E
[∥∥∥∇LN (θ∗)−∇L̃N (θ∗)

∥∥∥2

2

]
≤4E

∥∥∥∥∥∥N−2
∑

1≤i<j≤N
βU (Zi, Zj)

∥∥∥∥∥∥
2

2

+ 4E ‖RUN‖22

+ 4E

∥∥∥∥∥∥N−1
K∑
k=1

n−1
∑

1≤i<j≤n
βU (Zk,i, Zk,j)

∥∥∥∥∥∥
2

2

+ 4E ‖RUN,K‖22

≤Cp
N2

+
Cp

N4
+
CKp

N2
+
CpK3

N4
≤ Cp

nN
. (33)

Therefore,

E

∥∥∥∥∥(θ̃N − θ∗ +∇2L0 (θ∗)−1∇LN (θ∗)
)
I

(
K⋂
k=0

Ek

)∥∥∥∥∥
2

2


≤Cp
N

max

{
p

N
,
log p

n

}
+ C

√
E
[
‖θ̂0 − θ∗‖42

]
max

{
p

N
,
log p

n
,

√
E
[
‖θ̂0 − θ∗‖42

]}
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Under Lemma 15 and Conditions (C2) and (C3), we obtain

E
[∥∥∥θ̃N − θ∗ +∇2L0 (θ∗)−1∇LN (θ∗)

∥∥∥2

2

]
≤C
√

E
[
‖θ̂0 − θ∗‖42

]
max

{
p

N
,
log p

n
,

√
E
[
‖θ̂0 − θ∗‖42

]}

+ C

(
Cp

N
max

{
p

N
,
log p

n

}
+
K(log p)8

n8
+

p8

N8

)
.

It can be derived, through a generalization of the properties of U-estimation (Bose and
Chatterjee, 2018b) to the case of diverging dimension case, that

E
[∥∥∥∇2L0 (θ∗)−1∇LN (θ∗)

∥∥∥2

2

]
=

4

N
E
[∥∥∥∇2L0 (θ∗)−1 g(θ∗;Z)

∥∥∥2

2

]
+O(p logN log logN/N2).

Therefore,

E
[∥∥∥θ̃N − θ∗∥∥∥2

2

]
≤E

[∥∥∥θ̃N − θ∗ +∇2L0 (θ∗)−1∇LN (θ∗)
∥∥∥2

2

]
+ E

[∥∥∥∇2L0 (θ∗)−1∇LN (θ∗)
∥∥∥2

2

]
+ 2

√
E
[∥∥∥θ̃N − θ∗ +∇2L0 (θ∗)−1∇LN (θ∗)

∥∥∥2

2

]
E
[∥∥∥∇2L0 (θ∗)−1∇LN (θ∗)

∥∥∥2

2

]

≤4A

N
+ C

(
γ2
n,K,p(θ̂0) +

γn,K,p(θ̂0)
√
A√

N
+
p logN log logN

N2

)
,

where A = E[
∥∥∥∇2L0 (θ∗)−1 g (θ∗;Z)

∥∥∥2

2
] and

γn,K,p(θ̂0) =

√
E
[
‖θ̂0 − θ∗‖42

]
max

{
p

N
,
log p

n
,

√
E
[
‖θ̂0 − θ∗‖42

]}

+

(
p

N
max

{
p

N
,
log p

n

}
+
K(log p)8

n8

)
.

This completes the proof.

Proof [Proof of Theorem 9] Write θ̃N − θ∗ as θ̃N − θ∗ = θ̃N − θ̂N + θ̂N − θ∗. It follows from
properties of U-estimation (Wang et al., 2009) that

θ̂N − θ∗ = −∇2L0 (θ∗)−1 2

N

N∑
i=1

g (θ∗;Zi) + oP

(√
p/N

)
.

Also, from Proposition 3, if ‖θ̂0 − θ∗‖2 = OP(
√
p/n), it can be shown that

‖θ̃N − θ̂N‖2 = OP

(
(p/n)1/2‖θ̂0 − θ∗‖2

)
+OP

(
‖∇LN (θ∗)−∇L̃N (θ∗) ‖2

)
.
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By (33), ‖∇LN (θ∗)−∇L̃N (θ∗) ‖2 = OP(
√
p/(nN)). Hence, for any v0 ∈ Rp,

v>0 θ̃N − v>0 θ∗ = −v′0∇2L0 (θ∗)−1 2

N

N∑
i=1

g (θ∗;Zi) +OP

(
(p/n)1/2‖θ̂0 − θ∗‖2

)
+ oP(

√
p/N).

If pK = o(n), then ‖θ̂0 − θ∗‖2 = oP(
√

1/K), and we have

√
Nv>0 (θ̃N − θ∗)√

4v>0 L0 (θ∗)−1 V0L0 (θ∗)−1 v0

D−→ N (0, 1) .

This completes the proof.

A.2 Proofs of Theorems Related to OS-ERM

As the surrogate empirical risks SQN and SN are identical in the two highest orders of the

Taylor’s expansion, the OS-ERM estimator θ̃QN and the SU-ERM estimator θ̃N enjoy similar

asymptotic properties. Therefore, we only give the probability bound on ‖θ̃QN − θ̂N‖2 and
the proof of Theorem 8. Theorem 9 can be similarly derived.

Let us define the following group of “good” events:

E ′0 =

{
MN ≤ 2M,

∥∥∇2LN (θ∗)−∇2L0 (θ∗)
∥∥

2
≤ ρλ−

4
, ‖∇LN (θ∗)‖2 ≤

(1− ρ)2λ2
−

32M

}
,

and

E ′k =

{
Mk ≤ 2M,

∥∥∥∇2Lkn (θ∗)−∇2L0 (θ∗)
∥∥∥

2
≤ ρλ−

4

}
for k = 1, . . . ,K. Note that under the event E ′0, we have ‖θ̂N − θ∗‖2 ≤ (1 − ρ)λ−/(16M).
Consider the following lemma.

Lemma 17 Assume the conditions in Proposition 7 hold. Then under the event
⋂K
k=0 E ′k,

we have

λmin

[
∇2LN (θ̂N )

]
≥ 1

2
(1− ρ)λ−, λmin

[
∇2L1

n(θ̂0)
]
≥ 1

2
(1− ρ)λ−,

‖θ̂0 − θ̂N‖2 ≤ ∆ :=
(1− ρ)λ−

8M
,

VN := max
θ∈(θ̂N−∆,θ̂N+∆)

∥∥∇2LN (θ)
∥∥

2
≤ V := 4M∆ +

ρλ−
4

+ λ+,

and∥∥∥∇2LN (θ̂0)−1 −∇2L1
n(θ̂0)−1

∥∥∥
2
≤ C

(∥∥∇2LN (θ∗)−∇2L1
n (θ∗)

∥∥
2

+ 4M‖θ̂0 − θ∗‖2
)
,

where C = 2Mρ/λ2
− + (ρ + 4)/(4λ−), and λmin[A] denotes the minimal eigenvalue of a

matrix A.
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Proof [Proof of Lemma 17] The proofs of all of the inequalities stated above, except for
the inequality on λmin[∇2L1

n(θ̂0)], are given in Lemma C.4 of Jordan et al. (2019). These
proofs can be easily extended to the case of pairwise losses. Here, we verify the inequality
on λmin[∇2L1

n(θ̂0)] stated above. Note that under Conditions (C3) and (C5) and the event
E ′1,

λmin

[
∇2L1

n(θ̂0)
]
≥λmin

[
∇2L0 (θ∗)

]
−
∥∥∇2L1

n (θ∗)−∇2L0 (θ∗)
∥∥

2

−
∥∥∥∇2L1

n(θ̂)−∇2L1
n (θ∗)

∥∥∥
2

≥λ− −
ρλ−

4
− 2M‖θ̂0 − θ∗‖2.

Since ‖θ̂0 − θ∗‖2 ≤ (2 + ρ)λ2
−/(8M), we have, under the event E ′1,

λmin

[
∇2L1

n(θ̂0)
]
≥ 1

2
(1− ρ)λ−.

This completes the proof.

Proof [Proof of Proposition 7] Analogous to the proof of Lemma 15, we can prove that
under Conditions (C2)-(C6),

P

(
K⋃
k=0

(E ′k)
c

)
≤ C ′′

(
K(log p)8

n8
+

p8

N8

)
.

where C ′′ is some constant independent of (n,K,N, p). Define the following global one-step
estimator:

θ̂QN = θ̂0 −∇2L−1
N (θ̂0)∇LN (θ̂0).

Note that

θ̃QN − θ̂
Q
N =

(
θ̂0 −∇2L1

n(θ̂0)−1∇L̃N (θ̂0)
)
−
(
θ̂0 −∇2LN (θ̂0)−1∇LN (θ̂0)

)
=
(
∇2LN (θ̂0)−1 −∇2L1

n(θ̂0)−1
)
∇LN (θ̂0) +∇2L1

n(θ̂0)−1
(
∇LN (θ̂0)−∇L̃N (θ̂0)

)
=
(
∇2LN (θ̂0)−1 −∇2L1

n(θ̂0)−1
)(
∇LN (θ̂0)−∇LN (θ̂N )

)
+∇2L1

n(θ̂0)−1
(
∇LN (θ̂0)−∇L̃N (θ̂0)

)
= : R1 +R2.

By Lemma 17, we can show that

‖R1‖2 ≤ VN
∥∥∥∇2LN (θ̂0)−1 −∇2L1

n(θ̂0)−1
∥∥∥

2
‖θ̂0 − θ̂N‖2

≤ CVN
(∥∥∇2LN (θ∗)−∇2L1

n (θ∗)
∥∥

2
+ 4M‖θ̂0 − θ∗‖2

)
‖θ̂0 − θ̂N‖2,

and

‖R2‖2 ≤
2

(1− ρ)λ−

(
4M‖θ̂0 − θ∗‖2 +

∥∥∥∇2LN (θ∗)−∇2L̃N (θ∗)
∥∥∥

2

)
‖θ̂0 − θ∗‖2

+
2

(1− ρ)λ−

∥∥∥∇LN (θ∗)−∇L̃N (θ∗)
∥∥∥

2
.
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Lemma 17 also implies that

‖θ̂0 − θ̂N‖2 ≤
(1− ρ)λ−

8M
≤
λmin

[
∇2LN (θ̂N )

]
2MN

,

which is the condition for Theorem 5.3 of Bubeck (2015), resulting in

‖θ̂QN − θ̂N‖2 ≤
4M

(1− ρ)λ−
‖θ̂0 − θ̂N‖22.

Combining the above results, we obtain, under the event
⋂K
k=0 E ′k,

‖θ̃QN − θ̂N‖2 ≤‖θ̃
Q
N − θ̂

Q
N‖2 + ‖θ̂QN − θ̂N‖2

≤C1

(
‖θ̂0 − θ̂N‖2 +

∥∥∥θ̂N − θ∗∥∥∥
2

+
∥∥∇2L1

n (θ∗)−∇2LN (θ∗)
∥∥

2

)
‖θ̂0 − θ̂N‖2

+ C1

(
‖θ̂0 − θ∗‖2 +

∥∥∥∇2LN (θ∗)−∇2L̃N (θ∗)
∥∥∥

2

)
‖θ̂0 − θ∗‖2

+
∥∥∥∇LN (θ∗)−∇L̃N (θ∗)

∥∥∥
2
,

where C1 is independent of (K,n,N, p).
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