
Journal of Machine Learning Research 24 (2023) 1-53 Submitted 8/22; Revised 2/23; Published 2/23

Learning Good State and Action Representations for Markov
Decision Process via Tensor Decomposition

Chengzhuo Ni chengzhuo.ni@princeton.edu
Department of Electrical & Computer Engineering
Princeton University

Yaqi Duan yaqid@mit.edu
Laboratory for Information & Decision Systems
Massachusetts Institute of Technology

Munther Dahleh dahleh@mit.edu
Electrical Engineering & Computer Science Department
Massachusetts Institute of Technology

Mengdi Wang1 mengdiw@princeton.edu
Department of Electrical & Computer Engineering
Princeton University

Anru R. Zhang1 anru.zhang@duke.edu

Department of Biostatistics & Bioinformatics

Duke University

Editor: Animashree Anandkumar

Abstract

The transition kernel of a continuous-state-action Markov decision process (MDP) admits
a natural tensor structure. This paper proposes a tensor-inspired unsupervised learning
method to identify meaningful low-dimensional state and action representations from
empirical trajectories. The method exploits the MDP’s tensor structure by kernelization,
importance sampling and low-Tucker-rank approximation. This method can be further
used to cluster states and actions respectively and find the best discrete MDP abstraction.
We provide sharp statistical error bounds for tensor concentration and the preservation
of diffusion distance after embedding. We further prove that the learned state/action
abstractions provide accurate approximations to latent block structures if they exist, enabling
function approximation in downstream tasks such as policy evaluation.

1. Introduction

State abstraction is a core problem at the heart of control and reinforcement learning (RL).
In high-dimension RL, a naive grid discretization of the continuous state space often leads to
exponentially many discrete states - an open challenge known as the curse of dimensionality.
Having good state representations will significantly improve the efficiency of RL, by enabling
the use of function approximation to better generalize knowledge from seen states to unseen
states.

1. To whom the correspondence should be addressed to.

c©2023 Chengzhuo Ni, Yaqi Duan, Munther Dahleh, Mengdi Wang, and Anru R. Zhang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0917.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0917.html

Ni, Duan, Dahleh, Wang, and Zhang

Figure 1: An illustration of our tensor-inspired state and action embedding method

We say a state/action representation is “good”, if it enables the use of function ap-
proximation to extrapolate and predict future value of unseen states. Suppose there is a
representation allowing exact linear parametrization of the transition and value functions,
then the sample complexity of RL reduces to depend linearly on d - the representation’s
dimension (Lagoudakis and Parr, 2003; Zanette et al., 2019; Yang and Wang, 2019; Jin
et al., 2019). Even if exact parametrization is not possible, a good representation can be
still useful for solving RL with approximation error guarantee (see discussions in Du et al.
(2019a); Lattimore and Szepesvari (2019)). An important related problem is to strategically
explore in online RL while learning state abstractions (Du et al., 2019b; Misra et al., 2019).
Motivated by these advances, we desire methods that can learn good representations, for
RL with high-dimensional state and action spaces, automatically from empirical data.

What further complicates the problem is the large action space. An action can be
either a one-step decision or a sequence of multi-step decisions (known as option). States
under different actions lead to very different dynamics. Although states and actions may
admit separate low-dimensional structures, they are entangled with each other in sample
trajectories. This necessitates the tensor approach to decouple actions from states, so that
we can learn their abstractions respectively.

1.1 Our Approach

In this paper, we study the state and action abstraction of Markov decision processes
(MDP) from a tensor decomposition view. We focus on the batch data setting. The Tucker
decomposition structure of a transition kernel p provides natural abstractions of the state
and action spaces. We illustrate the low-Tucker-rank property in a number of reduced-order
MDP models, including the block MDP (i.e., hard aggregation), latent-state model (i.e., soft
aggregation).

Suppose we are given state-action-state transition samples D = {(s, a, s′)} from a long
sample path generated by a behavior policy. Our objective is to identify a state embedding
map and an action embedding map, which map the original state and action spaces (maybe
continuous and high-dimensional) into low-dimensional representations, respectively. The
embedding maps are desired to be maximally “predicative”, by preserving a notion of

2

Learning state and action representations via tensor decomposition

kernelized diffusion distance that measures similarity between states in terms of their future
dynamics.

To handle continuous state and action spaces, we use nonparametric function approxi-
mation with known kernel functions over the state and action spaces. By approximately
decomposing the kernel into finitely many features, we are able to handle the continuous
problem by estimating a transition tensor of finite dimensions. Next, we leverage importance
sampling and low-rank tensor approximation to identify the desired state and action embed-
ding maps. They yield “good” representations of states and actions that are useful for linear
function approximation in RL. Further, these representations can be used to find the best
discrete approximation to the MDP, and in particular, recover the latent structures of block
MDP with high accuracy. To the best of knowledge, this paper makes the first attempt
to learn low-rank representations for high-dimensional continuous Markov decision, with
statistical guarantee. Figure 1 illustrates the main idea of our approach. Contributions of
this paper include:

• A tensor-inspired kernelized embedding method to learn low-dimensional state and ac-
tion representations from empirical trajectories. The method exploits the MDP’s tensor
structure by importance sampling, mean embedding and low-rank approximation.

• Theoretical guarantee that the embedding maps largely preserve the “predictability”
of states and actions in terms of a kernelized diffusion distance, which is proved using
a novel tensor concentration analysis.

• A discrete state/action abstraction method that provably recovers latent block struc-
tures of aggregable MDP. Theoretical guarantee that the learned abstractions are
“good” representations for approximating transition/value functions within a small
error tolerance.

• The numerical studies to corroborate our theoretical findings. The simulation results
show the advantage of the proposed method over the baselines of vanilla and top r
kernel PCA methods.

1.2 Related Literature

Spectral and low-rank methods for dimension reduction have a long history. Our approach
traces back to the diffusion map approach for manifold learning and graph analysis (Lafon
and Lee, 2006), which comes with a notion of diffusion distance that quantifies similarity
between two nodes in a random walk. Coifman et al. (2008) extended the idea to systems
driven by stochastic differential equations. Schütte et al. (2011) and Klus et al. (2016, 2020)
studied how to infer dynamics of a system from leading spectrum of transition operator and
find coresets of the state space.

The statistical theory of low-rank Markov model estimation received attention in recent
years. Zhang and Wang (2020); Zhu et al. (2022) studied the low-rank estimation of
finite-state Markov chains. Löffler and Picard (2021) studied the nonparametric estimation
of transition kernel for continuous-state reversible Markov processes with exponentially
decaying eigenvalues. Sun et al. (2019) studied kernelized state embedding and statistical
estimation of metastable clusters. These results only apply to Markov processes.

3

Ni, Duan, Dahleh, Wang, and Zhang

In control theory and RL, state aggregation is a long known approach for reducing
the complexity of the state space; see e.g., Moore (1991); Bertsekas and Tsitsiklis (1996);
Singh et al. (1995); Tsitsiklis and Van Roy (1996); Ren and Krogh (2002). Representation
learning methods were proposed that uses diagonalization or dilation of some Laplacian
operator as a surrogate of the transition operator; see e.g. Johns and Mahadevan (2007);
Mahadevan (2005); Parr et al. (2007); Petrik (2007). See Mahadevan et al. (2009) for a
review. For online RL problems, representation learning approaches have been proposed to
find good state-action representations while maintaining a sub-linear regret (Modi et al.,
2021; Agarwal et al., 2020; Uehara et al., 2021; Zhang et al., 2022). (Ni et al., 2023) recently
applied the representation learning approach to the multi-agent setting. These methods
typically require prior knowledge about structures of the problem such as the transition
function, or assume access to a finite feature class that covers the ground-truth feature.
For tensor-based methods, Mahajan et al. (2021) uses low-rank tensor approximations to
model agent interactions in the multi-agent setting. The approach views the Q-function as a
tensor whose modes correspond to the action spaces of different agents. Van Der Vaart et al.
(2021) considers model-based multi-agent RL and applies low-rank tensor approximation
to estimate the transition probabilities and rewards. These approaches only apply to finite
state-action MDPs with a low CP rank.

General methods for tensor decomposition and low-rank approximation have been studied
in the applied math, statistics, and computer science literature, including the high-order
singular value decomposition (HOSVD) (De Lathauwer et al., 2000b), high-order orthogonal
iteration (HOOI) (De Lathauwer et al., 2000a), best low-rank approximation (Richard and
Montanari, 2014; Zhang and Xia, 2018), sketched-based algorithms (Song et al., 2016),
power iteration, k-means power iteration (Anandkumar et al., 2014; Sun et al., 2017), sparse
high-order SVD (Zhang and Han, 2019), generalized tensor decomposition (Hong et al., 2020;
Han et al., 2022), etc. The readers are also referred to surveys on tensor decomposition
(Kolda and Bader, 2009; Cichocki et al., 2015) and their applications in machine learning
(Sidiropoulos et al., 2017; Janzamin et al., 2019; Panagakis et al., 2021).

1.3 Markov Decision Process

An instance of a Markov decision process can be specified by a tupleM = (S,A, p, r), where
S and A are state and action spaces, p is the transition probability kernel, r : S ×A → R is
the one-step reward function. At each step t, suppose the current state is st. If the agent
chooses an action at, she will receive an instant reward r(st, at) ∈ [0, 1] and system’s state
will transit to st+1 according to the probability distribution p(·|st, at). A policy π is a rule for
choosing actions based on states, where π(·|s) is a probability distribution over A conditioned
on s ∈ S. Under a given policy, the transition of the MDP will reduce to a Markov chain,
whose transition kernel is denoted by pπ where pπ(s′|s) = p1,π(s′|s) =

∫
A π(a|s)p(s′|s, a)da.

Based on that, we define the t-step transition kernel pt,π(·|s) inductively by pt,π(·|s) =∫
pt−1,π(s′|s)pπ(·|s′)ds′. And we further use νπ to denote the invariant distribution of that

Markov chain. Define the worst-case mixing time (Levin et al., 2009, Page 55) as

tmix = max
π

min
{
t
∣∣‖pt′,π(·|s0)− νπ‖TV ≤ 1/4,∀s0 ∈ S, t′ ≥ t

}
,

4

Learning state and action representations via tensor decomposition

where ‖ · ‖TV denotes the total variation distance. Throughout the paper, we use C to
denote generic constants, while the actual values of C may vary from line to line.

1.4 Tensor and Tucker Decomposition

For a general tensor X ∈ Rp1×p2×···pN , we denote X ×n U as the product between X and a
matrix U ∈ Rq×pn on the nth mode, which is of size p1 × . . .× pn−1 × q × pn+1 × . . .× pN .
Each element of X×nU is defined as (X×nU)i1...in−1jin+1...iN =

∑pn
i=1 Xi1...in−1iin+1...iNUji.

We denote by Mk(X) ∈ Rpk×
∏
i6=k pi the factor-k matricization (or flattening) of X. The

Tucker decomposition of X is of the form X = G×1U1×2 . . .×N UN , where G ∈ Rq1×...×qN
is a smaller core tensor. In particular, we call the smallest size of G the Tucker-rank of
X. Rigorously, we define Tucker-Rank(X) = (R1, R2, . . . , RN), where Rk = Rank(Mk(X)).
The inner product between two tensors X,Y ∈ Rp1×p2×···pN is defined as

〈X,Y 〉 =

p1∑

i1=1

p2∑

i2=1

· · ·
pN∑

iN=1

Xi1i2···iNYi1i2···iN .

The spectral norm and Frobenius norm of a tensor X ∈ Rp1×p2×...×pN are defined as

‖X‖σ = sup
‖ui‖=1,1≤i≤N

〈X, u1 ◦ u2 ◦ . . . ◦ uN 〉, ‖X‖F =
√
〈X,X〉.

Suppose S,A are reproducing kernel Hilbert space. We define the Tucker-rank of an operator
P : S × A→ S as an analogue of Tucker decomposition of tabular tensors: suppose there
exist cijk ∈ R and functions ui, wk ∈ HS , vj ∈ HA, i ∈ [r], j ∈ [l], k ∈ [m], such that

(Pf)(s, a) =
∑r

i=1

∑l
j=1

∑m
k=1 cijkui(s)vj(a)〈f, wk〉HS . Then write Tucker-Rank(P) as the

minimum (r, l,m) that ensure this equation holds.

2. A Tensor View of Markov Decision Process

Consider a continuous-state MDP with the transition kernel p, where each p(·|s, a) is a
conditional transition density function. We adopt a tensor view to exploit structures of p for
abstractions of state and action spaces. The Tucker rank of p turns out related to commonly
used reduced-order models such as state aggregation and latent models. We handle the
continuous state and action spaces using kernel function approximation. Suppose we have a
Reproducing Kernel Hilbert Space (RKHS) HS for functions over states and a RKHS HA
for functions over actions. We make the assumption that the MDP’s transition kernel p can
be represented in these function spaces.

Assumption 1 Let P be the transition operator of p, i.e., (Pf)(s, a) =
∫
p(s′|s, a)f(s′)ds′.

Assume that Tucker-Rank(P) ≤ (r, l,m) 1, and Pf ∈ HS ×HA, ∀f ∈ HS .

Here, the low-Tucker rankness assumption captures the structure that state/action space
can be compressed into a lower-dimensional space while preserving the dynamics. This
assumption naturally holds in many well-known reinforcement learning models, such as
soft state aggregation (Singh et al., 1995; Bertsekas, 2007; Sutton and Barto, 1998), rich-
observation MDP (Azizzadenesheli et al., 2016; Du et al., 2019b), contextual MDP (Jiang

5

Ni, Duan, Dahleh, Wang, and Zhang

et al., 2017), linear/factor MDP (Jin et al., 2019), kernel MDP (Ormoneit and Glynn, 2002;
Chowdhury and Gopalan, 2019).

In the remainder of the paper, we assume without loss of generality that the state and
action kernel spaces admit finitely many known basis functions, which we refer to as state
features φ(s) ∈ RdS and action features ψ(a) ∈ RdA . This is a rather mild assumption: Even
if we do not know the basis function but are only given kernel functions KS and KA for HS
and HA. According to Rahimi and Recht (2008), one can generate finitely many random
features to approximately span these kernel spaces such that KS(s, s′) ≈∑dS

i=1 φi(s)
>φi(s′)

and KA(a, a′) ≈∑dA
i=1 ψi(a)>ψi(a′). Also note that our approach applies to arbitrary state

and action spaces, as long as they come with appropriate kernel functions. Although p is
infinitely dimensional, we use the given kernel spaces and represent p with a finite-dimensional
tensor. In particular, Assumption 1 implies the following tensor linear model:

Lemma 1 (Conditional transition tensor and linear model) Suppose Assumption 1
holds. There exists a tensor P ∈ RdS×dA×dS such that Tucker-Rank(P) ≤ (r, l,m) and

P×1 φ(s)> ×2 ψ(a)> = E[φ(s′)|s, a], ∀s ∈ S, a ∈ A.

Tucker decomposition is one of the most general low-rank structure for tensors. Remarkably,
the low-Tucker-rank property (Assumption 1) turns out to be universal in a number of
reduced-order MDP models. Typical examples include block MDP (Du et al., 2019b) and soft
MDP aggregation (Singh et al., 1995), whose detailed descriptions are placed in Appendix B.
The low-Tucker-rank property also holds in MDPs with rich observations (Azizzadenesheli
et al., 2016), and is related to the Bellman rank (Jiang et al., 2017). We remark that the
tensor rank is determined solely by the transition model p (i.e., the environment), regardless
of the reward r.

3. Tensor-Inspired State and Action Embedding Learning

In this section, we develop a tensor-inspired representation learning method, which embeds
states and actions into decoupled low-dimensional spaces. Next, we will develop the method
step by step, and provide theoretical guarantees.

3.1 Tensor MDP Mean Embedding by Importance Sampling

Suppose we have a batch dataset of state-action samples.

Assumption 2 The data D = {(s, a, s′)} consists of state-action-state transitions from a
single sample path generated by a known behavior policy π̄.

Let ξ be the stationary state distribution of the sample path under policy π̄. Let η be a
positive probability measure over the action space. Consider the tensor mean embedding

F =

∫
φ(s) ◦ ψ(a) ◦ φ(s′)p(s, a, s′)dsdads′ ∈ RdS×dA×dS ,

where p(s, a, s′) = p(s′|s, a)ξ(s)η(a).

Lemma 2 Assumption 1 implies Tucker-Rank(F) ≤ (r, l,m).

6

Learning state and action representations via tensor decomposition

We estimate the mean embedding tensor F by importance sampling:

F̄ = n−1∑n
i=1

η(ai)
π̄(ai|si) · φ(si) ◦ ψ(ai) ◦ φ(s′i). (1)

The mean embedding tensor F is related to the transition tensor P through a simple relation.

Lemma 3 (Relation between P and F) When {ψi(·)}dAi=1 forms a set of orthogonal
basis with respect to L2(η), we have P = F ×1 Σ−1, where Σ =

∫
ξ(s)φ(s)φ(s)>ds.

Necessity of importance sampling. The importance sampling step (1) is necessary to
decouple states from actions. Without importance sampling, the naive mean embedding
tensor

W :=

∫
φ(s) ◦ ψ(a) ◦ φ(s′)ξ(s)π̄(a|s)p(s′|a, s)dsdads′

may have large ranks on the first two dimensions. This is due to that the behavior policy π̄
couples the state and action spaces together, therefore their independent low-dimensional
structures are lost in the mean embedding tensor W . Without using importance sampling,
if we replace F with plain mean W , Lemma 2 and Lemma 3 no longer hold. As a result,
one cannot learn the best low-dimensional structure of p from W .

3.2 Low-Rank Estimation of Transition Tensor

We estimate a low-rank approximation to F by solving:

F̂ = argmin ‖Q− F̄ ‖σ, subject to Tucker-Rank(Q) ≤ (r, l,m) (2)

and estimate the transition operator P by P̂ = F̂ ×1 Σ̂−1, where Σ̂ = 1
n

∑n
i=1 φ(si)φ

>(si).
Define

Kmax = max

{
sup
s
KS(s, s), sup

a
KA(a, a)

}
,

µ̄ = ‖E[K1(S, S)φ(S)φ(S)>]‖σ,

κ = sup
s∈S,a∈A

η(a)

π(a|s) ,

λ̄ = sup
u,v,w

Eξ◦η◦p(·|·)[[(u>φ(S))(v>ψ(A))(w>φ(S′))]2],where u,w ∈ SdS−1,v ∈ SdA−1.

Here, KS ,KA are the kernels associated with the state RKHS space HS and action RKHS
space HA, respectively.

Theorem 4 (Low-rank estimation of the transition tensor P) Suppose Assumptions
1-2 hold. Suppose ψ is orthonormal with respect to L2(η), and

n/tmix
(log(n/tmix))2

≥ 1024

(
‖Σ−1‖2σµ̄+

K2
max

µ̄
+
κK3

max

λ̄

)(
log

2tmix
δ

+ 8(dS + dA)

)
,

then with probability 1− δ, we have

‖P − P̂ ‖σ ≤ 256‖Σ−1‖σ

√
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)

(n/tmix) log−2(n/tmix)
.

7

Ni, Duan, Dahleh, Wang, and Zhang

The derivation of P̂ also provides a tractable way to estimate E[φ(s′)|s, a] by

Ê[φ(s′)|s, a] := P̂ ×1 φ(s)> ×2 ψ(a)>.

And we have the following guarantee on the estimation error:

‖Ê[φ(s′)|s, a]− E[φ(s′)|s, a]‖ ≤ Kmax‖P̂ − P ‖σ.

Rank selection Our theory assumes the prior knowledge of tensor rank. In practice, it
is common to tune the rank parameters by checking the elbow in the scree plot and using
cross validation (see discussions in the classical literature on PCA, e.g., Jolliffe (1986)). In
theory, rank estimation is hard unless one makes additional strong assumptions, like that
the eigengap is bounded from below.

Computation Finding the exact optimum of (2) can be computationally intense in general
De Silva and Lim (2008). In practice, we can apply classic tensor decomposition algorithms,
such as higher-order orthogonal iteration (HOOI) (De Lathauwer et al., 2000a), high-order
SVD (De Lathauwer et al., 2000b), sequential-HOSVD (Vannieuwenhoven et al., 2012),
gradient descent (Han et al., 2022), to find an approximate solution to (2). In particular, the
statistical optimality of tensor power iterations, e.g., HOOI and HOSVD (Appendix A), have
been justified in some special cases Zhang and Xia (2018). We expect these approximations
also work for our problems, which is later validated in our experiment.

3.3 Learning State and Action Embeddings

Next, we show how to embed states and actions to low-dimensional representations to be
maximally “predictive.” Consider a kernelized diffusion distance of the MDP, which measures
similarity in terms of future dynamics restricted to a function class:

dist[(s1, a1), (s2, a2)] = sup
‖f‖HS≤1

|E[f(s′)|s1, a1]− E[f(s′)|s2, a2]|.

This distance quantifies how well one can generalize the predicted value at a seen state-
action pair (s, a) to a new (s′, a′). Under the low-tensor-rank assumption, we have P =
C ×1 U1 ×2 U2 ×3 U3, where U1,U2,U3 are columnwisely orthonormal matrices. Then we
can define the kernelized state diffusion map, kernelized action diffusion map and their joint
map as

f(·) := U>1 φ(·), g(·) := U>2 ψ(·), Φ(s, a) := C ×1 f(s)> ×2 g(a)>,

respectively. It follows that dist[(s, a), (s′, a′)] = ‖Φ(s, a)− Φ(s′, a′)‖, if φ is a collection of
orthonormal basis functions of HS . Motivated by the preceding analysis, we propose to
estimate state and action embedding maps based on the tensor estimator. After we obtain
P̂ , we can simply find the corresponding state and action embedding maps from factors of
its Tucker decomposition

P̂ = Ĉ ×1 Û1 ×2 Û2 ×3 Û3,

where we require that Ûk, k = 1, 2, 3 are column-wisely orthonormal. The full procedure is
given in Algorithm 1. Now we have obtained the state embedding map f̂ and the action

8

Learning state and action representations via tensor decomposition

Algorithm 1 Learning State and Action Embedding Maps

1: Input: {(si, ai, s′i)}ni=1, (r, l,m)
2: Calculate

F̄ =
1

n

n∑

i=1

η(ai)

π(ai|si)
φ(si) ◦ ψ(ai) ◦ φ(s′i),

and get F̂ as the low-rank approximation of F̄ using (2)
3: Calculate Σ̂ = 1

n

∑n
i=1 φ(si)φ

>(si), P̂ = F̂ ×1 Σ̂−1

4: Let P1 = P̂ . For k = 1, 2, 3, derive Ûk from the SVD

Mk(Pk) = ÛkΛkV
>
k ,

and let Pk+1 = Pk ×k Ûk.
5: Output:

State and action embedding maps f̂ : s 7→ Û>1 φ(s), ĝ : a 7→ Û>2 ψ(a);
Core transition tensor Ĉ = P4.

embedding map ĝ. Accordingly, we define the joint state-action embedding and the empirical
embedding distance as

Φ̂(s, a) = Ĉ ×1 f̂(s)> ×2 ĝ(a)>, d̂ist[(s, a), (s′, a′)] = ‖Φ̂(s, a)− Φ̂(s′, a′)‖.
Theorem 5 (Embedding error bound) Let Assumptions 1-2 hold. Suppose φ is an
orthogonal basis of HS, and ψ is orthogonal w.r.t L2(η), then we can find an orthogonal
matrix O, such that

‖Φ̂(s, a)−OΦ(s, a)‖ ≤ ε,
|d̂ist[(s, a), (s′, a′)]− dist[(s, a), (s′, a′)]| ≤ 2ε, ∀s, a, s′, a′,

where ε is controlled by the low-rank estimation error, ε := Kmax

(
1 +

√
2‖P ‖σ
σ

)
‖P̂ − P ‖σ,

and σ := sup‖w‖≤1 σm(P ×1 w
>), where σm denotes the m-th singular value of a matrix.

Advantage of tensor method. As an alternative, one could ignore the tensor structure
and treat the state and action jointly, yielding a low-dimensional representation for the
pair (s, a) directly. This approach may be favorable if the (s, a) has a very simple joint
structure. However, the tensor approach may be significantly more sample efficient if s and a
admit separate low-dimensional structures. To see this, suppose the state and action features
have dimensions dS and dA before embedding. Also assume the Tucker rank is r = l = m
for simplicity. By treating (s, a) jointly and ignoring the tensor structure, one would need
Ω̃(dAdSr) samples to reliably recover the low-dimensional structure. In comparison, our
tensor-based approach requires only Ω̃((dX + dA)r) samples.

4. Estimating the Optimal Discrete MDP Abstraction

Next, we study how to provably reduce a continuous-state continuous-action MDP into a
discrete one, by an application of the learned kernelized diffusion distance to partition the
state and action spaces.

9

Ni, Duan, Dahleh, Wang, and Zhang

4.1 Optimal Partition of State and Action Spaces

Our goal is to learn an optimal discretization of a continuous MDP. Specifically, we want
to find a partition of S and A, denoted as blocks Ai, Bj , i ∈ [ns], j ∈ [na] and a collection
of probability transition distributions {qij(·)} on the blocks. For each state-action pair
(s, a) ∈ Ai ×Bj , and some function f ∈ HS , we want to approximate the one-step expected
value (Pf)(s, a) =

∫
p(s′|s, a)f(s′)ds′ by

(Pf)(s, a) =

∫
p(s′|s, a)f(s′)ds′ ≈

∫
qij(s

′)f(s′)ds′.

We formalize the optimal state-action partition problem as:

min
{Ai,Bj ,qij}

L({Ai, Bj , qij}) :=
∑

i,j

∫

Ai×Bj
ξ(s)η(a)‖p(·|s, a)− qij(·)‖2HSdsda, (3)

whose solution is denoted as {A∗i , B∗j , q∗ij}, and the corresponding optimal value is denoted
by L∗.

In particular, if |A| = 1, the MDP reduces to a Markov process and the optimization
problem reduces to minAi min{qi}

∑ns
i=1

∫
Ai
ξ(s)‖p(·|s)− qi(·)‖2HSdsda, which becomes equiv-

alent to the metastable state partition problem for random walk and dynamic systems E
et al. (2008).

4.2 Decoupled State and Action Clustering

Next, consider the RL setting where we wish to learn {A∗i , B∗j } when p is unknown. Observe
that the optimal partition is determined solely by the kernelized diffusion distance equipped
by the state-action space. This allows the approximation of (3) by the empirical state-action
clustering problem:

min
{Ai,Bj ,zij}

∑

i,j

∫

Ai×Bj
ξ(s)η(a) · ‖Φ̂(s, a)− zij‖2dsda, (4)

whose solution is denoted by {Âi, B̂j , ẑij}. Then the corresponding discrete transition
distribution from state abstraction i and action abstraction j takes the form q̂ij(·) =

ẑ>ijÛ
>
3 φ(·).

To facilitate computation, we provide a relaxation of problem (4) that can be solved
using k-means-type algorithms. By taking zij = Ĉ×1 f

>
i ×2 g

>
j for some fi, gj , the partition

problem becomes

min
{Ai,Bj}

min
{fi,gj}

∑

i,j

∫

Ai×Bj
ξ(s)η(a) · ‖Ĉ ×1 f̂(s)> ×2 ĝ(a)> − Ĉ ×1 f

>
i ×2 g

>
j ‖2dsda.

Using the relation

‖Ĉ ×1 f̂(s)> ×2 ĝ(a)> − Ĉ ×1 f
>
i ×2 g

>
j ‖2 ≤ 2‖Ĉ‖2σKmax(‖f̂(s)− fi‖2 + ‖ĝ(a)− gj‖2),

we can relax the problem (4) into two simpler subproblems:

min
Ai

min
fi

∑

i

∫

Ai

ξ(s)‖f̂(s)− fi‖2ds; min
Bj

min
gj

∑

j

∫

Bj

η(a)‖ĝ(a)− gj‖2da.

10

Learning state and action representations via tensor decomposition

In short, one can efficiently compute the decoupled state and action clusters using the
learned representations from the tensor method. The full procedure is given in Alg. 2.

Algorithm 2 Learning Optimal State-Action Abstractions

1: Input: {(si, ai, s′i)}ni=1, (r, l,m)
2: Estimate the state embedding and action embedding maps f̂ , ĝ, Û3 using Algorithm 1.
3: Apply k-means to solve the following two problems, respectively:

min
{Ai}

min
{fi}

∑

i

∫

Ai

ξ(s)‖f̂(s)− fi‖2ds,

min
{Bj}

min
{gj}

∑

j

∫

Bj

η(a)‖ĝ(a)− gj‖2da.

4: Output: The state partition {Âj} and action partition {B̂j}

4.3 Theoretical Guarantee

The following theorem guarantees that the empirical discretion is not far from the groundtruth.

Theorem 6 (Mean squared clustering error) Let Assumptions 1-2 hold. Suppose ψ is
a orthonormal basis with respect to L2(η) and n sufficiently large, then with probability at
least 1− δ, we have

L({Âi, B̂j , qij}) ≤C
‖Σ−1‖σrlm(1 + 2λ̄‖Σ−1‖2σ

σ2)

max{r, l,m} · λ̄(log(2tmix/δ) + dS + dA)(κ+ µ̄‖Σ−1‖2σ)

(n/tmix) log−2(n/tmix)

+ 4L∗,

where L∗ is the optimal value of problem (3), σ is defined as in Theorem 5, C is an absolute
constant.

Next, we focus on the case where the true MDP has latent block structures.

Assumption 3 Let there be blocks on the state and action spaces Ai, Bj , i ∈ [ns], j ∈ [na],
i.e.,

p(·|s, a) =

ns∑

i=1

na∑

j=1

q∗ij(·)1s∈Ai1a∈Bj ,

for some probability density functions qij.

Suppose we have applied Algorithm 2 to recover the latent blocks. Let {Âi}nsi=1, {B̂j}naj=1 be
the estimated state and action clusters. Define the misclassification error as

M({Âi}, {B̂j}) = min
σ1,σ2

ns∑

i=1

na∑

j=1

(ξ × η)((Ai ×Bj) \ (Âσ1(i) × B̂σ2(j)))

(ξ × η)(Ai ×Bj)
,

where σ1 and σ2 are permutations over the state and action blocks, respectively. We prove
the following clustering error bound:

11

Ni, Duan, Dahleh, Wang, and Zhang

Theorem 7 (Misclassification error for block MDP) Let Assumptions 1, 2, 3 hold.
For n sufficiently large, with probability 1− δ, we have

M({Âi}, {B̂j}) ≤ C‖Σ−1‖σ
rlm(1 + 2λ̄‖Σ−1‖2σ

σ2)

max{r, l,m} · λ̄(log(2tmix/δ) + dS + dA)(κ+ µ̄‖Σ−1‖2σ)

∆2
1(n/tmix)(log n

tmix
)−2

,

where ∆2
1 := mini,j min(k,l)6=(i,j) ξ(Ai)η(Bj)‖q∗ij(·)− q∗kl(·)‖2HS and C is an absolute constant.

Remark 1 The bounds in Theorems 6 and 7 grow proportionally to rlm (i.e., the product
of Tucker ranks of P), which can be large even when r, l,m are individually small. However,
the term is essential as it represents the degree of freedom of a Tucker rank (r, l,m) tensor,
which is given by p(r + l +m) + rlm (Zhang, 2019, Proposition 1).

Next we investigate how the statistical inaccuracy of state abstraction would affect
downstream RL tasks. We consider block-structured MDP whose transition kernel p, reward
r and policy π are defined on state and action blocks {Ai}, {Bj}. We use M = (p, {rh}Hh=1)
to denote such an MDP instance, and use M to denote the collection of all such M . One
may wonder if the state abstraction error would blow up, particularly if we want to evaluate
a multi-step cumulative return. Define the H-step state abstraction error as the worst-case
policy evaluation error over horizon H, given by

D({Âi}, {B̂j}) = sup
M∈M,π

inf
p̂

∣∣∣∣∣E
π
p

[
H∑

h=1

rh(Sh, Ah)

]
− Eπp̂

[
H∑

h=1

rh(Sh, Ah)

]∣∣∣∣∣ ,

where the supremum is taken over all block-structured MDP instances and policies on
{Ai, Bj}, and the infimum is to find a best-fit transition model on the estimated clusters
{Âi, B̂j}, of the form

p̂(s′|s, a) =
∑ns

i,k=1

∑na
j=1

q̂(k|i,j)
ξ(Âk)

1s∈Âi1a∈B̂j1s′∈Âk ,

where q̂ is a set of discrete transition probabilities.

Theorem 8 (Policy evaluation error due to inaccurate state abstraction) Let As-
sumptions 1, 2, 3 hold. Then for n sufficiently large, with probability 1− δ, we have

D({Âi}, {B̂j}) ≤ 4c̄c−1H2M({Âi}, {B̂j}),

where c = mini,j(ξ × η)(Ai ×Bj), c̄ = maxi,j(ξ × η)(Ai ×Bj).

Theorem 8 shows that the H-step state abstraction error grows at most quadratically with
H, not exponentially. In other words, inaccuracy in state abstraction does not suffer from the
curse of horizon. Thus the learned state and action abstractions are useful for approximate
policy evaluation.

12

Learning state and action representations via tensor decomposition

5. Numerical Experiment

We test our approach on a particular MDP derived from a controlled stochastic process. Let
the state and action spaces be both R2. Suppose the state-action pair at step k is (sk, ak).
Then the next state sk+1 is set to be Xτ(k+1) for some τ > 0, where Xt is the solution of
the SDE:

dXt = −[∇V (Xt) + F (ak)]dt+
√

2dBt, kτ ≤ t ≤ (k + 1)τ,

where V (·) is a wavy potential function, F (·) is a block-wise constant function (Figure
2), Bt is the standard Brownian motion. Let the behavior policy be always choosing a
from a standard normal distribution. We use the Gaussian kernels and obtain state/action
features by generating N random Fourier features h = [h1, h2, · · · , hN] such that K(x, y) ≈∑N

i=1 hi(x)hi(y).

Figure 2: Row 1: Left: Potential function V (·); Right: Block-wise control function F (·).
The action space has 16 blocks, and in each block F (·) is a constant drift vector
(see the arrows); Row 2: Learned state abstractions with varying clustering sizes;
Row 3: Learned action abstractions with varying clustering sizes.

13

Ni, Duan, Dahleh, Wang, and Zhang

State-action Clustering We first apply Algorithm 2 to estimate state and action clusters.
The results are shown at the right side of Figure 2. Comparing them with the ground truth,
we can validate that our method indeed reveal the latent state and action blocks.

Low-Rank Estimation of the Transition Tensor We then investigate the efficiency of
estimating P via our tensor method. We compare our method with two baselines: (1) The
vanilla method, which directly estimates the transition tensor by P̂ = F̄ ×1 Σ̄−1 without any
low-rank approximation; (2) The “top r” method, whose the procedure is: i) calculate the
top r (or l,m) principle components of the sample covariance per mode; ii) project features
onto the subspace spanned by the top principle components; iii) estimate the transition
tensor via the vanilla method (discussed above) in the space of projected features. Fig. 3
visualizes the estimation errors of these methods with different choices of (r, l,m), where
errors are averaged over five independent runs. We observe that, for most of the time, our
method consistently outperforms the baselines. Note that the top r method performs slightly
better when n is very small, because in this case data is too small to get meaningful estimate
of P . The three approaches have similar performance when the rank constraint is set to be
(60, 30, 60) or higher. This is because the rank constraint is already close to the dimensions of
the original state-action features, which reduces the impact of the rank-constrained estimator
and introduces additional noise due to computational limitations. In practice, small rank
constraints are preferred for both statistical and computational reasons.

1000 2000 3000 4000 5000 6000 7000 8000

n

4

5

6

7

8

9

10

||
\h

a
t{

P
}

-
P

||
_

F

(r, l, m) = (20, 10, 20)

HOOI

Top r

Vanilla

1000 2000 3000 4000 5000 6000 7000 8000

n

4

5

6

7

8

9

10

||
\h

a
t{

P
}

-
P

||
_

F

(r, l, m) = (30, 15, 30)

HOOI

Top r

Vanilla

1000 2000 3000 4000 5000 6000 7000 8000

n

4

5

6

7

8

9

10

||
\h

a
t{

P
}

-
P

||
_

F

(r, l, m) = (40, 20, 40)

HOOI

Top r

Vanilla

1000 2000 3000 4000 5000 6000 7000 8000

n

4

5

6

7

8

9

10

||
\h

a
t{

P
}

-
P

||
_

F

(r, l, m) = (60, 30, 60)

HOOI

Top r

Vanilla

Figure 3: Low-tensor-rank estimation of P , compared with baseline methods.

14

Learning state and action representations via tensor decomposition

References

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural
complexity and representation learning of low rank mdps. Advances in neural information
processing systems, 33:20095–20107, 2020.

Animashree Anandkumar, Rong Ge, and Majid Janzamin. Guaranteed non-orthogonal
tensor decomposition via alternating rank-1 updates. arXiv preprint arXiv:1402.5180,
2014.

Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforcement
learning in rich-observation mdps using spectral methods. arXiv preprint arXiv:1611.03907,
2016.

Dimitri P Bertsekas. Dynamic programming and optimal control. Athena scientific Belmont,
MA, 2007.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific,
Belmont, MA, 1996.

T Tony Cai and Anru Zhang. Rate-optimal perturbation bounds for singular subspaces with
applications to high-dimensional statistics. The Annals of Statistics, 46(1):60–89, 2018.

Sayak Ray Chowdhury and Aditya Gopalan. Online learning in kernelized markov decision
processes. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 3197–3205. PMLR, 2019.

Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao, Cesar
Caiafa, and Huy Anh Phan. Tensor decompositions for signal processing applications:
From two-way to multiway component analysis. IEEE Signal Processing Magazine, 32(2):
145–163, 2015.

Ronald R. Coifman, Ioannis G. Kevrekidis, Stéphane Lafon, Mauro Maggioni, and Boaz
Nadler. Diffusion maps, reduction coordinates, and low dimensional representation of
stochastic systems. SIAM Journal on Multiscale Modeling and Simulation, 7(2):852–864,
2008.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1 and rank-(r
1, r 2,..., rn) approximation of higher-order tensors. SIAM journal on Matrix Analysis
and Applications, 21(4):1324–1342, 2000a.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value
decomposition. SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278,
2000b.

Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-rank
approximation problem. SIAM Journal on Matrix Analysis and Applications, 30(3):
1084–1127, 2008.

15

Ni, Duan, Dahleh, Wang, and Zhang

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation
sufficient for sample efficient reinforcement learning? arXiv preprint arXiv:1910.03016,
2019a.

Simon S Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dud́ık, and John
Langford. Provably efficient rl with rich observations via latent state decoding. arXiv
preprint arXiv:1901.09018, 2019b.

Weinan E, Tiejun Li, and Eric Vanden-Eijnden. Optimal partition and effective dynamics of
complex networks. Proceedings of the National Academy of Sciences, 105(23):7907–7912,
2008.

Rungang Han, Rebecca Willett, and Anru R Zhang. An optimal statistical and computational
framework for generalized tensor estimation. The Annals of Statistics, 50(1):1–29, 2022.

David Hong, Tamara G Kolda, and Jed A Duersch. Generalized canonical polyadic tensor
decomposition. SIAM Review, 62(1):133–163, 2020.

Majid Janzamin, Rong Ge, Jean Kossaifi, and Anima Anandkumar. Spectral learning on
matrices and tensors. Foundations and Trends R© in Machine Learning, 12(5-6):393–536,
2019.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire.
Contextual decision processes with low bellman rank are pac-learnable. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages 1704–1713.
JMLR. org, 2017.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. arXiv preprint arXiv:1907.05388, 2019.

Jeff Johns and Sridhar Mahadevan. Constructing basis functions from directed graphs for
value function approximation. In Proceedings of the 24th international conference on
Machine learning, pages 385–392. ACM, 2007.

Ian T Jolliffe. Principal components in regression analysis. In Principal component analysis,
pages 129–155. Springer, 1986.

Stefan Klus, Péter Koltai, and Christof Schütte. On the numerical approximation of the
perron–frobenius and koopman operator. Journal of Computational Dynamics, 3(1):51–79,
2016.

Stefan Klus, Ingmar Schuster, and Krikamol Muandet. Eigendecompositions of transfer
operators in reproducing kernel hilbert spaces. Journal of Nonlinear Science, 30(1):
283–315, 2020.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

16

Learning state and action representations via tensor decomposition

Stéphane Lafon and Ann Lee. Diffusion maps and coarse-graining: A uni
ed framework for dimensionality reduction, graph partitioning, and data set parameter-
ization. IEEE Trans. on Pattern Analysis and Machine Intelligence, 29(9):1393–1403,
2006.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of machine
learning research, 4(Dec):1107–1149, 2003.

Tor Lattimore and Csaba Szepesvari. Learning with good feature representations in bandits
and in rl with a generative model. arXiv preprint arXiv:1911.07676, 2019.

David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov chains and mixing
times. American Mathematical Soc., 2009.

Matthias Löffler and Antoine Picard. Spectral thresholding for the estimation of markov
chain transition operators. Electronic Journal of Statistics, 15(2):6281–6310, 2021.

Sridhar Mahadevan. Proto-value functions: Developmental reinforcement learning. In
Proceedings of the 22nd international conference on Machine learning, pages 553–560.
ACM, 2005.

Sridhar Mahadevan et al. Learning representation and control in markov decision processes:
New frontiers. Foundations and Trends R© in Machine Learning, 1(4):403–565, 2009.

Anuj Mahajan, Mikayel Samvelyan, Lei Mao, Viktor Makoviychuk, Animesh Garg, Jean Kos-
saifi, Shimon Whiteson, Yuke Zhu, and Animashree Anandkumar. Tesseract: Tensorised
actors for multi-agent reinforcement learning. In International Conference on Machine
Learning, pages 7301–7312. PMLR, 2021.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic
state abstraction and provably efficient rich-observation reinforcement learning. arXiv
preprint arXiv:1911.05815, 2019.

Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal.
Model-free representation learning and exploration in low-rank mdps. arXiv preprint
arXiv:2102.07035, 2021.

Andrew W Moore. Variable resolution dynamic programming: Efficiently learning action
maps in multivariate real-valued state-spaces. In Machine Learning Proceedings 1991,
pages 333–337. Elsevier, 1991.

Chengzhuo Ni, Yuda Song, Xuezhou Zhang, Chi Jin, and Mengdi Wang. Representation
learning for general-sum low-rank markov games. International Conference on Learning
Representations, 2023.

Dirk Ormoneit and Peter Glynn. Kernel-based reinforcement learning in average-cost
problems. IEEE Transactions on Automatic Control, 47(10):1624–1636, 2002.

Yannis Panagakis, Jean Kossaifi, Grigorios G Chrysos, James Oldfield, Mihalis A Nicolaou,
Anima Anandkumar, and Stefanos Zafeiriou. Tensor methods in computer vision and
deep learning. Proceedings of the IEEE, 109(5):863–890, 2021.

17

Ni, Duan, Dahleh, Wang, and Zhang

Ronald Parr, Christopher Painter-Wakefield, Lihong Li, and Michael Littman. Analyzing fea-
ture generation for value-function approximation. In Proceedings of the 24th international
conference on Machine learning, pages 737–744. ACM, 2007.

Marek Petrik. An analysis of laplacian methods for value function approximation in mdps.
In IJCAI, pages 2574–2579, 2007.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in neural information processing systems, pages 1177–1184, 2008.

Zhiyuan Ren and Bruce H Krogh. State aggregation in markov decision processes. In
Decision and Control, 2002, Proceedings of the 41st IEEE Conference on, volume 4, pages
3819–3824. IEEE, 2002.

Emile Richard and Andrea Montanari. A statistical model for tensor pca. In Advances in
Neural Information Processing Systems, pages 2897–2905, 2014.

Christof Schütte, Frank Noe, Jianfeng Lu, Macro Sarich, and Eric Vanden-Eijnden. Markov
state models based on milestoning. The Journal of Chemical Physics, 134(20):204105,
2011.

Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E Papalex-
akis, and Christos Faloutsos. Tensor decomposition for signal processing and machine
learning. IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.

Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Reinforcement learning with soft
state aggregation. In Advances in neural information processing systems, pages 361–368,
1995.

Zhao Song, David Woodruff, and Huan Zhang. Sublinear time orthogonal tensor decomposi-
tion. In Advances in Neural Information Processing Systems, pages 793–801, 2016.

Will Wei Sun, Junwei Lu, Han Liu, and Guang Cheng. Provable sparse tensor decomposition.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):899–916,
2017.

Yifan Sun, Yaqi Duan, Hao Gong, and Mengdi Wang. Learning low-dimensional state
embeddings and metastable clusters from time series data. In Advances in Neural
Information Processing Systems, pages 4563–4572, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

Joel A Tropp. Freedman’s inequality for matrix martingales. Electron. Commun. Probab,
16:262–270, 2011.

John N Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale dynamic
programming. Machine Learning, 22(1-3):59–94, 1996.

Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and
offline rl in low-rank mdps. arXiv preprint arXiv:2110.04652, 2021.

18

Learning state and action representations via tensor decomposition

Pascal Van Der Vaart, Anuj Mahajan, and Shimon Whiteson. Model based multi-agent
reinforcement learning with tensor decompositions. arXiv preprint arXiv:2110.14524,
2021.

Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen. A new truncation strategy for
the higher-order singular value decomposition. SIAM Journal on Scientific Computing, 34
(2):A1027–A1052, 2012.

Roman Vershynin. High-Dimensional Probability. Cambridge University Press (to appear),
2017.

Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition. BIT
Numerical Mathematics, 12(1):99–111, 1972.

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive
features. In International Conference on Machine Learning, pages 6995–7004, 2019.

Andrea Zanette, Alessandro Lazaric, Mykel J Kochenderfer, and Emma Brunskill. Limiting
extrapolation in linear approximate value iteration. In Advances in Neural Information
Processing Systems, pages 5616–5625, 2019.

Anru Zhang. Cross: Efficient low-rank tensor completion. The Annals of Statistics, 47(2):
936–964, 2019.

Anru Zhang and Rungang Han. Optimal sparse singular value decomposition for high-
dimensional high-order data. Journal of the American Statistical Association, pages
1708–1725, 2019.

Anru Zhang and Mengdi Wang. Spectral state compression of markov processes. IEEE
transactions on information theory, 66(5):3202–3231, 2020.

Anru Zhang and Dong Xia. Tensor svd: Statistical and computational limits. IEEE
Transactions on Information Theory, 64(11):7311–7338, 2018.

Xuezhou Zhang, Yuda Song, Masatoshi Uehara, Mengdi Wang, Alekh Agarwal, and Wen
Sun. Efficient reinforcement learning in block mdps: A model-free representation learning
approach. In International Conference on Machine Learning, pages 26517–26547. PMLR,
2022.

Ziwei Zhu, Xudong Li, Mengdi Wang, and Anru Zhang. Learning markov models via
low-rank optimization. Operations Research, 70(4):2384–2398, 2022.

19

Ni, Duan, Dahleh, Wang, and Zhang

Appendix

A. The HOOI Algorithm

Algorithm 3 HOOI for MDP Tensor Decomposition

1: Input: tensor mean embedding F̄ , (r, l,m), tmax

2: Initialization:

Ū
(0)
1 = SVDr(M1(F̄)), Ū

(0)
2 = SVDl(M2(F̄ ×1 Ū

(0)>
1)),

Ū
(0)
3 = SVDm(M3(F̄ ×1 Ū

(0)>
1 ×2 Ū

(0)>
2)),

where SVDr(·) is the operation that returns the leading r singular vector of matrix ·.
3: for t = 1, . . . , tmax do

4: Ū
(t)
1 = SVDr(M1(F̄ ×2 Ū

(t−1)>
2 ×3 Ū

(t−1)
3)>),

Ū
(t)
2 = SVDl(M2(F̄ ×1 Ū

(t)>
1 ×3 Ū

(t−1)>
3)),

Ū
(t)
3 = SVDm(M3(F̄ ×1 Ū

(t)>
1 ×2 Ū

(t)>
2)).

5: end for
6: Output: F̂ = F̄ ×1 (Ū

(tmax)>
1 Ū

(tmax)>
1)×2 (Ū

(tmax)>
2 Ū

(tmax)>
2)×3 (Ū

(tmax)>
3 Ū

(tmax)>
3)

B. Examples of Low Rank MDPs

We give two basic examples.

action space

S

A

s

a

⇡

es

ea

1

meta-actions

transition probability

state space S

A

s

a

⇡

es

ea

1

S

A

s

s0

a

⇡

es

ea

es0

1

meta-states

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

meta-states

S

A

s

a

⇡

es

ea

1

S

A

s

a

⇡

es

ea

1

policy

S

A

s

a

⇡

es

ea

1

state space

action space

meta-actions

S

A

s

a

⇡

es

ea

1

S

A

s

a

⇡

es

ea

1

S

A

s

s0

a

⇡

es

ea

es0

1

aggregation
probability .

aggregation
probability .

disaggregation
probability .

transition probability

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

Figure 4: Left: Block MDP (aka hard aggregation); Right: Latent-state-action MDP (aka
soft aggregation).

Example 1 (Block MDP (Hard Aggregation)) Let S̃ and Ã be finite sets. Suppose
there exists state and action abstractions f : S 7→ S̃ and g : S 7→ Ã such that

p(·|s, a) = p(·|s′, a′) if f(s) = f(s′), g(a) = g(a′).

Then p has Tucker rank at most (|S̃|, |Ã|, |S|).

20

Learning state and action representations via tensor decomposition

Example 2 (Latent-State-Action MDP (Soft Aggregation)) Given an MDP M =
(S,A, p, r), we say M has an (r, l,m)-latent variable model if there exist a latent state-
action-state stochastic process {s̃t, ãt, s̃′t} ⊆ S̃ × Ã × S̃ ′, with |S̃| = r, |Ã| = l, |S̃ ′| = m, such
that

P(s̃t, ãt|s1, a1, . . . , st, at) = P(s̃t|st)P(ãt|at),P(s̃′t|s1, a1, . . . , st, at, s̃t, ãt) = P(s̃′t|s̃t, ãt),
P(st+1|s1, a1, . . . , st, at, s̃t, ãt, s̃

′
t) = P(st+1|s̃′t).

In this case, one can verify that p has Tucker rank (r, l,m).

We give an illustrative example to show the advantage of utilizing tensor MDP formulation
as opposed to the matrix ones.

Example 3 Consider A = {1, 2}, S = {1, 2, 3, 4}. Construct the MDP transition tensor P
as

P·1· =




1/6 1/6 1/3 1/3
1/6 1/6 1/3 1/3
1/3 1/3 1/6 1/6
1/3 1/3 1/6 1/6


 ,

P·2· =




1/3 1/3 1/6 1/6
1/3 1/3 1/6 1/6
1/6 1/6 1/3 1/3
1/6 1/6 1/3 1/3


 .

Then, P = C ×1 U ×3 U for

U =




1 0
1 0
0 1
0 1


 ,C·1· =

[
1/6 1/3
1/3 1/6

]
,C·2· =

[
1/3 1/6
1/6 1/3

]

and the state-space is aggregatable into two meta-states: {1, 2} and {3, 4}. Consider a
random policy: π(a|s) = 1/2 for a = 1, 2. Without taking into account the tensor structure
induced by the policy, one can check that the state transitions {s0, s1, . . .} form a Markov
process with the following transition matrix

P̃ =
1

2
P·1· +

1

2
P·2· =




1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4


 .

Clearly, the meta-state partition is “averaged out” using any matrix methods and there is
no hope to extract the meta-state information merely from the state transitions {s0, s1, . . .}.
On the other hand, the tensor formulation, which preserves the original state-action-state,
allows a reliable state aggregation efficiently.

21

Ni, Duan, Dahleh, Wang, and Zhang

C. Derivation of Optimization Problem (4)

The original optimization objective is

min
Ai,Bj

min
{qij}

∑

i,j

∫

Ai×Bj
ξ(s)η(a)‖p(·|s, a)− qij(·)‖2HSdsda

= min
Ai,Bj

min
{qij}

∑

i,j

∫

Ai×Bj
ξ(s)η(a)‖〈p(·|s, a), φ(·)〉 − 〈qij(·), φ(·)〉‖2dsda.

Simple calculations show that given fixed Ai, Bj , the best choice of 〈qij(·), φ(·)〉 is

〈qij(·), φ(·)〉 =
1

ξ(Ai)η(Bj)

∫

Ai×Bj
ξ(s)η(a)〈p(·|s, a), φ(·)〉dsda

=
1

ξ(Ai)η(Bj)

∫

Ai×Bj
ξ(s)η(a)(P ×1 φ(s)> ×2 ψ(a)>)dsda

=
1

ξ(Ai)η(Bj)

∫

Ai×Bj
ξ(s)η(a)

(
C ×1 f(s)> ×2 g(a)> ×3 U3

)
dsda

= U3zij ,

where zij = 1
ξ(Ai)η(Bj)

∫
At×Bj ξ(s)η(a)(C ×1 f(s)> ×2 g(a)>)dsda. Note that

∑

i,j

∫

Ai×Bj
ξ(s)η(a)‖〈p(·|s, a), φ(·)〉 −U3zij‖2dsda

=
∑

i,j

∫

Ai×Bj
ξ(s)η(a)‖C ×1 f(s)> ×2 g(a)> ×3 U3 −U3zij‖2dsda

=
∑

i,j

∫

Ai×Bj
ξ(s)η(a)‖C ×1 f(s)> ×2 g(a)> − zij‖2dsda.

Therefore, our problem can be further formalized as

min
Ai,Bj

min
zij

∑

i,j

∫

Ai×Bj
ξ(s)η(a)‖C ×1 f(s)> ×2 g(a)> − zij‖2dsda.

When we only have empirical data, the above problem can be approximated by

min
Ai,Bj

min
zij

∑

i,j

∫

Ai×Bj
ξ(s)η(a)‖Ĉ ×1 f̂(s)> ×2 ĝ(a)> − zij‖2dsda,

which is exactly (4).

D. Experiment Details

In the experiment, we use the Gaussian kernels K1(x, y) = KA(x, y) = 1
2πσ2 exp{−‖x−y‖2

2σ2 }.
And the features are obtained by generating Ns (or Na) random Fourier features h =

22

Learning state and action representations via tensor decomposition

[h1, h2, · · · , hNs] such that K(x, y) ≈∑Ns(Na)
i=1 hi(x)hi(y). And the action features are then

orthogonalized with respect to L2(η). In the experiment, we choose τ = 0.1, σ = 0.5, Ns =
100, Na = 50.

For the clustering problem, we choose sample size n = 106 and (r, l,m) = (3, 3, 3), and
the state features are further orthogonalized with respect to L2(ξ). For the estimation
problem, the ground-truth is approximately obtained from the vanilla method with sample
size n = 106. The following figure shows the clustering result of the top-r method, which does
the clustering on the subspace spanned by the top-r (or l,m) eigenvectors of the covariance
matrix. From the figure we can see that the top-r method does not capture the correct
clustering information of the transition kernel compared with our method.

Figure 5: Row 1: Learned state abstractions with varying clustering sizes by top-r method; Row 2: Learned
action abstractions with varying clustering sizes by top-r method.

E. Technical Lemmas

Lemma 9 Suppose

n/tmix
(log(n/tmix))2

≥ 1024

(
µ̄‖Σ−1‖2σ +

K2
max

µ̄

)
log

dStmix
δ

.

Then with probability 1− δ, we have

‖Σ̂−1 −Σ−1‖σ ≤ 32‖Σ−1‖2σ

√
µ̄ log dStmix

δ (log n
tmix

)2

n/tmix
.

Lemma 10 For any tensor X ∈ Rp1×p2···pN , such that Tucker-Rank(X) ≤ (r1, r2, · · · , rN),
we can always find column-wise orthonormal matrices U1 ∈ Rp1×r1 , . . . ,UN ∈ RpN×rN and

23

Ni, Duan, Dahleh, Wang, and Zhang

a core tensor C ∈ Rr1×···×rN , such that

X = C ×1 U1 ×2 · · · ×N UN .

Lemma 11 Suppose the worst-case mixing time of the MDP is tmix, then for any ε > 0
and policy π, suppose νπ is the invariant distribution of π, then for any initial distribution
µ, we have

∥∥∥∥
∫
pt,π(·|s0)µ(s0)ds0 − νπ(·)

∥∥∥∥
TV

≤ ε,∀t ≥ 2tmix log
1

ε
.

Lemma 12 For any given tensor X ∈ Rp1×p2×p3 such that Tucker-Rank(X) ≤ (r1, r2, r3),
we have

‖X‖F ≤
√

r1r2r3

max{r1, r2, r3}
‖X‖σ.

Lemma 13 Given p ∈ N, ε ∈ R, there always exists an ε-net of the sphere Sp−1 whose size
is no more than (1 + 2/ε)p.

Lemma 14 Given a tensor X ∈ Rp1×p2×p3 and three ε-nets of the unit sphere N1 ⊂
Sp1−1,N2 ⊂ Sp2−1,N3 ⊂ Sp3−1, we have

‖X‖σ ≤
maxx∈N1,y∈N2,z∈N3 |〈X, x ◦ y ◦ z〉|

1− 3ε− 3ε2 − ε3
.

Lemma 15 Suppose

n/tmix
(log(n/tmix))2

≥ 1024

(
µ̄‖Σ−1‖2σ +

K2
max

µ̄

)
log

dStmix
δ

.

Then with probability 1− δ, we have

‖(Σ̂−1 −Σ−1)Σ
1
2 ‖σ ≤ 32‖Σ−1‖

3
2
σ

√
µ̄ log dStmix

δ (log n
tmix

)2

n/tmix
.

Lemma 16 (Concentration in tensor spectral norm) Let Assumptions 1-2 hold. Sup-
pose

n/tmix
(log(n/tmix))2

≥ 1024
κK3

max

λ̄
(log

tmix
δ

+ 8(dS + dA)),

then with probability 1− δ, we have

‖F̂ − F ‖σ ≤ 64

√
κλ̄(log tmix

δ + 8(dS + dA))(log n
tmix

)2

n/tmix
.

24

Learning state and action representations via tensor decomposition

Lemma 17 Suppose

n/tmix
(log(n/tmix))2

≥ 1024

(
‖Σ−1‖2σµ̄+

K2
max

µ̄
+
κK3

max

λ̄

)(
log

tmix
δ

+ 8(dS + dA)

)
.

Then with probability 1− δ, we have

‖F̂ ×1 (Σ̂−1Σ1/2)− F ×1 (Σ−1Σ1/2)‖σ

≤256‖Σ−1‖
1
2
σ

√
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)(log n
tmix

)2

n/tmix
.

Lemma 18 Suppose P , P̂ are two order-3 tensors of the same dimension. Suppose P =
C ×1 U1 ×2 U2 ×3 U3 and P̂ = Ĉ ×1 Û1 ×2 Û2 ×3 Û3, where C, Ĉ ∈ Rr×l×m, U>3 U3 =
Û>3 Û3 = I. We have

‖ sin Θ(U3, Û3)‖σ ≤
‖P − P̂ ‖σ

σ
,

where

σ = sup
w∈Rp,‖w‖=1

σm(P ×1 w).

F. Proofs

Proof of Lemma 1 Recall that under Assumption 1, there exist cijk ∈ R, ui, wk ∈ HS ,
vj ∈ HA, i ∈ [r], j ∈ [l], k ∈ [m] such that

(Pf)(s, a) =

r∑

i=1

l∑

j=1

m∑

k=1

cijkui(s)vj(a)〈f, wk〉HS , ∀f ∈ HS .

Let C ∈ Rr×l×m be defined as Cijk = cijk. Then we can rewrite

k∑

i=1

l∑

j=1

m∑

k=1

cijku(s)iv(a)j〈f, wk〉 = C ×1 u(s)> ×2 v(a)> ×3 〈f,w〉>.

Now, because we have ui, wk ∈ HS , vj ∈ HA, we can find three matrices U1 ∈ RdS×r,U2 ∈
RdA×l,U3 ∈ RdS×m, such that

u = U>1 φ,v = U>2 ψ,w = U>3 φ.

Then we have by the association law (Kolda and Bader, 2009, Section 2.5) that

C ×1 u(s)> ×2 v(a)> ×3 〈f,w〉> = C ×1 (U>1 φ(s))> ×2 (U>2 ψ(a))> ×3 (U>3 〈f, φ〉)>

= (C ×1 U1 ×2 U2 ×3 U3)×1 φ(s)> ×2 ψ(a)> ×3 〈f, φ〉>.

25

Ni, Duan, Dahleh, Wang, and Zhang

In particular, we take f = φi, i = 1, 2, · · · , dS , and define V by

Vij = 〈φi, φj〉,

then we have

E[φ(s′)|s, a] = (C ×1 U1 ×2 U2 ×3 U3)×1 φ(s)×2 ψ(a)> ×3 V
>

= (C ×1 U1 ×2 U2 ×3 (U>3 V)>)×1 φ(s)> ×2 ψ(a)>.

Now, we define P ∈ RdS×dA×dS by

P = C ×1 U1 ×2 U2 ×3 (U>3 V)>.

Then the Tucker-rank of P is no larger than the size of C, i.e.,

Tucker-Rank(P) ≤ (r, l,m),

and we have

E[φ(s′)|s, a] = P ×1 φ(s)> ×2 ψ(a)>,

which finishes the proof.

Proof of Lemma 2 To show this, simply notice

F =

∫
φ(s) ◦ ψ(a) ◦ φ(s′)p(s′|s, a)ξ(s)η(a)dsdads′

=

∫
φ(s) ◦ ψ(a) ◦

(∫
φ(s′)p(s′|s, a)ds′

)
ξ(s)η(a)dsda

=

∫
φ(s) ◦ ψ(a) ◦ E[φ(s′)|s, a]ξ(s)η(a)dsda.

Now we use the notation in Lemma 1 to write E[φ(s′)|s, a] = P ×1 φ(s)> ×2 ψ(a)> for some
P ∈ RdS×dA×dS , and get

F =

∫
φ(s) ◦ ψ(a) ◦ (P ×1 φ(s)> ×2 ψ(a)>)ξ(s)η(a)dsda

=

∫
P ×1

(
ξ(s)φ(s)φ(s)>

)>
×2

(
η(a)ψ(a)ψ(a)>

)>
dsda

= P ×1

(∫
ξ(s)φ(s)φ(s)>ds

)>
×2

(∫
η(a)ψ(a)ψ(a)>da

)>
.

(5)

The result of Lemma 1 shows that Tucker-Rank(P) ≤ (r, l,m), which implies that

Tucker-Rank(F) ≤ Tucker-Rank(P) ≤ (r, l,m).

26

Learning state and action representations via tensor decomposition

Proof of Lemma 3 Notice that when ψ is orthogonal with respect to L2(η), (5) reduces
to

F =

∫
ξ(s)η(a)p(s′|s, a)φ(s) ◦ ψ(a) ◦ φ(s′)dsdads′

= P ×1

(∫
ξ(s)φ(s)φ(s)>ds

)>
×2

(∫
η(a)ψ(a)ψ(a)>da

)>

= P ×1 Σ,

which implies

P = F ×1 Σ−1.

Proof of Lemma 9 According to the result of Lemma 15, we know that when

n/tmix
(log(n/tmix))2

≥ 1024

(
µ̄‖Σ−1‖2σ +

K2
max

µ̄

)
log

dStmix
δ

.

Then with probability 1− δ, we have

∥∥∥(Σ̂−1 −Σ−1)Σ1/2
∥∥∥
σ
≤ 32‖Σ−1‖

3
2
σ

√
µ̄ log dStmix

δ (log n
tmix

)2

n/tmix
.

Therefore, we can directly get

‖Σ̂−1 −Σ−1‖σ = ‖(Σ̂−1 −Σ−1)Σ
1
2 Σ−

1
2 ‖σ

≤ ‖(Σ̂−1 −Σ−1)Σ
1
2 ‖σ‖Σ−

1
2 ‖σ

≤ 32‖Σ−1‖2σ

√
µ̄ log dStmix

δ (log n
tmix

)2

n/tmix
,

which finishes the proof.

Proof of Lemma 10 Suppose the SVD of M1(X) is

M1(X) = U1ΣV >,

where U1 ∈ Rp1×r1 is a column-wise orthonormal matrix. Therefore,

M1(X) = U1(U>1 M1(X)),

which is equivalent to

X = (X ×1 U
>
1)×1 U1.

Let X1 = X ×1 U
>
1 , with a similar procedure we can find some column-wise orthogonal

matrix U2, such that

X1 = (X1 ×2 U
>
2)×2 U2.

Repeating this process for N times, we can find a series of column orthogonal matrix
U1,U2, · · · ,UN and a core tensor C = XN , such that

X = C ×1 U1 · · · ×N UN ,

which has finished the proof.

27

Ni, Duan, Dahleh, Wang, and Zhang

Proof of Lemma 11 Let α = tmix, for any initial distribution µ, we use the notation

pt,π(·|µ) :=

∫
pt,π(·|s)µ(s)ds

to denote the state distribution after t steps starting from initial state distribution µ. One
direct fact is

‖pα,π(·|µ)− νπ(·)‖TV =
1

2

∫ ∣∣∣∣
∫
pt,π(s|s0)µ(s0)ds0 − νπ(s)

∣∣∣∣ds

=
1

2

∫ ∣∣∣∣
∫

(pt,π(s|s0)− νπ(s))µ(s0)ds0

∣∣∣∣ds

≤
∫
µ(s0)

(
1

2

∫
|pt,π(s|s0)− νπ(s)|ds

)
ds0

≤ 1

4

∫
µ(s0)ds0 =

1

4
.

Now, for any initial distribution µ and any n ≥ 2α, we have

‖pn,π(·|µ)− νπ(·)‖TV =
1

2

∫ ∣∣∣∣
∫
pn,π(s|s0)µ(s0)ds0 − νπ(s)

∣∣∣∣ ds

=
1

2

∫ ∣∣∣∣
∫
pn−α,π(s|s1)

[∫
pα,π(s1|s0)µ(s0)ds0 − νπ(s1)

]
ds1

∣∣∣∣ ds

=
1

2

∫ ∣∣∣∣
∫
pn−α,π(s|s1) [(pα,π(s1|µ)− νπ(s1))+ − (pα,π(s1|µ)− νπ(s1))−] ds1

∣∣∣∣ ds

=
1

2

∫ ∣∣∣∣
∫
pn−α,π(s|s1)

[
(pα,π(s1|µ)− νπ(s1))+ −

(∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃

)
νπ(s1)

+
1

2

(∫
(pα,π(s̃|µ)− νπ(s̃))−ds̃

)
νπ(s1)− (pα,π(s1|µ)− νπ(s1))−

]
ds1

∣∣∣∣ds,

where we use the relation
∫

(pα,π(s̃|µ)− νπ(s̃))+ds̃ =

∫
(pα,π(s̃|µ)− νπ(s̃))−ds̃,

because we have

0 =

∫
(pα,π(s̃|µ)− νπ(s̃))ds̃ =

∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃−

∫
(pα,π(s̃|µ)− νπ(s̃))−ds̃.

Therefore, we get

‖pn,π(·|µ)− νπ(·)‖TV

≤1

2

∫ ∣∣∣∣
∫
pn−α,π(s|s1)

[
(pα,π(s1|µ)− νπ(s1))+ −

(∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃

)
νπ(s1)

]
ds1

∣∣∣∣ ds

+
1

2

∫ ∣∣∣∣
∫
pn−α,π(s|s1)

[(∫
(pα,π(s̃|µ)− νπ(s̃))−ds̃

)
νπ(s1)− (pα,π(s1|µ)− νπ(s1))−

]
ds1

∣∣∣∣ ds.

28

Learning state and action representations via tensor decomposition

For the first term, note that

∫ ∣∣∣∣
∫
pn−α,π(s|s1)

[
(pα,π(s1|µ)− νπ(s1))+ −

(∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃

)
νπ(s1)

]
ds1

∣∣∣∣ ds

=

∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃ ·

∫ ∣∣∣∣
∫
pn−α,π(s|s1)

[
(pα,π(s1|µ)− νπ(s1))+∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃

− νπ(s1)

]
ds1

∣∣∣∣ ds

=

∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃ ·

∫ ∣∣∣∣
∫
pn−α,π(s|s1)

(pα,π(s1|µ)− νπ(s1))+∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃

ds1 − νπ(s)

∣∣∣∣ ds.

Note that

(pα,π(·|µ)− νπ(·))+∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃

is also a probability density of some initial distribution, and n− α ≥ α, so we have

∫ ∣∣∣∣
∫
pα,π(s|s1)

[
(pα,π(s1|µ)− νπ(s1))+ −

∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃)ν

π(s1)

]
ds1

∣∣∣∣ ds

≤1

2

∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃.

Similarly, we also get

∫ ∣∣∣∣
∫
pα,π(s|s1)

[
(pα,π(s1|µ)− νπ(s1))− −

∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃)ν

π(s1)

]
ds1

∣∣∣∣ ds

≤1

2

∫
(pα,π(s̃|µ)− νπ(s̃))−ds̃,

which implies that

‖pn,π(·|µ)− νπ(·)‖TV ≤
1

4

(∫
(pα,π(s̃|µ)− νπ(s̃))+ds̃+

∫
(pα,π(s̃|µ)− νπ(s̃))−ds̃

)

=
1

4

(∫
|pα,π(s̃|µ)− νπ(s̃)|ds̃

)
≤ 1

4
· 1

2
.

By induction, we can prove that for any n ≥ kα, we have

‖pn,π(·|µ)− νπ(·)‖TV ≤
1

4
(
1

2
)k−1.

Therefore, for any 0 < ε < e−1, let k = d2 log 1
εe+ 1, then for any n ≥ 2α log 1

ε ≥ (k − 1)α,
we have

‖pn,π(·|µ)− νπ(·)‖TV ≤
1

4
(
1

2
)k−2 ≤ ε,

which has finished the proof.

29

Ni, Duan, Dahleh, Wang, and Zhang

Proof of Lemma 12 Without loss of generality, assume that r3 = max{r1, r2, r3}. Since
Tucker-Rank(X) ≤ (r1, r2, r3), according to the result of Lemma 10, there exists a decom-
position of X

X = G×1 U ,G ∈ Rr1×p2×p3 ,U ∈ Rp1×r1 ,

where U is a column-wise orthonormal matrix, i.e., U>U = Ir1 . This formulation im-
plies Tucker-Rank(G) ≤ (r1, r2, r3), therefore for each 1 ≤ i ≤ r1, we have rank(Gi::) ≤
min{r2, r3} = r2. We then consider the SVD of Gi::,

Gi:: = ViΛiW
>
i ,

where Λi = diag(λi1, λi2, . . . , λir2),Vi ∈ Rp2×r2 ,Wi ∈ Rp3×r2 ,V >i Vi = W>
i Wi = Ir2 . The

above formulation is equivalent to

X =

r1∑

i=1

r2∑

j=1

λijui ◦ vij ◦wij ,

where vij is the jth column of Vi, wij is the jth column of Wi, ui is the ith column of U .
According to the definition of ‖ · ‖σ, we have

λij =

〈 r1∑

i=1

r2∑

j=1

λijui ◦ vij ◦wij ,ui ◦ vij ◦wij

〉
≤ ‖X‖σ

−λij =

〈 r1∑

i=1

r2∑

j=1

λijui ◦ vij ◦wij , (−ui) ◦ vij ◦wij

〉
≤ ‖X‖σ.

So we get

|λij |2 ≤ ‖X‖2σ, ∀i, j.

On the other hand,

‖X‖2F =

p1∑

a=1

p2∑

b=1

p3∑

c=1

(

r1∑

i=1

r2∑

j=1

λijuiavijbwijc)
2 =

p1∑

a=1

p2∑

b=1

p3∑

c=1

r1∑

i=1

u2
ia(

r2∑

j=1

λijvijbwijc)
2

=

r1∑

i=1

p2∑

b=1

p3∑

c=1

(

r2∑

j=1

λijvijbwijc)
2 =

r1∑

i=1

r2∑

j=1

p2∑

b=1

p3∑

c=1

v2
ijbw

2
ijcλ

2
ij

=

r1∑

i=1

r2∑

j=1

λ2
ij ≤ r1r2‖X‖2σ,

which implies

‖X‖F ≤
√
r1r2‖X‖σ =

√
r1r2r3

max{r1, r2, r3}
‖X‖σ.

Proof of Lemma 13 The conclusion can be directly derived from Corollary 4.2.13 in
Vershynin (2017).

30

Learning state and action representations via tensor decomposition

Proof of Lemma 14 According to the definition of ‖ · ‖σ, we can always find x0 ∈
Sp1−1, y0 ∈ Sp2−1, z0 ∈ Sp3−1 such that

〈X, x0 ◦ y0 ◦ z0〉 = ‖X‖σ

Then according to the definition of ε-net, we can always find x, y, z from these ε-nets such
that ‖x− x0‖2 ≤ ε, ‖y − y0‖2 ≤ ε, ‖z − z0‖2 ≤ ε, then

|〈X, x0 ◦ y0 ◦ z0〉 − 〈X, x ◦ y ◦ z〉|
≤|〈X, (x0 − x) ◦ y0 ◦ z0〉|+ |〈X, x ◦ (y0 − y) ◦ z0〉+ ||〈X, x0 ◦ y0 ◦ (z0 − z)〉|
+|〈X, (x0 − x) ◦ (y0 − y) ◦ z0〉|+ |〈X, (x0 − x) ◦ y0 ◦ (z0 − z)〉|
+|〈X, x0 ◦ (y0 − y) ◦ (z0 − z)〉|+ |〈X, (x0 − x) ◦ (y0 − y) ◦ (z0 − z)〉|
≤‖X‖σ(‖x0 − x‖2 + ‖y0 − y‖2 + ‖z0 − z‖2
+‖x0 − x‖2‖y0 − y‖2 + ‖x0 − x‖2‖z0 − z‖2 + ‖y0 − y‖2‖z0 − z‖2
+‖x0 − x‖2‖y0 − y‖2‖z0 − z‖2)

≤‖X‖σ(3ε+ 3ε2 + ε3),

which implies

‖X‖σ ≤ max
x∈N1,y∈N2,z∈N3

|〈X, x ◦ y ◦ z〉|+ ‖X‖σ(3ε+ 3ε2 + ε3)

⇒‖X‖σ ≤
maxx∈N1,y∈N2,z∈N3 |〈X, x ◦ y ◦ z〉|

1− 3ε− 3ε2 − ε3
,

which has finished the proof.

Proof of Lemma 15 Step 1:

Let Hi = φ(si)φ(si)
>. We introduce some sufficiently large integer α such that from any

initial distribution µ, one always has

‖pα,π(s|µ)− ξ(s)‖TV ≤
µ̄

2K2
max

∧ t

2Kmax
.

By Lemma 11, we can simply choose α = d2tmix log 4K3
max
µ̄t e+ 1 to satisfy this condition. For

each 0 ≤ l ≤ α− 1 and 1 ≤ k ≤ nl = dn−lα e, we define H l
k as Hkα+l. We also denote H as

a random matrix independent with Hi, 1 ≤ i ≤ n, which is defined as

H = ES∼ξ
[
φ(S)φ(S)>

]
.

Denote Fi as the σ-algebra generated by the history up to step i. Then we have

‖H l
k − E[H l

k|F(k−1)α+l]‖σ ≤ ‖H l
k‖σ + ‖E[H l

k|F(k−1)α+l]‖σ
≤ ‖φ(skα+l)‖2 + E[‖φ(skα+l)‖2|F(k−1)α+l]

≤ 2Kmax

31

Ni, Duan, Dahleh, Wang, and Zhang

and

‖E[H l
kH

l
k|F(k−1)α+l]‖σ ≤ ‖E[H l

kH
l
k − E[HH]|F(k−1)α+l]‖σ + ‖E[HH]‖σ

= ‖E[H l
kH

l
k − E[HH]|F(k−1)α+l]‖σ + µ̄

=

∥∥∥∥
∫
‖φ(s)‖2φ(s)φ(s)>(pα,π(s|µ(k−1)α+l)− ξ(s))ds

∥∥∥∥
σ

+ µ̄

≤ 2K2
max‖pα,π(s|µ(k−1)α+l)− ξ(s)‖TV + µ̄ ≤ 2µ̄,

where µi is the state distribution at step i. We then have

‖E[(H l
k − E[H l

k|F(k−1)α+l])(H
l
k − E[H l

k|F(k−1)α+l])|F(k−1)α+l]‖σ ≤ ‖E[H l
kH

l
k|F(k−1)α+l]‖σ ≤ 2µ̄.

So according to the martingale version of matrix Bernstein’s inequality (See e.g. Tropp
(2011)), we have

P

(∥∥∥∥
1

nl

nl∑

k=1

(H l
k − E[H l

k|F(k−1)α+l])

∥∥∥∥
σ

> t

)
≤ 2dSe

− 1
2

nlt
2

2µ̄+2Kmaxt/3 .

Step 2:

We have

‖E[H l
k|F(k−1)α+l]−H‖σ =

∥∥∥∥
∫
φ(s)φ(s)>(pα,π(s|µ(k−1)α+l)− ξ(s))ds

∥∥∥∥
σ

≤ 2Kmax‖pα,π(s|µ(k−1)α+l)− ξ(s)‖TV ≤ t,

which implies

P

(∥∥∥∥
1

nl

nl∑

k=1

(H l
k −H)

∥∥∥∥
σ

> 2t

)
≤ 2dSe

− 1
2

nlt
2

2µ̄+2Kmaxt/3 .

We then use a union bound to get

P

(
∃l,
∥∥∥∥

1

nl

nl∑

k=1

(H l
k −H)

∥∥∥∥
σ

> 2t

)
= P

(
α−1⋃

l=0

{∥∥∥∥
1

nl

nl∑

k=1

(H l
k −H)

∥∥∥∥
σ

> 2t

})

≤
α−1∑

l=0

P

(∥∥∥∥
1

nl

nl∑

k=1

(H l
k −H)

∥∥∥∥
σ

> 2t

)

≤
α−1∑

l=0

2dSe
− 1

2

nlt
2

2µ̄+2Kmaxt/3

≤ 2αdSe
− 1

2
(n−2α)t2

2α(µ̄+Kmaxt/3) ,

32

Learning state and action representations via tensor decomposition

where we use the fact that nl = dn−lα e ≥ n
α − 2. Therefore, we get

P(‖Σ̂−Σ‖σ > 2t) = P

(∥∥∥∥
1

n

n∑

k=1

Hk −H

∥∥∥∥
σ

> 2t

)

≤ P

(
∃l,
∥∥∥∥

1

nl

nl∑

k=1

(H l
k −H)

∥∥∥∥
σ

> 2t

)

≤ 2αdSe
− 1

2
(n−2α)t2

2α(µ̄+Kmaxt/3) .

Replacing 2t by t, we get

P(‖Σ̂−Σ‖σ > t) ≤ 2αdSe
− 1

16
(n−2α)t2

α(µ̄+Kmaxt/6) .

Now we assume

n/tmix
(log(n/tmix))2

≥ 256
K2
max

µ̄
log

dStmix
δ

and take

t =

√
256µ̄ log dStmix

δ (log n
tmix

)2

n/tmix
.

Then we have

α ≤ 4tmix log
4K3

max

µ̄t
= 4tmix log

(
K3
max

µ̄3/2

√
n/tmix

16 log dStmix
δ (log n

tmix
)2

)

≤ 4tmix log

(
K3
max

µ̄3/2

√
n/tmix

16 log n
tmix

)
≤ 8tmix log

n/tmix
log n

tmix

≤ 8tmix log
n

tmix
≤ 1

4
n.

Meanwhile,

1

6
Kmaxt =

1

6
Kmax

√
256µ̄ log dStmix

δ (log n
tmix

)2

n/tmix
≤ µ̄,

so we have

P(‖Σ̂−Σ‖σ > t) ≤ 2αdSe
− 1

16
(n−2α)t2

α(µ̄+Kmaxt/6) ≤ 16tmixdS log
n

tmix
e
− 1

256
nt2

tmixµ̄ log n
tmix

= 16tmixdS log
n

tmix
e
− log

dStmix
δ

log n
tmix

≤ 16tmixdS log
n

tmix
e
−(log

dStmix
δ

+log n
tmix

)

=
16δ log n

tmix

n/tmix
≤ δ,

33

Ni, Duan, Dahleh, Wang, and Zhang

i.e., with probability at least 1− δ, we have

‖Σ̂−Σ‖σ ≤

√
256µ̄ log dStmix

δ (log n
tmix

)2

n/tmix
.

Step 3:

Notice the relation

‖(Σ̂−1 −Σ−1)Σ
1
2 ‖σ ≤ ‖Σ−1‖σ‖Σ̂−Σ‖σ‖Σ̂−1Σ

1
2 ‖σ

≤
(
‖(Σ−1 − Σ̂−1)Σ

1
2 ‖σ + ‖Σ− 1

2 ‖σ
)
‖Σ−1‖σ‖Σ̂−Σ‖σ,

i.e.,

‖(Σ̂−1 −Σ−1)Σ
1
2 ‖σ ≤

‖Σ−1‖
3
2
σ ‖Σ̂−Σ‖σ

1− ‖Σ−1‖σ‖Σ̂−Σ‖σ
.

Therefore, if

n/tmix
(log n/tmix)2

≥ 1024µ̄‖Σ−1‖2σ log
dStmix
δ

,

then we have

‖Σ−1‖σ‖Σ̂−Σ‖σ ≤
1

2

and

‖(Σ̂−1 −Σ−1)Σ
1
2 ‖σ ≤ 2‖Σ−1‖

3
2
σ ‖Σ̂−Σ‖σ ≤ 32‖Σ−1‖

3
2
σ

√
µ̄ log dStmix

δ (log n
tmix

)2

n/tmix
.

In summary, if we have

n/tmix
(log(n/tmix))2

≥ 1024

(
µ̄‖Σ−1‖2σ +

K2
max

µ̄

)
log

dStmix
δ

,

then with probability 1− δ, we have

‖(Σ̂−1 −Σ−1)Σ
1
2 ‖σ ≤ 32‖Σ−1‖

3
2
σ

√
µ̄ log dStmix

δ (log n
tmix

)2

n/tmix
.

Proof of Lemma 16 Step 1:

Denote Gi = η(ai)
π(ai|si)φ(si)◦ψ(ai)◦φ(s′i) and let α = d2tmix log 4K

9
2
max

λ̄t
e+1. Then according

to the result of Lemma 11, we have that for arbitrary initial state distribution µ,

‖pα,π(s|µ)− ξ(s)‖TV ≤
λ̄

2K3
max

∧ t

2K
3/2
max

.

34

Learning state and action representations via tensor decomposition

For each 0 ≤ l ≤ α− 1 and 1 ≤ k ≤ nl = dn−lα e, we define Gl
k = Gkα+l. We also denote G

as a random tensor independent with our data which is defined as

G =
η(A)

π(A|S)
φ(S) ◦ ψ(A) ◦ φ(S′), S ∼ ξ(·), A ∼ π(·|S), S′ ∼ p(·|S,A).

Then for any u,w ∈ RdS , v ∈ RdA , we have

|Gl
k ×1 u

> ×2 v
> ×3 w

>| ≤
∥∥∥∥

η(akα+l)

π(akα+l|skα+l)
φ(skα+l)

∥∥∥∥ ‖ψ(akα+l)‖‖φ(s′kα+l)‖ ≤ K
3
2
maxκ.

Therefore,

|E[Gl
k ×1 u

> ×2 v
> ×3 w

>|F(k−1)α+l]| ≤ K
3
2
maxκ,

which implies

|Gl
k ×1 u

> ×2 v
> ×3 w

> − E[Gl
k ×1 u

> ×2 v
> ×3 w

>|F(k−1)α+l]| ≤ 2K
3
2
maxκ.

Meanwhile, we have

E[(Gl
k ×1 u

> ×2 v
> ×3 w

>)2|F(k−1)α+l]

=E[(Gl
k ×1 u

> ×2 v
> ×3 w

>)2

− E[(G×1 u
> ×2 v

> ×3 w
>)2]|F(k−1)α+l] + E(G×1 u

> ×2 v
> ×3 w

>)2]

=

∫
(φ(s)>u)2(ψ(a)>v)2(φ(s′)>w)2(pα,π(s|µ(k−1)α+l)− ξ(s))

η2(a)

π(a|s)p(s
′|s, a)dsdads′

+ E[(G×1 u
> ×2 v

> ×3 w
>)2]

≤κ
∫

(φ(s)>u)2(ψ(a)>v)2(φ(s′)>w)2|pα,π(s|µ(k−1)α+l)− ξ(s)|η(a)p(s′|s, a)dsdads′ + κλ̄

≤2κλ̄,

where µi is the state distribution at step i. Therefore, we have

E[(Gl
k ×1 u

> ×2 v
> ×3 w

> − E[Gl
k ×1 u

> ×2 v
> ×3 w

>|F(k−1)α+l])
2|F(k−1)α+l]

≤E[(Gl
k ×1 u

> ×2 v
> ×3 w

>)2|F(k−1)α+l] ≤ 2κλ̄.

Again we apply the matrix Bernstein’s inequality Tropp (2011) on Gl
k×1 u

>×2 v
>×3w

>

(Note that Gl
k ×1 u

> ×2 v
> ×3 w

> is a scalar, which can be viewed as a 1× 1 matrix.), and
get

P

(∣∣∣∣∣
1

nl

nl∑

k=1

(Gl
k ×1 u

> ×2 v
> ×3 w

> − E[Gl
k ×1 u

> ×2 v
> ×3 w

>|F(k−1)α+l])

∣∣∣∣∣ > t

)

≤2e
− 1

2

nlt
2

2κλ̄+ 2
3K

3/2
maxκt .

Step 2:

35

Ni, Duan, Dahleh, Wang, and Zhang

Now consider three 1
4 -nets over SdS−1, SdA−1, SdS−1, denoted as N1,N2,N3. By Lemma

13, we know that |N1| ≤ 9dS , |N2| ≤ 9dA , |N3| ≤ 9dS . Then we can get a union bound by

P

(
∃u ∈ N1, v ∈ N2, w ∈ N3,

∣∣∣∣
1

nl

nl∑

k=1

(Gl
k ×1 u

> ×2 v
> ×3 w

> − E[Gl
k ×1 u

> ×2 v
> ×3 w

>|F(k−1)α+l])

∣∣∣∣ > t

)

≤
∑

u∈N1

∑

v∈N2

∑

w∈N3

P

(∣∣∣∣
1

nl

nl∑

k=1

(Gl
k ×1 u

> ×2 v
> ×3 w

> − E[Gl
k ×1 u

> ×2 v
> ×3 w

>|F(k−1)α+l])

∣∣∣∣ > t

)

=2 · 92dS+dAe
− 1

2

nlt
2

2κλ̄+ 2
3K

3/2
maxκt ≤ 2e

− 1
2

nlt
2

2κλ̄+ 2
3K

3/2
maxκt

+4(dS+dA) log 3

.

Then according to Lemma 14, we know that

∥∥∥∥
1

nl

nl∑

k=1

(Gl
k − E[Gl

k|F(k−1)α+l])

∥∥∥∥
σ

≤64

3
max

u∈N1,v∈N2,w∈N3

∣∣∣∣
〈

1

nl

nl∑

k=1

(Gl
k − E[Gl

k|F(k−1)α+l]), u ◦ v ◦ w
〉∣∣∣∣,

which implies that

P

(∥∥∥∥
1

nl

nl∑

k=1

(Gl
k − E[Gl

k|F(k−1)α+l])

∥∥∥∥
σ

>
3

64
t

)
≤ 2e

− 1
2

nlt
2

2κλ̄+ 2
3K

3/2
maxκt

+4(dS+dA) log 3

≤ 2e
− 1

2

nlt
2

2κλ̄+ 2
3K

3/2
maxκt

+8(dS+dA)

.

Step 3:
Note that

E[Gl
k|F(k−1)α+l]− F =

∫
φ(s) ◦ ψ(a) ◦ φ(s′)(pα,π(s|µ(k−1)α+l)− ξ(s))η(a)p(s′|s, a)dsdads′.

So we get

‖E[Gl
k|F(k−1)α+l]− F ‖σ ≤ K

3
2
max

∫
|pα,π(s|µ(k−1)α+l)− ξ(s)|dsdads′ ≤ t,

which implies that

P

(∥∥∥∥
1

nl

nl∑

k=1

(Gl
k − F)

∥∥∥∥
σ

> 2t

)
≤ P

(∥∥∥∥
1

nl

nl∑

k=1

(Gl
k − E[Gl

k|F(k−1)α+l])

∥∥∥∥
σ

>
3

64
t

)

≤ 2e
− 1

2

nlt
2

2κλ̄+ 2
3K

3/2
maxκt

+8(dS+dA)

.

36

Learning state and action representations via tensor decomposition

Based on the fact that nl = dn−lα e ≥ n
α − 2, and replace 2t by t, we further get

P

(∥∥∥∥
1

nl

nl∑

k=1

(Gl
k − F)

∥∥∥∥
σ

> t

)
≤ 2e

− 1
16

(n−2α)t2

α(κλ̄+ 1
6K

3/2
maxκt)

+8(dS+dA)

.

Step 4:

Now, we get a union bound over l, and get

P

(
∃l,
∥∥∥∥

1

nl

nl∑

k=1

(Gl
k − F)

∥∥∥∥
σ

> t

)
≤
α−1∑

l=0

P

(∥∥∥∥
1

nl

nl∑

k=1

(Gl
k − F)

∥∥∥∥
σ

> 2t

)

≤2αe
− 1

16
(n−2α)t2

α(κλ̄+ 1
6K

3/2
maxκt)

+8(dS+dA)

.

Such the result implies that

P

(∥∥∥∥
1

n

n∑

k=1

(Gk − F)

∥∥∥∥
σ

> t

)
≤ P

(
∃l,
∥∥∥∥

1

nl

nl∑

k=1

(Gl
k − F)

∥∥∥∥
σ

> t

)

≤2αe
− 1

16
(n−2α)t2

α(κλ̄+ 1
6K

3/2
maxκt)

+8(dS+dA)

.

Now we assume

n/tmix
(log(n/tmix))2

≥ 1024
κK3

max

λ̄

(
log

tmix
δ

+ 8(dS + dA)

)

and take

t =

√
1024κλ̄(log tmix

δ + 8(dS + dA))(log n
tmix

)2

n/tmix
.

Then we have

α ≤ 4tmix log
4K

9
2
max

λ̄t
= 4tmix log


K

9
2
max

λ̄3/2

√
n/tmix

64κ(log tmix
δ + 8(dS + dA))(log n

tmix
)2




≤ 4tmix log


K

9
2
max

λ̄3/2

√
n/tmix

64 log n
tmix


 ≤ 8tmix log

n/tmix
log n

tmix

≤ 8tmix log
n

tmix
≤ 1

4
n

and

1

6
K

3
2
maxt =

1

6
K

3
2
max

√
1024λ̄κ(log tmix

δ + dS + dA)(log n
tmix

)2

n/tmix
≤ λ̄.

37

Ni, Duan, Dahleh, Wang, and Zhang

So we have

P(‖ 1

n

n∑

k=1

(Gk − F)‖σ > t) ≤ 2αe
− 1

16
(n−2α)t2

α(κλ̄+ 1
6K

3/2
maxκt)

+8(dS+dA)

≤ 16tmix log
n

tmix
e
− 1

1024
nt2

tmixκλ̄ log n
tmix

+8(dS+dA)

= 16tmix log
n

tmix
e
−(log

tmix
δ

+8(dS+dA)) log n
tmix

+8(dS+dA)

≤ 16tmix log
n

tmix
e
− log

tmix
δ

log n
tmix

≤ 16tmix log
n

tmix
e
− log

tmix
δ
−log n

tmix

=
16δ log n

tmix

n/tmix
≤ δ,

i.e., with probability at least 1− δ, we have

‖ 1

n

n∑

k=1

(Gk − F)‖σ = ‖F̄ − F ‖σ ≤

√
1024κλ̄(log tmix

δ + 8(dS + dA))(log n
tmix

)2

n/tmix
.

Step 5: According to our programming, we have

‖F̂ − F ‖σ ≤ ‖F̂ − F̄ ‖σ + ‖F̄ − F ‖σ ≤ 2‖F̄ − F ‖σ.

So with probability at least 1− δ, we have

‖F̂ − F ‖σ ≤

√
4096κλ̄(log tmix

δ + 8(dS + dA))(log n
tmix

)2

n/tmix
.

Proof of Lemma 17 Given that

n/tmix
(log(n/tmix))2

≥ 1024

(
‖Σ−1‖2σµ̄+

K2
max

µ̄
+
κK3

max

λ̄

)(
log

tmix
δ

+ 8(dS + dA)

)
,

then the assumptions in Lemma 16 and Lemma 15 are satisfied simultaneously, and with
probability at least 1− 2δ, we have the following relations hold simultaneously,

‖F̂ − F ‖σ ≤ 64

√
κλ̄(log tmix

δ + 8(dS + dA))(log n
tmix

)2

n/tmix
,

‖(Σ̂−1 −Σ−1)Σ
1
2 ‖σ ≤ 32‖Σ−1‖

3
2
σ

√
µ̄ log dStmix

δ (log n
tmix

)2

n/tmix
.

38

Learning state and action representations via tensor decomposition

So we have

‖F̂ ×1 (Σ̂−1Σ
1
2)> − F ×1 (Σ−1Σ

1
2)>‖σ

=‖F̂ ×1 (Σ̂−1Σ
1
2)> − F ×1 (Σ̂−1Σ

1
2)> + F ×1 (Σ̂−1Σ

1
2)> − F ×1 (Σ−1Σ

1
2)>‖σ

≤‖(F̂ − F)×1 (Σ̂−1Σ
1
2)>‖σ + ‖F ×1 ((Σ̂−1 −Σ−1)>Σ

1
2)‖σ

≤‖F − F̂ ‖σ‖Σ̂−1Σ
1
2 ‖σ + ‖F ‖σ‖(Σ̂−1 −Σ−1)Σ

1
2 ‖σ

≤‖F − F̂ ‖σ‖Σ−
1
2 ‖σ + ‖F ‖σ‖(Σ̂−1 −Σ−1)Σ

1
2 ‖σ + ‖F − F̂ ‖σ‖(Σ̂−1 −Σ−1)Σ

1
2 ‖σ.

Note that under our assumptions, we have

‖(Σ̂−1 −Σ−1)Σ
1
2 ‖σ ≤ 32‖Σ−1‖

3
2
σ

√
µ̄ log dStmix

δ (log n
tmix

)2

n/tmix

≤ 32‖Σ−1‖
3
2
σ

√
µ̄ log dStmix

δ

1024‖Σ−1‖2σµ̄(log tmix
δ + 8(dS + dA))

≤ ‖Σ− 1
2 ‖σ.

Meanwhile, we have

λ̄ = sup
‖u‖≤1,‖v‖≤1,‖w‖≤1

E[(〈φ(S) ◦ ψ(A) ◦ φ(S′), u ◦ v ◦ w〉)2]

≥ sup
‖u‖≤1,‖v‖≤1,‖w‖≤1

(E[〈φ(S) ◦ ψ(A) ◦ φ(S′), u ◦ v ◦ w〉])2

=

(
sup

‖u‖≤1,‖v‖≤1,‖w‖≤1
E[〈φ(S) ◦ ψ(A) ◦ φ(S′), u ◦ v ◦ w〉]

)2

= ‖F ‖2σ.
So we get

‖F̂ ×1 (Σ̂−1Σ
1
2)> − F ×1 (Σ−1Σ

1
2)>‖σ

≤2‖F − F̂ ‖σ‖Σ−
1
2 ‖σ + ‖F ‖σ‖(Σ̂−1 −Σ−1)Σ

1
2 ‖σ

≤128‖Σ−1‖
1
2
σ

√
κλ̄(log tmix

δ + 8(dS + dA))(log n
tmix

)2

n/tmix

+ 32‖F ‖σ‖Σ−1‖
3
2
σ

√
µ̄ log dStmix

δ (log n
tmix

)2

n/tmix

≤256‖Σ−1‖
1
2
σ

√
λ̄(log tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)(log n
tmix

)2

n/tmix
.

Replacing δ by 1
2δ, then with probability at least 1− δ, we get

‖F̂ ×1 (Σ̂−1Σ
1
2)> − F ×1 (Σ−1Σ

1
2)>‖σ

≤256‖Σ−1‖
1
2
σ

√
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)(log n
tmix

)2

n/tmix
,

39

Ni, Duan, Dahleh, Wang, and Zhang

which has finished the proof.

Proof of Lemma 18 Note that for any vector w ∈ RdS such that ‖w‖ = 1, the columns
of U3 span the row space of matrix P ×1 w

> and the columns of Û3 span the row space of
matrix P̂ ×1 w

>. So according to Wedin’s lemma Wedin (1972), we have

‖ sin Θ(U3, Û3)‖ ≤ ‖P ×1 w
> − P̂ ×1 w

>‖
σm(P ×1 w>)

≤ ‖P − P̂ ‖σ
σm(P ×1 w>)

.

Taking infimum over w, we get

‖ sin Θ(U3, Û3)‖ ≤ ‖P − P̂ ‖σ
sup‖w‖=1 σm(P ×1 w>)

=
‖P − P̂ ‖σ

σ
,

which has finished the proof.

Proof of Theorem 4 According to the result of Lemma 17, we know that with probability
at least 1− δ, we have

‖F̂ ×1 (Σ̂−1Σ
1
2)> − F ×1 (Σ−1Σ

1
2)>‖σ

≤256‖Σ−1‖
1
2
σ

√
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)(log n
tmix

)2

n/tmix

and our result follows directly by noticing

‖P̂ − P ‖σ = ‖F̂ ×1 Σ̂−1 − F ×1 Σ−1‖σ
= ‖(F̂ ×1 (Σ̂−1Σ

1
2)> − F ×1 (Σ−1Σ

1
2)>)×1 Σ−

1
2 ‖σ

≤ ‖(F̂ ×1 (Σ̂−1Σ
1
2)> − F ×1 (Σ−1Σ

1
2)>)‖σ‖Σ−1‖

1
2
σ

≤ 256‖Σ−1‖σ

√
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)(log n
tmix

)2

n/tmix
,

which has finished the proof.

Proof of Theorem 5 We first prove

dist[(s, a), (s′, a′)] = ‖C ×1 f(s)> ×2 g(a)> −C ×1 f(s′)> ×2 g(a′)>‖.

For any f ∈ HS such that ‖f‖HS ≤ 1, we can always find some weight w such that
‖w‖ ≤ 1, f = w>φ, and

|〈p(·|s, a), f(·)〉 − 〈p(·|s′, a′), f(·)〉|
=|w>〈p(·|s, a), φ(·)〉 −w>〈p(·|s′, a′), φ(·)〉|
≤‖〈p(·|s, a), φ(·)〉 − 〈p(·|s′, a′), φ(·)〉‖
=‖P ×1 φ(s)> ×2 ψ(a)> − P ×1 φ(s′)> ×2 ψ(a′)>‖
=‖C ×1 (U>1 φ(s))> ×2 (U>2 ψ(a))> ×3 U3 −C ×1 (U>1 φ(s′))> ×2 (U>2 ψ(a′))> ×3 U3‖
=‖C ×1 (U>1 φ(s))> ×2 (U>2 ψ(a))> −C ×1 (U>1 φ(s′))> ×2 (U>2 ψ(a′))>‖
=‖C ×1 f(s)> ×2 g(a)> −C ×1 f(s′)> ×2 g(a′)>‖.

40

Learning state and action representations via tensor decomposition

Now we are ready to prove the main result. Notice that

d̂ist[(s, a), (s′, a′)] = ‖Ĉ ×1 f̂(s)> ×2 ĝ(a)> − Ĉ ×1 f̂(s′)> ×2 ĝ(a′)>‖
= ‖Ĉ ×1 (Û>1 φ(s))> ×2 (Û>2 ψ(a))> − Ĉ ×1 (Û>1 φ(s′))> ×2 (Û>2 ψ(a′))>‖
= ‖P̂ ×1 φ(s)> ×2 ψ(a)> ×3 Û

>
3 − P̂ ×1 φ(s′)> ×2 ψ(a′)> ×3 Û

>
3 ‖

= ‖Φ̂(s, a)− Φ̂(s′, a′)‖
and for any orthogonal matrix O ∈ Rm×m, we have

dist[(s, a), (s′, a′)] = ‖C ×1 f(s)> ×2 g(a)> −C ×1 f(s′)> ×2 g(a′)>‖
= ‖C ×1 (U>1 φ(s))> ×2 (U>2 ψ(a))> −C ×1 (U>1 φ(s′))> ×2 (U>2 ψ(a′))>‖
= ‖P ×1 φ(s)> ×2 ψ(a)> ×3 U

>
3 − P ×1 φ(s′)> ×2 ψ(a′)> ×3 U

>
3 ‖

= ‖P ×1 φ(s)> ×2 ψ(a)> ×3 (U3O)> − P ×1 φ(s′)> ×2 ψ(a′)> ×3 (U3O)>‖
= ‖O>Φ(s, a)−O>Φ(s′, a′)‖.

So we have

|d̂ist[(s, a), (s′, a′)]− dist[(s, a), (s′, a′)]| ≤ ‖Φ̂(s, a)−O>Φ(s, a)‖+ ‖Φ̂(s′, a′)−O>Φ(s′, a′)‖.

It suffices to bound ‖Φ̂(s, a)−O>Φ(s, a)‖, and ‖Φ̂(s′, a′)−O>Φ(s′, a′)‖ can be bounded
in the exactly same way. Notice that

‖Φ̂(s, a)−O>Φ(s, a)‖
≤‖(P̂ − P)×1 φ(s)> ×2 ψ(a)> ×3 Û

>
3 + P ×1 φ(s)> ×2 ψ(a)> ×3 (Û3 −U3O)>‖

≤‖P − P̂ ‖σKmax + ‖P ‖σKmax‖U>3 − Û>3 O‖.
In particular, By Part 3, Lemma 1 in Cai and Zhang (2018), one can choose O such that

‖U>3 − Û>3 O‖ ≤
√

2‖ sin Θ(U3, Û3)‖.
Then we have

‖Φ̂(s, a)−O>Φ(s, a)‖ ≤ ‖P − P̂ ‖σKmax +
√

2‖P ‖σKmax‖ sin Θ(U3, Û3)‖.
Now according to the result of Lemma 18, we know that

‖ sin Θ(U3, Û3)‖ ≤ ‖P − P̂ ‖σ
σ

.

So we get

‖Φ̂(s, a)−O>Φ(s, a)‖ ≤ Kmax

(
1 +
√

2
‖P ‖σ
σ

)
‖P̂ − P ‖σ.

It follows that

|d̂ist[(s, a), (s′, a′)]− dist[(s, a), (s′, a′)]| ≤ ‖Φ̂(s, a)−O>Φ(s, a)‖+ ‖Φ̂(s′, a′)−O>Φ(s′, a′)‖

≤ 2Kmax

(
1 +
√

2
‖P ‖σ
σ

)
‖P̂ − P ‖σ,

which has finished the proof.

41

Ni, Duan, Dahleh, Wang, and Zhang

Proof of Theorem 6 Define p̂d(·|s, a) =
∑ns

i=1

∑na
j=1 q̂ij(·)1s∈Âi1a∈B̂j , then we have

∑

i,j

∫

Âi×B̂j
ξ(s)η(a)‖p(·|s, a)− q̂ij(·)‖2HSdsda =

∫
ξ(s)η(a)‖p(·|s, a)− p̂d(·|s, a)‖2HSdsda

=

∫
ξ(s)η(a)‖〈p(·|s, a), φ(·)〉 − 〈p̂d(·|s, a), φ(·)〉‖2dsda.

Note that

∫
ξ(s)η(a)‖〈p(·|s, a), φ(·)〉 − 〈p̂d(·|s, a), φ(·)〉‖2dsda

=

∫
ξ(s)η(a)‖〈p(·|s, a), φ(·)〉 − 〈p̂(·|s, a), φ(·)〉+ 〈p̂(·|s, a), φ(·)〉 − 〈p̂d(·|s, a), φ(·)〉‖2dsda

≤2

∫
ξ(s)η(a)‖〈p(·|s, a), φ(·)〉 − 〈p̂(·|s, a), φ(·)〉‖2dsda

+ 2

∫
ξ(s)η(a)‖〈p̂(·|s, a), φ(·)〉 − 〈p̂d(·|s, a), φ(·)〉‖2dsda

=2

∫
ξ(s)η(a)‖(P − P̂)×1 φ(s)> ×2 ψ(a)>‖2dsda

+ 2

∫
ξ(s)η(a)‖〈p̂(·|s, a), φ(·)〉 − 〈p̂d(·|s, a), φ(·)〉‖2dsda.

We have

∫
ξ(s)η(a)‖〈p̂(·|s, a), φ(·)〉 − 〈p̂d(·|s, a), φ(·)〉‖2dsda

=

∫
ξ(s)η(a)

∥∥∥∥∥Ĉ ×1 f̂(s)> ×2 ĝ(a)> ×3 Û3 −
ns∑

i=1

na∑

j=1

1s∈Âi1a∈B̂j Û3ẑij

∥∥∥∥∥

2

dsda

=

∫
ξ(s)η(a)

∥∥∥∥∥Ĉ ×1 f̂(s)> ×2 ĝ(a)> −
ns∑

i=1

na∑

j=1

1s∈Âi1a∈B̂j ẑij

∥∥∥∥∥

2

dsda.

42

Learning state and action representations via tensor decomposition

For any orthogonal matrix O ∈ Rm×m, because Âi, B̂j , ẑij is the minimizer of the above
term, we have

∫
ξ(s)η(a)‖Ĉ ×1 f̂(s)> ×2 ĝ(a)> −

ns∑

i=1

na∑

j=1

1s∈Âi1a∈B̂j ẑij‖
2dsda

≤
∫
ξ(s)η(a)‖Ĉ ×1 f̂(s)> ×2 ĝ(a)> −

ns∑

i=1

na∑

j=1

1s∈Ai1a∈BjOzij‖2dsda

≤2

∫
ξ(s)η(a)‖Ĉ ×1 f̂(s)> ×2 ĝ(a)> −C ×1 f(s)> ×2 g(a)> ×3 O‖2dsda

+ 2

∫
ξ(s)η(a)‖C ×1 f(s)> ×2 g(a)> ×3 O −

ns∑

i=1

na∑

j=1

1s∈Ai1a∈BjOzij‖2dsda

=2

∫
ξ(s)η(a)‖Ĉ ×1 f̂(s)> ×2 ĝ(a)> −C ×1 f(s)> ×2 g(a)> ×3 O‖2dsda

+ 2

∫
ξ(s)η(a)‖C ×1 f(s)> ×2 g(a)> −

ns∑

i=1

na∑

j=1

1s∈Ai1a∈Bjzij‖2dsda

=2

∫
ξ(s)η(a)‖Ĉ ×1 f̂(s)> ×2 ĝ(a)> −C ×1 f(s)> ×2 g(a)> ×3 O‖2dsda

+ 2

∫
ξ(s)η(a)‖〈p(·|s, a), φ(·)〉 − 〈pd(·|s, a), φ(·)〉‖2dsda

=2

∫
ξ(s)η(a)‖Ĉ ×1 f̂(s)> ×2 ĝ(a)> −C ×1 f(s)> ×2 g(a)> ×3 O‖2dsda+ 2L∗

where we denote

zij = U>3 〈q∗ij(·), φ(·)〉, pd(·|s, a) =

ns∑

i=1

na∑

j=1

q∗ij(·)1s∈Ai1a∈Bj .

Furthermore, we have

∫
ξ(s)η(a)‖Ĉ ×1 f̂(s)> ×2 ĝ(a)> −C ×1 f(s)> ×2 g(a)> ×3 O‖2dsda

=

∫
ξ(s)η(a)‖P̂ ×1 φ(s)> ×2 ψ(a)> ×3 Û

>
3 − P ×1 φ(s)> ×2 ψ(a)> ×3 (U3O

>)>‖2dsda

≤2

∫
ξ(s)η(a)‖(P̂ − P)×1 φ(s)> ×2 ψ(a)> ×3 Û

>
3 ‖2dsda

+ 2

∫
ξ(s)η(a)‖P ×1 φ(s)> ×2 ψ(a)> ×3 (Û3 −U3O

>)>‖2dsda

≤2

∫
ξ(s)η(a)‖(P̂ − P)×1 φ(s)> ×2 ψ(a)>‖2dsda

+ 2

∫
ξ(s)η(a)‖P ×1 φ(s)> ×2 ψ(a)> ×3 (Û3 −U3O

>)>‖2dsda.

43

Ni, Duan, Dahleh, Wang, and Zhang

Therefore,
∫
ξ(s)η(a)‖〈p(·|s, a), φ(·)〉 − 〈p̂d(·|s, a), φ(·)〉‖2dsda

≤4L∗ + 10

∫
ξ(s)η(a)‖(P̂ − P)×1 φ(s)> ×2 ψ(a)>‖2dsda

+ 8

∫
ξ(s)η(a)‖P ×1 φ(s)> ×2 ψ(a)> ×3 (Û3 −U3O

>)>‖2dsda

=10

dS∑

k=1

∫
ξ(s)η(a)

(
(P̂ − P)::k ×1 φ(s)> ×2 ψ(a)>

)2
dsda

+ 8

∫
ξ(s)η(a)‖P ×1 φ(s)> ×2 ψ(a)> ×3 (Û3−U3O

>)>‖2dsda+ 4L∗

=10

dS∑

k=1

∫
ξ(s)η(a)ψ(a)>(P̂ − P)>::kφ(s)φ(s)>(P̂ − P)::kψ(a)dsda

+ 8

∫
ξ(s)η(a)‖P ×1 φ(s)> ×2 ψ(a)> ×3 (Û3 −U3O

>)>‖2dsda+ 4L∗.

Note that
∫
ξ(s)φ(s)φ(s)>ds = Σ,

∫
η(a)ψ(a)ψ(a)>da = IdA

So we have
∫
ξ(s)η(a)ψ(a)>(P̂ − P)>::kφ(s)φ(s)>(P̂ − P)::kψ(a)dsda

=

∫
η(a)ψ(a)>(P̂ − P)>::k

(∫
ξ(s)φ(s)φ(s)>ds

)
(P̂ − P)::kψ(a)da

=

∫
η(a)ψ(a)>(P̂ − P)>::kΣ(P̂ − P)::kψ(a)da

=

∫
tr
[
η(a)ψ(a)>(P̂ − P)>::kΣ(P̂ − P)::kψ(a)

]
da

=tr

[
(P̂ − P)>::kΣ(P̂ − P)::k

∫
η(a)ψ(a)ψ(a)>da

]

=tr
[
(P̂ − P)>::kΣ(P̂ − P)::k

]

=‖Σ 1
2 (P̂ − P)::k‖2F ,

which implies

dS∑

k=1

∫
ξ(s)η(a)ψ(a)>(P̂ − P)>::kφ(s)φ(s)>(P̂ − P)::kψ(a)dsda

≤
dS∑

k=1

‖Σ 1
2 (P̂ − P)::k‖2F = ‖(P − P̂)×1 Σ

1
2 ‖2F .

44

Learning state and action representations via tensor decomposition

With a similar argument, we also have
∫
ξ(s)η(a)‖P ×1 φ(s)> ×2 ψ(a)> ×3 (Û3 −U3O

>)>‖2dsda = ‖P ×1 Σ
1
2 ×3 (Û3 −U3O

>)>‖2F .

Therefore,
∫
ξ(s)η(a)‖〈p(·|s, a), φ(·)〉 − 〈p̂d(·|s, a), φ(·)〉‖2dsda

≤10‖(P̂ − P)×1 Σ
1
2 ‖2F + 8‖P ×1 Σ

1
2 ×3 (Û3 −U3O

>)>‖2F + 4L∗.

Note that

(P̂ − P)×1 Σ
1
2 = F̂ ×1 (Σ̂−1Σ

1
2)> − F ×1 (Σ−1Σ

1
2)>.

According to the result of Lemma 12, and note that Tucker-Rank(F̂ ×1 (Σ̂−1Σ
1
2)> − F ×1

(Σ−1Σ
1
2)>) ≤ (2r, 2l, 2m), we have

‖F̂ ×1 (Σ̂−1Σ
1
2)> − F ×1 (Σ−1Σ

1
2)>‖F

≤2

√
rlm

max{r, l,m}‖F̂ ×1 (Σ̂−1Σ
1
2)> − F ×1 (Σ−1Σ

1
2)>‖σ.

For the second term, similarly we have

‖P ×1 Σ
1
2 ×3 (Û3 −U3O

>)>‖F ≤ 2

√
rlm

max{r, l,m}‖P ×1 Σ
1
2 ×3 (Û3 −U3O

>)>‖σ.

Note that

‖P ×1 Σ
1
2 ×3 (Û3 −U3O

>)>‖σ ≤ ‖F ‖σ‖Σ−
1
2 ‖σ‖Û3 −U3O

>‖σ ≤
√
λ̄‖Σ− 1

2 ‖σ‖Û3 −U3O
>‖σ.

In particular, by Part 3, Lemma 1 in Cai and Zhang (2018), we can choose O such that
‖Û3 −U3O

>‖σ ≤
√

2‖ sin Θ(U3, Û3)‖σ and according to the result of Lemma 18, we know
that

‖ sin Θ(U3, Û3)‖σ ≤
‖P − P̂ ‖σ

σ
.

By Theorem 4 and Lemma 17, we know that with probability at least 1− δ, we have

‖F̂ ×1 (Σ̂−1Σ
1
2)> − F ×1 (Σ−1Σ

1
2)>‖σ

≤256‖Σ−1‖
1
2
σ

√
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)(log n
tmix

)2

n/tmix

‖P̂ − P ‖σ

≤256‖Σ−1‖σ

√
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)(log n
tmix

)2

n/tmix
,

45

Ni, Duan, Dahleh, Wang, and Zhang

which implies that with probability at least 1− δ,
∫
ξ(s)η(a)‖〈p(·|s, a), φ(·)〉 − 〈p̂d(·|s, a), φ(·)〉‖2dsda

≤222‖Σ−1‖σ
rlm

max{r, l,m}

(
1 +

2λ̄‖Σ−1‖2σ
σ2

)
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)(log n
tmix

)2

n/tmix
+ 4L∗.

Then we get the desired result.

Proof of Theorem 7 For each k ∈ [ns], l ∈ [na], define

δ2
kl = min

(i,j) 6=(k,l)
‖qkl(·)− qij(·)‖2HS = min

(i,j)6=(k,l)
‖zkl − zij‖2, Ψ̄(s, a) =

ns∑

i=1

na∑

j=1

ẑij1s∈Âi1a∈B̂j .

where we still use the notation zij = U>3 〈qij(·), φ(·)〉. For an arbitrary orthogonal matrix
O ∈ Rm×m, let

Skl = {(s, a) ∈ Ak ×Bl|‖OΨ̄(s, a)− zkl‖ ≥
δkl
2
},

then we have

ns∑

k=1

na∑

l=1

(ξ × η)(Skl)δ
2
kl ≤ 4

ns∑

k=1

na∑

l=1

∫

Skl

ξ(s)η(a)‖OΨ̄(s, a)− zkl‖2dsda

≤ 4

∫
ξ(s)η(a)

∥∥∥∥∥OΨ̄(s, a)−
ns∑

k=1

na∑

l=1

zkl1s∈Ak1a∈Bl

∥∥∥∥∥

2

dsda

= 4

∥∥∥∥∥OΨ̄(·)−
ns∑

k=1

na∑

l=1

zkl1Ak×Bl(·)
∥∥∥∥∥

2

L2(ξ×η)

.

Note that

∥∥∥∥∥OΨ̄(·)−
ns∑

k=1

na∑

l=1

zkl1Ak×Bl(·)
∥∥∥∥∥

2

L2(ξ×η)

≤‖OΨ̄(·)− Ĉ ×1 f̂
>(·)×2 ĝ

>(·)×3 O‖L2(ξ×η)

+

∥∥∥∥∥Ĉ ×1 f̂(·)> ×2 ĝ(·)> ×3 O −
ns∑

k=1

na∑

l=1

zkl1Ak×Bl(·)
∥∥∥∥∥
L2(ξ×η)

=‖Ψ̄(·)− Ĉ ×1 f̂(·)> ×2 ĝ(·)>‖L2(ξ×η)

+

∥∥∥∥∥Ĉ ×1 f̂(·)> ×2 ĝ(·)> ×3 O −
ns∑

k=1

na∑

l=1

zkl1Ak×Bl(·)
∥∥∥∥∥
L2(ξ×η)

.

46

Learning state and action representations via tensor decomposition

We use the fact that Âi, B̂j , ẑij is the solution to (4), and derive

‖Ψ̄(·)− Ĉ ×1 f̂(·)> ×2 ĝ(·)>‖L2(ξ×η)

=

∥∥∥∥∥
ns∑

i=1

na∑

j=1

ẑij1Âi×B̂j (·)− Ĉ ×1 f̂(·)> ×2 ĝ(·)>
∥∥∥∥∥
L2(ξ×η)

≤
∥∥∥∥∥

ns∑

i=1

na∑

j=1

O>zij1Ai×Bj (·)− Ĉ ×1 f̂(·)> ×2 ĝ(·)>
∥∥∥∥∥
L2(ξ×η)

=‖C ×1 f(·)> ×2 g(·)> ×3 O
> − Ĉ ×1 f̂(·)> ×2 ĝ(·)>‖L2(ξ×η)

=‖P ×1 φ(·)> ×2 ψ(·)> ×3 (U3O)> − P̂ ×1 φ(·)> ×2 ψ(·)> ×3 Û
>
3 ‖L2(ξ×η).

Here we use the fact that

C ×1 f(s)> ×2 g(a)> = U>3 〈p(·|s, a), φ(·)〉 =

ns∑

i=1

na∑

j=1

zij1Ai×Bj (s, a)

because of Assumption 3. Therefore, we have

∥∥∥∥∥OΨ̄(·)−
ns∑

k=1

na∑

l=1

zkl1Ak×Bl(·)
∥∥∥∥∥
L2(ξ×η)

≤2‖P ×1 φ(·)> ×2 ψ(·)> ×3 (U3O)> − P̂ ×1 φ(·)> ×2 ψ(·)> ×3 Û
>
3 ‖L2(ξ×η)

and

ns∑

k=1

na∑

l=1

(ξ × η)(Skl)δ
2
kl

≤16‖P ×1 φ(·)> ×2 ψ(·)> ×3 (U3O)> − P̂ ×1 φ(·)> ×2 ψ(·)> ×3 Û
>
3 ‖2L2(ξ×η)

≤32‖(P − P̂)×1 φ(·)> ×2 ψ(·)> ×3 Û
>
3 ‖2L2(ξ×η)

+ 32‖P ×1 φ(·)> ×2 ψ(·)> ×3 (U3O − Û3)>‖2L2(ξ×η)

≤32‖(P − P̂)×1 φ(·)> ×2 ψ(·)>‖2L2(ξ×η)

+ 32‖P ×1 φ(·)> ×2 ψ(·)> ×3 (U3O − Û3)>‖2L2(ξ×η)

=32‖(P − P̂)×1 Σ
1
2 ‖2F + 32‖P ×1 Σ

1
2 ×3 (U3O − Û3)>‖2F .

Again by Part 3, Lemma 1 in Cai and Zhang (2018), we can choose O such that

‖U3O
> − Û3‖ ≤

√
2‖ sin Θ(U3, Û3)‖.

With a similar argument in the proof of Theorem 6, we know when

n/tmix
(log(n/tmix))2

≥ 1024

(
‖Σ−1‖2σµ̄+

K2
max

µ̄
+
κK3

max

λ̄

)(
log

tmix
δ

+ 8(dS + dA)

)
,

47

Ni, Duan, Dahleh, Wang, and Zhang

with probability at least 1− δ we have

32‖(P − P̂)×1 Σ
1
2 ‖2F + 32‖P ×1 Σ

1
2 ×3 (U3O

> − Û3)>‖2F

≤224‖Σ−1‖σ
rlm

max{r, l,m}

(
1 +

2λ̄‖Σ−1‖2σ
σ2

)
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)(log n
tmix

)2

n/tmix
.

Now we choose sufficiently large n such that

32‖(P − P̂)×1 Σ
1
2 ‖2F + 32‖P ×1 Σ

1
2 ×3 (U3O

> − Û3)>‖2F < ∆2
1.

Then for any 1 ≤ k ≤ ns, 1 ≤ l ≤ na we always have

(ξ × η)(Skl)δ
2
kl ≤

ns∑

k=1

na∑

l=1

(ξ × η)(Skl)δ
2
kl < ∆2

1 ≤ (ξ × η)(Ak ×Bl)δ2
kl,

i.e., (ξ × η)(Skl) ≤ (ξ × η)(Ak × Bl), and (ξ × η)((Ak × Bl) \ Skl) 6= ∅. Now, for any
(i, j) 6= (k, l), we are going to show that ∀(s, a) ∈ (Ai ×Bj) \ Sij , (s′, a′) ∈ (Ak ×Bl) \ Skl,
we always have Ψ̄(s, a) 6= Ψ̄(s′, a′). Suppose the claim is not true, then we can find the
corresponding (s, a), (s′, a′), such that Ψ̄(s, a) = Ψ̄(s′, a′). However, then we have

max{δij , δkl} ≤ ‖zij − zkl‖ ≤ ‖zij −OΨ̄(s, a)‖+ ‖OΨ̄(s′, a′)− zkl‖ ≤
δij
2

+
δkl
2
,

which leads to a contradiction.
Furthermore, notice that for any (s, a), (s′, a′) ∈ (Ai×Bj)\Sij , we always have Ψ̄(s, a) =

Ψ̄(s′, a′), otherwise Ψ̄(s, a) will take more than nsna values.
The above two claims show that we can find two one-to-one mappings σ1 : [ns] →

[ns], σ2 : [na]→ [na], such that for any 1 ≤ k ≤ ns, 1 ≤ l ≤ na, we have

(Ak ×Bl) \ Skl ⊆ Âσ1(k) × B̂σ2(l).

Without loss of generality we can assume that σ1(k) = k, σ2(l) = l, which is always possible
after we rearrange the indexes of Âk, B̂l. Then we have

(Ak ×Bl) \ Skl ⊆ (Âk × B̂l),

which implies

(Ak ×Bl) \ (Âk × B̂l) ⊆ Skl.

Therefore, for n sufficiently large, we have

ns∑

i=1

na∑

j=1

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

≤
ns∑

i=1

na∑

j=1

(ξ × η)(Sij)δ
2
ij

∆2
1

≤224 1

∆2
1

‖Σ−1‖σ
rlm

max{r, l,m}

(
1 +

2λ̄‖Σ−1‖2σ
σ2

)
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)(log n
tmix

)2

n/tmix
,

which has finished the proof.

48

Learning state and action representations via tensor decomposition

Proof of Theorem 8 According to the result of Theorem 7, we can find some mapping
σ1, σ2, such that

ns∑

i=1

na∑

j=1

(ξ × η)((Ai ×Bj) \ (Âσ1(i) × B̂σ2(j)))

(ξ × η)(Ai ×Bj)

≤224 1

∆2
1

‖Σ−1‖σ
rlm

max{r, l,m}

(
1 +

2λ̄‖Σ−1‖2σ
σ2

)
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)

(n/tmix)(log n
tmix

)−2
.

Without loss of generality we assume that σ1(k) = k, σ2(l) = l,∀k ∈ [ns], l ∈ [na]. In this
case, the result changes into

ns∑

i=1

na∑

j=1

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

≤224 1

∆2
1

‖Σ−1‖σ
rlm

max{r, l,m}

(
1 +

2λ̄‖Σ−1‖2σ
σ2

)
λ̄(log 2tmix

δ + dS + dA)(κ+ µ̄‖Σ−1‖2σ)

(n/tmix)(log n
tmix

)−2
=: ε.

Based on that, we want to further bound
∑ns

i=1

∑na
j=1

(ξ×η)((Âi×B̂j)\(Ai×Bj))
(ξ×η)(Âi×B̂j)

. Notice that

ns∑

i=1

na∑

j=1

(ξ × η)((Âi × B̂j) \ (Ai ×Bj)) =

ns∑

i=1

na∑

j=1

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))

=

ns∑

i=1

na∑

j=1

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

(ξ × η)(Ai ×Bj)

≤ c̄
ns∑

i=1

na∑

j=1

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

≤ c̄ε

and

(ξ × η)(Ai ×Bj) ≤ (ξ × η)(Âi × B̂j) + (ξ × η)((Ai ×Bj) \ (Âi × B̂j)) ≤ (ξ × η)(Âi × B̂j) + c̄ε.

So we have

ns∑

i=1

na∑

j=1

(ξ × η)((Âi × B̂j) \ (Ai ×Bj))
(ξ × η)(Âi × B̂j)

≤
ns∑

i=1

na∑

j=1

(ξ × η)((Âi × B̂j) \ (Ai ×Bj))
(ξ × η)(Ai ×Bj)− c̄ε

≤
ns∑

i=1

na∑

j=1

(ξ × η)((Âi × B̂j) \ (Ai ×Bj))
c− c̄ε

=

ns∑

i=1

na∑

j=1

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
c− c̄ε

≤ c̄

c− c̄ε

ns∑

i=1

na∑

j=1

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

≤ c̄

c− c̄εM({Âi}nsi=1, {B̂j}naj=1).

49

Ni, Duan, Dahleh, Wang, and Zhang

Therefore, when n is sufficiently large such that c̄ε ≤ 1
2c, we have

ns∑

i=1

na∑

j=1

(ξ × η)((Âi × B̂j) \ (Ai ×Bj))
(ξ × η)(Âi × B̂j)

≤ 2
c̄

c
M({Âi}nsi=1, {B̂j}naj=1).

Now we are ready to prove the main result. By definition, the transition dynamic can be
written as

p̂(s′|s, a) =

ns∑

i=1

na∑

j=1

ns∑

k=1

1

ξ(Âk)
q̂(k|i, j)1s∈Âi1a∈B̂j1s′∈Âk .

Now, without loss of generality, we can assume that the groundtruth transition dynamic
also takes the form

p(s′|s, a) =

ns∑

i=1

na∑

j=1

ns∑

k=1

1

ξ(Ak)
q(k|i, j)1s∈Ai1a∈Bj1s′∈Ak .

which is due to the fact that the policy and reward are the same in the same block, so for a
general transition dynamic satisfying assumption 3, we can simply set q(k|i, j) =

∫
Ak
q∗ij(s

′)ds,
then the transition dynamic provided by the above formula will lead to exactly the same
H-step value.

Because the infimum is taken over all possible q̂, we can choose q̂ exactly to be q, and get

p̂π(s′, a′|s, a) =

ns∑

i=1

na∑

j=1

ns∑

k=1

na∑

l=1

qπ(k, l|i, j)1s∈Âi1a∈B̂j1s′∈Âk1a′∈B̂l
ξ(Âk)η(B̂l)

,

where

qπ(k, l|i, j) = π(l|k)q(k|i, j).

For each single path (s1, a1), (s2, a2), · · · , (sH , aH), consider a series of auxiliary random
variables T1, T2, · · · , TH , which are defined inductively by

T0 = 0, Th = max
{
Th−1,1(sh,ah)6∈⋃nsi=1(Ai∩Âi)×

⋃na
j=1(Bj∩B̂j)

}
.

Then for each reward function rh, h ∈ [H] and any initial distribution µ, we have

Eπµ[rh(sh, ah)] = Eπµ[rh(sh, ah)1Th=0] + Eπµ[rh(sh, ah)1Th=1],

Êπµ[rh(sh, ah)] = Êπµ[rh(sh, ah)1Th=0] + Êπµ[rh(sh, ah)1Th=1]

and

|Eπµ[rh(sh, ah)]− Êπµ[rh(sh, ah)]|
≤|Eπµ[rh(sh, ah)1Th=0]− Êπµ[rh(sh, ah)1Th=0]|+ (Pπµ(Th = 1) + P̂πµ(Th = 1)).

50

Learning state and action representations via tensor decomposition

For the second term, note that

Pπµ(Th+1 = 1)

=Pπµ(Th+1 = 1|Th = 1)Pπµ(Th = 1) + Pπµ(Th+1 = 1|Th = 0)Pπµ(Th = 0)

=Pπµ(Th = 1) +

ns∑

i=1

na∑

j=1

Pπµ(sh+1 ∈ Ai, ah+1 ∈ Bj , Th+1 = 1|Th = 0)

=Pπµ(Th = 1) +

ns∑

i=1

na∑

j=1

Pπµ((sh+1, ah+1) ∈ (Ai ×Bj) \ (Âi × B̂j)|sh+1 ∈ Ai, ah+1 ∈ Bj)

· Pπµ(sh+1 ∈ Ai, ah+1 ∈ Bj |Th = 0)

=Pπµ(Th = 1) +

ns∑

i=1

na∑

j=1

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

Pπµ(sh+1 ∈ Ai, ah+1 ∈ Bj |Th = 0)

≤Pπµ(Th = 1) + max
1≤i≤ns,1≤j≤na

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

,

which implies

Pπµ(Th = 1) ≤ H max
1≤i≤ns,1≤j≤na

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

.

Similarly, we have

P̂πµ(Th = 1) ≤ H max
1≤i≤ns,1≤j≤na

(ξ × η)((Âi × B̂j) \ (Ai ×Bj))
(ξ × η)(Âi × B̂j)

.

For the first term, we consider a discrete MDP over (Ai ∩ Âi)× (Bj ∩ B̂j), 1 ≤ i ≤ ns, 1 ≤
j ≤ na plus an absorbing state C0, and two corresponding transition probabilities

P((Ak ∩ Âk)× (Bl ∩ B̂l)|(Ai ∩ Âi)× (Bj ∩ B̂j)) = qπ(k, l|i, j)(ξ × η)((Ak ∩ Âk)× (Bl ∩ B̂l))
(ξ × η)(Ak ×Bl)

,

P(C0|(Ai ∩ Âi)× (Bj ∩ B̂j)) = 1−
ns∑

k=1

na∑

l=1

P((Ak ∩ Âk)× (Bl ∩ B̂l)|(Ai ∩ Âi)× (Bj ∩ B̂j))

P̂((Ak ∩ Âk)× (Bl ∩ B̂l)|(Ai ∩ Âi)× (Bj ∩ B̂j)) = qπ(k, l|i, j)(ξ × η)((Ak ∩ Âk)× (Bl ∩ B̂l))
(ξ × η)(Âk × B̂l)

,

P̂(C0|(Ai ∩ Âi)× (Bj ∩ B̂j)) = 1−
ns∑

k=1

na∑

l=1

P̂((Ak ∩ Âk)× (Bl ∩ B̂l)|(Ai ∩ Âi)× (Bj ∩ B̂j)).

We use P , P̂ to denote the two corresponding transition matrices restricted on (Ai ∩ Âi)×
(Bj ∩ B̂j), 1 ≤ i ≤ ns, 1 ≤ j ≤ na (i.e., the entries related with C0 are not included, so

P , P̂ are sub-matrices of two stochastic matrices). For two different distributions µ, µ̃ over

51

Ni, Duan, Dahleh, Wang, and Zhang

(Ai ∩ Âi)× (Bj ∩ B̂j), 1 ≤ i ≤ ns, 1 ≤ j ≤ na, we have

‖µP − µ̃P̂ ‖1 ≤ ‖µP − µP̂ ‖1 + ‖µP̂ − µ̃P̂ ‖1
≤ ‖µ‖1 max

(i,j),(k,l)
|(P − P̂)(i,j),(k,l)|+ ‖µ− µ̃‖1 max

(i,j),(k,l)
|P̂(i,j),(k,l)|

≤ max
(i,j),(k,l)

|(P − P̂)(i,j),(k,l)|+ ‖µ− µ̃‖1.

Note that

(P − P̂)(i,j),(k,l) =

(
(ξ × η)((Ak ∩ Âk)× (Bl ∩ B̂l))

(ξ × η)(Ak ×Bl)
− (ξ × η)((Ak ∩ Âk)× (Bl ∩ B̂l))

(ξ × η)(Âk × B̂l)

)
qπ(k, l|i, j),

so we have

max
(i,j),(k,l)

|(P − P̂)(i,j),(k,l)|

≤ max
1≤i≤ns,1≤j≤na

∣∣∣∣∣
(ξ × η)((Ai ∩ Âi)× (Bj ∩ B̂j))

(ξ × η)(Ai ×Bj)
− (ξ × η)((Ai ∩ Âi)× (Bj ∩ B̂j))

(ξ × η)(Âi × B̂j)

∣∣∣∣∣

≤ max
1≤i≤ns,1≤j≤na

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

+ max
1≤i≤ns,1≤j≤na

(ξ × η)((Âi × B̂j) \ (Ai ×Bj))
(ξ × η)(Âi × B̂j)

.

So we get

‖µP h − µP̂ h‖1

≤ max
1≤i≤ns
1≤j≤na

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

+ max
1≤i≤ns
1≤j≤na

(ξ × η)((Âi × B̂j) \ (Ai ×Bj))
(ξ × η)(Âi × B̂j)

+ ‖µP h−1 − µP̂ h−1‖1
≤ · · ·

≤H
(

max
1≤i≤ns,1≤j≤na

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

+ max
1≤i≤ns,1≤j≤na

(ξ × η)((Âi × B̂j) \ (Ai ×Bj))
(ξ × η)(Âi × B̂j)

)
,

Note that the transition dynamic of the original state-action space can be embedded into the
discrete MDP mentioned above according to the following mapping: Denote s̃h as the state of
the discrete MDP at step h, then we let s̃h = C0 if Th = 1, and let s̃h = (Ai×Bj)∩ (Âi× B̂j)
if Th = 0 and (sh, ah) ∈ (Ai × Bj) ∩ (Âi × B̂j). Because the reward is only related with
blocks and is bounded between [0, 1], so we have

|Eπµ[rh(Sh, Ah)1Th=0]− Êπµ[rh(Sh, Ah)1Th=0]|
≤‖µP h − µP̂ h‖1

≤H
(

max
1≤i≤ns,1≤j≤na

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

+ max
1≤i≤ns,1≤j≤na

(ξ × η)((Âi × B̂j) \ (Ai ×Bj))
(ξ × η)(Âi × B̂j)

)
.

52

Learning state and action representations via tensor decomposition

In summary, we get

|Eπ[rh(Sh, Ah)]− Êπ[rh(Sh, Ah)]|

≤2H

(
max

1≤i≤ns,1≤j≤na

(ξ × η)((Ai ×Bj) \ (Âi × B̂j))
(ξ × η)(Ai ×Bj)

+ max
1≤i≤ns,1≤j≤na

(ξ × η)((Âi × B̂j) \ (Ai ×Bj))
(ξ × η)(Âi × B̂j)

)

≤4H
c̄

c
M({Âi}nsi=1, {B̂j}naj=1)

and
∣∣∣∣∣
H∑

h=1

Eπ[rh(Sh, Ah)]−
H∑

h=1

Êπ[rh(Sh, Ah)]

∣∣∣∣∣

≤
H∑

h=1

|Eπ[rh(Sh, Ah)]− Êπ[rh(Sh, Ah)]|

≤4H2 c̄

c
M({Âi}nsi=1, {B̂j}naj=1)

which finishes the proof.

53

	Introduction
	Our Approach
	Related Literature
	Markov Decision Process
	Tensor and Tucker Decomposition

	A Tensor View of Markov Decision Process
	Tensor-Inspired State and Action Embedding Learning
	Tensor MDP Mean Embedding by Importance Sampling
	Low-Rank Estimation of Transition Tensor
	Learning State and Action Embeddings

	Estimating the Optimal Discrete MDP Abstraction
	Optimal Partition of State and Action Spaces
	Decoupled State and Action Clustering
	Theoretical Guarantee

	Numerical Experiment

