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Abstract

In fully cooperative multi-agent reinforcement learning (MARL) settings, environments are
highly stochastic due to the partial observability of each agent and the continuously chang-
ing policies of other agents. To address the above issues, we proposed a unified framework,
called DFAC, for integrating distributional RL with value function factorization methods.
This framework generalizes expected value function factorization methods to enable the
factorization of return distributions. To validate DFAC, we first demonstrate its ability to
factorize the value functions of a simple matrix game with stochastic rewards. Then, we
perform experiments on all Super Hard maps of the StarCraft Multi-Agent Challenge and
six self-designed Ultra Hard maps, showing that DFAC is able to outperform a number of
baselines.

Keywords: Reinforcement Learning, Multi-Agent RL, Distributional RL, Value Function
Factorization

1. Introduction

In multi-agent reinforcement learning (MARL), one of the popular research directions is to
enhance the training procedure of fully cooperative and decentralized agents. Examples of
such agents include a fleet of unmanned aerial vehicles (UAVs), a group of autonomous cars,
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etc. This research direction aims to develop a decentralized and cooperative behavior policy
for each agent, and is especially difficult for MARL settings without an explicit communi-
cation channel. The most straightforward approach is independent Q-learning (IQL) (Tan,
1993), where each agent is trained independently with its own behavior policy aimed to
optimize the total return. Nevertheless, each agent’s policy may not converge owing to
two main difficulties: (1) non-stationary environments caused by the changing behaviors of
other agents, and (2) spurious reward signals originated from the actions of other agents. In
addition, an agent’s partial observability of an environment further exacerbates the above
issues. On the other hand, another line of research focuses on fully utilizing all agents’ infor-
mation to learn a joint cooperative policy with a single monolithic network. Such methods,
named fully-centralized learners, eliminate the policy convergence issue. Unfortunately,
they are not scalable and are unable to be executed in a decentralized fashion. In order
to strike a balance between these two types of approaches, a number of MARL researchers
turned their attention to centralized training with decentralized execution (CTDE) meth-
ods, with an objective to stabilize the training procedure while maintaining the agents’
abilities for decentralized execution (Oliehoek and Amato, 2016). Among these CTDE ap-
proaches, value function factorization methods (Sunehag et al., 2018; Rashid et al., 2018;
Son et al., 2019) are especially promising in terms of their superior performances and data
efficiency (Samvelyan et al., 2019).

Value function factorization methods aim to learn a factorization of a certain joint
value function based on all agents’ information during centralized training, so as to enable
decentralized execution based on the learned factorization. These methods introduce the as-
sumption of individual-global-max (IGM) (Son et al., 2019), which assumes that each agent’s
optimal actions result in the optimal joint actions of the entire group. Based on IGM, the
total return of a group of agents can be factorized into separate utility functions (Guestrin
et al., 2001) (or simply ‘utility ’ hereafter) for each agent. The utilities allow the agents
to independently derive their own optimal actions during execution, and deliver promising
performance in StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019). Unfor-
tunately, current value function factorization methods only concentrate on estimating the
expectations of the utilities, overlooking the additional information contained in the full
return distributions. Such information, nevertheless, has been demonstrated beneficial for
policy learning in the recent literature (Lyle et al., 2019).

In the past few years, distributional RL has been empirically shown to enhance value
function estimation in various single-agent RL (SARL) domains (Bellemare et al., 2017;
Dabney et al., 2018b,a; Rowland et al., 2019; Yang et al., 2019). Instead of estimating
a single scalar Q-value, it approximates the probability distribution of a total return by
either a categorical distribution (Bellemare et al., 2017) or a quantile function (Dabney
et al., 2018b,a). Even though the above methods may be beneficial to the MARL domain
due to the ability to capture uncertainty, it is inherently incompatible to expected value
function factorization methods (e.g., value decomposition network (VDN) (Sunehag et al.,
2018), monotonic mixing network (QMIX) (Rashid et al., 2018), and duplex dueling mixing
network (QPLEX) (Wang et al., 2021b)). The incompatibility arises from two aspects: (1)
maintaining IGM in a distributional form, and (2) factorizing the probability distribution of
a total return into individual utilities. As a result, an effective and efficient approach that
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is able to solve the incompatibility is crucial and necessary for bridging the gap between
value function factorization methods and distributional RL.

In this paper, we propose a Distributional Value Function Factorization (DFAC) frame-
work, to efficiently integrate value function factorization methods with distributional RL.
DFAC solves the incompatibility by two techniques: (1) Mean-Shape Decomposition and (2)
Quantile Mixture. The former allows the generalization of expected value function factor-
ization methods (e.g., VDN, QMIX, and QPLEX) to their DFAC variants without violating
IGM. The latter allows a total return distribution to be factorized into individual utility
distributions in a computationally efficient manner. We slightly abuse the term ‘factoriz-
ing return distributions’ here, which refer to factorizing the value function into individual
utilities, and should not be confused with factorizing a joint distribution into a product
of marginal distributions. To validate the effectiveness of DFAC, we first demonstrate the
ability of factorizing the return distribution of a matrix game with stochastic rewards.
Then, we perform experiments on all Super Hard maps in SMAC, and show that DFAC
offers beneficial impacts on the baseline methods. Furthermore, we designed six Ultra Hard
maps to further validate the effectiveness of DFAC. In summary, the primary contribution
is the introduction of DFAC for bridging the gap between distributional RL and value func-
tion factorization methods efficiently by mean-shape decomposition and quantile mixture.
Please note that this work is an extended version of Sun et al. (2021).

2. Related Works

The related works of this paper can be grouped into four categories as follows.

Distributional Independent Learners. Independent learners allow agents to learn
a cooperative policy based on their own action-observation histories, without assuming
additional information from other agents. The major drawback of this approach is the
miscoordination among agents due to the lack of information exchange during training.
Several works incorporate distrbutional RL methods to mitigate this issue. Da Silva et al.
(2019) extended the simplest IQL (Tan, 1993), which simply performs expected Q-learning
for each agent, to multiple independent C51 learners (Bellemare et al., 2017). This ap-
proach performs distributional Q-learning for each agent, and is able to deliver superior
results. Lyu and Amato (2020) combined Hysteretic Q-Learning (HQL) (Matignon et al.,
2007; Omidshafiei et al., 2017) with implicit quantile networks (IQN) (Dabney et al., 2018a)
to separate the impacts of miscoordination among agents and the environmental stochas-
ticity. Rowland et al. (2021) proposed a framework to investigate the difference between
asymmetric update methods such as HQL, and distributional RL methods such as expectile
distributional reinforcement learning (EDRL) (Rowland et al., 2019).

CTDE Value Function Factorization. Value function factorization methods aim
to learn a factorization of the joint value function for a group of agents during centralized
training. The learned factorization allows the policy of each agent to be executed in a decen-
tralized fashion. The first proposed method in this category is VDN (Sunehag et al., 2018).
VDN assumes the Additivity property, which constrains a joint action-value function to be
the sum of multiple individual utilities. As a result, VDN employs a joint value network to
accomplish such an objective. QMIX (Rashid et al., 2018) extends VDN to a larger set of
tasks by assuming the Monotonicity property, which requires a joint action-value function
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to be equivalent to at least one of the monotonic transformations of individual utilities.
Based on this relaxed assumption, QMIX utilizes a monotonic mixing network to combine
individual utilities in a monotonic fashion. QTRAN (Son et al., 2019) further transforms
the joint action-value function into another easily factorizable one by introducing two addi-
tional regularization losses, and allows an even larger set of tasks to be factorized correctly.
However, QTRAN is unstable during training (Rashid et al., 2018), which motivates several
subsequent works dedicated to extending QMIX to solve the same set of tasks as QTRAN
while maintaining the training stability. For example, W-QMIX (Rashid et al., 2020) treats
QMIX as an operator, and projects non-monotonic tasks to QMIX’s problem domain. Qat-
ten (Yang et al., 2020) introduces a multi-head attention mechanism to approximate a
joint action-value function. QPLEX (Wang et al., 2021b) utilizes a duplex dueling mixing
network for stabilizing QTRAN’s training process.

Other CTDE Methods. Aside from the general CTDE value function factorization
methods, a number of methods have been proposed to introduce additional assumptions
to further enhance the general CTDE methods. They include the use of intrinsic reward
signals (Du et al., 2019), explicit communication channels (Zhang et al., 2019; Wang et al.,
2020b), common knowledge shared among agents (de Witt et al., 2019; Wang et al., 2020a),
prior knowledge about environments (Wang et al., 2020c), and so on. In addition, there has
been a line of research that focuses on an actor-critic style training. For example, Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) (Lowe et al., 2017) uses a centralized
critic to improve the value function approximation ability. The critic is augmented with
extra information about all agents’ policies, while the actor only has access to its local
information. Counterfactual Multi-Agent Policy Gradients (COMA) (Foerster et al., 2018)
leverages a centralized critic that approximates a baseline for each agent. The baseline
enables an agent to marginalize out its action while keeping the other agents’ actions fixed,
allowing it to reason about counterfactual scenarios to facilitate its learning. Multi-Actor-
Attention-Critic (MAAC) (Iqbal and Sha, 2019) constructs a critic for each agent with
an attention mechanism, such that the critics are able to selectively pay attention to the
information from the other agents. Moreover, Factored Multi-Agent Centralized Policy
Gradients (FACMAC) (Peng et al., 2021) incorporates value function factorization methods
into the centralized critic in MADDPG to further improve its performance. Please note
that in this paper, we focus on improving value-based estimation for CTDE training. These
methods are orthogonal to our work.

Distributional Value Function Factorization. Similar to our work, QR-MIX (Hu
et al., 2020) and RMIX (Qiu et al., 2021) also utilized distributional RL to increase their
performance in SMAC. QR-MIX is a QMIX variant which models the mixing network as
an IQN. Instead of decomposing the joint distribution into individual utility distributions,
it treats the utilities as Dirac distributions. On the other hand, RMIX is also a QMIX
variant, but replaces the inputs and outputs of the mixing network with the Conditional
Value at Risk (CVaR) measures. The major difference between our work and the above
two methods is the ability to factorize the joint value distribution into individual utility
distributions, while these two methods are not capable of factorizing distributions.
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3. Background

In this section, we introduce the essential background material for understanding the con-
tents of this paper. We first define the problem formulation of cooperative MARL and
CTDE. Next, we describe the conventional formulation of IGM and the value function
factorization methods. Then, we walk through the concepts of distributional RL, quan-
tile function, as well as quantile regression, which are the fundamental concepts frequently
mentioned in this paper. After that, we explain IQN, a key approach adopted in this paper
for approximating quantiles. Finally, we bring out the concept of quantile mixture, which
is leveraged by DFAC for factorizing return distributions.

3.1 Cooperative MARL and CTDE

In this work, we consider a fully cooperative MARL environment modeled as a decentralized
and partially observable Markov Decision Process (Dec-POMDP) (Oliehoek and Amato,
2016) with stocastic rewards, which is described as a tuple 〈S,K,Ojt,Ujt, P ,O,R, γ〉 and is
defined as follows:

• S is the finite set of global states in the environment, where s′ ∈ S denotes the next
state of the current state s ∈ S. The state information is optionally available during
training, but is not available to the agents during execution.
• K = {1, ...,K} is the set of K agents. We use k ∈ K to denote the index of the agent.
• Ojt = Πk∈KOk is the set of joint observations. At each timestep, a joint observation

o = 〈o1, ..., oK〉 ∈ Ojt is provided by the environment to the K agents. Each agent k
is only able to observe its own individual observation ok ∈ Ok.
• Hjt = Πk∈KHk is the set of joint action-observation histories. The joint history

h = 〈h1, ..., hK〉 ∈ Hjt concatenates all the perceived observations and the performed
actions before a certain timestep, where hk ∈ Hk represents the action-observation
history from agent k.
• Ujt = Πk∈KUk is the set of joint actions. At each timestep, the entire group of the

agents take a joint action u, where u = 〈u1, ..., uK〉 ∈ Ujt. The individual action
uk ∈ Uk of each agent k is determined based on its stochastic policy πk(uk|hk) :
Hk × Uk → [0, 1], expressed as uk ∼ πk(·|hk). Similarly, in single agent scenarios, we
use u and u′ to denote the actions of the agent at state s and s′ under its policy π,
respectively.
• T = {1, ..., T} represents the set of timesteps with horizon T , where the index of the

current timestep is denoted as t ∈ T. Please note that st, ot, ht, and ut correspond
to the state, joint observation, joint action-observation history, and joint action at
timestep t, respectively.
• The transition function P (s′|s,u) : S × Ujt × S → [0, 1] specifies the state transition

probabilities. Given s and u, the next state is represented as s′ ∼ P (·|s,u).
• The observation function O(o|s) : Ojt × S → [0, 1] specifies the joint observation

probabilities. Given s, the joint observation is represented as o ∼ O(·|s).
• R(r|s,u) : S × Ujt × R → [0, 1] is the joint reward function shared among all the

agents. Given s, the team reward is expressed as r ∼ R(·|s,u).
• γ ∈ R is the discount factor with its value within [0, 1).
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Under such an MARL formulation, this work concentrates on CTDE-based value function
factorization methods, where the agents are trained in a centralized fashion and executed in
a decentralized manner. In other words, the joint action-observation history h is available
during the learning processes of individual policies [πk]k∈K. During execution, each agent’s
policy πk only conditions on its observation history hk.

3.2 IGM and Factorizable Tasks

IGM is necessary for value function factorization (Son et al., 2019). For a joint action-value
function Qjt(h,u) : Hjt × Ujt → R, if there exist K separate utility functions [Qk(hk, uk) :
Hk × Uk → R]k∈K such that the following condition holds:

arg max
u

Qjt(h,u) =

 arg maxu1 Q1(h1, u1)
...

arg maxuK QK(hK , uK)

 , (1)

then [Qk]k∈K are said to satisfy IGM for Qjt under h. Under this condition, we also say
that Qjt(h,u) is factorized by [Qk(hk, uk)]k∈K (Son et al., 2019). If Qjt in a given task is
factorizable under all h ∈ Hjt, we say that the task is factorizable. Intuitively, factorizable
tasks indicate that there exists a factorization such that each agent can select the greedy ac-
tion according to their individual utilities [Qk]k∈K independently in a decentralized fashion.
This enables the optimal individual actions to implicitly achieve the optimal joint action
across the K agents. Since there is no individual reward, the factorized utilities do not
estimate expected returns on their own (Guestrin et al., 2001) and are different from the
value function definition commonly used in SARL.

3.3 Advantage-based IGM

In addition to Q-value based IGM described in Section 3.2, there exist a variant, called
advantage-based IGM (Wang et al., 2021b), which is defined as the following:

arg max
u

Ajt(h,u) =

 arg maxu1 A1(h1, u1)
...

arg maxuK AK(hK , uK)

 , (2)

where the advantage functions [Ak(hk, uk)]k∈K can be derived from [Qk(hk, uk)]k∈K and the
state-value functions [Vk(hk)]k∈K as:

Ak(hk, uk) = Qk(hk, uk)− Vk(hk),∀k ∈ K, (3)

Vk(hk) = max
uk

Qk(hk, uk),∀k ∈ K. (4)

Eq. (2) has been proved to be equivalent to Eq. (1) (Wang et al., 2021b), since the argmax
operations over the actions do not depend on [Vk(hk)]k∈K, but only on [Ak(hk, uk)]k∈K.
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3.4 Value Function Factorization Methods

Based on IGM, value function factorization methods enable centralized training for factor-
izable tasks, while maintaining the ability for decentralized execution. In this work, we
consider three such methods: VDN, QMIX, and QPLEX, where their expressive power (or
expressiveness) can be sorted as: QPLEX > QMIX > VDN. A factorization function being
more expressive means that it is able to solve a larger subset of factorizable tasks. VDN
solves a subset of factorizable tasks that satisfies Additivity by defining the factorization
function as the sum of individual utilities:

Qjt(h,u) =

K∑
k=1

Qk(hk, uk). (5)

QMIX solves a larger subset of factorizable tasks that satisfies Monotonicity by defining
the factorization function as a monotonic combination of the individual utilities:

Qjt(h,u) = M(Q1(h1, u1), ..., QK(hK , uK)|s), (6)

where M is a learnable monotonic mixing network that satisfies ∂M
∂Qk
≥ 0,∀k ∈ K, and can

condition on the state s if the information is available during training. QPLEX solves all
factorizable tasks (Wang et al., 2021b) by defining the factorization function as follows:

Qjt(h,u) =
K∑
k=1

Vk(h) +
K∑
k=1

λk(h,u)Ak(h, uk). (7)

where Vk(h) = Mk(Vk(hk)|s), Ak(h, uk) = Mk(Ak(hk, uk)|s), and λk(h,u) > 0. In addition
to the learnable monotonic networks [Mk]k∈K, such a factorization further learns a positive
weight λk for each individual advantage. This flexibility enables QPLEX to correct the
discrepancy between the joint Q-value and the individual utilities when a task does not
satisfy Additivity . All of these three factorization functions satisfy the IGM condition (Son

et al., 2019), which indicates that the individual utilities [Q
(t)
k ]k∈K satisfy IGM for Q

(t)
jt

under all h throughout the entire training process (i.e., for all t). The joint Q-value Qjt is
learned iteratively by updating the joint network with the Bellman optimality operator T ∗
based on the joint reward signal:

Q
(i+1)
jt (h,u)← T ∗Q(i)

jt (h,u), (8)

where i denotes the index of iterations, T ∗Q(i)
jt (h,u) = E[R(s,u)] + γQ

(i)
jt (s′,u′∗), and

u′∗ = arg maxu′ Q
(i)
jt (s′,u′) is the optimal action at state s′. Eq. (8) enables the joint net-

work to be trained in the same fashion as the single-agent DQN (Mnih et al., 2015), allowing
Qjt to approximate the optimal joint Q-value function Q∗jt while satisfying the IGM con-
dition. This update process of minimizing the Temporal Difference (TD) error implicitly
realizes an effective counterfactual credit assignment by factorizing Qjt into individual util-
ities [Qk]k∈K (Wang et al., 2021a). The factorized utilities are then utilized to determine
each agent’s policy during execution.

The representational capacity of the joint network is determined by two factors: (1) the
network’s (or the model’s) capacity, which is limited by the number of learnable parameters,
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and (2) the expressiveness of a factorization function, which is dependent on the selected
factorization method. For example, QPLEX has been proved to be more expressive than
QMIX (Wang et al., 2021b). Due to the theoretical limitation of QMIX’s expressiveness,
there exist certain tasks that QMIX are unable to solve by simply minimizing the TD errors
of the joint Q-values, even if QMIX is equipped with unlimited model capacity.

3.5 Distributional RL

For notational simplicity, we consider a degenerated case with only a single agent, and the
environment is fully observable until the end of Section 3.8. Distributional RL generalizes
classic expected RL methods by capturing the full return distribution Z(s, u) instead of the
expected return Q(s, u), allowing an agent to learn better state representations (Bellemare
et al., 2022) that lead to better performance in various single-agent domains (Bellemare
et al., 2017, 2019; Dabney et al., 2018b,a; Rowland et al., 2019; Yang et al., 2019; Nguyen
et al., 2021). Modeling the full return distributions can be viewed as an auxiliary task
that benefits representation learning during training, where the information other than
the expected returns can be discarded afterward. In addition, distributional RL enables
applications that require the information of the full return distributions, such as explo-
ration (Nikolov et al., 2019; Zhang and Yao, 2019; Mavrin et al., 2019) and risk-aware
policies (Xia, 2020). Distributional RL defines the distributional Bellman operator T π as
follows:

T πZ(s, u)
D
= R(s, u) + γZ(s′, u′), (9)

and the distributional Bellman optimality operator T ∗ as:

T ∗Z(s, u)
D
= R(s, u) + γZ(s′, u′∗), (10)

where u′∗ = arg maxu′ E[Z(s′, u′)] is the optimal action at state s′, and the expressionX
D
= Y

denotes that random variables X and Y follow the same distribution. Given some initial dis-
tribution Z0, applying different Bellman operators lead to different results. If T π is applied
repeatedly, Z converges to Zπ in p-Wasserstein distance for all p ∈ [1,∞) under π. On the
other hand, if T ∗ is applied instead, Z alternates among the optimal return distributions
in the set Z∗ := {Zπ∗ : π∗ ∈ Π∗}, where Π∗ denotes the set of optimal policies (Bellemare
et al., 2017). The p-Wasserstein distance between the probability distributions of random
variables X, Y is defined as:

Wp(X,Y ) =

(∫ 1

0
|F−1X (ω)− F−1Y (ω)|pdω

)1/p

, (11)

where (F−1X , F−1Y ) are quantile functions of (X,Y ).

3.6 Categorical Distribution and Heuristic Projection

The distributional Bellman optimality operator T ∗ lays the foundation for C51 (Bellemare
et al., 2017), the first distributional RL algorithm. It models the return distribution as a
categorical distribution, where the number of atoms n (i.e., categories) within the range
[VMIN, VMAX] and the distance between them 4z = VMAX−VMIN

n−1 are hyperparameters. Since
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C51 can only approximate the return distributions with a finite support (i.e., the set of
atoms: {zi = VMIN + i4z : 0 ≤ i < n}), a heuristic projection is required to project the
Bellman target distribution onto the pre-defined support. Specifically, C51 aims to minimize
the KL divergence:

L(s, u, r, s′) = DKL(proj(T ∗Z(s, u))||Z(s, u)), (12)

where the heuristic projection function proj(·) approximates T ∗Z(s, u) by distributing the
probability of each atoms to their immediate neighbors on the support of C51:

[proj(T ∗Z(s, u))]i =
n−1∑
j=0

[
1−
|[T ∗zj ]VMAX

VMIN
− zi|

4z

]1
0

pj(s
′, u′∗), (13)

where [·]ba is a clipping function that bounds its argument in [a, b], and pj(s
′, u′∗) is the

probability mass of the jth atom. Unfortunately, the heuristic projection used in Eq. (13)
introduces variance (Rowland et al., 2019) and does not guarantee convergence (Dabney
et al., 2018b). In addition, C51 usually requires a large number of categories, and often ne-
cessitates re-adjusting the support range for tasks with different reward magnitudes, making
it inappropriate for practical usages. Therefore, its follow-up works turn to approximate
return distributions with quantile functions instead of categorical distributions.

3.7 Quantile Function and Quantile Regression

The relationship between the cumulative distribution function (CDF) FX and the quantile
function F−1X (i.e., the generalized inverse CDF) of a random variable X is formulated as:

F−1X (ω) = inf{x ∈ R : ω ≤ FX(x)}, ∀ω ∈ [0, 1], (14)

where ω represents the quantile. The expectation of X expressed in terms of F−1X (ω) is:

E[X] =

∫ 1

0
F−1X (ω) dω. (15)

Dabney et al. (2018a) model the value function as a quantile function F−1(s, u|ω), and use a
pair-wise sampled temporal difference (TD) error δ for two quantile samples ω, ω′ ∼ U([0, 1])
to optimize the value function. The TD error δ is defined as:

δω,ω
′

= r + γF−1(s′, u′∗|ω′)− F−1(s, u|ω). (16)

Based on Eq. (16), the pair-wise loss ρκω is formulated based on the Huber quantile regression
loss Lκ (Dabney et al., 2018b) with threshold κ = 1, and is expressed as follows:

ρκω(δω,ω
′
) = |ω − I{δω,ω′ < 0}|Lκ(δω,ω

′
)

κ
, where (17)

Lκ(δω,ω
′
) =

{
1
2(δω,ω

′
)2, if |δω,ω′ | ≤ κ

κ(|δω,ω′ | − 1
2κ), otherwise

. (18)
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Given N quantile samples [ωi]
N
i=1 to be optimized with regard to N ′ target quantile samples

[ωj ]
N ′
j=1, the total loss L(s, u, r, s′) is defined as the sum of the pair-wise losses, and is

expressed as the following:

L(s, u, r, s′) =
1

N ′

N∑
i=1

N ′∑
j=1

ρκωi
(δωi,ω

′
j ). (19)

3.8 Implicit Quantile Network

In order to realize the concepts discussed in the previous section, implicit quantile network
(IQN) (Dabney et al., 2018a) proposes to approximate the return distribution Z(s, u) by
an implicit quantile function F−1(s, u|ω) = g(ψ(s), φ(ω))u for functions g, ψ, and φ. The
subscript u denotes a certain action, which corresponds to the uth element in the output
vector of g. IQN is a type of universal value function approximator (UVFA) (Schaul et al.,
2015). It employs a light-weight architecture which generalizes its predictions across states
s ∈ S and goals ω ∈ [0, 1], with the goals defined as different quantiles of the return
distribution. To mitigate spectral bias (Rahaman et al., 2019), φ first maps the input
scalar ω to an m-dimensional vector by a high frequency function [cos(πiω)]m−1i=0 , followed
by a single hidden layer with weights [wij ] and biases [bj ] to produce a quantile embedding

φ(ω) = [φ(ω)j ]
dim(φ(ω))−1
j=0 . The expression of φ(ω)j can be represented as the following:

φ(ω)j := ReLU(
m−1∑
i=0

cos(πiω)wij + bj), (20)

where m = 64. Then, φ(ω) is combined with the state embedding ψ(s) by the element-wise
(Hadamard) product (�), expressed as g := ψ�φ, where dim(φ(ω)) = dim(ψ(s)). The loss
of IQN is defined as Eq. (19) by sampling a batch of N and N ′ quantiles from the policy
network and the target network respectively. During execution, the action with the largest
expected return Q(s, u) is chosen. Since IQN does not model the expected return explicitly,
Q(s, u) is approximated by calculating the mean of the sampled returns through N̂ quantile
samples ω̂i ∼ U([0, 1]),∀i ∈ [1, N̂ ] based on Eq. (15), expressed as follows:

Q(s, u) =

∫ 1

0
F−1(s, u|ω) dω ≈ 1

N̂

N̂∑
i=1

F−1(s, u|ω̂i). (21)

3.9 Quantile Mixture

Multiple quantile functions (e.g., IQNs) sharing the same quantile ω may be combined into
a single quantile function F−1(ω), in a form of quantile mixture expressed as follows:

F−1(ω) =
K∑
k=1

βkF
−1
k (ω), (22)

where [F−1k (ω)]k∈K are quantile functions, and [βk]k∈K are model parameters (Karvanen,
2006). The condition for [βk]k∈K is that F−1(ω) must satisfy the properties of a quantile

10
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function. The concept of quantile mixture must not be confused with the mixture of multiple
probability density functions (PDFs):

f(x) =
K∑
k=1

αkfk(x), (23)

where [fk(x)]k∈K are PDFs,
∑K

k=1 αk = 1, and αk ≥ 0. Summing PDFs is equivalent to
making a random choice from a collection of random variables, whereas adding quantile
functions combines the random variables with a specific dependence structure (Eq. (22)).

4. Methodology

In this section, we walk through the proposed DFAC framework and its derivation proce-
dure. We first discuss a naive distributional factorization approach and its limitation in
Section 4.1. Then, we introduce the DFAC framework to address the limitation, and show
that DFAC is able to generalize distributional RL to all factorizable tasks in Section 4.2.
After that, several practical implementations of DFAC are presented in Section 4.3. Finally,
DDN, DMIX, and DPLEX, which are the DFAC variants of VDN, QMIX, and QPLEX,
respectively, are discussed in Section 4.4.

4.1 Distributional IGM

Since the IGM condition is required for value function factorization to work in fully co-
operative tasks, a distributional factorization that satisfies IGM is essential for factorizing
return distributions. We first discuss a naive distributional factorization approach that
simply replaces deterministic utilities Q with stochastic utilities Z. Then, we provide a
theorem to show that the naive approach is insufficient to guarantee the IGM condition for
all factorization functions in general.

Definition 1 (Distributional IGM) A finite number of individual stochastic utilities
[Zk(hk, uk)]k∈K are said to satisfy Distributional IGM (DIGM) for a stochastic joint action-
value function Zjt(h,u) under h, if their expectations [E[Zk(hk, uk)]]k∈K satisfy IGM for
E[Zjt(h,u)] under h, represented as follows:

arg max
u

E[Z jt(h,u)] =

 arg maxu1 E[Z1(h1, u1)]
...

arg maxuK E[ZK(hK , uK)]

 .

By replacing Q in Eq. (1) with E[Z], IGM can be extended to Distributional IGM. The
Advantage-based IGM can also be extended to its distributional version in a similar way.
In the following, we use Q and E[Z] interchangeably, specifically, Qjt(h,u) = E[Zjt(h,u)],
and Qk(hk, uk) = E[Zk(hk, uk)], ∀k ∈ K.

Proposition 1 DIGM is equivalent to IGM (Eq. (1)).

11
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Proof

arg max
u

E[Z jt(h,u)] =

 arg maxu1 E[Z1(h1, u1)]
...

arg maxuK E[ZK(hK , uK)]


⇔ arg max

u
Qjt(h,u) =

 arg maxu1 Q1(h1, u1)
...

arg maxuK QK(hK , uK)

 .

The Advantage-based IGM is also equivalent to its distributional version, which can be
proved in the same manner. Following the above definition of DIGM, we next discuss the
reason why simply replaces Q with Z (i.e., the naive approach) is insufficient to guarantee
the DIGM condition by considering Additivity (in Eq. (5)) and Monotonicity (in Eq. (6))
in two propositions.

Proposition 2 Additivity for utility distributions:

Z jt(h,u)
D
= Ψ(Z1(h1, u1), ..., ZK(hK , uK))

D
=
∑
k∈K

Zk(hk, uk)

is a sufficient condition for DIGM.

Proof By linearity of expectation, the following equation holds:

E[Z jt(h,u)] = E[
∑
k∈K

Zk(hk, uk)] =
∑
k∈K

E[Zk(hk, uk)]

⇔ Qjt(h,u) =
∑
k∈K

Qk(hk, uk).

Since Additivity is a sufficient condition for IGM:

E[Z jt(h,u)] = Ψ(E[Z1(h1, u1)], ...,E[ZK(hK , uK)]) =
∑
k∈K

E[Zk(hk, uk)]

⇔ Qjt(h,u) = Ψ(Q1(h1, u1), ..., QK(hK , uK)) =
∑
k∈K

Qk(hk, uk),

[E[Zk(hk, uk)]]k∈K satisfy IGM for E[Zjt(h,u)] under h. According to Definition 1 and
Proposition 1, [Zk(hk, uk)]k∈K satisfy DIGM for Zjt(h,u) under h. As a result, Additivity
for utility distributions is a sufficient condition for DIGM.

Simply replacing Q with Z (i.e., the naive approach) satisfies DIGM for Additivity based
on linearity of expectations. However, linearity of expectations does not hold in general for
monotonic transformations:

Qjt(h,u) = E[Z jt(h,u)]

= E[M(Z1(h1, u1), ..., ZK(hK , uK)|s)],∀M
6= M(E[Z1(h1, u1)], ...,E[ZK(hK , uK)]|s), ∀M
= M(Q1(h1, u1), ..., QK(hK , uK)|s), ∀M.

Next, we provide a counterexample to demonstrate this property.

12
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Proposition 3 Monotonicity for utility distributions:

Z jt(h,u)
D
= Ψ(Z1(h1, u1), ..., ZK(hK , uK)|s)
D
= M(Z1(h1, u1), ..., ZK(hK , uK)|s),

where M is a monotonic transformation that satisfies ∂M
∂Qk
≥ 0,∀k ∈ K, is not a sufficient

condition for DIGM, even though the condition may satisfy DIGM for special cases of M
and [Zk(hk, uk)]k∈K.

Proof We consider a degenerated case and prove the theorem by contradiction. Consider
a case where there is only a single agent (K = 1), with a single fully observable state and
an exponential transformation M(Z1(h1, u1)|s) = exp(Z1(h1, u1)). The (joint) action space
of this case consists of two (joint) actions: Ujt = U1 = {u∗1, u′1}, where u∗1 is the optimal
action (with expected return 2) and u′1 is the suboptimal action (with expected return 1.5).
Given the probability mass function (PMF) of Z1(h1, u

∗
1) as:

p1(z) =

{
1 if z = 2

0 otherwise,

and the PMF of Z1(h1, u
′
1) as:

p2(z) =


0.5 if z = 0

0.5 if z = 3

0 otherwise.

Based on this special case, we calculate the optimal actions before applying and after
applying the monotonic transformation as follows:

E[Z1(h1, u
∗
1)] = 1 · 2 = 2

E[Z1(h1, u
′
1)] = 0.5 · 0 + 0.5 · 3 = 1.5

arg maxu1 E[Z1(h1, u1)] = u∗1
E[M(Z1(h1, u

∗
1)|s)] = E[exp(Z1(h1, u

∗
1))] = e2 ≈ 7.39

E[M(Z1(h1, u
′
1)|s)] = E[exp(Z1(h1, u

′
1))] = 0.5 · e0 + 0.5 · e3 ≈ 10.54

arg maxu1 E[M(Z1(h1, u1)|s)] = u′1

Assume, to the contrary, that Monotonicity for utility distributions is a sufficient condition
for DIGM. By the definition of DIGM (Definition 1):

arg max
u

E[Z jt(h,u)] =
(
arg maxu1 E[Z1(h1, u1)]

)
⇒ arg max

u1
E[M(Z1(h1, u1)|s)] = arg max

u1
E[Z1(h1, u1)]

⇒ u′1 = u∗1 (⇒⇐ contradiction).

A contradiction occurs since u′1 6= u∗1, showing that Monotonicity is not a sufficient condi-
tion for DIGM. Since there exists a case where DIGM does not hold for K = 1, it certainly
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does not hold for all K ∈ Z+.

The reason that the naive approach does not hold for Monotonicity is because the monotonic
function (i.e., exp) in the above example reshapes the distributions in a non-linear man-
ner. This may potentially cause reordering of the actions’ expected returns. For example,
consider a case of two distributions, a left-skewed and a right-skewed distributions with the
same expectation. After applying the exponential transformation, the expectation of the
left-skewed distribution becomes larger than that of the right-skewed distribution. Such an
effect only exists in non-linear transformations and does not exist in linear transformations.

Theorem 1 Given a deterministic joint action-value function Qjt, a stochastic joint action-
value function Zjt, and a factorization function Ψ for deterministic utilities:

Qjt(h,u) = Ψ(Q1(h1, u1), ..., QK(hK , uK)|s),

such that [Qk]k∈K satisfy IGM for Qjt under h, the following distributional factorization:

Z jt(h,u)
D
= Ψ(Z1(h1, u1), ..., ZK(hK , uK)|s).

is insufficient to guarantee that [Zk]k∈K satisfy DIGM for Z jt under h.
Proof A contradiction is provided by Proposition 3.

According to the observations in Theorem 1, an alternative strategy (other than the naive
approach) for modifying the factorization functions is necessary to meet the requirements
of satisfying DIGM for stochastic joint distributions.

4.2 Mean-Shape Decomposition and the DFAC Framework

We propose Mean-Shape Decomposition and the DFAC framework to ensure that DIGM is
satisfied for utility distributions. We first define Mean-Shape Decomposition as follows:

Definition 2 (Mean-Shape Decomposition) For any given random variable Z, there
exists a unique decomposition defined as follows:

Z = E[Z] + (Z − E[Z])

= Zmean + Zshape ,

where Var(Zmean) = 0 and E[Zshape] = 0. In this paper, this is called the Mean-Shape
Decomposition of Z.

Based on Mean-Shape Decomposition, we propose DFAC to decompose a joint return dis-
tribution Z jt into its deterministic part Zmean (i.e., the expected value) and stochastic part
Zshape (i.e., the higher moments). The two components Zmean and Zshape are approximated
by two different functions Ψ and Φ, respectively. The factorization function Ψ is responsi-
ble for factorizing the expectation of Z jt, while the shape function Φ is utilized to factorize
the shape of Z jt. Since the main objective of modeling the return distribution is to assist
non-linear approximation of the expectation of Z jt (Lyle et al., 2019; Bellemare et al., 2022)
rather than accurately model the shape of Z jt, Φ is allowed to roughly factorize the shape
of Z jt.
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Theorem 2 (DFAC Theorem) Consider a deterministic joint action-value function Qjt,
a stochastic joint action-value function Zjt, and a factorization function Ψ for deterministic
utilities:

Qjt(h,u) = Ψ(Q1(h1, u1), ..., QK(hK , uK)|s),

such that [Qk]k∈K satisfy IGM for Qjt under h. By Mean-Shape Decomposition, the following
distributional factorization:

Z jt(h,u) = E[Z jt(h,u)] + (Z jt(h,u)− E[Z jt(h,u)])

= Zmean(h,u) + Zshape(h,u)

D
= Ψ(Q1(h1, u1), ..., QK(hK , uK)|s) + Φ(Z1(h1, u1), ..., ZK(hK , uK)|s),

is sufficient to guarantee that [Zk]k∈K satisfy DIGM for Z jt under h, where E[Φ(Z1, ..., ZK |s)] =
0 for all [Zk]k∈K.

Proof Based on Mean-Shape decomposition:

arg max
u
{E[Z jt(h,u)]}

= arg max
u
{E[Zmean(h,u) + Zshape(h,u)]}

= arg max
u
{E[Zmean(h,u)] + E[Zshape(h,u)]}

= arg max
u
{E[Ψ(Q1(h1, u1), ..., QK(hK , uK)|s)] + E[Φ(Z1(h1, u1), ..., ZK(hK , uK)|s)]}

= arg max
u
{Ψ(Q1(h1, u1), ..., QK(hK , uK)|s) + 0}

= arg max
u
{Ψ(Q1(h1, u1), ..., QK(hK , uK)|s)}

=

 arg maxu1 Q1(h1, u1)
...

arg maxuK QK(hK , uK)


⇒ arg max

u
E[Z jt(h,u)] =

 arg maxu1 E[Z1(h1, u1)]
...

arg maxuK E[ZK(hK , uK)]

 .

The above derivation demonstrates that [Zk]k∈K satisfy DIGM for Z jt under h.

Theorem 2 reveals that the choice of Ψ determines whether DIGM holds, regardless of
the choice of Φ, as long as E[Φ(Z1, ..., ZK |s)] = 0 for all [Zk]k∈K. Under this setting, any
factorization function of deterministic variables can be extended to a factorization function
of stochastic variables. Such a decomposition enables approximation of joint distributions
for all factorizable tasks under appropriate choices of Ψ and Φ. The methods extended
by DFAC is called the DFAC variants, which have the same expressiveness as the original
unextended versions.

4.3 Practical Implementation Choices of the Shape Function

In this section, we discuss the implementation choices of the shape function based on two
representative distributional algorithms: C51 and IQN. Theoretically, the shape function
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can be arbitrarily complex as long as the output has a zero mean. In practice, however,
such a complicated network is unnecessary, since learning the shape of distribution is only
an auxiliary task to facilitate representation learning, as mentioned in Section 3.5. For
the sake of simplicity, we choose the shape function to be additive and non-learnable:
Zshape = Φ(Z1(h1, u1), ..., ZK(hK , uK)|s) =

∑
k∈K(Zk − E[Zk]).

4.3.1 Shape Function for C51

In this section, we demonstrate the implementation of the shape function for C51, which
models the utilities as PMFs. We denote the PMFs of the utilities as [fk]k∈K, and the PMF
of the joint return as f . For the sake of simplicity, we first consider the case for two agents
(K = 2). To exactly factorize the total return (Z = Z1 +Z2), the PMF f of the joint return
Z can be expressed as:

f(x) = Pr(Z = x)

= Pr(Z1 + Z2 = x)

=
∑
y∈R

Pr(Z1 = y) Pr(Z2 = x− y|Z1 = y).
(24)

Since the above convolution requires the calculation of conditional probability, it is com-
putationally intractable. A common solution to it is to assume Z1 and Z2 to be mutually
independent, which is a suitable assumption for decentralized utilities. This approach can
be viewed as an approximation of the exact factorization method (Eq (24)). The approxi-
mation can be expressed as the following:

f(x) =
∑
y∈R

Pr(Z1 = y) Pr(Z2 = x− y|Z1 = y)

≈
∑
y∈R

Pr(Z1 = y) Pr(Z2 = x− y)

= (f1 ∗ f2)(x),

(25)

where the star symbol (∗) denotes the convolution operation. Eq (25) is tractable and
allows C51 to model the PMF of each agent by a categorical distribution with n atoms (i.e.,
categories). The time complexity of deriving f for K agents is:

n · n+ n2 · n+ ...+ nK−1 · n =

K−1∑
k=1

nk+1 = O(nK). (26)

However, the time complexity grows exponentially as the number of the agents K increases.
This becomes the training bottleneck and remains computationally infeasible when K is
scaled to a large number. The computation cost can be reduced by performing an additional
O(n) heuristic projection after each convolution operation (Lin et al., 2019). The time
complexity is then simplified to the following:

(n · n+O(n)) · (K − 1) = O(Kn2). (27)

The additional heuristic projections enables the decomposition process to be computation-
ally feasible. However, such projections may induce an increase in variance for Z (Rowland
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et al., 2019). If the return distribution of each agent shares the same support, the above
O(Kn2) complexity can be improved by Fast Fourier Transform (FFT) convolutions. The
technique is based on the convolution theorem, and is able to further reduce the time com-
plexity to:

(n log n+ n+ n log n+O(n)) · (K − 1) = O(Kn log n). (28)

4.3.2 Shape Function for IQN

Distributional RL methods such as IQN (Dabney et al., 2018a) do not explicitly model a
distribution. They only implicitly model a distribution, and hence, the previously mentioned
decomposition methods for C51 are not directly applicable. A potential solution is to add
constraints on IQN to make the modeled distribution explicit (Yang et al., 2019), and
iteratively apply convolution operations. To maintain the flexibility of IQN and to further
reduce the time complexity, instead of imposing additional constraints, we propose to use
quantile mixture to approximately factorize the distribution. In the following theorem, we
prove that such a method is a valid factorization.

Theorem 3 Given a quantile mixture:

F−1(ω) =
K∑
k=1

βkF
−1
k (ω),

with K components [F−1k ]k∈K, non-negative model parameters [βk]k∈K, and ω ∈ [0, 1]. There
exist random variables Z and [Zk]k∈K derived from the quantile functions F−1 and [F−1k ]k∈K,
respectively, with the following relationship:

Z =
∑
k∈K

βkZk.

Proof The proof is outlined as follows. First, we provide the notational details of the
random variables. Next, we define the explicit forms of Z and [Zk]k∈K. Finally, we prove
the relationship Z =

∑
k∈K βkZk.

The domain of Z and [Zk]k∈K is Ω, where Ω is the sample space of the probability
space (Ω,F , P ). The codomain of Z and [Zk]k∈K is R, where R is the sample space of the
probability spaces (R,B, µ) and [(R,B, µk)]k∈K. Based on the definition of random variables
in the measure theory, (Ω,F , P ), (R,B, µ), and [(R,B, µk)]k∈K are defined as follows:

Ω = [0, 1], is the sample space,

F , is the Borel σ-algebra over Ω,

P : F → [0, 1], is a probability measure on the measurable space (Ω,F).
R = (−∞,∞), is the real line,

B, is the Borel σ-algebra over R,
µ : B → [0, 1], is a probability measure on the measurable space (R,B),

[µk : B → [0, 1]]k∈K, are probability measures on the measurable space (R,B).
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The random variables Z and [Zk]k∈K are defined as functions based on the probability
spaces:{

Z : Ω→ R, with its CDF defined as F (x) = µ(−∞, x],

[Zk : Ω→ R]k∈K, with their CDFs defined as Fk(x) = µk(−∞, x], ∀k ∈ K.

We can then construct the random variables Z and [Zk]k∈K based on the components of the
quantile mixture: {

Z(ω) = F−1(ω),∀ω ∈ Ω,

Zk(ω) = F−1k (ω), ∀ω ∈ Ω, ∀k ∈ K.

With the explicit forms of Z and [Zk]k∈K, their relationship can be proved as follows:

F−1(ω) =

K∑
k=1

βkF
−1
k (ω)

⇒ Z(ω) =
∑
k∈K

βkZk(ω)

⇒ Z =
∑
k∈K

βkZk

In the optimization process, assume that all components [F−1k ]k∈K in the quantile mixture
sample n quantiles, the total time complexity of summing the components is O(Kn), which
grows linearly with respect to K and n. The implementation is much easier and efficient
when compared with the other methods described in the previous section. This suggests
that quantile mixture is unlikely to become the training bottleneck, even if the values of K
and n are both scaled to large numbers. It is worth noting that these two shape functions
(i.e., convolution and quantile mixture) make different assumptions for modeling the joint
return distribution.

This approach, however, trades off the exact factorization of the shape of the distribution
for linear time complexity. Therefore, such a technique should only be used when the errors
of capturing the shapes of the factorized distributions are acceptable. This technique is
especially suitable for value function factorization methods since capturing the shapes of
the factorized distributions is an auxiliary task.

4.4 DFAC Variant of VDN, QMIX, and QPLEX

In order to validate the proposed DFAC framework, we next discuss the DFAC variants
of three representative factorization methods: VDN, QMIX, and QPLEX. For simplicity,
these DFAC variants assume the shape function to be additive and non-learnable, and uses
the quantile mixture technique instead of convolution. The DFAC variant of VDN is named
DDN, which is expressed as follows:

Zjt =
∑
k∈K

Qk +
∑
k∈K

(Zk −Qk). (29)

18



A Unified Framework for Factorizing Distributional Value Functions

⋅

MLP

GRU

MLP

ω

⋅

...

...

Agent 1 Agent K

ω

Factorization
Network





...

Shape

Network





-
-

...

+

(shared weights)

+ ∗

quantile
mixture convolution

Figure 1: The DFAC framework consists of a factorization function Ψ and a shape function
Φ for decomposing the deterministic part Zmean (i.e., Qjt) and the stochastic part Zshape

of the total return distribution Z jt, as described in Theorem 2. If the shape function is a
convolution, the network of the agents is implemented as C51. If the shape function is a
quantile mixture, the network of the agents is implemented as IQN.

Eq (29) combines the factorization function of VDN (i.e., Ψ =
∑

k∈KQk) and the additive
shape function (i.e., Φ =

∑
k∈K(Zk − Qk)). In addition, the DFAC variant of QMIX is

named DMIX, which is defined as the following:

Zjt = M(Q1, ..., QK |s) +
∑
k∈K

(Zk −Qk). (30)

Eq (30) combines the factorization function of QMIX (i.e., Ψ = M(Q1, ..., QK |s)), and the
additive shape function (i.e., Φ =

∑
k∈K(Zk − Qk)). Lastly, the DFAC variant of QPLEX

is named DPLEX, which is formulated as follows:

Qjt(h,u) =

K∑
k=1

Vk(h) +

K∑
k=1

λk(h,u)Ak(h, uk) +
∑
k∈K

(Zk −Qk). (31)

Eq (31) is equivalent to summing the factorization function of QPLEX (i.e., Ψ =
∑K

k=1 Vk(h)+∑K
k=1 λk(h,u)Ak(h, uk)), and the additive shape function (i.e., Φ =

∑
k∈K(Zk−Qk)). These

DFAC variants can be illustrated in the form of Fig. 1 with different factorization functions.

5. A Stochastic Matrix Game

In the previous expected value function factorization methods (e.g., VDN, QMIX, QPLEX,
etc.), the factorization is achieved by modeling Qjt and [Qk]k∈K as deterministic variables,
overlooking the information of higher moments in the full return distributions Z jt and
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[Zk]k∈K. In order to demonstrate DFAC’s ability of factorization, we begin with a toy
example modified from Wang et al. (2021b) to show that DFAC is able to approximate the
true return distributions, and factorize the mean and variance of the approximated total
return Z jt into utilities [Zk]k∈K.

5.1 Experimental Setup

In this section, we describe the environment and methods, the architecture of the policy
network, the architecture of the factorization network, and finally the training and execution
details.

Environment and Methods. Table 1 illustrates a fully cooperative matrix game
with stochastic rewards for two agents. The game only contains a single state, and each
episode contains only a single step. In each episode, both agents choose an action and
receive a global reward sampled from a normal distribution N (µ, σ2) with mean µ and
standard deviation σ. In this matrix game, we perform experiments on nine value function
factorization methods: VDN, QMIX, and QPLEX are the baselines; DDN, DMIX, and
DPLEX are the DFAC variants using IQN and quantile mixture; DDN-C51, DMIX-C51,
and DPLEX-C51 correspond to the DFAC variants that use C51 and convolution. These
methods are tuned independently and may have different hyperparameters.

Architecture of the Policy Network. Each agent’s policy network is implemented
as an artificial neural network (ANN). QPLEX is implemented as a single-layered ANN
with its hidden layer comprised of 32 units. DPLEX and DPLEX-C51 are implemented
as two-layered ANNs comprised of 64 units and 32 units, with a ReLU nonlinearity at the
end of the first layer. The other methods follow a similar architecture used by DPLEX and
DPLEX-C51, where the second layer is changed to 512 units.

For DDN and DMIX, we optimize the IQNs of the agents with N = N ′ = 32 quantile
samples, where each of them is first encoded into a 64-dimensional intermediate embedding
and then projected to a 512-dimensional quantile embedding by a single hidden layer. As
for DPLEX, we optimize the IQNs with N = N ′ = 512 quantile samples, where each of
them is first encoded into a 256-dimensional intermediate embedding and then projected to
a 32-dimensional quantile embedding by a single hidden layer.

For DDN-C51 and DMIX-C51, we optimize the C51 networks of the agents with 51
atoms uniformly distributed in [−20, 20].

Architecture of the Factorization Network. For DMIX and its variants, we use a
single-layered mixing network with eight units. As for QPLEX and its variants, we use a
single-layered monotonic network with 16 units, and an attention network λk (i.e., in Eq (7))
with ten attention heads. Each of the attention heads utilizes a three-layered network with
64 units in the intermediate embeddings for its key, value, and query extractors.

Training and Execution. During training, each agent performs independent ε-greedy
action selection, with full exploration (i.e., ε = 1). The replay buffer contains experiences of
the latest 2, 000 episodes, from which we uniformly sample a batch of 2, 048 samples when
training QPLEX and its variants, and a batch of 512 samples for training the other six
methods. The target network is updated every 100 episodes. The optimizer is set to Adam,
in which its learning rate is set to 1 × 10−3 for QPLEX and QPLEX-C51, and 1 × 10−4

for the rest of the methods. We train each of the methods for 20, 000 episodes. All of
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Table 1: The payoff matrix of the stochas-
tic matrix game. Each agent performs an
action from {A,B,C}, with a subscript de-
noting the agent’s index. The global re-
wards are sampled from the normal distri-
butions in the payoff matrix below.

Agent 2

A2 B2 C2

A
g
en

t
1

A1 N (8, 8) N (−12, 6) N (−12, 4)

B1 N (−12, 6) N (6, 4) N (0, 2)

C1 N (−12, 4) N (0, 2) N (6, 0)

Table 2: The value approximation errors
and the returns of different methods.

Method Q-dist W-dist Return

VDN 6.91 7.01 6
DDN 6.50 6.50 6
DDN-C51 6.01 6.17 6

QMIX 4.86 4.92 6
DMIX 3.76 4.58 6
DMIX-C51 4.96 5.29 6

QPLEX 0.10 1.47 8
DPLEX 0.06 0.24 8
DPLEX-C51 0.33 0.47 6

the agent networks share the same parameters. The agents are differentiated by a one-hot
encoded agent index (i.e., [1 0]T for agent 1 and [0 1]T for agent 2) concatenated to their
observations.

5.2 Experimental Results

Each column of Table 2 presents a key metric of the learned policy after convergence. Q-dist
is defined as E[|Qjt−Q∗jt|], which is the averaged absolute distance between the approximated
Q-value Qjt and the true Q-value Q∗jt under the optimal policy across all joint actions. W-
dist represents E[W1(Zjt, Z

∗
jt)], which is the averaged 1-Wasserstein distance between the

approximated return Zjt and the true return Z∗jt under the optimal policy. Return reports
the expectation of the returns following the learned policy. Each row of Table 2 corresponds
to one of the methods mentioned in Section 5.1.

Based on the results, we observed that the methods with more expressiveness tend to
have lower values of Q-dist. More specifically, QPLEX and its variants are able to model
the expected return more precisely when compared to VDN, QMIX, and their variants.
Moreover, the DFAC variants tend to have lower values of W-dist, reflecting DFAC’s capa-
bility of modeling the shapes of return distributions better than the baselines. Furthermore,
QPLEX and DPLEX can learn the optimal return for this game (i.e., Return = 8), while
VDN, QMIX, and their variants are unable to, which aligns with the results presented
in Wang et al. (2021b). Unfortunately, DPLEX-C51 fails to learn the optimal return, even
though it has the same theoretical expressiveness as QPLEX. We believe that this result is
potentially due to the combination of C51’s shortcomings described in Section 3.5 and the
convolutional operations used in the shape function for C51 mentioned in Section 4.3.1.

To further illustrate DFAC’s capability of factorization, we visualize the learned factor-
ization of the joint values for QPLEX, DPLEX, and DPLEX-C51, respectively, in Figs. 2
and 3. These results demonstrate that QPLEX can only model the shapes of determin-
istic distributions, while its DFAC variants can model the shapes of both stochastic and
deterministic distributions.

Since DPLEX-C51 does not perform satisfactorily in the matrix game (as indicated
in Table 2), we only validate the IQN variants (DDN, DMIX, DPLEX) on the SMAC
benchmark in the next section.
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ZGT Z1 Z2 Zjt

(a) QPLEX (b) DPLEX (c) DPLEX-C51

Figure 2: The learned factorization of the joint values when the joint action 〈B1, B2〉 is
selected. The ground truth (ZGT) of the joint value is the stochastic return N (6, 4).

(a) QPLEX (b) DPLEX (c) DPLEX-C51

Figure 3: The learned factorization of the joint values when the joint action 〈C1, C2〉 is
selected. The ground truth (ZGT) of the joint value is the deterministic return N (6, 0)).

6. Experiment Results on SMAC

In this section, we present the experimental results and discuss their implications. We start
with a brief introduction to our experimental setup in Section 6.1. Then, we demonstrate
that modeling a full distribution is beneficial to the performance of independent learners
in Section 6.2. Finally, we compare the performances of the CTDE baseline methods and
their DFAC variants in Section 6.3 and Section 6.4.

6.1 Experimental Setup

In this section, we describe the environmental setups, the hyperparameter tuning process,
as well as the baselines in details.

Environment. We verify the DFAC framework in the SMAC benchmark environments
(Samvelyan et al., 2019) built on the popular real-time strategy game StarCraft II. Instead
of playing the full game, SMAC is developed for evaluating the effectiveness of MARL
micro-management algorithms. Each environment in SMAC contains two teams. One team
is controlled by a decentralized MARL algorithm, with the policies of the agents conditioned
on their local observation histories. The other team consists of enemy units controlled by
the built-in game artificial intelligence based on carefully handcrafted heuristics, which is
set to its highest difficulty equal to seven. The overall objective is to maximize the win
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(c) MMM2
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(e) corridor

Figure 4: The win rate curves evaluated on the five Super Hard maps in SMAC.
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(b) 3s5z vs 4s6z
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(c) MMM2 7m2M1M vs 8m4M1M

0 2 4 6 8
Timestamp 1e6

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n 

Te
st

 W
in

 %

(d) MMM2 7m2M1M vs 9m3M1M
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(e) 26m vs 30m
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(f) corridor 2z vs 24zg

Figure 5: The win rate curves evaluated on the six Ultra Hard maps.

rate for each battle scenario, where the rewards employed in our experiments follow the
default settings of SMAC. The default settings use shaped rewards based on the damage
dealt, enemy units killed, and whether the RL agents win the battle. If there is no healing
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unit in the enemy team, the maximum return of an episode (i.e., the score) is 20; otherwise,
it may exceed 20, since enemies may receive more damages after healing or being healed.

The environments in SMAC are categorized into three different levels of difficulties:
Easy, Hard, and Super Hard scenarios (Samvelyan et al., 2019). In this paper, we focus on all
Super Hard scenarios including (a) 6h vs 8z, (b) 3s5z vs 3s6z, (c) MMM2, (d) 27m vs 30m,
and (e) corridor, since these scenarios have not been properly addressed in the previous
literature without the use of additional assumptions such as intrinsic reward signals (Du
et al., 2019), explicit communication channels (Zhang et al., 2019; Wang et al., 2020b),
common knowledge shared among the agents (de Witt et al., 2019; Wang et al., 2020a), and
so on. Four of these scenarios have their maximum scores higher than 20. In 3s5z vs 3s6z,
the enemy Stalkers have the ability to regenerate shields; in MMM2, the enemy Medivacs can
heal other units; in 6h vs 8z and corridor, the enemy Zerglings slowly regenerate their
own health. The StarCraft version we used is 4.10.

Hyperparameters. For all of our experimental results, the training length is set to 8M
timesteps, where the agents are evaluated every 40k timesteps with 32 independent runs.
The curves presented in this section are generated based on five different random seeds.
The solid lines represent the median win rate, while the shaded areas correspond to the
25th to 75th percentiles. For a better visualization, the presented curves are smoothed by a
moving average filter with its window size set to 11.

We tuned the hyperparameters of both the baselines and their distributional variants
by selecting their hidden layer sizes from {32, 64, 128, 256, 512} and choose the best ones.
The quantile samples of DIQL (i.e., a distributional variant of IQL) and DDN are simply
set to N = N ′ = 1, since they do not require the calculation of the expected value during
the optimization process. As for DMIX and DPLEX, the numbers of quantile samples are
set to N = N ′ = 8 as in Dabney et al. (2018a). The optimizers follow those used in DQN
and IQN. All of the other hyperparameters follow those used in SMAC. Table 6 lists the
hyperparameters adopted for the baselines and their distributional variants.

Baselines. We select IQL, VDN, QMIX, and QPLEX as our baseline methods, and
compare them with their distributional variants in our experiments. The configurations are
optimized so as to provide the best performance for each of the methods considered. Since
we tuned the hyperparameters of the baselines, their performances are better than those
reported in (Samvelyan et al., 2019). The hyperparameter searching process is detailed in
the supplementary material.

6.2 Independent Learners

In order to validate our assumption that distributional RL is beneficial to the MARL do-
main, we first employ the simplest training algorithm, IQL, and extend it to its distributional
variant, called DIQL. DIQL is simply a modified IQL that uses IQN as its underlying RL
algorithm without any additional modification or enhancements (Matignon et al., 2007; Lyu
and Amato, 2020).

From Figs. 4(a)-4(e) and Tables 3 and 4, it is observed that DIQL is superior to IQL
even without utilizing any value function factorization methods. This validates that dis-
tributional RL has beneficial influences on MARL, when it is compared to RL approaches
based only on expected values.
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6.3 Value Function Factorization Methods

In order to inspect the effectiveness and impacts of DFAC on learning curves, win rates,
and scores, we next summarize the results of the baselines as well as their DFAC variants
on the Super Hard scenarios in Fig. 4(a)-(e) and Tables 3 and 4.

Fig. 4(a)-(e) plot the learning curves of the baselines and their DFAC variants, with the
final win rates presented in Table 3, and their final scores reported in Table 4. The win
rates indicate how often do the player’s team wins, while the scores represent how well do
the player’s team performs. Despite the fact that SMAC’s objective is to maximize the win
rate, the true optimization goal of MARL algorithms is the averaged score. In fact, these
two metrics are not always positively correlated (e.g., VDN and QMIX in 6h vs 8z and
3s5z vs 3s6z, and QMIX and DMIX in 3s5z vs 3s6z).

It can be observed that the learning curves of DDN, DMIX, and DPLEX grow faster
and achieve higher final win rates than their corresponding baselines. In the most difficult
map: 6h vs 8z, most of the methods fail to learn an effective policy except for the DFAC
variants. The evaluation results also show that the DFAC variants are capable of performing
consistently well across all Super Hard maps with high win rates. In addition to the win
rates, Table 4 further presents the final averaged scores achieved by each method, and
provides deeper insights into the advantages of the DFAC framework by quantifying the
performances of the learned policies of different methods.

The improvements in win rates and scores are due to the benefits offered by distributional
RL (Lyle et al., 2019), which enables the distributional variants to work more effectively in
MARL environments. Moreover, the evaluation results reveal that DDN performs especially
well in most environments despite its simplicity.

6.4 Evaluation Results on the Ultra Hard Maps of SMAC

Based on the five Super Hard maps, we further designed six Ultra Hard maps for evaluat-
ing the capability of DFAC. The Ultra Hard maps are guaranteed to be harder than the
Super Hard maps, since they contain either increased number of units in the enemy team
or decreased number of controllable units in the player’s team. The detailed comparison
between the two sets of maps is presented in Table 5.

The evaluation results on the Ultra Hard maps are reported in Fig. 5 and Tables 3 and
4 with five independent runs. It is observed that DDN achieves outstanding performance in
most of the maps despite the simplicity of its factorization function. For reproducibility, all
Ultra Hard maps can be found in our GitHub repository (https://github.com/j3soon/dfac-
extended), along with the gameplay recording videos.

6.5 Computational Infrastructure

In our experiments, NVIDIA DGX-1 clusters were used as the fundamental computing
infrastructure, where each DGX-1 contains eight V100 GPUs, two 20-core CPUs, and 512
GB memory. Our experiments were performed on docker instances, where each instance is
allocated with 50 GB DDR4 memory, an eight-core Xeon E5-2698 CPU, 1 TB SSD storage,
and either a V100-16G or a V100-32G GPU. On an average, the experiment for each map
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Table 3: The median win rate percentage (%) of five independent test runs.

Map IQL VDN QMIX QPLEX DIQL DDN DMIX DPLEX

S
u

pe
r

H
a
rd

6h vs 8z 0.00 0.00 12.78 0.00 0.00 83.92 49.43 43.75
3s5z vs 3s6z 29.83 89.20 67.22 84.38 62.22 94.03 91.08 90.62
MMM2 68.92 89.20 92.44 96.88 85.23 97.22 95.11 96.88
27m vs 30m 2.27 63.12 84.77 78.12 6.02 91.48 85.45 90.62
corridor 84.87 85.34 37.61 75.00 91.62 95.40 90.45 81.25

U
lt

ra
H

a
rd

6h vs 9z - 0.00 1.14 0.00 - 0.28 0.00 0.00
3s5z vs 4s6z - 47.16 0.00 0.00 - 89.77 83.52 0.00
MMM2 7m2M1M vs 8m4M1M - 13.35 29.55 46.88 - 56.82 63.35 50.00
MMM2 7m2M1M vs 9m3M1M - 75.00 88.64 90.62 - 90.34 92.33 90.62
26m vs 30m - 23.01 62.78 78.12 - 67.90 81.82 59.38
corridor 2z vs 24zg - 0.00 0.00 0.00 - 41.19 0.00 3.12

Table 4: The averaged scores of five independent test runs.

Map IQL VDN QMIX QPLEX DIQL DDN DMIX DPLEX

S
u

pe
r

H
a
rd

6h vs 8z 13.78 15.41 14.37 15.95 14.94 19.40 17.14 17.88
3s5z vs 3s6z 16.54 19.75 20.16 20.42 17.52 20.94 19.70 20.27
MMM2 17.50 19.36 19.42 19.60 19.21 20.90 19.87 19.93
27m vs 30m 14.01 18.45 19.41 19.33 14.45 19.71 19.43 19.62
corridor 19.42 19.47 15.07 18.73 19.68 20.00 19.66 19.08

U
lt

ra
H

a
rd

6h vs 9z - 13.57 12.37 13.86 - 16.00 13.73 14.84
3s5z vs 4s6z - 17.16 13.09 13.60 - 19.65 18.61 14.99
MMM2 7m2M1M vs 8m4M1M - 13.13 14.40 15.52 - 16.50 16.24 15.89
MMM2 7m2M1M vs 9m3M1M - 17.30 19.01 19.06 - 19.45 19.33 19.40
26m vs 30m - 16.69 18.23 18.66 - 18.49 19.17 18.49
corridor 2z vs 24zg - 7.78 4.80 6.44 - 11.10 7.41 10.71

takes around forty hours to train for eight million timesteps, depending on the type of the
SMAC map and the chosen algorithm.

7. Discussions and Outlook

In this section, we provide discussions on the SMAC benchmark and propose some future
directions to extend DFAC.

The Performance Metric. In the original SMAC paper, the authors proposed to use
the median test win rates as the main performance metric. However, their optimization goal
is actually the discounted scores instead of the win rates. Therefore, the averaged scores of
multiple test runs are better metrics for comparing the performance of different methods.

Enemy Sight Range. By inspecting the learned policies of DDN, we observed that
the agents can exploit enemies’ limited sight ranges by luring out and eliminating a few
enemies while keeping distances from the remainings in corridor 2z vs 24zg. To make
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Table 5: A comparison between the Super Hard maps and the Ultra Hard maps.

Map Player’s Team Enemy’s Team

S
u
pe
r
H
a
rd

6h vs 8z 6 Hydralisks 8 Zealots
3s5z vs 3s6z 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots
MMM2 7 Marines, 2 Marauders & 1 Medivac 8 Marines, 3 Marauders & 1 Medivac
27m vs 30m 27 Marines 30 Marines
corridor 6 Zealots 24 Zerglings

U
lt
ra

H
a
rd

6h vs 9z 6 Hydralisks 9 Zealots
3s5z vs 4s6z 3 Stalkers & 5 Zealots 4 Stalkers & 6 Zealots
MMM2 7m2M1M vs 8m4M1M 7 Marines, 2 Marauders & 1 Medivac 8 Marines, 4 Marauders & 1 Medivac
MMM2 7m2M1M vs 9m3M1M 7 Marines, 2 Marauders & 1 Medivac 9 Marines, 3 Marauders & 1 Medivac
26m vs 30m 26 Marines 30 Marines
corridor 2z vs 24zg 2 Zealots 24 Zerglings

the map more challenging, the enemies can be configured to have infinite sight ranges when
designing the map.

The Reward Function. The reward function is defined as the accumulated damages
dealt to the enemies. However, the enemies may regenerate their health and shields. This
may lead to a scenario that the agents intentionally stop attacking the enemies with low
health and attack them later after their health is regenerated, allowing the agents to col-
lect more rewards. Such a behavior can be prevented by providing no reward signal for
regenerated health.

Expressiveness and Performance. According to the results presented in Section 6,
the Super Hard maps can be solved under the assumption of Additivity , since DDN is able
to achieve high win rates on all of these maps. These results indicate that the other methods
with additional expressiveness have no theoretical advantage over DDN on these Super Hard
maps, and may perform worse due to the instability caused by their factorization functions.
This further verifies the fact that the expressiveness is not necessarily correlated with the
performance in SMAC, which is often misinterpreted in the current literature.

Network Size and Training Steps. In the original SMAC paper, the authors did
not tune the size of the policy networks and only trained them for two million timesteps.
According to our experiments, we found that using larger policy networks and training them
for more timesteps does improve the performance by a noticeable margin.

Future Extensions. Based on the DFAC framework, many SARL techniques that
require the shapes of the return distributions may be incorporated into the MARL domain,
such as exploration (Nikolov et al., 2019; Zhang and Yao, 2019; Mavrin et al., 2019) and
risk-aware policies (Xia, 2020). Aside from the simple shape function used in this work,
future endeavors may include more complex shape functions with learnable weights. It
would also be interesting to incorporate other distributional RL algorithms into the DFAC
framework aside from C51 and IQN, such as quantile regression DQN (QR-DQN) (Dabney
et al., 2018b), expectile distributional RL (EDRL) (Rowland et al., 2019), fully parame-
terized quantile function (FQF) (Yang et al., 2019), and maximum mean discrepancy RL
(MMDRL) (Nguyen et al., 2021).
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Table 6: A summary of the optimal hidden state sizes of the baseline methods and their
distributional variants.

Map IQL VDN QMIX QPLEX DIQL DDN DMIX DPLEX

S
u

pe
r

H
a
rd

6h vs 8z 128 128 256 256 512 512 256 512
3s5z vs 3s6z 512 128 128 128 256 512 256 512
MMM2 256 64 64 64 512 512 256 256
27m vs 30m 256 64 64 64 512 128 128 128
corridor 256 128 256 64 512 128 64 512

U
lt

ra
H

a
rd

6h vs 9z - 256 64 256 - 128 512 256
3s5z vs 4s6z - 64 64 128 - 512 512 256
MMM2 7m2M1M vs 8m4M1M - 128 128 128 - 256 128 256
MMM2 7m2M1M vs 9m3M1M - 64 64 128 - 256 128 128
26m vs 30m - 32 32 64 - 128 64 128
corridor 2z vs 24zg - 128 512 256 - 256 512 512

8. Conclusion

In this paper, we introduced a unified framework for cooperative MARL, called DFAC, for
integrating distributional RL with value function factorization. DFAC is based on mean-
shape decomposition to meet the Distributional IGM condition. To realize DFAC in a
computationally friendly manner, its shape function is implemented as convolution for C51,
and quantile mixture for IQN. DFAC’s ability to factorize a joint return distribution into
individual utility distributions was demonstrated in a matrix game. In order to validate
the effectiveness of DFAC, we presented experimental results performed on all Super Hard
scenarios in SMAC for a number of MARL baseline methods as well as their DFAC variants.
Moreover, we performed experiments on a number of self-designed Ultra Hard maps to
further validate the effectiveness of DFAC. The results showed that in most of the scenarios,
DDN, DMIX, and DPLEX outperform VDN, QMIX, and QPLEX, respectively. DFAC can
be extended to other value function factorization methods and offers an interesting research
direction for future endeavors.
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