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Abstract

The prediction accuracy of machine learning methods is steadily increasing, but the calibra-
tion of their uncertainty predictions poses a significant challenge. Numerous works focus
on obtaining well-calibrated predictive models, but less is known about reliably assessing
model calibration. This limits our ability to know when algorithms for improving calibra-
tion have a real effect, and when their improvements are merely artifacts due to random
noise in finite datasets. In this work, we consider detecting mis-calibration of predictive
models using a finite validation dataset as a hypothesis testing problem. The null hypoth-
esis is that the predictive model is calibrated, while the alternative hypothesis is that the
deviation from calibration is sufficiently large.

We find that detecting mis-calibration is only possible when the conditional probabili-
ties of the classes are sufficiently smooth functions of the predictions. When the conditional
class probabilities are Hölder continuous, we propose T-Cal, a minimax optimal test for
calibration based on a debiased plug-in estimator of the ℓ2-Expected Calibration Error
(ECE). We further propose adaptive T-Cal, a version that is adaptive to unknown smooth-
ness. We verify our theoretical findings with a broad range of experiments, including with
several popular deep neural net architectures and several standard post-hoc calibration
methods. T-Cal is a practical general-purpose tool, which—combined with classical tests
for discrete-valued predictors—can be used to test the calibration of virtually any proba-
bilistic classification method. T-Cal is available at https://github.com/dh7401/T-Cal.
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1 Introduction

The prediction accuracy of contemporary machine learning methods such as deep neural
networks is steadily increasing, leading to adoption in more and more safety-critical fields
such as medical diagnosis (Esteva et al., 2017), self-driving vehicles (Bojarski et al., 2016),
and recidivism forecasting (Berk, 2017). In these applications and beyond, machine learning
models are required not only to be accurate but also to be well-calibrated: giving precise
probability estimates for the correctness of their predictions.

To be concrete, consider a classification problem where the goal is to classify features
x (such as images) into one of several classes y (such as a building, vehicle, etc.). A
probabilistic classifier (or, probability predictor) f assigns to each input x a probability
distribution f(x) over the classes. For a given input x, the entries of f(x) represent the
probabilities assigned by the classifier to the event that the outcome belongs to the k-th
class, for any k = 1, . . . ,K. This classifier is calibrated if for any value z taken by f(x), and
for all classes k, the probability that the outcome belongs to the k-th class, i.e., [y]k = 1,
equals the predicted probability, i.e., the k-th coordinate [z]k of z:

P ([y]k = 1|f(x) = z) = [z]k.

This form of calibration is an important part of uncertainty quantification, decision
science, analytics, and forecasting (see e.g., Hilden et al., 1978; Miller et al., 1991, 1993;
Steyerberg et al., 2010; Hand, 1997; Jolliffe and Stephenson, 2012; Van Calster and Vick-
ers, 2015; Harrell, 2015; Tetlock and Gardner, 2016; Shah et al., 2018; Steyerberg, 2019,
etc). Unfortunately, however, recent works starting from at least Guo et al. (2017) have
reported that modern machine learning methods are often poorly calibrated despite their
high accuracy; which can lead to harmful consequences (e.g., Van Calster and Vickers, 2015;
Steyerberg, 2019).

To address this problem, there has been a surge of works aimed at improving the cal-
ibration of machine learning models. These methods seek to achieve calibration either by
modifying the training procedure (Harrell, 2015; Lakshminarayanan et al., 2017; Kumar
et al., 2018; Thulasidasan et al., 2019; Zhang et al., 2020; Mukhoti et al., 2020) or by
learning a re-calibration function that transforms, in a post-hoc way, the predictions to
well-calibrated ones (Cox, 1958; Mincer and Zarnowitz, 1969; Steyerberg et al., 2010; Platt,
1999; Zadrozny and Elkan, 2001, 2002; Guo et al., 2017; Kumar et al., 2019; Kisamori et al.,
2020).

In this regard, a key challenge is to rigorously assess and compare the performance
of calibration methods. Without such assessments, we have limited ability to know when
algorithms for improving calibration have a real effect, and when their improvements are
merely artifacts due to random noise in finite-size datasets. As it turns out, existing works
do not offer a satisfactory solution to this challenge.

In more detail, in this work, we consider the problem of detecting mis-calibration of
predictive models using a finite validation dataset. We focus on models whose probability
predictions are continuously distributed—which is generally reasonable for many modern
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machine learning methods, including deep neural nets. We develop efficient and provably
optimal algorithms to test their calibration.

Detecting mis-calibration has been studied from the perspective of statistical hypothesis
testing. The seminal work of Cox (1958) formulated a test of calibration for a collection
of binary (yes-no) predictions, and proposed using a score test for a logistic regression
model. This has been widely used and further developed, leading to various tests for the
so-called calibration slope and calibration intercept, which can validate various qualitative
versions of model calibration, see e.g., Hosmer and Lemesbow (1980); Miller et al. (1991);
Steyerberg (2019) and references therein. In pioneering work, Miller (1962) suggested a chi-
squared test for testing calibration of multiple series of binary predictions. To deal with the
challenging problem of setting critical values (i.e., how large of an empirical mis-calibration is
statistically significant?) for testing calibration, bootstrap methods have become common,
see e.g., Harrell (2015). We refer to Section 1.1 for more details and for a discussion of
other related works.

In contrast to the above works that aim to test calibration slopes and intercepts, we aim
to develop a nonparametric hypothesis test for calibration, which does not assume a specific
functional form (such as a logistic regression model), for the deviations to be detected
from perfect calibration. A nonparametric approach has the advantage that it can detect
subtle forms of mis-calibration even after re-calibration by parametric methods. However,
existing approaches for nonparametric testing often rely on ad hoc techniques for binning the
probability predictions, which is a limitation because the results can depend on the way that
the binning has been performed (Harrell, 2015; Steyerberg, 2019). In contrast, our adaptive
tests automatically select an optimal binning scheme. Finally, as a new development in the
area of testing calibration, T-Cal has theoretically guaranteedminimax optimality properties
for detecting certain reasonable types of smooth mis-calibration. These properties make T-
Cal both practically and theoretically appealing.

We consider a given multi-class probabilistic classifier, and are interested in testing if it
is calibrated. We make the following contributions:

• As a candidate test statistic, we consider the plug-in estimator of ℓ2-expected cali-
bration error (ECE), which is the expectation of the squared distance between the
probability predictions and class probabilities given these predictions. This is also
known as the mean calibration error (e.g., Harrell, 2015, p. 105). While the plug-in
estimator is biased (i.e., its expectation is not zero even under perfect calibration),
we show how to construct a debiased plug-in estimator (DPE).

We consider detecting mis-calibration when the deviation between predicted class
probabilities and their true values—the “mis-calibration curve”—satisfies a classical
smoothness condition known as Hölder continuity. We later show that a smoothness
condition is essentially unavoidable. Under this condition, we show that T-Cal can
detect mis-calibration if the ECE is sufficiently large and the number of bins is chosen
appropriately, depending on the smoothness (Theorem 3).

• To make T-Cal practical, we present a version that is adaptive to the unknown smooth-
ness parameter (Theorem 5). This makes T-Cal fully tuning-free and practically
useful. From a theoretical perspective, adaptivity only requires a minor additional
increase in the level of mis-calibration that can be detected; by a log n factor.
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Figure 1: An overview of adaptive T-Cal. For a given probability predictor f , we compute
T d
m,n, the debiased plug-in estimator (DPE), binned over several scales (See (6) for

the definition). We then compare each value with the hypothetical distribution
of DPE that we would get if the model were perfectly calibrated. The hypothesis
of perfect calibration is rejected if at least one of the scales is detected to be
mis-calibrated. This multi-scale approach ensures that T-Cal adaptively detects
mis-calibration.
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• We support our theoretical results with a broad range of experiments. We provide
simulations, which support our theoretical optimality results. We also provide ex-
periments with several popular deep neural net architectures (ResNet-50, VGG-19,
DenseNet-121, etc), on benchmark datasets (CIFAR 10 and 100, ImageNet) and sev-
eral standard post-hoc calibration methods (Platt scaling, histogram binning, isotonic
regression, etc).

• To complement these results, we argue that T-Cal is optimal, by providing a number
of fundamental lower bounds. We prove that detecting mis-calibration from a finite
dataset is only possible when the mis-calibration curve is sufficiently smooth, and it
is not possible when the curve is just continuous (Proposition 9).

When the mis-calibration curves are Hölder smooth, we show that the calibration
error required for reliable detection of mis-calibration has to be appropriately large
(Theorem 10). This minimax result relies on Ingster’s (or the chi-squared) method.
Combined with our previous results, this shows that T-Cal is minimax optimal.

• To further put our problem in context, we show that testing calibration can be re-
duced to a well-known problem in statistical inference—the two-sample goodness-of-fit
problem—by a novel randomization technique. Based on this insight, and building
on the results of Arias-Castro et al. (2018); Kim et al. (2022) on goodness-of-fit test-
ing, we present another asymptotically minimax optimal test for mis-calibration that
matches the lower bound (Theorem 12). While this method is theoretically optimal,
it relies on sample splitting and is not as sample-efficient as our previous method in
experiments.

• In the proofs, we have the following innovations:

1. We introduce an equal-volume binning scheme for the probability simplex ∆K−1

(Appendix B.3). We decompose the probability simplex into hypersimplices
by taking intersections with smaller hypercubes composing the unit hypercube
[0, 1]K . Then we further decompose the hypersimplices into equal-volume sim-
plices using results in polyhedral combinatorics. This construction enables us to
extend proof techniques from the nonparametric hypothesis testing literature to
our setting.

2. To analyze our plug-in estimator, we need to deal with terms involving proba-
bility scores of inputs, which are continuous random variables. This is different
from the structure of chi-squared statistics such as that of Ingster (1987). Thus,
computing the mean and variance of the DPE requires a different analysis.

3. While densities on the probability simplex can take arbitrary positive values, the
conditional expectation of probability predictions has to lie in the probability
simplex. This requires a careful construction of alternative distributions to use
Ingster’s method.

Our numerical results can be reproduced with code available at https://github.com/
dh7401/T-Cal.

We now summarize some key takeaways:
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• The need for statistical significance to claim calibration. It is crucial to
perform rigorous statistical tests to assess the calibration of machine learning methods.
While models with smaller empirical ECE generally tend to be better calibrated, these
values can be highly influenced by noise and randomness inherent in finite datasets.
Hence it is crucial to develop and use tools to assess statistical significance—such as the
hypothesis tests of calibration that we develop—when claiming improved calibration.

• Potential suboptimality of popular approaches. The currently prevalent usage
of popular metrics, such as the empirical ECE, may be suboptimal. The current
standard is to evaluate mis-calibration metrics using a fixed number of bins (such as
15) of the probability scores, for all prediction models (ResNet, VGG, etc), and all
datasets. Our results show theoretically that the optimal number of bins increases
with the level of oscillations and non-smoothness expected in the probability predictor.
Modern machine learning methods are becoming more and more over-parametrized
and data-adaptive. This suggests that it is ever more important to use a careful
model- and data-adaptive test (and number of bins) when testing calibration.

1.1 Related Works

There is a great body of related work on evaluating the calibration of prediction methods,
on improving calibration accuracy, and on nonparametric hypothesis testing techniques.
We review the most closely related works.

Broader Context. Broadly speaking, the study of calibration is an important part of
the study of classification, prediction, analytics, and forecasting (e.g., Hilden et al., 1978;
Miller et al., 1991, 1993; Steyerberg et al., 2010; Hand, 1997; Jolliffe and Stephenson, 2012;
Gneiting and Katzfuss, 2014; Van Calster and Vickers, 2015; Harrell, 2015; Tetlock and
Gardner, 2016; Shah et al., 2018; Steyerberg, 2019, etc).

Calibration. As recounted in Lichtenstein et al. (1977), research on calibration dates
back at least to the early 1900s, when meteorologists suggested expressing predictions as
probabilities and comparing them to observed empirical frequencies. Calibration has since
been studied in a variety of areas, including meteorology, statistics, medicine, computer
science, and social science; and under a variety of names, such as realism or realism of
confidence, appropriateness of confidence, validity, external validity, secondary validity, and
reliability (Lichtenstein et al., 1977). A general finding in this area is that human forecasters
are often overconfident and thus mis-calibrated (e.g., Keren, 1991, etc), as codified for
instance in Tversky and Kahneman’s celebrated work on prospect theory (Kahneman and
Tversky, 2013).

Beyond our hypothesis testing perspective, approaches to study calibration include
Bayesian perspectives (e.g., Dawid, 1982; Kadane and Lichtenstein, 1982, etc.) and on-
line settings (e.g., Foster and Vohra, 1998; Vovk and Shafer, 2005, etc.). See also Section
10.9 of Harrell (2015), Section 15.3 of Steyerberg (2019), and Hastie and Tibshirani (1998);
Ivanov et al. (1999); Garczarek (2002); Buja et al. (2005); Toll et al. (2008); Gebel (2009);
Serrano (2012); Van Calster et al. (2019); Huang et al. (2020), among others.

Calibration Measures. Proper scoring rules (Good, 1952; De Finetti, 1962; Savage,
1971; Winkler et al., 1996; DeGroot and Fienberg, 1983; Gneiting et al., 2007) such as
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the Brier score (Brier, 1950) and negative log-likelihood (e.g., Winkler et al., 1996, etc) are
objective functions of two probability distributions (a true distribution and a predicted dist-
ribution). They are minimized when the predicted distribution equals the true distribution;
see also Bickel (2007).

As discussed in Sections 4.5 and 10.9 of Harrell (2015), some of the standard techniques
in the area include plotting calibration curves, also known as reliability diagrams (estimated
probabilities against predicted ones); which can be bias-corrected using the bootstrap; and
re-calibration by fitting statistical models to these curves (e.g., Austin and Steyerberg, 2014,
etc). More recently, the notion of ECE, also known as mean absolute calibration error (e.g.,
Harrell, 2015, p. 105) is popularized in Naeini et al. (2015) and later generalized to multi-
class settings in Vaicenavicius et al. (2019). Gupta et al. (2021) develop a binning-free
calibration measure based on the Kolmogorov-Smirnov test. Arrieta-Ibarra et al. (2022)
introduce calibration metrics building on Komogorov-Smirnov and Kuiper statistics.

Calibration in Modern Machine Learning. Guo et al. (2017) draw attention to the
mis-calibration of modern neural networks and compare different recalibration methods
based on ECE. Many other works (Milios et al., 2018; Kull et al., 2019; Zhang et al.,
2020) also evaluate their methods using ECE or its variants. In the following works of
Vaicenavicius et al. (2019); Kumar et al. (2019), it has been recognized that ECE evaluated
on a fixed binning scheme can underestimate the calibration error. The limitation of fixed
binning has been known for the analogous problems of testing probability distributions and
densities, see e.g., Mann and Wald (1942), or page 19 of Ingster (2012). Kumar et al.
(2019) proposes a debiased ECE, but only for probability predictors with a finite number of
outputs. Nixon et al. (2019) empirically study various versions of ECE obtained by adjusting
hyperparameters involved in the estimator of ECE (such as norm, binning scheme, and class
conditionality), and find that the choice of calibration measure is crucial when comparing
different calibration methods. ? propose a heuristic for choosing an optimal number of bins
when computing ECE. Zhang et al. (2020) use kernel density estimation to estimate ECE
without relying on a binning scheme. Zhao et al. (2020) show that individual calibration is
possible by randomized predictions and propose a training objective to enforce individual
calibration. See also Niculescu-Mizil and Caruana (2005); Kull et al. (2017); Bai et al.
(2021), among others.

There has been interest in a variety of forms of calibration. We study the strongest form,
multi-class calibration, which is stronger than other definitions such as marginal calibration
and confidence (top) calibration (Vaicenavicius et al., 2019; Widmann et al., 2019).

Nonparametric Hypothesis Testing. Ingster (1986) derives the minimax testing rate
for two-sample testing where s-Hölder continuous densities on [0, 1] are separated in an L2

sense, and shows that the chi-squared test achieves the minimax optimal rate n−2s/(4s+1).
Ingster (1987) extends this result to Lp metrics and derives the minimax optimal rate
n−s/(2s+1−max{2,p}−1) for 1 ≤ p < ∞ and (n/ log n)s/(2s+1) for p = ∞. Ingster (2000)
proposes an adaptive version of the test at the cost of (log log n)s/(4s+1) factor in the minimax
rate. Arias-Castro et al. (2018) extend these results to densities on [0, 1]d and show the
minimax rate n−2s/(4s+d). Kim et al. (2022) prove that a permutation test can also achieve
the same optimal rate. Butucea and Tribouley (2006) study two-sample testing for one-
dimensional densities in Besov spaces; they also prove adaptivity. See also Balakrishnan
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and Wasserman (2018); Donoho and Jin (2015); Jin and Ke (2016); Chhor and Carpentier
(2021); Dubois et al. (2021); Berrett et al. (2021) for reviews and further related works.

Nonparametric Functional Estimation. Bickel and Ritov (1988) study the problem
of estimating the quadratic integral functional of the k-th derivative of s-Hölder probability
densities on R, and prove that the optimal convergence rate is n−[4(s−k)/(4s+1)∧1/2]. Donoho
and Nussbaum (1990); Brown and Low (1996) show an analogous result for regression func-
tions in the Gaussian white noise model. Birgé and Massart (1995) generalize these results
to smooth integral functionals of Hölder densities and their derivatives, and prove the same
convergence rate. Kerkyacharian and Picard (1996) provide optimal Haar wavelet-based
estimators of cubic functionals of densities over the broader class of Besov spaces; and also
discuss estimating integrals of other powers of the density. Laurent (1996) studies estima-
tion of functionals of the form

∫
ϕ(f(x), x)dµ(x) of densities f , where ϕ is a sufficiently

smooth function and µ is a measure. This work constructs estimators attaining the optimal
parametric rate using orthogonal projections, including showing semiparametric efficiency,
when the smoothness s > d/4 in dimension d. Robins et al. (2008); Giné and Nickl (2008);
Tchetgen et al. (2008) introduce estimation method using higher-order U-statistics. Efro-
movich and Low (1996); Cai and Low (2006); Giné and Nickl (2008); Mukherjee et al. (2015)
propose estimation methods adaptive to unknown smoothness s based on Lepski’s method
(Lepski, 1991; Lepski and Spokoiny, 1997). See Giné and Nickl (2021) for a more thorough
review of related literature.

Hypothesis Testing for Calibration. Cox (1958) formulates a test of calibration for a
collection of Bernoulli random variables, as a test that their success probabilities are equal to
some given values; and proposed using a score test for a logistic regression model. These tests
are referred to as testing the calibration slope and intercept, and they are part of a broader
hierarchy of calibration (Van Calster et al., 2016). See also Miller et al. (1991); Steyerberg
(2019) and references therein. Miller (1962), Section 5, suggests a chi-squared test for
testing calibration of a collection of sequences of Bernoulli random variables. Spiegelhalter
(1986) proposes a test of calibration based on the Brier score, for discrete-valued probability
predictors. The Hosmer-Lemeshow test (Hosmer and Lemesbow, 1980) is a goodness-of-fit
test for logistic regression models. The test is based on a chi-squared statistic that measures
differences between expected and observed numbers of events in subgroups, and thus has,
on the surface, a similarity to the types of test statistics we consider. There are also related
tests for comparing predictors (Schervish, 1989; Diebold and Mariano, 1995).

Seillier-Moiseiwitsch and Dawid (1993) study testing the calibration of sequential prob-
ability forecasts. Bröcker and Smith (2007) study the bootstrap-based procedure they call
consistency resampling to produce standard error bars in reliability diagrams; without fo-
cusing on its optimality. For testing the calibration of forecasted densities, Dawid (1984);
Diebold et al. (1998) propose the probability integral transform (PIT). Held et al. (2010)
propose a score-based approach for testing calibration. Vaicenavicius et al. (2019) use con-
sistency resampling to test a hypothesis of perfect calibration; again without studying its
optimality. Widmann et al. (2019) propose kernel-based mis-calibration measures together
with their estimators, and argue that the estimators can be viewed as calibration test
statistics. Tamás and Csáji (2021) suggest distribution-free hypothesis tests for the null
H0 : E[Y | X] = X based on conditional kernel mean embedding.
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Note on Terminology. The term calibration sometimes has a different meaning in a
variety of areas of human activity, including measurement technology, engineering, eco-
nomics, and even statistics, etc., see e.g., Franklin (1999); Dawkins et al. (2001); Kodovskỳ
and Fridrich (2009); Osborne (1991); Vovk et al. (2020); Angelopoulos et al. (2021). These
generally mean adjusting a measurement to agree with a desired standard, within a spec-
ified accuracy. However, in our work, we focus on the notion of probabilistic calibration
described so far.

1.2 Notations

For an integer d ≥ 1, and a vector v ∈ Rd, we refer to the coordinates of v as both
[v]1, . . . , [v]d and v1, . . . , vd. For any p ≥ 1, and for an integer K ≥ 2, we denote the
ℓp-norm of x = (x1, . . . , xK)⊤ ∈ RK by ∥x∥p := (

∑K
i=1 |xi|p)1/p. When p is unspecified,

∥ · ∥ stands for ∥ · ∥2. For an event A, we denote by I(A) its indicator random variable,
where I(A) = 1 if event A happens, and I(A) = 0 otherwise. For two real numbers a, b,
we denote a ∧ b := min(a, b). For two sequences (an)n≥1 and (bn)n≥1 with bn ̸= 0, we write
an ≍ bn if 0 < lim infn an/bn ≤ lim supn an/bn < ∞. When the index n is self-evident,
we may omit it above. We use the Bachmann-Landau asymptotic notations Ω(·),Θ(·) to
hide constant factors in inequalities and use Ω̃(·), Θ̃(·) to also hide logarithmic factors. For
a Lebesgue measurable set A ⊆ Rd, we denote by 1A : Rd → {0, 1} its indicator function
where 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. For a real number s ∈ R, we denote
the largest integer less than or equal to s by ⌊s⌋. Also, the smallest integer greater than or
equal to s is denoted by ⌈s⌉.

2 Definitions and Setup

For K ≥ 2, consider a K-class classification problem where X ∈ X is the input feature
vector (for instance, an image) and Y ∈ Y := {y = (y1, . . . , yK)⊤ ∈ {0, 1}K :

∑K
i=1 yi = 1}

is the one-hot encoded output label (for instance, the indicator of the class of the image:
building, vehicle, etc).

We consider a probabilistic classifier f mapping the feature space to probability distri-
butions over K classes. Formally, the output space is the (K − 1)-dimensional probability
simplex ∆K−1,

∆K−1 := {z = (z1, . . . , zK)⊤ ∈ [0, 1]K : z1 + · · ·+ zK = 1},

i.e., f : X → ∆K−1. For any k ∈ {1, . . . ,K}, the individual component [f(X)]k denotes the
predicted probability of the k-th class. Thus, f is also referred to as a probability predictor.
The probability predictor f is assumed to be pre-trained on data that are independent of
our calibration data at hand.

We assume that the feature-label pair (X,Y ) has an unknown joint probability distri-
bution P on X ×Y. Calibration requires that the predicted probabilities of correctness are
equal to the true probabilities. Thus, given that we predicted the probabilities f(X) = z,
and thus [f(X)]k = [z]k, the true probability that [Y ]k = 1 should be equal to [f(X)]k = [z]k.
Thus, for almost every z, calibration requires that for all k = 1, . . . ,K,

P [[Y ]k = 1 | f(X) = z] = [z]k.

9



Lee, Huang, Hassani, and Dobriban

We can reformulate this in a way that is more convenient to study. The map (x,y) 7→
(f(x),y) induces a probability distribution on ∆K−1 × Y; where we can think of (x,y) as
a realization of (X,Y ). As will be discussed shortly, calibration only depends on the joint
distribution of (f(X), Y ). For this reason, we also denote the joint distribution of (f(X), Y )
by P when there is no confusion. We write Z := f(X) for the predicted probabilities
corresponding to X.

We define the regression function regf : ∆K−1 → ∆K−1 as

regf (z) := E[Y | f(X) = z] = E[Y | Z = z],

where the expectation is conditioned on the score Z with (Z, Y ) ∼ P . Note that each
component, for k = 1, . . . ,K, has the form E[[Y ]k | f(X) = z] = P [[Y ]k = 1 | f(X) = z].
Especially for binary classification, this is also referred to as the calibration curve of the
probabilistic classifier f (Harrell, 2015). Since we are particularly interested in continuous
probability predictors, we assume that the marginal distribution PZ of Z has a density with
respect to the uniform measure on ∆K−1. Then, this expectation is well-defined almost
everywhere.

In this language, the probabilistic classifier f is perfectly calibrated if regf (Z) = Z
almost everywhere.1 Further, it turns out that it is important to study the deviations from
calibration. For this reason, we define the residual function resf : ∆K−1 → RK as

resf (z) := regf (z)− z,

so that perfect calibration amounts to resf (Z) = 0 almost everywhere. When (Z, Y ) have
a joint distribution P , we sometimes write resf = resf,P to display the dependence of the
mis-calibration curve on P . As we will see, the structure of the residual function crucially
determines our ability to detect mis-calibration. In analogy to the notion of calibration
curves mentioned above, we may also call resf the mis-calibration curve of the probabilistic
classifier f .

We observe calibration data (Zi, Yi) ∈ ∆K−1 × Y, i ∈ {1, . . . , n}, sampled i.i.d. from
P , and denote their joint product distribution as Pn. Our goal is to rigorously test if f is
perfectly calibrated based on this finite calibration dataset. The calibration properties of
the probabilistic classifier f can be expressed equivalently in terms of the distribution P
of (f(X), Y ) = (Z, Y ). Therefore, we will sometimes refer to testing the calibration of the
distribution P , and the probabilistic classifier will be implicit.

Expected Calibration Error. The ℓp-ECE (Expected Calibration Error) for the dist-
ribution P , also known as the mean calibration error (e.g., Harrell, 2015, p. 105), is

ℓp-ECE(f) = ℓp-ECEP (f) = EZ∼PZ

[
∥regf (Z)− Z]∥pp

] 1
p = EZ∼PZ

[
K∑
k=1

|[resf (Z)]k|p
] 1

p

.

(1)

1. In the binary case (K = 2), we identify ∆K−1 with [0, 1] via the map (z, 1− z)⊤ 7→ z and use Y = {0, 1}
instead of the one-hot encoded output space. We say f is perfectly calibrated if regf (z) := P (Y = 1 |
f(X) = z) = z almost everywhere.

10
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In words, this quantity measures the average over all classes k = 1, . . . ,K and over the
data distribution X ∼ PX of the per-class error [resf (z)]k = E[[Y ]k | f(X) = z] − [z]k
between the predicted probability of class k for input X—i.e., [z]k = [f(X)]k—and the
actual probability E[[Y ]k | f(X) = z] = P [[Y ]k = 1 | f(X) = z] of that class. For instance,
when the number of classes is K = 2, and the power is p = 1, we have ℓ1-ECE(f) =
EX∼PX

∑2
k=1 |P [[Y ]k = 1 | f(X)]− [f(X)]k| = 2EX∼PX

|P [[Y ]1 = 1 | f(X)]− [f(X)]1|.

Hölder Continuity. We describe the notion of Hölder continuity for functions defined
on ∆K−1. For simplicity, we only provide the definition for K = 2. See Appendix B.1 for
the complete definition for general K ≥ 2.

Identifying ∆1 with [0, 1] via the map (z, 1 − z)⊤ 7→ z, a function g : ∆1 → R can be
equivalently understood as a function g : [0, 1] → R. For an integer d ≥ 0 and a function
g : [0, 1] → R, let g(d) be the d-th derivative of the function g. For a real number s, we
denote the smallest integer greater than or equal to s by ⌈s⌉.

For a Hölder smoothness parameter s > 0 and a Hölder constant L > 0, let HK(s, L) be
the class of (s, L)-Hölder continuous functions g : [0, 1]→ R satisfying, for all x1, x2 ∈ [0, 1]∣∣∣g(⌈s⌉−1)(x1)− g(⌈s⌉−1)(x2)

∣∣∣ ≤ L |x1 − x2|s−⌈s⌉+1 . (2)

In particular, HK(1, L) denotes all L-Lipschitz functions. We consider L > 0 as an arbitrary
fixed constant, and we do not display the dependence of our results on its value. For instance,
when the Lipschitz constant is L = 1, and the Hölder smoothness parameter is s = 1.5,
this is the set of real-valued functions g defined on [0, 1] such that for all x1, x2 ∈ [0, 1],
|g′(x1)− g′(x2)| ≤ L|x1 − x2|0.5.

Goal. Our goal is to test the null hypothesis of perfect calibration, i.e., resf = 0, against
the alternative hypothesis that the model is mis-calibrated. To quantify mis-calibration,
we use the notion of the ℓp-ECE(f) from (1). We study the signal strength needed so that
reliable mis-calibration detection is possible. Further, we assume that the mis-calibration
curves are Hölder continuous because we will show that by only assuming continuity, reliable
detection of mis-calibration is impossible. In Remark 11, We will also discuss what happens
when the mis-calibration function is not Hölder smooth.

Let P be the family of all distributions P over (Z, Y ) ∈ ∆K−1×Y such that the marginal
distribution PZ of Z has a density with respect to the uniform measure on ∆K−1. Define
the collection P0 of joint distributions P of (Z, Y ) under which the probability predictor f
is perfectly calibrated:

P0 := {P ∈ P : resf,P (Z) = 0, PZ-a.s.} .

For a Hölder smoothness parameter s and a Hölder constant L, let Ps,L,K be the family
of probability distributions P ∈ P over the predictions and labels (f(X), Y ) = (Z, Y ) ∈
∆K−1 × Y under which the residual map z 7→ [resf,P (z)]k (i.e., the map resf under the
distribution (Z, Y ) ∼ P ) belongs to the class of (s, L)-Hölder continuous functions HK(s, L)
for every k ∈ {1, . . . ,K}. For a separation rate ε > 0, define the collection P1(ε, p, s) of
joint distributions P ∈ Ps,L,K under which the ℓp-ECE of f is at least ε:

P1(ε, p, s) := {P ∈ Ps,L,K : ℓp-ECEP (f) ≥ ε} . (3)

11
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We will also refer to these distributions as ε-mis-calibrated. Our goal is to test the null
hypothesis of calibration against the alternative of an ε-calibration error:

H0 : P ∈ P0 versus H1 : P ∈ P1(ε, p, s). (4)

Although we consider the null hypothesis of perfect calibration, we generally do not
expect a model trained on finite data to be perfectly calibrated. In this regard, the purpose
of testing (4) is to check if there is statistically significant evidence of mis-calibration, and
not to check whether the predictor f is perfectly calibrated. As usual in hypothesis testing,
not rejecting the null hypothesis does not mean that we accept that f is perfectly calibrated
but means that there is no statistically significant evidence of mis-calibration. In this case, to
gain more confidence that the model is calibrated, one may consider testing other hypotheses
about calibration—such as top-k calibration, (Guo et al., 2017)—or collecting more data; of
course, this may require dealing with multiple testing problems. Meanwhile, since the null
of calibration is not rejected, one may use the classifier as if it was calibrated until evidence
to the contrary is presented.

Moreover, in Remark 4, we also provide results for the null hypothesis of a small enough
calibration error.

Hypothesis Testing. We recall some notions from hypothesis testing (e.g., Lehmann
and Romano, 2005; Ingster, 2012, etc) that we use to formulate our problem. A test ξ is
a function2 ξ : (∆K−1 × Y)n → {0, 1} of the data, given a dataset S = {(Xi, Yi)}ni=1 ∈
(∆K−1×Y)n, the decision ξ(S) of rejecting the null hypothesis. In other words, for a given
dataset S, ξ(S) = 1 means that we detect mis-calibration, and ξ(S) = 0 means that we do
not detect mis-calibration.

Denote the set of all level α ∈ (0, 1) tests, which have a false detection rate (or, false
positive rate; type I error) bounded by α, as

Φn(α) :=

{
ξ : sup

P∈P0

P (ξ = 1) ≤ α
}
.

The probability P (ξ = 1) is taken with respect to the distribution of the sample. For ε > 0
and P ∈ P1(ε, p, s) from (3), we want to minimize the false negative rate (type II error)
P (ξ = 0), the probability of not detecting mis-calibration. We consider the worst possible
value (maximum or rather supremum) supP∈P1(ε,p,s) P (ξ = 0) of the type II error, over all
distributions P ∈ P1(ε, p, s). We then want to minimize this over all tests ξ ∈ Φn(α) that
appropriately control the level, leading to the minimax risk (minimax type II error)

Rn(ε, p, s) := inf
ξ∈Φn(α)

sup
P∈P1(ε,p,s)

P (ξ = 0).

In words, among all tests that have a false detection rate of α < 1 using a sample of size
n, we want to find the one with the best possible (smallest) mis-detection rate over all
ε-mis-calibrated distributions.

We consider α ∈ (0, 1) as a fixed constant, and we do not display the dependence of
our results on its value. We want to understand how large the ℓp-ECE (as measured by

2. To be rigorous, a Borel measurable function.
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ε in P1(ε, p, s)) needs to be to ensure reliable detection of mis-calibration. This amounts
to finding ε′ such that the best possible worst-case risk Rn(ε

′, p, s) is small. For a fixed
β ∈ (0, 1 − α), the minimum separation (signal strength) for s-Hölder functions, in the
ℓp-norm, needed for a minimax type II error of at most β is defined as

εn(β; p, s) := εn(p, s) = inf{ε′ : Rn(ε
′, p, s) ≤ β}.

Since β ∈ (0, 1− α) is fixed, we usually omit the dependence of εn on this value.

Remark 1 (Comparison with classical nonparametric hypothesis testing) As we
summarize in Section 1.1, prior works such as Ingster (1987, 2000, 2012); Berman et al.
(2014) have studied the problem of testing that the Lp norm of a function is zero against
the alternative that it is nonzero, where the function is either a probability density or a
regression function in the Gaussian white noise model. Our task here is different from the
classical problem since regf is not a probability density, and we are not provided independent
observations of the function regf or resf in the Gaussian white noise model. Rather, our
observation model is closer to multinomial regression; which is heteroskedastic and differs
from the above models. While our proposed test shares ideas with the chi-squared test of
Ingster (1987, 2000), it requires a different analysis for the above-mentioned reasons.

3 An Adaptive Debiased Calibration Test

Here we describe our main test for calibration. This relies on a debiased plug-in estimator
for ℓ2-ECE(f)

2. We prove that the test is minimax optimal and discuss why debiasing is
necessary. We also provide an adaptive plug-in test, which can adapt to an unknown Hölder
smoothness parameter s.

3.1 Debiased Plug-in Estimator

The calibration error of a continuous probability predictor f is often estimated by a discre-
tized plug-in estimator associated with a partition (or binning) of the probability simplex
∆K−1 (e.g., Cox, 1958; Harrell, 2015). The early work of Cox (1958) already recommended
grouping together similar probability forecasts. More recently, Guo et al. (2017) divide the
interval [0, 1] into bins of equal width and compute the (top-1) ECE by averaging the dif-
ference between confidence and accuracy in each bin. Vaicenavicius et al. (2019) generalize
this idea to K-class classification and data-dependent partitions.

In this work, we use an equal-volume partition Bm of the probability simplex ∆K−1,
which is parametrized by a binning scheme parameterm ∈ N+. The partition Bm consists of
mK−1 simplices with equal volumes and diameters proportional tom−1. To construct a such
partition, we first divide the simplex ∆K−1 intoK−1 hypersimplices—generalizations of the
standard probability simplex that can have more vertices and edges—by taking intersections
with m−1-scaled and translated K-dimensional hypercubes. The hypersimplices are further
divided into unit volume simplices using the result of Stanley (1977); Sturmfels (1996).
The construction of Bm is elaborated in Appendix B.3. The purpose of using an equal-
volume partition Bm is only for a simpler description of our results, and any partition with
Θ(m−K+1) volumes and Θ(m−1) diameters can be used.

13
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Let us denote the sets comprising the partition as Bm = {B1, . . . , BmK−1}. For each
i ∈ {1, . . . ,mK−1}, define the indices of data points falling into the bin Bi as Im,i := {j :
Zj ∈ Bi, 1 ≤ j ≤ n}. Then, for each i ∈ {1, . . . ,mK−1}, the averaged difference between
probability predictions Zj = f(Xj) and true labels Yj for the probability predictions in Bi

is |Im,i|−1
∑

j∈Im,i
(Yj −Zj). This estimates E[Y −Z | Z ∈ Bi] = E[resf (Z) | Z ∈ Bi]. Now,

the quantity ℓ2-ECE(f)
2 = E[∥resf (Z)∥2] can be approximated by piecewise averaging as∑

1≤i≤mK−1 PZ(Bi)∥E[resf (Z) | Z ∈ Bi]∥2. Plugging in the estimate ∥|Im,i|−1
∑

j∈Im,i
(Yj−

Zj)∥2 of ∥E[resf (Z) | Z ∈ Bi]∥2, we can define a plug-in estimator of ℓ2-ECE(f)
2 as follows:

T b
m,n :=

∑
1≤i≤mK−1

|Im,i|≥1

|Im,i|
n

∥∥∥∥∥∥ 1

|Im,i|
∑

j∈Im,i

(Yj − Zj)

∥∥∥∥∥∥
2

. (5)

Above, the sum is taken over bins Bi containing at least one datapoint. As will be discussed
in Section 3.3, the plug-in estimator is biased in the sense that its expectation is not zero
under perfectly calibrated distributions. Moreover, it does not lead to an optimal test
statistic. Informally, this happens because we are estimating both E[Y | Z ∈ Bi] and
E[Z | Z ∈ Bi] with the same sample (Zi, Yi), i ∈ {1, . . . , n}. We hence define the Debiased
Plug-in Estimator (DPE):

T d
m,n :=

∑
1≤i≤mK−1

|Im,i|≥1

|Im,i|
n

∥∥∥∥∥∥ 1

|Im,i|
∑

j∈Im,i

(Yj − Zj)

∥∥∥∥∥∥
2

− 1

|Im,i|2
∑

j∈Im,i

∥Yj − Zj∥2
 . (6)

The debiasing term in (6) ensures that T d
m,n has mean zero under a distribution P ∈ P0

under which f is a calibrated probability predictor. Due to the discretization, the mean of
T d
m,n is not exactly ℓ2-ECE(f)

2 under P ∈ P1(ε, p, s), but the debiasing makes it comparable

to ℓ2-ECE(f)
2. This will be a crucial step when proving the optimality of T d

m,n.

Remark 2 (Connection to nonparametric functional estimation) The definition of
T d
m,n is closely related to the U-statistic for estimating the quadratic integral functional of

a probability density (Kerkyacharian and Picard, 1996; Laurent, 1996). To see this, let
{ϕi(x) = PZ(Bi)

−1/21Bi(x) : i = 1, . . . ,mK−1} be the Haar scaling functions associated to
the partition Bm. For each 1 ≤ k ≤ K, the U-statistic

1

n(n− 1)

∑
1≤i≤mK−1

∑
1≤j1 ̸=j2≤n

[Yj1 − Zj1 ]k[Yj2 − Zj2 ]kϕi(Zj1)ϕi(Zj2)

is an unbiased estimate of
∑

1≤i≤mK−1 PZ(Bi)
−1(
∫
Bi
[resf (z)]kdPZ(z))

2. Summing over 1 ≤
k ≤ K and plugging in PZ(Bi) ≈ |Im,i|/n, we recover (6) with the minor modification of
changing n→ n− 1 in the scaling.

However, as noted in Remark 1, our problem differs from those studied in classical
nonparametric statistic literature. Specifically, our definition of T d

m,n additionally requires
an estimation of PZ(Bi) by |Im,i|/n. Therefore, prior results on nonparametric functional
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Algorithm 1 T-Cal: an optimal test for calibration (based on debiased plug-in estimation
of the calibration error)

Input: Probability predictor f : X → ∆K−1; i.i.d. sample {(Xi, Yi) ∈ X × Y : i ∈
{1, . . . , n}}; false detection rate α ∈ (0, 1); true detection rate β ∈ (0, 1 − α); Hölder
smoothness s
Initialize: m∗ ← ⌊n2/(4s+K−1)⌋; T d

m∗,n ← 0; Zi ← f(Xi) for 1 ≤ i ≤ n; define
{B1, . . . , BmK−1} as in Appendix B.3
for i = 1 to mK−1

∗ do
Im∗,i ← {j : Zj ∈ Bi, 1 ≤ j ≤ n}

T d
m∗,n ← T d

m∗,n +
|Im∗,i|

n

[∥∥∥ 1
|Im∗,i|

∑
j∈Im∗,i

(Yj − Zj)
∥∥∥2 − 1

|Im∗,i|2
∑

j∈Im∗,i
∥Yj − Zj∥2

]
end for

ξm∗,n ← I

(
T d
m∗,n ≥

√
2K√
α

(
m

K−1
2

∗ n−1 ∧m−K−1
2

∗

))
Output: Reject H0 if ξm∗,n = 1

estimation (Bickel and Ritov, 1988; Donoho and Nussbaum, 1990; Birgé and Massart, 1995)
cannot be directly applied to ℓ2-ECE(f)

2.
Wang et al. (2008); Shen et al. (2020) consider quadratic functional estimation for an

unknown distribution of covariates and show that the minimax rate also depends on the
Hölder smoothness of the covariate density function.

In the following theorem, we prove that T d
m,n leads to a minimax optimal test when

the number of bins is chosen in a specific way, namely m ≍ n2/(4s+K−1). Crucially, the
number of bins required decreases with the smoothness parameter s. In this sense, our
result parallels the well-known results on the optimal choice of the number of bins for
testing probability distributions and densities (Mann and Wald, 1942; Ingster, 2012).

The guarantee on the power (or, Type II error control) requires the following mild con-
dition, stated in Assumption 1. This ensures that the probability of each bin is proportional
to the inverse of the number of bins up to some absolute constant. In particular, this holds
if the density of the probabilities predicted is close to uniform. This assumption is neces-
sary when extending the results of Arias-Castro et al. (2018); Kim et al. (2022) to a general
base probability measure µ of the probability predictions over the probability simplex. See
Appendix B.2 for more discussion.

Assumption 1 (Bounded marginal density) Let ν be the uniform probability measure
on the probability simplex ∆K−1. There exist constants νl, νu > 0 such that νl ≤ dPZ/dν ≤
νu almost everywhere.

Theorem 3 (Calibration test via debiased plug-in estimation) Suppose p ≤ 2 and
assume that the Hölder smoothness parameter s is known. For a binning scheme parameter
m ∈ N+, let

ξm,n(α) = ξm,n := I

(
T d
m,n ≥

√
2K2

α

(
m

K−1
2 n−1 ∧m−K−1

2

))
.
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Under Assumption 1 and for m∗ = ⌊n2/(4s+K−1)⌋, we have

1. False detection rate control. For every P for which f is perfectly calibrated,
i.e., for P ∈ P0, the probability of falsely claiming mis-calibration is at most α, i.e.,
P (ξm∗,n = 1) ≤ α.

2. True detection rate control. There exists c > 0 depending only on
(s, L,K, νl, νu, α, β) such that when

ε ≥ cn−2s/(4s+K−1),

then for every P ∈ P1(ε, p, s)—i.e., when f is mis-calibrated with an ℓp-ECE of ε—the
power (true positive rate) is bounded as P (ξm∗,n = 1) ≥ 1− β.

The proof can be found in Appendix A.1. The proof follows the classical structure of
upper bound arguments in nonparametric hypothesis testing, see e.g., Arias-Castro et al.
(2018); Kim et al. (2022) for recent examples. We compute the mean and variance of
T d
m∗,n under null distributions P0 ∈ P0 and alternative distributions P1 ∈ Ps,L,K with

a large ECE. Using Lemma 13, we can find a lower bound on EP1 [T
d
m∗,n] − EP0 [T

d
m∗,n].

The variances VarP0(T
d
m∗,n) and VarP1(T

d
m∗,n) can be also upper bounded. We argue that

the mean difference EP1 [T
d
m∗,n] − EP0 [T

d
m∗,n] is significantly larger than the square root of

the variances VarP0(T
d
m∗,n) and VarP1(T

d
m∗,n). The conclusion follows from Chebyshev’s

inequality.

Combined with our lower bound in Theorem 10, this result shows the desired property
that our test isminimax optimal. This holds for all p ≤ 2, so that the test is minimax optimal
even when the mis-calibration is measured in the ℓp norm with p < 2. This is consistent
with experimental findings such as those of Nixon et al. (2019), where the empirical ℓ2-
ECE performs better than the empirical ℓ1-ECE as a measure of calibration error. Also see
Section 4.1 for a comparison of the empirical ℓ1-ECE and ℓ2-ECE as a test statistic.

Although we present explicit critical values in Theorem 3, they can be conservative in
practice, as in other works in nonparametric testing (Ingster, 1987; Arias-Castro et al.,
2018; Kim et al., 2022). Therefore, we recommend choosing the critical values via a version
of bootstrap: consistency resampling (Bröcker and Smith, 2007; Vaicenavicius et al., 2019).
See Appendix C.3 for further details on choosing critical values.

Remark 4 So far, we considered the null hypothesis of perfect calibration. However, since
the predictor f is trained on a finite dataset, we cannot expect it to be perfectly calibrated.
We can extend Theorem 3 to the null hypothesis of “small enough” mis-calibration, namely,
for any given constant c0 > 0, an ℓp-ECE of at most c0n

−2s/(4s+K−1). Then, the true and
false positive rates of the test

ξcomp
m,n := I

(
T d
m,n ≥

K√
α

√
2
(
mK−1n−2 ∧m−(K−1)

)
+ 5c20n

− 4s
4s+K−1

(
n−1 ∧m−(K−1)

))
can be controlled as in Theorem 3. See Appendix A.3 for the proof.
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3.2 An Adaptive Test

The binning scheme used in our plug-in test requires knowing the smoothness parameter
s to be minimax optimal. However, in practice, this parameter is usually unknown. Can
we design an adaptive test that does not require knowing this parameter? Here we answer
this question in the affirmative. As in prior works in nonparametric hypothesis testing, e.g.,
Ingster (2000); Arias-Castro et al. (2018); Kim et al. (2022), we propose an adaptive test
that can adapt to an unknown Hölder smoothness parameter s. The idea is to evaluate
the plug-in test over a variety of partitions, and thus be able to detect mis-calibration at
various different scales.

In more detail, we evaluate the test with a number of bins ranging over a dyadic
grid 2, 22, . . . , 2B. In addition, to make sure that we control the false detection rate,
we need to divide the level α by the number of tests performed. Thus, for a number
B = ⌈ 2

K−1 log2(n/
√
log n)⌉ of tests performed, we let the adaptive test

ξadn := max
1≤b≤B

ξ2b,n

( α
B

)
(7)

detect mis-calibration if any of the debiased plug-in tests ξ2b,n (α/B), with the number of

bins 2b, b ∈ {1, . . . , B}, detects mis-calibration at level α/B. We summarize the procedure
in Algorithm 2.

Theorem 5 (Adaptive plug-in test) Suppose p ≤ 2. Under Assumption 1, the adaptive
test from (7) enjoys

1. False detection rate control. For every P for which f is perfectly calibrated,
i.e., for P ∈ P0, the probability of falsely claiming mis-calibration is at most α, i.e.,
P
(
ξadn = 1

)
≤ α.

2. True detection rate control. There exists cad > 0 depending on (s, L,K, νl, νu, α, β)
such that the power (true positive rate) is lower bounded as P (ξadn = 1) ≥ 1 − β
for every P ∈ P1(ε, p, s)—i.e., when f is mis-calibrated with an ℓp-ECE of at least
ε ≥ cad(n/

√
log n)−2s/(4s+K−1).

See Appendix A.4 for the proof. Compared to the non-adaptive test, this test requires a
mild additional factor of (log n)s/(4s+K−1) in the separation rate ε to guarantee detection.
It is well understood in the area of nonparametric hypothesis testing that some adaptation
cost is unavoidable, see for instance Spokoiny (1996); Ingster (2000). For more discussion,
see Remark 14.

Remark 6 We remark that the false detection rate control of Theorem 3 and 5 does not
require a Hölder smoothness assumption.

3.3 Necessity of Debiasing

Recall from (5) that T b
m,n is the plug-in estimator of ℓ2-ECE(f)

2 without the debiasing
term in (6). We argue that this biased estimator is not an optimal test statistic, even for
m = m∗ = ⌊n2/(4s+K−1)⌋ from Theorem 3 (which is optimal for the debiased test), by
presenting a failure case in the following example.
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Algorithm 2 Adaptive T-Cal: an adaptive test for calibration

Input: Probability predictor f : X → ∆K−1; i.i.d. sample {(Xi, Yi) ∈ X × Y : i ∈
{1, . . . , n}}; false detection rate α ∈ (0, 1); true detection rate β ∈ (0, 1− α)
Initialize: B ← ⌈ 2

K−1 log2(n/
√
log n)⌉; Zi ← f(Xi) for 1 ≤ i ≤ n; ξadn ← 0

for b = 1 to B do
Compute ξ2b,n(

α
B ) as in Algorithm 1

if ξ2b,n(
α
B ) = 1 then

ξadn ← 1
break

end if
end for
Output: Reject H0 if ξadn = 1

Example 1 (Failure of naive plug-in) Consider binary classification problem with K =
2, m∗ = ⌊n2/(4s+1)⌋ (assumed to be divisible by four), and the partition

Bm∗ = {B1, . . . , Bm∗} =
{[

0,
1

m∗

)
, . . . ,

[
m∗ − 1

m∗
, 1

]}
.

Let P0 be the distribution over (Z, Y ) ∈ [0, 1]×{0, 1} given by Z
P0∼ Unif([0, 1]) and Y | Z =

z
P0∼ Ber(z) for all z ∈ [0, 1]. Under P0, the probability predictor f is perfectly calibrated,

i.e., P0 ∈ P0. Let ζ : R→ R be the function defined by

ζ(x) := e
− 1

x(1−x)1(0,1)(x). (8)

Let g : [0, 1]→ [0, 1] be the function (corresponding to the calibration curve of the probability
predictor f)

g(z) := z − ρm−s
∗

m∗
4

−1∑
j=0

ζ
(
m∗z −

m∗
4
− j
)
+ ρm−s

∗

m∗
2

−1∑
j=m∗

4

ζ
(
m∗z −

m∗
4
− j
)

(9)

for s ∈ (14 ,
1
2), ρ > 0, and ζ defined in (8). Define the distribution P1 over (Z, Y ) by

Z
P1∼ Unif([0, 1]) and Y | Z = z

P1∼ Ber(g(z))

for all z ∈ [0, 1]. As we will show in the proof of Theorem 10, (1) the mis-calibration curve
g(z)− z = resf (z) is s-Hölder and (2) ℓ2-ECEP1(f) = Θ(n−2s/(4s+1)).

As can be seen in Figure 2a, the probability predictor f under P1 is an example of a
mis-calibrated predictor, as f(X) is smaller than E[Y | f(X)] when f(X) is above 0.5;
and vice versa. However, the mean of T b

m∗,n under the mis-calibrated distribution P1 is
surprisingly smaller than the mean under the calibrated distribution P0 when n is large
enough (Proposition 7).

That is, the statistic T b
m∗,n does not capture the amount of mis-calibration, and therefore

the calibration test based on it will not perform well. Figure 2b confirms this finding, and
Figure 2c displays that this effect can be removed by using the debiased statistic T d

m∗,n.

18



T-Cal: An optimal test for the calibration of predictive models

0.0 0.5 1.0

f(X)

0.00

0.25

0.50

0.75

1.00
E[
Y

|f
(X

)]

(a) Calibration curve under P1

0.060 0.065

T b
m∗,n

0

50

100

150

C
o
u
n
t

P0

P1

(b) Histograms of T b
m∗,n

0.000 0.005

T d
m∗,n

0

50

100

150

C
o
u
n
t

P0

P1

(c) Histograms of T d
m∗,n

Figure 2: (a) A graph of the calibration curve z 7→ g(z) = EP1 [Y | f(X) = z] defined
in (9). When the true label probability is above/below 0.5, the model outputs
a smaller/larger score. Hence f is a mis-calibrated probability predictor under
P1. (b) Histograms of T b

m∗,n and T d
m∗,n under P0 and P1 are obtained from 1,000

independent observations. We use the parameters n = 10, 000, s = 0.3, and
ρ = 100. The dashed line indicates the empirical mean of each distribution. Note
that the biased estimator T b

m∗,n has a smaller mean under P1, which aligns with
Proposition 7. (c) We see this effect disappears after debiasing and that the mean
of T d

m∗,n becomes zero.

Proposition 7 (Failure of naive plug-in test) Let P0 and P1 be the distributions de-
fined in Example 1, and m∗ = ⌊n2/(4s+1)⌋. Then EP0 [T

b
m∗,n] ≥ EP1 [T

b
m∗,n] for all large

enough n ∈ N+.

See Appendix A.5 for the proof. We remark that it is possible to avoid the phenomenon
in Proposition 7, by choosing a different m. Proposition 7 aims only to highlight that the
effect of the bias in T b

m,n can be extreme in certain cases, and we do not claim that m = m∗
is also the optimal choice for the biased statistic.

We finally comment on the related results of Bröcker (2012); Ferro and Fricker (2012);
Kumar et al. (2019). In Bröcker (2012); Ferro and Fricker (2012), the plug-in estimator of
the squared ℓ2-ECE is decomposed into terms related to reliability and resolution. Based
on this observation, Kumar et al. (2019) propose a debiased estimator for the squared ℓ2-
ECE and show an improved sample complexity for estimation. However, their analysis
is restricted to the binary classification case and probability predictors with only finitely
many output values. It is not clear how to adapt their method to predictors with continuous
outputs, because this would require discretizing the outputs. Our debiased plug-in estimator
T d
m,n is more general, as it can be used for multi-class problems and continuous probability

predictors f . Also, our reason to introduce T d
m,n (testing) differs from theirs (estimation).
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Figure 3: (a) A graph of the calibration curve z 7→ gm(z) = EP1,m [Y | f(X) = z] defined in
(10). The mis-calibration curve alternates between negative and positive values,
making detection challenging. (b) We compare our test ξm∗,n with other com-
monly used calibration tests. Since our test optimally adjusts the number of bins
m∗ = ⌊n2/(4s+K−1)⌋ according to the sample size n, it can detect mis-calibration
over smaller and smaller intervals as n grows. On the other hand, the plug-in test
ξm,n, with a fixed-in-n binning scheme parameterm, fails to detect mis-calibration
over intervals smaller than the bin width. This issue remains when the sample
size n increases. The test based on the calibration slope and intercept also suffers
from the same issue. Standard error bars are plotted over 10 repetitions.

4 Experiments

We perform experiments on both synthetic and empirical datasets to support our theoretical
results. These experiments suggest that T-Cal is in general superior to state-of-the-art
methods.

4.1 Synthetic Data: Power Analysis

Let P0 ∈ P0 be the distribution defined in Example 1—a distribution under which f is
perfectly calibrated. For m ∈ N+, s > 0, ρ > 0, and ζ : R→ R from (8), define gm : [0, 1]→
[0, 1] by

gm(z) := z + ρm−s
m−1∑
j=0

(−1)jζ
(
2mz − m

2
− j
)
. (10)

This function oscillates strongly, as shown in Figure 3a. Let P1,m be the distribution over

(Z, Y ) ∈ [0, 1] × {0, 1} given by Z
P1,m∼ Unif([0, 1]) and Y | Z = z

P1,m∼ Ber(gm(z)) for all
z ∈ [0, 1]. Under P1,m, the probability predictor f is mis-calibrated with an ℓp-ECE of
at least ε = ρ∥ζ∥Lpm−s. However, since the mis-calibration curve gm oscillates strongly,
mis-calibration can be challenging to detect.

We study the type II error of tests against the alternative where the mis-calibration is
specified as H1 : (Z, Y ) ∼ P1,m. This gives a lower bound on the worst-case type II error
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Figure 4: Type II error comparison for T d
m∗,n (T-Cal), T b

m∗,n, and T
ℓ1
m∗,n. Using ℓ2 is better

than ℓ1, and debiased ℓ2 (T-Cal) is better than biased ℓ2. Standard error bars
are plotted over 10 repetitions.

over the alternative hypothesis P1(ε, p, s). We repeat the experiment for different values of
m to obtain a plot of ℓ2-ECE versus type II error.

Comparison of Tests. We compare the test ξm∗,n with classical calibration tests dating
back to Cox (1958), and discussed in Harrell (2015); Vaicenavicius et al. (2019). Harrell
(2015) refits a logistic model

P (Y = 1 | Z) = 1

1 + exp
(
−
(
γ0 + γ1 log

Z
1−Z

))
on the sample {(Zi, Yi) : i ∈ {1, . . . , n}} and tests the null hypothesis of γ0 = 0 and γ1 = 1.
Specifically, we perform the score test (Rao, 1948; Silvey, 1959), with the test statistic
derived from the gradient of log-likelihood with respect to the tested parameters. There are
several approaches to set the critical values, including by using the asymptotic distribution
theory of sampling statistics under the null hypothesis, or by data reuse methods such as
the bootstrap. We estimate the critical values via 1000 Monte Carlo simulations.

Vaicenavicius et al. (2019) use ̂ℓ1-ECE, the plug-in estimator for ℓ1-ECE, as their test

statistic. They approximate the distribution of ̂ℓ1-ECE by a bootstrapping procedure called
consistency resampling (in which both the probability predictions and the labels are resam-
pled) and compute a p-value based on this approximation. This test also uses a plug-in
estimator as the test statistic but differs from T-Cal as it is neither debiased nor adaptive.
Since the data-generating distribution is known in this synthetic experiment, we set the
critical value via 1000 Monte Carlo simulations.

We control the false detection rate at a level α = 0.05 and run experiments for n =
2, 000, 5, 000, and 10, 000. We find that our proposed test achieves the lowest type II error,
see Figure 3b. We also find that other tests do not leverage the growing sample size n. For
this reason, we only display n = 10, 000 for the other two tests. As can be seen in Figure
3b, T-Cal outperforms other testing methods in true detection rate by a large margin.
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Figure 5: The dots are log εn computed for different sample sizes n. The red line has a
slope − 2s

4s+1 . Standard error bars are plotted over 10 repetitions. See the text
for more details.

ℓ1-ECE versus ℓ2-ECE. To confirm the effectiveness of using the ℓ2-ECE estimator T d
m∗,n,

we compare it with a plug-in ℓ1-ECE estimator defined as

T ℓ1
m,n :=

∑
1≤i≤mK−1

|Im,i|≥1

|Im,i|
n

∥∥∥∥∥∥ 1

|Im,i|
∑

j∈Im,i

(Yj − Zj)

∥∥∥∥∥∥
1

.

At the moment, it is unknown how to debias this estimator. We use the optimal binning
parameter m = m∗ = ⌊n2/(4s+K−1)⌋ for both ℓ1 and ℓ2 estimators; because it is unknown
what the ℓ1-optimal binning scheme is. Also, to isolate the effect of debiasing, we compare
the biased ℓ2 estimator T b

m∗,n as well, with the same number of bins. In Figure 4, we see
the ℓ2 estimators consistently outperform the ℓ1 estimator, regardless of debiasing. While
it is a common practice to use a plug-in estimator of ℓ1-ECE, our result suggests T-Cal
compares favorably to it.

Minimum Detection Rate. We perform an experiment to support the result on the
minimum detection rate of T-Cal, presented in Theorem 3. For each n, we find the largest
integer, denoted m(n), such that the type II error against H1 : (Z, Y ) ∼ P1,m(n) is less
than 0.05. We compute εn := ℓ2-ECEP1,m(n)

(f) = ρ∥ζ∥L2m(n)−s (a lower bound on the
minimum detection rate) and plot log εn versus log n in Figure 5. We see that the logarithm
decreases as n grows, with the slope − 2s

4s+1 predicted by Theorem 3.

4.2 Results on Empirical Datasets

To verify the performance of adaptive T-Cal empirically, we apply it to the probability
predictions output by deep neural networks trained on several datasets. Since our goal
is to test calibration, we calculate the probabilities predicted by pre-trained models on
the test sets. As in (Guo et al., 2017; Kumar et al., 2019; Nixon et al., 2019, etc), we
binarize the test labels by taking the top-1 confidence as the new probability prediction,
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DenseNet 121 ResNet 50 VGG-19
̂ℓ1-ECE Calibrated? ̂ℓ1-ECE Calibrated? ̂ℓ1-ECE Calibrated?

No Calibration 2.02% reject 2.23% reject 2.13% reject
Platt Scaling 2.32% reject 1.78% reject 1.71% reject
Poly. Scaling 1.71% reject 1.29% reject 0.90% accept
Isot. Regression 1.16% reject 0.62% reject 1.13% accept
Hist. Binning 0.97% reject 1.12% reject 1.28% reject
Scal. Binning 1.94% reject 1.21% reject 1.67% reject

Table 1: The values of the empirical ℓ1-ECE (Guo et al., 2017) and the testing results, via
adaptive T-Cal and multiple binomial testing, of models trained on CIFAR-10.

and the labels as the results of the top-1 classification, i.e., Z̃ = max1≤k≤K [Z]k and Ỹ =
I(correctly classified by the top-1 prediction). This changes the problem of detecting the
full-class mis-calibration to testing the mis-calibration of a binary classifier. Hence, we
choose K = 2 for adaptive T-Cal in the experiments below. We refer readers to (Gupta
and Ramdas, 2022) for more details about binarization via the top-1 prediction.

CIFAR-10. For the CIFAR-10 dataset, the models are DenseNet 121, ResNet 50, and
VGG-19. We first apply the adaptive test directly to the 10, 000 uncalibrated probability
predictions output by each model, with the false detection rate controlled at the level
α = 0.05.

For every choice of the number of bins m, we estimate the critical value by taking
the upper 5% quantile of the values of the test statistic over 3, 000 bootstrap re-samples
of the probability predictions. The labels are also chosen randomly, following Bernoulli
distributions with the probability prediction as the success probability. We also provide the
values of the standard empirical ℓ1-ECE calculated with Guo et al. (2017)’s approach for
the reader’s reference, and with 15 equal-width bins.

We then test the probability predictions of these three models calibrated by several post-
calibration methods: Platt scaling (Platt, 1999), polynomial scaling, isotonic regression
(Zadrozny and Elkan, 2002), histogram binning (Zadrozny and Elkan, 2001), and scaling-
binning (Kumar et al., 2019). To this end, we split the original dataset of 10, 000 images
into 2 sets—of sizes 2, 000 and 8, 000. The first set is used to calibrate the model, and
the second is used to perform adaptive T-Cal and calculate the empirical ℓ1-ECE. In
polynomial scaling, we use polynomials of order 3 to do regression on all the prediction-
label pairs (Zi, Yi), and truncate the calibrated prediction values into the interval [0, 1]. We
set the binning scheme in both histogram binning and scaling binning as 15 equal-mass
bins. Our implementation is adapted from Kumar et al. (2019).

Since the recalibrated probability predictions output by the latter two methods belong
to a finite set, we use a test based on the binomial distribution. See Appendix B.4 for
details. For completeness, we also provide the debiased empirical ℓ2-ECE values (Kumar
et al., 2019) for models calibrated by the two discrete methods, see the details in Table 4,
Appendix C.1.
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Figure 6: The reliability diagrams for VGG-19, trained on CIFAR-10, calibrated by Platt
scaling (left), polynomial scaling (middle), and histogram binning (right). The
bins (bars) containing less than 10 data points, where the sample noise dominates,
are omitted for clarity. The dashed lines correspond to perfect calibration.

The results are listed in Table 1, where we use “accept” to denote that the test does
not reject. The models with smaller empirical ℓ1-ECE are more likely to be accepted, by
adaptive T-Cal and by multiple binomial testing, as perfectly calibrated. This can be further
illustrated by the three empirical reliability diagrams given in Figure 6, where the model’s
predictions calibrated by Platt scaling (left) are visually more “mis-calibrated” than those
calibrated by polynomial scaling (middle) and histogram binning (right).

CIFAR-100. We perform the same experimental procedure for three models pre-trained
on the CIFAR-100 dataset: MobileNet-v2, ResNet 56, and ShuffleNet-v2 (Chen, 2021). The
test set provided by CIFAR-100 is split into two parts, containing 2, 000 and 8, 000 images,
respectively. Since the regression functions regf of models trained on the larger CIFAR-100
dataset can be more complicated than those of models trained on CIFAR-10, we set the
polynomial degree as five in polynomial scaling.

The results are listed in Table 2. The values of the debiased empirical ℓ2-ECE (Kumar
et al., 2019) for the two discrete calibration methods are provided in Table 5, Appendix
C.1. The results roughly align with the magnitude of the empirical ECE value.

However, as can be observed in the column corresponding to ResNet 56, this trend
is certainly not monotone. The calibrated ResNet 56 with the empirical ECE 1.84% is
accepted while the calibrated ResNet 56 with a smaller value 1.57% is rejected. Furthermore,
the test results reveal that models with relatively large (or small) empirical ℓ1-ECE values
may not necessarily be poorly (or well) calibrated since the ℓ1-ECE values measured can
be highly dominated by the sample noise.

ImageNet. We repeat the above experiments on models pre-trained on the ImageNet
dataset. We examine three pre-trained models provided in the torchvision package in Py-
Torch: DenseNet 161, ResNet 152, and EfficientNet-b7. We split the validation set of 50, 000
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MobileNet-v2 ResNet 56 ShuffleNet-v2
̂ℓ1-ECE Calibrated? ̂ℓ1-ECE Calibrated? ̂ℓ1-ECE Calibrated?

No Calibration 11.87% reject 15.2% reject 9.08% reject
Platt Scaling 1.40% accept 1.84% accept 1.34% accept
Poly. Scaling 1.69% reject 1.91% reject 1.81% accept
Isot. Regression 1.76% accept 2.33% reject 1.38% accept
Hist. Binning 1.66% reject 2.44% reject 2.77% reject
Scal. Binning 1.85% reject 1.57% reject 1.65% accept

Table 2: The values of the empirical ℓ1-ECE (Guo et al., 2017) and the testing results, via
adaptive T-Cal and multiple binomial testing, of models trained on CIFAR-100.

images into a calibration set and a test set—of sizes 10, 000 and 40, 000, respectively. We
use polynomials of degree 5 in polynomial scaling.

The results are listed in Table 3. The values of the debiased empirical ℓ2-ECE (Kumar
et al., 2019) are provided in Table 6, in Appendix C.1. As can be seen, the test results here
generally align with the empirical ECE values.

Remark 8 While it is hard to verify the Hölder smoothness of resf in these empirical
datasets, we believe that some level of justification would be possible assuming (1) enough
differentiability on f (which we think to be true for common neural net architectures and
activation functions), (2) Y being deterministic given X (which is reasonable for low-noise
datasets such as ImageNet), and (3) the set of inputs Ck = {x ∈ X : (Y |X = x) =
ek} corresponding to each class being a Lipschitz domain, locally the graph of a Lipschitz
continuous function. Given these assumptions, each coordinate of the regression function
regf (z) can be written as [regf (z)]k = E[[Y ]k|f(X) = z] = PZ(Ck ∩{f(x) = z})/PZ({f(x) =
z}); assuming the denominator is strictly positive. Then, Hölder continuity may follow from
the inverse function theorem and the coarea formula (Federer, 2014, Theorem 3.2.3), which
expresses the measure of a level set as an integral of the Jacobian.

However, this argument still requires making the essentially unverifiable Assumption (3)
from the above paragraph. In some cases, this assumption can be viewed as reasonable: for
instance, one may reasonably think that image manifolds for classes in ImageNet are locally
Lipschitz; and thus Assumption (3) may hold. Under such conditions, this rough argument
may provide an idea of why Hölder smoothness could be reasonable for certain predictive
models such as neural net architectures.

When the Hölder condition does not hold, we still have the type I error guarantee, but
may not have type II error control. We expect that the Hölder condition might be drastically
violated when there is obvious discontinuity of the predictors/regression functions (e.g., a
decision tree/random forest trained on data having discrete features).
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DenseNet 161 ResNet 152 EfficientNet-b7
̂ℓ1-ECE Calibrated? ̂ℓ1-ECE Calibrated? ̂ℓ1-ECE Calibrated?

No Calibration 5.67% reject 4.99% reject 2.82% reject
Platt Scaling 1.58% reject 1.41% reject 1.90% reject
Poly. Scaling 0.62% accept 0.64% accept 0.71% accept
Isot. Regression 0.63% reject 0.80% reject 1.06% reject
Hist. Binning 0.46% reject 1.26% reject 0.88% reject
Scal. Binning 1.55% reject 1.40% reject 1.97% reject

Table 3: The values of the empirical ℓ1-ECE (Guo et al., 2017) and the testing results, via
adaptive T-Cal and multiple binomial testing, of models trained on ImageNet.

5 Lower Bounds for Detecting Mis-calibration

To complement our results on the performance of the plug-in tests proposed earlier, we
now show some fundamental lower bounds for detecting mis-calibration. We also provide a
reduction that allows us to test calibration via two-sample tests and sample splitting. We
show that this has a minimax optimal performance, but empirically does not perform as
well as our previous test.

5.1 Impossibility for General Continuous Mis-calibration Curves

In Proposition 9, we show that detecting mis-calibration is impossible, even when the sample
size n is arbitrarily large unless the mis-calibration curve resf has some level of smoothness.
Intuitively, if the mis-calibration curve can be arbitrarily non-smooth, then it can oscillate
between positive and negative values with arbitrarily high frequency, and these oscillations
cannot be detected from a finite sample.

In this regard, one needs to be careful when concluding the quality of calibration from
a finite sample. If we only assume that the mis-calibration curve is a continuous function of
the probability predictions, then it is impossible to tell apart calibrated and mis-calibrated
models. Further, for more complex models such as deep neural networks, one expects the
predicted probabilities to be able to capture larger and larger classes of functions; thus this
result is even more relevant for modern large-scale machine learning.

Let Pcont
1 (ε, p) be the family of probability distributions P over (Z, Y ) such that

ℓp-ECEP (f) ≥ ε and every entry of the mis-calibration curve resf,P is continuous. This
is a larger set of distributions than P1(ε, p, s) in (3), because we only assume continuity, not
Hölder smoothness. Denote the corresponding minimax type II error by Rcont

n (ε, p), namely

Rcont
n (ε, p) := inf

ξ∈Φn(α)
sup

P∈Pcont
1 (ε,p)

P (ξ = 0).

This has the same interpretation as before, namely, it is the best possible false negative rate
for detecting mis-calibration for data distributions belonging to Pcont

1 (ε, p), in a worst-case
sense.
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Proposition 9 (Impossibility of detecting mis-calibration) Let ε0 = 0.1. For any
level α ∈ (0, 1), the minimax type II error Rcont

n (ε0, p) for testing the null hypothesis of
calibration at level α against the hypothesis P ∈ Pcont

1 (ε0, p) of general continuous mis-
calibration curves satisfies Rcont

n (ε0, p) ≥ 1− α for all n.

In words, this result shows that for a certain fixed ℓp calibration error ε0, and for a fixed
false positive rate α > 0, the false negative rate is at least 1 − α. Thus, it is not possible
to detect mis-calibration in this setting. The choice of the constant ε0 = 0.1 is arbitrary
and can be replaced by any other constant; the result holds with minor modifications to
the proof.

The proof can be found in Appendix A.7. We make a few remarks on related results.
While Example 3.2 of Kumar et al. (2019) demonstrates that—related to earlier results
on probability distribution and density estimation (Mann and Wald, 1942)—using a binned
estimator of ECE can arbitrarily underestimate the calibration error, we show a fundamental
failure not due to binning, but instead due to the finite sample size. Also, our result echoes
Theorem 3 of Gupta et al. (2020) which states that asymptotically perfect calibration is
only possible for probability predictors with a countable support; but this does not overlap
with Proposition 9 as our conclusion is about the impossibility of detecting mis-calibration.

5.2 Hölder Alternatives

As is customary in nonparametric statistics (Ingster, 1987; Low, 1997; Györfi et al., 2002;
Ingster, 2012), we consider testing against Hölder continuous alternatives; or, differently
put, detecting mis-calibration when the mis-calibration curves are Hölder continuous. This
excludes the pathological examples where the mis-calibration curves oscillate widely that
were discussed in Section 5.1; but still allow a very rich class of possible mis-calibration
curves, including non-smooth ones.

Theorem 10 states that, for a K-class classification problem and for alternatives with a
Hölder smoothness parameter s, the mis-calibration of a model can be detected only when
the calibration error is of order Ω(n−2s/(4s+K−1)). In other words, the smallest possible
calibration error that can be detected using a sample of size n is of order n−2s/(4s+K−1).

Testing calibration of a probability predictor in our nonparametric model leads to rates
that are slower than the parametric case n−1/2. This is because 2s/(4s+K − 1) < 1/2 for
s > 0 and K ≥ 2. The rate becomes even slower as the number of classes K grows. This
indicates that evaluating model calibration on a small-sized dataset can be problematic.
Further, it suggests that multi-class calibration may be even harder to achieve.

This rate is what one may expect based on results for similar problems in nonparametric
hypothesis testing (Ingster, 2012), with K − 1 interpreted as the dimension. Specifically,
the rate is equal to the minimum separation rate in two-sample goodness-of-fit testing for
densities on ∆K−1. This connection to two-sample testing will be made clear in Section 6.

Theorem 10 (Lower bound for detecting mis-calibration) Given a level α ∈ (0, 1)
and β ∈ (0, 1 − α), consider the hypothesis testing problem (4), in which we test the
calibration of the K-class probability predictor f assuming (s, L)-Hölder continuity of
mis-calibration curves as defined in (62). There exists clower > 0 depending only on
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(p, s, L,K, α, β) such that, for any p > 0, the minimum ℓp-ECE of f , i.e. εn(p, s), re-
quired to have a test with a false positive rate (type I error) at most α and with a true
positive rate (power) at least 1− β satisfies εn(p, s) ≥ clowern−2s/(4s+K−1) for all n.

See Appendix A.8 for the proof. The proofs of both Proposition 9 and Theorem 10
are based on Ingster’s method, also known as the chi-squared or Ingster-Suslina method
(Ingster, 1987, 2012). Informally, Ingster’s method states that if we can select alternative
distributions with an average likelihood ratio to a null distribution close to unity, then no
test with a fixed level can control the minimax type II error below a certain threshold.

Remark 11 (Hölder smoothness assumption) Since the residual function resf,P de-
pends on the unknown joint distribution P of (Z, Y ), the Hölder continuity of the map
z 7→ [resf (z)]k for each k ∈ {1, . . . ,K} is in general an assumption that we need to make.
When the residual map resf does not satisfy the Hölder assumption, we still have the false
detection rate control in Theorem 3 and 5, but we cannot guarantee the true detection rate
control and the lower bound in Theorem 10. Extending our approach beyond the Hölder
assumption may be possible in future work, inspired by works in nonparametric hypothesis
testing that study—for instance—Besov spaces of functions (Ingster, 2012).

6 Reduction to Two-sample Goodness-of-fit Testing

To further put our work in context in the literature on nonparametric hypothesis test-
ing, in this section we carefully examine the connections between the problem of testing
calibration, and a well-known problem in that area. Specifically, we describe a novel ran-
domization scheme that allows us to reduce the null hypothesis of perfect calibration to a
hypothesis of equality of two distributions—making a strong connection to the problem of
two-sample goodness of fit testing. In other words, we can use a calibrated probabilistic
classifier and randomization to generate two samples from an identical distribution. For
a mis-calibrated classifier the same scheme will generally result in two samples from two
different distributions.

If a classifier is perfectly calibrated, then its class probability predictions will match
the true prediction-conditional class probabilities. Therefore, randomly sampling labels
according to the classifier’s probability predictions will yield a sample from the empirical
distribution. We rely on sample splitting to obtain two samples: the empirical and the
generated one. Then we can use any classical test to check if the two samples are generated
from the same distribution. As we will show, the resulting test has a theoretically optimal
detection rate. However, due to the sample splitting step, its empirical performance is
inferior to the test based on the debiased plug-in estimator from Section 3.

We split our sample into two parts. For i ∈ {⌊n/2⌋ + 1, . . . , n}, we generate random
variables Ỹi following the categorical distribution Cat(Zi) over classes Y = {1, . . . ,K}, with
a K-class probability distribution Zi = f(Xi) predicted by the classifier f . These Ỹi are
independent of each other and of Y1, . . . , Y⌊n/2⌋, due to the sample splitting step. For each
k ∈ {1, . . . ,K}, define

Vk :=
{
Zi : [Yi]k = 1, 1 ≤ i ≤

⌊n
2

⌋}
28



T-Cal: An optimal test for the calibration of predictive models

and

Wk :=
{
Zi : [Ỹi]k = 1,

⌊n
2

⌋
+ 1 ≤ i ≤ n

}
.

By construction, Vk is an i.i.d. sample from the distribution on the probability simplex
∆K−1 with a density3

πVk (z) :=
[regf (z)]k∫

∆K−1
[regf (z)]kdPZ(z)

=
[regf (z)]k

E[Y ]k

with respect to PZ . Similarly, Wk is an i.i.d. sample from the distribution on ∆K−1 with
a density

πWk (z) :=
[z]k∫

∆K−1
[z]kdPZ(z)

=
[z]k
E[Z]k

.

Now we consider testing the null hypothesis

H0 : π
V
k = πWk for all k ∈ {1, . . . ,K}

against the complement of H0. We claim that if we use an appropriate test for this null
hypothesis, with an additional procedure to rule out “easily detectable” alternatives, then
we can obtain a test that attains the optimal rate specified in Theorem 10.

We describe the main idea of this reduction. A formal result can be found in Theorem
12. Let P ∈ P1(ε, p, s) and assume ε = Ω̃(n−2s/(4s+K−1)).4 The squared distance between
πVk and πWk in L2(PZ) is∫

∆K−1

(
[regf (z)]k

E[Y ]k
− [z]k

E[Z]k

)2

dPZ(z) =

∫
∆K−1

(
[resf (z)]k
E[Y ]k

+
[z]k
E[Y ]k

− [z]k
E[Z]k

)2

dPZ(z)

≥ 1

(E[Y ]k)2

∫
∆K−1

[resf (z)]
2
kdPZ(z) +

2E[Z − Y ]k
(E[Y ]k)2E[Z]k

∫
∆K−1

[z]k[resf (z)]kdPZ(z). (11)

Further, ∫
∆K−1

[z]k[resf (z)]kdPZ(z) = EP [[Z]kE[Y − Z|Z]k] = EP [[Z]k[Y − Z]k]. (12)

Since E[Y −Z]k = E[[Z]k[Y −Z]k] = 0 and Var([Y −Z]k),Var([Z]k[Y −Z]k) ≤ 1 under H0,
we can detect mis-calibration for the alternatives P ∈ P1(ε, p, s) such that EP [Y − Z]k =
Ω(n−1/2) or EP [[Z]k[Y −Z]k] = Ω(n−1/2) by rejecting the null hypothesis H0 of calibration
if 1

n

∑n
i=1[Yi − Zi]k ≥ cn−1/2 or 1

n

∑n
i=1[Zi]k[Yi − Zi]k ≥ cn−1/2 for some c > 0. For the

remaining alternatives, choose k0 ∈ {1, . . . ,K} such that

1

(E[Y ]k0)
2

∫
∆K−1

[resf (z)]
2
kdPZ(z) ≥

ε2

K(E[Y ]k0)
2
= Ω̃(n−

4s
4s+K−1 ).

3. We assume that the densities πV
k and πW

k are well defined, and in particular that E[Y ]k > 0 and E[Z]k > 0
for every k ∈ {1, . . . ,K}. This follows from Assumption 2, which will be introduced later in the section.

4. Here we use the notation Ω̃(·) to include the adaptive case. See Corollary 13 and Remark 14 for further
details.
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Then, ∥πVk − πWk ∥2L2(PZ) is at least

Ω̃(n−
4s

4s+K−1 ) +
2E[Z − Y ]k0E[[Z]k0 [Y − Z]k0 ]

(E[Y ]k0)
2E[Z]k0

= Ω̃(n−
4s

4s+K−1 ).

Since |Vk0 |, |Wk0 | = Θ(n) with high probability, the power of the test can be controlled
using standard results on two sample testing. The full procedure is described in Algorithm
3.

In general, for a positive integer d > 0, we allow using an arbitrary deterministic two-
sample testing procedure TSα,β : ([0, 1]d)n1 × ([0, 1]d)n2 → {0, 1}, which takes in two d-
dimensional samples {V1, . . . , Vn1}, {W1, . . . ,Wn2} and outputs “1” if and only if the null
hypothesis is rejected. The two samples {V1, . . . , Vn1} and {W1, . . . ,Wn2} are sampled i.i.d.
from distributions with densities f1 and f2, respectively, with respect to an appropriate
probability measure µ on [0, 1]d. Further, it is assumed that f1 − f2 is (s, L)-Hölder con-
tinuous for a Hölder smoothness parameter s > 0 and a Hölder constant L > 0. Given
α ∈ (0, 1) and β ∈ (0, 1 − α), the two-sample test is required to satisfy, for some cts > 0
depending on (s, L, d, α, β) and on νl, νu from Assumption 1 to be introduced next,

P (TSα,β(V1, . . . , Vn1 ,W1, . . . ,Wn2) = 1) ≤ α if f1 = f2,

P (TSα,β(V1, . . . , Vn1 ,W1, . . . ,Wn2) = 0) ≤ β if ∥f1 − f2∥L2(µ) ≥ cts(n1 ∧ n2)
− 2s

4s+d . (13)

There are a number of such tests proposed in prior work, see e.g., Ingster (2012); Arias-
Castro et al. (2018); Kim et al. (2022) and Appendix B.2. Our general approach allows
using any of these. It is also known that there are adaptive tests TSad that do not require
knowing the Hölder smoothness parameter s. In the adaptive setting, the best-known
minimum required separation in this general dimensional situation is

∥f1 − f2∥L2(µ) ≥ cad
(

n1 ∧ n2
log log(n1 ∧ n2)

)− 2s
4s+d

(14)

for some cad > 0. See Appendix B.2 for examples of TS and TSad.
Next, we state an additional assumption required in our theorem. See Appendix B.2 for

more discussion. Assumption 2 guarantees that every class appears in the dataset. This is
reasonable in many practical settings, as classes that do not appear can be omitted.

Assumption 2 (Lower bounded class probability) There exists a constant dc > 0
such that E[Y ]k > dc for all k ∈ {1, . . . ,K}.

Our result is as follows.

Theorem 12 (Optimal calibration test via sample splitting) Suppose p ≤ 2 and let

ξsplitn be the test described in Algorithm 3. Assume the Hölder smoothness parameter s is
known. Under Assumption 1 and 2, we have

1. False detection rate control. For every P for which f is perfectly calibrated,
i.e., for P ∈ P0, the probability of falsely claiming mis-calibration is at most α, i.e.,
P (ξsplitn = 1) ≤ α.
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Algorithm 3 Sample splitting calibration test ξsplitn

Input: Probability predictor f : X → ∆K−1; i.i.d. sample {(Xi, Yi) ∈ X × Y : i ∈
{1, . . . , n}}; false detection rate α ∈ (0, 1); true detection rate β ∈ (0, 1 − α); Hölder
smoothness s; minimax optimal two-sample density test TS
Procedure: Zi ← f(Xi) for i ∈ {1, . . . , n}; independently sample Ỹi ∼ Cat(Zi) for
i ∈ {⌊n2 ⌋+ 1, . . . , n}
for k = 1 to K do
T1,k ← 1

n

∑n
i=1[Yi − Zi]k, T2,k ← 1

n

∑n
i=1[Zi]k[Yi − Zi]k

Vk ←
{
Zi : [Yi]k = 1, 1 ≤ i ≤

⌊
n
2

⌋}
, Wk ←

{
Zi : [Ỹi]k = 1,

⌊
n
2

⌋
+ 1 ≤ i ≤ n

}
bk ← I

(
|T1,k| ≥

√
3K
αn

)
∨ I
(
|T2,k| ≥

√
3K
αn

)
∨ TS α

3K
,β
2
(Vk,Wk)

end for
Output: Reject H0 if ξsplitn := max{bk : k ∈ {1, . . . ,K}} = 1

2. True detection rate control. There exists csplit > 0 depending on

(s, L,K, νl, νu, dc, α, β) such that the power (true positive rate) is bounded as P (ξsplitn =
1) ≥ 1− β for every P ∈ P1(ε, p, s)—i.e., when f is mis-calibrated with an ℓp-ECE of
at least ε ≥ csplitn−2s/(4s+K−1).

The proof is in Appendix A.9. Theorem 10 and Theorem 12 together imply that the
minimax optimal detection rate for calibration is εn(p, s) ≍ n−2s/(4s+K−1). By replacing TS

with an adaptive test TSad, we obtain an adaptive version of the test ξsplitn .

Corollary 13 (Adaptive test via sample splitting) Suppose p ≤ 2 and let ξad-sn be the
test described in Algorithm 3 with TS replaced by an adaptive two-sample test TSad. Under
Assumption 1 and 2, we have

1. False detection rate control. For every P for which f is perfectly calibrated,
i.e., for P ∈ P0, the probability of falsely claiming mis-calibration is at most α, i.e.,
P (ξad-sn = 1) ≤ α.

2. True detection rate control. There exists cad-s > 0 depending on
(s, L,K, νl, νu, dc, α, β) such that the power (true positive rate) is bounded as P (ξad-sn =
1) ≥ 1− β for every P ∈ P1(ε, p, s)—i.e., when f is mis-calibrated with an ℓp-ECE of
at least ε ≥ cad-s(n/ log log n)−2s/(4s+K−1).

Remark 14 (Adaptation cost and optimality) Spokoiny (1996); Ingster (2000) de-
velop an adaptive chi-squared test for one-dimensional goodness-of-fit testing which can
adapt to an unknown Hölder smoothness parameter s while only losing a (log log n)s/(4s+1)

factor in the separation rate. The test was proven to be minimax optimal in the adaptive
setting. Arias-Castro et al. (2018) extend the adaptive test to a general dimension d and
attain an adaptive test at the cost of

√
log n factor. Kim et al. (2022) provide a stronger

analysis for their permutation test and reduce the adaptation cost to (log log n)2s/(4s+d). To
our knowledge, the minimax optimality of these adaptive tests in general dimensions is so
far not established.
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Figure 7: Type II error comparison for ξm∗,n and ξsplitn . The horizontal dashed line indicates

a type II error of 1−α = 0.95. Since ξsplitn relies on sampling splitting, its effective
sample size is much smaller than that of the plug-in test. This results in higher
type II errors as can be seen in the figure. Standard error bars are plotted over
10 repetitions.

While the adaptive test in Corollary 13 requires an additional factor of
(log log n)2s/(4s+K−1) in the separation rate, Theorem 5 requires a factor of
(log n)s/(4s+K−1). This gap comes from the requirement (14) which we borrow from Kim
et al. (2022). Theorem 6.1 and Lemma C.1 of Kim et al. (2022) develops combinatorial
concentration inequalities to improve a polynomial dependency on α in the separation rate to
a logarithmic dependency. This results in the (log log n)2s/(4s+K−1) factor in their adaptive
test. Since our proof of Theorem 3 uses a quadratic tail bound from Chebyshev’s inequality,
the adaptation cost in Theorem 5 is (log n)s/(4s+K−1). Currently, it appears challenging to
improve the polynomial dependence for T d

m,n, due to its complicated conditional structure.

6.1 Comparison with the Debiased Plug-in Test

We compare the empirical performances of the debiased plug-in test ξm∗,n and the sample

splitting test ξsplitn . As described in Section 4.1, we study the type II error against the fixed
alternative where the mis-calibration is specified as H1 : (Z, Y ) ∼ P1,m, for various values
of m. We use a sample size of n = 20, 000 and pairs of Hölder smoothness and scaling
parameter indicated in Figure 7. The critical value for α = 0.05 and the corresponding
type II error are estimated via 1,000 Monte Carlo simulations. For the sample splitting test
ξsplitn , we use the chi-squared two-sample test of Arias-Castro et al. (2018).

Since ξsplitn relies on sample splitting and discards some of the observations, its effective
sample size is smaller than that of the debiased plug-in test. For this reason, we find that
T-Cal outperforms the sample splitting test by a large margin. While the sample splitting
test reveals a theoretically interesting connection to two-sample density testing, it appears
empirically suboptimal.
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7 Conclusion

This paper studied the problem of testing model calibration from a finite sample. We
analyzed the plug-in estimator of ℓ2-ECE(f)

2 as a test statistic for calibration testing. We
discovered that the estimator needs debiasing and becomes minimax optimal when the
number of bins is chosen appropriately. We also provided an adaptive version of the test,
which can be used without knowing the Hölder smoothness parameter s. We tested T-Cal
with a broad range of experiments, including several neural net architectures and post-hoc
calibration methods.

On the theoretical side, we provided an impossibility result for testing calibration against
general continuous alternatives. Assuming that the calibration curve is s-Hölder-smooth,
we derived a lower bound of Ω(n−2s/(4s+K−1)) on the calibration error required for a model
to be distinguished from a perfectly calibrated one. We also discussed a reduction to two-
sample testing and showed that the resulting test also matches the lower bound.

Interesting future directions include (1) developing a testing framework for comparing
calibration of predictive models, (2) extending the theoretical result to ℓp-ECE with p > 2
and other calibration concepts such as top(-k), within-k, and marginal calibration, (3)
developing a minimax estimation theory for calibration error, and (4) establishing local
rates for testing calibration.
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Appendix A. Proofs

Notations. For completeness and to help the reader, we present (and in some cases recall)
some notations. We will use the symbols := or =: to define quantities in equations. We
will occasionally use bold font for vectors. For an integer d ≥ 1, we denote [d] := {1, . . . , d}
and 1d := (1, 1, . . . , 1)⊤ ∈ Rd. For a vector v ∈ Rd, we will sometimes write [v]i for the i-th
coordinate of v, for any i ∈ [d]. The minimum of two scalars a, b ∈ R is denoted by min(a, b)
or a ∧ b; their maximum is denoted by max(a, b) or a ∨ b. We denote the d-dimensional
Lebesgue measure by Lebd. For a function h : Rd → R, 1 ≤ p < ∞, and a measure µ
on Rd, we let ∥h∥Lp(µ) := (

∫
|h|pdµ)1/p. When µ = Lebd, we omit µ and write ∥h∥Lp . If

p =∞, then ∥h∥Lp := ess supx∈Rd |h(x)|. We denote the ℓp-norm of x = (x1, . . . , xd)
⊤ ∈ Rd

by ∥x∥p := (
∑d

i=1 |xi|p)1/p. When p is unspecified, ∥ · ∥ stands for ∥ · ∥2.
For two sequences (an)n≥1 and (bn)n≥1 with bn ̸= 0, we write an ≍ bn if 0 <

lim infn an/bn ≤ lim supn an/bn < ∞. When the index n is self-evident, we may omit it
above. We use the Bachmann-Landau asymptotic notations Ω(·),Θ(·) to hide constant
factors in inequalities and use Ω̃(·), Θ̃(·) to also hide logarithmic factors. For a Lebesgue
measurable set A ⊆ Rd, we denote by 1A : Rd → {0, 1} its indicator function where
1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. For a real number s ∈ R, we denote the
largest integer less than or equal to s by ⌊s⌋. Also, the smallest integer greater than or
equal to s is denoted by ⌈s⌉.

For an integer d ≥ 1, a vector γ = (γ1, . . . , γd)
⊤ ∈ Nd is called a multi-index. We write

|γ| := γ1+· · ·+γd. For a vector x = (x1, . . . , xd) ∈ Rd and a multi-index γ = (γ1, . . . , γd)
⊤ ∈

Nd, we write xγ := xγ11 · · ·x
γd
d . For a sufficiently smooth function f : Rd → R, we denote

its partial derivative of order γ = (γ1, . . . , γd)
⊤ by f (γ) := ∂γ11 · · · ∂

γd
d f . A pure partial

derivative with respect to an individual coordinate i ∈ [d] is also denoted as ∂if . For two
sets S, T , a map f : S → T , and a subset S′ ⊆ S, we denote by f(S′) the image of S′ under
f . The support of a function f : S → R is the set of points supp(f) := {a ∈ S : f(a) ̸= 0}.

The uniform distribution on a compact set S ⊆ Rd is denoted by Unif(S). The binomial
distribution with n ∈ N trials and success probability p ∈ [0, 1] is denoted by Bin(n, p), and
write Ber(p) := Bin(1, p). For an integer d ≥ 2, we let ∆d−1 := {z = (z1, . . . , zd)

⊤ ∈ [0, 1]d :
z1+· · ·+zd = 1} be the (d−1)-dimensional probability simplex. We denote the multinomial
distribution with n ∈ N trials and class probability vector p ∈ ∆d−1 by Multi(n,p), and
write Cat(p) := Multi(1,p). For a joint distribution (X,Y ) ∼ P , we will write PX , PY for
the marginal distributions of X,Y , respectively. For a distribution Q and a random variable
Z ∼ Q, we will denote expectations of functions of Z with respect to Q as Ef(Z), EZf(Z),
EQf(Z), or EZ∼Qf(Z). We abbreviate almost surely by “a.s.”, and almost everywhere by
“a.e.”

A.1 Proof of Theorem 3

We first state a Lemma used in the proof. This lemma generalizes Lemma 3 in Arias-Castro
et al. (2018) from the uniform measure on the cube to a general probability measure on the
probability simplex. See Section 3.2.2 of Ingster (2012) for a discussion of how such results
connect to geometric notions like Kolmogorov diameters.
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Lemma 15 For m ∈ N+, let Bm = {B1, . . . , BmK−1} be the partition of ∆K−1 defined
in Appendix B.3, and µ be a probability measure on ∆K−1 such that µ(Bi) > 0 for all
i ∈ [mK−1]. For any continuous function h : ∆K−1 → R, define

Wm[h] :=
mK−1∑
i=1

∫
Bi
h(z)dµ(z)

µ(Bi)
1Bi .

There are b1, b2 > 0 depending on (K, s, L) such that for every h ∈ HK(s, L),

∥Wm[h]∥L2(µ) ≥ b1 ∥h∥L2(µ) − b2m
−s.

In other words, mK−1∑
i=1

Eµ[h(Z)I(Z ∈ Bi)]
2

µ(Bi)

 1
2

≥ b1Eµ[h(Z)
2]

1
2 − b2m−s.

The proof can be found in Appendix A.2.

Overview of the proof. The proof follows the classical structure of upper bound argu-
ments in nonparametric hypothesis testing, see e.g., Arias-Castro et al. (2018); Kim et al.
(2022) for recent examples. We compute or bound the mean and variance of T d

m∗,n under
null distributions P0 ∈ P0 and alternative distributions P1 ∈ Ps,L,K with a large ECE.
Using Lemma 15, we can find a lower bound on EP1 [T

d
m∗,n] − EP0 [T

d
m∗,n]. The variances

VarP0(T
d
m∗,n) and VarP1(T

d
m∗,n) can be also upper bounded. We argue that the mean dif-

ference EP1 [T
d
m∗,n]− EP0 [T

d
m∗,n] is significantly larger than the square root of the variances

VarP0(T
d
m∗,n) and VarP1(T

d
m∗,n). The conclusion follows from Chebyshev’s inequality.

Proof Let Ni := |Im∗,i| for each i ∈ [mK−1
∗ ] and I := {i ∈ [mK−1

∗ ] : Ni ≥ 1}. Also write
N := (N1, . . . , NmK−1

∗
)⊤, Z := (Z1, . . . , Zn)

⊤, Y := Y −Z, and Y j := Yj−Zj for all j ∈ [n].
By Assumption 1, ∫

∆K−1

∥resf (z)∥2dPZ(z) ≤ νu
∫
∆K−1

∥resf (z)∥2dz,

where the latter integral is with respect to the uniform measure Unif(∆K−1) on ∆K−1.
Therefore, we may assume PZ = Unif(∆K−1) by merging νu with c. We prove the theorem
for p = 2. Then, the general case follows since P1(ε, p, s) ⊆ P1(ε, 2, s) for all p ≤ 2.

Let P0 ∈ P0 and P1 ∈ Ps,L,K be a null and an alternative distribution over (Z, Y ),
respectively. Write ε := ℓp-ECEP1(f). Under P0 and conditioned on Z, recalling T d

m,n from
(6),

EP0 [T
d
m∗,n | Z] =

1

n

∑
i∈I

1

Ni

∑
j1 ̸=j2∈Im∗,i

EP0

[
Y

⊤
j1Y j2 | Z

]
= 0

because EP0 [Y
⊤
j1Y j2 | Z] = EP0 [Y j1 | Z]⊤EP0 [Y j2 | Z] = 0 for all j1 ̸= j2 ∈ Im∗,i. Therefore,

EP0 [T
d
m∗,n] = EP0 [EP0 [T

d
m∗,n | Z]] = 0. (15)
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Also,

VarP0(T
d
m∗,n | Z) =

1

n2

∑
i∈I

1

N2
i

VarP0

2
∑

j1<j2∈Im∗,i

Y
⊤
j1Y j2 | Z


=

1

n2

∑
i∈I

4

N2
i

∑
j1<j2∈Im∗,i

VarP0

(
Y

⊤
j1Y j2 | Z

)
.

Here we used that the cross terms in the expansion of VarP0(
∑

j1<j2∈Im∗,i
Y j1Y j2 | Z) vanish

since for j1, j2, j3 ∈ Im∗,i that are pairwise different,

CovP0

(
Y

⊤
j1Y j2 , Y

⊤
j1Y j3 | Z

)
= EP0

[
Y

⊤
j2Y j1Y

⊤
j1Y j3 | Z

]
− EP0

[
Y

⊤
j1Y j2 | Z

]
EP0

[
Y

⊤
j1Y j3 | Z

]
= EP0

[
Y j2 | Z

]⊤ EP0

[
Y j1Y

⊤
j1 | Z

]
EP0

[
Y j3 | Z

]
= 0,

and for j1, j2, j3, j4 ∈ Im∗,i that are pairwise different, CovP0

(
Y

⊤
j1Y j2 , Y

⊤
j3Y j4 | Z

)
= 0 by

the independence of Y j1 , Y j2 , Y j3 , Y j4 given Z. Further, since VarP0(Y
⊤
j1Y j2 | Z) ≤ K2 for

all j1 < j2 ∈ Im∗,i,

VarP0(T
d
m∗,n | Z) ≤

1

n2

∑
i∈I

2K2Ni(Ni − 1)

N2
i

≤ 2K2n−2
mK−1

∗∑
i=1

I(Ni ≥ 2).

Thus, by the law of total variance,

VarP0(T
d
m∗,n) = EP0 [VarP0(T

d
m∗,n | Z)] + VarP0(EP0 [T

d
m∗,n | Z]) ≤ 2K2n−2

mK−1
∗∑
i=1

P0(Ni ≥ 2)

= 2K2mK−1
∗ n−2P0(N1 ≥ 2).

Since N1 follows a Binomial distribution with n trials and success probability m−K+1
∗ , and

as (1− x)n−1 ≥ 1− (n− 1)x for any x ∈ [0, 1], we see that

P0(N1 ≥ 2) = 1−
(
1− 1

mK−1
∗

)n−1(
1 +

n− 1

mK−1
∗

)
≤ 1 ∧ n2

m
2(K−1)
∗

. (16)

Therefore, defining τ2 below,

VarP0(T
d
m∗,n) ≤ 2K2

(
mK−1

∗ n−2 ∧m−(K−1)
∗

)
=: τ2. (17)

Under P1, we have

EP1 [T
d
m∗,n | Z] =

1

n

∑
i∈I

1

Ni

∑
j1 ̸=j2∈Im∗,i

EP1

[
Y

⊤
j1Y j2 | Z

]
=

1

n

∑
i∈I

1

Ni

∑
j1 ̸=j2∈Im∗,i

resf (Zj1)
⊤resf (Zj2),
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since for each i ∈ I, EP1 [Y
⊤
j1Y j2 | Z] = EP1 [Y j1 | Z]⊤EP1 [Y j2 | Z] = resf (Zj1)

⊤resf (Zj2) for
all j1 ̸= j2 ∈ Im∗,i. Moreover,

EP1 [T
d
m∗,n | N] = EP1 [EP1 [T

d
m∗,n | Z] | N]

=
1

n

∑
i∈I

Ni(Ni − 1)

Ni
EP1 [resf (Z) | Z ∈ Bi]

⊤EP1 [resf (Z) | Z ∈ Bi]

=
1

n

∑
i∈I

(Ni − 1) ∥EP1 [resf (Z) | Z ∈ Bi]∥2 (18)

and

EP1 [T
d
m∗,n] = EP1 [EP1 [T

d
m∗,n | N]]

=
1

n

mK−1
∗∑
i=1

EP1 [I(Ni ≥ 1)(Ni − 1)] ∥EP1 [resf (Z) | Z ∈ Bi]∥2 .

For any x ∈ [0, 1], we have 1− nx+
(
n
2

)
x2 −

(
n
3

)
x3 ≤ (1− x)n ≤ 1− nx+

(
n
2

)
x2. Applying

the inequality for x = m
−(K−1)
∗ , we derive

1

4

(
n

mK−1
∗

∧ n2

m
2(K−1)
∗

)
≤

((
n

2

)
1

m
2(K−1)
∗

−
(
n

3

)
1

m
3(K−1)
∗

)
∨
(

n

mK−1
∗

− 1

)
≤ EP1 [I(Ni ≥ 1)(Ni − 1)] =

n

mK−1
∗

− 1 +

(
1− 1

mK−1
∗

)n

≤
(
n

2

)
1

m
2(K−1)
∗

≤ n2

m
2(K−1)
∗

.

Also, since (1− x)n ≤ 1 for x ∈ [0, 1], we have

EP1 [I(Ni ≥ 1)(Ni − 1)] ≤ n

mK−1
∗

.

Therefore,

1

4

(
n

mK−1
∗

∧ n2

m
2(K−1)
∗

)
≤ EP1 [I(Ni ≥ 1)(Ni − 1)] ≤

(
n

mK−1
∗

∧ n2

m
2(K−1)
∗

)
. (19)

By Lemma 15, and as ε = (
∑K

k=1 EP1 [[resf (Z)]
2
k])

1/2 ≥ K−1/2
∑K

k=1(EP1 [[resf (Z)]
2
k])

1/2

by the Cauchy-Schwarz inequality,

mK−1
∗∑
i=1

m
−(K−1)
∗ ∥EP1 [resf (Z)I(Z ∈ Bi)]∥2 =

mK−1
∗∑
i=1

K∑
k=1

m
−(K−1)
∗ EP1

[
[resf (Z)]

2
kI(Z ∈ Bi)

]
=

K∑
k=1

W 2
m∗ [[resf (Z)]k] ≥

K∑
k=1

(
b1EP1

[
[resf (Z)]

2
k

] 1
2 − b2m−s

∗

)2
≥

K∑
k=1

(
b21EP1

[
[resf (Z)]

2
k

]
− 2b1b2EP1

[
[resf (Z)]

2
k

] 1
2 m−s

∗

)
≥ b21ε2 − 2

√
Kb1b2m

−s
∗ ε. (20)
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By (19) and (20), defining δ below,

EP1 [T
d
m∗,n] ≥

1

4
(b21ε

2 − 2
√
Kb1b2m

−s
∗ ε)

(
1 ∧ n

mK−1
∗

)
=: δ. (21)

Moreover, we find

VarP1(T
d
m∗,n | N) =

1

n2

∑
i∈I

1

N2
i

VarP1

2
∑

j1<j2∈Im∗,i

Y
⊤
j1Y j2 | N


=

1

n2

∑
i∈I

1

N2
i

[
2Ni(Ni − 1)VarP1

(
Y

⊤
1 Y 2 | Z1, Z2 ∈ Bi

)
+4Ni(Ni − 1)(Ni − 2)CovP1

(
Y

⊤
1 Y 2, Y

⊤
1 Y 3 | Z1, Z2, Z3 ∈ Bi

)]
≤ 1

n2

∑
i∈I

(
2K2Ni(Ni − 1)

N2
i

+
4K2Ni(Ni − 1)(Ni − 2)

N2
i

∥EP1 [resf (Z) | Z ∈ Bi]∥2
)
.

Further, by equations (16), (19) and since ∥EP1 [resf (Z) | Z ∈ Bi]∥2 ≤ EP1 [∥resf (Z)∥2 | Z ∈
Bi],

EP1 [VarP1(T
d
m∗,n | N)]

≤ 1

n2

mK−1
∗∑
i=1

(
2K2P1(Ni ≥ 2) + 4K2EP1 [(Ni − 1)I(Ni ≥ 1)]∥EP1 [resf (Z) | Z ∈ Bi]∥2

)
≤ τ2 + 4K2mK−1

∗ n−2EP1 [(N1 − 1)I(Ni ≥ 1)]

mK−1
∗∑
i=1

EP1 [∥resf (Z)∥2I(Z ∈ Bi)]

≤ τ2 + 4K2ε2(n−1 ∧m−(K−1)
∗ ). (22)

Also, from (18),

VarP1(EP1 [T
d
m∗,n | N]) ≤ 1

n2

mK−1
∗∑
i=1

√
VarP1 [I(Ni ≥ 1)(Ni − 1)] ∥EP1 [resf (Z) | Z ∈ Bi]∥2

2

=
1

n2
VarP1 [I(N1 ≥ 1)(N1 − 1)]m

2(K−1)
∗ ε4.

Writing x = m
−(K−1)
∗ , we have

VarP1 [I(N1 ≥ 1)(N1 − 1)] = nx(1− x) + (1− x)n − (1− x)2n − 2nx(1− x)n.

Using that 1− nx ≤ (1− x)n, we find

VarP1 [I(Ni ≥ 1)(Ni − 1)] = nx(1− x) + (1− x)n[1− (1− x)n − 2nx]

≤ nx(1− x) ≤ nx =
n

mK−1
∗

.
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Similarly,

VarP1 [I(Ni ≥ 1)(Ni − 1)] ≤ nx+ (1− x)n−1[1− (1− x)n − 2nx]

≤ nx+ (1− (n− 1)x)(−nx) ≤ n2x2 = n2

m
2(K−1)
∗

.

Therefore,

VarP1(EP1 [T
d
m∗,n | N]) ≤

(
mK−1

∗
n
∧ 1

)
ε4. (23)

By equations (22), (23), and the law of total variance, defining σ2 below,

VarP1(T
d
m∗,n) = VarP1(EP1 [T

d
m∗,n | N]) + EP1 [VarP1(T

d
m∗,n | N)]

≤ τ2 + 4K2ε2(n−1 ∧m−(K−1)
∗ ) +

(
mK−1

∗
n
∧ 1

)
ε4 =: σ2. (24)

Recalling that m∗ = ⌊n2/(4s+K−1)⌋, we choose c > 0 such that ε ≥ cn−2s/(4s+K−1) implies(√
2

α
+

√
2

β

)
K(m

K−1
2

∗ n−1 ∧m−K−1
2

∗ ) +

√
4

β
Kε

(
n−

1
2 ∧m−K−1

2
∗

)
+

√
1

β

(
mK−1

∗
n
∧ 1

) 1
2

ε2

≤ 1

4
(b21ε

2 − 2
√
Kb1b2m

−s
∗ ε)

(
1 ∧ n

mK−1
∗

)
for all large enough n. For τ , δ, and σ from (17), (21), and (24), this gives

τ√
α
+

σ√
β
≤ δ. (25)

By equations (15), (17), the definition of ξm∗,n from Algorithm (1), and Chebyshev’s in-
equality,

P0(ξm∗,n = 1) ≤ P0

(
T d
m∗,n ≥

τ√
α

)
≤

VarP0(T
d
m∗,n)

τ2/α
≤ α. (26)

By equations (21), (24), (25), and Chebyshev’s inequality,

P1

(
T d
m∗,n <

τ√
α

)
≤ P1

(
T d
m∗,n − EP1 [T

d
m∗,n] ≤

τ√
α
− δ
)

≤ P1

(∣∣∣T d
m∗,n − EP1 [T

d
m∗,n]

∣∣∣ ≥ σ√
β

)
≤

VarP1(T
d
m∗,n)

σ2/β
≤ β. (27)

By the above arguments, Theorem 3 holds for all n ≥ N , where N ∈ N+ depends
on (s, L,K, νl, νu, α, β). If we require c to further satisfy c ≥ N2s/(4s+K−1), then the family
P1(ε, p, s) is empty for n < N given ε ≥ cn−2s/(4s+K−1) > 1. Therefore, Theorem 3 becomes
vacuously true for n < N , and thereby true for all n ∈ N. This finishes the proof.

39



Lee, Huang, Hassani, and Dobriban

A.2 Proof of Lemma 15

We state and prove Lemma 16 and 17 which we use in the proof of Lemma 15.

Lemma 16 Fix h ∈ HK(s, L) and z0 ∈ ∆K−1. Let u be the (⌈s⌉−1)-th order Taylor series
of h at z0. There is L′ depending on (K, s, L) such that

|h(z)− u(z)| ≤ L′ ∥z− z0∥s (28)

for all z ∈ ∆K−1.

Proof Let ψ = π−K as in (62). Recall that for a multi-index γ = (γ1, . . . , γK−1)
⊤ ∈ NK−1,

we write (ψ(z)−ψ(z0))γ =
∏

j∈[K−1](ψj(z)−ψj(z0))
γj . By a Taylor series expansion, there

exists t ∈ [0, 1] such that

h(z) = (h ◦ ψ−1)(ψ(z)) =
∑

γ∈NK−1

0≤|γ|≤⌈s⌉−2

(h ◦ ψ−1)(γ)(ψ(z0))

|γ|!
(ψ(z)− ψ(z0))γ

+
∑

γ∈NK−1

|γ|=⌈s⌉−1

(h ◦ ψ−1)(γ)(tψ(z) + (1− t)ψ(z0))
|γ|!

(ψ(z)− ψ(z0))γ .

Then, h(z)− u(z) equals∑
γ∈NK−1

|γ|=⌈s⌉−1

(h ◦ ψ−1)(γ)(tψ(z) + (1− t)ψ(z0))− (h ◦ ψ−1)(γ)(ψ(z0))

|γ|!
(ψ(z)− ψ(z0))γ .

By the triangle inequality and the s-Hölder continuity of h,

|h(z)− u(z)|

≤
∑

γ∈NK−1

|γ|=⌈s⌉−1

|(h ◦ ψ−1)(γ)(tψ(z) + (1− t)ψ(z0))− (h ◦ ψ−1)(γ)(ψ(z0))|
|γ|!

|(ψ(z)− ψ(z0))γ |

≤
∑

γ∈NK−1

|γ|=⌈s⌉−1

L(t∥ψ(z)− ψ(z0)∥)s−⌈s⌉+1

|γ|!
∥ψ(z)− ψ(z0)∥⌈s⌉−1

≤ L′∥ψ(z)− ψ(z0)∥s ≤ L′∥z− z0∥s.

Lemma 17 Let PK
q be the class of polynomials on RK of degree at most q. There are

a1, a2 > 0 depending on (K, q) such that

∥Wm[v]∥L2(µ) ≥ a1 ∥v∥L2(µ) (29)

for every v ∈ PK
q and m ≥ a2.
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Proof If (29) does not hold, then we can find a sequence {ml}∞l=1 increasing to infinity and
a sequence of polynomials {vl}∞l=1 ⊆ PK

q such that ∥Wml
[vl]∥L2(µ) <

1
l ∥vl∥L2(µ) . Dividing

vl by ∥vl∥L2(µ), we may assume ∥vl∥L2(µ) = 1. Now {v ∈ PK
q : ∥v∥L2(µ) = 1} is compact

in the topology induced by the norm ∥·∥L2(µ), due to the Heine-Borel theorem because it
is closed and bounded. Thus, we can find a convergent subsequence {vlk}∞k=1. Denote the
limit by v∞. On one hand,∥∥∥Wmlk

[v∞]
∥∥∥
L2(µ)

≤
∥∥∥Wmlk

[v∞ − vlk ]
∥∥∥
L2(µ)

+
∥∥∥Wmlk

[vlk ]
∥∥∥
L2(µ)

≤ ∥v∞ − vl∥L2(µ) +
1

lk
→ 0.

Here, we used that

∥Wm[v]∥2L2(µ) =

mK−1∑
i=1

(∫
Bi
v(z)dµ(z)

)2
µ(Bi)

≤
mK−1∑
i=1

∫
Bi

v(z)2dµ(z) = ∥v∥2L2(µ) . (30)

On the other hand, ∥Wmlk
[v∞]∥L2(µ) → ∥v∞∥L2(µ) = 1 since Wmlk

[v∞] → v∞ a.e. µ and
∥Wmlk

[v∞]∥L∞ ≤ ∥v∞∥L∞ . The conclusion follows due to the contradiction.

Now we proceed with the proof of Lemma 15. Since a1 does not depend on m, for
sufficiently largem, we can choose r such thatm/r is an integer andm ≥ a2. Partition ∆K−1

intoM := (m/r)K−1 simplices as described in Appendix B.3 and call them B̃1, . . . , B̃M. By
this construction, we can ensure that each B̃j , j ∈ [M], consists of rK−1 different simplices
Bi (also defined in Appendix B.3). For j ∈ [M], let uj be the (⌈s⌉ − 1)-th order Taylor

expansion of h at an arbitrary vertex of B̃j . Define u :=
∑M

j=1 uj1B̃j
. By equation (28),

|h(z)− u(z)| ≤ L′ diam(B̃1)
s = L′ diam(∆K−1)

s
( r
m

)s
=: bm−s (31)

for all z ∈ ∆K−1. Therefore, by (30) and Lemma 16,

∥Wm[h]∥L2(µ) ≥ ∥Wm[u]∥L2(µ) − ∥Wm[u− h]∥L2(µ)

≥ ∥Wm[u]∥L2(µ) − ∥u− h∥L2(µ) ≥ ∥Wm[u]∥L2(µ) − bm
−s.

Note that

∥Wm[u]∥2L2(µ) =

M∑
j=1

∥∥∥Wm[uj1B̃j
]
∥∥∥2
L2(µ)

,

and that Lemma 17 with q = ⌈s⌉ − 1 can be applied to B̃j and its rK−1 sub-simplices to
get ∥∥∥Wm[uj1B̃j

]
∥∥∥2
L2(µ)

≥ a21
∥∥∥uj1B̃j

∥∥∥2
L2(µ)

.

Thus,

∥Wm[u]∥2L2(µ) ≥
M∑
j=1

a21

∥∥∥uj1B̃j

∥∥∥2
L2(µ)

= a21 ∥u∥
2
L2(µ) .
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In conclusion, combining the above inequalities, and by (31)

∥Wm[h]∥L2(µ) ≥ a1 ∥u∥L2(µ) − bm
−s ≥ a1(∥h∥L2(µ) − bm

−s)− bm−s =: b1 ∥h∥L2(µ) − b2m
−s.

This finishes the proof of Lemma 15.
■

A.3 Proof of Remark 4

We follow the same strategy in Appendix A.1. For null distributions P0 and alterna-
tive distributions P1 such that ℓp-ECEP0(f) ≤ c0n

−2s/(4s+K−1) and ε := ℓp-ECEP1(f) ≥
c1n

−2s/(4s+K−1), we show the mean difference EP1 [T
d
m∗,n] − EP0 [T

d
m∗,n] is larger than

VarP0(T
d
m∗,n)

1/2 and VarP1(T
d
m∗,n)

1/2.

While EP0 [T
d
m∗,n] = 0 under the null hypothesis of perfect calibration, we now have

EP0 [T
d
m∗,n] =

1

n

mK−1
∗∑
i=1

EP0 [I(Ni ≥ 1)(Ni − 1)]∥EP0 [resf (Z) | Z ∈ Bi]∥2

≤ (m
−(K−1)
∗ ∧m−2(K−1)

∗ n)

mK−1
∗∑
i=1

EP0 [∥resf (Z)∥2 | Z ∈ Bi]

≤ c20n
− 4s

4s+K−1 (1 ∧m−(K−1)
∗ n). (32)

Therefore,

EP1 [T
d
m∗,n]− EP0 [T

d
m∗,n] ≥ δ − c

2
0n

− 4s
4s+K−1 (1 ∧m−(K−1)

∗ n) =: δ′.

By the equation (24),

VarP0(T
d
m∗,n) ≤ τ

2 + 5K2c20n
− 4s

4s+K−1 (n−1 ∧m−(K−1)
∗ ) =: (τ ′)2.

Similar to (25), we can choose large enough c1 > 0 such that

τ ′√
α
+

σ√
β
≤ δ′.

The conclusion follows from Chebyshev’s inequality as in (26) and (27).
■

A.4 Proof of Theorem 5

By the union bound, for P ∈ P0,

P (ξadn = 1) ≤
B∑
b=1

P
(
ξ2b,n

( α
B

)
= 1
)
≤

B∑
b=1

α

B
= α.

There exists b0 ∈ {1, . . . , B} such that 2b0−1 < (n/
√
log n)2/(4s+K−1) ≤ 2b0 . Let m0 = 2b0

and repeat the argument in the proof of Theorem 3. The condition (25) for type II error
control is now changed to√

2

α
Km

K−1
2

0 n−1
√
log n+

√
7

β
Km

K−1
2

0 n−1 ≤ 1

4
(b21ε

2 − 2
√
Kb1b2m

−s
0 ε),
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which is satisfied when ε ≥ cad(n/
√
log n)−2s/(4s+K−1) for a sufficiently large cad > 0.

Assuming ε ≥ cad(n/
√
log n)−2s/(4s+K−1) and P ∈ P1(ε, p, s), we have

P (ξadn = 1) ≥ P (ξm0,n = 1) ≥ 1− β.

This finishes the proof.
■

A.5 Proof of Proposition 7

Overview of the proof. We repeat the computation in Appendix A.1. However, due to
the bias term, now the mean difference EP1 [T

b
m∗,n] − EP0 [T

b
m∗,n] cannot be lower bounded

by a positive number. Instead, we prove that EP0 [T
b
m∗,n] ≥ EP1 [T

b
m∗,n] holds for all large

enough n.
Proof We use the same notations as in Appendix A.1. Since

EP0 [T
b
m∗,n | Z] =

1

n

∑
i∈I

1

Ni

 ∑
j∈Im∗,i

EP0

[
Y

2
j | Z

]
+

∑
j1 ̸=j2∈Im∗,i

EP0

[
Y j1Y j2 | Z

]
=

1

n

∑
i∈I

1

Ni

∑
j∈Im∗,i

(
Zj − Z2

j

)
,

we have

EP0 [T
b
m∗,n | N] = EP0 [EP0 [T

b
m∗,n | Z] | N] =

1

n

∑
i∈I

EP0

[
Z − Z2 | Z ∈ Bi

]
. (33)

Similarly,

EP1 [T
b
m∗,n | Z] =

1

n

∑
i∈I

1

Ni

 ∑
j∈Im∗,i

EP1

[
Y

2
j | Z

]
+

∑
j1 ̸=j2∈Im∗,i

EP1

[
Y j1Y j2 | Z

]
=

1

n

∑
i∈I

1

Ni

 ∑
j∈Im∗,i

(regf (Zj)− regf (Zj)
2 + resf (Zj)

2) +
∑

j1 ̸=j2∈Im∗,i

resf (Zj1)resf (Zj2)

 ,
and thus

EP1 [T
b
m∗,n | N] = EP1 [EP1 [T

b
m∗,n | Z] | N] (34)

=
1

n

∑
i∈I

(
EP1

[
regf (Z)− regf (Z)

2 + resf (Z)
2 | Z ∈ Bi

]
+ (Ni − 1)EP1 [resf (Z) | Z ∈ Bi]

2
)
.

Since Z ∼ Unif([0, 1]) under both P0 and P1, the equations (33) and (34) imply

EP0 [T
b
m∗,n | N]− EP1 [T

b
m∗,n | N]

=
1

n

∑
i∈I

(
E[resf (Z)(2Z − 1) | Z ∈ Bi]− (Ni − 1)E[resf (Z) | Z ∈ Bi]

2
)

≥ 1

n

∑
i∈I

E[resf (Z)(2Z − 1) | Z ∈ Bi]− ρ2 ∥ζ∥2L1 m
−2s
∗ .
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Here we used that E[resf (Z) | Z ∈ Bi]
2 ≤ ρ2∥ζ∥2L1m

−2s
∗ for all i ∈ [m∗] and

∑
i∈I(Ni−1) ≤

n. Taking total expectation,

EP0 [T
b
m∗,n]− EP1 [T

b
m∗,n] ≥

1

n
E

[∑
i∈I

E[resf (Z)(2Z − 1) | Z ∈ Bi]

]
− ρ2 ∥ζ∥2L1 m

−2s
∗

=
1

n

m∗∑
i=1

P (Ni ≥ 1)E[resf (Z)(2Z − 1) | Z ∈ Bi]− ρ2 ∥ζ∥2L1 m
−2s
∗

=
1

n
P (N1 ≥ 1)

m∗∑
i=1

E[resf (Z)(2Z − 1) | Z ∈ Bi]− ρ2 ∥ζ∥2L1 m
−2s
∗ . (35)

From (9), we see that E[resf (Z)(2Z − 1) | Z ∈ Bi] ≥ 0 for all i ∈ [m∗]. Thus,

m∗∑
i=1

E[resf (Z)(2Z − 1) | Z ∈ Bi] ≥

m∗
8∑

i=m∗
4

+1

E[resf (Z)(2Z − 1) | Z ∈ Bi]

≥ 1

4

m∗
8∑

i=m∗
4

+1

E[−resf (Z) | Z ∈ Bi] =
ρ

32
∥ζ∥L1 m

1−s
∗ . (36)

Combining (35) and (36), we find

EP0 [T
b
m∗,n]− EP1 [T

b
m∗,n] ≥

ρ

32
P (N1 ≥ 1) ∥ζ∥L1 m

1−s
∗ n−1 − ρ2 ∥ζ∥2L1 m

−2s
∗ . (37)

Since m∗ = ⌊n2/(4s+1)⌋ and 2
4s+1 < 1, we find

lim
n→∞

P (N1 ≥ 1) = lim
n→∞

1−
(
1− 1

m∗

)n

= 1.

Also, we have m1−s
∗ n−1 ≍ n(1−6s)/(4s+1) and m−2s

∗ ≍ n−4s/(4s+1) with 1−6s
4s+1 > −4s

4s+1 . In
conclusion, the RHS of (37) is positive for all large enough n.

A.6 Ingter’s method

Lemma 18 (Ingster’s method for the lower bound) Let P0 ∈ P0 and P1, . . . , PM ∈
P1(ε, p, s) be probability distributions on ∆K−1 ×Y, and suppose that P1, . . . , PM are abso-
lutely continuous with respect to P0. For an i.i.d. sample {(Zi, Yi) : i ∈ {1, . . . , n}} from
P0, define the average likelihood ratio between P1, . . . , PM and P0 as

Ln :=
1

M

M∑
i=1

n∏
j=1

dPi

dP0
(Zj , Yj).

If EP0 [L
2
n] ≤ 1 + (1 − α − β)2, then the minimax type II error (false negative rate) for

testing H0 : P ∈ P0 against H1 : P ∈ P1(ε, p, s) at level α satisfies Rn(ε, p, s) ≥ β and the
minimum separation rate to ensure type II error at most β obeys εn(β; p, s) ≥ ε.
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The proof follows from the results of Ingster (1987, 2012); see also Lemma G.1 in Kim
et al. (2022) for a very clear statement. By definition, it holds that

Rn(ε, p, s) = inf
ξ∈Φn(α)

sup
P∈P1(ε,p,s)

EP [1− ξ] ≥ inf
ξ∈Φn(α)

1

M

M∑
i=1

EPi [1− ξ]

= inf
ξ∈Φn(α)

(
EP0 [1− ξ] +

1

M

M∑
i=1

EPi [1− ξ]− EP0 [1− ξ]

)

≥ 1− α+ inf
ξ∈Φn(α)

(
1

M

M∑
i=1

EPi [1− ξ]− EP0 [1− ξ]

)
.

where the last inequality holds because EP0 [ξ] ≤ α. Further,

∣∣∣∣∣ 1M
M∑
i=1

EPi [1− ξ]− EP0 [1− ξ]

∣∣∣∣∣ =
∣∣∣∣∣EP0 [ξ]−

1

M

M∑
i=1

EPi [ξ]

∣∣∣∣∣ = |EP0 [ξ]− EP0 [ξLn]|

≤ EP0 [|Ln − 1|] ≤
√
EP0 [L

2
n]− 1 ≤ 1− α− β

by a change of variables and the Cauchy-Schwarz inequality. Therefore, we haveRn(ε, p, s) ≥
1−α− (1−α−β) = β. Finally, since ε 7→ Rn(ε, p, s) is non-increasing, we find εn(p, s) ≥ ε.

■

A.7 Proof of Proposition 9

Overview of the proof. We construct distributions P1, . . . , PM over (Z, Y ) under which
the predictor f has an ℓp-ECE of at least ε0 = 0.1. We can choose the mis-calibration
curves of P1, . . . , PM to be orthogonal in L2, so that the cross terms in the expansion of
EP0 [L

2
n] cancel out. By choosing M sufficiently large, we can ensure that EP0 [L

2
n] is at most

1 + (1− α− β)2. The conclusion follows from Lemma 18.

Proof We prove Proposition 9 for the binary case. The generalization to the multi-
class case follows the same argument and is omitted. The construction in this proof is
inspired by Ingster (1987, 2000); Burnashev (1979). Let P0 be a null distribution over
(Z, Y ) ∈ [0, 1] × {0, 1} defined as follows: the distribution of the predicted probabilities

follows Z
P0∼ Unif([0, 1]) and P0(Y = 1 | Z = z) = z for all z ∈ [0, 1]. Under P0, the

probability predictor f is perfectly calibrated. For each i ∈ [M ], let

gi(u) :=

{
u+

√
u(1−u)

3 sin
(
2iπ(u− 1

4)
)

u ∈ [14 ,
3
4 ],

u u /∈ [14 ,
3
4 ],

and define Pi as follows: Z
Pi∼ Unif([0, 1]) and Pi(Y = 1 | Z = z) = gi(z) for all z ∈ [0, 1].
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It can be verified that 0 ≤ gi(u) ≤ 1 for all u ∈ [0, 1]. Since p ≥ 1, for all i ∈ [M ], the
ℓp-ECE of the probability predictor f under Pi is lower bounded as

ℓp-ECEPi(f) ≥ ℓ1-ECEPi(f) = 2

∫ 1

0
|gi(u)− u|du

= 2

∫ 3
4

1
4

√
u(1− u)

3

∣∣∣∣sin(2iπ(u− 1

4

))∣∣∣∣ du ≥ 0.1.

Thus we know that Pi ∈ Pcont
1 (ε0, p) for all i ∈ [M ]. Now, observe that

Ln =
1

M

M∑
i=1

n∏
j=1

dPi

dP0
(Zj , Yj) =

1

M

M∑
i=1

n∏
j=1

1− Yj + (2Yj − 1)gi(Zj)

1− Yj + (2Yj − 1)Zj

and thus, for a random variable (Z, Y ) ∼ P0, and defining Aa,b below

EP0 [L
2
n] =

1

M2

∑
a,b∈[M ]

EP0

 n∏
j=1

1− Yj + (2Yj − 1)ga(Zj)

1− Yj + (2Yj − 1)Zj
· 1− Yj + (2Yj − 1)gb(Zj)

1− Yj + (2Yj − 1)Zj


=

1

M2

∑
a,b∈[M ]

EP0

[
1− Y + (2Y − 1)ga(Z)

1− Y + (2Y − 1)Z
· 1− Y + (2Y − 1)gb(Z)

1− Y + (2Y − 1)Z

]n
=:

1

M2

∑
a,b∈[M ]

EP0 [Aa,b]
n .

In the second line, we have used the independence of the observations. If a = b, then

EP0 [Aa,b] =

∫ 1

0
u
ga(u)

2

u2
+ (1− u)(1− ga(u))

2

(1− u)2
du = 1 +

∫ 1

0

(ga(u)− u)2

u(1− u)
du

=1 +

∫ 3
4

1
4

1

3
sin2

(
2aπ

(
u− 1

4

))
du =

13

12
.

If a ̸= b, then

EP0 [Aa,b] =

∫ 1

0
u
ga(u)gb(u)

u2
+ (1− u)(1− ga(u))(1− gb(u))

(1− u)2
du

=1 +

∫ 1

0

(ga(u)− u)(gb(u)− u)
u(1− u)

du

= 1 +

∫ 3
4

1
4

1

3
sin

(
2aπ

(
u− 1

4

))
sin

(
2bπ

(
u− 1

4

))
du = 1.

Therefore,

EP0 [L
2
n] =

1

M2

(
M

(
13

12

)n

+ (M2 −M)

)
.

Choose a large enough M ∈ N+ such that M ≥ [(13/12)n − 1]/(1− α− β)2. Then,

1

M2

(
M

(
13

12

)n

+ (M2 −M)

)
≤ 1 + (1− α− β)2,
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and the result follows by Lemma 18.

A.8 Proof of Theorem 10

Overview of the proof. We construct mK−1 distributions under which the predictor
f has an ℓp-ECE of Ω(n−2s/(4s+K−1)). The mis-calibration curves are constructed by lin-
early combining bump functions with disjoint supports. By properly scaling them, we can
guarantee Hölder continuity. Also, the mis-calibration curves are chosen to be “almost”
orthogonal in L2, so that the cross terms in the expansion of EP0 [L

2
n] are small. We use

Lemma 18 to conclude.
Proof The proof is inspired by the lower bound arguments in Arias-Castro et al. (2018). For

m := ⌈n2/(4s+K−1)⌉ and η ∈ {±1}[m]K−1
, we define alternative distributions Pη ∈ P1(ε, p, s)

with ε := clowern
−2s/(4s+K−1) and use Lemma 18 to prove εn(p, s) ≥ clowern−2s/(4s+K−1). Let

ζ : R→ R be the function from (8). It can be verified that ζ is infinitely differentiable and
its derivatives of every order are bounded. For ψ = π−K : (z1, . . . , zK)⊤ 7→ (z1, . . . , zK−1)

⊤,
we see that [ 1

2K ,
1
K ]K−1 ⊆ ψ(∆K−1 ∩ [ 1

2K , 1]
K). For each j = (j1, . . . , jK−1)

⊤ ∈ [m]K−1,
define Ψj : RK−1 → R by

Ψj(x1, . . . , xK−1) := m−s
K−1∏
k=1

ζ
(
m(2Kxk − 1)− jk + 1

)
. (38)

Then, each Ψj is supported on the cube

supp(Ψj) =
K−1∏
k=1

(
jk − 1 +m

2Km
,
jk +m

2Km

)
.

The sets supp(Ψj) are disjoint for different indices j ∈ [m]K−1, and we have

⋃
j∈[m]K−1

supp(Ψj) ⊆
[

1

2K
,
1

K

]K−1

⊆ ψ

(
∆K−1 ∩

[
1

2K
, 1

]K)
.

Let cα,β :=
(
log
(
1 + (1− α− β)2

))1/4
and

ρ :=

(
max

t∈{0,...,⌈s⌉}

∥∥∥ζ(t)∥∥∥K−1

L∞

)−1
(

1

2K
∧ L(2K)−⌈s⌉

2
√
K − 1

∧ L(2K)−⌈s⌉+1

4
∧
cα,β(2K)

K−1
2

2
√
K!

)
. (39)

By the definition of ρ in (39), we see that

ρ ∥ζ∥K−1
L∞ ≤ 1

2K
, (40)

ρ
√
K − 1(2K)⌈s⌉

(
max

t∈{0,...,⌈s⌉}

∥∥∥ζ(t)∥∥∥K−1

L∞

)
≤ L

2
, (41)
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2ρ(2K)⌈s⌉−1

(
max

t∈{0,...,⌈s⌉−1}

∥∥∥ζ(t)∥∥∥K−1

L∞

)
≤ L

2
, (42)

and
4ρ2K!(2K)−K+1 ∥ζ∥2(K−1)

L2 ≤ c2α,β ≤ 1. (43)

For each η ∈ {±1}[m]K−1
, define gη : ∆K−1 → RK by

gη(z) := z+ ρ

 ∑
j∈[m]K−1

ηj (Ψj ◦ ψ) (z)

 (1,−1, 0, . . . , 0)⊤.

Then we have gη(∆K−1) ⊆ ∆K−1 for all η ∈ {±1}[m]K−1
. This is because

K∑
k=1

[gη(z)]k =
K∑
k=1

[z]k + ρ

 ∑
j∈[m]K−1

ηj (Ψj ◦ ψ) (z)

− ρ
 ∑

j∈[m]K−1

ηj (Ψj ◦ ψ) (z)

 = 1

for all z ∈ ∆K−1 and

[gη(z)]k =


[z]k ± ρ

∑
j∈[m]K−1 ηj(Ψj ◦ ψ)(z) ≥ 1

2K − ρm
−s ∥ζ∥K−1

L∞ ,

if z ∈ [ 1
2K , 1]

K , k ∈ {1, 2},
[z]k, otherwise.

≥ 0

for all z ∈ ∆K−1 and k ∈ {1, . . . ,K} by (40).
Next, we claim that each coordinate function of the mapping z 7→ gη(z)− z belongs to

HK(s, L), i.e., for all multi-indices γ ∈ NK−1 with |γ| = ⌈s⌉ − 1 and x1,x2 ∈ ψ(∆K−1),

ρ

∣∣∣∣∣∣
∑

j∈[m]K−1

ηj

(
Ψ

(γ)
j (x1)−Ψ

(γ)
j (x2)

)∣∣∣∣∣∣ ≤ L ∥x1 − x2∥s−⌈s⌉+1 . (44)

If m ∥x1 − x2∥ ≤ 1, then from the mean value theorem

ρ
∣∣∣Ψ(γ)

j (x1)−Ψ
(γ)
j (x2)

∣∣∣ ≤ ρ√K − 1 max
γ∈NK−1

|γ′|=⌈s⌉

∥∥∥Ψ(γ′)
j

∥∥∥
L∞
∥x1 − x2∥ . (45)

By the definition of Ψj in (38), for any γ ′ = (γ′1, . . . , γ
′
K−1)

⊤ ∈ NK−1 with |γ ′| = ⌈s⌉,

∥∥∥Ψ(γ′)
j

∥∥∥
L∞

= m|γ′|−s(2K)|γ
′|
K−1∏
k=1

∥∥∥ζ(γ′
k)
∥∥∥
L∞
≤ m⌈s⌉−s(2K)⌈s⌉ max

t∈{0,...,⌈s⌉}

∥∥∥ζ(t)∥∥∥K−1

L∞
. (46)

Plugging (46) into (45), and using (41), we reach

ρ
∣∣∣Ψ(γ)

j (x1)−Ψ
(γ)
j (x2)

∣∣∣ ≤ ρ√K − 1m⌈s⌉−s(2K)⌈s⌉
(

max
t∈{0,...,⌈s⌉}

∥∥∥ζ(t)∥∥∥K−1

L∞

)
∥x1 − x2∥

≤ L

2
m⌈s⌉−s ∥x1 − x2∥ ≤

L

2
∥x1 − x2∥s−⌈s⌉+1 .
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If m ∥x1 − x2∥ > 1, using (42), we similarly get

ρ
∣∣∣Ψ(γ)

j (x1)−Ψ
(γ)
j (x2)

∣∣∣ ≤ 2ρ max
|γ′|=⌈s⌉−1

∥∥∥Ψ(γ′)
j

∥∥∥
L∞

≤ 2ρm⌈s⌉−s−1(2K)⌈s⌉−1

(
max

t∈{0,...,⌈s⌉−1}

∥∥∥ζ(t)∥∥∥K−1

L∞

)
≤ L

2
m⌈s⌉−s−1 ≤ L

2
∥x1 − x2∥s−⌈s⌉+1 .

Thus, for any j ∈ [m]K−1 and x1,x2 ∈ ψ(∆K−1), it holds that

ρ
∣∣∣Ψ(γ)

j (x1)−Ψ
(γ)
j (x2)

∣∣∣ ≤ L

2
∥x1 − x2∥s−⌈s⌉+1 . (47)

Given x1,x2 ∈ ψ(∆K−1), there can be two cases: (1) there exists j1 ∈ [m]K−1 such that

ρ

 ∑
j∈[m]K−1

ηj

(
Ψ

(γ)
j (x1)−Ψ

(γ)
j (x2)

) = ρηj1

(
Ψ

(γ)
j1

(x1)−Ψ
(γ)
j1

(x2)
)
;

or (2) there exist distinct j1, j2 ∈ [m]K−1 such that x1 ∈ supp(Ψj1) and x2 ∈ supp(Ψj2).
In the first case, (44) directly follows from (47). In the second case, choose a point x3

on the line segment connecting x1 and x2 such that x3 /∈ supp(Ψj1) ∪ supp(Ψj2). Such a
point exists since supp(Ψj1), supp(Ψj2) are open and supp(Ψj1) ∩ supp(Ψj2) = ∅. For any
γ ∈ NK−1 with |γ| = ⌈s⌉ − 1, we have

ρ

∣∣∣∣∣∣
∑

j∈[m]K−1

ηj

(
Ψ

(γ)
j (x1)−Ψ

(γ)
j (x2)

)∣∣∣∣∣∣ = ρ
∣∣∣ηj1Ψ

(γ)
j1

(x1)− ηj2Ψ
(γ)
j2

(x2)
∣∣∣

= ρ
∣∣∣ηj1Ψ

(γ)
j1

(x1)− ηj1Ψ
(γ)
j1

(x3) + ηj2Ψ
(γ)
j2

(x3)− ηj2Ψ
(γ)
j2

(z2)
∣∣∣

≤ ρ
∣∣∣Ψ(γ)

j1
(x1)−Ψ

(γ)
j1

(x3)
∣∣∣+ ρ

∣∣∣Ψ(γ)
j2

(x3)−Ψ
(γ)
j2

(x2)
∣∣∣

≤ L

2
∥x1 − x3∥s−⌈s⌉+1 +

L

2
∥x3 − x2∥s−⌈s⌉+1 ≤ L ∥x1 − x2∥s−⌈s⌉+1 .

The second inequality holds because of (47), and the last inequality holds because ∥x1 −
x3∥, ∥x3 − x2∥ ≤ ∥x1 − x2∥ and s− ⌈s⌉+ 1 > 0. This finishes the proof of (44).

Now, let P0 and Pη, η ∈ {±1}[m]K−1
, be the distributions of (Z, Y ) ∈ ∆K−1 × Y

characterized by

Z
P0∼ Unif(∆K−1), Y | Z = z

P0∼ Cat(z) for all z ∈ ∆K−1,

and

Z
Pη∼ Unif(∆K−1), Y | Z = z

Pη∼ Cat(gη(z)) for all z ∈ ∆K−1.

We have P0 ∈ P0 by definition. For Z ∼ Unif(∆K−1) and j0 := 1K−1 ∈ [m]K−1,

ℓp-ECEPη(f)
p = E

[
K∑
k=1

|[gη(Z)− Z]k|p
]
= 2ρpE

∣∣∣∣∣∣
∑

j∈[m]K−1

ηj(Ψj ◦ ψ)(Z)

∣∣∣∣∣∣
p

= 2(K − 1)!ρpmK−1

∫
RK−1

|Ψj0(x)|pdx.
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Further,

mK−1

∫
RK−1

|Ψj0(x)|pdx = m−ps
K−1∏
k=1

(
m

∫
R
|ζ (m(2Kxk − 1))|p dxk

)
= m−ps(2K)−K+1 ∥ζ∥(K−1)p

Lp . (48)

Thus, we have

ℓp-ECEPη(f) = (2(2K)−K+1(K − 1)!)
1
p ρm−s ∥ζ∥K−1

Lp ≥ clowern−
2s

4s+K−1 (49)

for some clower > 0 because

lim
n→∞

m−s

n−
2s

4s+K−1

= lim
n→∞

(
⌈n

2
4s+K−1 ⌉

)−s
n−

2s
4s+K−1 = 1.

From (44) and (49), we see that Pη ∈ P1(ε, p, s) with ε = clowern
−2s/(4s+K−1) for all η ∈

{±1}[m]K−1
.

The final step is to apply Lemma 18. Given n i.i.d. observations {(Zi, Yi) : i ∈ [n]}, the
average likelihood ratio between Pη, η ∈ {±1}[m]K−1

, and P0 is

Ln =
1

2mK−1

∑
η∈{±1}[m]K−1

n∏
i=1

[gη(Zi)]argmaxk[Yi]k

[Zi]argmaxk[Yi]k

.

Let η1, η2 be independent random variables uniformly drawn from {±1}[m]K−1
, and (Z, Y ) ∼

P0. Then,

EP0 [L
2
n] = Eη1,η2EP0

n∏
i=1

[gη1(Zi)]argmaxk[Yi]k

[Zi]argmaxk[Yi]k

·
[gη2(Zi)]argmaxk[Yi]k

[Zi]argmaxk[Yi]k

= Eη1,η2

(
EP0

[gη1(Z)]argmaxk[Y ]k [gη2(Z)]argmaxk[Y ]k

[Z]2argmaxk[Y ]k

)n

.

Moreover,

EP0

[gη1(Z)]argmaxk[Y ]k [gη2(Z)]argmaxk[Y ]k

[Z]2argmaxk[Y ]k

=

∫
∆K−1

(
K∑
k=1

[z]k
[gη1(z)]k[gη2(z)]k

[z]2k

)
dz

= 1 +

∫
∆K−1

(
K∑
k=1

[gη1(z)− z]k[gη2(z)− z]k

[z]k

)
dz

= 1 + ρ2
∫
∆K−1

 ∑
j∈[m]K−1

η1
j (Ψj ◦ ψ)(z)

 ∑
j∈[m]K−1

η2
j (Ψj ◦ ψ)(z)

( 1

[z]0
+

1

[z]1

)
dz
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where the integral
∫
∆K−1

is over Unif(∆K−1). Since {supp(Ψj) : j ∈ [m]K−1} is a collection

of pairwise disjoint sets,

∫
∆K−1

 ∑
j∈[m]K−1

η1
j (Ψj ◦ ψ)(z)

 ∑
j∈[m]K−1

η2
j (Ψj ◦ ψ)(z)

( 1

[z]0
+

1

[z]1

)
dz

=

∫
∆K−1

 ∑
j∈[m]K−1

η1
jη

2
j (Ψj ◦ ψ)(z)2

( 1

[z]0
+

1

[z]1

)
dz.

The random variable (η1
jη

2
j )j∈[m]K−1 is also uniformly distributed on {±1}[m]K−1

. Hence,

EP0 [L
2
n] = Eη1

1 + ρ2
∑

j∈[m]K−1

η1
j

∫
∆K−1

(Ψj ◦ ψ)(z)2
(

1

[z]0
+

1

[z]1

)
dz

n

. (50)

Since
⋃

j∈[m]K−1 supp(Ψj) ⊆ ψ(∆K−1∩[ 1
2K , 1]

K), we have 1
[z]0

+ 1
[z]1
≤ 4K for every z ∈ ∆K−1

such that (Ψj ◦ ψ)(z) ̸= 0 for at least one j ∈ [m]K−1. Thus,

∣∣∣∣∣∣ρ2
∑

j∈[m]K−1

ηj

∫
∆K−1

(Ψj ◦ ψ)(z)2
(

1

[z]0
+

1

[z]1

)
dz

∣∣∣∣∣∣
≤ ρ2

∑
j∈[m]K−1

∣∣∣∣∣
∫
∆K−1

(Ψj ◦ ψ)(z)2
(

1

[z]0
+

1

[z]1

)
dz

∣∣∣∣∣
≤ ρ2

∑
j∈[m]K−1

4K

∣∣∣∣∣
∫
∆K−1

(Ψj ◦ ψ)(z)2dz

∣∣∣∣∣ = 4ρ2K!mK−1

∫
RK−1

Ψj0(x)
2dx. (51)

The last equality is because Unif(∆K−1) has density (K−1)! with respect to LebK−1, when
projected to RK−1. Also, by (43) and (48),

4ρ2K!mK−1

∫
RK−1

Ψj0(x)
2dx = 4ρ2K!m−2s(2K)−K+1 ∥ζ∥2(K−1)

L2 ≤ c2α,βm−2s ≤ 1.

By (50) and that (1 + x)n ≤ exp(nx) for all x ∈ (−1, 1],

EP0 [L
2
n] ≤ Eη1 exp

nρ2 ∑
j∈[m]K−1

η1
j

∫
∆K−1

(Ψj ◦ ψ)(z)2
(

1

[z]0
+

1

[z]1

)
dz

 . (52)
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Since {η1
j : j ∈ [m]K−1} is a set of i.i.d. random variables drawn from Unif({±1}), we

have, with cosh(x) := [exp(x) + exp(−x)]/2,

Eη1 exp

nρ2 ∑
j∈[m]K−1

η1
j

∫
∆K−1

(Ψj ◦ ψ)(z)2
(

1

[z]0
+

1

[z]1

)
dz


=

∏
j∈[m]K−1

Eη1
j
exp

(
nρ2η1

j

∫
∆K−1

(Ψj ◦ ψ)(z)2
(

1

[z]0
+

1

[z]1

)
dz

)

=
∏

j∈[m]K−1

cosh

(
nρ2

∫
∆K−1

(Ψj ◦ ψ)(z)2
(

1

[z]0
+

1

[z]1

)
dz

)
.

Similarly to (51) and (52), we have∣∣∣∣∣nρ2
∫
∆K−1

(Ψj ◦ ψ)(z)2
(

1

[z]0
+

1

[z]1

)
dz

∣∣∣∣∣ ≤ c2α,βm−2s−K+1n ≤ 1 (53)

for each j ∈ [m]K−1. Using that cosh(x) ≤ 1 + x2 ≤ ex2
for x ∈ [−1, 1],

∏
j∈[m]K−1

cosh

(
nρ2

∫
∆K−1

(Ψj ◦ ψ)(z)2
(

1

[z]0
+

1

[z]1

)
dz

)

≤ exp

 ∑
j∈[m]K−1

(
nρ2

∫
∆K−1

(Ψj ◦ ψ)(z)2
(

1

[z]0
+

1

[z]1

)
dz

)2
 .

Again from (53), it follows that

exp

 ∑
j∈[m]K−1

(
nρ2

∫
∆K−1

(Ψj ◦ ψ)(z)2
(

1

[z]0
+

1

[z]1

)
dz

)2


≤ exp(c4α,βm
−4s−K+1n2) ≤ 1 + (1− α− β)2.

In conclusion, εn(p, s) ≥ clowern−2s/(4s+K−1) by Lemma 18.

A.9 Proof of Theorem 12

Overview of the proof. Under P ∈ P0, we prove that T1,k and T2,k have zero mean, and
their variances are bounded by unity. By rejecting H0 when |T1,k| ≥

√
3K/αn or |T2,k| ≥√

3K/αn, we can filter out distributions P ∈ P1(ε, p, s) such that EP [T1,k] = Ω(n−1/2) or
EP [T2,k] = Ω(n−1/2). For the remaining cases, we compute ∥πVk − πWk ∥L2(PZ) and show it

is lower bounded by Ω(n−2s/(4s+K−1)). We conclude using the minimax optimality of the
two-sample test TS.
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Proof We prove the theorem for p = 2. Then, the general case follows since P1(ε, p, s) ⊆
P1(ε, 2, s) for all p ≤ 2. Assume P ∈ P0. By the union bound,

P (ξsplitn = 1) ≤
K∑
k=1

[
P

(
|T1,k| ≥

√
3K

αn

)
+ P

(
|T2,k| ≥

√
3K

αn

)
+ P

(
TS α

3K
,β
2
(Vk,Wk) = 1

)]
.

Moreover, for all k ∈ {1, . . . ,K},

EP [Y − Z]k = EP [EP [[Y − Z]k|Z]] = EP [[EP [Y |Z]− Z]k] = 0

and VarP ([Y − Z]k) = EP [[Y − Z]2k] ≤ 1. Thus, by Chebyshev’s inequality

P

(
|T1,k| ≥

√
3K

αn

)
≤ αn

3K
VarP (T1,k) =

α

3K
VarP ([Y − Z]k) ≤

α

3K
.

Similarly, we have

P

(
|T2,k| ≥

√
3K

αn

)
≤ αn

3K
VarP (T2,k) =

α

3K
VarP ([Z]k[Y − Z]k) ≤

α

3K
.

From (13), we know that P (TS α
3K

,β
2
(Vk,Wk) = 1) ≤ α

3K . Therefore,

P (ξsplitn = 1) ≤
K∑
k=1

( α

3K
+

α

3K
+

α

3K

)
= α.

Let P ∈ P1(ε, p, s) and suppose that, for some k ∈ {1, . . . ,K},

|EP [T1,k]| = |EP [Y − Z]k| ≥
1√
n

(√
3K

α
+

1√
β

)
. (54)

By Chebyshev’s inequality,

P

(
|T1,k − EP [T1,k]| ≤

1√
βn

)
≥ 1− βnVarP (T1,k) ≥ 1− β.

Note that (54) and |T1,k − EP [T1,k]| ≤ 1/
√
βn imply

|T1,k| ≥ |EP [T1,k]| − |T1,k − EP [T1,k]| ≥
√

3K

αn
.

Therefore,

P (ξsplitn = 1) ≥ P

(
|T1,k| ≥

√
3K

αn

)
≥ P

(
|T1,k − EP [T1,k]| ≤

1√
βn

)
≥ 1− β.

The same conclusion can be drawn when

|EP [T2,k]| = |EP [[Z]k[Y − Z]k]| ≥
1√
n

(√
3K

α
+

1√
β

)
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for some k ∈ {1, . . . ,K}.
Now it remains to prove the claim for P ∈ H(ε, p, s) such that

|EP [Y − Z]k| ∨ |EP [[Z]k[Y − Z]k]| <
1√
n

(√
3K

α
+

1√
β

)
(55)

for every k ∈ {1, . . . ,K}. Since

ℓ2-ECEP (f)
2 =

K∑
k=1

∫
∆K−1

[resf (z)]
2
kdPZ(z) ≥ ε2,

we can choose k0 ∈ {1, . . . ,K} such that
∫
∆K−1

[resf (z)]
2
k0
dPZ(z) ≥ ε2

K . Choose c
′
split > 0

such that, for dc from Assumption 2 and cts from (13),

(c′split)
2

K
≥ 4

d3c

(√
3K

α
+

1√
β

)2

+ c2ts

(
dc
8

)− 4s
4s+K−1

. (56)

There exists N ∈ N+ such that for all n ≥ N ,

1√
n

(√
3K

α
+

1√
β

)
≤ dc

2
, 2

(
2

e

) dcn
8

≤ β

2
. (57)

Let csplit = c′split ∨ N2s/(4s+K−1). If n < N , then P1(ε, p, s) is empty since ε ≥
csplitn

−2s/(4s+K−1) > 1, so the claim is vacuously true. Assume n ≥ N . By (55), (57),
and Assumption 2,

EP [Z]k0 ≥ EP [Y ]k0 − |EP [Y − Z]k0 | ≥
dc
2
. (58)

By (11), (12), (55), and (58), ∥πVk0 − π
W
k0
∥2L2(PZ) is lower bounded by

1

(EP [Y ]k0)
2

∫
∆K−1

[resf (z)]
2
k0dPZ(z) +

2EP [Z − Y ]k0EP [[Z]k0 [Y − Z]k0 ]
(EP [Y ]k0)

2EP [Z]k0

≥ ε2

K
− 4

d3c

(√
3K

α
+

1√
β

)2

n−1.

Further by ε ≥ c′splitn−2s/(4s+K−1) and (56),

ε2

K
− 4

d3c

(√
3K

α
+

1√
β

)2

n−1 ≥

(c′split)
2

K
− 4

d3c

(√
3K

α
+

1√
β

)2
n−

4s
4s+K−1

≥ c2ts
(
dcn

8

)− 4s
4s+K−1

. (59)

In conclusion, ∥∥πVk0 − πWk0 ∥∥L2(PZ)
≥ cts

(
dcn

8

)− 2s
4s+K−1

.
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Note that πVk0 − π
W
k0

is s-Hölder since it is a linear combination of two s-Hölder functions
z 7→ [resf (z)]k0 and z 7→ [z]k0 , possibly with different Hölder constants. Thus by (13), we
have

P
(
TS α

3K
,β
2
(Vk0 ,Wk0) = 1 | |Vk0 | = v, |Wk0 | = w

)
≥ 1− β

2
(60)

given that v, w ≥ dcn
8 . For convenience, assume that n is even (if required, drop an obser-

vation). Since |Vk0 | ∼ Bin(n2 ,EP [Y ]k0) and |Wk0 | ∼ Bin(n2 ,EP [Z]k0), we find

P

(
|Vk0 | <

nEP [Y ]k0
4

)
≤
(
2

e

)nEP [Y ]k0
4

, P

(
|Wk0 | <

nEP [Z]k0
4

)
≤
(
2

e

)nEP [Z]k0
4

by Chernoff’s inequality (Exercise 2.3.2 of Vershynin (2018)). Therefore,

P

(
|Vk0 | <

dcn

8
or |Wk0 | <

dcn

8

)
≤ P

(
|Vk0 | <

dcn

8

)
+ P

(
|Wk0 | <

dcn

8

)
≤ P

(
|Vk0 | <

nEP [Y ]k0
4

)
+ P

(
|Wk0 | <

nEP [Z]k0
4

)

≤
(
2

e

)nEP [Y ]k0
4

+

(
2

e

)nEP [Z]k0
4

≤ 2

(
2

e

) dcn
8

≤ β

2
,

and thus

P

(
|Vk0 |, |Wk0 | ≥

dcn

8

)
≥ 1− β

2
. (61)

The last inequality holds by (56). Finally by (60) and (61),

P
(
TS α

3K
,β
2
(Vk0 ,Wk0) = 1

)
≥
∫
{(v,w)∈z2:v,w≥ dcn

8
}
P
(
TS α

3K
,β
2
(Vk0 ,Wk0) = 1 | |Vk0 | = v, |Wk0 | = w

)
dP|Vk0

|,|Wk0
|(v, w)

≥
(
1− β

2

)
P

(
|Vk0 |, |Wk0 | ≥

dcn

8

)
≥
(
1− β

2

)2

≥ 1− β

where the integral is with respect to the joint distribution of |Vk0 | and |Wk0 |. This proves
that

P (ξsplitn = 1) ≥ P
(
TS α

3K
,β
2
(Vk0 ,Wk0) = 1

)
≥ 1− β.

A.10 Proof of Corollary 13

The proof of Theorem 12 can be repeated by replacing (13) with (14). The only difference
is (59), where we used n−4s/(4s+K−1) ≥ n−1. In the adaptive setting, we instead need
(n/ log logn)−4s/(4s+K−1) ≥ n−1. This inequality holds for all large n ∈ N+, say n ≥ N ′.
Then, we can define cad-s to be larger than (N ′/ log logN ′)2s/(4s+K−1), so that P1(ε, p, s)
becomes empty when n < N ′.

■
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Appendix B. Background

B.1 Hölder Continuity on the Probability Simplex

To define derivatives—and thus the class of functions we study—on ∆K−1, a coordinate
chart ψ : ∆K−1 → RK−1 has to be specified. For example, we can consider the canonical
projection π−k : (z1, . . . , zK)⊤ 7→ (z1, . . . , zk−1, zk+1, . . . , zK)⊤. The definition of Hölder
smoothness below depends on the choice of ψ. We assume ψ = π−K , but all conclusions
and proofs remain the same for any choice of the coordinate chart ψ.

For an integer d ≥ 1, a vector γ = (γ1, . . . , γd)
⊤ ∈ Nd is called a multi-index. We write

|γ| := γ1 + · · · + γd. For a sufficiently smooth function f : Rd → R, we denote its partial
derivative of order γ = (γ1, . . . , γd)

⊤ by f (γ) := ∂γ11 · · · ∂
γd
d f . For a Hölder smoothness

parameter s > 0 and a Hölder constant L > 0, let HK(s, L) be the class of (s, L)-Hölder
continuous functions g : ∆K−1 → R satisfying, for all x1,x2 ∈ ψ(∆K−1) and multi-indices
γ ∈ NK−1 with |γ| = ⌈s⌉ − 1,∣∣∣(g ◦ ψ−1)(γ)(x1)− (g ◦ ψ−1)(γ)(x2)

∣∣∣ ≤ L ∥x1 − x2∥s−⌈s⌉+1 . (62)

In particular, HK(1, L) denotes all L-Lipschitz functions. ]

B.2 Two-sample Goodness-of-fit Tests

Here we state and slightly extend the results of Arias-Castro et al. (2018); Kim et al. (2022).
For d ∈ N+, let µ be a measure on [0, 1]d which is absolutely continuous with respect to
Lebd and satisfies

νl ≤
dµ

dLebd
≤ νu (63)

almost everywhere for some constants νl, νu > 0. For n1, n2 ∈ N+, suppose we have two
samples {V1, . . . , Vn1} and {W1, . . . ,Wn2} i.i.d. sampled from the distributions on [0, 1]d

with densities f1 and f2, respectively, with respect to µ. We also assume f1 − f2 is (s, L)-
Hölder continuous for a Hölder smoothness parameter s > 0 and a Hölder constant L > 0.

For m ∈ N+ and i = (i1, . . . , id)
⊤ ∈ [m]d, let Rm,i :=

∏d
k=1

[
ik−1
m , ikm

)
.

vi,m := |{j ∈ [n1] : Vj ∈ Rm,i}| ,

wi,m := |{j ∈ [n2] :Wj ∈ Rm,i}| .

The unnormalized chi-squared statistic is defined by

Γm,n1,n2 :=
∑

i∈[m]d

(n2vi,m − n1wi,m)2.

Theorem 19 (Chi-squared test, Arias-Castro et al. (2018)) Consider the two-sample
goodness-of-fit testing problem described above. Assume the Hölder smoothness parameter
s is known and let m∗ = ⌊(n1 ∧ n2)2/(4s+d)⌋. For any α ∈ (0, 1) and β ∈ (0, 1 − α), there
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exist c > 0 depending on (d, L) and cts > 0 depending on (s, d, L, νl, νu, α, β) such that for

τ := n1n2(n1 + n2) + cn1n2m
−d/2
∗ ,

P (Γm∗,n1,n2 ≥ τ) ≤ α if f1 = f2,

P (Γm∗,n1,n2 ≥ τ) ≥ 1− β if ∥f1 − f2∥L2(µ) ≥ cts(n1 ∧ n2)
− 2s

4s+d .

For m ∈ N+, let km : ([0, 1]d)4 → R be the kernel

km(v1, v2, w1, w2) =
∑

i∈[m]d

(
1Rm,i

(v1)1Rm,i
(v2) + 1Rm,i

(w1)1Rm,i
(w2)

− 1Rm,i
(v1)1Rm,i

(w2)− 1Rm,i
(w1)1Rm,i

(v2)
)
.

For the two samples {V1, . . . , Vn1}, {W1, . . . ,Wn2} described above, define

Um,n1,n2 :=
1

n1(n1 − 1)n2(n2 − 1)

∑
i1 ̸=i2∈[n1]

∑
j1 ̸=j2∈[n2]

km(Vi1 , Vi2 ,Wj1 ,Wj2).

For any α ∈ (0, 1), the 1 − α quantile c1−α,m,n1,n2 of the U-statistic Um,n1,n2 can be found
by the permutation procedure described in Section 2.1 of Kim et al. (2022).

Theorem 20 (Permutation test, Kim et al. (2022)) Consider the two-sample
goodness-of-fit testing described above. Assume the Hölder smoothness parameter s is
known and let m∗ = ⌊(n1 ∧ n2)2/(4s+d)⌋. For any α ∈ (0, 1) and β ∈ (0, 1− α), there exists
cts > 0 depending on (s, d, L, νl, νu, α, β) such that

P (Um∗,n1,n2 ≥ c1−α,m∗,n1,n2) ≤ α if f1 = f2,

P (Um∗,n1,n2 ≥ c1−α,m∗,n1,n2) ≥ 1− β if ∥f1 − f2∥L2(µ) ≥ cts(n1 ∧ n2)
− 2s

4s+d .

Corollary 21 (Multi-scale permutation test, Kim et al. (2022)) Consider the two-
sample goodness-of-fit testing problem described above. Let B = ⌈2d log2(

n1∧n2
log log(n1∧n2)

)⌉ and
define

ξpermn1,n2
:= max

b∈{1,...,B}
I(U2b,n1,n2

≥ c1−α/B,2b,n1,n2
).

For any α ∈ (0, 1) and β ∈ (0, 1 − α), there exists cad > 0 depending on (d, L, νl, νu, α, β)
such that

P (ξpermn1,n2
= 1) ≤ α if f1 = f2,

P (ξpermn1,n2
= 1) ≥ 1− β if ∥f1 − f2∥L2(µ) ≥ cad

(
n1 ∧ n2

log log(n1 ∧ n2)

)− 2s
4s+d

.

Remark 22 (Comment on the proofs) Theorem 19, Theorem 20, and Corollary 21 are
generalization of Theorem 4 of Arias-Castro et al. (2018), Proposition 4.6 of Kim et al.
(2022), and Proposition 7.1 of Kim et al. (2022), respectively. The original statements are
for µ = Lebd. The proofs in Arias-Castro et al. (2018); Kim et al. (2022) can be adapted
with only minor differences. For example, equation (93) of Arias-Castro et al. (2018) is still
true assuming (63) above. Also, we proved Lemma 15 in this paper, which is a generalization
of Lemma 3 of Arias-Castro et al. (2018) to a general measure µ. Other parts of the proofs
in Arias-Castro et al. (2018); Kim et al. (2022) can be repeated without any modification.
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B.3 Binning Scheme for the Probability Simplex

Here we describe a binning scheme for the probability simplex ∆K−1 ⊆ RK into equal
volume simplices—i.e., affine transforms of the standard probability simplex.

Hypersimplex. For u ≥ 2 and v ∈ [u − 1], define the (u − 1)-dimensional polytope
hypersimplex ∆u−1,v—a generalization of the standard probability simplex that can have
more vertices and edges—as

∆u−1,v :=
{
(x1, . . . , xu)

⊤ ∈ [0, 1)u : x1 + · · ·+ xu = v
}
.

Let Au−1,v−1 be the Eulerian number:

Au−1,v−1 :=
v∑

i=0

(−1)i
(
u

i

)
(v − i)u−1.

It is known that the hypersimplex ∆u−1,v can be partitioned into Au−1,v−1 simplices (Stan-
ley, 1977; Sturmfels, 1996) whose volumes are identical to that of the unit probability
simplex ∆u−1.

Construction. Let m ∈ N+ and Rm,i :=
∏K

k=1

[
ik−1
m , ikm

)
for i = (i1, . . . , iK)⊤ ∈ [m]K .

The hypercube Rm,i has a positive-volume intersection with ∆K−1 when

m+ 1 ≤
K∑
k=1

ik ≤ m+K − 1. (64)

Suppose that (64) holds and we write |i| =
∑K

k=1 ik. Then, the intersection is

∆K−1 ∩Rm,i =
{
(x1, . . . , xK)⊤ ∈ Rm,i : x1 + · · ·+ xK = 1

}
=

i− 1K
m

+
1

m

{
(x1, . . . , xK)⊤ ∈ [0, 1)K : x1 + · · ·+ xK = m+K − |i|

}
,

which is a 1
m -scaled and translated version of the hypersimplex ∆K−1,m+K−|i|. Recall that

this hypersimplex can be further partitioned into AK−1,m+K−|i|−1 simplices with the volume

vol(∆K−1)/m
K−1. Let Si be the set of such AK−1,m+K−|i|−1 simplices. Now, we define

Bm :=
⋃

i∈[m]K

m+1≤|i|≤m+K−1

{
i− 1K
m

+
1

m
∆ : ∆ ∈ Si

}
,

which is the collection of all simplices obtained from decomposing ∆K−1 ∩ Rm,i for each
i ∈ [m]K satisfying (64). Since each simplex in Bm has a volume vol(∆K−1)/m

K−1, it
follows that |Bm| = mK−1. Noting that there are

(
j−1
K−1

)
multi-indices i ∈ [m]K with |i| = j,

it also directly follows from Worpitzky’s identity (Equation 6.37 in Graham et al. (1994))
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that

|Bm| =
m+K−1∑
j=m+1

(
j − 1

K − 1

)
AK−1,m+K−j−1 =

K−2∑
j=0

(
m+ j

K − 1

)
AK−1,K−j−2

=
K−2∑
j=0

(
m+ j

K − 1

)
AK−1,j = mK−1.

We finally index the partition as Bm = {B1, . . . , BmK−1}.

B.4 Calibration Test for Discrete Predictions

Testing calibration of discrete probability predictions has been studied in Cox (1958); Miller
(1962); Harrell (2015). Here we describe a test based on testing multiple binomial pa-
rameters. This test is related to the chi-squared test from Miller (1962), but does not
use the asymptotic distribution of the test statistic when choosing critical values. Let
{v1, . . . , vt} ⊆ [0, 1] be the range of a discrete-valued probability predictor f . For each
i ∈ [t], we let Ni = |{j ∈ [n] : f(Xj) = vi}|, Mi = |{j ∈ [n] : f(Xj) = vi, Yj = 1}|,
and pi = P (Y = 1 | f(X) = vi). In this setting, the random variable Mi, under the null
hypothesis of perfect calibration, follows the binomial distribution Binom(Ni, pi) with Ni

trials and success probability pi, given Ni. We use an exact binomial test to test the null
hypothesis H0,i : pi = vi for each i ∈ [t] and apply the Bonferroni correction to control the
false detection rate under the null hypothesis H0 = ∩ti=1H0,i.

Appendix C. More Experiments

C.1 Debiased ECE from Kumar et al. (2019)

In this subsection, we provide additional experiments, to evaluate calibration methods whose
outputs range over a finite set. When the predicted probabilities belong to a finite set,
Kumar et al. (2019) propose a debiased version of the empirical ℓ2-ECE, whose sample
complexity required is smaller than that of the plug-in estimator; see Section 3.3 for more
discussion. We calculate Kumar et al. (2019)’s debiased estimator along with calibration
testing results. We use models trained on CIFAR-10 (Table 4), CIFAR-100 (Table 5),
and ImageNet (Table 6). The values of the debiased ℓ2-ECE estimator are typically very
small, which is consistent with the experimental results in Kumar et al. (2019). As can be
observed, there is no clear relation between the debiased empirical ℓ2-ECE values and test
results.
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DenseNet 121 ResNet 50 VGG-19
̂ℓ2-ECEdb Calibrated? ̂ℓ2-ECEdb Calibrated? ̂ℓ2-ECEdb Calibrated?

Hist. Bin. 0.02% reject 0.02% reject 0.05% reject
Scal. Bin. 0.11% reject 0.10% reject 0.20% reject

Table 4: The values of the debiased empirical ℓ2-ECE (Kumar et al., 2019) and the testing
results, via multiple binomial testing, of models trained on CIFAR-10 with two
discrete calibration methods.

MobileNet-v2 ResNet 56 ShuffleNet-v2
̂ℓ2-ECEdb Calibrated? ̂ℓ2-ECEdb Calibrated? ̂ℓ2-ECEdb Calibrated?

Hist. Bin. 0.04% reject 0.09% reject 0.15% reject
Scal. Bin. 0.04% reject 0.03% reject 0.02% accept

Table 5: The values of the debiased empirical ℓ2-ECE (Kumar et al., 2019) and the testing
results, via multiple binomial testing, of models trained on CIFAR-100 with two
discrete calibration methods.

DenseNet 161 ResNet 152 EfficientNet-b7
̂ℓ2-ECEdb Calibrated? ̂ℓ2-ECEdb Calibrated? ̂ℓ2-ECEdb Calibrated?

Hist. Bin. 0.01% reject 0.03% reject 0.02% reject
Scal. Bin. 0.05% reject 0.03% reject 0.06% reject

Table 6: The values of the debiased empirical ℓ2-ECE (Kumar et al., 2019) and the testing
results, via multiple binomial testing, of models trained on ImageNet with two
discrete calibration methods.

C.2 Estimation of ECE via DPE

The DPE T d
m,n is used as a test statistic in the main text, but it can also be interpreted as an

estimate of ℓ2-ECE(f)
2. While it builds on ideas from nonparametric functional estimation

(Remark 2), the convergence rate n−[4s/(4s+K−1)∧1/2] does not directly follow here, since our
construction involves an additional estimation step PZ(Bi) ≈ |Im,i|/n. If we use the same
binning parameter m = m∗ ≍ n2/(4s+K−1), then the ratio between the standard deviation
and the mean of the estimate |Im,i|/n is√

(1− PZ(Bi))/nPZ(Bi) ≍ n(K−1−4s)/[2(4s+K−1)],

which is large for small s. For this reason, the DPE fails to achieve the parametric conver-
gence rate when s ≥ K−1

4 . We experimentally support this claim in Figure 8, where we use
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Figure 8: Estimation error of T d
m∗,n, varying n, s over a log scale. The dashed line has

slope −1
2 , which corresponds to the parametric convergence rate. The lines for

s = 0.4 and 0.6 fail to achieve the parametric convergence rate, even though s is
larger than the threshold value 0.25 where the parametric rate arises in standard
nonparametric estimation.

K = 2 and Z ∼ Unif([0, 1]), with a deterministic choice of Y = 1. Optimal estimation of
ℓ2-ECE(f)

2 remains an open problem.

C.3 Comparison of Critical Values

We compare three choices of critical values, where we sample {(Z̃i, Ỹi)}ni=1 according to the
following rules.

1. Oracle Monte Carlo: Z̃i ∼ PZ , Ỹi ∼ Cat(Z̃i).

2. Full bootstrapping (consistency resampling): Z̃i ∼ Unif({Zi}ni=1), Ỹi ∼ Cat(Z̃i).

3. Y -only bootstrapping: Z̃i = Zi, Ỹi ∼ Cat(Z̃i).

Here, {(Zi, Yi)}ni=1 is the original calibration sample, and all sampling is done independently.

We repeat the above sampling procedures N times to create {(Z̃j
i , Ỹ

j
i )}ni=1, j ∈ [N ] and

compute the DPE T d,j
m∗,n test statistics for each j ∈ [N ]. Denote their order statistics

by T
d,(1)
m∗,n ≤ · · · ≤ T

d,(N)
m∗,n . For oracle Monte Carlo and Y -only bootstrapping, the DPEs

T d
m∗,n, T

d,1
m∗,n, . . . , T

d,N
m∗,n are exchangeable under the null, so (assuming ties happen with zero

probability)

P (T d
m∗,n ≥ T

d,(j)
m∗,n) =

N + 1− j
N + 1

,
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Figure 9: Type I error of the full/Y -only bootstrapping. We use N = 19, α = 0.05 and
compute the type I error from 10,000 oracle Monte Carlo trials. Standard error
bars are plotted over 1,000 repetitions.

for any j ∈ [N ]. In other words, the test that rejects when I(T d
m∗,n ≥ T

d,(j)
m∗,n) has type I

error j
N+1 . We do not have such a guarantee for consistency resampling.

Figure 9 compares the type I errors when using critical values based on full/Y -only
bootstrapping. We see that there is no significant difference between the two, and they stay
relatively close to the nominal level α = 0.05. Since consistency resampling and Y -only
bootstrapping give randomized critical values, the true type I error is estimated by the
sample mean of type I errors obtained from 10,000 independent trials.

C.4 Cross-fitting

The idea of cross-fitting (see e.g., Hajek, 1962; Schick, 1986; Newey and Robins, 2018;
Kennedy, 2020, for related ideas) can be applied to the sample splitting test in Section
6. Specifically, we compute the two-sample test statistic again by swapping the role of

{(Zi, Yi)}⌊n/2⌋i=1 and {(Zi, Yi)}ni=⌊n/2⌋+1, and use the average of two test statistics. The critical
value for α = 0.05 and the corresponding type II error are estimated via 1,000 oracle Monte
Carlo simulations. In Figure 10, we compare the type II error of the cross-fitted test
statistics with other tests discussed in the main text. The experimental setup is identical
to Figure 7. We observe that the cross-fitting procedure does not significantly improve the
power.

62



T-Cal: An optimal test for the calibration of predictive models

0.05 0.10

`2-ECE

0.00

0.25

0.50

0.75

1.00

T
y
p

e
II

er
ro

r

Plug-in

Splitting

Cross-fit

(a) s = 0.6, ρ = 100

0.05 0.10

`2-ECE

0.00

0.25

0.50

0.75

1.00

T
y
p

e
II

er
ro

r

Plug-in

Splitting

Cross-fit

(b) s = 0.8, ρ = 200

Figure 10: Type II error comparison for plug-in, sample-splitting, and cross-fitting test.
The horizontal dashed line indicates a type II error of 1 − α = 0.95. Standard
error bars are plotted over 10 repetitions.
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Jochen Bröcker. Estimating reliability and resolution of probability forecasts through de-
composition of the empirical score. Climate Dynamics, 39(3):655–667, 2012.
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László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A distribution-free theory
of nonparametric regression. Springer, 2002.

Jaroslav Hajek. Asymptotically Most Powerful Rank-Order Tests. The Annals of Mathe-
matical Statistics, 33(3):1124–1147, 1962.

David J Hand. Construction and assessment of classification rules. Wiley, 1997.

66

https://openreview.net/forum?id=WqoBaaPHS-
https://openreview.net/forum?id=WqoBaaPHS-
https://openreview.net/forum?id=eQe8DEWNN2W
https://openreview.net/forum?id=eQe8DEWNN2W


T-Cal: An optimal test for the calibration of predictive models

Frank E Harrell. Regression modeling strategies: with applications to linear models, logistic
and ordinal regression, and survival analysis. Springer, 2015.

Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. The Annals of
Statistics, 26(2):451 – 471, 1998.

L Held, Kaspar Rufibach, and Fadoua Balabdaoui. A score regression approach to assess
calibration of continuous probabilistic predictions. Biometrics, 66(4):1295–1305, 2010.

Jorgen Hilden, J Dik F Habbema, and Beth Bjerregaard. The measurement of performance
in probabilistic diagnosis. Methods of Information in Medicine, 17(4):227–237, 1978.

David W Hosmer and Stanley Lemesbow. Goodness of fit tests for the multiple logistic
regression model. Communications in Statistics-Theory and Methods, 9(10):1043–1069,
1980.

Yingxiang Huang, Wentao Li, Fima Macheret, Rodney A Gabriel, and Lucila Ohno-
Machado. A tutorial on calibration measurements and calibration models for clinical
prediction models. Journal of the American Medical Informatics Association, 27(4):621–
633, 2020.

Irina A Ingster, Yuri Iand Suslina. Nonparametric goodness-of-fit testing under Gaussian
models. Springer Science & Business Media, 2012.

Yuri I Ingster. An asymptotic minimax testing of nonparametric hypotheses on the density
of the distribution of an independent sample. Journal of Soviet Mathematics, 33(1):
744–758, 1986.

Yuri I Ingster. Minimax testing of nonparametric hypotheses on a distribution density in
the Lp metrics. Theory of Probability & Its Applications, 31(2):333–337, 1987.

Yuri I Ingster. Adaptive chi-square tests. Journal of Mathematical Sciences, 99(2):1110–
1119, 2000.

Joan Ivanov, Jack V Tu, and C David Naylor. Ready-made, recalibrated, or remodeled?
issues in the use of risk indexes for assessing mortality after coronary artery bypass graft
surgery. Circulation, 99(16):2098–2104, 1999.

Jiashun Jin and Zheng Tracy Ke. Rare and weak effects in large-scale inference: methods
and phase diagrams. Statistica Sinica, pages 1–34, 2016.

Ian T Jolliffe and David B Stephenson. Forecast verification: a practitioner’s guide in
atmospheric science. John Wiley & Sons, 2012.

Joseph B Kadane and Sarah Lichtenstein. A subjectivist view of calibration. Technical
report, Decision Research, Eugene, OR, 1982.

Daniel Kahneman and Amos Tversky. Prospect theory: an analysis of decision under risk.
In Handbook of the Fundamentals of Financial Decision Making: Part I, pages 99–127.
World Scientific, 2013.

67



Lee, Huang, Hassani, and Dobriban

Edward H Kennedy. Optimal doubly robust estimation of heterogeneous causal effects.
arXiv preprint arXiv:2004.14497, 2020.

Gideon Keren. Calibration and probability judgements: conceptual and methodological
issues. Acta Psychologica, 77(3):217–273, 1991.

Gérard Kerkyacharian and Dominique Picard. Estimating nonquadratic functionals of a
density using haar wavelets. The Annals of Statistics, 24(2):485–507, 1996.

Ilmun Kim, Sivaraman Balakrishnan, and Larry Wasserman. Minimax optimality of per-
mutation tests. The Annals of Statistics, 50(1):225–251, 2022.

Keiichi Kisamori, Motonobu Kanagawa, and Keisuke Yamazaki. Simulator calibration under
covariate shift with kernels. In International Conference on Artificial Intelligence and
Statistics, pages 1244–1253. PMLR, 2020.
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