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Abstract
Compared to model-free reinforcement learning (RL), model-based RL is often more sample
efficient by leveraging a learned dynamics model to help decision making. However, the
learned model is usually not perfectly accurate and the error will compound in multi-step
predictions, which can lead to poor asymptotic performance. In this paper, we first derive
an upper bound of the return discrepancy between the real dynamics and the learned
model, which reveals the fundamental problem of distribution shift between simulated data
and real data. Inspired by the theoretical analysis, we propose an adaptation augmented
model-based policy optimization (AMPO) framework to address the distribution shift
problem from the perspectives of feature learning and instance re-weighting, respectively.
Specifically, the feature-based variant, namely FAMPO, introduces unsupervised model
adaptation to minimize the integral probability metric (IPM) between feature distributions
from real and simulated data, while the instance-based variant, termed as IAMPO, utilizes
importance sampling to re-weight the real samples used to train the model. Besides model
learning, we also investigate how to improve policy optimization in the model usage phase
by selecting simulated samples with different probability according to their uncertainty.
Extensive experiments on challenging continuous control tasks show that FAMPO and
IAMPO, coupled with our model usage technique, achieves superior performance against
baselines, which demonstrates the effectiveness of the proposed methods.
Keywords: Model-based reinforcement learning, distribution shift, occupancy measure,
Integral Probability Metric, importance sampling

1. Introduction

Reinforcement learning (RL) algorithms can be roughly divided into two categories according
to whether they utilize an environmental dynamics model: model-free RL (MFRL) and
model-based RL (MBRL). MFRL methods, which directly learn a value function or a policy
(or both), have achieved great success on a wide range of tasks such as video games (Mnih
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et al., 2015; Hessel et al., 2018) and robotic control (Gu et al., 2017; Haarnoja et al., 2018).
However, MFRL is notoriously sample-inefficient and requires a tremendous number of
interactive samples to learn a good policy. In many high-stakes real-world applications,
e.g., autonomous driving, online education, etc., it is often expensive, or even infeasible,
to collect such large-scale datasets. In contrast, MBRL methods, which learn a dynamics
model first and use it to alleviate sampling cost, are widely considered to be an appealing
alternative (Sun et al., 2018; Langlois et al., 2019).

Despite the higher sample efficiency, model-based methods tend to have poor asymptotic
performance compared to their model-free counterparts due to the vulnerability to model
errors (Nagabandi et al., 2018; Chua et al., 2018). To be precise, despite being equipped with
a high-capacity model, such errors still exist due to the potential distribution shift between
the training and generating phases, i.e., the state-action input distribution used to train the
model is different from the one generated by the model (Talvitie, 2014). Specifically, the
training data is usually collected by the behavior policies in the real environment but the
model is required to make predictions on the data collected by the target policy in the model.
When an imperfect model is used for multi-step rollouts, the error in one-step prediction is
inclined to accumulate in the next steps, also known as the multi-step compounding error
challenge (Asadi et al., 2018).

In light of the distribution shift problem in MBRL, in the literature there are many
efforts devoted to tackle this problem by improving the approximation accuracy of model
learning, or by designing careful strategies when using the model for simulation. For model
learning, different architectures (Asadi et al., 2018, 2019; Chua et al., 2018) and loss functions
(Farahmand, 2018; Wu et al., 2019) have been proposed to mitigate overfitting or to improve
multi-step predictions so that the distributions of the simulated data generated by the
model are closer to the real ones. Besides, Talvitie (2014, 2017) also proposed a self-correct
mechanism that uses the predicted states as the input to train the model along with the real
data to gradually bridge the gap between the simulated data and the real ones. On the other
hand, for model usage, delicate rollout schemes (Janner et al., 2019; Pan et al., 2020) have
been adopted to stop the model rollouts before the simulated data deviate too much from
the real distribution. Although these existing methods help alleviate the distribution shift to
some extent, this problem has not been explicitly addressed.

In this paper, we investigate how to better address the distribution shift problem ex-
plicitly in a principled way. To begin with, we first derive an upper bound of the return
disparity between the real dynamics and the learned model, which naturally inspires a
bound minimization algorithm. To this end, we propose our AMPO (Adaptation augmented
Model-based Policy Optimization) framework upon the existing MBPO (Janner et al., 2019)
method with two variants, dubbed as FAMPO and IAMPO, respectively. More specifically,
FAMPO introduces a model adaptation procedure which encourages the model to learn
invariant feature representations by minimizing the integral probability metric (IPM) be-
tween the feature distributions of real data and simulated data. In addition to aligning the
feature distributions, we also try to handle the distribution shift problem on the data level
and propose an instance-based model adaptation method, IAMPO. The intuition behind
IAMPO is that the model should focus more on the state-action pairs that are more likely to
appear in the simulated data distributions. The design principle of IAMPO is simple and
straightforward: optimizing the dynamics model by minimizing the return discrepancy via
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gradient descent. In practice, IAMPO re-weights all the training samples by the importance
scores when learning the dynamics model, where the importance score is defined as the
density ratio between the occupancy measures of the simulated data and the real data.

While model adaptation helps to achieve better generalization, some inaccurate predictions
can still catastrophically affect the performance due to the imperfect approximation. For
this reason, during the model usage phase, we adopt a weighted sampling strategy, which
samples the simulated data with different probabilities according to the model uncertainty, to
reduce the proportion of uncertain samples in the simulated data for policy optimization. We
evaluate our algorithms on a range of continuous control benchmark tasks, which demonstrate
that FAMPO and IAMPO, coupled with the weighted sampling strategy, achieves higher
sample efficiency and better asymptotic performance compared to various baselines.

2. Preliminaries

We first introduce the notation used throughout the paper and the problem setup of RL.
Then, we briefly discuss the concepts related to integral probability metric. Finally, we
present a classical MBRL method, MBPO, which will be the underlying framework for our
algorithm.

2.1 Reinforcement Learning

We consider an infinite-horizon Markov Decision Process (MDP), which is defined by the
tuple (S,A, T, r, ν0, γ), where S is the state space and A is the action space. Throughout
the paper, we assume the state and action spaces are continuous. We use γ ∈ (0, 1) to denote
the discount factor, and T (s′|s, a) to mean the transition density of state s′ given action a
made under state s. The initial state distribution is denoted as ν0, and the reward function is
denoted as r(s, a). We assume the reward function is bounded by rmax := sups,a |r(s, a)| <∞.
The agent maintains a policy π(a|s) that determines the probability of choosing an action a
at a given state s. The goal in reinforcement learning (RL) is to find the optimal policy π∗

that maximizes the expected return (sum of discounted rewards), denoted by ηT :

π∗ := arg max
π

ηT (π) = arg max
π

Eπ
[ ∞∑
t=0

γtr(st, at) | s0 ∼ ν0
]
, (1)

where st+1 ∼ T (s|st, at) and at ∼ π(a|st). In general the true transition T (s′|s, a) is unknown
and MBRL methods often learn an approximate model T̂ (s′|s, a) of the transition dynamics,
using samples collected from interactions with the MDP. Different from the previous works
(Luo et al., 2018; Chua et al., 2018), in this paper we also assume the reward function r(s, a)
to be unknown, and an agent needs to learn the reward function simultaneously.

Given a policy π and a transition function T , we denote the density of being in state s at
time step t as P πT,t(s) = P (st = s | π, T, s0 ∼ ν0). We then define the normalized occupancy
measure (Ho and Ermon, 2016) of policy π under the dynamics T as

ρπT (s, a) = (1− γ) · π(a|s)
∞∑
t=0

γtP πT,t(s).
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Similarly, ρπ
T̂

(s, a) represents the normalized occupancy measure of policy π under the
approximate dynamics model T̂ .

2.2 Integral Probability Metric

Integral probability metric (IPM) is a family of discrepancy measures between two distribu-
tions over the same space (Müller, 1997; Sriperumbudur et al., 2009). Specifically, given two
probability distributions P and Q over X , the F-IPM is defined as

dF (P,Q) := sup
f∈F

Ex∼P[f(x)]− Ex∼Q[f(x)], (2)

where F is a class of witness functions f : X → R. Following Bińkowski et al. (2018), we
assume IPM is symmetric. That is, if f ∈ F , we also have −f ∈ F . By choosing different
function class F , IPM reduces to many well-known distance metrics between probability
distributions. In particular, the Wasserstein-1 distance (Villani, 2008) is defined using the
1-Lipschitz functions {f : ‖f‖L ≤ 1}, where the Lipschitz semi-norm ‖ · ‖L is defined as
‖f‖L = supx 6=y |f(x)− f(y)|/|x− y|. Furthermore, total variation is also a kind of IPM and
we use dTV(·, ·) to denote it.

2.3 Model-based Policy Optimization

We briefly summarize the model-based policy optimization (MBPO) (Janner et al., 2019)
algorithm, on top of which we build our algorithm. MBPO uses a bootstrapped ensemble
of probabilistic dynamics models T̂θ(s′|s, a), parameterized by θ. Each individual dynamics
model is a probabilistic neural network which outputs a Gaussian distribution with diagonal
covariance. The model ensemble is trained on the real data via minimizing the negative
log-likelihood loss:

Li
T̂

(θ) =
N∑
n=1

[
µiθ (sn, an)− sn+1

]>
Σi
θ
−1

(sn, an)
[
µiθ (sn, an)− sn+1

]
+ log det Σi

θ (sn, an) .

(3)
The learned model T̂θ(s′|s, a) is used to generate k-step rollouts starting from the states

sampled from the real data buffer Denv with the actions taken by the current policy πφ. The
generated simulated data is then added to a separate buffer Dmodel. Finally, the policy πφ
is trained on both real and simulated data from Denv ∪ Dmodel in a fixed ratio using Soft
Actor-Critic (SAC) (Haarnoja et al., 2018), which trains a stochastic policy with entropy
regularization in actor-critic architecture by minimizing the expected KL-divergence:

Lπ(φ) = Es[DKL(πφ(·|s) ‖ exp(Q(s, ·)− V (s))], (4)

where the Q and V functions are estimated via the soft Bellman backup operator following
Haarnoja et al. (2018).

3. Feature-based Adaptation-augmented MBPO

In this section, we first propose a feature-based adaptation approach to explicitly mitigate
the distribution shift problem in MBRL, which is inspired by the return discrepancy upper
bound derived as follows.
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3.1 An Upper Bound for Return Discrepancy

One of the main benefits of model-based RL methods is that we can use it to simulate data
to replace the real environment once the model is learned. Imagine that if the dynamics
model is perfect, we do not need the real environment anymore. However, if the dynamics
model is extremely erroneous, the policy learned on the model may perform worse in the
real environment, which can lower sample efficiency instead. Therefore, it is necessary in
MBRL to derive an upper bound of the discrepancy between the expected return in the real
environment ηT (π) and the expected return in the model ηT̂ (π) with the same policy π in
the following form (Luo et al., 2018; Janner et al., 2019):

ηT̂ (π)− ηT (π) ≤ C. (5)

Usually, the dynamics model T̂ will be learned from experiences (s, a, s′) collected by a
behavioral policy πD in the real environment dynamics T . Typically, in an online MBRL
method with iterative policy optimization, the behavioral policy πD represents a collection
of past policies. Once we have derived this bound, we can naturally design a model-based
framework to optimize the RL objective by maximizing the surrogate return ηT̂ (π) and
minimizing the discrepancy C simultaneously. Specifically, previous works have derived the
following lemma to give a precise return discrepancy (Luo et al., 2018; Yu et al., 2020).

Lemma 1 (Luo et al. (2018), Lemma 4.3; Yu et al. (2020), Lemma 4.1; Shen et al. (2020),
Lemma E.1) Let two MDPs share the same reward function r(s, a), but with different dynamics
T (·|s, a) and T̂ (·|s, a) respectively. Define V π

T (s) := Eπ,T
[∑∞

t=0 γ
tr (st, at) | s0 = s

]
as the ex-

pected discounted return under π starting from state s, and Gπ
T̂

(s, a) := Es′∼T̂ [V π
T (s′) | s, a]−

Es′∼T [V π
T (s′) | s, a]. For any policy π, we have that

ηT̂ (π)− ηT (π) = κE(s,a)∼ρπ
T̂

[Gπ
T̂

(s, a)], (6)

where κ = γ(1− γ)−1.

For the sake of completeness, we provide a proof of Lemma 1, which is almost the same
as in Yu et al. (2020). The only difference is that our occupancy measure is normalized.
Proof Let Wj be the expected return when executing π on T̂ for the first j steps, then
switching to T for the remainder. That is,

Wj = Eat∼π, t<j:st+1∼T̂ , t≥j:st+1∼T

[ ∞∑
t=0

γtr(st, at) | s0 ∼ ν0

]
.

Note that W0 = ηT (π) and W∞ = ηT̂ (π), so

ηT̂ (π)− ηT (π) =

∞∑
j=0

(Wj+1 −Wj).

And we have

Wj = Rj + E(sj ,aj)∼π,T̂

[
Esj+1∼T

[
γj+1V π

T (sj+1) | sj , aj
] ]
,

Wj+1 = Rj + E(sj ,aj)∼π,T̂

[
Esj+1∼T̂

[
γj+1V π

T (sj+1) | sj , aj
] ]
,
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where Rj is the expected return of the first j time steps, which are taken with respect to T̂ .
Then

Wj+1 −Wj = γj+1E(sj ,aj)∼π,T̂

[
Esj+1∼T̂ [V π

T (sj+1) | sj , aj ]− Esj+1∼T [V π
T (sj+1)] | sj , aj

]
= γj+1E(sj ,aj)∼π,T̂

[
Gπ
T̂

(sj , aj)
]
.

Thus

ηT̂ (π)− ηT (π) =
∞∑
j=0

(Wj+1 −Wj)

=
∞∑
j=0

γj+1E(sj ,aj)∼π,T̂

[
Gπ
T̂

(sj , aj)
]

=
γ

1− γ
E(s,a)∼ρπ

T̂

[
Gπ
T̂

(s, a)
]
,

as desired.

Lemma 1 states that the discrepancy between the return in the model and in the real
environment can be rewritten as the discrepancy between the expected value of the next
states output by the model and the real dynamic. Intuitively, it means that the expected
return discrepancy will be small when the output distributions of the model and real dynamic
are close.

Based on this theoretical result, Yu et al. (2020) built an upper bound as ηT̂ (π)−ηT (π) ≤
2γ(1− γ)−2rmax · E(s,a)∼ρπ

T̂
dTV(T (·|s, a), T̂ (·|s, a)). However, it is impractical to design an

algorithm to optimize this upper bound, since given the (s, a) sampled from ρπ
T̂
, we could

not directly obtain the real s′ from T (·|s, a) in practice. Luo et al. (2018) used the opposite
direction of the return discrepancy to obtain ηT (π)−ηT̂ (π) ≤ κLE(s,a)∼ρπT [‖T (s, a)− T̂ (s, a)‖]
assuming the real dynamics and the dynamics model are deterministic and the value function
V π
T̂

is L-Lipschitz. However, to optimize this bound, it requires to collect samples from ρπT
for every iterate π. Their solution is to constrain the policy to be in the neighborhood of
a reference policy πref while using the data collected by πref. Instead, in what follows we
show that Eρπ

T̂
[Gπ

T̂
(s, a)] can be further decomposed to construct an upper bound for the

expected return discrepancy, which inspires our feature-based model adaptation method
without introducing any further constraints or assumptions as in the previous works.

Theorem 2 Let F1 be a collection of functions from S ×A to R. With Lemma 1, under the
assumption that Gπ

T̂
(s, a) ∈ F1, the expected return discrepancy admits the following bound:

ηT̂ (π)−ηT (π)≤γ(1−γ)−1dF1(ρπDT , ρπ
T̂

)+γ(1−γ)−2rmax·E(s,a)∼ρπDT

√
2DKL(T (·|s, a), T̂ (·|s, a)).

(7)

Proof Let F2 be a collection of functions from S to R that F2 :=
{
f : ‖f‖∞ ≤ rmax

1−γ

}
, and

since rmax := sups,a |r(s, a)|, we have V π
T (s′) ∈ F2. Using Lemma 1, we can rewrite the
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expected return discrepancy as

ηT̂ (π)− ηT (π) =κE(s,a)∼ρπ
T̂

[Gπ
T̂

(s, a)]− κE(s,a)∼ρπDT
[Gπ

T̂
(s, a)] + κE(s,a)∼ρπDT

[Gπ
T̂

(s, a)]

≤κ sup
f∈F1

(
E(s,a)∼ρπ

T̂
[f(s, a)]− E(s,a)∼ρπDT

[f(s, a)]
)

+ κE(s,a)∼ρπDT

[
sup
g∈F2

Es′∼T̂
[
g(s′) | s, a

]
− Es′∼T

[
g(s′) | s, a

] ]
=κdF1(ρπDT , ρπ

T̂
) + κE(s,a)∼ρπDT

[dF2(T̂ (·|s, a), T (·|s, a))],

(8)

and since F2 :=
{
f : ‖f‖∞ ≤ rmax

1−γ

}
, the second term reduces to the total variation distance:

ηT̂ (π)− ηT (π) ≤κdF1(ρπDT , ρπ
T̂

) + 2κ(1− γ)−1rmax · E(s,a)∼ρπDT
dTV(T (·|s, a), T̂ (·|s, a))

≤κdF1(ρπDT , ρπ
T̂

) + κ(1− γ)−1rmax · E(s,a)∼ρπDT

√
2DKL(T (·|s, a), T̂ (·|s, a)),

(9)
where the last inequality holds due to Pinsker’s inequality. At last, replacing κ with γ(1−γ)−1

completes the proof.

Remark Theorem 2 gives an upper bound on the discrepancy between the return in
the model and the real environment. There are two terms in this bound: the last term
corresponds to the model estimation error on real data, since the Kullback–Leibler divergence
measures the average quality of current model estimation. The first term is the integral
probability metric between the (s, a) distributions ρπDT and ρπ

T̂
, which exactly corresponds to

the distribution shift problem between model learning and model usage.
To maximize ηT (π), we would like to minimize the upper bound and maximize ηT̂ (π)

jointly over the policy and the dynamics model. In practice, we usually omit model opti-
mization in the term ηT̂ (π) for simplicity, following the practice in previous work (Luo et al.,
2018). Then optimizing ηT̂ (π) over the policy and optimizing the last term of upper bound
over the model together becomes the standard principle of Dyna-style MBRL approaches,
which may suffer catastrophic performance deterioration if the first term dF1(ρπDT , ρπ

T̂
) is

too large. Therefore, the key is to minimize the first term, i.e., the occupancy measure
divergence, which is intuitively reasonable since the dynamics model will predict simulated
(s, a) samples close to its training data with high accuracy. To optimize this term over the
policy, we can use imitation learning methods on the dynamics model, such as GAIL (Ho and
Ermon, 2016), where the real samples are viewed as the expert demonstrations. However,
optimizing this term over the policy is unnecessary, which can further reduce the efficiency
of the whole training process. For example, one may optimize the policy excessively over
this term instead of the ηT̂ (π) term. So in this paper, we mainly focus on how to optimize
this occupancy measure divergence term over the model.

3.2 Practical FAMPO Algorithm

To optimize the occupancy measure divergence term over the model, we first tackle it
explicitly on feature level from the perspective of unsupervised domain adaptation (Ben-David
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Algorithm 1 FAMPO
1: Initialize policy πφ, dynamics model T̂θ, environment buffer Denv, model buffer Dmodel
2: repeat
3: Perform G1 gradient steps to train the model T̂θ with samples from Denv
4: for F model rollouts do
5: Sample a state s uniformly from Denv
6: Use the policy πφ to perform a k-step rollout on the model T̂θ starting from s; add

to Dmodel
7: end for
8: Perform G2 gradient steps to train the feature extractor with samples (s, a) from both

Denv and Dmodel by the model adaptation loss LWD
9: for E timesteps in the real environment do

10: Use the policy πφ to take an action in the real environment; add the sample(s, a, s′, r)
to Denv

11: Use the model T̂θ to estimate the uncertainty for each sample in Dmodel
12: Perform G3 gradient steps to train the policy πφ with real data uniformly sampled

from Denv and simulated data sampled from Dmodel according to the uncertainty
13: end for
14: until certain number of real samples have been collected

et al., 2010; Zhao et al., 2019), which aims at generalizing a learner on unlabeled data with
labeled data from a different distribution. One promising solution to this problem is to
find invariant feature representations by incorporating an additional objective of feature
distribution alignment (Ben-David et al., 2007; Ganin et al., 2016). This motivates a model
adaptation procedure to encourage the dynamics model to learn the features that are invariant
to the real state-action data and the simulated one.

Simultaneously, model adaptation can also be incorporated into existing Dyna-style
MBRL methods, including those by reducing the distribution shift problem. Thereafter, in
this paper, we adopt MBPO (Janner et al., 2019) as our baseline backbone framework due
to its remarkable success in practice. We dub the integrated framework FAMPO and detail
the step-by-step algorithm in Algorithm 1, where we defer the discussion on the weighted
sampling strategy (line 11 to 12) to Section 5.

3.2.1 Incorporating Unsupervised Model Adaptation

For brevity, we will only introduce how to train individual dynamics model here, which can
be easily extended to other models in the ensemble. Since our models are implemented
by a neural network, we can define the shallow layers as the feature extractor fg with
corresponding parameters θg and the remaining layers as the decoder fd with parameters
θd. Thus, we have T̂ = fd ◦ fg and θ = {θg, θd}. We integrate a model adaptation loss
over the output of feature extractor, which encourages such a conceptual division as the
feature encoder and the decoder. The main idea of model adaptation is to adjust the feature
extractor fg in order to align the two feature distributions of real samples and simulated
ones as input, so that the induced feature distributions from real and simulated samples can
be close in the feature space.
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Model  Usage

input

models

estimate
uncertainty

batch
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policy

Model  LearningFAMPO IAMPO

models models

DICE netsfeature extrator
 of models

re-weight
Alternate

Figure 1: Illustration of FAMPO and IAMPO algorithms. For model learning, FAMPO
alternates between minimizing the standard MLE loss and aligning the latent
feature distributions of models, while IAMPO trains the DICE nets to estimate
the occupancy measure density ratio τ , which is then used to re-weight the real
samples for model training. For model usage, when forming a batch to train the
policy, the simulated data is selected with different probabilities based on the
estimated uncertainty, which is represented by the shade of color.

To incorporate unsupervised model adaptation into MBPO, we adopt alternative opti-
mization between model training and model adaptation as illustrated in Figure 1. At every
iteration (line 3 to 8 in Algorithm 1), when the dynamics model is trained, we use it to
generate simulated rollouts which will then be used for model adaptation and policy opti-
mization. As for the detailed adaptation strategy, instead of directly sharing the parameter
weights of the feature extractor between real data and simulated data (Ganin et al., 2016),
we choose to adopt the asymmetric feature mapping strategy (Tzeng et al., 2017), which
has been shown to outperform the weight-sharing variant in domain adaptation due to more
flexible feature mappings. To be specific, the asymmetric feature mapping strategy unties
the shared weights between two domains and learns individual feature extractors for real
data and simulated data respectively. Thus in FAMPO, after the model adaptation at one
iteration is finished, we will use the weight parameters for simulated data to initialize the
model training for the next iteration. Through such an alternative optimization between
model training and model adaptation, the feature representations learned by the feature
extractor will be informative for the decoder to predict real samples, and more importantly
it can generalize to the simulated samples.
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3.2.2 Model Adaptation via Wasserstein-1 Distance

Specifically, given real samples (se, ae) from the environment buffer Denv and the simulated
samples (sm, am) from the model buffer Dmodel, the two separate feature extractors map
them to feature representations he = feg (se, ae) and hm = fmg (sm, am). To achieve model
adaptation, we minimize one kind of IPM between the two feature distributions Phe and
Phm according to the lower bound in Theorem 2. In this paper, we choose the Wasserstein-1
distance as the divergence measure in model adaptation, which is validated to be effective in
domain adaptation (Shen et al., 2018). In Appendix C, we also provide a variant that uses
Maximum Mean Discrepancy (MMD).

Wasserstein-1 distance corresponds to an instance of IPM where the witness function
satisfies the 1-Lipschitz constraint. To estimate the Wasserstein-1 distance, we use a critic
network fc with parameters ω as introduced in Wasserstein GAN (Arjovsky et al., 2017).
The critic maps a feature representation to a real number, and then according to Eq. (2) the
Wasserstein-1 distance can be estimated by maximizing the following objective function over
the critic:

LWD(θeg, θ
m
g , ω) =

1

Ne

Ne∑
i=1

fc(h
i
e)−

1

Nm

Nm∑
j=1

fc(h
j
m). (10)

In the meanwhile, the parameterized family of critic functions {fc} should satisfy the 1-
Lipschitz constraint according to the IPM formulation of Wasserstein-1 distance. In order to
properly enforce the 1-Lipschitz constraint, we choose the gradient penalty loss (Gulrajani
et al., 2017) for the critic

Lgp(ω) = EPĥ [(‖∇fc(ĥ)‖2 − 1)2], (11)

where Pĥ is obtained by uniformly sampling along straight lines between pairs of points
sampled from Phe and Phm as suggested in Gulrajani et al. (2017).

After the critic is trained to approximate the Wasserstein-1 distance, we optimize the
feature extractor to minimize the estimated Wasserstein-1 distance to learn features invariant
to the real data and simulated data. To sum up, model adaptation though Wasserstein-1
distance can be achieved by solving the following minimax objective

min
θeg ,θ

m
g

max
ω

LWD(θeg, θ
m
g , ω)− α · Lgp(ω), (12)

where θeg and θmg are the parameters of the two feature generators for real data and simulated
data respectively, and α is the balancing coefficient. For model adaptation at each iteration,
we alternate between training the critic to estimate the Wasserstein-1 distance and training
the feature extractor of the dynamics model to learn transferable features.

4. Instance-based Adaptation-augmented MBPO

Apart from explicitly mitigating the distribution shift by learning invariant features as in
Section 3, in this section, we additionally propose an instance-based model adaptation method
to tackle this problem on data level, which is motivated by the following derivation.

10
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4.1 Derivative of Return Discrepancy

Recall that we presented a precise return discrepancy in Lemma 1, and further decomposed
it to derive Theorem 2. Instead, we can also directly optimize the dynamics model by taking
the gradient of the return discrepancy. To take a further step, according to the definition of
integral probability metric (IPM) (Müller, 1997), let F be a collection of functions from S to
R, under the assumption that V π

T ∈ F , we have

Gπ
T̂

(s, a) ≤ sup
f∈F

Es′∼T̂
[
f(s′) | s, a

]
− Es′∼T

[
f(s′) | s, a

]
=: dF (T̂ (·|s, a), T (·|s, a)),

(13)

where dF is the IPM defined by the function class F . Denoting the dynamics model as T̂θ
parameterized by θ, we have

∇θE(s,a)∼ρπ
T̂θ

[dF (T (·|s, a), T̂θ(·|s, a))] = ∇θ
∫
s,a
ρπ
T̂θ
dF (T (·|s, a), T̂θ(·|s, a)) ds da

=

∫
s,a

(ρπ
T̂θ
∇θdF (T (·|s, a), T̂θ(·|s, a)) + dF (T (·|s, a), T̂θ(·|s, a))∇θρπT̂θ) ds da

= Eρπ
T̂θ

[∇θdF (T (·|s, a), T̂θ(·|s, a))] + Eρπ
T̂θ

[dF (T (·|s, a), T̂θ(·|s, a))∇θ log ρπ
T̂θ

].

(14)

A justification of the interchange of the gradient and integration in Equation 14 is provided
in Appendix B. There are two terms in this equation: one is the derivative of the IPM
between the real transition T and the dynamics model T̂θ, and the other is the derivative of
the occupancy measure of policy π in the dynamics model T̂θ.

The first term in Eq. 14 suggests us to minimize the IPM under the expectation over
the occupancy measure ρπ

T̂θ
. To derive an optimization objective according to this term, we

need to tackle two questions. First, which specific IPM form should we use? Second, how to
compute the IPM when we cannot access the ground-truth of T (·|s, a) for the data drawn
from ρπ

T̂θ
?

To answer the first question, as in Theorem 2, we have ‖V π
T ‖∞ ≤ (1− γ)−1rmax and then

the IPM reduces to the total variation distance (1− γ)−1rmaxdTV(T, T̂θ). Then according to

Pinsker’s inequality, we have dTV(T, T̂θ) ≤
√

1
2DKL(T (·|s, a)‖T̂θ(·|s, a)). By discarding the

constants, the loss function can be written as

LT̂ (θ) = E(s,a)∼ρπ
T̂θ

[DKL(T (·|s, a)‖T̂θ(·|s, a))]. (15)

Eq. 15 justifies the use of maximum likelihood estimation (MLE) since MLE is the minimizer
of the empirical approximation of the Kullback–Leibler divergence. In practice, following
MBPO (Janner et al., 2019), we use an ensemble of probabilistic networks to represent
the model and train the model ensemble via maximum likelihood. However, since the first
component in KL requires the output of ground-truth dynamics T for model generated data
ρπ
T̂θ
, this loss function cannot be directly optimized.
In an online MBRL method with iterative policy improvement, we denote the data-

collecting policy as πD, which represents a collection of policies in previous iterations. Hence,

11
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we will have the transitions (s, a, s′) collected by the behavioral policy πD in the real
environment dynamics T , which are stored in the buffer Denv. Therefore, we use importance
sampling to deal with the second question:

LT̂ (θ) = E(s,a)∼ρπDT

[
⊥
ρπ
T̂θ

ρπDT
DKL(T (·|s, a)‖T̂θ(·|s, a))

]
, (16)

where the stop-gradient operator ⊥ means the importance ratio τ∗(s, a) = ρπ
T̂θ

(s, a)/ρπDT (s, a)

is treated as a constant when taking derivatives of this objective. The proposed instance-
based model learning technique uses the real data from Denv to train the model as previous
works, but the loss function for each data point is re-weighted by the occupancy measure
density ratio.

4.2 Importance Ratio Estimation

In order to apply the above importance-ratio scheme, we need to estimate the importance
ratio τ∗(s, a) for each instance (s, a) in the real data buffer Denv. In practice, the importance
ratio can be estimated either by the classical binary classification (Zadrozny, 2004) or by the
DICE (DIstribution Correction Estimation) framework. We utilize DICE to estimate the
importance ratio by default, and also provide the comparison of these two ratio estimation
techniques in Appendix C.

4.2.1 Binary Classification

One direct way to estimate this ratio is constructing a binary classification problem where
the real data in Denv is labeled positive and the simulated data in Dmodel is labeled negative
(Zadrozny, 2004). To be more specific, let ζ(s, a) be the output of the classifier on some
state-action pair (s, a), then the importance ratio can be estimated by

τ(s, a) = ψ(1− ζ(s, a))/ζ(s, a), (17)

where ψ is the ratio of positive and negative samples. In practical implementation, the
classifier can be modeled as feed-forward neural networks and trained to minimize the
cross-entropy loss.

4.2.2 Importance Ratio Estimation via DICE

Although binary classification is simple to implement, in MBRL the number of real data and
the simulated data is not balanced since we hope to simulate much more simulated data to
help improve the policy when real data is limited. This imbalanced classification problem
may cause the learning process biased (Krawczyk, 2016) and lead to poor estimation. To
sidestep the above obstacle, we can turn to use the DICE framework to estimate the ratio by
exploiting the Markov property.

In off-policy evaluation where we want to estimate the performance of a target policy
from data generated by a behavioral policy, one promising solution is to re-weight the reward
by the occupancy measure density ratio. Recently several works have proposed to estimate
this ratio such as DualDICE (Nachum et al., 2019), GenDICE (Zhang et al., 2020a) and
GradientDICE (Zhang et al., 2020b). In this paper, we adapt the GradientDICE architecture

12
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to estimate the importance ratio in Eq. 16. We will briefly introduce the whole framework.
For more detailed introduction of this framework, we refer the readers to Zhang et al. (2020b).
To begin with, the occupancy measure satisfies the following equation:

ρπ
T̂

(s′, a′) = (1− γ)ν0(s
′)π(a′|s′) + γ

∫
ρπ
T̂

(s, a)T̂ (s′|s, a)π(a′|s′) ds da, (18)

where ν0 is the initial state distribution. Then using ρπDT (s, a)τ(s, a) to replace ρπ
T̂

(s, a)
and minimizing some divergence between the LHS and RHS of Eq. 18 over the function τ
with an additional constraint can finally estimate the importance ratio τ∗(s, a). Denoting
δ(s′, a′)=γ

∫
ρπDT (s, a)τ(s, a)T̂ (s′|s, a)π(a′|s′) ds da+(1−γ)ν0(s′)π(a′|s′)−ρπDT (s′, a′)τ(s′, a′),

we have the following objective function

L(τ) =
1

2
EρπDT

[( δ(s, a)

ρπDT (s, a)

)2]
+
λ

2
(EρπDT [τ(s, a)]− 1)2 , (19)

where λ > 0 is a constant coefficient. By further applying Fenchel conjugate (Rockafellar,
1970) and the interchangeability principle as in Zhang et al. (2020a), optimizing the final
objective of GradientDICE is a minimax problem as

min
τ

max
f,β
L(τ, β, f) =(1− γ)Es∼ν0,a∼π[f(s, a)]

+ γE(s,a)∼ρπDT ,s′∼T̂ ,a′∼π[τ(s, a)f(s′, a′)]

− E(s,a)∼ρπDT
[τ(s, a)f(s, a) +

1

2
f(s, a)2]

+ λ(E(s,a)∼ρπDT
[βτ(s, a)− β]− 1

2
β2) , (20)

where we have τ : S×A → R, f : S×A → R and β ∈ R. In practical implementation, we use
feed-forward neural networks to model the function f and τ . Since we use a model ensemble
and the importance ratio is model-specific, we also construct separate DICE network for
each dynamics model. Furthermore, because the simulated data is generated from some
states in Denv, we use the collected real states to approximate the initial state distribution
ν0(s). After the DICE network estimates the ratio for each real sample, we clip it to be in
the interval [α0, α1] with the intention of improving the stability.

We demonstrate the detailed process of IAMPO upon the MBPO (Janner et al., 2019)
backbone in Algorithm 2. Specifically, in each iteration, IAMPO first trains the DICE
network (line 3), which is then used to estimate the importance ratio (line 4). Like in
Algorithm 1, the weighted sampling strategy (line 12 to 13) will be introduced in Section 5.

5. Weighted Sampling Strategy

Although the model adaptation methods proposed in previous sections help to alleviate the
distribution shift problem in model learning, some inaccurate predictions can still lead to
catastrophic performance degradation due to the imperfect approximation. A straightforward
solution is to discard the data with large model error when use them for policy optimization.
In practice, it is non-trivial to estimate the model error and instead we can use model
uncertainty that is considered to be positively correlated to the model error to replace it. For
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Algorithm 2 IAMPO
1: Initialize policy πφ, dynamics model T̂θ, DICE network {τ, f, β}, environment buffer
Denv, model buffer Dmodel

2: repeat
3: Perform G2 gradient steps to train the DICE network {τ, f, β} with data from Denv

according to Eq. 20
4: Use τ to estimate the ratio for each sample in Denv
5: Perform G1 gradient steps to train the model T̂θ with the loss re-weighted by the ratio

using data in Denv
6: for F model rollouts do
7: Sample a state s uniformly from Denv
8: Use the policy πφ to perform a k-step rollout on the model T̂θ starting from s; add

to Dmodel
9: end for

10: for E timesteps in the real environment do
11: Use the policy πφ to take an action in the real environment; add the sample(s, a, s′, r)

to Denv
12: Use the model T̂θ to estimate the uncertainty for each sample in Dmodel
13: Perform G3 gradient steps to train the policy πφ with real data uniformly sampled

from Denv and simulated data sampled from Dmodel according to the uncertainty
14: end for
15: until certain number of real samples have been collected

example, Janner et al. (2019) used the model to generate short rollouts so that the longer
rollouts with higher uncertainty are cut off. Pan et al. (2020) explicitly estimated the model
uncertainty and masked the simulated data with high uncertainty. These methods directly
enforce the occupancy measure of high-uncertainty simulated data to be zero. However, it
may be too restrictive since there is no guarantee that high uncertainty means high model
error, and the masked simulated data may be still useful if its ground-truth model error is
small.

To tackle the above challenges, we propose to utilize a weighted sampling strategy during
model usage phase for better generalization. Formally, as illustrated in Figure 1, when
forming a mini-batch for policy training, the weighted sampling strategy chooses simulated
data in the model buffer Dmodel according to a Boltzmann distribution based on the estimated
uncertainty d(s, a). For a simulated data xi = (si, ai, s

′
i, ri), the probability p(xi) of being

sampled into the mini-batch is

p(xi) =
exp(−σ · d(si, ai))∑
xj

exp(−σ · d(sj , aj))
(21)

where σ is a temperature parameter. There are multiple ways to estimate the uncertainty,
such as the maximum standard deviation of the learned models in the ensemble (Yu et al.,
2020) or the prediction disagreement between one model versus the rest of the models (Pan
et al., 2020). In this paper, we follow the uncertainty estimation method in Kidambi et al.
(2020) and use the maximum prediction discrepancy d(s, a) = maxi,j ‖T̂θi(s, a)− T̂θj (s, a)‖2
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where T̂θi and T̂θj are members in the model ensemble {T̂θ1 , T̂θ2 , . . . }. Besides, the sampling
temperature σ is set as min{σ0, σ1

dmax−dmin
} in practice, where σ0 and σ1 are hyperparameters,

and dmax and dmin are the maximum and minimum uncertainty estimated in the model
buffer respectively.

Alternatively, one can also view the weighted sampling strategy as implicitly optimizing
the second term of Eq. 14, since the second term, which is in the derivative form, suggests
to minimize log ρπ

T̂θ
weighted by dF(T, T̂ ). And the weighted sampling strategy reduces

the occupancy measure ρπ
T̂θ

of simulated data if its uncertainty is high, which is positively

correlated to the model error dF (T, T̂ ).

6. Experiments

The experiments aim to answer the following three questions: 1) How do FAMPO/IAMPO
perform compared to prior model-free and model-based methods? 2) Do the feature-based
and instance-based adaptation methods address the distribution shift problem in MBRL as
we expected? 3) What are key ingredients in our algorithms?

6.1 Comparative Evaluation

Compared Methods. We compare the proposed FAMPO and IAMPO to other model-free
and model-based algorithms: Soft Actor-Critic (SAC) (Haarnoja et al., 2018), the state-of-the-
art model-free off-policy algorithm in terms of sample efficiency and asymptotic performance.
For model-based methods, we compare to MBPO (Janner et al., 2019), PETS (Chua et al.,
2018) and SLBO (Luo et al., 2018), where PETS directly uses the model for planning without
explicit policy learning and SLBO trains the model with a multi-step L2-norm loss and
updates the policy using TRPO (Schulman et al., 2015).

Environments. We evaluate our methods and other baselines on six MuJoCo continuous
control tasks from OpenAI Gym (Brockman et al., 2016) with a maximum horizon of 1000,
including InvertedPendulum, Swimmer, Hopper, Walker2d, Ant and HalfCheetah. For the
Swimmer environment, we use the modified version introduced by Langlois et al. (2019) since
the original version is quite difficult to solve. For the other five environments, we adopt the
same settings as in Janner et al. (2019).

Implementation Details. We implement all our experiments using TensorFlow. For
MBPO, FAMPO and IAMPO, we first apply a random policy to sample a certain number of
real data to pre-train the dynamics model. Every time we train the dynamics model, we
randomly sample several real data as a validation set and stop the model training if the
model loss does not decrease for five gradient steps, which means we do not choose a specific
value for the hyperparameter G1. Other important hyperparameters used in our methods
are chosen by grid search and detailed hyperparameter settings can be found in Appendix E.

Results. The learning curves of all compared methods are presented in Figure 2. From
the comparison, we observe that FAMPO and IAMPO are more sample efficient as they
learn faster than all other baselines in all six environments. Furthermore, our methods are
capable of reaching comparable asymptotic performance of the state-of-the-art model-free
baseline SAC. Compared with MBPO, our approaches achieve better performance in all the
environments, which verifies the value of model adaptation. This also indicates that even
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Figure 2: Performance curves of our methods and other baselines on six MuJoCo tasks. The
results are averaged over eight random seeds, where solid curves depict the mean
of eight trials and shaded areas indicate the standard deviation. For each trail,
the average return over ten episodes in the real environment is evaluated every
1000 environment timesteps. For MBPO, FAMPO and IAMPO, in the dynamics
model pre-training stage, the policy is not updated and thus the performance is
not plotted at the beginning.

in the situation with reduced distribution shift by using short rollouts, model adaptation
still helps. By comparing FAMPO and IAMPO, we can see that these two variants are
comparably effective across different environments. Further analysis of the feature-based and
instance-based adaptation is provided in Section 6.2.

6.2 Empirical Analysis

Distribution shift. To investigate how our proposed methods help mitigate the distribution
shift problem in MBRL, we first visualize the real data and the simulated data in Figure 3(a).
In particular, after training IAMPO for 50 epochs on Hopper, we randomly sample 500
real (s, a) data from Denv and 2000 simulated (s, a) data from Dmodel. Then, we plot the
normalized t-SNE visualization of the state-action pairs with the simulated data colored in
blue and the real data colored differently according to the importance ratio estimated by
IAMPO. It can be easily concluded that the distribution of simulated data deviates from that
of real data, which may lead to poor model prediction in these areas. Moreover, if the real
data is densely distributed and the simulated data is sparse, i.e., the ground-truth density
ratio ρπ

T̂θ
(s, a)/ρπDT (s, a) is small, the estimated ratio is also small (black points drawn in the

figure), and vice versa. This visualization implies that the importance ratio of IAMPO is
estimated as we expect.
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Figure 3: Empirical result on Hopper environment. (a) T-SNE visualization of state-action
pairs randomly sampled from Denv and Dmodel. Simulated data is drawn in blue
while real data is drawn in different colors, and the brighter points represent the
real samples with larger importance ratio. (b) The Wasserstein-1 distance between
the feature distributions. (c) Average compounding errors with different rollout
lengths. (d) Relationship between the estimated uncertainty and the ground-truth
error of the real samples. The orange points are the half of the data with high
uncertainty, and the blue ones are the half with low uncertainty.

Wasserstein-1 Distance. Instead of re-weighting the real samples as shown in Fig-
ure 3(a), FAMPO explicitly align the feature distribution of real samples and simulated ones.
To further verify the effect of feature-based model adaptation, we visualize the estimated
Wasserstein-1 distance between the real features and simulated ones. Besides MBPO and
FAMPO, we additionally analyze the multi-step training loss of SLBO since it also utilizes
the model output as the input of model training, which may help learn invariant features.
According to the results shown in Figure 3(b), we find that: i) the vanilla model training in
MBPO itself can slowly minimize the Wasserstein-1 distance between feature distributions; ii)
the multi-step training loss in SLBO does help learn invariant features but the improvement is
limited; iii) the model adaptation loss in FAMPO is effective in promoting feature distribution
alignment, which is consistent with our initial motivation.
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Figure 4: The results of the ablation studies conducted on three environments with few
interactions (40K steps for Hopper, 100K steps for Walker2d and ant). The bars
are average returns over five trials and black error lines indicate the standard
deviation.

Compounding Errors. We also investigate if the model adaptation help alleviate the
compounding model errors (Nagabandi et al., 2018) of multi-step forward predictions, which is
largely caused by the distribution shift problem. Concretely, we use the current policy to sam-
ple a trajectory (s0, a0, s1, ..., ah−1, sh) of length h on real environment, and use the learned
dynamics model to generate the corresponding simulated rollouts (ŝ0, a0, ŝ1, ..., ah−1, ŝh)
where ŝ0 = s0 and ŝi+1 = T̂θ(ŝi, ai). Then the empirical compounding error is calculated
as εh = 1

h

∑h
i=1 ‖ŝi − si‖2. We conduct experiments with different trajectory length h and

plot the results in Figure 3(c). We find that both FAMPO and IAMPO achieves smaller
compounding errors than MBPO, which meets our motivation that model adaptation can
successfully mitigate the distribution shift.

Uncertainty. For our weighted sampling strategy, one critical question is whether the
estimated uncertainty matches the real state prediction error (e.g.the IPM in the second term
of Eq. 14). However, since it is hard to obtain the ground-truth label of the simulated data due
to the complexity of MuJoCo simulator, we instead evaluate the uncertainty quantification
using sampled real data (s, a, s′) ∈ Denv. To be specific, we use the dynamics model to predict
the next state ŝ′ of newly collected real samples, on which the model hasn’t been trained.
Then we calculate the ground-truth error ‖ŝ′ − s′‖2 and estimate the uncertainty d(s, a).
Figure 3(d) shows the relationship between the estimated uncertainty and the ground-truth
error, from which we get to know that in general there is a positive correlation between
the estimated uncertainty and the ground-truth error justifying the incorporation of the
uncertainty in algorithm design. On the other hand, we further find directly masking half of
the data with highest uncertainty will also mask data with low ground-truth error, revealing
the disadvantage of hard-masking mechanism.

6.3 Ablation Studies

In this section, we aim to investigate the key ingredients of our algorithms through ablation
studies. Particularly, we compare the corresponding variants : (i) FAMPO w/o S, which only
adopts feature-based model adaptation without incorporating weighted sampling strategy;
(ii) IAMPO w/o S, which only adopts instance-based model adaptation without incorporating
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Figure 5: The results of the hyperparameter studies with respect to the adaptation iteration
G2 in FAMPO, the DICE training iteration G1 and the temperature of the
probabilistic sampling σ0 in IAMPO. The experiments are conducted on Hopper
with 40k steps and Walker2d with 100 steps.

weighted sampling strategy; (iii) MBPO w/ S, which only adopts weighted sampling strategy
without incorporating model adaptation. We conduct the experiments of ablation studies on
three environments and the results are shown in Figure 4.

From the comparison, we observe that: 1) Both the feature-based model adaptation and
instance-based model adaptation are quite effective, since in all three environments FAMPO-S
and IAMPO-S improve the performance in a considerable margin compared to MBPO. 2)
The effectiveness of weighted sampling strategy varies across the three environments. To be
more specific, weighted sampling strategy shows its effectiveness on Hopper and Walker2d
with different degrees of performance improvement, but it does not improve much on Ant.
The reason may be that on complex environments it is difficult to estimate the uncertainty
well to reach the positive correlation to the ground-truth model error.

6.4 Hyperparameter Studies

In this section, we study the sensitivity of our methods to important hyperparameters.
Specifically, For model adaptation learning, we investigate the sensitivity of FAMPO to the
adaptation iteration G2 and IAMPO to the DICE training iteration G1. While for weighted
sampling strategy, we would like to assess the importance of the probabilistic sampling
temperature σ. We conduct experiments with different value of these hyperparameters and
plot the result in Figure 5. According to the results, We observe that increasing G2 yields
better performance up to a certain level while too large G2 degrades the performance, which
means that we need to control the trade-off between model training and model adaptation
to ensure the feature representations to be invariant and also discriminative.

Similar trend can be summarized in the result of G1 and σ, but in most cases the
performance is still better than MBPO. To explain, too small G1 can’t train the DICE
networks sufficiently but too large G1 may cause overfitting. And with relatively small σ,
the algorithm just adopts uniform sampling in model usage, while using too large σ greatly
degrades the performance since only focusing low-uncertainty simulated data may reduce the
data diversity to obtain a good policy.
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7. Related work

Recently, model-based reinforcement learning have attracted increasing attention, mainly
due to its high sample efficiency by learning a model of the environment dynamics and using
the model for policy optimization. In the literature, for MBRL, there are two stages, i.e.,
model learning and model usage. Among them, model learning mainly involves two aspects:
(1) function approximator choice like Gaussian process (Deisenroth and Rasmussen, 2011),
time-varying linear models (Sutton et al., 2012; Levine et al., 2016) and neural networks
(Nagabandi et al., 2018), and (2) objective design like multi-step L2-norm (Luo et al., 2018),
log-likelihood loss (Chua et al., 2018) and adversarial loss (Wu et al., 2019). In this regard,
Chua et al. (2018) have demonstrated the superior effectiveness of using an ensemble of
probabilistic models with log-likelihood loss in reducing the potential overfitting. Inspired by
their success, we also use this model architecture in the design of our methods.

For model usage, MBRL methods can be roughly categorized into four groups according
to the specific model usage strategies (Lai et al., 2020; Zhu et al., 2020). The first group
consists of analytic-gradient algorithms that use model derivatives to search the policy by
back-propagation, including Deisenroth and Rasmussen (2011); Heess et al. (2015). The
second group includes shooting algorithms that directly plan forward by model predictive
control (MPC) without an explicit policy (Nagabandi et al., 2018; Chua et al., 2018). The
third group mainly contains model-augmented value expansion algorithms that use model-
based rollouts to improve targets for model-free temporal difference (TD) updates (Buckman
et al., 2018; Feinberg et al., 2018). The last group of algorithms are Dyna-style methods that
use the learned model to generate simulated data to augment the real data for model-free
policy training (Sutton, 1990; Luo et al., 2018). Under this taxonomy, our approaches are
Dyna-style methods that are inspired by the recent MBPO (Janner et al., 2019) algorithm.

One major challenge of Dyna-style MBRL in model usage is the distribution shift problem
between the simulated and the real data, and this error will only exacerbate when the learned
model is used to make multi-step predictions, because of the error compounding problem.
To this end, various solutions have been proposed to mitigate the distribution shift. Among
them, there are mainly two types: the first one aims at improving model learning while the
second one proposes to use the model more conservatively. Our algorithms take idea from
both lines of works and also makes novel contributions to both.

To facilitate model learning, Asadi et al. (2019) proposed to build multi-step models to
directly predict the outcome of an action sequence. Furthermore, the model predicted outputs
are used to construct the model training samples in addition to the real samples (Talvitie,
2017), so that the model can generalize to its output distribution. Asadi et al. (2018) also
proposed to add Lipschitz continuity constraint on the model and provided a bound on
multi-step prediction error accordingly. As a comparison, FAMPO leveraged feature-based
domain adaptation and proposed a model adaptation strategy to learn a feature space where
real data and simulated data are close in distribution. The design principle of IAMPO is
heavily inspired by domain adaptation as well. However, instead of feature-based approaches,
IAMPO is more related to instance-based methods for adaptation, which often involves an
estimation of importance ratio to correct for the potential domain shift.

Other works include constraining the model usage so as not to explore the regions with
disastrous errors. For example, MBPO (Janner et al., 2019) used the model to generate short
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rollouts to avoid large departure from the real distribution in long rollouts. In a similar vein,
STEVE (Buckman et al., 2018) interpolated between rollouts of various lengths according to
the estimated model uncertainty. Recently, Mu et al. (2021) trained an evaluator to assess
the reliability of the imagined trajectories, and M2AC (Pan et al., 2020) proposed a masking
mechanism that masks the simulated data whose estimated uncertainty is high in usage
phase. Our model usage component also exploits model uncertainty to reduce the possibility
of selecting unreliable simulated data for policy optimization.

On the theoretical side, previous works on MBRL mostly focused on either the tabular
MDPs or linear dynamics (Szita and Szepesvári, 2010; Jaksch et al., 2010; Dean et al., 2019;
Simchowitz et al., 2018), but not much in the context of continuous state space and non-linear
systems. Recently, Luo et al. (2018) gave a theoretical guarantee of monotonic improvement
by introducing a reference policy and imposing constraints on policy optimization and model
learning related to the reference policy. Janner et al. (2019) then derived a lower bound
focusing on branched short rollouts, but their algorithm was a heuristic instead of being
designed to maximize the lower bound. In contrast, our algorithms are naturally inspired
by our theoretical results and directly minimize a derived return discrepancy upper bound
without enforcing any constraint on the policy.

8. Conclusion

In this paper, we investigate how to explicitly tackle the distribution shift problem in
MBRL. We first provide an upper bound of the return discrepancy to justify the necessity of
model adaptation to correct the potential distribution bias in MBRL. With this insight, We
then propose to incorporate model adaptation into model learning from both feature and
instance perspective. In this way, the model gives more accurate predictions when generating
simulated data, and therefore the follow-up policy optimization performance can be improved.
Besides model adaptation learning, we additionally propose the weighted sampling strategy
to further avoid the impact of inaccurate model predictions. Extensive experiments on
continuous control tasks have shown the effectiveness of our work. We believe our work takes
an important step towards more sample-efficient MBRL.
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Appendix A. A Different View of Analysis

In this appendix, we provide an alternative perspective on the expected return upper bound
derivation.

Lemma 3 Define the normalized state visit distribution as νπT (s) := (1− γ)
∑∞

t=0 γ
tP πT,t(s),

where P πT,t(s) = P (st = s | π, T ). Assume the initial state distributions of the real dynamics
T and the dynamics model T̂ are the same. For any state s′, assume there exists a witness
function class Fs′ = {f : S ×A → R} such that T̂ (s′ | ·, ·) : S ×A → R is in Fs′. Then the
following holds:

|νπDT (s′)− νπ
T̂

(s′)| ≤ γdFs′ (ρ
πD
T , ρπ

T̂
) + γE(s,a)∼ρπDT

∣∣∣T (s′ | s, a)− T̂ (s′ | s, a)
∣∣∣ . (22)

Proof For the state visit distribution νπ
T̂

(s′), we have

νπ
T̂

(s′) = (1− γ)ν0(s
′) + γ

∫
ρπ
T̂

(s, a)T̂ (s′|s, a) ds da (23)

where ν0 denotes the probability of the initial state being the state s′. Then we have

|νπDT (s′)− νπ
T̂

(s′)|

= γ

∣∣∣∣∫
s,a
T (s′|s, a)ρπDT (s, a)− T̂ (s′|s, a)ρπ

T̂
(s, a) ds da

∣∣∣∣
= γ

∣∣∣E(s,a)∼ρπDT
[T (s′|s, a)]− E(s,a)∼ρπ

T̂
[T̂ (s′|s, a)]

∣∣∣
≤ γ

∣∣∣E(s,a)∼ρπDT
[T (s′|s, a)− T̂ (s′|s, a)]

∣∣∣+ γ
∣∣∣E(s,a)∼ρπDT

[T̂ (s′|s, a)]− E(s,a)∼ρπ
T̂

[T̂ (s′|s, a)]
∣∣∣

≤ γE(s,a)∼ρπDT

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣+ γdFs′ (ρ

πD
T , ρπ

T̂
),

(24)
which completes the proof.

Lemma 3 states that the discrepancy between two state visit distributions for each state is
bounded by the dynamics model error for predicting this state and the discrepancy between
the two state-action occupancy measures. Intuitively, it means that when both the input
state-action distributions and the conditional dynamics distributions are close then the
output state distributions will be close as well.

Theorem 4 Let F := ∪s′∈SFs′ and define επ := 2dTV(νπT , ν
πD
T ). Under the assumption of

Lemma 3, the expected return ηT (π) admits the following bound:

ηT̂ (π)− ηT (π) ≤rmax · επ + γrmax · dF (ρπDT , ρπ
T̂

) · Vol(S) (25)

+ γrmax · E(s,a)∼ρπDT

√
2DKL(T (·|s, a) ‖ T̂ (·|s, a)), (26)

where Vol(S) is the volume of state space S.
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Proof The return discrepancy is bounded as follows

|ηT̂ (π)− ηT (π)| =
∣∣∣∣∫
s,a

(
ρπT (s, a)− ρπ

T̂
(s, a)

)
r(s, a) ds da

∣∣∣∣
=

∣∣∣∣∫
s,a

(
νπT (s)π(a|s)− νπ

T̂
(s)π(a|s)

)
r(s, a) ds da

∣∣∣∣
≤ rmax ·

∫
s,a

∣∣∣νπT (s)π(a|s)− νπ
T̂

(s)π(a|s)
∣∣∣dsda

= rmax ·
∫
s

∣∣∣νπT (s)− νπ
T̂

(s)
∣∣∣ ds

= rmax ·
∫
s

∣∣∣νπDT (s)− νπ
T̂

(s) + νπT (s)− νπDT (s)
∣∣∣ ds

≤ rmax ·
∫
s

∣∣∣νπDT (s)− νπ
T̂

(s)
∣∣∣ ds+ rmax · επ

(27)

Replacing the above state s with the notation s′, then according to Lemma 3, we have

|η(π)− η̂(π)|

≤ rmax · επ + γrmax ·
∫
s′
dFs′ (ν

πD
T , νπ

T̂
) ds′ + γrmax · E(s,a)∼ρπDT

∫
s′

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣ds′

≤ rmax · επ + γrmax · dF (ρπDT , ρπ
T̂

) ·Vol(S) + γrmax · E(s,a)∼ρπDT

∫
s′

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣ ds′

= rmax · επ + γrmax · dF (ρπDT , ρπ
T̂

) ·Vol(S) + 2γrmax · E(s,a)∼ρπDT
dTV(T (·|s, a), T̂ (·|s, a))

≤ rmax · επ + γrmax · dF (ρπDT , ρπ
T̂

) ·Vol(S) + γrmax · E(s,a)∼ρπDT

√
2DKL(T (·|s, a), T̂ (·|s, a)) ,

(28)
where the last inequality holds due to Pinsker’s inequality, which completes the proof.

Theorem 4 gives another upper bound on the return discrepancy between the return in
the model and the real environment. In this bound, the first term denotes the divergence
between state visit distributions induced by the policy π and the behavioral policy πD in
the environment, which is an important objective in batch reinforcement learning (Fujimoto
et al., 2019) for reliable exploitation of off-policy samples. The second term corresponds to
the distribution shift problem and the last term corresponds to the model estimation error
on real data.

By comparing this bound to the one in Theorem 2, it seems the bound in Theorem 2 might
be tighter since there is no extra επ term. However, we should notice that the assumptions
made in Theorem 2 are stronger. To be more specific, we assume Gπ

T̂
satisfies the constraint

in Theorem 2, while here we only assume the model T̂ to satisfy the constraint, which is
easier to hold.
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Appendix B. Interchange Justification

In this appendix, we provide a proof of the interchangeability of the gradient and integration
in Equation 14, which is guaranteed by the Leibniz Integral Rule (Protter et al., 1985; Talvila,
2001). Formally,

Lemma 5 (Leibniz Integral Rule) Let f(x, t) be a function such that f(x, t) and its partial
derivative ∂f(x, t)/∂x are continuous in t and x in some region of the xt−plane, including
a ≤ t ≤ b, x0 ≤ x ≤ x1, then for x0 ≤ x ≤ x1,

d

dx

(∫ b

a
f(x, t) dt

)
=

∫ b

a

∂

∂x
f(x, t) dt. (29)

Let f(θ, (s, a)) = ρπ
T̂θ

(s, a) ·dF (T (·|s, a), T̂θ(·|s, a)). According to Lemma 5, now we just need
to prove that i). f is continuous, and ii). the partial derivative ∂f/∂θ is continuous in the
state-action space. Note that π, T̂θ and ∂T̂θ/∂θ are continuous since they are constructed
using neural networks. We assume that the ground-truth dynamic T and V π

T ∈ F are
continuous and the initial state s0 is sampled from a continuous distribution.

Proof To prove i), f is continuous if ρπ
T̂θ

and dF(T, T̂θ) are both continuous. We first
consider ρπ

T̂θ
(s, a) = (1 − γ) · π(a|s)

∑∞
t=0 γ

tP π
T̂ ,t

(s). For t = 0, P π
T̂ ,0

(s) = P (s0 = s)

is continuous since s0 is sampled from a continuous distribution. For t ≥ 1, P π
T̂ ,t

(s) =∫
st−1,a

P π
T̂ ,t−1(st−1) · π(a|st−1) · T̂θ(s|st−1, a) dst−1 da is continuous if P π

T̂ ,t−1(s) is continuous,

since π and T̂θ are continuous. Then by induction, P π
T̂ ,t

(s) is continuous for ∀t ≥ 0.
Therefore, ρπ

T̂θ
(s, a) is continuous as a discounted sum over P π

T̂ ,t
(s) · π(a|s). We then consider

dF (T (·|s, a), T̂θ(·|s, a)),

dF (T (·|s, a), T̂θ(·|s, a)) = sup
f1∈F

Es′∼T
[
f(s′) | s, a

]
− Es′∼T̂

[
f(s′) | s, a

]
= sup

f1∈F

∫
s′

(T (s′|s, a)− T̂θ(s′|s, a))f1(s
′) ds′.

(30)

Note that the supreme of continuous functions is still continuous, thus dF (T (·|s, a), T̂θ(·|s, a))
is continuous under the assumption that T and T̂θ are continuous. So far, we have proven (i).

To prove ii), ∂f/∂θ = ∂ρπ
T̂θ
/∂θ · dF(T, T̂θ) + ρπ

T̂θ
· ∂dF(T, T̂θ)/∂θ. We have proven that

dF (T, T̂θ) and ρπ
T̂θ

are continuous, so ∂f/∂θ is continuous if ∂ρπ
T̂θ
/∂θ and ∂dF (T, T̂θ)/∂θ are
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continuous. First,

∂ρπ
T̂θ

∂θ
=(1− γ) · π(a|s)

∞∑
t=0

γt
∂P π

T̂ ,t
(s)

∂θ
(31)

=(1− γ) · π(a|s)
∞∑
t=1

γt
∂
∫
st−1,a

P π
T̂ ,t−1(st−1) · π(a|st−1) · T̂θ(s|st−1, a) dst−1 da

∂θ
(32)

=(1− γ) · π(a|s)
∞∑
t=1

γt
∫
st−1,a

π(a|st−1) ·
(∂P π

T̂ ,t−1(st−1)

∂θ
· T̂θ(s|st−1, a) (33)

+ P π
T̂ ,t−1(st−1) ·

∂T̂θ(s|st−1, a)

∂θ

)
dst−1 da, (34)

where the interchange of the integration and the gradient step in the last equation can
be proven trivially via Lemma 5. Similarly by induction, we can prove that ∂P π

T̂ ,t
(s)/∂θ

is continuous for ∀t ≥ 0. Note that the integration of a continuous function is continu-
ous. Therefore, ∂ρπ

T̂θ
/∂θ is continuous since ∂P π

T̂ ,t−1(st−1)/∂θ and ∂T̂θ/∂θ are continuous.
Secondly,

∂dF (T, T̂θ)

∂θ
=
∂ supf1∈F

∫
s′(T (s′|s, a)− T̂θ(s′|s, a))f1(s

′) ds′

∂θ
(35)

=
∂
∫
s′(T (s′|s, a)− T̂θ(s′|s, a))f∗1 (s′) ds′

∂θ
(36)

=

∫
s′
−f∗1 (s′)

∂T̂θ(s
′|s, a)

∂θ
ds′, (37)

where f∗1 = arg maxf1∈F
∫
s′(T (s′|s, a)− T̂θ(s′|s, a))f1(s

′) ds′. Here we can directly take the

supremum since F :=
{
f : ‖f‖∞ ≤ rmax

1−γ

}
is closed. And the supremum is almost surely

unique, since the supremum simply lets f∗1 = rmax/(1 − γ) when T (s′|s, a) − T̂θ(s′|s, a) is
positive, and f∗1 = −rmax/(1 − γ) otherwise. The interchange of the integration and the
gradient step from (8) to (9) can be proven trivially via Lemma 5 again. Similarly, as ∂T̂θ/∂θ
is continuous, ∂dF (T, T̂θ)/∂θ is continuous too, which completes the proof of ii). Combining
i) and ii) completes the proof.

Appendix C. Design Evaluation

In this appendix, we evaluate the design choices for each part of our algorithm. More
specifically, we compare different choices of feature alignment metrics, importance ratio
estimation methods, and sampling strategy schemes.

C.1 MMD Variant of FAMPO

Besides Wasserstein-1 distance, we can use other distribution divergence metrics to align
the features. MMD is another instance of IPM when the witness function class is the unit
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Figure 6: Learning curves of FAMPO using different metrics (Wasserstein-1 distance and
MMD).

ball in a reproducing kernel Hilbert space (RKHS). Let k be the kernel of the RKHS Hk of
functions on X . Then the squared MMD in Hk between two feature distributions Phe and
Phm is Gretton et al. (2012):

MMD2
k(Phe ,Phm) := Ehe,h′e [k(he, h

′
e)] + Ehm,h′m [k(hm, h

′
m)]− 2Ehe,hm [k(he, hm)], (38)

which is a non-parametric measurement based on kernel mappings. In practice, given finite
feature samples from distributions {h1e, · · · , hNee } ∼ Phe and {h1m, · · · , hNmm } ∼ Phm , where
Ne and Nm are the number of real samples and simulated ones, one unbiased estimator of
MMD2

k(Phe ,Phm) can be written as follows:

LMMD(θg) =
1

Ne(Ne − 1)

∑
i 6=i′

k(hie, h
i′
e )+

1

Nm(Nm − 1)

∑
j 6=j′

k(hjm, h
j′
m)− 2

NeNm

Ne∑
i=1

Nm∑
j=1

k(hie, h
j
m).

(39)
To achieve model adaptation through MMD, we optimize the feature extractor to minimize
the above adaptation loss LMMD with real (s, a) data and simulated one as input. When im-
plementing the MMD variant, choosing optimal kernels remains an open problem and we use a
linear combination of eight RBF kernels with bandwidths {0.001, 0.005, 0.01, 0.05, 0.1, 1, 5, 10}.
The results are shown in Figure 6. Note that we only compare different metrics for feature
alignment here and do not incorporate the weighted sampling strategy. We can observe
that using MMD as the distribution divergence measure is also effective in the FAMPO
framework, only slightly worse than using Wasserstein-1 distance on Hopper.

C.2 Classification Variant of IAMPO

We compare different methods to estimate the importance ratio for IAMPO: DICE network
and binary classification, as introduced in Section 4.2. The results are shown in Figure 7.
Similarly, here we do not use weighted sampling strategy. While IAMPO with binary
classification achieves better performance than MBPO, it is not as effective as DICE, mainly
due to the imbalance between the amount of real data and simulated data.
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Figure 7: Learning curves of IAMPO with DICE network (IAMPO-DICE) and IAMPO with
classification (IAMPO-CLAS).

C.3 Masking Scheme of Sampling Strategy

We also use the same uncertainty estimation method as in weighted sampling strategy to
implement the masking scheme(Pan et al., 2020). To be more specific, after estimating the
uncertainty, we directly mask half the simulated data with high uncertainty in Dmodel and
use the remaining data to train the policy. In practice, we assure that after the masking
scheme, the size of Dmodel is still the same as MBPO by increasing the rollout batch size.
The preliminary results on Hopper and Walker2d are shown in Figure 8. We find that the
masking scheme cannot achieve better performance than MBPO. The reason may be that
after masking half the simulated data, only those very close to the real data are reserved to
train the policy, as analyzed in Section 5. This observation further verifies the effectiveness
weighted sampling strategy.
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Figure 8: Comparison results of original MBPO to MBPO with masking scheme and weighted
sampling strategy.
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Figure 9: More empirical analysis for FAMPO. (a) FAMPO-NOSTOP denotes the FAMPO
variant without early stopping the model adaptation procedure. (b) FAMPO-SW
denotes the FAMPO variant of sharing the feature extractor weights for two data
distributions. FAMPO-ADDA denotes the FAMPO variant of fixing the feature
extractor of real data.

Appendix D. More Experimental Results for FAMPO

D.1 Model Adaptation Early Stopping

In practice, we find that after a certain number of environment steps, the model loss
difference between FAMPO and MBPO becomes small. So in FAMPO, we early stop the
model adaptation procedure after collecting a certain number of real data, such as 40K
in the Hopper environment. We then conduct experiments without early stopping model
adaptation, and the results are demonstrated in Figure 9(a). We find that keeping adapting
the dynamics model throughout the whole learning process does not bring performance
improvement. This indicates that model adaptation makes a difference only when the model
training data is insufficient. So we set a model adaptation early stopping epoch for each
environment (see Table 2 for detail) to improve the computation efficiency.

D.2 Adaptation Strategy

In FAMPO, we untie the feature extractor weights for two data distributions and learn the two
feature extractors simultaneously, which is a variant of the adaptation strategy in Adversarial
Discriminative Domain Adaptation (ADDA) (Tzeng et al., 2017). Differently, in ADDA the
feature mapping for source domain (i.e. real data) is fixed. Another alternative is to share
the feature extractor weights between the two data distributions. From the comparison in
Figure 9(b), we observe that the performance of these three adaptation strategies differs not
much, but FAMPO performs slightly better. The reason may be that, different from general
domain adaptation, in MBRL scenarios, the real and simulated data will be collected and
generated continuously. Therefore learning a feature extractor specified for the simulated
data at each iteration is unnecessary.
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Appendix E. Hyperparameter Settings

Table 1 lists the common hyperparameters used in FAMPO and IAMPO. Table 2 and Table 3
list the distinct hyperparameters of FAMPO and IAMPO, respectively.

Table 1: Common hyperparameters for FAMPO and IAMPO.
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network architecture MLP with four hidden layers of size 200
feature extractor: four hidden layers; decoder: one output layer

real samples for 300 2000 5000model pretraining
real steps 250 1000per epoch

E
real steps between 125 250model training

F
model rollout 100000batch size

B ensemble size 7

G3
policy updates 30 20 40per real step

Table 2: Distinct hyperparameters for FAMPO. [a, b, x, y] denotes a linear function, i.e. at
epoch e, f(e) = min(max(x+ e−a

b−a · (x− y), x), y).
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model adaptation 64 256batch size

k rollout length 1 1 [5,45,1,15] 1 [10,60,1,25] [1,30,1,5]

G2
model adaptation 6 40 400 1000 3000 [1,30,100,1000]updates
model adaptation 6 6 40 80 60 30early stop epoch

σ0
temperature in 1 0 1 1 0.2 0weighted sampling

σ1
temperature in 20 0 1 50 30 0weighted sampling
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Table 3: Distinct hyperparameters for IAMPO. [a, b, x, y] denotes a linear function, i.e. at
epoch e, f(e) = min(max(x+ e−a

b−a · (x− y), x), y).
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DICE training 256batch size

k rollout length 1 3 [10,60,1,15] 1 [10,60,1,25] 5

G2
DICE training 100 100 800 600 300 450updates

α0
ratio clipping 0.1minimum value

α1
ratio clipping 5 20 5maximum value

λ
coefficient in 0.1 3 5 0.1DICE loss

σ0
temperature in 2 5 1 2 0.1 0weighted sampling

σ1
temperature in 20 20 40 50 7.5 0weighted sampling
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