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Abstract

Counting and sampling directed acyclic graphs from a Markov equivalence class are fun-
damental tasks in graphical causal analysis. In this paper we show that these tasks can
be performed in polynomial time, solving a long-standing open problem in this area. Our
algorithms are effective and easily implementable. As we show in experiments, these break-
throughs make thought-to-be-infeasible strategies in active learning of causal structures and
causal effect identification with regard to a Markov equivalence class practically applicable.

Keywords: Causal inference, Graphical models, Markov equivalence, Interventions,
Chordal graphs.

1. Introduction

Graphical modeling plays a key role in causal theory, allowing to express complex causal
phenomena in an elegant, mathematically-sound way. One of the most popular graphical
models are directed acyclic graphs (DAGs), which represent direct causal influences between
random variables by directed edges (Spirtes et al., 2000; Pearl, 2009; Koller and Friedman,
2009). They are commonly used in empirical sciences to discover and understand causal
effects. However, in practice, the underlying DAG is often unknown and cannot be identified
unambiguously from observational data. Instead, the statistical properties of the data are
shared by a number of different DAGs, which constitute a Markov equivalence class (MEC,
for short). Therefore, these DAGs are indistinguishable on the basis of observations alone
(Verma and Pearl, 1990, 1992; Heckerman et al., 1995).

It is of great importance to investigate model learning and to analyze causal phenomena
using MECs directly rather than the DAGs themselves. Consequently, Markov equivalence
classes of DAGs constitute a central part of causal discovery and inference. Our work
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Table 1: An overview of the algorithmic improvements in the computation of the size of
Markov equivalence classes. Here, n denotes the number of vertices, k indicates the size
of the largest undirected clique in the graph, while d is the maximal number of undirected
neighbors of a vertex. The first polynomial-time algorithm given in (Wienöbst et al., 2021b)
is presented, applied and extended in this work. The unexplained abbreviations in the table
should be read as follows: DP – Dynamic Programming; Dom. – Dominating.

Approach Complexity

Meek (1995) Exhaustive search O(n!)
He et al. (2015); He and Yu (2016) Root-Picking (RP) O(n!)
Talvitie and Koivisto (2019) RP + Memoization (MM) O(2n · n4)
Talvitie and Koivisto (2019) DP on Clique-Tree O(k!2kk2n)
Ghassami et al. (2019) RP + MM + Clique-Tree O(2n · n4)
Ganian et al. (2020, 2022) RP + MM + Dom. Vertex O(2n · n4)
AhmadiTeshnizi et al. (2020) Intervention Design + MM O(2n+d(nd+ d3))
Wienöbst et al. (2021b); This work Clique-Picking + MM O(n4)

contributes to this line of research by providing the first polynomial-time algorithms for
counting and for uniform sampling Markov equivalent DAGs – important primitives in
both theory and practice.

Finding the graphical criterion for two DAGs to be Markov equivalent (Verma and Pearl,
1990) and providing the graph-theoretic characterization of MECs as CPDAGs (Andersson
et al., 1997) mark key turning points in this research direction. In particular, they have
contributed to the progress of computational methods in this area. Important advantages
of CPDAGs are demonstrated by algorithms that learn causal structures from observational
data (Verma and Pearl, 1992; Meek, 1995, 1997; Spirtes et al., 2000; Chickering, 2002a,b);
and that analyze causality based on a given MEC, rather than a single DAG (Maathuis
et al., 2009; van der Zander and Lískiewicz, 2016; Perković et al., 2017).

A key characteristic of an MEC is its size, i.e., the number of DAGs in the class. It
indicates uncertainty of the causal model inferred from observational data and it serves as
an indicator for the possibility of recovering true causal effects. Efficient algorithms for
computing the size of an MEC are necessary, whenever researchers aim to quantify or even
reduce the uncertainty present, which is the case particularly in causal effect identification
over MECs (Maathuis et al., 2009) as well as active intervention design with the aim to
recover the true DAG with as few experiments as possible (He and Geng, 2008; Hauser and
Bühlmann, 2012; Shanmugam et al., 2015; Ghassami et al., 2018, 2019).

The first algorithmic approaches to counting the number of Markov equivalent DAGs
date back to the work of Meek (1995). Therein, it is already observed that it suffices to
consider the undirected components1 of the CPDAG separately. Even when using exhaustive
search for these components, this can already lead to reasonably fast algorithms when the
CPDAG has few undirected edges, respectively small undirected components. In the worst-
case of large undirected components, however, this approach requires exponential-time.

1. These are the connected components of the graph after removing all directed edges.
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input : A CPDAG C = (V,E).
output: Size of the MEC represented by C.

1 size← 1
2 foreach undirected component G of C do
3 size← size× Clique-Picking(G)
4 end
5 return size

1 2 3

4 5 6

Clique-Picking(4− 1− 2)

× Clique-Picking(3− 6)

3 × 2 = 6

Algorithm 1: The algorithm to compute the size of the MEC represented by a CPDAG C.
Clique-Picking is presented as Algorithm 5 in Section 4. On the right, we show a simple
example computation. The undirected component 4− 1− 2 has three possible orientations
as 4 1 2 is disallowed (more on this in the subsequent section). In total, there are 6
DAGs in the MEC.

Starting with the work of He et al. (2015), the problem has been readdressed with better
and better worst-case bounds of the run-time (see Table 1 for an overview). Particularly,
the root-picking approach has been successively refined in multiple works (He et al., 2015;
He and Yu, 2016; Talvitie and Koivisto, 2019; Ghassami et al., 2019; Ganian et al., 2020)
bringing the time complexity down to O(2n · n4), where n denotes the number of vertices,
which still amounts to exponential worst-case time.

In this paper, we present the culmination of these algorithmic efforts, the first algorithm
with polynomial time complexity O(n4) for counting the number of Markov equivalent
DAGs. Preliminary results of this work have been presented at the AAAI Conference on
Artificial Intelligence, AAAI 2021 (Wienöbst et al., 2021b). Therein, the polynomial-time
algorithm has been proposed and an implementation has been given, which outperforms
the previous methods. This algorithm certifies that the problem can be solved efficiently –
in theory and practice. It also implies a polynomial-time algorithm for uniformly sampling
of DAGs from an MEC. A major focus of this work is on the further consequences of this
breakthrough and, in particular, to illustrate its application to downstream tasks in causal
discovery and inference, which have been underexplored thus far. To make such applications
possible, we analyze the counting problem particularly for interventional MECs and show
how the algorithmic achievements translate to this setting, which plays an important role
in many fundamental tasks in causality, two of which we discuss in depth. Additionally, we
provide the first practical implementation of a uniform sampling algorithm for the members
of an MEC by extending and improving the results from (Wienöbst et al., 2021b).

Our Contributions

The main achievement of our paper is Algorithm 1, which is the first polynomial-time
algorithm for counting Markov equivalent DAGs:

Theorem 1 (Main) For an input CPDAG C, Algorithm 1 returns the size of the MEC
represented by C in polynomial time in the size of the graph.
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The key component of this algorithm, which we coin Clique-Picking, computes the num-
ber of Markov equivalent DAGs separately for each undirected component of the CPDAG.
In order to do so, it utilizes the fact that these components are chordal by exploring their
clique-tree representation and by evaluating a non-trivial recursive counting function.2

With the recursion used in Clique-Picking, the problem of uniformly sampling a DAG
from a Markov equivalence class can be solved in polynomial-time as well, by running an
adapted version of Clique-Picking as a preprocessing step, after which sampling is possible
in linear-time.3

Theorem 2 There is an algorithm that, given a CPDAG C, uniformly samples a DAG in
the MEC represented by C in expected linear time in the size of the graph after an initial
polynomial-time preprocessing setup.

Both algorithms are easy to implement and very fast in practice – outperforming pre-
vious approaches by a large margin in experimental evaluations (Wienöbst et al., 2021b).
We complement our theoretical findings with optimized implementations in C++ and Julia
to facilitate the application to real-world problems.

Particularly to this end, a special focus in this paper is devoted to two applications
of the Clique-Picking algorithm: Active learning of causal DAGs (He and Geng, 2008)
and the global-IDA algorithm for causal effect identification (Maathuis et al., 2009). We
argue that it is desirable in both cases to compute the size of an MEC (or more precisely,
an interventional MEC), a task which, as we show, can be efficiently solved using Clique-
Plicking as a subroutine.4 Previously, the task of counting the number of Markov equivalent
DAGs was avoided by researchers in these fields due to its apparent intractability, leading
to the prevalent use of heuristics at the cost of accuracy. We demonstrate that through the
new methods developed in this paper, such heuristics are not needed anymore, as the size
of an MEC can now be computed fast in practice and empirically validate this claim.5

Finally, we complete the complexity-theoretical study of the counting problem by inves-
tigating the more general problem of counting the number of DAGs with additional back-
ground knowledge. We show that this problem is intractable under common complexity-
theoretical assumptions by connecting it to classical counting problems.

The paper is split into roughly two parts: In the first less-technical half, we formally
introduce the problem of computing the size of an MEC and give the well-known reduction
to a purely graph-theoretical problem (Section 2), whose solution (Clique-Picking) will be
presented later in Section 4. Before this, we derive and analyze in Section 3 the two applica-
tions mentioned above. For these, Clique-Picking may be viewed as a black-box algorithm,

2. All technical terms are formally introduced in the subsequent section.
3. The method we propose in this work is an improvement over the original algorithm given in (Wienöbst

et al., 2021b). The algorithm is simpler and the preprocessing step asymptotically more efficient by a
factor n.

4. Both applications have been considered before (see Ghassami et al. (2019) and other works), but never
from the point of view of interventional MECs. Instead the more general setting of counting with
background knowledge has been used, which we show to be computationally intractable. In particular,
utilizing interventional MECs in the global-IDA algorithm connects two disjoint subfields of causality.

5. The code for the experiments can be accessed at the address https://github.com/mwien/

counting-with-applications.
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which allows us to defer the technically demanding introduction and analysis of this algo-
rithm to Section 4 in the second half of this paper. Building on these techniques, in Sec. 5,
we give the polynomial-time algorithm for uniform sampling of Markov equivalent DAGs
and afterwards generalize the results to the setting of additional background knowledge in
Section 6. In the subsequent Section 7 we give conclusions. To improve readability, we
move some technical proofs to Section 8.

2. Preliminaries

A graph G = (VG, EG) consists of a set of vertices VG and a set of edges EG ⊆ VG × VG.
Throughout this paper, whenever the graph G is clear from the context, we will drop the
subscript in this and analogous notations. An edge u− v is undirected if (u, v), (v, u) ∈ EG
and directed u v if (u, v) ∈ EG and (v, u) 6∈ EG. In the latter case u is called a parent of v.
Graphs which contain undirected and directed edges are called partially directed. Directed
acyclic graphs (DAGs) contain only directed edges and no directed cycle. We refer to the
neighbors of a vertex u in G as NG(u). A clique is a set of pairwise adjacent vertices. We
denote the induced subgraph of G on a set C ⊆ V by G[C]. The undirected components
of a partially directed graph G are the connected components in the undirected graph one
obtains after removing all directed edges from G.

In causality theory, DAGs are used as mathematical models to represent causal relations
(Pearl, 2009). For a DAG D = (V,E), the vertices V = {1, . . . , n} represent the random
variables X = (X1, . . . , Xn). A distribution f over X is Markov to D if it factorizes as

f(x1, . . . , xn) =
∏
i∈V

f(xi | pai(D)),

where pai(D) denotes the values xj1 , . . . , xjk of the parents Pai(D) = {j1, . . . , jk} of vertex
i in D. Two DAGs D1 and D2 are Markov equivalent if for any positive distribution f , f
is Markov to D1 if, and only, if it is Markov to D2.

Due to Verma and Pearl (1990), we know a graphical criterion to decide this relation:
Two DAGs are Markov equivalent if, and only if, they have the same skeleton and the same
v-structures. The skeleton of a (partially) directed graph G is the undirected graph that
results from ignoring edge directions. A v-structure in a (partially) directed graph G is an
ordered triple of vertices (a, b, c) which induce the subgraph a b c.

The Markov equivalence relation partitions the set of all DAGs into Markov equivalence
classes (MECs), where we denote the MEC of a DAG D as [D]. An MEC can be represented
by a CPDAG G (completed partially directed acyclic graph, also known as an essential
graph), which is the union graph of the DAGs in the equivalence class it represents. When
we speak of the union of a set of graphs {G1 = (V,E1), . . . , Gk = (V,Ek)}, we think of the
graph G = (V,

⋃k
i=1Ek). The MEC represented by G is denoted as [G]. The undirected

components of a CPDAG are undirected and connected chordal graphs (UCCGs) (Andersson
et al., 1997). In a chordal graph, every undirected cycle of lengths ≥ 4 contains a chord,
that is an edge between two vertices of the cycle, which is not part of the cycle.

The problem this paper addresses is, generally speaking, the opposite direction w.r.t.
the definition of a CPDAG above: Given a CPDAG G, we aim to compute | [G] |. To do so,
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we introduce the following terms6: An extension of a partially directed graph G is obtained
by replacing each undirected edge with a directed one.7 It is called a consistent extension if
it is acyclic and does not create a new v-structure not present in G (this ensures that for a
CPDAG G, the set of consistent extensions constitutes [G]). We will denote the number of
consistent extensions of graph G as #EXT(G). Hence, if G is a CPDAG, then #EXT(G) is
the size of the corresponding Markov equivalence class. We also refer to the computational
problem of counting the number of consistent extensions for a given partially directed graph
as #EXT:

Problem 3 #EXT

Instance: A partially directed graph G = (V,E).
Result: The number of consistent extensions of G.

By restricting the instances to graphs of a specific graph class, we derive the #EXT problem
for this class. Naturally, of particular interest is the class of CPDAGs. In this paper, we
also study the problem #EXT for interventional essential graphs, general PDAGs, as well as
for MPDAGs. While these graph classes are formally defined and discussed later, we want
to highlight an important difference: Counting for MPDAGs and PDAGs8 is intractable
(more precisely, we show that it is #P-hard). For interventional essential graphs, however,
it is possible to perform this task in polynomial-time, as they share important properties
with CPDAGs (this is formalized in the subsequent section).

To start with, it is a crucial fact that, for a CPDAG G, each UCCG of G can be
oriented independently of the other UCCGs and the directed part of G (Andersson et al.,
1997). This means that to obtain a consistent extension of G, it suffices to orient each
UCCG without creating a cycle or a v-structure. In line with the literature, we term such
orientations AMOs (acyclic moral orientations). In accordance with the notation above, we
define #AMO(H) as the number of AMOs of a connected chordal graph (i.e., UCCG) H.
We illustrate the introduced terms in Fig. 2, where the UCCGs of the given CPDAG can
be oriented independently to yield a consistent extension. Thus, we can conclude that for
a CPDAG G the size of | [G] | is equal to

#EXT(G) =
∏

H is UCCG in G

#AMO(H). (1)

In other words, the problem #EXT of counting the number of DAGs in an MEC reduces to
counting the number of AMOs in a UCCG (Gillispie and Perlman, 2002; He and Geng, 2008).
We tackle this purely graph-theoretical problem in Section 4 and derive the first polynomial-
time algorithm for it. For the subsequent Section 3, which focuses on applications for our
methods, it is sufficient to know that such an algorithm exists.

6. Most of them are introduced more generally for a “partially directed graph G”, you may replace this
with a “CPDAG G” during the first read.

7. We also use the term orientation in addition to extension in this paper, which more or less means the
same thing. In accordance with the literature, we prefer to use orientation for undirected graphs and
extension for partially directed graphs.

8. These classes are essentially equivalent when it comes to the time complexity of the counting task, as
for every PDAG, there exists an MPDAG with the same consistent extensions and it can be computed
in polynomial time.
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1 2

3 4

5 6

7 8

CPDAG

1 2

3 4

5 6

7 8

UCCGs

1 2

3 4

5 6

7 8

AMOs

1 2

3 4

5 6

7 8

Cons. ext.

Figure 2: A CPDAG with its UCCGs and possible AMOs. Substituting these into the orig-
inal CPDAG gives a consistent extension. The AMOs can be constructed independently of
each other and the directed part of the CPDAG. Hence, the number of consistent extensions
can be computed as the product of the number of AMOs for each UCCG.

3. Some Applications of Our Methods

The techniques developed in this paper can be applied to important tasks in causal discov-
ery and inference. In this section, we highlight two possible applications: (i) to improve
efficiency of learning from interventional data and (ii) estimating causal effects from an
MEC representation.

3.1 Incorporating Observational and Interventional Data Efficiently

As discussed above, when dealing with purely observational data, a DAG is only identifi-
able up to its MEC (Andersson et al., 1997), which often makes it impossible to discover
the unique structure. In some cases, however, additional experimental (also called interven-
tional) data may be available or can be produced, in order to resolve the ambiguities. There
is a large body of work in the field addressing this problem of estimating and explaining
a causal structure from both observational and interventional data. Analogously to the
observational case, all DAGs which satisfy the conditional independencies in both observa-
tional and interventional data form an equivalence class represented by an interventional
essential graph. This graph (as the CPDAG for MECs) is formed by taking the union of
the DAGs in this class. In the following, we define the concept more formally.

Let D = (V,E) be a DAG and f be Markov to D. For a set of targets I ⊆ V , an
intervention with perturbation targets i ∈ I models the effect of replacing the observational
distribution f(xi | pai(D)) by f I(xi) for all i ∈ I. The intervention graph of D is the DAG
DI = (V,EI), where EI = {u → v ∈ E | v 6∈ I}. Given a family of targets I ⊆ 2V the
pair (f, {f I}I∈I) is I-Markov to D if f is Markov to D and for all I ∈ I the interventional
distribution f I factors as

f I(x1, . . . , xn) =
∏
i 6∈I

f(xi | pai(D))
∏
i∈I

f I(xi).

7



Wienöbst, Bannach and Lískiewicz

CPDAG Partitioning of the MEC represented by G in I = {{1}}-MECs

I = {{1}}-essential
graphs

G

1 2

3 4

G1

1 2

3 4

G2

1 2

3 4

G3

1 2

3 4

G4

1 2

3 4

1 2

3 4

1. 3 1 2

1 2

3 4

2. 3 1 2

1 2

3 4

1 2

3 4

3. 3 1 2

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

4. 3 1 2

Figure 3: For the CPDAG G on the top left, we show on the right the interventional MECs
for the family I = {{1}}, i.e., an intervention is performed on the variable corresponding to
vertex 1 (marked in color). The possible results for the intervention are shown in the colored
regions and the DAGs are partitioned according to those configurations. Each {{1}}-MEC
can be represented by the corresponding interventional essential graph on the bottom left,
which encodes the still unknown edge orientations as undirected edges.

Two DAGs D1 and D2 are I-Markov equivalent if for all positive distributions, (f, {f I}I∈I)
is I-Markov for D1 if and only if it is I-Markov to D2. This relation can be expressed in
a graphical language as follows: For a conservative family of targets9 I, D1 and D2 are
I-Markov equivalent if for all I ∈ I, DI

1 and DI
2 have the same skeleton and the same

v-structures. The I-Markov equivalence class of a DAG D (I-MEC) is denoted by [D]I
and can be represented by the I-essential graph EI(D) =

⋃
D′∈[D]I

D′. A partially directed
graph G is called an I-essential graph if G = EI(D) for some DAG D. An example and
further explanation regarding interventional MECs and essential graphs is given in Fig. 3.

The key property of interventional essential graphs, for our purposes, is that their undi-
rected components are chordal and induced subgraphs, just as in CPDAGs:

Proposition 4 (Hauser and Bühlmann (2012)) Let G be an I-essential graph repre-
senting an I-MEC [D]I for a target family I. Then, the undirected components of G are
chordal (we will refer to them as UCCGs, just as for CPDAGs). Moreover, a DAG D′ is in
[D]I if and only if D′ can be obtained from G by acyclic moral orientations of the UCCGs
of G independently of each other.

For example, in the I-essential graph G4 in Fig. 3 representing the I-MEC determined

by the intervention result 3 1 2, the undirected component is the triangle 2 3 4 .

9. A family of targets I is called conservative if for all v ∈ V , there is some I ∈ I such that v 6∈ I. Note
that, e.g., any family containing the empty set ∅ is conservative. In this section we assume that the
target families are conservative.
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The I-MEC consists of all six DAGs which can be obtained from G by acyclic moral orien-
tations of this triangle. In general, this statement implies that for interventional essential
graph G, the number of DAGs in the corresponding equivalence class [D]I is

|[D]I | =
∏

H is UCCG in G

#AMO(H)

and, thus, this can be efficiently computed with the Clique-Picking algorithm. This leads
to the following, main theorem of this section, which can be proved in the same manner as
Theorem 1 and 2.

Theorem 5 For a given interventional essential graph representing an I-MEC [D]I , the
number of DAGs in [D]I can be computed in polynomial time. Moreover, sampling uniformly
a DAG in [D]I can be done in linear time, after preprocessing.

The fact that the size of interventional essential graphs can be computed efficiently can
be utilized in the context of active learning of the underlying causal DAG. It describes the
process of designing experiments (i.e., interventions) in order to recover the DAG. A natural
approach is to start estimating the essential graph (CPDAG) with observational data and
afterwards, through experimentation, inferring the direction of beforehand unorientable
edges to reduce the number of indistinguishable DAGs. Usually the objective is to find
the underlying causal DAG with as few experiments as possible. Active learning has been
the subject of a considerable amount of research, see Eberhardt et al. (2005); Eberhardt
(2008); He and Geng (2008); Hauser and Bühlmann (2012); Hauser and Bühlmann (2014);
Shanmugam et al. (2015); Ghassami et al. (2018); Greenewald et al. (2019); Squires et al.
(2020) and the references therein.

One way of designing experiments is to use the following approach: Consider (for sim-
plicity) only noiseless adaptive single-target interventions, i.e., each experiment manipulates
a single variable of interest and the intervention informs us correctly about the resulting I-
MEC. In this setting, every intervention reveals the orientations of all edges adjacent to the
intervened vertex and further edge orientations may be inferred by the Meek rules (Meek,
1995) (see Fig. 3 for an illustration). Additionally, we assume variables are manipulated
sequentially, i.e., one can use intervention results obtained by manipulating the previous
variables to select a current variable to intervene on. To choose the best intervention target,
usually an objective function w.r.t. the current interventional essential graph is computed
for each variable, often based on every possible intervention result.

Below we discuss three algorithms following this approach: MinMaxMEC and MaxEn-
tropy by He and Geng (2008) and OptSingle by Hauser and Bühlmann (2014). The first two,
particularly, use the sizes of the I-MECs resulting from such hypothetical interventions, in
order to compute the objective function. Hence, our methods are vital for the computa-
tional feasibility of those approaches. Moreover, we show that even the third approach can
be sped up significantly.

The algorithms start with the (observational) MEC [D]I , i.e., with I = {∅} for the true
DAG D, which is represented as an I-essential graph EI(D). Afterwards, while |[D]I | > 1,
the current target family I and G = EI(D) are updated as follows: MinMaxMEC selects
the variable to intervene on such that

v∗ = arg min
v∈V

max
D′∈[D]I

|[D′]I∪{{v}}|. (2)

9
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MaxEntropy chooses
v∗ = arg max

v∈V
Hv, (3)

where Hv is the entropy defined as follows: Let D1, . . . , Dk ∈ [D]I be DAGs such that

[D1]I∪{{v}}∪̇ . . . ∪̇[Dk]I∪{{v}} is a partition of [D]I . Then Hv = −
∑k

j=1
lj
L log

lj
L , with lj =

|[Dj ]I∪{{v}}| and L = |[D]I |. Algorithm OptSingle computes a vertex

v∗ = arg min
v∈V

max
D′∈[D]I

ξ(EI∪{{v}}(D′)), (4)

where ξ(H) denotes the number of undirected edges in a graph H. Next, the intervention on
v∗ is realized and the algorithm updates G := EI∪{{v∗}}(D) and I := I ∪{{v∗}} completing
the iteration step. Note that none of these three strategies lead to an optimal algorithm (in
a worst-case or average-case sense), but are effective greedy heuristics.

Example 1 For the CPDAG G in Fig. 3, the algorithms MinMaxMEC, MaxEntropy and
OptSingle partition, for every vertex v, the MEC represented by G into {{v}}-MECs ac-
cording to all possible results for the intervention on v. The partitioning for v = 1 is shown
in Fig. 3. The values needed to select v∗ = 2 or v∗ = 3 solving the Eq. (2), Eq. (3),
resp. Eq. (4), are given in the table below.

cardinalities of number of undir. edges
v {{v}}-essential MECs max card. Hv in {{v}}-essential graphs max number

1 6,2,1,1 6 1.57 3,1,0,0 3
2 3,2,2,1,1,1 3 2.45 2,1,1,0,0,0 2
3 3,2,2,1,1,1 3 2.45 2,1,1,0,0,0 2
4 6,2,1,1 6 1.57 3,1,0,0 3

�

Clearly, the most costly part of implementing MinMaxMEC and MaxEntropy is the
counting of Markov equivalent DAGs. As this was previously thought infeasible, these
methods were often avoided (Squires et al., 2020). However, one can easily see that, based
on Theorem 5, the sizes of MECs needed to choose a vertex w.r.t. Eq. (2), resp. Eq. (3),
can be computed in polynomial time, assuming the (I ∪ {{v}})−MECs are represented as
interventional essential graphs.

Another efficiency issue of the algorithms, including OptSingle, concerns the computa-
tion of the interventional essential graphs for each possible intervention results (as there
may be exponentially many such results and the algorithms consider every hypothetical
result in advance, this step is crucial). Interestingly, using the ideas from Section 4 we can
show that, given a current I-interventional essential graph G and an interventional result
on a vertex v, we can compute the new interventional essential graph in linear time. This
is possible using an algorithm based on Maximum Label Search (Berry et al., 2009), which
is also used in Clique-Picking, as we state in the theorem below.

The only thing left to be explained is how to enumerate the possible interventional results
on v: To see this, let H be a UCCG of G containing v. Then the resulting orientations

10
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of the incident undirected edges u − v in G can be represented as a clique K ⊆ NH(v),
which contains the incident vertices u of edges oriented as u → v;10 the edges u − v, with
u ∈ NH(v) \K, are oriented as u← v. Note, that K can be empty.

Theorem 6 Assume D is a DAG, I is a target family, v is a vertex, and H is a UCCG
of G = EI(D) containing v. Let a clique K ⊆ NH(v) represent orientations of edges u− v
in G as described above and let DK ∈ [D]I be a DAG with the edges oriented according to
K. Then, given G, v, and K, the essential graph G′ = EI∪{{v}}(DK) can be computed in
time O(|VG|+ |EG|).

Notably, this theorem improves upon previous work by AhmadiTeshnizi et al. (2020),
which gave an O(d · m) algorithm for this task (with d being the maximum degree of
the graph). For example, computing a vertex solving Eq. (2) in MinMaxMEC can be
implemented as shown in Algorithm 2 below. The other two approaches can be implemented
similarly. The time complexity is O(Val(G) · p(|VG|, |EG|)), where Val(G) denotes the total
number of intervention results and p is the polynomial bounding the time complexity of the
Clique-Picking algorithm used to compute the size of an MEC.

input : An I-essential graph G = (V,E).
output: Vertex v∗ solving Eq. (2).

1 if G is a DAG then return ∅ and stop
2 MinMax←∞
3 foreach undirected component H of G do
4 foreach v ∈ H do
5 Max← 0
6 foreach clique K ⊆ NH(v) do
7 for G, v,K compute G′ = EI∪{{v}}(DK) using Theorem 6

8 c← #EXT(G′) using Algorithm 1
9 if c > Max then Max← c

10 end
11 if Max < MinMax then
12 MinMax← Max; v∗ ← v

13 end

14 end
15 return v∗

Algorithm 2: An efficient implementation of MinMaxMEC: The algorithm computes a
vertex solving Eq. (2).

These improvements can make the difference between infeasibility and practical applica-
bility. We replicate the recent experimental results from Squires et al. (2020), which includes
a comparison of the most popular algorithms for single-target adaptive active learning. For
their experiments, a single chordal component was generated in two ways: Large and sparse
graphs were sampled by adding edges to randomly generated trees, and small and very dense

10. The parents of v have to form a clique, else a new v-structure would be created, which would be in
violation with the definition of I-MECs.
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Figure 4: We compare the performance of the three discussed strategies MinMaxMEC
(minmax), MaxEntropy (ent) and OptSingle (os), with the coloring-based strategy (col) of
Shanmugam et al. (2015), and directed-clique-tree approach (dct) of Squires et al. (2020).
On the left, the average number of interventions for large, sparse graphs; on the right, for
small dense graphs. For each choice of parameters, 100 CPDAGs (chordal graphs) were
generated as described in Squires et al. (2020). Afterwards, for each CPDAG, a DAG was
uniformly chosen from the MEC (the true DAG, used as oracle for the intervention results).

graphs by “chordalizing” Erdös-Renyi graphs. The three strategies we discussed above were
only included in the experiments on small graphs (between 8 and 14 vertices) due to their
apparent infeasibility. We show that, using implementations11 of our methods, these ap-
proaches scale to much larger graphs and that they deliver superior results compared to
other algorithms.

In Fig. 4, the plot on the left shows the number of performed interventions of five active
learning strategies for the large and sparse graphs and the right one for the small and very
dense graphs. The three strategies we discussed above, MinMaxMEC, MaxEntropy and
OptSingle, clearly outperform the other methods and, in particular, the two methods which
utilize the sizes of the I-MECs perform the best. In case of the sparse graphs the differences
are larger due to the fact that the structure of the graph can be utilized to a higher degree;
the dense graphs are close to fully connected graphs. Importantly, for the sparse graphs,
where a lot of performance may be gained and which occur frequently in practice, the
implementation using Clique-Picking is able to scale up to graphs with 500 vertices (taking
about 10-15 minutes on a desktop computer for the largest graphs12). In case of the dense
graphs, the implementations of MinMaxMEC, MaxEntropy and OptSingle can handle up

11. The experiments in this paper record the results using implementations in Julia. Additionally, in the
code appendix (https://github.com/mwien/counting-with-applications), a C++implementation of
Clique-Picking is provided.

12. The experiments were run on an Intel(R) Core(TM) i7-8565U CPU with 16GBs of RAM.
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to 30 vertices, compared to 14 previously (the bottleneck here is the exponential number of
hypothetical intervention results).

Hence, we argue that these methods are feasible in most practical settings as, on the one
hand, sparse graphs are more prevalent and, on the other hand, this experiment considers
fully undirected graphs and usually many edge directions are already detected during the
estimation of the CPDAG. Finally, the tradeoff between possibly saved computation time
and finding better intervention targets, should lean, in our view, towards the latter, as the
cost of experimentation exceeds the cost of beforehand-computation by a large margin.

3.2 Estimating Causal Effects from CPDAGs and Observed Data

A second application concerns calculating the total causal effects to measure the effects of
interventions in observational studies using Pearl’s do-calculus (Pearl, 2009). For a given
DAG D = (V,E), with vertices V = {1, . . . , n} representing random variables Xi, for
i ∈ V , and a distribution f over X = (X1, . . . , Xn), which is Markov to D, the distribution
generated by an intervention on Xi, written do(Xi = x′i), can be expressed in a truncated
factorization formula f(x1, . . . , xn | do(Xi = x′i)) =

∏n
j=1,j 6=i f(xi | pai(D))|xi=x′i if xi = x′i

and 0 otherwise. By integrating out all variables, except xi, xj , we get that the distribution
of Xj after an intervention do(Xi = x′i) can be computed by adjustment for direct causes
of Xi (represented as parents of i in D):

f(xj | do(Xi = x′i)) =

{
f(xj) if j ∈ Pai∫
f(xj | x′i, pai)f(pai) d pai if j 6∈ Pai,

(5)

where Pai stands for Pai(D), for short, and f(·) and f(· | x′i, pai) represent preintervention
distributions (Pearl, 2009, Theorem 3.2.2). The expected value

E(Xj | do(Xi = x′i)) =

{
E(Xj) if j ∈ Pai∫
E(Xj | x′i, pai)f(pai) d pai if j 6∈ Pai,

which summarizes the intervention distribution, can be used to define the total causal effect
of Xi on Xj as follows: For non-parametric models the formula

θji(D) = E(Xj | do(Xi = x′i))− E(Xj | do(Xi = x′′i )) (6)

can be taken as a definition of the effect, that expresses the difference between expected
value of Xj under each of the following two actions: Xi is forced to take value x′i or Xi

is forced to take value x′′i (Pearl, 2009, page 70); For parametric linear models, the causal
effect can be defined as

θji(D) = ∂
∂xE(Xj |do(Xi = x))

= E(Xj | do(Xi = x′i + 1))− E(Xj | do(Xi = x′i))
(7)

for any chosen value of x′i. It shows the change in the expected value of Xj when changing
in interventions the value of Xi by one unit.

Thus, when the true causal DAG D is known, the outcomes of interventions can be es-
timated using the formulas above and there is an extensive literature providing techniques
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for calculating the causal effects when the formula (5) is not applicable, e.g., due to unob-
servable variables (see, e.g., (Pearl, 2009; Shpitser and Pearl, 2006; Shpitser et al., 2010;
van der Zander et al., 2019)). On the other hand, if a DAG is only identifiable up to its
MEC, the situation changes significantly: while for some CPDAGs one can compute the
causal effects from the graph and the observed data (van der Zander and Lískiewicz, 2016;
Perković et al., 2017), in general, for a given CPDAG G, the true causal effect of Xi on
Xj may differ across the DAGs in the MEC [G]. In such cases we can at best determine a
multiset of possible causal effects θji(D), one for each DAG D in [G].

Based on this idea, Maathuis et al. (2009) propose algorithms, called IDA (Intervention
Calculus when the DAG is Absent), to extract useful causal information, e.g., to estimate
bounds on causal effects. The basic algorithm (Algorithm 1 in (Maathuis et al., 2009)),
also called global-IDA in the literature, starts with an empty multiset Θ and, for a given
CPDAG G, adds θji(D) to Θ for all DAGs D in [G]. To avoid the unnecessary enumeration
of all DAGs, the authors propose a natural modification, which computes the same output
Θ and works as follows: Let D1, . . . , Dk ∈ [G] be DAGs such that [D1]{∅,{i}}∪̇ . . . ∪̇[Dk]{∅,{i}}
is the partition of [G] into the possible interventional-MECs for I = {∅, {i}}. Then, for all
` = 1, . . . , k, the algorithm adds c` copies of θji(D`), where the multiplicity c` denotes the
number of DAGs in [D`]{∅,{i}}. The correctness is based on the fact that for all DAGs in
[D`]{∅,{i}}, the causal effect of Xi on Xj is the same.13

Maathuis et al. (2009) notice, that global-IDA “works well if the number of covariates is
small, say less than 10 or so” and that the bottleneck is the computation of the multiplici-
ties c`, which quickly becomes infeasible if the number of covariates n increases. Therefore,
the authors developed a “localized” version, called local-IDA, which computes the multiset
ΘL = {θji(D1), . . . , θji(Dk)} instead of Θ. This, however, does not reflect the true multi-
plicities assuming each DAG in the MEC is equally likely to be the ground truth. In the
context of Fig. 3, assuming we perform IDA on CPDAG G, this means that the information,
that the causal effect θ41 corresponding to the configuration 3 1 2 appears in 6 of the
possible 10 DAGs, is discarded.

In this paper we show that using our new approaches we can effectively implement
global-IDA, meaning, in particular, we can efficiently compute for each possible parent set
(i.e., each of the partitions of the MEC) the multiplicity, meaning the number of DAGs in
the partition. We present this implementation as Algorithm 3. Relying on the formulation
of the problem in terms of I-MECs from above and utilizing Theorem 5 and 6, we can
conclude:

Theorem 7 For a given CPDAG G = (V,E) and i, j ∈ V , Algorithm 3 computes the
multiset Θ = {θji(D) | D ∈ [G]} including causal effects of Xi on Xj for all DAGs D ∈ [G].
It runs in time O(k · p(|V |, |E|)), where k = |ΘL| and p is a polynomial bounding the time
complexity of the Clique-Picking algorithm.

Hence, the additional effort of Algorithm 3 compared to local-IDA is only a polyno-
mial factor. In practice, this factor will likely not matter, as we show by replicating the
experiments on linear models originally performed by Maathuis et al. (2009).

13. In the original work as well as later papers Ghassami et al. (2019) the connection to I-MECs was
not drawn. This is crucial for obtaining efficient algorithms for computing the multiplicities through
Theorem 5 and connects the two applications discussed in this paper.
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input : A CPDAG G = (V,E) and vertices i, j ∈ V .
output: Multiset Θ of possible causal effects of Xi on Xj

1 Θ← ∅
2 H ← undirected component of G containing vertex i
3 foreach clique K ⊆ NH(i) do
4 for G, i,K compute G′ = E{∅,{i}}(DK) using Theorem 6

5 c← #EXT(G′) using Algorithm 1
6 add c copies of θji(DK) to Θ

7 end
8 return Θ

Algorithm 3: An efficient implementation of the global-IDA algorithm.

In a causal linear model, where every edge represents a linear direct causal effect and
under the assumption that the distribution of variables is multivariate normal, one can com-
pute the causal effects θji(D), defined in Eq. (7), as the regression coefficient βji|Pai(D) of Xi

in the linear regression of Xj on Xi and Pai(D) (for details, see e.g., (Maathuis et al., 2009)).
Maathuis et al. (2009) use sample versions of global- and local-IDA, particularly relying on
the PC-algorithm and conditional independence tests for the estimation of CPDAG G from
data. In their studies, they consider variables X1, . . . , Xn, Xn+1 and, as described above,
they compute the multisets Θ̂i and Θ̂L

i for total effects of a randomly chosen covariate Xi

on a response variable Y = Xn + 1.

They report, that in simulation studies over sparse DAGs, already for n = 14, at least
one of the 10 replicates14 of the global-IDA algorithm took more than 48 hours to compute,
so that the computation was aborted. Likewise, for the riboflavin data with n = 4088
covariates in the data set, the global-IDA algorithm is stated as infeasible. We perform
the same experiments reporting (i) the run time of computing Θ̂L

i , i.e., the causal effect
for each possible parent set of Xi and (ii) the run time of computing the multiplicity for
each parent set, i.e., the number of DAGs in the MEC with Xi having the specified parents,
as proposed in Algorithm 3. Hence, local-IDA would be identical to performing step (i),
whereas global-IDA would consist of (i) and (ii). Table 2 shows the results.

Clearly, the extra effort of computing the multiplicities is negligible in this setting. The
regression tasks, which both local- and global-IDA perform for the causal effect estimation,
have significantly larger computational effort. This is due to the fact that the counting tasks
for computing the multiplicities is often extremely simple for the given graphs. The CPDAGs
learned from the PC-algorithm are usually very sparse. Moreover, the input to Clique-
Picking (and other counting algorithms) consists only of the undirected components of the
CPDAG and even for large graphs, these are often quite small. In this sense, the graphs
used in the experiments in the previous subsection were worst-case inputs when it comes to
computational cost, as they were completely undirected. Therefore, we reemphasize that for
most practical problems, there is no reason to avoid the counting task as the Clique-Picking
algorithm should be fast enough to handle almost all imaginable cases.

14. In the original experiments, the algorithms run over 10 replicates with sample size 1000. We perform
100 replicates for more stable results.
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Table 2: Mean runtime in seconds of computing the causal effects and the multiplicities
over 100 replicates with sample size 1000 and the specified number of covariates. The case
n = 4088 is the real-world riboflavin dataset and is hence performed only once. Here, we
average over all covariates Xi instead of choosing a random one.

number of covariates
4 9 14 29 49 99 4088

Effects
Time in s 0.09440 0.14986 0.18639 0.24875 0.24214 0.27393 0.48184
Std. dev. 0.11958 0.11310 0.12029 0.16941 0.11084 0.14278 0.22053

Multipl.
Time in s 0.00014 0.00023 0.00023 0.00086 0.00113 0.00172 0.07042
Std. dev. 0.00028 0.00059 0.00006 0.00453 0.00484 0.00545 0.02758

4. The Clique-Picking Algorithm

In this section, we will show how the problem #AMO defined on undirected chordal graphs
can be solved in polynomial-time through the novel Clique-Picking algorithm. As discussed
in Section 2, such a polynomial-time algorithm for #AMO means that the problem of
computing the size of an MEC can be solved in polynomial-time as well.

The algorithm Clique-Picking, which we develop in the following, heavily relies on the
special properties of chordal graphs and their close connection to AMOs. Hence, we start
by introducing the necessary graphical terms and give important facts.

4.1 Further Definitions and Known Properties

Chordal graphs. The set of all maximal cliques of undirected graph G is denoted by
Π(G). A vertex is simplicial if its neighbors form a clique. In a connected graph, we call a
set S ⊆ V an a-b-separator for two nonadjacent vertices a, b ∈ V if a and b are in different
connected components in G[V \ S]. If no proper subset of S separates a and b we call
S a minimal a-b-separator. We say a set S is a minimal separator if it is a minimal a-b-
separator for any two vertices15. We denote the set of all minimal separators of a graph G by
∆(G). An undirected graph is called chordal if no subset of four or more vertices induces an
undirected cycle. For every chordal graph on n vertices we have |Π(G)| ≤ n (Dirac, 1961).
Furthermore, it is well-known that a graph G is chordal if, and only if, all its minimal
separators are cliques.

AMOs. Just like any other DAG, an AMO α of a UCCG G can be represented by a (not
necessarily unique) linear ordering of the vertices. Such a topological ordering τ represents
α if for each edge u v in α, u precedes v in τ . Note that every AMO of a UCCG contains
exactly one source vertex, i.e., a vertex with no incoming edgesHe et al. (2015). Based on this
observation, one may define the s-orientation Gs of a UCCG G to be the union of all AMOs
of G with unique source vertex s. We view s-orientations from the equivalent perspective
of being the union of all AMOs that can be represented by a topological ordering starting
with s. The undirected components ofGs are UCCGs and can be oriented independently (He

15. Observe that a minimal separator can be a proper subset of another minimal separator (for different
vertex pairs a-b).
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et al., 2015). This observation enables recursive strategies for counting AMOs: the “root-
picking” approaches (He et al., 2015; Ghassami et al., 2019; Talvitie and Koivisto, 2019;
Ganian et al., 2020) that pick each vertex s as source and recurse on the UCCGs of the
s-orientation. Because these UCCGs can be oriented independently, the number of AMOs
is obtained by alternately summing over the number of AMOs for each source vertex s and
multiplying the number of AMOs for each independent UCCG.

4.2 Basics of the Clique-Picking Algorithm

To count the number of Markov equivalent DAGs, we use the association between an AMO
and its topological orderings. In accordance with the algorithm we develop, it is helpful to
consider only topological orderings, which are well-behaved in the following sense:

Definition 8 A topological ordering τ of an AMO α is called clique-starting if it has a
maximal clique as a prefix.

We denote all clique-starting topological orderings representing an AMO α of a graph G
by topG(α) = {τ1, . . . , τ`} and will only consider such topological orderings in the following.
It is sound to restrict ourselves in this way due to the following result:

Lemma 9 Every AMO can be represented by a clique-starting topological ordering.

Based on these observations, we generalize the definition of s-orientations with the goal
of handling whole cliques at once: For this, we consider permutations π of a clique K, as
each π(K) represents a distinct AMO of the subgraph induced by K.

Definition 10 Let G be a UCCG, K be a clique in G, and let π(K) be a permutation of K.

1. The π(K)-orientation of G, also denoted Gπ(K), is the union of all AMOs of G that
can be represented by a topological ordering beginning with π(K).

2. Let GK be the union of π(K)-orientations of G over all π, i.e., let GK =
⋃
π G

π(K).

3. Denote by CG(π(K)) the undirected components of Gπ(K)[V \K] and let CG(K) denote
the undirected components of GK [V \K].

Figure 5 shows an example π(K)-orientation of G: For a graph G in (a), a clique
K = {1, 2, 3, 4}, and a permutation (4, 3, 2, 1), graph G(4,3,2,1) is presented in (c). It is
the union of two DAGs which are AMOs of G, whose topological orderings begin with
4, 3, 2, 1. The first DAG can be represented by topological ordering 4, 3, 2, 1, 5, 6, 7 and the
second one by 4, 3, 2, 1, 6, 5, 7. In Fig. 5, we also compare the (4, 3, 2, 1)-orientation with an
s-orientation, for s = 4, shown in (b). The undirected components of the orientations are
indicated by the colored regions. By orienting whole cliques at once, we get significantly
smaller undirected components in the resulting π(K)-orientation than in the s-orientation
(e.g., {5, 6} compared to {1, 2, 3, 5, 6}). Finally, (d) illustrates graph G{1,2,3,4}.

The crucial observation is that the undirected components CG(π(K)) are independent of
the permutation π. This means no matter how the vertices {1, 2, 3, 4} are permuted, if the
whole clique is put at the beginning of the topological ordering, no further edge orientations
will be influenced. Informally, this is because all edges from the clique K to other vertices
are directed outwards no matter the permutation π. We formalize this observation as:
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Figure 5: For a UCCG G in (a), the figure shows G(4) in (b), G(4,3,2,1) in (c), and G{1,2,3,4}

in (d). The undirected components in G(4) and G(4,3,2,1) are indicated by the colored regions
and the vertices put at the beginning of the topological ordering by a rectangle (all edges
from the rectangle point outwards). Edges inside the rectangle in (c) are dashed, as they
have no influence on the further edge directions outside the rectangle.

Lemma 11 Let G be a UCCG and K be a clique of G. For each permutation π(K), all
edges of Gπ(K) coincide with the edges of GK , excluding the edges connecting the vertices
in K, and therefore, in particular, CG(π(K)) = CG(K).

In our journey towards a polynomial-time algorithm for #AMO, we start by developing
a linear-time algorithm for computing CG(K). This algorithm will yield structural insights
we will later use for deriving a recursive formula for counting Markov equivalent DAGs.

The computation of CG(K) can be performed efficiently through adaptions of well-known
graph traversal algorithms used most prominently in chordality testing. While in (Wienöbst
et al., 2021b) specifically the Lexicographic BFS algorithm has been used to compute CG(K),
we now propose a more general framework which allows “plugging in” various linear-time
chordality testing algorithms.

To do this, we need to introduce further terms from the chordal graph theory and
connect them to the problem of counting AMOs.

Definition 12 A linear ordering ρ = (x1, . . . , xn) of the vertices of chordal graph G is called
a perfect elimination ordering (PEO) if for each i ∈ {1, . . . , n} the vertex xi is simplicial in
G[{xi, . . . , xn}].

Lemma 13 A topological ordering τ of the vertices of a UCCG G represents an AMO if,
and only if, it is the reverse of a PEO.

There are various linear-time graph traversal algorithms designed for chordality testing,
such as the Lexicographic BFS, Maximum Cardinality Search, Lexicographic DFS and
Maximal Neighborhood Search (Rose et al., 1976; Tarjan and Yannakakis, 1984; Corneil
and Krueger, 2008). All of these algorithms are based on the same principle: the vertices
are visited in reverse order of a PEO if, and only if, the graph is chordal. Hence, by
Lemma 13 these algorithms will traverse the graph in the topological order of an AMO. A
fact we exploit in the following.
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To make our main algorithm independent on the specific method of graph traversal,
we present Algorithm 4 for computing the set CG(K) in a general form. It is based on a
generic algorithm, called Maximum Label Search (MLS), to compute a PEO for a given
graph G (Berry et al., 2009). MLS traverses G using the following labeling structure:

Definition 14 (Berry et al. (2009)) A labeling structure L = (L,�, l0, Inc) consists of:

• L is a set (the set of labels),

• � is a partial order on L (which may be total or not),

• l0 is an element of L (the initial label),

• Inc (increase) is a mapping from L × N+ to L satisfying the following IC (Inclusion
Condition): for any subsets I and I ′ of N+, if I ⊂ I ′, then labL(I) ≺ labL(I ′). Here,
N+ denotes the set of positive natural numbers and for a set J = {i1, i2, . . . , ik} with
i1 > · · · > ik, the labeling function is defined as labL(J) = Inc(. . . (Inc(l0, i1), . . . ), ik),

Based on this, the MLS algorithm takes as input a graph G and for a specific labeling
structure L it returns a PEO if G is chordal (see Algorithm MLS in (Berry et al., 2009)).
In this framework, for example, Maximum Cardinality Search is a special case of MLS with
labeling set L = N+ ∪ {0}, the total order � to be ≤, l0 = 0, and Inc(l, i) = l + 1. Our
adaption of MLS, which computes CG(K), is presented as Algorithm 4.

input : A UCCG G = (V,E), a clique K ⊆ V .
framework: A labeling structure L = (L,�, l0, Inc).
output : CG(K).

1 V ′ ← ∅; P ← ∅; For all x ∈ V initialize labels L(x) as l0
2 for i = 1 to n do
3 if i ≤ |K| then
4 x← any vertex in K \ V ′
5 else
6 X ← set of vertices in V \ V ′ with maximal label
7 Append undirected components of G[X \ P ] to the output
8 P ← P ∪X
9 x← any vertex in X

10 end
11 foreach y in N(x) \ V ′ do
12 L(y)← Inc(L(y), n− i+ 1)

13 end
14 V ′ ← V ′ ∪ {x}
15 end

Algorithm 4: A generic algorithm for computing the set CG(K).

For convenience, we introduce the following terms:
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Definition 15 In the execution of Algorithm 4 on input G,L, let Pi(y) be the set of pre-
viously visited neighbors of vertex y ∈ G (a vertex is visited if it was chosen as x in line 4
or 9) before the start of the i-th iteration. Moreover, let i(x) be the iteration in which vertex
x ∈ V \K was output.

Clearly, Pi(y) are exactly the vertices, which contributed to y’s label up to iteration i.

Lemma 16 Algorithm 4 always chooses vertex x with maximal label.

Proof This is the case by construction in line 9. We have to show that it also holds in
line 4. Observe that the first |K| chosen vertices are all from clique K. Hence, when a
vertex x from K is chosen all previously chosen vertices are neighbors of x. This means
that any other label is equal or smaller.

This lemma implies that Algorithm 4, as the Maximum Label Search, visits the vertices in
reverse PEO order, i.e., in an order representing an AMO.

Theorem 17 Algorithm 4 computes CG(K). Moreover, it can be implemented to run in
time O(|V |+ |E|).

Proof Consider two adjacent vertices a and b in G. We show that a and b are in the same
subgraph in the output iff we have a− b in GK . By transitivity it follows that two vertices
are in the same subgraph iff there is an undirected path between them, which implies the
first part of the statement (we will analyze the run time afterwards).

If a and b are in the same connected component output by Algorithm 4 then there
was a point in the algorithm at which a and b had a maximal label and, hence, either one
could have been chosen as vertex x. In both cases the algorithm would have produced a
topological ordering representing an AMO starting with clique K (following from Lemma 16
and Lemma 13), one time with a b, the other with a b. Hence, we have a−b inGK [V \K]
by definition.

Consider that a and b are not in the same connected component output by the algorithm.
Let a be w.l.o.g. the vertex which is output earlier, i.e., i(a) < i(b). We show by induction
over the order the vertices were visited that a b in GK [V \ K]. For the start of the
induction, observe that the vertices in K are not output at all and all edges from K to
vertices in V \K are oriented towards those vertices.

At the iteration i = i(a) when a was output, b had a strictly smaller label. It follows
that Pi(a) 6= Pi(b). With Pi(b) \Pi(a) = ∅ as the algorithm produces a PEO by Lemma 16,
it follows Pi(b) ⊂ Pi(a). Let c be in Pi(a) \ Pi(b). By induction hypothesis, we have c a
in GK as c is not output together with a (recall that i is the iteration when a is output, c
has already been visited previously). Then, a b follows from the first Meek rule.

Common choices of labeling structure (such as for Maximum Cardinality Search or
Lexicographic BFS) lead to a linear-time implementation.

Theorem 17 is an important result in its own right. Algorithm 4 may be used not only for
computing CG(K), but also for computing the s-orientations of a chordal graph G in linear
time as well as the interventional essential graph based on given intervention results (see
Section 3 for a discussion).
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But for now, we focus on the structural properties regarding AMOs and chordal graphs
revealed by Algorithm 4, which allow us to conclude that the undirected components of
GK (i.e., the graph which occurs when fixing clique K as “source”) are chordal and can be
oriented independently. The first fact can be easily seen as, by Algorithm 4, the undirected
components are induced subgraphs, which preserve the chordality of the graph. The second
fact is more technical and due to the observation that vertices in the same undirected
component have the same parent set in GK , which ensures that any AMO of the component
will not create a new v-structure in GK . Crucially, this paves the way towards a recursive
formulation of #AMO based on picking a clique as source.

Corollary 18 Let G be a chordal graph and K a clique.

1. The undirected components of GK [V \ K] are induced subgraphs and hence chordal
graphs.

2. Let adjacent x, y in G be in different undirected connected components of GK [V \K]
and i(x) < i(y). Then, x y is an edge in GK [V \K].

3. Pi(v)(v) = Pav(G
K).

4. For adjacent a, b in the same undirected component of GK [V \K], we have that Pi(a) =
Pi(b).

5. The number #EXT(Gπ(K)) can be factorized as

#EXT(Gπ(K)) =
∏

H∈CG(π(K))

#AMO(H).

6. The number of AMOs represented by some topological ordering with clique K at the
beginning (in any permutation) is

|K|!×#EXT(GK) = |K|!×
∏

H∈CG(K)

#AMO(H).

In line with our notation, we write #EXT(GK) as this graph is partially oriented and
#AMO(H) with H ∈ CG(K) as it is an undirected chordal graph. Based on item 6 of
Corollary 18, we would like to count the AMOs of a chordal graph G with the following
recursive procedure: Pick a maximal clique K, consider all its permutations at once (i.e.,
multiply by |K|!), and take the product of the recursively computed number of AMOs of
the UCCGs of CG(K). By Lemma 9, we will count every AMO in this way, if we compute
the sum over all maximal cliques. Unfortunately, we will count some orientations multiple
times, as a single AMO can be represented by multiple topological orderings starting with
different maximal cliques. For instance, assume we have two maximal cliques K1 and K2

with K1 ∩K2 = S such that K1 \ S is separated from K2 \ S in G[V \ S]. A topological
ordering that starts with S can proceed with either K1 \S or K2 \S and result in the same
AMO.
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Example 2 Consider the following chordal graph (left) with maximal cliques K1 = {1, 2, 3}
and K2 = {2, 3, 4}. A possible AMO of the graph is shown on the right.

1

2

3

4 1

2

3

4

The AMO has two topological orderings: τ1 = (3, 2, 1, 4) and τ2 = (3, 2, 4, 1) starting
with K1 and K2, respectively. Hence, if we count all topological orderings starting with K1

and all topological orderings starting with K2, we will count the AMO twice. However, τ1

and τ2 have (3, 2) as common prefix and K1 ∩ K2 = {2, 3} is a minimal separator of the
graph – a fact that we will use in the following. �

Lemma 19 Let α be an AMO of a chordal graph G and let τ1, τ2 ∈ top(α) be two clique-
starting topological orderings that represent α. Then τ1 and τ2 have a common prefix S ∈
∆(G) ∪Π(G).

Note that this lemma implies that all topological orderings that correspond to an AMO
have a common prefix, which is a minimal separator or maximal clique.

The combinatorial function φ, defined below, plays a crucial role to avoid overcounting.

Definition 20 For a set S and a collection R of subsets of S, we define φ(S,R) as the
number of all permutations of S that do not have a set S′ ∈ R as prefix.

Example 3 Consider the set S = {2, 3, 4, 5} and the collection R =
{
{2, 3}, {2, 3, 5}

}
.

Then φ(S,R) = 16 since there are 16 permutations of {2, 3, 4, 5} that neither start with
{2, 3} nor {2, 3, 5} – e.g., (3, 2, 4, 5) and (2, 5, 3, 4) are forbidden as they start with {2, 3}
and {2, 3, 5}, respectively; but (3, 5, 4, 2) is allowed. �

In this paper, we always consider sets S ∈ ∆(G) ∪ Π(G) and collections R ⊆ ∆(G).
Therefore, we can use the abbreviation φ(S) = φ

(
S, {S′ | S′ ∈ ∆(G) ∧ S′ ( S }

)
.

Proposition 21 Let G be a UCCG. Then:

#AMO(G) =
∑

S∈∆(G)∪Π(G)

φ(S)×
∏

H ∈ CG(S)

#AMO(H).

Proof By the choice of S and the definition of CG(S), everything counted by the formula is
a topological ordering representing an AMO. We argue that every AMO α is counted exactly
once. Let S ∈ ∆(G) ∪ Π(G) be the smallest common prefix of all topological orderings in
top(α) – which is well-defined by Lemma 19. First observe that, by the minimality of S, α
is counted at the term for S: There is no other prefix S̃ ( S of the topological orderings
with S̃ ∈ ∆(G) ∪Π(G).

On the other hand, S is the only term in the sum at which we can count α, as for any
larger S̃ with S ( S̃ that is a prefix of some τ ∈ top(α), we have S is considered in φ(S̃).
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Example 4 We consider the following chordal graph with two minimal separators and three
maximal cliques:

G =
1 2 3

4 5 6

∆(G) =
{
{2, 3}, {2, 3, 5}

}
Π(G) =

{
{1, 2, 3}, {2, 3, 4, 5}, {2, 3, 5, 6}

}
To compute #AMO(G) using Proposition 21, we need the following values. Note that the
resulting subgraphs H are trivial, except for the case S = {2, 3} and S = {1, 2, 3}. In these
cases, we obtain the induced path on {4, 5, 6}, which has three possible AMOs.

S ∈ ∆(G) ∪Π(G) φ(S)
∏

H∈CG(S)

#AMO(H)

{2, 3} 2 3
{2, 3, 5} 4 1
{1, 2, 3} 4 3
{2, 3, 4, 5} 16 1
{2, 3, 5, 6} 16 1

Using Proposition 21 we can compute #AMO(G) as follows:

#AMO(G) = 2 · 3 + 4 · 1 + 4 · 3 + 16 · 1 + 16 · 1 = 54.

We remark that we do not have discussed how to compute φ(S) yet – for this example, this
can be done by näıve enumeration. In general, however, this is a non-trivial task. We tackle
this issue below. �

4.3 The Algorithm

From Proposition 21 we know how to count AMOs by using minimal separators in order
to avoid overcounting and it is rather easy to check that we can compute φ(S,R) in time
exponential in |R| using the inclusion-exclusion principle. However, our goal is polynomial
time and, thus, we have to restrict the collection R.

Lemma 22 Let S be a set and R = {X1, . . . , X`} be a collection of subsets of S with
X1 ( X2 ( · · · ( X`. Then:

φ(S,R) = |S|!−
∑̀
i=1

|S \Xi|! · φ(Xi, {X1, . . . , Xi−1}).

Proof We prove the statement by induction over ` with the base case φ(S, ∅) = |S|!.
Consider a set S and a collection R = {X1, . . . , X`} of subsets of S. We can compute
φ(S,R) by taking φ(S, {X1, . . . , X`−1}) (the number of permutations of S that do not start
with X1, . . . , X`−1) and by subtracting the number of permutations that start with X` but
none of the other Xi, i.e.,

φ(S,R) = φ(S, {X1, . . . , X`−1})− |S \X`|! · φ(X`, {X1, . . . , X`−1}).
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Inserting the induction hypothesis, we obtain:

φ(S,R) = |S|!−
`−1∑
i=1

|S \Xi|! · φ(Xi, {X1, . . . , Xi−1})− |S \X`|! · φ(X`, {X1, . . . , X`−1})

= |S|!−
∑̀
i=1

|S \Xi|! · φ(Xi, {X1, . . . , Xi−1}).

Observe that this formula can be evaluated in polynomial time with respect to |S| and `,
as all recursive calls have the form φ(Xi, {X1, . . . , Xi−1}) and, thus, there are at most `
distinct ones. The goal of this section is to develop a version of Proposition 21 based on
this lemma. This will allow us to obtain the Clique-Picking algorithm.

To achieve this goal, we rely on the strong structural properties that chordal graphs
entail: A rooted clique tree of a UCCG G is a triple (T, r, ι) such that (T, r) is a rooted tree
and ι : VT Π(G) a bijection between the nodes of T and the maximal cliques of G such
that {x | v ∈ ι(x) } is connected in T for all v ∈ VG. In slight abuse of notation, we denote,
for a set C ⊆ VG, by ι−1(C) the subtree {x | C ⊆ ι(x) }. We denote the children of a node
v in a tree T by childrenT (v). It is well-known that (i) every chordal graph has a rooted
clique tree (T, r, ι) that can be computed in linear time, and (ii) a set S ⊆ VG is a minimal
separator if, and only if, there are two adjacent nodes x, y ∈ VT with ι(x) ∩ ι(y) = S (Blair
and Peyton, 1993).

We wish to interleave the structure provided by the clique tree with a formula for
computing #AMO. For this sake, let us define the forbidden prefixes for a node v in a
clique tree.

Definition 23 Let G be a UCCG, T = (T, r, ι) a rooted clique tree of G, v a node in T
and r = x1, x2, . . . , xp = v the unique r-v-path. We define the set FP(v, T ) to consist of all
intersections ι(xi) ∩ ι(xi+1) that are contained in ι(v), for 1 ≤ i < p.

Lemma 24 We can order the elements of the set FP(v, T ) as X1 ( X2 ( · · · ( X`.

Proof The ordering of the sets is given by the natural order along the path from the root
r to node v. The sets in FP(v, T ) satisfy ι(xi)∩ ι(xi+1) ⊆ ι(v). By the definition of a clique
tree, we have ι(xi) ∩ ι(xi+1) ⊆ ι(y) for each y that lies on the xi-v-path in T . Hence, each
such y can only add supersets of ι(xi) ∩ ι(xi+1) to FP(v, T ).

By combining the lemma with Lemma 22, we deduce that φ(ι(v),FP(v, T )) can be evaluated
in polynomial time for nodes v of the clique tree. We are left with the task of developing
a formula for #AMO in which all occurrences of φ are of this form. It is quite easy to
come up with such formulas that count every AMO at least once – but, of course, we have
to ensure that we count every AMO exactly once. The formula given in proposition below
achieves this goal.

Proposition 25 Let G be a UCCG and T = (T, r, ι) be a rooted clique tree of G. Then

#AMO(G) =
∑
v ∈ VT

φ(ι(v),FP(v, T ))×
∏

H ∈ CG(ι(v))

#AMO(H).
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Crucially, evaluating this formula can be done efficiently. As implementation, we give
Algorithm 5, which utilizes memoization to avoid recomputations. Traversing the clique
tree with a BFS allows for a straightforward computation of FP.

input : A UCCG G = (V,E).
output: #AMO(G).

1 return count(G, ∅)
2 function count(G, memo)
3 if G ∈ memo then
4 return memo[G]
5 end
6 T = (T, r, ι)← a rooted clique tree of G
7 sum← 0
8 Q← queue with single element r
9 while Q is not empty do

10 v ← pop(Q)
11 push(Q, children(v))
12 prod← 1
13 foreach H ∈ CG(ι(v)) do
14 prod← prod · count(H,memo)
15 end
16 sum← sum + φ(ι(v),FP(v, T )) · prod

17 end
18 memo[G] = sum
19 return sum

20 end
Algorithm 5: Clique-Picking

Theorem 26 For an input UCCG G, Algorithm 5 returns the number of AMOs of G.

We defer the rather involved proof of this Theorem to Section 8.

Example 5 We consider a rooted clique tree (T, r, ι) for the graph G from Example 4. The
root is labeled with r and the function ι is visualized in blue. The edges of the clique tree
are labeled with the corresponding minimal separators.

r {1, 2, 3}

{2, 3, 4, 5}

{2, 3, 5, 6}

{2, 3}

{2, 3, 5}

φ
(
{1, 2, 3}, ∅

)
φ
(
{2, 3, 4, 5},

{
{2, 3}

})
φ
(
{2, 3, 5, 6},

{
{2, 3}, {2, 3, 5}

})
= 6

= 20

= 16

Algorithm 5 traverses the tree T from the root r to the bottom and computes the values shown
at the right. The only case in which we obtain a non-trivial subgraph is for S = {1, 2, 3}
(an induced path on {4, 5, 6}). Therefore:

#AMO(G) = 6 · 3 + 20 · 1 + 16 · 1 = 54. �
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Since clique trees can be computed in linear time (Blair and Peyton, 1993), an iteration
of the algorithm runs in polynomial time due to Lemma 22 and 24. We prove next that
Algorithm 5 performs at most 2 · |Π(G)|−1 recursive calls, which implies overall polynomial
run time.

We analyze the run time of the Clique-Picking algorithm by bounding the number of
connected chordal subgraphs that we encounter. The following proposition shows that this
number can be bounded by O(|Π(G)|). Recall that we have |Π(G)| ≤ |V | in chordal graphs
and, thus, we only have to handle a linear number of recursive calls.

Proposition 27 Let G be a UCCG. The number of distinct UCCGs explored by count is
bounded by 2|Π(G)| − 1.

We can, hence, conclude the following:

Theorem 28 The Clique-Picking algorithm runs in time O
(
|Π(G)|2 · (|V |+ |E|)

)
.

Proof By Proposition 27, count explores O(|Π(G)|) distinct UCCGs. For each of them,
the clique tree is computed in time O(|V |+ |E|). Afterwards, for each maximal clique, the
subproblems are computed by Algorithm 4 in time O(|V |+ |E|) by Theorem 17.

For the computation of φ(S,FP(v, T )), note that FP can be obtained straightforwardly:
Traverse the clique tree with a BFS, keep track of the nodes on the path from root r to any
visited node, compute FP with its definition.

The function φ can be evaluated using dynamic programming and the recursive formula
from Lemma 22. There are O(|S|) distinct recursive calls and for each a sum over O(|S|)
terms has to be computed (as l is always smaller than |S|). Because S is a clique, the effort
is in O(|E|).

We summarize the findings of this section in the following theorem which restates our main
Theorem 1.

Theorem 29 Algorithm 1 solves the problem #EXT for CPDAGs (i.e., the computation
of the size of an MEC) in polynomial time.

Proof The correctness of Algorithm 1 follows from Equation (1) and Theorem 26. By
Theorem 28, it performs polynomially many arithmetic operations. Since #AMO(G) is
bounded above by n!, with n denoting |VG|, all operations run in polynomial time because
the involved numbers can be represented by polynomially many bits.

5. Uniform Sampling of Markov Equivalent DAGs

In this section, we investigate the problem of uniformly sampling a DAG from a Markov
equivalence class. This problem is closely related to the counting problem and we show how
to solve it efficiently using the Clique-Picking approach.

The general approach can be seen in Algorithm 6. The recursive function sample takes
as input a UCCG G and produces a topological ordering of the vertices τ , which represents
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input : A UCCG G.
output: Topological ordering of uniformly drawn AMO of G.

1 function sample(G)
2 T = (T, r, ι)← rooted clique tree of G
3 v ← drawn with probability proportional to φ(ι(v),FP(v, T ))×∏

H∈CG(ι(v)) #AMO(H)

4 τ ← uniformly drawn permutation of ι(v) without prefix in FP(v, T )
5 foreach H ∈ CG(K) do
6 τ ← concat(τ, sample(H))
7 end
8 return τ

9 end
Algorithm 6: The recursive function sample uniformly samples an AMO (represented
through its topological ordering) from a UCCG G.

a uniformly sampled AMO of G. It utilizes the formula

#AMO(G) =
∑
v ∈ VT

φ(ι(v),FP(v, T ))×
∏

H ∈ CG(ι(v))

#AMO(H).

derived in Proposition 25. Hence, the counting is done with respect to a clique tree T of G.
The idea is to first sample a clique (i.e., a node v of the clique tree), which is put at the

start of the topological ordering. For this, node v is drawn with probability proportional to

φ(ι(v),FP(v, T ))×
∏

H ∈ CG(ι(v))

#AMO(H),

i.e., the number of AMOs counted at the clique. This will ensure that every AMO has
uniform probability of being drawn. In practice, it is useful to run the Clique-Picking
algorithm once as precomputation step, in order not to evaluate the formula repeatedly.
We discuss such implementation details later. Next, a permutation τ of chosen clique K
is drawn uniformly from those which do not start with one of the “forbidden” prefixes in
FP(v, T ). Recall that function φ counts only such permutations. Finally, the algorithm
recurs, as prescribed by the formula above, into the subgraphs in CG(K), which are consid-
ered independently. The topological orderings sampled for these subgraphs are appended
to τ .

We will start this section by showing that this approach will indeed sample a uniform
AMO. Afterwards, we will discuss possible implementations of this method.

Theorem 30 For a UCCG G, the function sample returns a topological ordering repre-
senting an AMO chosen with uniform probability.

Proof We show the theorem by induction. As base case we consider a single clique K.
Here, any permutation of K represents a unique AMO. Because there is only one v to
choose and, as FP(v, T ) is empty, such a permutation (and hence the corresponding AMO)
is chosen uniformly.
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In order to make the following arguments more precise, we denote with Pr(τα(G)) the
probability that Algorithm 6 draws a topological ordering τ of the vertices in G that rep-
resents α. Our goal is to show, as we just did in the base case, that for all α:

Pr(τα(G)) = 1/#AMO(G).

For UCCG G and clique-tree T , let vα be the node in the clique-tree, at which α is
“counted” and let πα be the corresponding permutation of the clique ι(v) in any topological
ordering of α. The correctness of the proof relies on the fact that both vα and πα are unique
(for vα this follows from the proof of Proposition 25). Then:

Pr(τα(G)) = Pr(vα)Pr(πα | vα)
∏

H∈CG(ι(vα))

Pr(τα[H](H))

=
φ(vα,FP(vα, T ))

∏
H∈CG(ι(vα)) #AMO(H)

#AMO(G) · φ(vα,FP(vα, T ))

∏
H∈CG(ι(vα))

Pr(τα[H](H))

=

∏
H∈CG(ι(vα)) #AMO(H)

#AMO(G)
∏
H∈CG(ι(vα)) #AMO(H)

=
1

#AMO(G)

In the second step, we insert the definitions of Pr(vα) and Pr(πα | vα). In the third step,
we use the induction hypothesis∏

H∈CG(Kα)

Pr(τα[H](H)) =
1∏

H∈CG(Kα) #AMO(H)

to complete the proof.

We will now discuss how to efficiently implement the proposed sampling algorithm. The
non-trivial tasks are lines 3 and 4 of Algorithm 6.

Note that when calling the function sample for an input graph G, it is only necessary to
know for each node v in a certain clique-tree T , the following information: the set FP(v, T )
and

φ(ι(v),FP(v, T ))×
∏

H ∈ CG(ι(v))

#AMO(H).

Moreover, in a single run of the counting algorithm (Algorithm 5) these terms are computed
for G and all possible recursive subcalls. Hence, in a preprocessing step we perform the
counting algorithm once, storing these information.

For the implementation of line 3, we hence need to draw from a categorical distribution
with known weights over the nodes of clique-tree T . This is possible in constant time
O(1) using the Alias Method (Walker, 1974; Vose, 1991) assuming that the preprocessing
includes the computation of a Alias Table. As this is possible in linear-time in the number
of categories, there is no computational overhead.

The implementation of line 4 is trickier. In (Wienöbst et al., 2021b), we proposed a
routine which performs this step in O(|ι(v)|2) time. This leads to overall cost of O(|V |+|E|)
of sample. Moreover, the precomputation is significantly more complicated, needing time
O(|Π(G)|2 · |V | · (|V |+ |E|) and hence an additional factor |V |.
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Here, we propose a simple Monte Carlo algorithm for the implementation of line 4 based
on rejection sampling. Due to the combinatorial structure of the counting function φ, we are
able to bound the expected number of draws in this rejection sampling routine by a constant.
This leads to a very efficient and practical algorithm, as the preprocessing cost are in the
same order as the standard Clique-Picking algorithm, i.e., time O(|Π(G)|2 ·(|V |+ |E|)), and
the sampling of the topological ordering is even possible in time O(|V |).

Theorem 31 There is an algorithm that, given a connected chordal graph G, uniformly
samples a topological ordering of an AMO of G in expected time O(|V |) after an initial
O(Π(G)2 · (|V |+ |E|)) setup.

Theorem 2 (announced in the introduction) follows directly from the theorem above since
to uniformly sample a DAG in MEC represented by a CPDAG C one can uniformly sample
a topological ordering of an AMO of G, independently for each undirected component G of
C and then combine the orderings to obtain a resulting DAG.

Proof (of Theorem 31) As discussed above, we implement line 4 in Algorithm 6 by rejection
sampling, i.e., repeatedly draw random permutations until one which is not forbidden is
found.

We begin by showing that, in expectation, only a constant number of draws are necessary
(this holds for any input). Let φ(S,FP) be the number of allowed permutations. The ratio
φ
|S|! gives the probability that a random permutation is allowed. We have to find a lower
bound for the ratio in order to obtain the statement. Given a set S, the value of φ reaches its
minimum when allowing as few prefixes as possible. Consequently, a worst-case collection
for S = {s1, ..., sp} is FP = {{s1}, {s1, s2}, ..., {s1, s2, ..., sp−1}}.

In this case, the number of allowed permutations is known as the number of irreducible
permutations (OEIS A003319 (OEIS Foundation Inc., 2022)), which we denote with ρ(p).
It is well-known (and a special case of Lemma 22):

ρ(p) = p!−
p−1∑
i=1

i! · ρ(p− i).

For our derivation of the lower bound, we start by deriving some simple bounds of
fractions of binomial coefficients. For 2 ≤ i ≤ p− 2

1(
p
i

) ≤ 1(
p
2

) =
2

p(p− 1)

holds and therefore

p−1∑
i=1

1(
p
i

) =
2

p
+

p−2∑
i=2

1(
p
i

) ≤ 2

p
+

2(p− 3)

p(p− 1)
≤ 4

p
.
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Computing the ratio and using the inputs S,FP as defined above, we have for p ≥ 8

φ(S,FP)

|S|!
≥ ρ(p)

p!
= 1−

p−1∑
i=1

i! · ρ(p− i)
p!

≥ 1−
p−1∑
i=1

i! · (p− i)!
p!

= 1−
p−1∑
i=1

1(
p
i

)
≥ 1− 4

p
≥ 1− 1

2
.

Hence,
φ(S,FP)

|S|!
≥ 1

2

for |S| ≥ 8; that the estimate holds for all |S| < 8 can be checked by hand. In conclusion,
it holds

E[number of trials until first success] ≤ 1
1
2

= 2.

It remains to analyze the expected run time of this routine. Drawing a permutation is
possible in linear time in |S|. Note that FP can be efficiently represented by only storing
the new elements of Xi (recall that X1 ( X2 ( · · · ( Xp). Checking whether a permutation
is forbidden can be done in linear-time as well: For every object s ∈ S, we record its first
occurrence in FP. If it first occurred in set Xk, we have o[s] =

∑k
i=1 |Xi|; otherwise, it is in

no set of forbidden prefixes and we put o[s] = p+ 1. Afterwards, we go through the drawn
permutation from front to back and memorize the highest o-value seen up until this step. If
at position i the maximal value has been i, we can conclude that this permutation contains
a forbidden prefix.

We will now discuss the run time of the whole sample function: We assume that as
precomputation, a modified version of the Clique-Picking was performed. Then, using the
Alias Method, line 3 takes time O(1).

Hence, we have overall expected linear-time for the drawing of a non-forbidden permu-
tation. This means, we “pay” a constant amount per element in the build topological order
and therefore this order can even be obtained in expected time O(|V |) after appropriate
preprocessing. Note that to output the AMO itself, Θ(|V | + |E|) time is needed as this is
the size of the output, but in a lot of cases the topological ordering might be sufficient.

We close this section by giving an experimental evaluation of our algorithm. As there are,
to the best of our knowledge, no other implementations of exact sampling from an MEC,
we will confine ourselves to showing that (i) the overhead of the preprocessing for sampling
compared to the “standard” Clique-Picking algorithm is negligible and (ii) that sampling
after preprocessing is extremely fast. We compare implementations of the algorithms in
Julia and generated chordal graphs as described in (Wienöbst et al., 2021b), namely using
the subtree intersection method (Seker et al., 2017) with density parameter k = log n (the
expected number of neighbors per vertex is proportional to this parameter) and the algo-
rithm by Scheinerman (1988) for sampling random interval graphs (interval graphs form a
subclass of chordal graphs). For each input graph, we performed the counting algorithm
without and with preprocessing. The run times are averages over 100 graphs. Afterwards,
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we sampled 10 DAGs from each MEC uniformly, in total forming the average over 1000
sampling steps.

Table 3: The run times in seconds of the standard Clique-Picking algorithm without any
precomputations (CP w/o pre.) and the modified one which includes precomputations
(CP with pre.) for sampling on randomly generated chordal graphs (using the subtree
intersection method as well as random interval graphs). For each choice of parameters, the
algorithms were run on the same 100 graphs. Moreover, we give the average run time of
sampling (after the preprocessing step), which is calculated as the average of 10 samplings
per graph.

Number of vertices
16 32 64 128 256 512 1024 2048 4096

Random subtree intersection (k = log2 n)
CP w/o pre. 0.00076 0.00199 0.00729 0.02718 0.09463 0.38164 1.62875 7.53509 35.0380
CP with pre. 0.00135 0.00219 0.00774 0.02783 0.09602 0.38530 1.63844 7.58248 35.0759
Sampling 0.00001 0.00003 0.00006 0.00013 0.00026 0.00054 0.00118 0.00283 0.00695

Random interval graphs
CP w/o pre. 0.00066 0.00211 0.00834 0.03512 0.18089 1.14654 8.17442 66.3541 539.270
CP with pre. 0.00080 0.00233 0.00864 0.03600 0.18278 1.15313 8.20020 66.2455 538.496
Sampling 0.00002 0.00003 0.00008 0.00025 0.00068 0.00204 0.00691 0.02298 0.10378

First, the run time difference between the standard Clique-Picking algorithm and the
modified one, which includes preprocessing for sampling, is extremely small. The additional
computations do not form the bottleneck of the approach and have only a small influence
on the run time. For the very large graphs, in particular the dense interval graphs, the run
time difference can hardly be measured, due to the fact that the additional precomputation
effort is independent of the number of edges, which dominates the run time.16

Second, it can be clearly seen that sampling (after the initial setup step) is extremely
fast. Even for large graphs it takes only fractions of a second. We remark that the sampling
algorithm returned the full sampled DAG, which is the desired output in most cases, but
that it would also be possible to only return the topological ordering, reducing the run time
further.

6. Complexity of Counting Under Background Knowledge

As a generalization of the counting problems for MECs, we consider the problem of counting
the number of DAGs in case of additional background knowledge. The formulation of the
problem will not be different than before, we still want to compute #EXT(G) for a graph
G, only now we do not make the assumption that G is a CPDAG (or interventional essential
graph), but instead allow for arbitrary input graphs. This includes two well-known graph
classes, the one of PDAGs and MPDAGs. A PDAG is a partially directed graph without

16. The execution time naturally fluctuates and for the large interval graphs this fluctuation influences the
result more than the actual overhead. Hence, in some cases the precomputation algorithm is recorded as
faster in the experiments. Clearly, Clique-Picking with precomputations does strictly more computations
and, thus would, without noise, not be faster than normal Clique-Picking.
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a directed cycle and an MPDAG is a PDAG, which has been maximally oriented using the
Meek rules (Meek, 1995).

The following theorem shows that Theorem 29 is tight in the sense that counting Markov
equivalent DAGs on the more general input graphs, which encode additional background
knowledge (i.e., PDAGs or MPDAGs) is not in P under standard complexity-theoretic
assumptions. We do this by reduction from the #P-hard problem of counting the number
of topological orderings of a DAG (Brightwell and Winkler, 1991), in the following denoted
by #TO.

Theorem 32 The problem #EXT is #P-complete for arbitrary input graphs G, and in
particular for PDAGs and MPDAGs.

Proof We give a parsimonious reduction which by construction will consist of acyclic
graphs, hence the hardness follows for PDAGs. The resulting PDAGs can moreover be
transformed into an equivalent MPDAG (regarding the corresponding extensions) in poly-
nomial time (Meek, 1995).

We reduce the #P-hard problem of counting the number of topological orderings of a
DAG (Brightwell and Winkler, 1991) to counting the number of AMOs of a PDAG.

Given a DAG G = (V,E), we construct the PDAG G′ as follows: G′ has the same set
of vertices V as G and we add all edges from G to G′. We insert an undirected edge for all
pairs of remaining nonadjacent vertices in G′.

Each extension of G′ can be represented by exactly one linear ordering of V (because
G′ is complete) and each topological ordering of G is a linear ordering as well. We prove in
two directions that a linear ordering of V is an AMO of G′ if, and only if, it is a topological
ordering of G.

⇒) If a linear ordering τ represents an AMO ofG′, the edges inG are correctly reproduced.
Hence, it is a topological ordering of G.

⇐) If a linear ordering τ is a topological ordering of G, the orientation of G′ according to
it is, by definition, acyclic and reproduces the directed edges in G′. As G′ is complete,
there can be no v-structures. Hence, τ represents an AMO of G′.

Notably, the reason Clique-Picking cannot be used to solve these counting problems can be
directly connected to the main idea of the proof as well. Intuitively, the problems for PDAGs
and MPDAGs can be reduced to the setting that, when counting AMOs in UCCGs, some
edge orientations in the chordal component are predetermined by background knowledge.
Hence, in the Clique-Picking algorithm, when counting the number of permutations for a
clique K, we have to count only those consistent with the background knowledge. But
this is equivalent to the hard problem of counting the number of topological orderings of a
DAG. We formalize this in the following. First, we introduce a modified version of counting
function φ.

Definition 33 For a set S, a collection R of subsets of S and a partial order � over the
elements of S, we define φ′(S,R,�) as the number of all permutations of S consistent with
� that do not have a set S′ ∈ R as prefix.
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Hence, we generalize the function φ used in the Clique-Picking algorithm to counting
only linear orderings (i.e., permutations) consistent with a given partial order. If R is
empty, it coincides with the problem is of counting the extensions of a partial order. As
this is equivalent to the problem #TO (all relations can be encoded as directed edges), we
will denote by #TO(S,�) the number of linear orderings of S consistent with �.

Lemma 34 Let S be a set and R = {X1, . . . , X`} be a collection of subsets of S with
X1 ( X2 ( · · · ( X`. Then, function φ′(S,R,�) can be computed by O(`2) calls to #TO.

Proof We base our approach on the recursive formula derived in Lemma 22

φ(S,R) = |S|!−
∑̀
i=1

|S \Xi|! · φ(Xi, {X1, . . . , Xi−1}).

Instead of |S|!, compute the number of permutations of S consistent with �. In the sum,
check whether the partition in Xi (at the beginning of the permutation) and S \ Xi (at
the end of the permutation) violates the partial ordering (let indicator function I(Xi,�)
denote this and evaluate to 0 if � is violated, else to 1). Replace |S \Xi| by the number of
permutations of this subset of S which conforms to �. We obtain:

φ′(S,R,�) = #TO(S,�)−
∑̀
i=1

I(Xi,�) ·#TO(S \Xi,�) · φ′(Xi, {X1, . . . , Xi−1},�).

Correctness follows as in Lemma 22 and as there are at most ` recursive calls, we have O(`2)
calls to #TO.

Theorem 35 Counting the number of AMOs can be solved in time O(n4 ·T (n)) for PDAGs
and MPDAGs, where T (n) is the time required to solve an instance of #TO.

Proof We consider the following algorithm (input is a PDAG or an MPDAG G)

1. Compute the CPDAG C, which contains all the DAGs represented by G (Wienöbst
et al., 2021a). Note that a PDAG or an MPDAG represents a subset of an MEC, C
is the CPDAG of this class.

2. Consider the UCCGs of C, compute the number of AMOs consistent with the edges in
G for each, and multiply them. This way the number of AMOs of G can be obtained.

We do the computation for each UCCG by calling a modified version of count from
Algorithm 5 with additional parameter � and φ replaced by φ′. We pass this function
a UCCG of C and as � we choose �G, i.e., the partial ordering over the UCCG given
by the directed edges of G (i.e., u �G v if u v in G).

The correctness follows immediately, as Algorithm 5 considers every AMO once and this
modification prunes exactly those AMOs not conforming to the background knowledge.

As count is called at most n times and there are at most n maximal cliques, the function
φ′ will be called at most n2 times. In the worst case, evaluating φ′ needs O(n2) calls to
#TO, thus we obtain the overall bound of O(n4) calls.

In practice, the bound of O(n4) oracle calls should be rather pessimistic as the parameter
l in the computation φ′, i.e., the number of forbidden prefixes, is usually rather small.
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7. Conclusion

We presented the first polynomial-time algorithms for counting and sampling Markov equiv-
alent DAGs. Crucially, our novel Clique-Picking approach is also extremely fast in practice.
This means that especially the task of computing the size of an MEC does not have to be
avoided, as we have argued by demonstrating the feasibility in two important applications.
This enables researchers to choose more reliable and robust algorithms.

For the uniform sampling problem, we gave a new and simple linear-time algorithm after
preprocessing with minimal overhead, which performs very well in practice, in particular,
when many DAGs are sampled from the same MEC. Finally, we completed the theoretical
study of the problem by showing that the more general problem with additional back-
ground knowledge is not solvable in polynomial-time under common complexity-theoretical
assumptions, while also giving a reduction to classical counting problems.

8. Missing Proofs

8.1 Proof of Theorem 6 in Section 3

Proof A natural approach to compute G′ for possible interventional values represented by
K, is as follows. We orient the edges in G according to K and next apply directly the Meek
rules (Meek, 1995). It has been shown that it is sufficient to only apply the first two Meek
rules and with an efficient implementation utilizing the special structure of the problem this
yields time O(d ·m) (AhmadiTeshnizi et al., 2020) (where d is the maximal degree of the
graph). Below we show that using our methods we can compute G′ in linear time O(n+m).

Due to Proposition 4 we know that, to computeG′, it is sufficient to orient onlyH intoH ′

since the remaining UCCGs of G remain unchanged. Let D be the set of vertices reachable
from v (including v itself) in H with edges incident to K removed. Let A = V \ {D ∪K}
be the remaining vertices without K. As we will show in the following, (i) the induced
subgraph H[A ∪K] is undirected, (ii) there are no edges between A and D, (iii) the edges
from K to D are oriented outwards from K (iv) and the edges in H[D] are given by calling
Algorithm 4 on H[D ∪K] with clique K ∪ {v}.

We begin with (ii). Assume, for the sake of contradiction there is an edge A 3 a−v ∈ V .
Then, by definition, a would be part of V .

For (iii), observe that there is a path in H[D] from v to every vertex. For the sake of the
argument, let us only consider shortest paths. Then, the first Meek rule can be iteratively
applied along that path (note that the first edge is given by the intervention result). Hence,
in H ′, there is a directed path from v to any vertex in H ′[D]. Consequently, every edge
between K and D has to be oriented from K to D to avoid a directed cycle (every vertex
in K is a parent of v in H ′).

We are now able to show (i). From (ii) and (iii), every edge between A ∪K and D is
oriented from A ∪K to D. It follows that the chordal induced subgraph H[A ∪K] can be
oriented independently of the remaining graph as no v-structure nor cycle can occur.

It is left to show (iv). By the intervention result and (iii), we know that every edge from
the initial clique K ∪ {v} is oriented outwards. It immediately follows from the correctness
of Algorithm 4 that every implied directed edge is correctly detected (as it follows from
those initial orientations). To see that all undirected edges a − b are indeed undirected in
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H ′, recall that in the proof of Theorem 17 it is argued that there exists an AMO with a b
and one with a b. Now note that finding an AMO for H[D ∪K] (the orientation of the
initial clique does not matter, just consider an arbitrary fixed orientation), will also yield
an AMO for H by combining it with an AMO for H[A ∪K]. Hence, the same argument
holds.

8.2 Missing Proofs in Section 4

8.2.1 Proof of Lemma 9

Proof Consider AMO α. We construct one-by-one a topological ordering starting with a
maximal clique by an adaption of Kahn’s algorithm (Kahn, 1962). First, let the start vertex
in the ordering be the unique source s (recall that an AMO has a unique source vertex) and
let set S = {s} denote the already considered vertices. Second, as long as there is a vertex
adjacent to every x ∈ S, choose such a vertex v which is incident to no edge u v in α for
u ∈ V \S and add it to S. Third, iteratively append the remaining vertices to the ordering
by repeatedly choosing vertices with no incoming edges from unvisited vertices.

Clearly, the resulting ordering is a topological ordering and starts with a maximal clique
provided vertex v always exists. Consider the set W = {w | w ∈ N(u) for all u ∈ S} of
common neighbors of S, which is non-empty in the second phase. Assume for a contradiction
that every vertex in W has an incoming edge from a vertex in V \S. Note that no vertex in
w ∈W can have an incoming edge from x ∈ (V \ S) \W as this would imply a v-structure
y w x for a y ∈ S not adjacent to x in the given graph α. As the graph α is acyclic
(and this property holds for taking induced subgraphs, i.e., for G[W ] as well) there has to
be a vertex in W with no incoming edge – a contradiction.

8.2.2 Proof of Lemma 11

Proof We prove the statement by showing that, for two arbitrary permutations π(K) and
π′(K), the edges in Gπ(K) and Gπ

′(K) coincide, excluding the edges connecting the vertices
in K.

The graph Gπ(K) is defined as the union of all AMOs, which can be represented by a
topological ordering starting with π(K). Take such an AMO α and, in a corresponding
topological ordering τ , replace π(K) by π′(K) obtaining a new topological ordering τ ′.
The orientation α′ represented by τ ′ is, by definition, acyclic and, moreover, moral. For
the latter property, assume for a contradiction, that there is a v-structure (immorality)
a b c. Because α is moral and only edge directions internal in K have been changed
in α′, it has to hold that either

1. two vertices of a, b, c are in K (w.l.o.g. assume these are a and b), but then we have
b c 6∈ K as c is not in K and thus preceded by b in τ ′, or

2. all three vertices are in K, but then a b c is no induced subgraph as K is a clique.

Hence, such a v-structure can not exist and α′ is moral as well. The reverse direction follows
equivalently.
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Wienöbst, Bannach and Lískiewicz

Therefore, the union of all AMOs, which can be represented by a topological ordering τ ′

starting with π′(K), yields the exact same graph as for Gπ(K), excluding the internal edges
in K. Thus, CG(π(K)) = CG(π′(K)) and, by definition, CG(π(K)) = CG(K).

8.2.3 Proof of Lemma 13

Proof For the first direction, assume τ is a topological ordering representing an AMO. By
definition of AMOs, there can not be a v-structure and, thus, if two vertices x, y ∈ N(u)
precede u in τ , they need to be neighbors. This implies that the neighbors of u preceding
u in τ form a clique. Thus, the reverse of τ is a perfect elimination ordering.

For the second direction, assume ρ is a perfect elimination ordering and orient the edges
according to the topological ordering that is the reverse of ρ. Clearly, the orientation is
acyclic. Moreover, there can be no v-structure, as two vertices x, y preceding u in the reverse
of ρ are neighbors. Thus, the reverse of ρ represents an AMO.

8.2.4 Proof of Corollary 18

Proof

1. Follows immediately from Theorem 17.

2. Shown in the proof of Theorem 17.

3. We show two directions: Let x ∈ Pi(v)(v). Then, x is a neighbor of v and output

before v. By 2. we have x v. Now, let x ∈ Pav(G
K), i.e., x is connected by a

directed edge to v in GK . From 1. it follows that x is not in the same connected
component. Then x is visited before v is output and consequently in Pi(v)(v).

4. As a and b are output in the same iteration, they both have the maximum label,
and could both have been picked as vertex x. However, if Pi(a)(a) \ Pi(b)(b) 6= ∅ or
Pi(b)(b) \ Pi(a)(a) 6= ∅ the algorithm would not produce the reverse of a PEO (after
the choice of either a or b). A contradiction. Hence, the statement follows.

5. By 1. the undirected components are chordal induced subgraphs and hence its con-
sistent extensions are AMOs. It is left to show that the orientations of the connected
components can be constructed separately, yielding the product formula.By combining
3. and 4., the set of parents is identical for each vertex in the same component. Then,
the statement follows from this fact analogously to Theorem 4 and 5 from Lemma 10
in (He and Geng, 2008).

6. By Lemma 11 we have that #AMO(Gπ(K)) = #AMO(GK) for any permutation π.
As there are |K|! many permutations, which all lead to different AMOs, and combined
with 5. we arrive at the stated formula.
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8.2.5 Proof of Lemma 19

Proof Assume by Lemma 9 that τ1 starts with the maximal clique K1 and τ2 with the
maximal clique K2. Since every AMO of a UCCG has a unique source, τ1 and τ2 start with
the same vertex and, hence, K1 ∩K2 = S 6= ∅.

We first show that τ1 and τ2 have to start with S. Assume for a contradiction that in
τ1 there is a vertex u 6∈ S before a v ∈ S. The edge between u and v is directed as u v
in α, but as v ∈ K2 and u 6∈ K2, the ordering τ2 implies u v.

If K1 = K2 then S ∈ Π(G) and we are done. We prove that otherwise S is a minimal
separator in G that separates P1 = K1\S from P2 = K2\S. Note that the minimality follows
by definition. It remains to show that S indeed separates P1 and P2. For a contradiction,
let P1 3 x1−x2−· · ·−xk−1−xk ∈ P2 be a shortest P1-P2-path in G[V \S] with xi 6∈ K1∪K2

for i ∈ {2, . . . , k − 1}. According to τ1, we have the edge x1 x2 in α. Since we consider
a shortest path, xi−1 − xi − xi+1 is always an induced subgraph and, thus, an iterative
application of the first Meek rule implies xk−1 xk. However, τ2 would imply the edge
xk−1 xk in α – a contradiction.

8.2.6 Proof of Proposition 25

To ensure the property that we count every AMO exactly once, we introduce for every
AMO α a partial order ≺α on the maximal cliques. Then we prove that there is a unique
minimal element with respect to this order, and deduce a formula (the one given in Propo-
sition 25) for #AMO that counts α only “at this minimal element”. To get started, we need
a technical definition and some auxiliary lemmas that give us more control over the rooted
clique tree.

Definition 36 An S-flower for a minimal separator S is a maximal set

F ⊆ {K | K ∈ Π(G) ∧ S ⊆ K }

such that
⋃
K∈F K is connected in G[V \ S]. The bouquet B(S) of a minimal separator S

is the set of all S-flowers.

Example 6 The {2, 3}-flowers of the graph from Example 4 are {{1, 2, 3}} and {{2, 3, 4, 5},
{2, 3, 5, 6}}. �

Lemma 37 An S-flower F is a connected subtree in a rooted clique tree (T, r, ι).

Proof Assume for a contradiction that F is not connected in T . Then there are cliques
K1,K2 ∈ F that are connected by the unique path K1 − K̃ − · · · −K2 with K̃ 6∈ F . Since
ι−1(S) is connected, we have S ⊆ K̃. By the maximality of F , we have K1 ∩ K̃ = S. But
then S separates K1 \ S from K2 \ S, which contradicts the definition of S-flowers.

Lemma 38 For any minimal separator S, the bouquet B(S) is a partition of ι−1(S).
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Proof For each x ∈ ι−1(S), the maximal clique ι(x) is in some S-flower by definition.
However, no maximal clique can be in two S-flowers, as these flowers would then be in the
same connected component in G[V \ S].

Since for a S ∈ ∆(G) the subtree ι−1(S) of (T, r, ι) is connected, Lemma 37 and Lemma 38
give rise to the following order on S-flowers F1, F2 ∈ B(S): F1 ≺T F2 if F1 contains a node
on the unique path from F2 to the root of T .

Lemma 39 There is a unique least S-flower in B(S) with respect to ≺T .

Proof Assume, there is no unique least S-flower. Then there are two minimal S-flowers
which are incomparable. However, by Lemma 37 and 38, and the definition of the partial
order, there has to be another S-flower closer to the root and, thus, lesser given the partial
order – a contradiction.

The lemma states that for every AMO α there is a flower F at which we want to count α.
We have to be sure that this is possible, i.e., that a clique in F can be used to generate α.

Lemma 40 Let α be an AMO such that every clique-starting topological ordering that rep-
resents α has the minimal separator S as prefix. Then every F ∈ B(S) contains a clique K
such that there is a τ ∈ top(α) starting with K.

Proof Let τ be a topological ordering representing α that starts with S. By Lemma 9,
there is at least one clique K with S ⊆ K such that τ has the form τ = (S,K\S, V \K). Let
F ∈ B(S) be the flower containing K and F ′ 6= F be another S-flower with some K ′ ∈ F ′.
Observe that K \S is disconnected from K ′ \S in G[V \S]. Therefore, there is a topological
ordering of the form (S,K ′ \ S, V \K ′) that represents α as well.

We use ≺T to define, for a fixed AMO α, a partial order ≺α on the set of maximal cliques,
which are at the beginning of some τ ∈ top(α), as follows: K1 ≺α K2 if, and only if,
(i) K1 ∩K2 = S ∈ ∆(G), (ii) K1 and K2 are in S-flowers F1, F2 ∈ B(S), respectively, and
(iii) F1 ≺T F2.

Now, we are ready to give:

Proof (of Proposition 25) We have to show that every AMO α is counted exactly once.
Recall that top(α) = {τ1, . . . , τ`} is the set of clique-starting topological orderings that
represent α, and that the rooted clique tree (T, r, ι) implies a partial order ≺T on flowers,
which in return defines partial order ≺α on the set of maximal cliques that are at the
beginning of some τ ∈ top(α).

Claim 41 There is a unique least maximal clique K ∈ Π(G) with respect to ≺α.

Proof Let top′(α) ⊆ top(α) be an arbitrary subset of the clique-starting topological
orderings that represent α and let µ be the number of different maximal cliques with which
elements in top′(α) start. We prove the claim by induction over µ. In the base case, all
elements in top′(α) start with the same set S ∈ Π(G) and, of course, this is the unique least
maximal clique. For µ > 1 we observe that, by Lemma 19, all τ ∈ top′(α) start with the
same S ∈ ∆(G).
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Consider the bouquet B(S), which is partially ordered by ≺T . Lemma 39 states that
there is a unique least S-flower F ∈ B(S) with respect to ≺T , and by the definition of ≺α
the maximal cliques occurring in F precede the others. Therefore, we reduce top′(α) to
the set top′′(α) of topological orderings that start with a maximal clique in F . This set is
non-empty by Lemma 40 and contains, by the induction hypothesis, a unique least maximal
clique.

We complete the proof by showing that the formula counts α at the term for the unique
least maximal clique K from the previous claim. To see this, we need to prove that (i)
α can be counted at the clique K (i.e., there is no set S ∈ FP(ι−1(K), T ) preventing α
from being counted), and (ii) that α is not counted somewhere else (i.e., there is some
set S ∈ FP(ι−1(K ′), T ) for all other K ′ ∈ Π(G) that can be at the beginning of some
τ ∈ top(α)).

Claim 42 Let α be an AMO and K ∈ Π(G) be the least maximal clique (with respect to ≺α)
that is a prefix of some τ ∈ top(α). Then there is no S ∈ ∆(G) with S ∈ FP(ι−1(K), T )
that is a prefix of τ .

Proof Assume for a contradiction that there would be such a S ∈ ∆(G) and let F ∈ B(S)
be the S-flower containing K. Since S ∈ FP(ι−1(K), T ), there is another flower F ′ ∈ B(S)
with F ′ ≺T F . Lemma 40 tells us that there is another clique K ′ ∈ F ′ that is at the
beginning of some τ ′ ∈ top(α). However, then we have K ′ ≺α K – contradicting the
minimality of K.

Claim 43 Let τ1, τ2 ∈ top(α) be two topological orderings starting with K1,K2 ∈ Π(G),
respectively. If K1 ≺α K2 then K1 ∩K2 = S ∈ FP(ι−1(K2), T ).

Proof Since K1 and K2 correspond to τ1, τ2 ∈ top(α), we have K1∩K2 = S ∈ Π(G)∪∆(G)
by Lemma 19 – in fact, S is a prefix of τ1 and τ2. As we assume K1 ≺α K2, we have
K1 6= K2 and, thus, S ∈ ∆(G). Let F1, F2 ∈ B(S) be the S-flowers containing K1 and K2,
respectively. The order K1 ≺α K2 implies F1 ≺T F2 (item (iii) in the definition of ≺α),
meaning that F1 contains some node of (T, r, ι) that is on the unique path from F2 to
the root of T . But by the definition of S-flowers and Lemma 38, the first edge on this
path that leads to a node in F1 connects two nodes x, y with ι(x) ∩ ι(y) = S. Hence,
S ∈ FP(ι−1(K2), T ).

This completes the proof of Proposition 25.

8.2.7 Proof of Theorem 26

Proof Observe that recursive calls are performed in line 14 if CG(ι(v)) 6= ∅. The only graphs
with CG(S) = ∅ for all S ∈ Π(G) are the complete graphs, i.e., the graphs with |Π(G)| = 1.
We have |Π(H)| < |Π(G)| for all graphs G and H = G[V \ S] with S ∈ Π(G). Hence,
we may assume by induction over |Π(G)| that the subproblems are handled correctly – the
base case being given by complete graphs.
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The correctness of the algorithm follows from Proposition 25, as it traverses the clique
tree with a BFS in order to compute the sets FP(v, T ) and evaluates this formula.

8.2.8 Proof of Proposition 27

Let V ′i(x) be the set of all visited vertices by Algorithm 4 in the step before x is output

(i.e., the set V ′ at this point). Also recall the definition of Pi(x)(x) as the already visited
neighbors of x at the iteration when x is output. As all other vertices in the same component
in CG(K) as x have the same preceding neighbors, we will define Pi(H)(H) := Pi(x)(x) for
all H ∈ CG(K) and all x ∈ H.

Lemma 44 Let G be a chordal graph and H ∈ CG(K). Then, Pi(H)(H) separates H from
W = Xout(V ) \ Pi(H)(H) and is a minimal separator of G.

Proof The set Pi(H)(H) is a proper subset of all previously visited vertices (as H is not
part of the maximal clique K Algorithm 4 starts with). Since Pi(H)(H) contains all visited
neighbors of H, it separates H from W . To see this, assume for sake of contradiction that
there is a path from v ∈ VH to w ∈W without a vertex in Pi(H)(H). Consider the shortest
such path and let y be the first vertex with successor z preceding it in the vertex ordering
produced by Algorithm 4 : v − · · · − x − y − z − · · · − w ∈ W . Then {x, z} ∈ EG, as the
ordering is a reverse of a PEO. Hence, the path is not the shortest path and, thus, y cannot
exist. Since there can be no direct edge from v to w, the set Pi(H)(H) is indeed a separator.

We prove that there is a vertex in W , which is a neighbor of all vertices in Pi(H)(H).
Consider the vertex in Pi(H)(H), which is visited last (denoted by p). When vertex p is
processed, it has to have a neighbor x ∈ W , which was previously visited, else p would be
part of H. This is because the preceding neighbors would be identical to the ones of the
vertices in H (i.e., Pi(H)(H) \ {p}), meaning that p would have the same label. It would
follow that either p and the vertices in H are appended to L when p is visited or were
already appended to L previously. In both cases, p would be in H, which is a contradiction.

Hence, such vertex x has to exist. Moreover, x has to be connected to all vertices in
Pi(H)(H) because of the PEO property (all preceding neighbors of a vertex form a clique).

From the first part of the proof, we know that x and y ∈ H are separated by Pi(H)(H).
As both x and y are fully connected to Pi(H)(H), it follows that this set is also a minimal
x− y separator.

Lemma 45 Let G be a chordal graph for which the number of AMOs is computed with the
function count in Algorithm 5. Let H be any chordal graph for which count is called in the
recursion (for H 6= G). Then H = F \ S for some S-flower F in G with S ∈ ∆(G).

Proof Let SH be the union of all sets Pi(G̃)(G̃) for G̃ on the recursive call stack from the

input graph G to currently considered subgraph H. We define Pi(G)(G) = ∅ for convenience.

Recall that H 6= G. We show by induction that (i) SH is a minimal separator, (ii) SH
is fully connected to H, and (iii) H = F \ SH for some SH -flower F .

40



Counting Markov Equivalent DAGs with Applications

In the base case, H ∈ CG(K). By Lemma 44, SH is a minimal separator in G, which is
by definition connected to all vertices in H. Hence, as H is connected, H ⊆ F \SH holds for
an SH -flower F . We show the equality by contradiction. Assume there is a vertex v ∈ F \S
but not in H. Then v can neither be a vertex in W nor the neighbor of a vertex in W , as
by the definition of flowers this means that there is a path from W to H in G[V \SH ] – this
would violate that H is separated from W by SH (Lemma 44). Moreover, v is a neighbor of
all vertices in SH . Hence, we have Pi(v)(v) = Pi(H)(H) = SH and v ∈ VH . A contradiction.

Assume count is called with a graph H ∈ CG′(K) for some graph G′ and K ∈ Π(G′).
By induction hypothesis, we have that SG′ is a minimal separator in G and fully connected
to G′. Moreover, G′ = F ′ \SG′ for some F ′-flower of SG′ . Now, Pi(H)(H) is by Lemma 44 a
minimal separator in G′ for some vertices x and y. As x and y are connected to every vertex
in SG′ , it follows that SH = SG′ ∪ Pi(H)(H) is a minimal x-y separator in G. Furthermore,
SH is fully connected to H and it can be easily seen that H ⊆ F \ SH . To show equality,
observe that every vertex v in F \ SH is in G′ (if it is not separated from H by SH , it is
clearly not separated from H in SG′). Thus, the same argument as in the base case applies
and the statement follows.

Proof (of Proposition 27) By Lemma 45, it remains to bound the number of flowers in
G. Each flower is associated with a minimal separator S and there are at most |Π(G)| − 1
such separators, as they are associated with the edges of the clique tree (Blair and Peyton,
1993). Let r (which is initially |Π(G)| − 1) be an upper bound for the number of remaining
separators. Now consider separator S. If B(S) has k flowers, S can be found on at least
k− 1 edges of the clique tree, namely the edges between the flowers (by Proposition 38 the
flowers partition the bouquet and, by the definition of flowers, the intersection of cliques
from two S-flowers has to be a subset of S). Thus, we have at most r − (k − 1) remaining
separators. The maximum number of flowers is obtained when the quotient k/(k − 1) is
maximal. This is the case for k = 2. It follows that there are at most 2(|Π(G)| − 1) flowers.

When bounding the number of explored UCCGs, we additionally take into account the
input graph and obtain as bound 2(|Π(G)| − 1) + 1 = 2|Π(G)| − 1.

41
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