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Abstract
With the evolution of data collection ways, label ambiguity has arisen from various appli-
cations. How to reduce its uncertainty and leverage its effectiveness is still a challenging
task. As two types of representative label ambiguities, Label Distribution Learning (LDL),
which annotates each instance with a label distribution, and Emerging New Class (ENC),
which focuses on model reusing with new classes, have attached extensive attentions. Nev-
ertheless, in many applications, such as emotion distribution recognition and facial age
estimation, we may face a more complicated label ambiguity scenario, i.e., label distribu-
tion changing with sample space expanding owing to the new class. To solve this crucial
but rarely studied problem, we propose a new framework named as Label Distribution
Changing Learning (LDCL) in this paper, together with its theoretical guarantee with
generalization error bound. Our approach expands the sample space by re-scaling previ-
ous distribution and then estimates the emerging label value via scaling constraint factor.
For demonstration, we present two special cases within the framework, together with their
optimizations and convergence analyses. Besides evaluating LDCL on most of the exist-
ing 13 data sets, we also apply it in the application of emotion distribution recognition.
Experimental results demonstrate the effectiveness of our approach in both tackling label
ambiguity problem and estimating facial emotion.
Keywords: label ambiguity, label distribution learning, emerging new class

1. Introduction

Machine learning has achieved great success in many tasks, especially in supervised learning.
Most of the existing approaches, such as deep learning (Fairbank et al., 2022), usually require
a large amount of training data with exact logical label information. In real applications,
however, we may face more learning problems with label ambiguity (Zhou, 2018; Li et al.,

∗. Both Chenping Hou and Dewen Hu are the corresponding authors.

©2023 Chao Xu, Hong Tao, Jing Zhang, Dewen Hu, and Chenping Hou.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0210.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0210.html


Xu, Tao, Zhang, Hu, and Hou

0bject

Car1

Car2

Tree

Street lamp

Barrier

Guardrail

(a)

Emotion

Happy

Sad

Surprise

Angry

Disgusting

Fear

(b)

Figure 1: Two typical application scenarios where new class emerges with time elapsing.

2021). For instance, due to the difficulty of labeling, incomplete, inexact and inaccurate
label information may cause label ambiguity (Li et al., 2021). Among different types of
label ambiguity, Label Distribution Learning (LDL) (Geng, 2016), which expresses label
ambiguity by giving each instance a label distribution, and Emerging New Class (ENC)
(Park and Shim, 2010), which focuses on model reusing with new classes, are two typical
cases and there are some related researches (Gao et al., 2016; Mu et al., 2016).

Compared with these cases, in many real scenarios, such as emotion distribution recog-
nition (Zhou et al., 2015) and object detection (Rudorfer, 2021), we may face a more compli-
cated label ambiguity, i.e., label distribution changing with sample space expanding owing
to the new class. For example, as shown in Fig.1, in autonomous driving, the emerging of
the new label (Guardrail) will provide more comprehensive and detailed road information
to improve the safety of autonomous driving. Moreover, in psychological counseling, the
emerging of new micro-expressions (Fear) will provide psychologists with more information,
thereby making psychological counseling more precise and efficient. Since the emerging new
labels change the existing label distribution to a new label distribution, we name this new
learning task as Label Distribution Changing Learning (LDCL).

To solve the LDCL problem, the most natural way is to adapt existing LDL algorithms
to fit LDCL. There are three types of traditional LDL approaches. The first one transforms
LDL to traditional classification task, including PT-SVM and PT-Bayes (Geng, 2016). The
second type includes AA-Bayes, AA-BP (Geng, 2016) and boosting (Xing et al., 2016), which
adapts the traditional algorithms to fit LDL. The final category consists of specific designed
algorithms (SA) of LDL, including SA-IIS (Geng et al., 2013) and SA-BFGS (Geng, 2016).
Although these approaches have achieved prominent performances to solve the LDL problem,
they can not be employed to manipulate the LDCL problem directly since the existing LDL
methods require consistent label information and direct adaptation of these methods will
destroy the existing label distribution. In other words, if we re-normalize previous labels
to a new label distribution, it will introduce label noise and degrade the performance of
these methods. Besides, some new LDL algorithms are designed to solve the problem of
incomplete label distribution learning (IncomLDL) (Xu and Zhou, 2017; Jia et al., 2019; Xu
et al., 2021a). They are not suitable for LDCL either, since these methods do not require
the existing labels to form a distribution. Instead, they make the restored labels to form a
distribution. Another possible way is to extend the existing ENC algorithms to solve the
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LDCL problem. Typical ENC algorithms include Multi-label learning with Emerging New
Labels (MuENL) (Zhu et al., 2018b), classification under Streaming Emerging New Classes
(SENC) (Mu et al., 2016) and Multi-Instance learning with Emerging Novel class (MIEN)
(Wei et al., 2021). They are not suitable for LDCL either, since these methods deal with
the case with single label or hard label, instead of label distribution in LDCL. Similarly,
some incremental learning methods that focus on multi-class problem, such as (Cermelli
et al., 2020; Rebuffi et al., 2017), will fail to handle with the special scene of LDCL due to
the unique label format of LDL. In particular, some new label enhancement methods (Xu
et al., 2021b; Wang et al., 2021) enhance the logical labels via leveraging the topological
information of the feature space and the correlation among the labels. Another approach
assists LDL by exploiting label distribution manifold (Wang and Geng, 2021). The label
enhancement (Xu et al., 2021b; Wang et al., 2021) is not suitable for the learning scenario of
this paper. On the one hand, our existing labels already constitute a distribution, but LE is
to enhance the logical label to a distribution. On the other hand, LE can only enhance the
full logical label to label distribution. In our setting, however, we only have label distribution
of partial categories and aim to extend it to a new label distribution with the emering of
new classes.

In this paper, to solve this interesting but rarely studied problem, we propose a new
framework named Label Distribution Changing Learning (LDCL). It expands the sample
space by rescaling the previous distribution and further mining the topological information
of the sample space to restore the emerging new class, and then estimates the emerging label
value by scaling the constraint factor. Besides, solid theoretical analysis about generaliza-
tion error and convergence behavior are provided. Finally, we evaluate our methods on 13
benchmark data sets, together with a real application on emotion distribution recognition.

The main contributions of this paper have the following three points:

• To our best knowledge, it is probably the first attempt to deal with label distribution
learning with emerging new label. We construct a new framework named LDCL to
deal with the scenario with label sample space expanding. In addition, a smart scaling
regularization is designed for the model, which not only enhances the performance of
the model but also acts as a bridge to communicate the two variables p and Y during
the optimization process. It will make the optimization process more concise.

• We give the upper bound of the generalization error for the LDCL framework, which
provides solid theoretical support for the LDCL algorithm. It is worth noting that this
is a new attempt in this scenario and it will be of far-reaching significance to problem
understanding.

• Comprehensive experimental studies validate the effectiveness of our proposal. In
addition, we also apply the LDCL algorithm in the application of emotion distribution
recognition. It achieves satisfactory performance in emotion distribution recognition.

The rest of this manuscript starts with some notations in Section 2. Then the LDCL
model framework is presented in detail, including the overall framework and theoretical
analysis. In Section 3, we detail the analyses of two specific algorithms within the proposed
LDCL framework, together with their generalization analyses and convergence analyses. In
Section 4, we review the closely related work about label distribution learning, incomplete
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𝑥11, 𝑥12, … , 𝑥1𝑑 [0.4   0.1   0.2   0.1   0.06  0.14]

𝑥21, 𝑥22, … , 𝑥2𝑑
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Figure 2: The specific settings of the questions raised in this article include data types
and corresponding label distribution differences. In the figure, the labels marked in red
are emerging new labels, and the label distribution curves marked in red are the new label
distribution that need to be learned, and the label distribution curves marked in blue are
the previous label distribution.

label distribution learning and emerging new class problem, together with the discussion
about their differences to our method. In Section 5, we conduct experiments w.r.t. perfor-
mance evaluation, parameter sensitivity and convergence behavior on data sets over various
domains. Furthermore, we apply LDCL to emotion distribution recognition. Finally, we
conclude this paper in Section 6.

2. The Proposed Framework

We will elaborate the settings at first and then present the corresponding framework. Finally,
we deduce the generalization error bound.

2.1 Notations and Problem Setting

First of all, we give a more formal definition of LDL. Concretely, let X = [x1,x2, · · · ,xn] ∈
Rd×n be the feature matrix of n instances {xi}ni=1 with dimension d. Denote its label
distribution matrix as Y = [y1,y2, · · · ,yn] ∈ [0, 1]c×n, where c is the number of labels and
yi = [yi1, yi2, · · · , yic]> is the label distribution vector of xi, with yij being the description
of the j-th specific label to the instance xi. In LDL, the elements of yi is constrained to be
non-negative and constitute a simplex. That is, yij ≥ 0 and

∑
yij = 1. It is worth noting

that yij is not the probability that the j-th label correctly annotates xi, but the proportion
in the complete description of xi (Geng, 2016).

In this paper, we consider a specific LDCL setting that the label sample space is ex-
panded, i.e., the number of interested labels is increased for the same dataset. It often oc-
curs when the concerning target changes and increases or the annotation ability gets strong
and the annotation becomes more precise. As shown in Fig.2, without loss of generality, we
assume that there is a new label appearing. If there are multiple new labels, we can add a
variable and add an inner loop to the optimization to handle the problem of multiple new
labels appearing. Further, we assume that a few instances are manually annotated with the
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new label. Actually, labeling work often has high cost and difficulty, so the amount of these
manually annotated instances with the new label is often small. Thus, this LDCL setting
with such assumptions is tenable.

Formally, let y0 ∈ [0, 1]c×n and Ŷ ∈ [0, 1](c+1)×n be the original and the expanded label
distribution matrix, respectively. In other words, both y0 and Ŷ satisfy the constraints
of label distribution matrices. For the convenience of presentation, we assume the first l
instances are relabeled. Then, we have ŷij ≥ 0 and

∑c+1
j=1 ŷij = 1, i = 1, 2, · · · , l. For the

rest n− l instances, although the label space is expanding, we keep the original annotation
results in the initialization, that is,

ŷij =

{
y0,ij , 1 ≤ j ≤ c,
0, j = c+ 1,

i = l + 1, · · · , n. (1)

Obviously, although Ŷ fulfills the constraints of the label distribution matrix, it provides
no information of the new label for the last n− l instances. Ŷ fails to describe the instances
accurately when a new label is added into consideration. Thus, the first task of this paper
is

• Task 1: Expanding the label sample space to accommodate the emerging new label.

Moreover, since the final aim is predicting the label distribution of the new-coming unlabeled
data in real applications, our second task is

• Task 2: Learning a new effective classifier for the expanded label space.

In summary, given X and Ŷ, we need to recalculate the description distribution matrix
Y for the expanded label space and construct a classifier with X and Y.

2.2 Formulation

To accomplish the above tasks, the primary challenge is predict the new label precisely
while preserving the information provided by the original label distribution matrix Y0. To
solve this problem, we denote pi ∈ (0, 1) as the value of the new label to the instance
xi, i = l + 1, · · · , n. That is, yi,c+1 = pi, i = l + 1, · · · , n. For the label distribution vector
yi (l + 1 ≤ i ≤ n), on one hand, it satisfies

c+1∑
j=1

yij =

c∑
j=1

yij + pi = 1. (2)

On the other hand, yij(1 ≤ j ≤ c) should keep the original label distribution information
as much as possible. A natural way is to keep the ratio between any pair of original labels
unchanged, which is equivalent to compress the label values of the original label with a same
ratio ri, i.e., yij = riy0,ij = riŷij(1 ≤ j ≤ c) . Thus, we have

c∑
j=1

riŷij + pi = ri

c∑
j=1

ŷij + pi = 1. (3)
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Recall that
∑c

j=1 ŷij =
∑c

j=1 y0,ij = 1, then we have

ri = 1− pi, i = l + 1, · · · , n. (4)

That is to say, when the ratio between original labels are kept, the value of the new label
equals to 1 minus the compression ratio of the original labels. For compact representation,
introduce the indicator vector Ω ∈ {0, 1}(c+1)×1, where

Ωj =

{
1, 1 ≤ j ≤ c,
0, j = c+ 1.

(5)

Then, together with the constraints that y>i 1c+1 = 1, it holds that

(1− pi)Ω� ŷi = Ω� yi, 0 < pi < 1, i = l + 1, · · · , n, (6)

where � is the Hadamard (element-wise) product (Craigen et al., 1992). 1c+1 stands for
the (c + 1)-dimensional vector with all ones. In the remainder of this paper, the subscript
of such kind of vectors or matrices is omitted when there is no ambiguity.

Based on the above analysis, it is known that the the expanded label distribution ma-
trix is obtained once p = [pl+1, pl+2, · · · , pn]> is determined. Therefore, to obtain a precise
expanded label distribution matrix and henceforth learn a qualified classifier, it is vital to
integrate the instance structural information, label correlations and the prior information of
the new label appropriately. With the above considerations, we propose the Label Distribu-
tion Changing Learning (LDCL) framework as follows.

min
Y,M,p

L(Y) + λH(M,Y) + γR(p)

s.t. (1− pi)Ω� ŷi = Ω� yi, 0 < pi < 1, i = l + 1, · · · , n
Y1c+1 = 1n,Y ≥ 0,

(7)

where Y ∈ [0, 1](c+1)×n is the expanded label distribution matrix we need to recalculated.
M is coefficients of the learned classifier from X to Y. 0 is a zero matrix with the same size
of Y, and Y ≥ 0 indicates that all the elements of Y are non-negative.

In this framework, L(·) and H(·) are empirical risks for calculating the expanded label
distribution matrix and learning a classifier, respectively. R(·) is a regularization term,
which is encoded with the prior information of the emerging new label. Balanced by the
trade-off parameters λ > 0 and γ > 0, three terms work together to realize Task 1 and Task
2 comprehensively. Specifically, the transformed feature information encoded in H(·) helps
with the label expanding process. In turn, meticulously learned label distribution matrix
by optimizing L(·) and R(·) directs the construction of the classifier. Different choices of
L(·), H(·) and R(·) lead to different algorithms. In the following, the possible options of the
three terms will be introduced.

As for the first term L(Y), it is the empirical risk for computing the expanded label
distribution matrix Y. To achieve more accurate computation, we consider instance struc-
tural information and label correlations simultaneously. On the whole, we assume that label
correlations can be reflected by the topological relationship of instances. Specifically, as
shown in Fig.3, a similarity graph is constructed to represent the topological relationship of
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Input
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Figure 3: The basic idea of the method proposed in this article, including three sample-
information-based methods. The top corresponds to the label propagation method based
on similar graph, the bottom corresponds to manifold-based self-expression, i.e. manifold
methods, and manifold based and embedded label correlation self-expression, i.e. manifold
enhancement.

instances, based on which the relationship between labels is depicted with certain assump-
tions. In this way, the instance structural information is transferred from the feature space
to the expanded label space.

In technical detail, we can borrow relevant techniques from semi-supervised learning
paradigms such as label propagation (LP) (Li et al., 2015) and manifold learning (Hou et al.,
2016). As shown in the upper left part of Fig.3, with the local invariance assumption, LP
constructs a label propagation matrix based on the correlation between instances. It uses the
difference in path weights in the propagation process to naturally produce differences in the
description of different labels, thereby reflecting the relationship between labels contained in
the training data. Hence, L(Y) can be formulated as L(Y) = Tr(YFY>), where F ∈ Rn×n
is the graph Laplacian matrix of the feature space. Specifically, the calculation of F will be
given in detail in Algorithm 1.

From another aspect, based on the self-expression assumption, as displayed in the lower
left part of Fig.3, the feature manifold is represented by graphs and approximated by over-
lapped blocks of local linear neighborhoods. Then the topological structure of the feature
space is transferred to the label space, that is, the same local linear reconstruction coeffi-
cient matrix is shared. To this end, we construct a weighted graph G(V ,E,W) (Lv et al.,
2019), where V is the vertex set corresponding to the training instances, E is the sparsely
connected edge set, and W = [w1,w2, · · · ,wn] ∈ Rn×n is the weight matrix encoding the
structural information to characterize the underlying structure of the feature space. Note
that the diagonal element of W are zeros, andWij is regarded as the influence of xj over xi.
In the feature space, the reconstruction coefficient matrix W can be obtained column-wisely
by optimizing

min
W
‖X−iwi − xi‖22 + α ‖wi‖1 .

where wi is the i-th column of W, X−i represents the feature matrix with its i-th instance
being replaced by a zero vector and α > 0 is a parameter. If we represent the labels of all
instances one by one, then L(Y) =

∑n
i=1 ‖Y−iwi − yi‖22, where Y−i is defined in the same

manner with X−i.
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Furthermore, the label correlations conduce to the recovery of the expanded label distri-
bution matrix Y. Intuitively, the correlative labels tend to have similar description degrees.
Inspired by the investigation of (Zhu et al., 2018a), the label correlation matrix may vary
among regions. Then, to learn the expanded label distribution matrix Y more accurately,
we learn the expanded label distribution Y block by block, and each block corresponds to
a cluster. First, the training set is divided into K regions

{
X1,X2, · · · ,XK

}
by k-means

clustering. Xk collects the instances belonging to the k-th clustering, and Yk is the cor-
responding label distribution sub-matrix. Correspondingly, Wk characterizes the manifold
structure information of the k-th regions, and introduce Rk to encode label correlation infor-
mation. Borrowing the idea of label enhancement (Lv et al., 2019), we think that integrating
feature structure and label correlation is effective in recovering the label distribution matrix.
Therefore, we synthesize the feature structural information and the label correlations to re-
construct the expanded label distribution matrix Y, Yk is characterized by Yk ≈ RkYkWk,
which leads to the following function to minimize:

L(Y) =
∑
k

∥∥∥Yk −RkYkWk
∥∥∥2

F
,

Here, Rk ∈ R(c+1)×(c+1), the correlation matrix, plays the role of encoding the label correla-
tions. It has large value if the two class labels has high correlation. When we minimize the
loss, it will enforce the high correlation between the two correponding columns of Yk, which
conduces to the recovery of the expanded label distribution matrix Y. However, construct-
ing sub-Laplacian Rk from training set with new label directly is noisy. Therefore, instead
of specifying any label correlation matrix, we optimize the Laplacian matrices together with
the expanded label distribution matrix Yk iteratively. Due to the introduction of Laplacian
sub-matrix, this strategy further considers the correlation between label classes, which we
call it as manifold enhancement in our learning scenario.

In short, three kinds of reconstruction losses are suggested. Thus, the first part can be
formulated as but not limited to the following forms

L(Y) =


Tr(YFY>)∑n

i=1 ‖Y−iwi − yi‖22∑
k

∥∥Yk −RkYkWk
∥∥2

F

. (8)

As for the second term H(M,Y), it takes charge to train a classifier based on the ex-
panded label distribution matrix. A simple yet efficient choice for this term is to fit the
expanded label distribution matrix linearly via least squares regression, that is, H(M,Y) =
‖MX − Y‖2F . For the predicted Y′ = MXt, each label vector is normalized to be a dis-
tribution. Here, two normalization methods softmax transformation, i.e, yij = ey

′
ij/
∑

j e
y′ij

and linear normalization (LN), i.e, yij = y′ij/
∑

j y
′
ij are mainly used in this paper. It should

be noted that when LN is adopted, the negative prediction is replaced by zero. In addition,
KL divergence is a commonly used method to measure the difference between distributions.
Specifically, the KL divergence between the predicted label distribution vector ỹi and the
recalculated expanded label distribution vector yi is DKL (yi ‖ ỹi) = y>i ln(yi/ỹi). Here ỹi
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Table 1: Components of the LDCL framework.

L(Y) H(M,Y) R(p)

Tr
(
YFY>

)
‖MX−Y‖2F∑
iDKL (yi‖ỹi)

‖p‖1∑n
i=1 ‖Y−iwi − yi‖22 ‖p‖22∑

k

∥∥Yk −RkYkWk
∥∥2

F
−p> log p

is obtained by the maximum entropy model

ỹij = p(yij |xi; M) =
1

Si
exp

(∑
r

Mjrxir

)
,

where M is the regression coefficients and Si =
∑

j exp(
∑
r
Mjrxir) is a normalization factor.

Henceforth, the possible options for the second term can be

H(M,Y) =

{
‖MX−Y‖2F∑

iDKL (yi ‖ ỹi) . (9)

In order to further analyze the two classifiers, we conducted a comparative experiment
experiments on these two classification models. The experiment results are shown in Table
10 Appendix D.1. From the experiment results, it can be seen that the maximum entropy
model (“KL+softmax”) has the best performance. Compared with “KL + softmax”, the
performance of “KL + LN” is reduced. Similarly, the performance of “L2+softmax” is
degenerated compared with “L2 + LN”. Therefore, compared with the wide applicability of
linear regression model, the maximum entropy model with KL divergence is more targeted
for LDL. On the other hand, within this framework, specific methods can be tailored and
solved according to practical demand. Here we use the L2 loss for the purpose of solving
convenience. When the application scenario has stricter requirements on the prediction
accuracy, KL divergence can be used. Comprehensively comparing the pros and cons of the
two methods, we take both hypothetical models as candidates for H(M,Y).

The regularization term R(p), which specifies the prior information of the new label,
could have different forms according to various types of prior label information. For example,
if the distribution of the new label over instances obeys a normal distribution, then the L2-
norm regularization ‖p‖22 is employed. For the case that the new label is sparsely distributed,
R(p) can be formulated as ‖p‖1. Moreover, with the consideration that the amount of
information brought by the new label is limited, then the information entropy (Amjad,
2019) of the new label should be constrained to be within a certain range. That is, R(p) =
−p> log p. Since the most common prior information can be characterized by the above three
cases or their combinations, we narrow our focus on their corresponding regularizations.
That is,

R(p) =


‖p‖1
‖p‖22
−p> log p

. (10)

Table 1 summarizes the suggested forms for each term and provides 18 possible LDCL
models. The main idea and procedure of the proposed LDCL framework is depicted in
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Fig.3. It can be seen that different combinations of L(·), H(·) and R(·) lead to distinct
LDCL models. In summary, in terms of model design, under the guidance of the LDCL
framework presented in Eq.(7), more models can be designed to meet different purposes.

One point should be highlighted. The formula in Eq.(7) called a framework not only
due to its capability for LDCL model design but also owing to its theoretical results for
algorithm generalization shown in the next subsection.

2.3 Generalization ability of LDCL framework

In order to provide theoretical support for the LDCL framework, we deduce the theoretical
generalization error bound analysis for LDCL framework, including the generalization error
bounds of transductive and inductive mapping hypothesis families, which are both integrated
in the model. The inductive model h maps X to Y with transformation matrix M, that
is, h : X

M−→ Y. The goal of the inductive model h is to predict the label of unseen test
data, and the corresponding theory is Theorem 5, which depicts the prediction ability of the
inductive model h. The transductive model f uses the existing feature X and the incomplete
label distribution matrix Ŷ to reconstruct the expanded label distribution matrix Y, that
is, f : X × Ŷ → Y. The goal of the transductive model f is to reconstruct the expanded
label distribution of un-relabeled data, and the corresponding theory is Theorem 4, which
depicts the reconstruction ability of the transductive model f .

For the transduction model that cannot establish a clear predictive model, new data
cannot be directly accepted, but it performs well in restoring unrelabeled data labels. For the
inductive model, an explicit model can be trained to directly predict the unseen test data, but
when predicting un-relabeled data, the existing labels of un-relabeled data are ignored, so the
recovery performance of the un-relabeled data labels may be poor. Therefore, considering the
advantages of both, we combine both mappings into the proposed model to handle different
tasks. It needs to be pointed out that the mapping space corresponding to different models
under the LDCL framework is different, so the Rademacher Complexity is different, and the
tightness of the generalization is also different. As a result, the model combination under
the framework has different characteristics, and will show different performance for different
data sets. First of all, since there is little research about the generalization error bound in
LDL, we introduce the analogs as in traditional supervised learning for our analyses.

Definition 1 (Empirical and generalization risk) In the following, we define the em-
pirical error and generalization error based on a loss function ` : R(c+1) × R(c+1) → R+,
which measures the difference between two distributions.

err(x,y)∼D(h) = E(x,y)∼D`(h(x),y), êrrl+u(h) =
1

l + u

l+u∑
i=1

`(h(xi),yi),

êrrl+u(f) =
1

l + u

l+u∑
i=1

`(f(xi),yi), êrru(f) =
1

u

l+u∑
i=l+1

`(f(xi),yi),

êrrl(f) =
1

l

l∑
i=1

`(f(xi),yi).
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Here, h ∈ H is the inductive mapping and err(x,y)∼D(h) is the generalized error of the
classifier h. êrrl+u(h) is the empirical error. As for the transductive mapping f ∈ F ,
errl+u(f) is full sample empirical error of the hypothesis f , erru(f) is the transduction
empirical error of unlabeled data of f . And errl(f) is the transduction empirical error of
labeled data of f .

Definition 2 (Rademacher Complexity (Bartlett and Mendelson, 2002)) Given a
function class H and a loss function ` : R(c+1) ×R(c+1) → R+. For a function h ∈ H and a
sample Z = (Z1, Z2, · · · , Zn) of size n, Z ∈ Z = (X ,Y). Then, the empirical Rademacher
complexity of H with respect to the sample Z is defined as

<̂n(` ◦ H ◦ Z) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σi`(h(xi),yi)

]
. (11)

where the random variables {σi}ni=1 σi are called Rademacher variables, which obey the uni-
form distribution on {−1,+1}. The Rademacher complexity of H is the expectation of
Rademacher complexity based on the experience of all samples of size n drawn by D

<n(` ◦ H ◦ Z) = EZ∼Dn
[
<̂n(` ◦ H ◦ Z)

]
. (12)

Definition 3 (Transductive Rademacher Complexity (El-Yaniv and Pechyony, 2009))
Given a function class F and a loss function ` : R(c+1)×R(c+1) → R+, for a function f ∈ F
and a sample Z = (Z1, Z2, · · · , Zn) of size n, Zi = (xi,yi), Z ∈ Z = (X ,Y). Random
partitioning of n points into two disjoint sets of m1 and m2 points. The following quantity
is called transductive Rademacher complexity (TRC)

<Tdl+u(` ◦ F ◦ Z) =

(
1

m1
+

1

m2

)
Eσ

[
sup
f∈F

n∑
i=1

σi`(f(xi),yi)

]
, (13)

where σ = {σi}m1+m2
i=1 are i.i.d. random variables taking values ±1 with probabilities of P

and 0 with a probability of 1− 2P , and P ∈
[
0, 1

2

]
.

After introducing the basic definition, we give the generalization error bound for the LDCL
framework as follows:

Theorem 4 Let F be the family of transductive mapping functions for LDCL framwork and
a loss function ` with Lipschitz constant L` and bounded by a constant B. Given Z = Zl∪Zu
as a the full sample, where Zl represents the sample set annotated by the new label distribu-
tion, and Zu represents the sample set annotated by the previous label distribution. Define
Q

∆
= l+u

(l+u−1/2)(1−1/(2 max(l,u))) and P , lu
(l+u)2

. Then for any δ ∈ (0, 1), with probability at
least 1− δ the following bound holds for all f ∈ F ,

êrru(f) ≤
√

2L`(c+ 1)<Tdl+u(F ◦ Z) +B

(
1

l
+

1

u

)√
32 ln(4e)

3

√
min(l, u) +B

√
Q

2

(
l + u

lu

)
ln

(
1

δ

)
.

(14)
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Theorem 5 Let H be the family of inductive mapping functions for LDCL framwork and a
loss function ` with Lipschitz constant L` and bounded by a constant B. Given Z = Zl ∪Zu
as a the full sample, such that n = l + u. Then for any δ ∈ (0, 1), with probability at least
1− δ the following bound holds for all h ∈ H,

err(x,y)∼D(h) ≤ êrrl+u(h) + êrru(f) + 2L`(c+ 1)<n(H ◦ Z) +
2L`(c+ 1)u

l + u
<u(F ◦ Z) +B

√
log( 1

σ )

2(l + u)
.

(15)

Due to the limitation of space, the details are presented in the Appendices. In the proof,
the main differences between our procedures and the traditional steps are data type and
model composition. Regarding the data type, in this scenario, the data is composed of
relabeled and un-relabeled data, which is different from the traditional form with all labeled
data. Thus, we employ transductive Rademacher complexity to characterize the function
space complexity of the mapping to obtain the generalization error bound. Regarding the
model composition, our model combines transductive and inductive mappings. Since the
generalization error bound of the inductive mapping cannot be derived from the transductive
setting, the Cauchy inequality is used to connect two mappings and the generalization error
bound of the inductive mapping is further given.

In addition, as seen from Theorems 4 and 5, we can get some observations about the pro-
posed model. On one hand, Theorem 4 indicates that, with the increase of labeled samples,
the transductive risk upper bound of the transductive mapping decreases, which is consis-
tent with intuition. On the other hand, according to the Cauchy inequality, the data used
to train the inductive mapping contains errors from the transductive mapping. Therefore,
the generalization bound of the inductive mapping may be looser than the transductive risk
upper bound of the transductive mapping. Our experimental results also verify this phe-
nomenon, the performance of the transductive model f under setting 1 for the un-relabeled
data is better than that of the inductive model h under setting 2 for unseen test data, since
the un-relabeled data has incorporated into the training process.

3. Model Analysis and Optimization

In order to verify the effectiveness of the LDCL framework, we choose two specific models,
taking into account the differences and representativeness of the selected methods. Then we
analyze these two methods in detail, including the components of the model and optimization
algorithms.

3.1 Algorithm 1: Graph

For Algorithm 1, we use LP technique, and choose KL-divergence as the empirical risk for
learning a classifier and information entropy as the scaling regularization.

arg min
Y,M

Tr(YFY>) + λ
∑

iDKL (yi ‖ ỹi)− γ
(
p> log p

)
s.t. (1− pi)Ω� ŷi = Ω� yi, 0 < pi < 1, i = l + 1, · · · , n,Y1n = 1c+1,Y ≥ 0.

(16)

Here, the graph Laplacian matrix F is calculated in the feature space. Given a set
of examples {xi}ni=1, we can use a k-nearest neighbor graph G to model the relationship

12
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between nearby data points. Specifically, we put an edge between nodes i and j if xi and
xj are ‘close’, i.e., xi and xj are among the k nearest neighbors of each other. Define the
corresponding weight matrix be A,

Aij =

{
exp(−‖xi−xj‖

2
F

σ2 ), xi ∈ Nk(xj) and xj ∈ Nk (xi)

0, otherwise
, (17)

where σ is the variance of the Gaussian kernel and is usually estimated according to the
average distance between sample points, Nk(xi) is the set of k neighbors of sample point
xi. Then the Laplacian matrix is obtained by F = D −A, where D is a diagonal matrix
and the diagonal elements are Dii =

∑n
j=1Aij .

As for optimization, Eq.(16) can be optimized by alternating minimization. In each
iteration, we fix one of Y,M and update the other. Then the optimization of the original
problem can be equivalent to the alternate optimization of the following two sub-problems.

M = arg min
M

λ
∑
i

DKL (yi ‖ ỹi) , (18)

Y = arg min
Y

Tr(YFY>) + λ
∑
i

DKL (yi ‖ ỹi)− γ
(
p> log p

)
. (19)

Here, Eq.(18) can be solved by limited-memory quasi-newton’s method (L-BFGS) effectively,
which has been used in the existing LDL algorithm SA-BFGS (Geng, 2016). Where ỹi is
obtained through the maximum entropy model, which has been explained in the subsection
2.2 of the article. It is worth noting that through constraint condition (1− pi)Ω�ŷi = Ω�yi,
the updates of Y and p are synchronized, and the updated Yt+1 can be directly derived
from the updated pt+1. According to construction of the graph we have

1

2

n∑
i=1

n∑
j=1

Aij‖yi − yj‖2 = Tr
(
y>Fy

)
.

Then Eq.(19) can be rewritten as

Y = arg min
Y

Tr(YFY>) + λ
∑
i

DKL (yi ‖ ỹi)− γ
(
p> log p

)
= arg min

Y

1

2

n∑
i=1

n∑
j=1

Aij‖yi − yj‖2 + λ
∑
i

DKL (yi ‖ ỹi)− γ
(
p> log p

)
= arg min

Y

∑
i

(
A(i)1nyi

>yi −A(i)Y
>
−iyi + λy>i ln

yi
ỹi
− γpi log pi

) . (20)

where A(i) represents the i-th row of A, Y−i represents the label distribution matrix with its
i-th column being replaced by a zero vector. It is worth noting that since A is a symmetric
matrix and Aii = 0, the cross term

n∑
i=1

n∑
j=1

Aijyi
>yj =

∑
i

A(i)Y
>
−iyi.

13
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Thus, for the optimization of Eq.(19), it can be achieved by alternately optimizing each
column yi. It should be noted that due to the symmetry of A, when updating each column,
the cross term is calculated twice, so the second term needs to be multiplied by 2 in front.

yi = arg min
yi

A(i)1nyi
>yi − 2A(i)Y

>
−iyi + λy>i ln

yi
ỹi
− γpi log pi. (21)

Substitute the constraint condition (1− pi)Ω � ŷi = Ω � yi, 1 − pi = ri into Eq.(21), let
Ω� ŷi = di, then Eq.(21) can be converted to solving for ri. Merging similar items, we can
get the objective function for ri. Note that ỹi is calculated by M through the maximum
entropy model.

ri = arg min
ri

(
A(i)1

) (
d>i di + 1

)
r2
i

+
[
2Y(c+1)A(i) − 2A(i)1− 2A(i)Y

>
−idi + λ

(
d>i lndi − d>i Mxi + M(c+1)xi

)]
ri

+ λri ln ri + (λ− γ) (1− ri) ln (1− ri) ,

(22)

where Y(c+1), M(c+1) represent the (c+ 1)-th row of Y and M, respectively. Then, we can
use the gradient descent method to update ri

∇ri = 2
(
A(i)1

) (
d>i di + 1

)
ri

+
[
2Y(c+1)A(i) − 2A(i)1− 2A(i)Y

>
−id
>
i + λ

(
d>i lndi − d>i Mxi + M(c+1)xi

)]
+ λ (ln ri + 1) + (γ − λ) (ln (1− ri) + 1) .

(23)

In summary, the whole procedures of the proposed Graph algorithm are shown in Al-
gorithm 1.

Algorithm 1 Graph

1: Initialize M(0), p, λ and γ;
2: Calculate y(0) with p;
3: Calculate F;
4: while Stopping criterion is not satisfied do
5: Solve p(t+1) by Eq.(22) and equality 1− pi = ri;
6: Calculate y(t+1) with p(t+1);
7: Update M(t+1) by solving Eq.(18) using L-BFGS;
8: t = t+ 1.
9: end while

3.2 Algorithm 2: Manifold

By contrast to Algorithm 1, we build the following model for Algorithm 2.

arg min
Y,L,M

∑
k

∥∥Yk − Lk(Lk)>YkWk
∥∥2

F
+ λ

∥∥MXk −Yk
∥∥2

F
+ γ

∥∥pk∥∥2

2

s.t. diag(Lk(Lk)>) = 1, k = 1, 2, · · · ,K,
(1− pi)Ω� ŷi = Ω� yi, 0 < pi < 1, i = l + 1, · · · , n,
Y1n = 1c+1,Y ≥ 0.

(24)
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Calling back to the LDCL framework, we will find that Rk is replaced by Lk(Lk)> with
a constraint diag(Lk(Lk)>) = 1. This is to avoid the trivial solution and guarantee Rk to
be a normalized Laplacian matrix.

It is worth noting that the Laplacian matrix Rk is optimized together with the label
distribution matrix iteratively, rather than specifying any label correlation matrix, since
estimating label correlations from training set with new label directly is noisy. Besides,
according to previous studies in (Zhu et al., 2018a), the label correlation matrix may vary
among regions, we divide the training set into K regions

{
X1,X2, · · · ,XK

}
by k-means

clustering, in which Xk ∈ Rd×nk has nk instances. Denoted Ŷ
k
and Yk as the previous

observed label distribution matrix and the recovery label distribution matrix correspond-
ing to Xk. Let Rk be the Laplacian matrix of region k and Wk are calculated for each
region. Intuitively, Wk characterizes the manifold structure information of the data, and
Rk characterizes the label correlation information. As a result, the manifold enhancement
synthesizes the structural information of the feature space and the label correlations.

As to optimization, Eq.(24) can be solved by alternating minimization. We give the
updating rules of each variable with others are fixed as follows.

Lk = arg min
Lk

∥∥∥Yk − Lk(Lk)>YkWk
∥∥∥2

F
, (25)

Yk = arg min
Yk

∥∥∥Yk − Lk(Lk)>YkWk
∥∥∥2

F
λ
∥∥∥MXk −Yk

∥∥∥2

F
+ γ

∥∥∥pk∥∥∥2

2
, (26)

M = arg min
M

‖MX−Y‖2F , (27)

The gradient descent method can be utilized to optimize Eq.(25). Let

T (Lk) =
∥∥∥Yk − Lk(Lk)>YkWk

∥∥∥2

F

= Tr
[
(Yk − Lk(Lk)>YkWk)

>
(Yk − Lk(Lk)>YkWk)

]
.

(28)

Then the gradient of Lk can be obtained

∇Lk = 4(Lk(Lk)>YkWk(Wk)>(Yk)> −Yk(Wk)>(Yk)>)Lk. (29)

To satisfy the constraint diag(Lk(Lk)>) = 1, each row of Lk is projected onto the unit norm
ball after each update.

For the optimization of Eq.(26), it can be achieved by alternately optimizing each column
yi. First, we rewrite Eq.(26) as follows

Yk = arg min
Yk

∥∥∥Yk − Lk(Lk)>YkWk
∥∥∥2

F
+ λ

∥∥∥MXk −Yk
∥∥∥2

F
+ γ

∥∥∥pk∥∥∥2

2

=
∑
i

(
(yki − Lk(Lk)>Ykwk

i )
>(yki − Lk(Lk)>Ykwk

i ) + λ(Mxki − yki )>(Mxki − yki ) + γpk2
i

).
(30)

15



Xu, Tao, Zhang, Hu, and Hou

Then, we fix the (n− 1)-th column and update the rest column under constraints.

yki = arg min
yki

∑
i

(
(yki )

>yki − 2(yki )
>Lk(Lk)>Ykwk

i + (wk
i )>(Yk)>Lk(Lk)>Lk(Lk)>Ykwk

i

+ λ(xki )
>(M)>Mxki − 2λxki

>M>yki + λyki
>yki + γ(pki )

2
)
.

(31)

Algorithm 2 Manifold

1: Initialize L(0), M(0), pk, λ and γ;
2: Calculate Yk,(0) with pk;
3: Calculate Wk for each region;
4: while Stopping criterion is not satisfied do
5: for k = 1 to K do
6: Update Lk,(t+1) by Eq.(25);
7: Solve pk,(t+1) by Eq.(32) and equality 1− pi = ri;
8: Calculate yk,(t+1) with pk,(t+1);
9: end for

10: y(t+1) = [y1,(t+1);y2,(t+1); · · · ;yK,(t+1)];
11: M(t+1) = (X>X)−1X>y;
12: t = t+ 1.
13: end while

To simplify the presentation, we omit the superscript k is the derivation of Yk. Specifi-
cally, we analyze yi and it is easy to find that for j 6= i, the second term

∑
j

(yj)
>LL>Ywj

of the above equation still contains yi. Looking back at the construction of w, we know
that wii = 0. Separate out what is related to yi,∑

j

y>j LL>yiwji =
∑
j

y>i LL>yjwji = y>i LL>Y−iW
>
(i).

Similarly, for the third term of the above equation,∑
j

(LL>Ywj)
>(LL>Ywj) =

∑
j

(
(
∑
i

LL>yiwji)
>(
∑
i

LL>yiwji)
)
.

Separate out what is related to yi, for j 6= i.∑
j

(LL>yiwji)>(LL>yiwji) + 2
∑
j

(LL>yiwji)
>(
∑
k 6=i

(LL>ykwjk))

= W(i)W
>
(i)(LL>yi)

>(LL>yi) + 2(LL>yi)
>LL>Y−iWW>

(i)

,

where (LL>)(c+1) represents the (c+ 1)-th row of LL> and W(i) is the i-th row of W. Y−i
represents the label distribution matrix with its i-th column being replaced by a zero vector.
The remaining similar terms are merged together by pluging the constraint (1− pi)Ω� ŷi =
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Ω � yi, 1 − pi = ri into equation. Let Ω � ŷi = di. Eq.(31) can be transformed into an
optimization to ri shown as follows.

ri = arg min
ri

di
>dir

2
i + (1− ri)2 − 2(diLL>Y−iW

>
(i) − (LL>)(c+1)Y−iW

>
(i))ri

− 2(diLL>Y−iwi − (LL>)(c+1)Y−iwi)ri + W(i)W
>
(i)

(
LL>di − (LL>)(c+1)

)>(
LL>di − (LL>)(c+1)

)
r2
i

+ 2W(i)W
>
(i)

(
(LL>)(c+1)

)>(
LL>di − (LL>)(c+1)

)
ri + 2

(
di
>LL>LL>Y−iWW>

(i)

− (LL>)(c+1)LL>Y−iWW>
(i)

)
ri + λ

(
d>i dir

2
i + (1− ri)2

)
− 2λ

(
xi
>M>di − xi>M>

(c+1)

)
ri + γ(1− ri)2

= arg min
ri

(
W(i)(W(i))

>(LL>di − (LL>)(c+1))
>(LL>di − (LL>)(c+1)) + (1 + λ)(d>i di + 1) + γ

)
r2
i

+ 2
(
− (diLL>Y−iW

>
(i) − (LL>)(c+1)Y−iW

>
(i))− (diLL>Y−iwi − (LL>)(c+1)Y−iwi)

+ W(i)W
>
(i)

(
(LL>)(c+1)

)>(
LL>di − (LL>)(c+1)

)
+ di

>LL>LL>Y−iWW>
(i)

− (LL>)(c+1)LL>Y−iWW>
(i) − λ

(
xi
>M>di − xi>M>

(c+1)

)
− 1− γ − λ

)
ri.

(32)
Through observation, it can be found that Eq.(32) is a quadratic equation of one variable
ri, which has a closed-form solution through the extreme value formula.

The optimal M can be derived by least square method directly, which has the closed
form solution M = YX>(XX>)−1.

In summary, the whole procedures of the proposed Manifold algorithm are shown in
Algorithm 2.

3.3 Theoretical Analysis

For the two algorithms mentioned above, we have further conducted generalization ability
and convergence analysis, and then given the following corollaries and conclusion.

As mentioned in the LDCL framework, for the maximum entropy model output, the
softmax function φ is used for normalization

ỹij = p(yij |xi; M) =
1

Si
exp

(∑
r

Mjrxir

)
,

where Si =
∑

j exp(
∑
r
Mjrxir) is a normalization factor. Actually, the maximum entropy

model can be regarded as a combination of softmax function and multi-output linear regres-
sion, namely φ◦H, where H represents a class of functions of multi-output linear regression.

Graph model uses KL divergence as loss function, which is denoted by KL : R(c+1) ×
R(c+1) → R+. Rademacher complexity of Graph w.r.t. Z for loss function KL satisfies the
following lemma.

Lemma 6 Let H be a family of functions for multi-output linear regression, Rademacher
complexity of Graph with KL loss satisfies

<n(KL ◦ φ ◦ H ◦ Z) ≤
√

2(
√
c+ 1 + 1)(c+ 1)<n(H ◦ Z). (33)
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Proof Note that KL(µ, ·) is not ρ-Lipschitz over R(c+1) for any ρ ∈ R and µ ∈ R(c+1), thus
Support-Theorem 4 cannot be applied directly. Next we show that KL ◦ φ(µ, ·) satisfies
Lipschitzness. For any p, q ∈ R(c+1),

|KL ◦ φ(µ,p)−KL ◦ φ(µ,q)| =
∣∣∣∣∣
c+1∑
i=1

µi

(
ln

exp(pi)∑c+1
i=1 exp(pi)

− ln
exp(qi)∑c+1
i=1 exp(qi)

)∣∣∣∣∣
≤

c+1∑
i=1

µi

∣∣∣∣∣∣ln
1+

∑
j 6=i

epj−pi

− ln

1+
∑
j 6=i

eqj−qi

∣∣∣∣∣∣ ,
(34)

where pi, qi is i-th element of p and q, respectively. Observing that ln

(
1+
∑
j 6=i

eνi

)
is

1-Lipschitz for ν ∈ R(c+1), thus right-hand side of preceding equation is bounded by

c+1∑
i=1

µi‖p− 1pi − q + 1qi‖2 ≤ ‖p− q‖2 +
√
c+ 1

c+1∑
i=1

µi |pi − qi| ≤ (
√
c+ 1 + 1)‖p− q‖2,

(35)
where the last inequality is according to Cauchy-Schwarz inequality. Thus, KL ◦ φ(µ, ·) is
(
√
c+ 1 + 1)-Lipschitz. Then according to Support-Theorem 4, lemma 6 is proved.

Similarly, we can get

<Tdl+u(KL ◦ φ ◦ F ◦ Z) ≤
√

2(
√
c+ 1 + 1)(c+ 1)<Tdl+u(F ◦ Z).

Manifold model uses L2-norm as loss function, which is denoted by L2 : R(c+1)×R(c+1) →
R+. Rademacher complexity of Manifold w.r.t. Z for loss function L2 satisfies the following
lemma.

Lemma 7 Let H be a family of functions for multi-output linear regression, Rademacher
complexity of Manifold with L2 loss satisfies

<n(L2 ◦ φ ◦ H ◦ Z) ≤ 2
√

2(c+ 1)2<n(H ◦ Z). (36)

Proof

|L2 ◦ φ(p, ·)− L2 ◦ φ(q, , ·)| =
c+1∑
i=1

∣∣∣∣∣ 1

1 +
∑

j 6=i e
pj−pi −

1

1 +
∑

j 6=i e
qj−qi

∣∣∣∣∣.
Observing that

(
1+
∑
i
eνi
)

is 1-Lipschitz for ν ∈ R(c+1), thus the preceding equation is

bounded by

c+1∑
i=1

‖p− 1pi − q + 1qi‖2 ≤
c+1∑
i=1

(
‖p− q‖2 +

√
c+ 1 |pi − qi|

)
≤ (c+ 1)‖p− q‖2 +

√
c+ 1

c+1∑
i=1

|pi − qi| ≤ 2(c+ 1)‖p− q‖2 .

(37)
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Thus, L2◦φ is 2(c+1)-Lipschitz. Then according to Support-Theorem 4, lemma 7 is proved.

Similarly, we can get

<Tdl+u(L2 ◦ φ ◦ F ◦ Z) ≤ 2
√

2(c+ 1)2<Tdl+u(F ◦ Z).

Based on Theorem 4, Theorem 5, lemma 6 and lemma 7, we can get the following
corollaries about Graph Algorithm and Manifold Algorithm.

Corollary 8 Denote softmax function by φ as the normalization, Let F be the family of
transductive mapping functions for Graph defined above with KL divergence as loss function
bounded by B. Given Z = Zl ∪Zu as a the full sample. Define Q ∆

= l+u
(l+u−1/2)(1−1/(2 max(l,u)))

and P , lu
(l+u)2

. Then for any δ ∈ (0, 1), with probability at least 1− δ the following bound
holds for all f ∈ F ,

êrru(f) ≤
√

2(
√
c+ 1 + 1)(c+ 1)<Tdl+u(F ◦ Z) +B

(
l + u

lu

)√
32 ln(4e)

3

√
min(l, u)

+B

√
Q

2

(
l + u

lu

)
ln

(
1

δ

)
.

(38)

For the second item,

Corollary 9 Denote softmax function by φ as the normalization, Let H be the family of
inductive mapping functions for Graph defined above with KL divergence as loss function
bounded by B. Given Z = Zl ∪ Zu as a the full sample, such that n = l + u. Then for any
δ ∈ (0, 1), with probability at least 1− δ the following bound holds for all h ∈ H,

err(x,y)∼D(h) ≤ êrrl+u(h) + êrru(f) + 2
√

2(
√
c+ 1 + 1)(c+ 1)<n(H ◦ Z)

+
2
√

2(
√
c+ 1 + 1)(c+ 1)u

l + u
<Tdl+u(L2 ◦ F ◦ Z) +B

√
log( 1

σ )

2(l + u)
.

(39)

Corollary 10 Denote softmax function by φ as the normalization. Let F be the fam-
ily of transductive mapping functions for Manifold defined above with L2 loss as loss
function bounded by a constant

√
2. Given Z = Zl ∪ Zu as a the full sample. Define

Q
∆
= l+u

(l+u−1/2)(1−1/(2 max(l,u))) and P , lu
(l+u)2

. Then for any δ ∈ (0, 1), with probability at
least 1− δ the following bound holds for all f ∈ F ,

êrru(f) ≤ 2
√

2(c+ 1)2<Tdl+u(F ◦ Z) +
√

2

(
l + u

lu

)√
32 ln(4e)

3

√
min(l, u)

+

√
Q

(
l + u

lu

)
ln

(
1

δ

)
.

(40)

Corollary 11 Denote softmax function by φ as the normalization, Let H be the family
of inductive mapping functions for Manifold defined above with L2 loss as loss function
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bounded by
√

2. Given Z = Zl ∪ Zu as a the full sample, such that n = l + u. Then for any
δ ∈ (0, 1), with probability at least 1− δ the following bound holds for all h ∈ H,

err(x,y)∼D(h) ≤ êrrl+u(h) + êrru(f) + 2
√

2(c+ 1)2<n(H ◦ Z)

+
2
√

2(c+ 1)2u

l + u
<Tdl+u(F ◦ Z) +

√
log( 1

σ )

l + u

. (41)

From Corollary 8 to Corollary 11, we can find that the transductive risk bound of trans-
ductive mapping is tighter than the generalization bound of inductive mapping, which is
consistent with the conclusions of Theorem 4 and 5 under the LDCL framework. In particu-
lar, for the two specific algorithms, using different loss functions ` when designing the model
will lead to different generalization bounds. In addition, different regularization terms will
also constrain different hypothesis function spaces to correspond to different Rademacher
complexity.

Theorem 12 According to the procedures in Algorithm 1 and Algorithm 2, after updating
a set of variables y, p and M in each iteration, the objective function J (y; M;p) of the
model is non-increasing, and finally our algorithm converge to a local optimal solution. For
any ε > 0, there is a number N , so that when the number of iterations t > N , the following
inequalities holds∥∥∥J (t+1)(Y(t+1); M(t+1);p(t+1))− J (t)(y(t); M(t);p(t))

∥∥∥ ≤ ε
J (t+1)(Y(t+1); M(t+1);p(t+1)) ≤ J (t)(y(t); M(t);p(t)).

(42)

Proof First of all, according to the LDCL framework, we denote the objective function as
follows

J (y; M; p) = L(Y) + λH(M,Y) + γ1R(p). (43)

The alternative optimization criterion is adopted, and the optimal solutions of variables y,
M and p are obtained after each fixed update. In the iteration t+1, the following inequality
holds

p(t+1) = arg min
0≤mi≤1

L(Y(t)) + λH(M(t),Y(t)) + γR(p(t)), (44)

y(t+1) = arg min
y×1n=1(c+1)

L(Y(t)) + λH(M(t),Y(t)), (45)

M(t+1) = arg minH(M(t),Y(t+1)). (46)

It is worth noting that through the constraint condition (1− pi)Ω � ŷi = Ω � yi, the
solution of Eq.(45) can be directly calculated from the solution of Eq.(44), which makes the
optimization process more concise. According to the alternating optimization criterion of
Eq.(44,45,46), we can understand that the objective function is no-increase monotonically
with the increase of iteration times, that is, the following inequality is satisfied.

J (t+1)(Y(t+1); M(t+1);p(t+1)) ≤ J (t)(y(t); M(t);p(t)). (47)
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On the other hand, through the constraint condition (1− pi)Ω� ŷi = Ω� yi, our solution
has been carried out in the feasible region, and the convergence satisfies the KKT condition
of the optimization problem. Since each item of the objective function is greater than 0, the
objective function is non-negative. According to the principle of monotonic bounds, we can
ensure that the objective function converges to a locally optimal solution. For any ε > 0,
there is a number N , so that when the number of iterations t > N , the following inequalities
holds ∥∥∥J (t+1)(Y(t+1); M(t+1);p(t+1))− J (t)(y(t); M(t);p(t))

∥∥∥ ≤ ε. (48)

From Theorem 12, we can know that both the Graph and Manifold algorithms will
converge to a stable value after a finite number of iterations. Furthermore, we will conduct
a convergence experiment in the following Subsection 5.5 to demonstrate this property.

4. Related Work

Label ambiguity comes from label information scarcity. With the evolution of data collection
ways, incomplete, inexact and inaccurate label information may cause label ambiguity (Zhou,
2018; Li et al., 2021). Among different types of label ambiguity, LDL (Geng, 2016), which
expresses label ambiguity by giving each instance a label distribution, and ENC (Park and
Shim, 2010), which focuses on model reusing with new classes, are two typical cases and
there are a lot related researches (Gao et al., 2016; Mu et al., 2016).

LDL is a novel machine learning framework for dealing with label ambiguity, which
assumes that the labels are related to each instance to some degree and gives each instance
a label distribution. LDL was first proposed to solve the problem of facial age estimation
(Geng et al., 2010), since the label distribution matches the continuity of age changes. Later,
Geng (Geng et al., 2013) finds that in many practical applications, the distribution across
all labels was better than the correlation between a single label and an instance. Since LDL
can provide more ambiguous label information, it has been successfully applied in many real
scenarios in recent years, such as facial age estimation (Geng et al., 2010), facial expression
recognition (Zhou et al., 2015), text mining (Zhou et al., 2016) and so on.

The existing LDL algorithms are mainly divided into three categories, i.e., problem
transformation, algorithm adaptive methods and specific algorithms. Compared with our
framework and algorithms, they can not be utilized to solve our problem directly since
they focus on the traditional well-defined LDL setting, without specification about the label
distribution changing. Our designed algorithms are related to these traditional methods
since they share the same components as shown in Table 1.

In addition, some other weak-supervision within the LDL paradigm is also considered.
For example, Xu et al. (Xu and Zhou, 2017) proposed an label incomplete LDL (IncomLDL)
method based on trace norm minimization (Cai et al., 2010), which considers the label cor-
relation via low rank assumption (Xu et al., 2013). Jia et.al. (Jia et al., 2019) proposed a
weakly supervised label distribution learning algorithm based on transductive matrix com-
pletion and label correlation. Xu et al. (Xu et al., 2021a) proposed a novel inductive frag-
mentary LDL algorithm via graph regularized maximum entropy criteria (GRME), which
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explores the correlation between labels based on graph regularization matrix reconstruction,
together with a classifier for categorization. These works differ from our work since they
focus on the incompleteness of labels while we focus on the emerging of new class.

Another closely-related topic is ENC. Typical ENC problems include Multi-label learning
with emerging new labels (MuENL) (Zhu et al., 2018b), which mainly solves the problem of
new classes in multi-label learning, including the recognition and prediction of new classes;
classification under streaming emerging new classes (SENC) (Mu et al., 2016), which is used
to solve the classification problem with emerging new classes in the multi-class problem
in streaming data; and Multi-Instance learning with Emerging Novel class (MIEN) (Wei
et al., 2021), which focuses on the emerging novel class problem in multi-instance learning.
Obviously, due to the differences in data formats and learning paradigms, the existing ENC
will not be applicable to LDCL. Similarly, some incremental learning methods that focus on
multi-class problems, such as (Cermelli et al., 2020; Rebuffi et al., 2017), will not be able to
adapt to the special scene of LDCL due to the unique label format of LDL.

It is also worth noting that in multi-label learning, which assumes the feature space is a
continuous Euclidean space and the instances are distributed on a low-dimensional manifold,
and the label space is a discrete logical space. Different from that, both the feature space and
the label space of our work are continuous Euclidean space. Thus, traditional multi-label
algorithms are not suitable for our settings either.

5. Experiment

In this section, we will compare the proposed methods with the adapted LDL methods in
two experimental settings.

5.1 Data Sets and Evaluation Measures

We evaluate our methods and comparative methods on the real-world data sets. There
are in total 13 data sets including biology, movie ratings, emotional analysis and so on.
The Yeast series datasets are real-world datasets collected from biological experiments with
Saccharomyces cerevisiae. For each dataset, the number of labels represents discrete time
points in a biological experiment. The gene expression level at each time point naturally
gives the corresponding label description degree, and then the value of the gene expression
level at each time point is normalized to form a label distribution. The Natural Scene dataset
is derived from 2000 natural scenes, and the 9 possible labels associated with these images
are plants, sky, clouds, snow, buildings, deserts, mountains, water, and sun. These images
are then independently annotated by an annotator, Then, the inconsistent rankings for each
image are transformed into a label distribution by a nonlinear programming process. The
Movie dataset is about user ratings of movies, according to the percentage calculated for
each movie’s rating label distribution. The brief statistics of these data sets are shown in
Table 2. More details of them can be found in the literature (Geng, 2016).

There are totally five different metrics in LDL (Geng, 2016). These measures can be
divided into two groups. The first group, i.e., Chebyshev, Clark and Canberra, measure the
distance between the two distributions. The lower the values of these metrics, the better the
performance of the algorithms(“↓”). The second group, i.e., Cosine and Intersection, measure
the similarity between the two distributions. The higher the values of these metrics, the
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Table 2: Statistics of the 13 data sets, where n is the number of instance, d is the number
of features and c is the number of labels.

Dataset n d c

Yeast-alpha 2465 24 18
Yeast-cdc 2465 24 15
Yeast-elu 2465 24 14
Yeast-diau 2465 24 7
Yeast-heat 2465 24 6
Yeast-spo 2465 24 6
Yeast-cold 2465 24 4
Yeast-dtt 2465 24 4
Yeast-spo5 2465 24 3
Yeast-spoem 2465 24 2
emotion6 1980 168 7

Natural Scene 2000 294 9
MovieDataSet 7755 1869 5

better the performance of the algorithms(“↑”). We take Chebyshev and Intersection as two
representatives. Note that there is one additional measurement proposed in (Geng, 2016),
which measures the KL-divergence between two vectors. KL-divergence is calculated by
y>i log (yi/ỹi), and it will be meaningless when ỹi is zero, we will not use it here.

5.2 Settings and Baselines

In order to obtain the label distribution data accompanying the emerging new label, we
transform the existing label distribution data. First select the new label, we averaged each
class label value and chose the label class with the smallest label value as the new label. This
also conforms to the prior assumption that the new label information is a supplementary to
the existing label information. Without loss of generality, we divide the data into two parts,
with 10% of the data as the test data and 90% as the training data. The training data is
divided into two parts, 10% of the training data is relabeled data with emerging new labels,
and 90% of the training data is un-relabeled data. On the other hand, for the un-relabeled
training data, we remove the corresponding new labels and then normalize the remaining
labels to meet the label distribution. In this way, we get experimental data that meets the
background of the question in this article. We conduct experiments on two settings to verify
the effectiveness of our method.

Setting 1: We verify the accuracy of reconstructing the expanded label distribution
matrix of the training data, that is, the recovery ability for the expanded label distribution
matrix of un-relabeled data.

Setting 2: We compare the performance of the proposed method on the test set by mea-
suring the difference between the ground-truth and the predicted label distribution matrix,
that is, the prediction ability for the new coming data.
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Table 3: Chebyshev (“↓”)(mean±std) results in setting 1 on un-relabeled data. The best
results on each row are bolded, together with pairwise single-tailed t-test at 95% confidence
level.

Dataset Graph Manifold BFGS-LDL PT-SVM PT-Bayes IIS-LDL

Yeast-alpha .0074±.0006 .0036±.0001 .0142±.0002 .0156±.0009 .3673±.0254 .0201±.0002

Yeast-cdc .0121±.0007 .0067±.0006 .0174±.0001 .0186±.0008 .3869±.0268 .0235±.0002

Yeast-elu .0153±.0020 .0077±.0004 .0173±.0002 .0201±.0020 .3832±.0231 .0241±.0002

Yeast-diau .0315±.0006 .0286±.0011 .0392±.0007 .0459±.0027 .4158±.0304 .0456±.0003

Yeast-heat .0345±.0005 .0251±.0022 .0447±.0007 .0476±.0026 .4302±.0570 .0528±.0004

Yeast-spo .0430±.0012 .0304±.0059 .0617±.0008 .0653±.0014 .4180±.0239 .0658±.0004

Yeast-cold .0353±.0003 .0371±.0029 .0537±.0005 .0580±.0028 .4272±.0348 .0614±.0004

Yeast-dtt .0237±.0005 .0220±.0015 .0384±.0004 .0421±.0030 .4222±.0265 .0497±.0004

Yeast-spo5 .0628±.0005 .0814±.0094 .0976±.0015 .0994±.0054 .4082±.0307 .0979±.0003

Yeast-spoem .0922±.0004 .0884±.0010 .0919±.0018 .0965±.0070 .3229±.0247 .0930±.0008

emotion6 .1532±.0019 .0399±.0004 .3746±.0993 .3507±.0125 .3493±.0011 .3259±.0029

Natural scene .0312±.0009 .0526±.0009 .6740±.0230 .4156±.0179 .3681±.0024 .3581±.0030

MovieDataSet .0784±.0017 .0772±.0005 .1559±.0036 .2426±.0221 .1806±.0001 .1600±.0013

win/tie/loss 4/0/9 9/0/4 0/0/13 0/0/13 0/0/13 0/0/13

In the experiments, the parameters λ and γ are both selected by grid searching from
{10−4, 10−3, · · · , 104} by cross-validation on training data. For Algorithm 2, we add a
clustering parameter k. Similarly, we use the grid search method to select the best number of
clusters from [1, 2, · · · , 9] through cross-validation on training data. The maximum iteration
is set to be 100. The stopping criterion parameter ε is set to be 10−3.

We compare our proposed LDCL algorithms with several baselines. The representative
LDL algorithms include two maximum entropy algorithms IIS-LDL, BFGS-LDL (Geng,
2016) and two problem transformation algorithms PT-Bayes and PT-SVM (Geng, 2016).
Therefore, we adopt these four methods as baselines. All the codes are shared by original
authors, and we use the suggested default parameters. However, these baseline methods
can not be utilized in our setting, we adapt existing label distribution learning algorithms
directly and naively to fit the situation of this article. On one hand, we only use a small
amount of relabeled data with new labels to train traditional models to learn a classifier
and measure the difference between the ground-truth and the predicted label distribution
matrix on the un-relabeled data of training set. On the other hand, we can relabel a large
amount of un-relabeled data through completion and normalize it into distribution. Here,
we use the mean filling strategy, that is, the new labels for the unrelabeled data are filled
with the mean of the new labels for the relabeled data and then renormalized to obtain
the expanded label distribution matrix. They are then used as training data to train the
traditional model and give a prediction for test data. These two kinds of data adaptation
correspond to the two sets of comparative experiments in the article.
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Table 4: Intersection (“↑”)(mean±std) results for setting 1 on un-relabeled data. The best
results on each row are bolded, together with pairwise single-tailed t-test at 95% confidence
level.

Dataset Graph Manifold BFGS-LDL PT-SVM PT-Bayes IIS-LDL

Yeast-alpha .9926±.0004 .9964±.0001 .9597±.0002 .9535±.0025 .4420±.0326 .9430±.0003

Yeast-cdc .9630±.0008 .9933±.0006 .9536±.0003 .9505±.0017 .4449±.0206 .9392±.0002

Yeast-elu .9643±.0020 .9923±.0004 .9561±.0004 .9478±.0054 .4521±.0229 .9404±.0004

Yeast-diau .9685±.0006 .9714±.0011 .9368±.0011 .9260±.0045 .4960±.0239 .9254±.0004

Yeast-heat .9655±.0005 .9749±.0022 .9368±.0010 .9318±.0044 .5057±.0500 .9238±.0005

Yeast-spo .9570±.0012 .9696±.0059 .9108±.0012 .9056±.0024 .5125±.0198 .9045±.0006

Yeast-cold .9647±.0003 .9629±.0029 .9378±.0006 .9331±.0028 .5415±.0379 .9290±.0004

Yeast-dtt .9763±.0005 .9780±.0015 .9557±.0004 .9515±.0035 .5554±.0246 .9424±.0004

Yeast-spo5 .9372±.0005 .9186±.0094 .9024±.0015 .9006±.0054 .5918±.0307 .9021±.0003

Yeast-spoem .9078±.004 .9116±.0010 .9081±.0018 .9035±.0070 .6771±.0247 .9070±.0008

emotion6 .8468±.0019 .9601±.0004 .5068±.0825 .5124±.0239 .5275±.0010 .5594±.0031

Natural scene .9688±.0010 .9474±.0010 .2832±.0215 .3626±.0323 .3630±.0016 .4620±.0038

MovieDataSet .9215±.0017 .9228±.0013 .7838±.0046 .6738±.0434 .7395±.0002 .7863±.0017

win/tie/loss 3/0/10 10/0/3 0/0/13 0/0/13 0/0/13 0/0/13

Table 5: Chebyshev (“↓”)(mean±std) results for setting 2 on test set. The best results on
each row are bolded, together with pairwise single-tailed t-test at 95% confidence level.

Dataset Graph Manifold BFGS-LDL PT-SVM PT-Bayes IIS-LDL

Yeast-alpha .0141±.0002 .0140±.0000 .0141±.0001 .0146±.0004 .1135±.0080 .0213±.0000

Yeast-cdc .0164±.0007 .0156±.0001 .0168±.0001 .0171±.0006 .1113±.0072 .0231±.0001

Yeast-elu .0163±.0005 .0158±.0001 .0161±.0001 .0168±.0003 .1147±.0069 .0234±.0001

Yeast-diau .0466±.0004 .0384±.0012 .0387±.0004 .0438±.0042 .1508±.0120 .0458±.0003

Yeast-heat .0521±.0001 .0436±.0001 .0467±.0001 .0477±.0011 .1754±.0097 .0550±.0005

Yeast-spo .0702±.0004 .0583±.0001 .0592±.0006 .0641±.0038 .1911±.0062 .0661±.0005

Yeast-cold .0650±.0007 .0559±.0003 .0672±.0015 .0765±.0089 .1912±.0210 .0763±.0013

Yeast-dtt .0465±.0001 .0365±.0001 .0529±.0015 .0571±.0065 .1776±.0184 .0608±.0013

Yeast-spo5 .0938±.0001 .0851±.0005 .1099±.0035 .1132±.0071 .2222±.0191 .1164±.0032

Yeast-spoem .0876±.0012 .0867±.0006 .1717±.0048 .1830±.0180 .2162±.0133 .1743±.0048

emotion6 .3343±.0003 .3072±.0001 .3262±.0001 .3580±.0188 .6718±.0110 .3232±.0006

Natural scene .3472±.0003 .3546±.0006 .3639±.0102 .4342±.0258 .4116±.0025 .3672±.0001

MovieDataSet .1337±.0018 .1698±.0007 .1435±.0004 .2300±.0243 .1988±.0030 .1530±.0001

win/tie/loss 2/0/11 11/0/2 0/0/13 0/0/13 0/0/13 0/0/13
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Table 6: Intersection (“↑”)(mean±std) results for setting 2 on test set. The best results on
each row are bolded, together with pairwise single-tailed t-test at 95% confidence level.

Dataset Graph Manifold BFGS-LDL PT-SVM PT-Bayes IIS-LDL

Yeast-alpha .9607±.0002 .9614±.0000 .9610±.0001 .9584±.0007 .7467±.0061 .9402±.0001

Yeast-cdc .9578±.0003 .9586±.0002 .9585±.0002 .9551±.0017 .7636±.0076 .9401±.0001

Yeast-elu .9562±.0004 .9581±.0002 .9571±.0001 .9544±.0011 .7719±.0099 .9413±.0001

Yeast-diau .9244±.0003 .9389±.0009 .9383±.0003 .9261±.0072 .7829±.0129 .9249±.0003

Yeast-heat .9238±.0002 .9375±.0000 .9335±.0007 .9318±.0019 .7666±.0105 .9202±.0007

Yeast-spo .8990±.0005 .9150±.0002 .9131±.0009 .9075±.0038 .7496±.0050 .9023±.0007

Yeast-cold .9250±.0007 .9368±.0003 .9250±.0014 .9137±.0099 .7875±.0227 .9137±.0012

Yeast-dtt .9456±.0003 .9575±.0004 .9404±.0015 .9353±.0060 .8011±.0175 .9308±.0013

Yeast-spo5 .9062±.0001 .9149±.0005 .8901±.0035 .8868±.0071 .7778±.0191 .8836±.0032

Yeast-spoem .9124±.00012 .9133±.0007 .8283±.0048 .8170±.0180 .7838±.0133 .8257±.0048

emotion6 .5402±.0005 .5753±.0004 .5535±.0002 .5152±.0251 .2885±.0080 .5629±.00010

Natural scene .4827±.0010 .4804±.0011 .4745±.0417 .3506±.0466 .3506±.0013 .4590±.0013

MovieDataSet .8187±.0009 .7540±.0012 .8021±.0004 .6963±.0425 .7234±.0025 .7963±.0002

win/tie/loss 2/0/11 11/0/2 0/0/13 0/0/13 0/0/13 0/0/13

5.3 Classification Accuracy

Due to space limitations, here we only present representative results Chebyshev (the lower
the better) and Intersection (the higher the better). Other results are similar, and we
report them in the Appendix D.3. As mentioned above, we conduct two sets of experiments
to verify the recovery ability of the proposed methods for the un-relabeled data and the
predictive ability for the new testing data. In each setting, we conduct 20 runs and report
the mean±std. In the first set of experiments, we compare the performance of the proposed
models to the traditional LDL algorithms on unlabeled data. The results are shown in
Tables 3 and 4. In the second set of experiments, we compare the prediction performance
of the proposed models to the traditional LDL algorithms on new coming data. The results
are shown in Tables 5 and 6. For the traditional LDL algorithms, we first complete the
emerging new label of the un-relabeled data by mean filling strategy, and then normalize
it into a distribution to train the models. The best results on each measure are marked in
bold. In addition, we have also investigated the significance between our method and other
methods by t-test at 95% significance level.

As we can see from the experimental results, our methods have achieved the best perfor-
mance in almost all cases, which demonstrates the superiority of our model. In particular,
as seen from the results in Tables 3 and 4 in setting 1, the accuracy of reconstructed the
expanded label distribution matrix of the training data, that is, the recovery ability for the
un-relabeled data achieved a high level. Moreover, comparing the performance of the tradi-
tional LDL algorithms in the two sets of experiments, we find that completing the emerging
new labels of the un-relabeled data can alleviate the lack of training data. Nevertheless, it
will also introduce noise and make the model performance worse at the same time. On the
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other hand, comparing the two specific algorithms under the model framework, Manifold
enhancement methods achieve better performance than Graph methods on most datasets.
On the rest datasets, the two algorithms have achieved comparable results for recovery
ability, but show differences in terms of predictive ability. It indicates that the proposed
model framework has a certain degree of inclusiveness. The model combination within the
framework also has different characteristics and shows different performance for different
datasets.

5.4 Ablation experiments

In order to demonstrate the effectiveness of various parts of the framework, we conduct
ablation experiments to illustrate the contribution of different components in LDCL.

• Without Scaling Regularization (SR) we only consider the empirical risks for
calculating the expanded label distribution matrix and learning a classifier by setting
λ= 0.

• Without Classifier Learning (CL) in this setting, we set γ= 0 and only consider
the empirical risks for calculating the expanded label distribution matrix under the
scaling Regularization.

The results of the ablation experiment are shown in Table 7 and Table 8. It should be
pointed out that the ablation experiments are carried out under setting 1, and the main
comparison is the recovery ability for the expanded label distribution matrix of un-relabeled
data. From the results, we can draw two conclusions. First of all, compared with the
complete model, removing any one of the two terms will lead to performance degeneration,
which show that each term does contribute to the performance improvement of LDCL.
Secondly, among these two terms, the scaling regularization plays a more important role.
This proves that the main purpose of the introduction of the second term is to learn an
inductive hypothesis, which is consistent with the original design intention of the LDCL
model.

Table 7: Chebyshev (the lower the better)(mean±std) results and Intersection (the higher
the better)(mean±std) results of ablation experiments. The best results on each row are
bold. (pairwise single-tailed t-test at 95% confidence level)

Metrics Chebyshev Intersection

Dataset Graph SR CL Graph SR CL

Yeast-heat .0275±.0005 .0361±.0013 .0300±.0025 .9725±.0005 .9639±.0013 .9700±.0025

Yeast-alpha .0074±.0006 .0442±.0037 .0175±.0030 .9926±.0004 .9558±.0037 .9825±.0030

Yeast-spo .0304±.0059 .0499±.0020 .0457±.0036 .9570±.0012 .9501±.0020 .9543±.0036

Yeast-cdc .0121±.0007 .0423±.0023 .0378±.0029 .9630±.0008 .9577±.0023 .9622±.0029

Natural scene .0312±.0009 .0511±.0012 .0352±.0006 .9688±.0010 .8997±.0012 .9588±.0006

MovieDataSet .0784±.0017 .1002±.0006 .0829±.0014 .9215±.0017 .8997±.0006 .9171±.0014

win/tie/loss 6/0/0 0/0/6 0/0/6 6/0/0 0/0/6 0/0/6
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(a) Algorithm1: Graph
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(b) Algorithm2: Manifold
Figure 4: The convergence curves of the proposed algorithms on Yeast-heat. The first one
is the convergence curves of Algorithm 1 and the latter one is the convergence curves of
Algorithm 2.

Table 8: Chebyshev (the lower the better)(mean±std) results and Intersection (the higher
the better)(mean±std) results of ablation experiments. The best results on each row are
bold. (pairwise single-tailed t-test at 95% confidence level)

Metrics Chebyshev Intersection

Dataset Manifold SR CL Manifold SR CL

Yeast-heat .0251±.0022 .0976±.0189 .0343±.0037 .9749±.0022 .9024±.0189 .9657±.0037

Yeast-alpha .0036±.0001 .0514±.0012 .0059±.0004 .9964±.0001 .9486±.0012 .9941±.0004

Yeast-spo .0430±.0012 .0941±.0157 .0469±.0011 .9696±.0059 .9059±.0157 .9531±.0011

Yeast-cdc .0067±.0006 .0426±.0074 .0087±.0010 .9933±.0006 .9574±.0074 .9913±.0010

Natural scene .0526±.0009 .1745±.0093 .0613±.0006 .9474±.0010 .8255±.0093 .9068±.0006

MovieDataSet .0772±.0005 .1471±.0314 .0883±.0059 .9228±.0013 .8529±.0314 .9117±.0059

win/tie/loss 6/0/0 0/0/6 0/0/6 6/0/0 0/0/6 0/0/6

5.5 Convergence Analysis

As shown in Theorem 12, our methods will converge to a local minima. In order to verify the
convergence of the proposed algorithms, we present the curves of objective function values of
the two algorithms on the Yeast-heat data sets. The results on other date sets are the same.
From the convergence curves of these two data sets shown in Fig.4, it can be seen that when
the number of iterations increases, the value of the objective function does not increase and
gradually converges to a fixed value. In addition, the objective function decreases rapidly
in the first few iterations and converges in no more than 30 iterations. It indicates that
our methods have a fast convergence rate. This may be caused by the characteristics of
the gradient method and the quasi-Newton method, which are mainly used in alternating
minimization. For these two methods, the convergence rate is affected by the size of the
gradient. As the value of the objective function approaches the minimum value, the gradient
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(b) Algorithm2: Manifold
Figure 5: The influence of the parameters on the performance of the two algorithms under
Intersection metric on the Natural scene. Note that for Algorithm 2, we fix the maximum
number of clustering regions K = 9 and k is set as k = 2.

decreases. Therefore, the value of the objective function decreases rapidly in the first few
iterations, and then slowly decreases until convergence.

5.6 Parameter Analysis

To get the best parameters of the proposed algorithms, we conduct 5-fold cross validation
on the training set. In Algorithm 1, there are two parameters λ and γ. The sensitivity of
these two parameters on the Natural scene is shown in the left plane of Fig.5. It is worth
noting that for criteria Intersection, the larger the value is, the better the performance is.
In Algorithm 2, there are three parameters k, λ and γ. For visualization, we fix k = 2 and
the sensitivity of other two parameters on the Natural scene is shown in the right plane of
Fig.5.

It can be seen from the Fig.5 that the parameters of Algorithm 1 are more sensitive
than those of Algorithm 2. This may be due to the more complex classifiers and regular-
ization terms in Algorithm 1. Then, the corresponding parameters have a greater impact
on optimization. For Algorithm 2, we find that the parameter λ has a small effect on the
performance of the algorithm, which may be due to the stable performance of the least
squares fitting. Furthermore, as the parameter γ increases within a certain range, the per-
formance of Algorithm 2 increases gradually, and then tends to be stable. It can validate
the effectiveness of the regularization term.

5.7 Emotion Distribution Recognition

In practical applications, people’s facial expressions are often complex and diverse. An
expression rarely expresses pure emotion, but often a mixture of different emotions. In ad-
dition, the degree of each emotion describes an expression becomes a question worthy of
attention. Emotion Distribution Recognition from facial expressions (Zhou et al., 2015) is
playing an increasingly important role in autonomous driving and criminal interrogation or
psychological counseling. However, with the continuous advancement of human cognition
and the developmental innovation of technology, people are pursuing more detailed insight
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TABLE 6: Chebyshv (the lower the better)(mean±std) results for inductive setting on test set when w% = 10%. The best
results on each row are bolded. (pairwise single-tailed t-test at 95% confidence level)

Dataset Manifold Graph BFGS-LDL PT-SVM PT-Bayes IIS-LDL
Yeast-alpha .0140±.0000 .0141±.0002 .0141±.0001 .0146±.0004 .1135±.0080 .0213±.0000
Yeast-cdc .0162±.0000 .0164±.0007 .0168±.0001 .0171±.0006 .1113±.0072 .0231±.0001
Yeast-elu .0158±.0001 .0163±.0005 .0161±.0001 .0168±.0003 .1147±.0069 .0234±.0001

Yeast-diau .0384±.0012 .0466±.0004 .0387±.0004 .0438±.0042 .1508±.0120 .0458±.0003
Yeast-heat .0424±.0001 .0521±.0001 .0467±.0001 .0477±.0011 .1754±.0097 .0550±.0005
Yeast-spo .0560±.0001 .0702±.0004 .0592±.0006 .0641±.0038 .1911±.0062 .0661±.0005
Yeast-cold .0552±.0003 .0650±.0007 .0672±.0015 .0765±.0089 .1912±.0210 .0763±.0013
Yeast-dtt .0364±.0001 .0465±.0001 .0529±.0015 .0571±.0065 .1776±.0184 .0608±.0013

Yeast-spo5 .0851±.0005 .0938±.0001 .1099±.0035 .1132±.0071 .2222±.0191 .1164±.0032
Yeast-spoem .0851±.0006 .0876±.0012 .1717±.0048 .1830±.0180 .2162±.0133 .1743±.0048

emotion6 .3072±.0001 .3343±.0003 .3262±.0001 .3580±.0188 .6718±.0110 .3232±.0006
Natural scene .3546±.0006 .3472±.0003 .3639±.0102 .4342±.0258 .4116±.0025 .3672±.0001
MovieDataSet .1698±.0007 .1337±.0018 .1435±.0004 .2300±.0243 .1988±.0030 .1530±.0001
win/tie/loss 45/0/0 0/0/45 0/0/45 0/0/45 0/0/45 0/0/45

TABLE 7: Intersection (the higher the better)(mean±std) results for inductive setting on test set when w% = 10%. The best
results on each row are bolded. (pairwise single-tailed t-test at 95% confidence level)

Dataset Manifold Graph BFGS-LDL PT-SVM PT-Bayes IIS-LDL
Yeast-alpha .9614±.0000 .9607±.0002 .9610±.0001 .9584±.0007 .7467±.0061 .9402±.0001
Yeast-cdc .9586±.0000 .9578±.0003 .9585±.0002 .9551±.0017 .7636±.0076 .9401±.0001
Yeast-elu .9581±.0002 .9562±.0004 .9571±.0001 .9544±.0011 .7719±.0099 .9413±.0001

Yeast-diau .9389±.0009 .9244±.0003 .9383±.0003 .9261±.0072 .7829±.0129 .9249±.0003
Yeast-heat .9388±.0000 .9238±.0002 .9335±.0007 .9318±.0019 .7666±.0105 .9202±.0007
Yeast-spo .9179±.0002 .8990±.0005 .9131±.0009 .9075±.0038 .7496±.0050 .9023±.0007
Yeast-cold .9371±.0003 .9250±.0007 .9250±.0014 .9137±.0099 .7875±.0227 .9137±.0012
Yeast-dtt .9577±.0004 .9456±.0003 .9404±.0015 .9353±.0060 .8011±.0175 .9308±.0013

Yeast-spo5 .9149±.0005 .9062±.0001 .8901±.0035 .8868±.0071 .7778±.0191 .8836±.0032
Yeast-spoem .9149±.0007 .9124±.0012 .8283±.0048 .8170±.0180 .7838±.0133 .8257±.0048

emotion6 .5753±.0004 .5402±.0005 .5535±.0002 .5152±.0251 .2885±.0080 .5629±.0010
Natural scene .4804±.0011 .4827±.0010 .4745±.0417 .3506±.0466 .3506±.0013 .4590±.0013
MovieDataSet .7540±.0012 .8187±.0009 .8021±.0004 .6963±.0425 .7234±.0025 .7963±.0002
win/tie/loss 45/0/0 0/0/45 0/0/45 0/0/45 0/0/45 0/0/45
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(a) Chebyshev (b) Intersection

Fig. 4: On the Natural scene, the influence of the parameters
on the performance of the two algorithms under ‘Intersec-
tion’ metric.

an expression becomes a question worthy of attention.
Emotion distribution recognition from facial expressions
[11] is playing an increasingly important role in artificial
intelligence and robot simulation. However, with the contin-
uous advancement of human cognition and the continuous
innovation of technology, people are pursuing more detailed
insight and detection of facial expressions. Existing meth-
ods have achieved satisfactory results in the distribution
of expression recognition problem, but can not handle the
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Fig. 5: Two typical expressions from SJAFFE and SBU 3DFE
respectively. The "Fear" marked in red is a new facial expres-
sion, and the right is the corresponding emotion distribution
predicted by the proposed methods.

problem with new expressions.
They are two widely used facial expression databases:

SJAFFE and SBU 3DFE [53], which are extended to the
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TABLE 6: Chebyshv (the lower the better)(mean±std) results for inductive setting on test set when w% = 10%. The best
results on each row are bolded. (pairwise single-tailed t-test at 95% confidence level)

Dataset Manifold Graph BFGS-LDL PT-SVM PT-Bayes IIS-LDL
Yeast-alpha .0140±.0000 .0141±.0002 .0141±.0001 .0146±.0004 .1135±.0080 .0213±.0000
Yeast-cdc .0162±.0000 .0164±.0007 .0168±.0001 .0171±.0006 .1113±.0072 .0231±.0001
Yeast-elu .0158±.0001 .0163±.0005 .0161±.0001 .0168±.0003 .1147±.0069 .0234±.0001

Yeast-diau .0384±.0012 .0466±.0004 .0387±.0004 .0438±.0042 .1508±.0120 .0458±.0003
Yeast-heat .0424±.0001 .0521±.0001 .0467±.0001 .0477±.0011 .1754±.0097 .0550±.0005
Yeast-spo .0560±.0001 .0702±.0004 .0592±.0006 .0641±.0038 .1911±.0062 .0661±.0005
Yeast-cold .0552±.0003 .0650±.0007 .0672±.0015 .0765±.0089 .1912±.0210 .0763±.0013
Yeast-dtt .0364±.0001 .0465±.0001 .0529±.0015 .0571±.0065 .1776±.0184 .0608±.0013

Yeast-spo5 .0851±.0005 .0938±.0001 .1099±.0035 .1132±.0071 .2222±.0191 .1164±.0032
Yeast-spoem .0851±.0006 .0876±.0012 .1717±.0048 .1830±.0180 .2162±.0133 .1743±.0048

emotion6 .3072±.0001 .3343±.0003 .3262±.0001 .3580±.0188 .6718±.0110 .3232±.0006
Natural scene .3546±.0006 .3472±.0003 .3639±.0102 .4342±.0258 .4116±.0025 .3672±.0001
MovieDataSet .1698±.0007 .1337±.0018 .1435±.0004 .2300±.0243 .1988±.0030 .1530±.0001
win/tie/loss 45/0/0 0/0/45 0/0/45 0/0/45 0/0/45 0/0/45

TABLE 7: Intersection (the higher the better)(mean±std) results for inductive setting on test set when w% = 10%. The best
results on each row are bolded. (pairwise single-tailed t-test at 95% confidence level)

Dataset Manifold Graph BFGS-LDL PT-SVM PT-Bayes IIS-LDL
Yeast-alpha .9614±.0000 .9607±.0002 .9610±.0001 .9584±.0007 .7467±.0061 .9402±.0001
Yeast-cdc .9586±.0000 .9578±.0003 .9585±.0002 .9551±.0017 .7636±.0076 .9401±.0001
Yeast-elu .9581±.0002 .9562±.0004 .9571±.0001 .9544±.0011 .7719±.0099 .9413±.0001

Yeast-diau .9389±.0009 .9244±.0003 .9383±.0003 .9261±.0072 .7829±.0129 .9249±.0003
Yeast-heat .9388±.0000 .9238±.0002 .9335±.0007 .9318±.0019 .7666±.0105 .9202±.0007
Yeast-spo .9179±.0002 .8990±.0005 .9131±.0009 .9075±.0038 .7496±.0050 .9023±.0007
Yeast-cold .9371±.0003 .9250±.0007 .9250±.0014 .9137±.0099 .7875±.0227 .9137±.0012
Yeast-dtt .9577±.0004 .9456±.0003 .9404±.0015 .9353±.0060 .8011±.0175 .9308±.0013

Yeast-spo5 .9149±.0005 .9062±.0001 .8901±.0035 .8868±.0071 .7778±.0191 .8836±.0032
Yeast-spoem .9149±.0007 .9124±.0012 .8283±.0048 .8170±.0180 .7838±.0133 .8257±.0048

emotion6 .5753±.0004 .5402±.0005 .5535±.0002 .5152±.0251 .2885±.0080 .5629±.0010
Natural scene .4804±.0011 .4827±.0010 .4745±.0417 .3506±.0466 .3506±.0013 .4590±.0013
MovieDataSet .7540±.0012 .8187±.0009 .8021±.0004 .6963±.0425 .7234±.0025 .7963±.0002
win/tie/loss 45/0/0 0/0/45 0/0/45 0/0/45 0/0/45 0/0/45
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Fig. 4: On the Natural scene, the influence of the parameters
on the performance of the two algorithms under ‘Intersec-
tion’ metric.

an expression becomes a question worthy of attention.
Emotion distribution recognition from facial expressions
[11] is playing an increasingly important role in artificial
intelligence and robot simulation. However, with the contin-
uous advancement of human cognition and the continuous
innovation of technology, people are pursuing more detailed
insight and detection of facial expressions. Existing meth-
ods have achieved satisfactory results in the distribution
of expression recognition problem, but can not handle the
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Fig. 5: Two typical expressions from SJAFFE and SBU 3DFE
respectively. The "Fear" marked in red is a new facial expres-
sion, and the right is the corresponding emotion distribution
predicted by the proposed methods.

problem with new expressions.
They are two widely used facial expression databases:

SJAFFE and SBU 3DFE [53], which are extended to the

(b)

Figure 6: Two typical expressions from SJAFFE and SBU_3DFE respectively. The ‘Fear’
marked in red is a new facial expression, and the right is the corresponding emotion distri-
bution predicted by the proposed methods.

and detection of facial expressions. Although existing methods have achieved satisfactory
results in the distribution of expression recognition problem, the exiting LDL can not han-
dle the Emotion Distribution Changing Recognition problem due to the emerging of new
emotions.

We extend two widely used facial expression databases: SJAFFE and SBU_3DFE (Yin
et al., 2006), to the emotion distribution case. The JAFFE database contains 213 gray scale
expression images. And the 243-dimensional feature vector was extracted from each image
by local binary mode (LBP) (Zhou et al., 2015). Each image was rated by 60 people on a
five-point scale on five emotional labels (i.e., happiness, sadness, surprise, anger and disgust).
The average score for each emotion is used to indicate emotional intensity. We modify this
set to SJAFFE to fit our setting. It not only considers the emotions with the highest scores,
as in most of the work on JAFFE, but also retains all the scores and normalizes them into a
label distribution for all five emotion labels. Similarly, the BU_3DFE contains 2,500 facial
expression images, each of them is scored by 23 students in the same way as JAFFE. The
specific scores on each basic emotion are obtained and transferred into emotion distributions.

In the labeling process, it was observed that these facial expressions also contain fear to a
certain extent. It corresponds to the emerging new emotion label. Since relabeling the data
will cost a lot, we apply the proposed LDCL model to deal with the Emotion Distribution
Changing Recognition problem Fig.6 shows two examples from SJAFFE and SBU_3DFE
respectively. A small amount of data is relabeled by the marked red fear, and we use a small
amount of relabeled data and a large amount of un-relabeled data to design algorithms to
recover the expended label distribution matrix of un-relabeled data and make predictions for
new coming data. The proposed methods are compared with the existing LDL algorithms,
and the experimental results are shown in Table 9 and Fig.7. Concretely, Table 9 shows the
recovery ability (corresponds to setting 1) of the proposed method for un-relabeled data,
and the prediction ability (corresponds to setting 2) for new coming data under Chebyshev
metric. Fig.7 shows the the recovery ability and prediction ability of the proposed method
under Intersection metric.

It can be found that our methods have achieved satisfactory results. Significantly, in
setting 1, our methods have achieved great advantages compared to the other methods,
since both the un-relabeled data and the re-labeled data participate in the procedures in the
training of the proposed methods. In setting 2, for the prediction ability of new coming data,
Algorithm 2 performs better than Algorithm 1. As seen from the variance of Chebyshev
results, the possible reason is that the classifier of Algorithm 2 is more stable, which can
also be mutually confirmed with the previous parameter analysis results.
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Table 9: Chebyshev (the lower the better)(mean±std) results of two Algorithms under two
experiment settings. The best results on each row are bolded. (pairwise single-tailed t-test
at 95% confidence level)

Setting Dataset Graph Manifold BFGS-LDL PT-SVM PT-Bayes IIS-LDL

setting1
SJAFFE .0488±.0060 .0458±.0058 .1103±.0062 .1318±.0116 .1227±.0014 .1233±.0017

SBU_3DFE .0465±.0012 .0667±.0235 .1175±.0023 .1408±.0032 .1382±.0005 .1340±.0007

setting2
SJAFFE .1029±.0009 .0994±.0003 .1275±.0006 .1279±.0053 .1546±.0001 .1228±.0003

SBU_3DFE .1202±.0004 .1198±.0003 .1321±.0003 .1422±.0039 .1382±.0008 .1325±.0007

(a) Setting1 (b) Setting2

Figure 7: Intersection (the higher the better) (mean and std.) results of two Algorithms on
data sets SJAFFE and SBU_3DFE under two experiment settings.

6. Conclusion

In this paper, we formulate a new framework to solve the problem of Label Distribution
Changing Learning (LDCL), which is brand new and of great importance. It expands the
sample space by rescaling the previous distribution and further mining the topological infor-
mation of the sample space to restore the emerging new class. Specifically, the formulated
LDCL framework consists of three parts. The first part is based on graph learning. Label
Propagation (LP) and Manifold Learning (ML) are used to reconstruct the expanded label
distribution matrix. The second part trains a classifier for categorization. In the third part,
we design the scaling regularization for the constraints from three perspectives. The integra-
tion of these three terms will facilitate the model to get better performance. Moreover, the
corresponding generalization error bounds of the LDCL framework are derived to support
the model framework. In this paper, we only focus on adding one type of emerging label.
How to extend it into multiple types of labels is an interesting future work. A possible way
may be that we can add them one by one. Besides, how to accelerate the optimization speed
is also worth studying. Several modern optimization tools should be utilized for alleviating
computational burden.
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Appendix A. Preliminaries

In this section, we introduce basic notations and definitions for the following generalization
error bound analysis.

A.1 Learning Setup

According to the scenario of this article, the data type meets the transduction setting.
Therefore, we define a full sample set Z = {Z1, ..., Zl+u} consisting of arbitrary l + u points
from X ×Y, where X is feature space and Y is label space, each y ∈ Y is a label distribution
matrix, and each column y ∈ y is a label distribution. Then the full sample set Z is divided
into Zl and Zu. Noting that Zl is chosen uniformly at random without replacement from Z,
and the instances in which are annotated by the new label distribution from the expended
label sample space. The instances in the remaining sample set Zu = Zl+u\Zl are annotated
by the previous label distribution called un-relabeled set. According to the proposed LDCL
framework, both Zl and Zu participate in training, and then we obtain a transductive
mapping f ∈ F and an inductive mapping h ∈ H, where F and H represent the transductive
and inductive mappings hypothesis space of scoring functions f : Zl × Zu → yl+u and
h : X → Y. The quality of f and h is measured by erru(f) and err(x,y)∼D(h) which have
been defined in the main text, where D is the data distribution of the sample (x,y) in X×Y.

A.2 Supplementary Definitions and Support-Theorems

In this part, we will introduce some necessary definitions and Support-Theorems, some
simple definitions mentioned in the main text are omitted.

Definition 13 (Random Permutation Vector (Chen and Cheng, 1999; Stanley, 2007))
Let Z

∆
= Zl+u1

∆
= (Z1, ..., Zm1+m2) be a random permutation vector where the variable Zk,

k ∈ Im1+m2
1 is the k-th component of a permutation of Im1+m2

1 that is chosen uniformly at
random. Let Zij be a perturbed permutation vector obtained by exchanging the positions of
Zi and Zj in Z.

Any function f on permutations of Im1+m2
1 is called (m1,m2)-permutation symmetric if

f(Z)
∆
= f(Z1, ..., Zm1+m2) is symmetric on Z1, ..., Zm1 as well as on Zm1+1, ..., Zm1+m2.

Definition 14 (Pairwise Rademacher variables (El-Yaniv and Pechyony, 2009))
Let σ̂ = {σi}m1+m2

i=1 be a vector of i.i.d. random variables defined as

σ̂i = (σ̂i,1, σ̂i,2) =



(
− 1

m1
,− 1

m2

)
with Prob.

m1m2

(m1 +m2)2 ;(
− 1

m1
,

1

m1

)
with Prob.

m1
2

(m1 +m2)2 ;(
1

m2
,

1

m1

)
with Prob.

m1m2

(m1 +m2)2 ;(
1

m2
,

1

m2

)
with Prob.

m2
2

(m1 +m2)2 ;

. (49)
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The Definition 14 is derived from Definition 3 (with P0 = m1m2

(m1+m2)2
) in the following way.

When the Rademacher variable σi = 1, corresponding to (σ̂i,1, σ̂i,2) = ( 1
m2
, 1
m1

), σi =

−1 corresponds to (σ̂i,1, σ̂i,2) = (− 1
m1
,− 1

m2
), and σi = 0 then we split it at random to(

− 1
m1
, 1
m1

)
or
(

1
m2
,− 1

m2

)
.

The proofs of Theorem 4 and Theorem 5 are standard, and we provide in here to make
the appendix self-contained. To prove these two theorems, we need following concentration
inequalities and Support-Theorems.

Support-Theorem 1 (Concentration Inequalities (El-Yaniv and Pechyony, 2006))
Based on de Definition 13, let Z be a random permutation vector over Im1+m2

1 and f(Z) be
an (m1,m2)-permutation symmetric function satisfying

∣∣f(Z)− f(Zij)
∣∣ ≤ β for all i ∈ Im1

1 ,
j ∈ Im1+m2

l+1 . Then the following probability inequality holds

PZ{f(Z)− EZ{f(Z)} ≥ ε} ≤ exp

(
−2ε2(m1 +m2 − 1/2)

m1m2β2

(
1− 1

2 max(m1,m2)

))
. (50)

The proof of Support-Theorem 1 relies on McDiarmid’s inequality (McDiarmid, 1989, Corol-
lary 6.10) (Mcdiarmid, 1989).

Remark 15 The inequality Eq.(50) is defined for any (m1,m2)-permutation symmetric
function f . By specializing f , we can obtain the following concentration inequality. Let
g : Im1+m2

1 → [0, B] and

f(Z) =
1

m2

∑m1+m2

i=m1+1
g(Zi)−

1

m1

∑m1

i=1
g(Zi),

then EZ{f(Z)} = 0. Moreover, for any i ∈ Im1
1 , j ∈ Im1+m2

m1+1 ,
∣∣f(Z)− f(Zij)

∣∣ ≤ B( 1
m1

+ 1
m2

).
Therefore, by specializing Support-Theorem 1 for such f we have

PZ{
1

m2

m1+m2∑
i=l+1

g(Zi)−
1

m1

l∑
i=1

g(Zi)} ≥ ε}

≤ exp

(
−ε

2m1m2(m1 +m2 − 1/2)

B2(m1 +m2)2 · 2 max(m1,m2)− 1

max(m1,m2)

). (51)

Support-Theorem 2 (Uniform Concentration Inequality (El-Yaniv and Pechyony, 2009))
Let V be a set of vectors in [B1, B2]m1+m2, B1 ≤ 0, B2 ≥ 0 and set B ∆

= B2 − B1,
Bmax = max(|B1| − |B2|). Consider two independent permutations of Im1+m2

1 , Z and Z′.
For any v ∈ V denoted by

v(Z)
∆
= (v(Z1),v(Z2), ...,v(Zm1+m2)),

the vector v permuted according to Z. We use the following abbreviations for averages of v
over subsets of its components: Hk {v(Z)} ∆

= 1
m1

∑k
i=1 v(Zi), Tk {v(Z)} ∆

= 1
m2

∑m1+m2
i=k+1 v(Zi)

(note that H stands for ‘head’ and T for ‘tail’). In the special case where k = m1 we set
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H {v(Z)} ∆
= Hm1 {v(Z)}, and T {v(Z)} ∆

= Tm1 {v(Z)}. The uniform concentration inequal-
ity that we develop shortly states that for any δ > 0, with probability at least 1 − δ over
random permutation Z of Im1+m2

1 , for any v ∈ V, we can obtain

T {v(Z)} ≤ H {v(Z)}+ <m1+m2(V) + o

(√
1

min(m1,m2)
ln

1

δ

)
. (52)

Support-Theorem 3 (Bernstein-type concentration inequality (Devroye et al., 1996))
For the binomial random variable Z ∼ B(n, p). We have the following probability inequality

PZ {|Z− EZ| > ε} < 2 exp

(
− 3ε2

8np

)
. (53)

Support-Theorem 4 (Rademacher Vector Contraction Inequality (Maurer, 2016))
Let T be a class of real functions, and H ⊂ T = T1 × ... × TC be a C-valued func-
tion class. If Φ : RC 7→ R is a L-Lipschitz continuous function and Φ(0) = 0, then
<̂Z(Φ ◦H) ≤

√
2L
∑C

i=1 <̂Z(Ti).

Support-Theorem 5 (McDiarmids inequality (Zhao and Zhou, 2018)) Define a set
of independent random variables Z1, Z2, · · · , Zn ∈ Z and assume that there exist a set of
Bi > 0. if f : Zn → R is a real-valued function, and for any Zn ∈ Z satisfies the following
condition ∣∣f (Z1, · · · , Zi, · · · , Zn)− f

(
Z1, · · · , Z ′i, · · · , Zn

)∣∣ ≤ Bi.
for all i ∈ [1;n] and any point Z1, Z2, · · · , Zn, Z ′i ∈ Z. To simplify the presentation, let
f (Z) = f (Z1, · · · , Z ′i, · · · , Zn), then for any ε > 0, the following inequalities hold

Pr [f (Z)− Ef (Z) ≥ ε] ≤ exp
(
−2ε2∑n
i=1B

2
i

)
Pr [f (Z)− Ef (Z) ≤ −ε] ≤ exp

(
−2ε2∑n
i=1B

2
i

) . (54)

Appendix B. Proof of Theorem 4

Proof To prove Theorem 4. We need to introduce random permutation vector and per-
mutation symmetric function as defined in Definition 13. Let L ◦ F corresponds the family
of loss functions ` associated to the output function space F . For any f ∈ F , we donate
L ◦ f = (` ◦ f(Z1), · · · , ` ◦ f(Zl+u)) as a loss vector on the sample Z. Consider two samples
Zl+u and Z′l+u of size l + u. According to Definition 13, we know that Z and Z′ are two
independent permutations of Il+u1 . By comparison, it can be found that the definitions of
H {v(Z)}, T {v(Z)} in Support-Theorem 2 and êrru(f), êrrl(f) are equivalent. Then we
can obtain the following inequality based on Support-Theorem 2.

êrru(f) ≤ êrrl(f) + <Tdl+u(L ◦ F) + o

(√
1

min(l, u)
ln

1

δ

)
. (55)
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Then we will further analyze Eq.(55) in detail. We denote L̄ ◦ f ∆
= 1

l+u

∑l+u
i=1 ` ◦ f(Zi) as the

average component of L ◦ f . For any f ∈ F and any sample Z of size l + u, we can get

êrru(f) = êrrl(f) + êrru(f)− êrrl(f)

≤ êrrl(f) + sup
f∈F

[
êrru(f)− L̄ ◦ f + L̄ ◦ f − êrrl(f)

]
= êrrl(f) + sup

f∈F
[êrru(f)− EZ′ êrru(fZ′) + EZ′ êrrl(fZ′)− êrrl(f)]

≤ êrrl(f) + EZ′ sup
f∈F

[êrru(f)− êrru(fZ′) + êrrl(fZ′)− êrrl(f)]

. (56)

For convenience, we let

ϕ(Z)
∆
= EZ′ sup

f∈F
[êrru(f)− êrru(fZ′) + êrrl(fZ′)− êrrl(f)],

Q
∆
=

l + u

(l + u− 1/2)(1− 1/(2 max(l, u)))
.

For sufficiently large l and u, the value of Q is almost 1. The function ϕ(Z) is (l, u)-
permutation symmetric in Z. For a loss function ` bounded by B, it can be verified that∣∣ϕ(Z)− ϕ(Zij)

∣∣ ≤ B (1
l + 1

u

)
. Therefore, we can apply Support-Theorem 1 and Remark 15

with β ∆
= B

(
1
l + 1

u

)
to ϕ(Z). Since êrru(f)− êrrl(f) ≤ ϕ(Z). We obtain, with probability

of at least 1− δ over random permutation Z of Il+u1 , for all f ∈ F :

êrru(f) ≤ êrrl(f) + EZ {ϕ(Z)}+B

√
Q

2

(
1

l
+

1

u

)
ln

1

δ
. (57)

In order to analyze ϕ(Z), we need introduce some new notions.

• Step1: RTdl+u(L ◦ F ◦ Z) = EN1,N2s(N1, N2).

• Step2: EZ {ϕ(Z)} = s(Eσ̂N1, Eσ̂N2).

• Step3: Apply Support-Theorem 3 to get

EN1,N2 |s(N1, N2)− s(Eσ̂N1, Eσ̂N2)| ≤ B
√

32 ln(4e)/3

(
1

l
+

1

u

)√
u.

Based on Pairwise Rademacher variables, it is easy to verify that

<̂Tdl+u(L ◦ F ◦ Z)=Eσ̂

sup
f∈F

(l+u)∑
i=1

(σi,1 + σi,2) ` ◦ f(Zi)

 . (58)

According to Definition 14, we know that σ̂i is a discrete random variable. Let n1, n2, and
n3 correspond to the number of random variables σ̂i realizing the value ( 1

u ,
1
l ),
(
−1
l ,

1
l

)
(or(

1
u ,− 1

u

)
) and (−1

l ,− 1
u), respectively. Denote N1 = n1 +n2 and N2 = n3 +n2, we know that

both Ni and ni are random variables. Then we further define the probability distribution of

36



Label Distribution Changing Learning with Sample Space Expanding

σ̂i conditioned on the events n1 +n2 = N1 and n2 +n3 = N2, denoted as C(N1, N2). Based
on the constrained distribution C(N1, N2), we let

s(N1, N2) = Eσ̂∼C(N1,N2)

[
sup
f∈F

N∑
i=1

(σi,1 + σi,2) ` ◦ f(Zi)

]
. (59)

It is not hard to verify that

RTdl+u(L ◦ F ◦ Z) = EN1,N2Eσ̂∼C(N1,N2)

[
sup
f∈F

N∑
i=1

(σi,1 + σi,2) ` ◦ f(Zi)

]
= EN1,N2s(N1, N2)

. (60)

According to the definition of Hk and Tk in Support-Theorem 2, for any N1, N2 ∈ Il+u1 , we
have

EZ,Z′ sup
f∈F

[TN1
{L ◦ f(Z)} − TN2

{
L ◦ f(Z′)

}
+HN2

{
L ◦ f(Z′)

}
−HN1

{L ◦ f(Z)}]

=EZ,Z′ sup
f∈F

[
1

u

l+u∑
i=N1+1

` ◦ f(Zi)−
1

u

l+u∑
i=N2+1

` ◦ f(Z ′i) +
1

l

N2∑
i=1

` ◦ f(Z ′i)−
1

l

N1∑
i=1

` ◦ f(Zi)]
. (61)

By observing the values of N1, N2 and the distribution of Z and Z′ in Eq.(61), we take the
expectation with respect to Z and Z′. For the convenience of presentation, we introduce a
new random variable vector a = (a1, · · · ,al+u), where ai = (ai,1, ai,2) is a pair of coefficients,
and let C1(N1, N2) be the distribution of a. Note that the first component of ai corresponds
to Z, and its value is −1

l or
1
u , and Z′ is assigned to the second component of ai, which take

the values of 1
l or − 1

u . Then we can rewrite Eq.(61) as follows

EZ,Z′ sup
f∈F

[TN1 {L ◦ f(Z)} −TN2

{
L ◦ f(Z′)

}
+ HN2

{
L ◦ f(Z′)

}
−HN1 {L ◦ f(Z)}]

= Ea∼C1(N1,N2) sup
f∈F

[
l+u∑
i=1

(ai,1 + ai,2)` ◦ f(Zi)

]
. (62)

Let P (k) be the uniform distribution over partitions of l+ u elements into two subsets of k

and l + u− k elements, respectively. Clearly, P (k) is a uniform distribution over
(

l + u

k

)
elements. Easy to find that the distribution of the random vector (a1,1, a2,1, · · · , al+u,1) of
the first elements of pairs in a is equivalent to P (N1). Similarly, (a1,2, a2,2, · · · , al+u,2) is
equivalent to P (N2). Therefore, the distribution C1(N1, N2) of the entire vector a is equiv-
alent to the product distribution of P (N1) and P (N2). Recall the constrained distribution
C(N1, N2) of σ̂i. We show that the distributions C1(N1, N2) and C(N1, N2) are identical.
For any N1, N2 ∈ Il+u1 , let the probability of drawing a specific realization of σ̂ (under the
constrains n1 + n2 = N1 and n3 + n2 = N2)

Q(N1, N2) =

(
l2

(l + u)2

)n2
(

lu

(l + u)2

)N1−n2
(

lu

(l + u)2

)N2−n2
(

u2

(l + u)2

)l+u−N1−N2+n2

=
lN1+N2u2(l+u)−N1−N2

(l + u)2(l+u)

.

(63)

37



Xu, Tao, Zhang, Hu, and Hou

Since Q(N1, N2) is independent of ni, the distribution C(N1, N2) is uniform over all possible
Rademacher assignments satisfying the constraints n1 + n2 = N1 and n3 + n2 = N2. It
is not difficult to see that the support size of C(N1, N2) is the same as the support size
of C1(N1, N2). In addition, the support sets of these distributions are the same; therefore,
these distributions are identical. Then we further write Eq.(62) as follows

Ea∼C1(N1,N2) sup
f∈F

[
l+u∑
i=1

(ai,1 + ai,2)` ◦ f(Zi)

]

= Eσ̂i∼C(N1,N2)

[
sup
f∈F

N∑
i=1

(σi,1 + σi,2) ` ◦ f(Zi)

]
= s(N1, N2)

. (64)

From Eq.(62) we can find that EZ {ϕ(Z)} is Eq.(61) with N1 = l and N2 = l, moreover, it
is not difficult to find that Eσ̂N1 = Eσ̂ {n1 + n2} = l and Eσ̂N1 = Eσ̂ {n2 + n3} = l, we
obtain

EZ {ϕ(Z)} = Eσ̂i∼C(l,l)

[
sup
f∈F

N∑
i=1

(σ̂i,1 + σ̂i,2) f(Zi)

]
= s(Eσ̂N1, Eσ̂N2). (65)

We bound the differences |s(N1, N2)− s(N ′1, N2)| and |s(N1, N2)− s(N ′1, N2)| for any 1 ≤
N1, N2, N

′
1, N

′
2 ≤ l + u. Suppose that N1 ≤ N ′1. Recalling the definition of s(N1, N2), we

have

s(N ′1, N2) = s(N1, N2) + EZ,Z′

sup
f∈F

N1∑
i=N ′

1+1

(
1

u
+

1

l

)
` ◦ f(Zi)

 . (66)

Therefore, for any N1 and N ′1,∣∣s(N1, N2)− s(N ′1, N2)
∣∣ ≤ B ∣∣N1 −N ′1

∣∣ (1

u
+

1

l

)
. (67)

Similarly we have that for any N2 and N ′2,∣∣s(N1, N2)− s(N1, N
′
2)
∣∣ ≤ B ∣∣N2 −N ′2

∣∣ (1

u
+

1

l

)
. (68)

Noting that N1, N2 ∼ B
(
l + u, l

l+u

)
, according to Support-Theorem 3, let n = l + u and

p = l
l+u . Combining Eq.(67) and Eq.(68), we derive the following inequality

PN1,N2 [|s(N1, N2)− s(Eσ̂N1, Eσ̂N2)| ≥ ε]
≤ PN1,N2 [|s(N1, N2)− s(N1, Eσ̂N2)|+ |s(N1, Eσ̂N2)− s(Eσ̂N1, Eσ̂N2)| ≥ ε]
≤ PN1,N2 [|s(N1, N2)− s(N1, Eσ̂N2)| ≥ ε

2
] + PN1,N2 [|s(N1, Eσ̂N2)− s(Eσ̂N1, Eσ̂N2)| ≥ ε

2
]

≤ PN2 [BQ1 |N2 − Eσ̂N2| ≥
ε

2
] + PN1 [BQ1 |N1 − Eσ̂N1| ≥

ε

2
]

≤ 4 exp

(
3ε2

32(l + u) l
l+u ·B2

(
1
l + 1

u

)2
)

= 4 exp

(
3ε2

32lB2
(

1
l + 1

u

)2
)

.

(69)
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According to the fact provided in (Devroye et al., 1996), if a non-negative random variable
Z satisfies P {Z > ε} ≤ c · exp

(
−kε2

)
for some c ≥ 1 and k > 0, then EZ ≤

√
ln(ce)/k.

Applying this fact with c = 4 and k = 3
64lQ1

2 to Eq.(69), we have

|EN1,N2 {s(N1, N2)} − s(Eσ̂N1, Eσ̂N2)| ≤ EN1,N2 |s(N1, N2)− s(Eσ̂N1, Eσ̂N2)|

≤ B
(

1

l
+

1

u

)√
32l ln(4e)

3
.

(70)

Since the entire development is symmetric in l and u, therefore, we also obtain the same
result but with u instead of l.

Combining Eq.(60), Eq.(65) and Eq.(70), let c0 =

√
32 ln(4e)

3 , we can obtain

EZ {ϕ(Z)} ≤ RTdl+u(L ◦ F ◦ Z) + c0B

(
1

l
+

1

u

)√
min(l, u). (71)

For a loss function ` with Lipschitz constant L`. Thus, we could apply Support-Theorem 4
and take the expectation of the empirical Rademacher complexity. It holds

RTdl+u(L ◦ F ◦ Z) ≤
√

2L`(c+ 1)<Tdl+u(F ◦ Z). (72)

In addition, according to the constraints (1− pi)Ω�ŷi = Ω�yi, 0 < pi < 1, i = l+1, · · · , n.
of the LDCL framework, êrrl(f) = 0. Substituting Eq.(72) into Eq.(71) and combining with
Eq.(57), we can get Eq.(14). Theorem 4 is proved.

Appendix C. Proof of Theorem 5

In order to prove Theorem 5, we need to introduce two basic inequalities. Based on Support-
Theorem 5 and Support-Theorem 4, we provide the detailed proof of Theorem 5 as follows.
Proof The proof is similar to the proof of Theorem 3.1 in (Jennings and Wooldridge, 2012).
For any sample Z = (Z1, · · · , Zl, · · · , Zl+u), Zi = (xi, yi) and a loss function ` with Lipschitz
constant L` and bounded by a constant B, let L ◦ H correspond the family of loss functions
associated to function space H. For any h ∈ H, we denote ÊZ [L ◦ h] the empirical average
of L ◦ h over Z: ÊS [L ◦ h] = 1

l+u

∑m
i=1 ` ◦ h(Zi). Now we defined the function Φ as follows,

Φ(Z) = sup
h∈H

E[L ◦ h]− ÊZ[L ◦ h].

Let Z and Z′ be two samples differing by exactly one instance, and say Zm in Z and Z ′m in
Z′. Then, since the difference of suprema does not exceed the supremum of the difference,
we have

Φ(Z′)− Φ(Z) ≤ sup
h∈H

ÊZ[L ◦ h]− ÊZ′ [L ◦ h] = sup
h∈H

` ◦ (Zm)− ` ◦ (Z ′m)

l + u
≤ B

l + u
. (73)

Similarly, we can obtain Φ(Z)−Φ(Z′) ≤ B/ (l + u), thus |Φ(Z)− Φ(Z′)| ≤ B/ (l + u). Then,
by McDiarmids inequality, for any δ > 0, with probability at least 1 − δ/2, the following
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holds: Φ(Z) ≤ EZ [Φ(Z)] +B

√
log 2

δ
2(l+u) . Now we will proceed bound EZ [Φ(Z)] as follows

EZ [Φ(Z)] = EZ[sup
h∈H

E[L ◦ h]− ÊZ[L ◦ h]] = EZ[sup
h∈H

EZ′ [EZ′ [L ◦ h]− ÊZ[L ◦ h]]]

≤ EZ,Z′ [sup
h∈H

ÊZ′ [L ◦ h]− ÊZ[L ◦ h]] = EZ,Z′

[
sup
h∈H

1

l + u

l+u∑
i=1

(` ◦ h(Z ′i)− ` ◦ h(Zi))

]

≤ EZ,Z′ [sup
h∈H

1

l + u
[
l∑

i=1

` ◦ h(Z ′i) +
l+u∑
i=l+1

(
` ◦ h(Z ′i) + ` ◦ f(Z ′i)

)
−

l∑
i=1

` ◦ h(Zi)−
l+u∑
i=l+1

(` ◦ h(Zi) + ` ◦ f(Zi))]]

= Eσ,Z′

[
sup
h∈H

1

l + u

l+u∑
i=1

σi` ◦ h(Z ′i)

]
+Eσ,Z

[
sup
h∈H

1

l + u

l+u∑
i=1

−σi` ◦ h(Zi)

]

+ Eσ,Z′

[
sup
h∈H

1

l + u

l+u∑
i=l+1

σi` ◦ f(Z ′i)

]
+ Eσ,Z

[
sup
h∈H

1

l + u

l+u∑
i=l+1

−σi` ◦ f(Z ′i)

]

= 2Eσ,Z

[
sup
h∈H

1

l + u

l+u∑
i=1

σi` ◦ h(Zi)

]
+ 2

u

l + u
Eσ,Z

[
sup
h∈H

1

l + u

l+u∑
i=1

σi` ◦ f(Zi)

]
= 2<l+u(L ◦ H) + 2

u

l + u
<u(L ◦ F).

(74)

Thus, we have

R(h) ≤ R̂(h) + 2<l+u(L ◦ H) + 2
u

l + u
<u(L ◦ F) +B

√
log 1/δ

2(l + u)
. (75)

For a loss function ` with Lipschitz constant L`. Thus, we could apply Support-Theorem 4
and take the expectation of the empirical Rademacher complexity. It holds

<l+u(L ◦ H) ≤
√

2L`(c+ 1)<l+u(H), <u(L ◦ F) ≤
√

2L`(c+ 1)<u(F) . (76)

In addition, since h is trained from the recovered label distribution matrix, R̂(h) ≤ êrrl+u(h)+
êrru(f). Substituting Eq.(76) into Eq.(75), we can get Eq.(15), Theorem 5 is proved.

Appendix D. Supplementary Experiment

In this part, we will add some supplementary experiments to demonstrate the LDCL model
framework.

D.1 Empirical Comparison and Discussion of Classification Models

In this section, we compare and discuss the two classification models under the LDCL
framework, mainly analyzing the performance of the classification model combined with
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Table 10: Chebyshev (“↓”)(mean±std) results on test set. The best results on each row are
bolded, together with pairwise single-tailed t-test at 95% confidence level.

Dataset KL+softmax KL+LN L2+softmax L2+LN

Yeast-alpha .0141±.0000 .0144±.0001 .0148±.0001 .0143±.0002
Yeast-cdc .0162±.0000 .0164±.0001 .0168±.0001 .0165±.0003
Yeast-elu .0160±.0001 .0166±.0001 .0165±.0002 .0167±.0001
Yeast-diau .0408±.0001 .0413±.0013 .0414±.0002 .0412±.0001
Yeast-heat .0426±.0001 .0474±.0006 .0463±.0003 .0449±.0005

win/tie/loss 5/0/0 0/0/5 0/0/5 0/0/5

softmax transformation and linear normalization (LN). The experiment results are shown
in Table 10. From the experiment results, it can be seen that the maximum entropy model
(“KL+softmax”) has the best performance. Compared with “KL + softmax”, the perfor-
mance of “KL + LN” is reduced. Similarly, the performance of “L2+softmax” is degenerated
compared with “L2 + LN”. The above phenomena indicate that the maximum entropy model
with KL divergence is more targeted for LDL.

D.2 Experiments with more models under the LDCL framework

In this section, we compare and analyze more specific models under the LDCL model frame-
work. Inspired by the investigation in (Lv et al., 2019) and (Xu et al., 2021b), we know
that compared to the pure graph-based or feature-manifold-based methods, the method that
combines feature structure and label correlation can achieve superior performance in recov-
ering the label distribution matrix. Therefore, for illustration and abbreviation, we mainly
analyze and compare several representative methods in 18 concrete models under the LDCL
framework experimentally. We choose the pure graph based methods as the baseline and
combined methods as the advanced approaches. By instantiating them into our framework,
we conduct experiments on the ‘Yest-heat’ dataset. The experiment results are shown in
Table 11. According to the experiment results, it can be concluded that our framework is
effective in modifying traditional LDL methods. Besides, the recovery performance of the
three manifold enhancement methods for the expanded label distribution matrix is better
than that of the two graph methods, which consists with the conclusion in (Lv et al., 2019).
Certainly, it is still a valuable research topic to perform other methods and we leave them
as the furture work.

D.3 Experiment under more metrics

In this section we added experiment results under three metrics Clark, Canberra and Cosine
to evaluate the LD framework from several different perspectives. The experiment results
are shown in Table 12-Table 17. From the experimental results, it can be found that the
conclusions drawn by Clark, Canberra and Cosine are basically consistent with those drawn
by Chebyshev and Intersection. Although there are minor differences in individual datasets,
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Table 11: Experiment results(mean±std) in setting 1 on un-relabeled data for ‘Yeast-heat’
dataset.

Methods Chebyshev Clark Canberra Cosine Intersection win/tie/loss

Graph+L2+‖p‖22 .0347±.0017 .1124±.0049 .2069±.0096 .9936±.0006 .9653±.0017

4/0/0

Graph+KL+(−p> logp) .0345±.0011 .1117±.0032 .2056±.0062 .9937±.0003 .9655±.0011

Manifold+L2+‖p‖22 .0251±.0022 .0844±.0064 .1523±.0123 .9963±.0005 .9749±.0022

Manifold+KL+‖p‖22 .0258±.0020 .0885±.0075 .1585±.0128 .9962±.0004 .9742±.0020

Manifold+KL+(−p> logp) .0277±.0026 .0924±.0049 .1678±.0137 .9955±.0006 .9723±.0026

BFGS-LDL .0447±.0007 .1923±.0029 .3844±.0062 .9866±.0004 .9368±.0010 0/0/4

PT-SVM .0476±.0026 .2069±.0130 .4152±.0173 .9847±.0016 .9318±.0044 0/0/4

PT-Bayes .4302±.0570 .9712±.0311 .9298±.3080 .8481±.0446 .5057±.0500 0/0/4

IIS-LDL .0528±.0004 .2249±.0014 .4570±.0031 .9812±.0003 .9238±.0005 0/0/4

Table 12: Clark (“↓”)(mean±std) results in setting 1 on un-relabeled data. The best results
on each row are bolded, together with pairwise single-tailed t-test at 95% confidence level.

Dataset Graph Manifold BFGS-LDL PT-SVM PT-Bayes IIS-LDL

Yeast-alpha .0358±.0002 .0356±.0005 .2237±.0019 .2545±.0124 .6137±.1329 .3026±.0014

Yeast-cdc .0469±.0007 .0454±.0003 .2336±.0014 .2488±.0084 .6286±.0837 .2951±.0011

Yeast-elu .0557±.0020 .0548±.0004 .2111±.0019 .2485±.0252 .6387±.0864 .2762±.0014

Yeast-diau .1310±.0053 .1210±.0046 .2116±.0031 .2460±.0112 .5814±.0599 .2426±.0013

Yeast-heat .1117±.0032 .0844±.0064 .1923±.0029 .2069±.0130 .9712±.0311 .2249±.0014

Yeast-spo .1478±.0012 .1214±.0029 .2627±.0031 .2759±.0066 .7449±.0531 .2799±.0015

Yeast-cold .0893±.0003 .0942±.0019 .1462±.0012 .1569±.0070 .6146±.0928 .1643±.0009

Yeast-dtt .0599±.0021 .0519±.0037 .1532±.0047 .1578±.0144 .5052±.0344 .1773±.0040

Yeast-spo5 .1468±.0005 .1524±.0014 .2387±.0079 .2445±.0134 .4741±.0369 .2465±.0075

Yeast-spoem .1317±.0011 .1314±.0015 .2464±.0080 .2702±.0344 .3516±.0198 .2484±.0076

emotion6 .8074±.0019 .7068±.0014 1.774±.1972 1.728±.0314 1.680±.0031 1.659±.0034

Natural scene .4754±.0012 .9823±.0012 2.707±.0309 2.556±.0260 2.485±.0035 2.474±.0043

MovieDataSet .3346±.0017 .3012±.0005 .6509±.0104 .8735±.0770 .7516±.0007 .6239±.0049

win/tie/loss 3/0/10 10/0/3 0/0/13 0/0/13 0/0/13 0/0/13

the performance of the proposed method is better than that of the baseline methods, no
matter which metric is employed. It further illustrates the effectiveness of the proposed
LDCL framework.
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Table 13: Canberra (“↓”)(mean±std) results in setting 1 on un-relabeled data. The best
results on each row are bolded, together with pairwise single-tailed t-test at 95% confidence
level.

Dataset Graph Manifold BFGS-LDL PT-SVM PT-Bayes IIS-LDL

Yeast-alpha .0702±.0006 .0694±.0003 .7300±.0047 .8420±.0448 .8567±.1354 1.011±.0050

Yeast-cdc .0875±.0004 .0866±.0006 .7050±.0038 .7513±.0254 .8853±.3228 .9048±.0032

Yeast-elu .2161±.0010 .1843±.0004 .6208±.0060 .7368±.0773 .7909±.3520 .8266±.0049

Yeast-diau .2315±.0097 .2133±.0081 .4546±.0073 .5292±.0305 .8895±.1619 .5299±.0027

Yeast-heat .2056±.0062 .1523±.0123 .3844±.0062 .4152±.0173 .9298±.3080 .4570±.0031

Yeast-spo .2886±.0012 .2806±.0039 .5470±.0070 .5698±.0144 .8243±.1331 .5757±.0033

Yeast-cold .1463±.0013 .1576±.0024 .2521±.0023 .2704±.0114 .9107±.1819 .2849±.0017

Yeast-dtt .1033±.0037 .0890±.0062 .2563±.0074 .2660±.0222 .8905±.0641 .3012±.0061

Yeast-spo5 .2162±.0005 .2168±.0004 .3652±.0117 .3741±.0207 .7305±.0608 .3772±.0109

Yeast-spoem .1817±.0015 .1811±.0021 .3426±.0109 .3466±.0487 .6746±.0270 .3451±.0104

emotion6 .1.145±.0019 1.039±.0004 4.112±.6402 3.985±.1083 3.828±.0084 3.735±.0120

Natural scene .5956±.0095 1.203±.0041 7.836±.1176 7.220±.1329 7.001±.0131 6.826±.0207

MovieDataSet .0845±.0016 .0772±.0005 1.265±.0231 1.690±.1833 1.434±.0014 1.201±.0085

win/tie/loss 3/0/10 10/0/3 0/0/13 0/0/13 0/0/13 0/0/13

Table 14: Cosine (“↑”)(mean±std) results for setting 1 on un-relabeled data. The best results
on each row are bolded, together with pairwise single-tailed t-test at 95% confidence level.

Dataset Graph Manifold BFGS-LDL PT-SVM PT-Bayes IIS-LDL

Yeast-alpha .9994±.0004 .9998±.0000 .9939±.0001 .9924±.0007 .8387±.0319 .9882±.0003

Yeast-cdc .9989±.0001 .9994±.0003 .9923±.0001 .9913±.0005 .8484±.0244 .9868±.0001

Yeast-elu .9989±.0001 .9992±.0001 .9933±.0001 .9909±.0017 .7626±.0202 .9875±.0002

Yeast-diau .9939±.0005 .9949±.0004 .9864±.0005 .9823±.0018 .8309±.0262 .9819±.0002

Yeast-heat .9937±.0004 .9963±.0006 .9866±.0004 .9847±.0016 .8481±.0446 .9812±.0003

Yeast-spo .9824±.0009 .9950±.0019 .9742±.0007 .9710±.0015 .7487±.0172 .9711±.0004

Yeast-cold .9927±.0005 .9925±.0005 .9875±.0002 .9856±.0012 .7985±.0292 .9838±.0002

Yeast-dtt .9972±.0001 .9973±.0001 .9881±.0006 .9870±.0017 .8907±.0104 .9833±.0005

Yeast-spo5 .9789±.0005 .9786±.0017 .9604±.0020 .9588±.0034 .8817±.0142 .9568±.0020

Yeast-spoem .9787±.0004 .9789±.0005 .9360±.0031 .9222±.0190 .9004±.0088 .9353±.0030

emotion6 .9866±.0004 .9869±.0003 .6133±.0954 .6169±.0345 .6564±.0008 .6951±.0033

Natural scene .9847±.0006 .9841±.0012 .3896±.0259 .4885±.0471 .5750±.0014 .6616±.0050

MovieDataSet .9719±.0005 .9753±.0013 .8894±.0040 .7618±.0513 .8591±.0002 .8933±.0016

win/tie/loss 3/0/10 10/0/3 0/0/13 0/0/13 0/0/13 0/0/13
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Table 15: Clark (“↓”)(mean±std) results for setting 2 on test set. The best results on each
row are bolded, together with pairwise single-tailed t-test at 95% confidence level.

Dataset Graph Manifold BFGS-LDL PT-SVM PT-Bayes IIS-LDL

Yeast-alpha .2182±.0000 .2178±.0001 .2298±.0022 .2589±.0122 2.825±.1360 .3158±.0006

Yeast-cdc .2094±.0000 .2090±.0001 .2213±.0029 .2283±.0083 2.520±.0892 .2871±.0007

Yeast-elu .2052±.0000 .2047±.0001 .2108±.0021 .2499±.0257 2.329±.0757 .2755±.0014

Yeast-diau .2143±.0004 .2159±.0008 .2190±.0039 .2451±.0119 1.603±.0581 .2404±.0007

Yeast-heat .1873±.0002 .1868±.0002 .1967±.0022 .2089±.0140 1.517±.1247 .2210±.0011

Yeast-spo .2454±.0002 .2415±.0006 .2559±.0040 .2650±.0048 1.531±.0567 .2634±.0004

Yeast-cold .1511±.0004 .1502±.0007 .1844±.0041 .2099±.0243 .5174±.0551 .2077±.0037

Yeast-dtt .0998±.0002 .0981±.0003 .1459±.0044 .1561±.0169 .4799±.0346 .1677±.0039

Yeast-spo5 .1807±.0032 .1716±.0010 .2235±.0079 .2312±.0153 .4613±.0348 .2366±.0072

Yeast-spoem .1263±.0008 .1258±.0009 .2547±.0076 .2704±.0261 .3533±.0206 .2597±.0076

emotion6 1.654±.0006 1.507±.0011 1.766±.2071 1.713±.0106 1.670±.0000 1.643±.0020

Natural scene 2.464±.0007 2.465±.0006 2.701±.0248 .2.555±.0231 2.479±.0000 2.478±.0040

MovieDataSet .6243±.0002 .6314±.0004 .6538±.0131 .8803±.0760 .7588±.0000 .6338±.0038

win/tie/loss 3/0/10 10/0/3 0/0/13 0/0/13 0/0/13 0/0/13

Table 16: Canberra (“↓”)(mean±std) results for setting 2 on test set. The best results on
each row are bolded, together with pairwise single-tailed t-test at 95% confidence level.

Dataset Graph Manifold BFGS-LDL PT-SVM PT-Bayes IIS-LDL

Yeast-alpha .7086±.0001 .7072±.0000 .7488±.0076 .8559±.0440 6.700±.0992 1.061±.0021

Yeast-cdc .6279±.0001 .6267±.0001 .6729±.0088 .7239±.0264 6.872±.3539 .8846±.0046

Yeast-elu .6133±.0001 .6116±.0001 .6279±.0060 .7462±.0746 6.979±.3046 .8233±.0039

Yeast-diau .4517±.0062 .4346±.0014 .4519±.0090 .5263±.0305 3.861±.1530 .5259±.0019

Yeast-heat .3749±.0005 .3739±.0003 .3944±.0051 .4191±.0276 3.413±.3246 .4479±.0021

Yeast-spo .5059±.0004 .4985±.0012 .5286±.0090 .5454±.0111 3.451±.1505 .5651±.0034

Yeast-cold .2573±.0003 .2559±.0013 .3106±.0064 .3554±.0041 .9009±.0989 .3532±.0055

Yeast-dtt .1734±.0004 .1704±.0009 .2459±.0068 .2661±.0260 .8437±.0678 .2848±.0059

Yeast-spo5 .2750±.0047 .2630±.0015 .3422±.0117 .3535±.0239 .7158±.0575 .3621±.0109

Yeast-spoem .1761±.0012 .1753±.0013 .3547±.0104 .3770±.0366 .4780±.0282 .3611±.0103

emotion6 3.765±.0002 3.214±.0001 4.105±.6673 3.940±.1059 3.830±.0000 3.702±.0130

Natural scene 6.342±.0023 6.889±.0016 7.808±.1003 7.209±.1195 6.973±.0000 6.835±.0243

MovieDataSet 1.130±.0018 1.169±.0017 1.271±.0296 1.705±.1841 1.450±.0000 1.219±.0073

win/tie/loss 2/0/11 11/0/2 0/0/13 0/0/13 0/0/13 0/0/13
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Table 17: Cosine (“↑”)(mean±std) results for setting 2 on test set. The best results on each
row are bolded, together with pairwise single-tailed t-test at 95% confidence level.

Dataset Graph Manifold BFGS-LDL PT-SVM PT-Bayes IIS-LDL

Yeast-alpha .9941±.0000 .9942±.0000 .9935±.0001 .9920±.0007 .6205±.0130 .9871±.0006

Yeast-cdc .9933±.0000 .9934±.0000 .9927±.0001 .9917±.0005 .5435±.0243 .9872±.0001

Yeast-elu .9937±.0001 .9938±.0000 .9933±.0001 .9908±.0017 .5763±.0201 .9877±.0001

Yeast-diau .9864±.0005 .9862±.0001 .9858±.0006 .9825±.0017 .6331±.0263 .9825±.0001

Yeast-heat .9872±.0000 .9873±.0001 .9862±.0003 .9845±.0017 .6336±.0463 .9821±.0001

Yeast-spo .9765±.0004 .9772±.0001 .9750±.0009 .9730±.0011 .6259±.0226 .9724±.0002

Yeast-cold .9865±.0001 .9867±.0001 .9824±.0006 .9767±.0051 .8878±.0154 .9767±.0006

Yeast-dtt .9939±.0000 .9940±.0000 .9891±.0005 .9872±.0021 .8976±.0119 .9852±.0005

Yeast-spo5 .9752±.0007 .9769±.0002 .9639±.0019 .9623±.0032 .8733±.0133 .9591±.0019

Yeast-spoem .9791±.0003 .9793±.0002 .9321±.0031 .9227±.0140 .8990±.0093 .9314±.0031

emotion6 .6846±.0005 .6986±.0004 .6230±.1084 .6200±.0340 .6582±.0000 .7010±.0044

Natural scene .6548±.0010 .6332±.0003 .3982±.0259 .4838±.0474 .5750±.0000 .6529±.0056

MovieDataSet .8926±.0004 .8891±.0004 .8889±.0042 .7589±.0516 .8575±.0000 .8923±.0016

win/tie/loss 3/0/10 10/0/3 0/0/13 0/0/13 0/0/13 0/0/13
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